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1 Introduction

There are different ways of regularizing a Quantum Field Theory (QFT). The best choice

of regulator is the one which keeps the maximum number of symmetries of the classical

action unbroken. Cut-off regularization, for instance, breaks gauge invariance while this is

unbroken in the somewhat more exotic dimensional regularization. It might happen, how-

ever, that there exists no regulator that preserves a given classical symmetry. When this

happens, we say that the symmetry is anomalous, namely the quantum theory necessarily

breaks it, independently of the choice of regulator.

Roughly speaking, anomalies can affect global or local symmetries. The latter case is

particularly important, because local symmetries are needed to decouple unphysical states.

Indeed, anomalies in linearly realized local gauge symmetries lead to inconsistent theories.

Theories with anomalous global symmetries are instead consistent, yet the effect of the
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anomaly can have important effects. The first anomaly, discovered by Adler, Bell and

Jackiw [1], was associated to the non-conservation of the axial current in QCD. Among

other things, the axial anomaly resolved a puzzle related to the π0 → 2γ decay rate,

predicted by effective Lagrangian considerations to be about three orders of magnitude

smaller than the observed one.

In this course we will study in some detail a particularly relevant class of anomalies,

those associated to chiral currents (so called chiral anomalies) and their related anomalies

in local symmetries. Emphasis will be given to certain mathematical aspects, in particular

the close connection between anomalies and index theorems, while most physical aspects

will not be discussed. The computation of anomalies will be mapped to the evaluation of

the partition function of a certain (supersymmetric) quantum mechanical model, following

the seminal paper [2]. Although this might sound unusual, if compared to the more

standard treatments using one-loop Feynman diagrams, and requires a bit of background

material to be attached, the ending result will be very rewarding. This computation will

allow us to get the anomalies associated to gauge currents (so called gauge anomalies)

and stress-energy tensor (so called gravitational anomalies) in any number of space-time

dimensions! Moreover, it is the best way to reveal the above mentioned connection with

index theorems. Since the notion of chirality is restricted to spaces with an even number of

space-time dimensions, and the connection with index theorems is best seen for euclidean

spaces, we will consider in the following QFT on even dimensional euclidean spaces.

Some exercises are given during the lectures (among rows and in bold face in the text).

They are simple, yet useful, and the reader should be able to solve them without any

problem.

These notes are a slightly revised version of my lecture notes [3], mostly based on

the review paper [4]. Basic, far from being exhaustive, references to some of the original

papers are given in the text.

2 Basics of Differential Geometry

We recall here some basic aspects of differential geometry that will be useful in understand-

ing anomalies in QFT. This is not a comprehensive review. There are several excellent

introductory books in differential geometry, see e.g. ref.[5]. A basic well written overview

with a clear physical perspective can be found e.g. in refs.[6] and [7].
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2.1 Vielbeins and Spinors

Given a manifold Md of dimension d, a tensor of type (p, q) is given by

T = T
µ1...µp

ν1...νq
∂

∂xµ1
. . .

∂

∂xµp
dxν1 . . . dxνq , (2.1)

where µi, νi = 1, . . . , d. A manifold is called Riemannian if it admits a positive definite

symmetric (0,2) tensor. We call such tensor the metric g = gµνdx
µdxν . On a general Md

a vector acting on a (p, q) tensor does not give rise to a well-defined tensor, e.g. if Vν are

the components of a (0, 1) tensor, ∂µVν are not the components of a (0, 2) tensor. This

problem is solved by introducing the notion of connection and covariant derivative. If Md

has no torsion (as will be assumed from now on), then ∂µVν → ∇µVν , where

∇µVν = ∂µVν − ΓρµνVρ , Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (2.2)

The (not tensor) field Γρµν is called the Levi-Civita connection. In terms of it, we can

construct the fundamental curvature (or Riemann) tensor

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓ

µ
νρ + ΓασνΓ

µ
αρ − ΓαρνΓ

µ
ασ . (2.3)

Other relevant tensors constructed from the Riemann tensor are the Ricci tensor Rνσ =

Rµνµσ and the scalar curvature R = gνσRνσ.

The transformation properties under change of coordinates of (p, q) tensors is easily

obtained by looking at eq.(2.1). For instance, under a diffeomorphism xµ → x′µ(x), a

vector transforms as

V µ(x) → V ′µ(x′) = Zµν (x)V
ν(x) . (2.4)

where

Zµν (x) =
∂x′µ

∂xν
. (2.5)

At each space-time point x, the matrix Zµν is an element of GL(d,R) and we can say

that a (1,0) vector transforms in the fundamental representation of GL(d,R). Similarly a

(0,1) vector transforms in the dual fundamental representation given by Z−1. A generic

(p, q) tensor transforms in the appropriate product of these basic representations. In flat

space tensors are defined in terms of their transformation properties under the Lorentz

SO(d) group. Since SO(d) ⊃ GL(d,R), given a GL(d,R) representation, we can always

decompose it in terms of SO(d) ones. Contrary to tensors, spinors are representations

of SO(d) that do not arise from representations of GL(d,R). For this reason, spinors in

presence of gravity require to replace diffeomorphisms with local Lorentz transformations.

