The microscopic origin of thermodynamics

A SISSA study on the meaning of entropy in a quantum system
Immagine
Entanglement_792x175.png

A deep understanding of the irreversibility of the arrow of time cannot ignore the quantum nature of the world that surrounds us. This is the key result of the work carried out by Vincenzo Alba and Pasquale Calabrese of the International School for Advanced Studies (SISSA) of Trieste, recently published in the journal Proceedings of the National Academy of Sciences (PNAS).

According to one of the main laws of thermodynamics, the entropy of a system, isolated and far from thermal equilibrium, tends to increase in time until equilibrium is reached. This accounts for the irreversibility of the flow of time for macroscopic phenomena. Since the beginning of the last century physicists have been dealing with the dilemma on how to reconcile this law of thermodynamics with the microscopic laws of nature, which have no privileged temporal direction. The problem becomes conceptually more difficult within the context of quantum mechanics where if an isolated system is pure (with zero entropy) it will remain thus for ever, even if not in thermodynamic equilibrium. The work by Alba and Calabrese allows us to understand how this vision, despite being substantially correct, actually does not get to the root of the problem. In particular, the authors have shown that if in an extended quantum system far from equilibrium we look at just one part thereof, this has an entropy that increases in time, exactly like in thermodynamics. The origin of this entropy is in the entanglement between the part we are looking at and the rest of the system. The entanglement is a peculiar correlation that exists only in quantum mechanics and is at the very foundation of the possible functioning of quantum computers.

  Full paper: http://www.pnas.org/content/early/2017/07/10/1703516114


Una profonda comprensione dell’irreversibilità della freccia del tempo non può prescindere dalla natura quantistica del mondo che ci circonda. Questo mostra il lavoro condotto da Vincenzo Alba e Pasquale Calabrese della SISSA di Trieste, pubblicato sulla prestigiosa rivista Proceedings of the National Academy of Sciences (PNAS).

Secondo uno dei principi fondamentali della termodinamica, l’entropia di un sistema isolato lontano dall’equilibrio termico tende ad aumentare nel tempo finché non è raggiunto l’equilibrio. Da questo ha origine l’irreversibilità della freccia del tempo per fenomeni macroscopici. Un dilemma che affligge i fisici fin dall’inizio del secolo scorso è come conciliare questo principio della termodinamica con le leggi microscopiche della natura, che invece non hanno una direzione temporale privilegiata. Il problema si fa concettualmente ancora più difficile nell’ambito della meccanica quantistica, secondo cui se un sistema isolato è puro (cioè ha entropia zero) tale rimarrà per sempre, anche se non è in equilibrio termodinamico. Il lavoro di Alba e Calabrese ha permesso di capire come questa visione, nonostante sostanzialmente corretta, in realtà non catturi l’essenza del problema. In particolare, gli autori hanno mostrato che se in un sistema quantistico esteso lontano dall’equilibrio ci limitiamo a guardare una sua parte, questa ha un’entropia che aumenta nel tempo, esattamente come quella termodinamica. L’origine di questa entropia è nell’entanglement tra la parte che guardiamo e il resto del sistema, ossia una peculiare correlazione che esiste solo in meccanica quantistica e che è alla base del possibile funzionamento dei computer quantistici.

  Articolo completo: http://www.pnas.org/content/early/2017/07/10/1703516114