At each point of the manifold, we can write the metric as

gµν(x) = eaµ(x)e
b
ν(x)ηab , (2.6)
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where a, b = 1, . . . , d.1 The fields eaµ(x) are called vielbeins. They are not uniquely defined

by eq.(2.6). If we perform the local Lorentz transformation

eaµ(x) → (Λ−1)ab(x)e
b
µ(x) , (2.7)

the metric is left invariant. It is important to distinguish the index µ form the index a.

The first transforms under diffeomorphisms and is invariant under local Lorentz transfor-

mations, viceversa for the second: invariant under diffeomorphisms and transforms under

local Lorentz transformations. They are sometimes denoted curved and flat indices, re-

spectively. We will denote a curved index with a greek letter, and a flat index with a

roman letter. From eq.(2.6) we have g ≡ det gµν = (det eaµ)
2. Since the metric is positive

definite, this implies that eaµ is a non-singular d × d matrix at any point. We denote its

inverse by eµa : e
µ
aebµ = ηab, eµaeaν = δµν . It is easy to see that eµa is obtained from eaµ by

using the inverse metric gµν : eµa = gµνeνa. Curved indices are lowered and raised by the

metric gµν and its inverse gµν . The vielbeins eµa can be seen as a set of orthonormal (1,0)

vectors in the tangent space. As such, we can decompose any vector V µ in their basis:

V µ = eµaV a. Similarly for the (0,1) vectors in cotangent space: Vµ = eaµVa. So any tensor

with curved indices can be converted to a tensor with flat indices. In other words, we can

project the (p, q) tensor (2.1) in the basis

T = T
a1...ap

b1...bq
Ea1 . . . Eape

b1 . . . ebq , (2.8)

where

Ea = eµa
∂

∂xµ
, ea = eaµdx

µ . (2.9)

We can then trade, as already mentioned, diffeomorphisms for local Lorentz transfor-

mations. In order to ensure invariance under local Lorentz transformations, we should

introduce a gauge field connection ωµ transforming in the adjoint representation of SO(d):

ωµ(x) → Λ−1(x)ωµ(x)Λ(x) + Λ−1(x)∂µΛ(x) . (2.10)

The components of an SO(d) connection can be represented with a pair of antisymmetric

indices in the fundamental representation: ωabµ = −ωbaµ , a, b = 1, . . . d. This field is called

the spin connection and is the analogue of the Levi-Civita connection Γρµν for diffeomor-

phisms. Derivative of tensors with flat indices are promoted to covariant derivatives:

DµT
a = ∂µT

a + ωaµ bT
b . (2.11)

1For euclidean spaces ηab = δab, but we write it here more generally ηab so our considerations will also

apply for Lorentzian spaces.
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As the Levi-Civita connection is a function of the metric, the spin connection is a function

of the vielbeins and cannot be an independent field (otherwise we would have too many

gravitational degrees of freedom).

Exercise 1: Prove that demanding the compatibility of the covariant derivative

(2.11) with the one defined in eq.(2.2),

∇µTν = eaνDµTa , (2.12)

leads to the following equation:

∇µe
a
ν + ωaµ be

b
ν = 0 . (2.13)

Using eq.(2.13) one could determine the explicit expression of ωaµ b = ωaµ b(e) (as well

the expression of Γρµν in eq.(2.2)). We will not report this expression, not needed in what

follows. The curvature tensor is given by

Raµν b = Dµω
a
ν b = ∂µω

a
ν b − ∂νω

a
µ b + ωaµ cω

c
ν b − ωaν cω

c
µ b . (2.14)

By using eq.(2.12) and the properties [∇µ,∇ν ]V
ρ = RρµνσV σ, [Dµ,Dν ]V

a = Raµν bV
b, we

have

Raµν b = eaσe
ρ
bR

σ
µνρ . (2.15)

Let us come back to spinors. First of all, recall that the definition of gamma matrices in

d euclidean dimensions is a straightforward generalization of the usual one known in four

dimensions:

{γa, γb} = 2δab . (2.16)

We have written γa and not γµ because in a curved space γµ(x) = eµa(x)γa 6= γa. The

algebra defined by eq.(2.16) is called a Clifford algebra. For even d, the case relevant

in these lectures, the lowest dimensional representation in d dimensions require 2d/2 ×
2d/2 matrices. Hence a (Dirac) spinor in d dimensions has 2d/2 components. A linearly

independent basis of matrices is given by antisymmetric products of gamma matrices:

I , γa , γa1a2 , . . . γ1...d , (2.17)

where

γa1...ap =
1

p!

(

γa1 . . . γap ± (p− 1)! perms
)

(2.18)
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is completely antisymmetrized in the indices a1 . . . ap. The total number of elements of

the base is
d
∑

p=0

(

d

p

)

= 2d = 2d/2 × 2d/2 , (2.19)

which is then complete. Notice the close analogy between gamma matrices and differential

forms, analogy that we will use in a crucial way in the next sections. In d euclidean

dimensions, the gamma matrices can be taken all hermitian: (γa)† = γa. We can also

define a matrix γd+1, commuting with all other γa’s:

γd+1 = in
d
∏

a=1

γa . (2.20)

The factor in ensures that γ2d+1 = 1 for any d. Needless to say, γd+1 is the generalization

of the usual chiral gamma matrix γ5 in 4d QFT. A spinor ψ can be decomposed in two

irreducible components: ψ = ψ++ψ−, with γd+1ψ± = ±ψ±. Weyl spinors in d dimensions

have then 2d/2−1 components. Using eq.(2.16), the matrices

Jab =
1

4
[γa, γb] =

1

2
γab (2.21)

are shown to be (anti-hermitian) generators of SO(d). Under a global Lorentz transfor-

mation, a spinor ψ transforms as follows:

ψ → e
1
2
λabJ

ab

ψ , (2.22)

where λab are the d(d − 1)/2 parameters of the transformation. The covariant derivative

of a fermion in curved space is obtained by replacing

∂µ → Dµ = ∂µ +
1

2
ωabµ Jab . (2.23)

The Lagrangian density of a massive Dirac fermion coupled to gravity is finally given by

Lψ = e ψ̄
(

ieµaγ
aDµ −m

)

ψ , (2.24)

where e ≡ det eaµ.

A manifold is generally described by different open sets (charts) U(α) and transition

functions between the different charts. In general it might not be possible to define eaµ

globally on the manifold, but locally on U(α) we can always found one eaµ (α). At inter-

sections U(αβ) = U(α)

⋂

U(β) we can use either (omitting indices) the vielbein e(α) or e(β).

The two are equivalent provided they are related by a local Lorentz transformation Λ(αβ):

e(α)(x) = Λ(αβ)(x)e(β)(x) . (2.25)
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Similarly we have

ω(α)(x) = Λ−1
(αβ)(x)ω(β)(x)Λ(αβ)(x) + Λ−1

(αβ)(x)∂Λ(αβ)(x) . (2.26)

The local Lorentz transformation Λ(αβ) is called a transition function and characterizes

the non-triviality of the manifold. A manifold is topologically trivial if it admits a unique

globally defined vielbein eaµ, namely one can choose Λ(αβ) = 1 at any intersection U(αβ).

A similar analysis can be made for gauge fields. A topologically non-trivial gauge field

configuration is one in which the connection Aµ cannot be specified uniquely over the

manifold. We define a connection A(α) on U(α), and on intersections

A(α)(x) = g−1
(αβ)(x)A(β)(x)g(αβ)(x) + g−1

(αβ)(x)∂g(αβ)(x) , (2.27)

where g(αβ)(x) is a gauge transformation. Non-trivial gauge configurations, as well as

nontrivial manifolds, are classified by topological invariant quantities. A subset of these

are given by characteristic classes, namely integrals of antisymmetric tensors of type (0, p),

also denoted differential forms. In the next two subsections we review basics of differential

forms and characteristic classes, respectively.

2.2 Differential Forms

A differential form ωp is commonly denoted a p-form and is represented as

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (2.28)

The wedge product ∧ in eq.(2.28) represents the completely antisymmetric product of the

basic 1-forms dxµi :

dxµ1 ∧ . . . ∧ dxµp =
∑

P∈Sp

sign (P )dxµP (1) . . . dxµP (p) , (2.29)

where P denotes a permutation of the indices and Sp is the group of permutations of p

objects. For each point in a manifold of dimension d, the dimension of the vector space

spanned by ωp equals
(

d

p

)

=
d!

(d− p)!p!
. (2.30)

The total vector space spanned by all p-forms, p = 0, . . . , d, equals

d
∑

p=0

(

d

p

)

= 2d . (2.31)
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Given a p-form ωp and a q-form χq, their wedge product ωp ∧ χq is a (p + q)-form. From

eq.(2.29) one has

ωp ∧ χq = (−)pqχq ∧ ωp
(ωp ∧ χq) ∧ ηr = ωp ∧ (χq ∧ ηr) .

(2.32)

One has clearly ωp ∧ χq = 0 if p+ q > d and ωp ∧ ωp = 0 if p is odd. Given a p-form ωp,

we define the exterior derivative dp as the (p+ 1)-form given by

dpωp =
1

p!
∂µp+1ωµ1...µpdx

µp+1 ∧ dxµ1 ∧ . . . ∧ dxµp . (2.33)

Notice that in eq.(2.33) we have the ordinary, rather than the covariant derivative, because

upon antisymmetrization their action is the same:

∇[µp+1
ωµ1...µp] = ∂[µp+1

ωµ1...µp] −
p
∑

i=1

Γα[µp+1µi
ωα|µ1...µ̂i...µp] = ∂[µp+1

ωµ1...µp] . (2.34)

The hat in the index µi means that the index should be removed, while the square brackets

indicate complete antisymmetrization in the p+1 µi indices (the | indicates that the index
α is excluded by the antisymmetrization). Since the Levi-Civita connection is symmetric

in its two lower indices, the second equality in eq.(2.34) immediately follows. The exterior

derivative d is covariant independently of the metric. A differential operator like d can only

be defined for differential forms and this explains their importance in the classification of

the topological properties of manifolds.

Given eq.(2.32), we have

dp+q(ωp ∧ χq) = dpωp ∧ χq + (−)pωp ∧ dqχq . (2.35)

From the definition (2.33) it is clear that dp+1dp = 0 on any p-form.

A p-form is called closed if dpωp = 0 and exact if ωp = dp−1χp−1 for some (p − 1)-

form χp−1. Clearly, if ωp = dp−1χp−1, then dpωp = 0 (exact → closed) but not viceversa.

Correspondingly, the image of dp−1, the space of p-forms such that ωp = dp−1χp−1, is

included in the kernel of dp, the space of p-forms such that dpωp = 0: Im dp−1 ⊂ Ker dp.

The coset space Ker dp/Im dp−1 is called the de Rham cohomology group on the manifold

Md. By Stokes theorem, the integral of an exact p-form on a p-dimensional cycle Cp of Md

with no boundaries necessarily vanish:
∫

Cp

ωp =

∫

Cp

dpχp−1 =

∫

∂Cp

χp−1 = 0 . (2.36)

Notice that on U(α) a closed form can always be written as ωpα = dp−1χp−1α for some

(p−1)-form. Exactness means that this decomposition applies globally over the manifold.
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Since the action of dp on a p-form is clear from the context, we will drop from now on the

subscript p in the exterior derivative and denote it simply with d.

Gauge fields are conveniently written in terms of differential forms. For a U(1) gauge

theory the connection is a 1-form A = Aµdx
µ, with

F = dA =
1

2
(∂µAν − ∂νAµ)dx

µ ∧ dxν =
1

2
Fµνdx

µ ∧ dxν (2.37)

being the associated field strength 2-form. In order to generalize this geometric picture

of gauge theories to the non-abelian case, we have to introduce the notion of Lie-valued

differential forms. We then define

A = AαTα, Aα = Aαµdx
µ , (2.38)

where Tα are the generators of the corresponding Lie algebra.2 We take them to be anti-

hermitian: (Tα)† = −Tα. This unconventional (in physics) choice allows us to get rid of

some factors of i’s in the formulas that will follow. Given two Lie-valued forms ωp and χq,

we define their commutator as

[ωp, χq] ≡ ωαp ∧ χβq [Tα, T β] = ωαp ∧ χβqTαT β − (−)pqχβq ∧ ωαp T βTα . (2.39)

The square of a Lie valued p-form does not necessarily vanish when p is odd, like ordinary

p-forms. One has

ωp ∧ ωp =
1

2
[Tα, T β]ωαµ1...µpω

β
µp+1...µ2pdx

µ1 ∧ . . . ∧ dxµ2p =
1

2
[ωp, ωp] . (2.40)

The action of the exterior derivative d on a Lie-valued p-form does not give rise to a

well-defined covariant p+ 1-form. Under a gauge transformation g, we have

A→ g−1Ag + g−1dg , (2.41)

and F = dA does not transform properly. A covariant transformation is provided by the

covariant derivative

F = DA = dA+A ∧A . (2.42)

Exercise 2: i) Show that F → g−1Fg under a gauge transformation. ii) Show

that dF = −[A,F ], so that DF = dF + [A,F ]=0 (Bianchi identity).

2Needless to say, the gauge index α here should not be confused with the index (α) in eqs.(2.25)-(2.27),

that was used to label the charts covering a manifold.
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In complete analogy to eq.(2.42), we can view the components of the Riemann tensor

(2.14) as defining a curvature two-form

Rab = Dωab = dωab + ωac ∧ ωcb . (2.43)

A differential form notation can also be introduced to describe the Levi-Civita connection

(2.2) and the Riemann tensor (2.3). One defines the matrix of one-forms Γµν = Γµρνdxρ

and the curvature two-form

Rµν = dΓµν + Γµσ ∧ Γσν =
1

2
Rµνρσdx

ρ ∧ dxσ . (2.44)

Mathematically speaking, a gauge field is a connection on a fibre bundle. A fiber F

is the vector space that can be associated to each point of the manifold Md (called also

the base space in this context). The total space given by the base space and the fibre

is called the fibre bundle. It can always be locally written as a direct product Md × F .

Globally only trivial gauge bundles (those where g(αβ) in eq.(2.27) can be chosen to be 1

at any intersection U(αβ)) admit such decomposition, very much like the choice of local

coordinates in a non-trivial manifold. We will not discuss the formulation of non-abelian

gauge theories in terms of fibre bundles.

2.3 Characteristic Classes

Characteristic classes is the name for certain cohomology classes that measure the non-

triviality of a manifold or of its gauge bundle. They are essentially given by integrals of

gauge invariant combinations of curvature two-forms, like (omitting flat SO(d) indices)

trR∧ . . .∧R or trF ∧ . . .∧F . For simplicity of notation we will omit from now the wedge

product among forms. Given the covariant transformation of F and R under gauge or

local Lorentz transformations, trFn and trRn are well defined over the manifold, namely

trFn(α) = trFn(β) on U(αβ) so we can write tr Fn globally over the manifold. In a topologi-

cally non-trivial situation, gauge fields are classified in terms of families belonging to the

same topological class. More precisely, two gauge fields A and A′ are of the same topo-

logical class if on U(αβ) they transform as in eq.(2.27), with the same transition function

g(αβ)(x). The same considerations apply to tr Rn. In fact, since the spin connection can

be viewed as an SO(d) gauge connection, there is no need of a separate discussion for the

gravitational case and all the analysis that follow will automatically apply.

The simplest example of characteristic class is provided by a U(1) gauge field, where

we can consider the integral of F over a compact two-dimensional subspace of Md. The

field strength F is well-defined on Md and by the Bianchi identity it is closed: dF = 0.
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If it is exact, namely there is a globally defined connection A for which F = dA, then by

Stokes theorem
∫

F = 0. In general F might not be exact, in which case
∫

F 6= 0 measures

the topological non-triviality of the space (the U(1) gauge bundle).

In the U(1) case, the difference of two gauge fields A and A′ in the same topological

class is an exact, globally defined, one-form. We have F ′ − F = d(A′ − A) and hence for

any two-dimensional compact subspace of Md

∫

F =

∫

F ′ (2.45)

is a topological invariant quantity.

A non-trivial U(1) gauge configuration is provided by a magnetic monopole. Given

(say) a two-sphere S2 surrounding the monopole, we should have

∫

S2

F 6= 0 (2.46)

and proportional to the monopole charge. A monopole induces a magnetic field of the

form ~B = g~r/r3 and correspondingly there is no globally defined connection on S2.

Exercise 3: Show that in radial coordinates the connection 1-forms in the

northern and southern hemispheres can be taken as

A(N) = −ig(1− cos θ)dφ , A(S) = ig(1 + cos θ)dφ . (2.47)

More precisely, we split S2 = Σ(N) + Σ(S), Σ(N),(S) being the northern and southern

hemispheres, and compute

∫

S2

F =

∫

Σ(N)

dA(N) +

∫

Σ(S)

dA(S) =

∮

(A(N) −A(S)) , (2.48)

where the closed integral is around the equator at θ = π/2. From the exercise 3 we have

A(N) −A(S) = −2igdφ and hence

i

2π

∫

S2

F =
1

2π

∫ 2π

0
dφ(2g) = 2g . (2.49)

We now show that 2g must be an integer in order to have a well-defined quantum theory. If

a charged particle moves along the equator S1, its action will contain the minimal coupling
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of the particle with the gauge field. In a path-integral formulation, it corresponds to a

term

e
∮
S1 A = e

∫
D
F , (2.50)

where we used Stokes’ theorem and D is any two-dimensional space with S1 as boundary:

∂D = S1. Both Σ(N) and Σ(S) are possible choices for D. We get

e
∮
S1 A = e

∫
Σ(N)

F
= e

−
∫
Σ(S)

F
=⇒ e

(
∫
Σ(N)

+
∫
Σ(S)

)F
= e

∫
S2 F = 1 . (2.51)

Combining with eq.(2.49), we get the condition

g =
n

2
, n ∈ Z . (2.52)

We have assumed here the electric charge to be unit normalized. For a generic charge

q, eq.(2.52) gives the known Dirac quantization condition between electric and magnetic

charges:

qg =
n

2
, n ∈ Z . (2.53)

We can now show the topological nature of characteristic classes more in general.

Consider a G-valued two form field-strength F and define the gauge-invariant 2n-form

Q2n(F ) ≡ trFn. Using the results of Exercise 1, it is easy to show that Q2n(F ) is closed:

dQ2n(F ) = −
n−1
∑

i=0

trF i[A,F ]Fn−i−1 = −tr [A,Fn] = 0 . (2.54)

In general, Q2n(F ) is not exact, but so it will be the difference Q2n(F ) −Q2n(F
′), where

F an F ′ are two arbitrary field strengths in the same topological class. Hence the integral

of Q2n(F ) over a 2n-dimensional compact sub-manifold C2n of Md (or over the entire Md)

does not depend on F :
∫

C2n

Q2n(F ) =

∫

C2n

Q2n(F
′) , (2.55)

and defines the cohomology class called the characteristic class of the polynomial Q2n(F ).

Let us prove thatQ2n(F )−Q2n(F
′) is an exact form. Although the proof is a bit involved, it

will turn out to be very useful when we will discuss the so called Wess-Zumino consistency

conditions for anomalies. Let A and A′ be one-form connections associated to F and F ′

and define an interpolating connection At as

At = A+ t(A′ −A) , t ∈ [0, 1] . (2.56)

We clearly have A0 = A, A1 = A′. Let us also denote by θ = A′ −A the difference of the

two connections. We have (recall eq.(2.39))

Ft = dAt +A2
t = dA+ tdθ + (A+ tθ)2 = F + t(dθ + [A, θ]) + t2θ2 . (2.57)
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We can also write

Q2n(F
′)−Q2(F ) =

∫ 1

0
dt

d

dt
Q2n(Ft) = n

∫ 1

0
dt tr

(dFt
dt
Fn−1
t

)

= n

∫ 1

0
dt
(

tr DθFn−1
t + 2t tr θ2Fn−1

t

)

.

(2.58)

On the other hand, we have

dtr θFn−1
t = tr dθFn−1

t −
n−2
∑

i=0

tr θF it dFtF
n−i−2
t (2.59)

= tr DθFn−1
t − tr [A, θ]Fn−1

t −
n−2
∑

i=0

(

tr θF itDFtF
n−i−2
t − tr θF it [A,Ft]F

n−i−2
t

)

.

The second and fourth terms in eq.(2.59) combine into a total commutator that vanishes

inside a trace: tr [A, θFn−1
t ] = 0. The derivative DFt equals

DFt = dFt + [A,Ft] = dFt + [At −At +A,Ft] = DtFt − t[θ, Ft] = −t[θ, Ft] , (2.60)

given that DtFt = 0. We also have

0 = tr [θ, θFn−1
t ] = tr 2θ2Fn−1

t −
n−2
∑

i=0

tr θF it [θ, Ft]F
n−i−2
t . (2.61)

Plugging eqs.(2.60) and (2.61) in eq.(2.59) gives

dtr θFn−1
t = tr DθFn−1

t + 2t tr θ2Fn−1
t . (2.62)

We have then proved that

Q2n(F
′)−Q2(F ) = dχ2n−1 , (2.63)

with

χ2n−1 = n

∫ 1

0
dt tr θFn−1

t . (2.64)

Notice that χ2n−1 is globally defined, because both θ and Ft transform covariantly.

The invariant polynomials we will be interested in comes from generating functions of

polynomials defined in any number of dimensions. We will briefly mention here the ones

featuring in anomalies. The first is given by the Chern character

ch (F ) ≡ tr e
iF
2π . (2.65)

The Taylor expansion of the exponential gives rise to the series of 2n-forms denoted by

nth Chern characters

chn(F ) =
1

n!
tr
( iF

2π

)n
. (2.66)
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It is clear that for any given d, chn(F ) = 0 for n > d/2.

The second involves the curvature two-form Rab defined in eq.(2.43). For simplicity

of notation we will denote it just by R, omitting the flat indices a and b. It should not

be confused with the scalar curvature that will never enter in our considerations! An

interesting characteristic class is the Pontrjagin class defined by

p(R) = det
(

1 +
R

2π

)

. (2.67)

The expansion of p(R) in invariant polynomials is obtained by bringing the curvature

2-form Rab into a block-diagonal form (this can always be done by an appropriate local

Lorentz rotation) of the type

Rab =



















0 λ1

−λ1 0

...

0 λd/2

−λd/2 0



















, (2.68)

where λi are 2-forms. In this way it is not difficult to find the terms in the expansion

of p(R). Due to the antisymmetry of R, there are only even terms in R and hence the

invariant polynomials are 4n-forms. The first two terms with n = 1, 2 are

p1(R) = −1

2

( 1

2π

)2
trR2 ,

p2(R) =
1

8

( 1

2π

)4
(

(trR2)2 − 2trR4

)

.
(2.69)

Like for the Chern class, on a manifold with dimension d all 4n-forms with 4n > d are

trivially vanishing. There is however a way in which we can define an other class from

the formally vanishing p2d(R) term. We see from eq.(2.67) that the 2d-form equals just

detR/2π (if the factor 1 is taken in any diagonal entry in evaluating the determinant, one

necessarily gets a form with lower degree). The determinant of an antisymmetric matrix

is always a square of a polynomial called the Pfaffian. Combining these two facts, we can

define a d-form e(R) called the Euler class as

p2d(R) = e(R)2 . (2.70)

The integral over the manifold of e(R) is an important invariant called the Euler charac-

teristic of the manifold.
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Exercise 4: Compute e(R) for a two-sphere S2 and show that

χ(S2) =

∫

S2

e(R) = +2 . (2.71)

The characteristic class entering directly in the evaluation of anomalies is the so-called

roof-genus, defined as

Â(R) =

d/2
∏

k=1

xk/2

sinh(xk/2)
= 1− 1

24
p1(R) +

1

5760
(7p1(R)

2 − 4p2(R)) + . . . (2.72)

where xk = λk/2π.

An important theorem by Atiyah and Singer, called index theorem, relates the spectral

properties of differential operators on a manifold Md with its topology (fibers included).

This is a remarkable property, because at first glance the two concepts might seem un-

related. We will not discuss index theorems in general, but just states the result for a

specific operator that will feature in the following: the dirac operator

i/DR = ieµaγ
a
(

∂µ +
1

2
ωbcµ Jbc +AαTαR

)

. (2.73)

In eq.(2.73) the subscript R refers to the representation of the fermion under the (unspec-

ified) gauge group G, and TαR are the generators in the corresponding representation. The

index of the Dirac operator is nothing else that the difference between the number of zero

energy eigenfunctions of positive and negative chirality. One has

n+ − n− = index i /DR =

∫

Md

chR(F )Â(R) , (2.74)

where

chR(F ) ≡ trRe
iF
2π . (2.75)

As we will see in the next sections, eq.(2.74) gives the contribution of a Dirac fermion to the

so called chiral anomaly in d dimensions. It is a remarkable compact formula that should

be properly understood. For any given dimension d, one should expand the integrand in

eq.(2.74) and selects the form of degree d, which is the only one that can be meaningfully

integrated over the manifold Md.

Let us conclude by spending a few words on the character chR(F ). If a representation

R = R1⊗R2, one has chR(F ) = chR1(F )chR2(F ). For example, for G = SU(N), we have

fund.⊗ fund. = adj.⊕ 1. Correspondingly,

chAdj.(F ) = ch(F )ch(−F )− 1 , (2.76)
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where the Chern character without subscript refers to the fundamental representation and

we used the fact that chfund.(F ) = ch(−F ). Expanding eq.(2.76) we have

N2 − 1− 1

2
trAdj.F

2 + . . . = (N − 1

2
trF 2 + . . .)2 − 1 , (2.77)

from which we deduce the known result

trAdj.t
αtβ = 2N tr tαtβ . (2.78)

3 Supersymmetric Quantum Mechanics

For reasons that will be clear in the next section, the most elegant computation of anoma-

lies, that makes clear its connection with index theorems and eq.(2.74), is essentially

mapped to a computation in a quantum mechanical model whose Hamiltonian equals the

square of the Dirac operator (2.73):

H = (i/DR)
2 . (3.1)

Let us start by considering the simplest situation of flat space Rd with vanishing gauge

potential. The hamiltonian (3.1) reduces to H = (i/∂)2 = −∂2µ = −∇ = p2, namely twice

the hamiltonian of a free particle moving in Rd with unit mass. Despite the hamiltonian

is the correct one, there is no obvious way to see p2 as coming from /p2. The “spinor”

structure is simply absent. The problem is fixed by adding fermionic variables ψµ and

write the lagrangian3

L =
1

2
ẋµẋµ +

i

2
ψµψ̇µ . (3.2)

The first term is the usual free kinetic term for a particle, the second is a somewhat

more unusual “free kinetic term” for fermion coordinates.4 Notice that ψµ are Grassmann

variables in one dimension but transform as vectors on Rd. The system described by the

lagrangian (3.2) is invariant under the following supersymmetric (SUSY) transformation:

δxµ = iǫψµ ,

δψµ = −ǫẋµ ,
(3.3)

where ǫ is a constant Grassmann variable, ǫ2 = 0, anticommuting with ψµ. It is easy to

check that. We have

δL = ẋµiǫψ̇µ +
i

2
(−ǫẋµ)ψ̇µ + i

2
ψµ(−ǫẍµ) = i

2
ǫ
d

dt
(ẋµψµ) . (3.4)

3We are in flat euclidean space, so upper and lower vector indices are equivalent.
4Notice that we are not discussing a QFT here, so ψµ do not represent fermion particles. The interpre-

tation of ψµ will be given shortly.
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Since the Lagrangian transforms as a total derivative the action S =
∫

dtL is invariant and

eq.(3.3) is a good symmetry. Let us define canonical momenta and impose quantization:

pµ =
dL

dẋµ
= ẋµ ,

πµ =
dL

dψ̇µ
=
i

2
ψµ .

(3.5)

In the bosonic sector we can straightforwardly proceed with the usual replacement of

Poisson brackets with quantum commutators, i.e. [xµ, xν ] = [pµ, pν ] = 0, [xµ, pν ] = iδµν .

In the fermion sector one has to be more careful because the naive anti-commutators

{ψµ, ψν}P = {πµ, πν}P = 0 , {ψµ, πν}P = iδµν (3.6)

are clearly incompatible with the actual form of πµ in eq.(3.5). This problem is solved by

looking at the definition of πµ in eq.(3.5) as a constraint

χµ ≡ πµ − i

2
ψµ = 0 . (3.7)

The quantization of theories with constrains is known (see e.g. section 7.6 of ref.[8] for

an excellent introduction). If the matrix of the Poisson brackets among the constraints

χµ is non-singular (computed using the brackets (3.6)), we say that the constraints are of

second class. This is our case, since {χµ, χν}P ≡ cµν = δµν . A consistent quantization

in presence of second class constraints is obtained by replacing the Poisson bracket with

the so called Dirac bracket. More in general, for two anti-commuting operators A and B

subject to a series of second class constraints of the form χM = 0, we have

{A,B}D ≡ {A,B}P − {A,χM}P c−1
MN{χN , B}P , (3.8)

where c−1 is the inverse of the matrix of brackets cMN = {χM , χN}P . A similar formula

applies for bosonic fields, with commutators replacing anti-commutators. Coming back to

our case, if we take A = χρ or B = χρ in eq.(3.8) we get a vanishing result, consistently

with the constraints χµ = 0. The consistent anti-commutators for fermions are then

{ψµ, ψµ}D = δµν , {πµ, πµ}D = −1

4
δµν , {ψµ, πν}D =

i

2
δµν . (3.9)

The Hamiltonian of the system is given by (pay attention to the order of the fermion

fields)

H = pµẋ
µ + πµψ̇

µ − L =
1

2
p2µ = −1

2
∇ , (3.10)

namely it is just the standard free hamiltonian in absence of fermions! The fermion

generator of SUSY is given by

Q = −ψµẋµ = −ψµpµ . (3.11)
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We can easily check that it leads to the correct transformation properties:

δxµ = [ǫQ, xµ] = −ǫψν [pν , xµ] = iǫψµ ,

δψµ = [ǫQ,ψµ] = −[ǫψνpν , ψµ] = −ǫpν{ψν , ψµ} = −ǫpµ = −ǫẋµ .
(3.12)

The fermion Dirac brackets in eq.(3.9) generate the same Clifford algebra of gamma ma-

trices in d dimensions. The action in the Hilbert space of ψµ is then that of a gamma

matrix:

ψµ → 1√
2
γµ . (3.13)

The anti-commutator of two supercharges equal

{Q,Q} = {ψµpµ, ψνpν} = p2µ = 2H =⇒ Q2 = H . (3.14)

Plugging eq.(3.13) in the supercharge Q in eq.(3.11) gives

Q =
i√
2
γµ∂µ =

1√
2
i/∂ , (3.15)

namely the supercharge acts in the Hilbert space as the Dirac operator. Thanks to the

fermion operators, we can now reinterpret the hamiltonian (3.10) as the square of the

Dirac operator. In quantum mechanics, the existence of SUSY is the statement about

the possibility of classifying the spectrum of the system using a fermion number operator.

If |B〉 is a bosonic state, then the state ψµ|B〉 is fermionic. Correspondingly, given a

bosonic state |B〉, Q|B〉 is a fermionic one. Viceversa, if |F 〉 is a fermionic state, then

Q|F 〉 is a bosonic one. States are grouped in multiplets that rotate as spinors do in d

dimensions upon the action of the operator ψµ. For d even, we might then split the

spectrum into “boson” and “fermion” states, according to the action of the matrix γd+1

defined in eq.(2.20). States with γd+1 = 1 and γd+1 = −1 will be denoted bosons and

fermions, respectively. The chiral matrix γd+1 is then equivalent to a fermion number

operator (−)F .

Let us finally compute the SUSY transformation of the generator Q itself:

δQ = −δψµẋµ − ψµδẋµ = ǫẋµẋµ − ψµ(iǫψ̇µ) = 2ǫL . (3.16)

We notice two important properties of Q: its square is proportional to the Hamiltonian

and its SUSY variation is proportional to the Lagrangian.5 In turn, the variation of the

Lagrangian is proportional to the time derivative of Q, see eq.(3.4).

5This is true in the Lagrangian formulation. In the Hamiltonian formulation we have δQ = [ǫQ,Q] =

ǫ{Q,Q} = 2ǫH .
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Consider now a particle moving on a general manifold Md. The SUSY transformations

(3.3) do not depend on the metric of Md and are unchanged. Correspondingly Q should

be given by the straightforward generalization of eq.(3.11):

Q = −gµν(x)ψµẋν . (3.17)

The simplest way to get the curved space generalization of the Lagrangian (3.2) is to use

eq.(3.16).

Exercise 5: Compute the curved space lagrangian Lg by using eqs.(3.16) and

(3.17) and show that

Lg =
1

2
gµν(x)ẋ

µẋν +
i

2
gµν(x)ψ

µ
(

ψ̇ν + Γνρσ(x)ψ
ρẋσ
)

, (3.18)

where Γνρσ is the Levi-Civita connection (2.2).

It is important for our purposes to rewrite eq.(3.18) in terms of vielbeins. We have

ψµ = eµaψa, so that
d

dt
ψν =

d

dt
(eνaψ

a) = (∂µe
ν
a)ẋ

µψa + eνaψ̇
a , (3.19)

where from now on we omit the dependence of vielbeins, metric, etc. on the coordinates

xµ. The terms in the Lagrangian (3.18) involving the fermions can be rewritten as

gµνψ
µ
(

ψ̇ν + Γνρσ(x)ψ
ρẋσ
)

= ψae
a
ν

(

(∂µe
ν
b )ẋ

µψb + eνb ψ̇
b + Γνρµe

ρ
bψ

bẋµ
)

= ψaψ̇
a + ψaψ

bẋµ(eaν∂µe
ν
b + eaρΓ

ρ
νµe

ν
b )

= ψaψ̇
a + ψaψ

bẋµeνb (−∂µeaν + Γρνµe
a
ρ)

= ψaψ̇
a +

1

2
[ψa, ψb]ẋ

µωabµ ,

(3.20)

where in the last step we used eq.(2.13). The Lagrangian (3.18) becomes

Lg =
1

2
gµν(x)ẋ

µẋν +
i

2
ψaψ̇

a +
i

4
[ψa, ψb]ω

ab
µ ẋ

µ . (3.21)

The momentum conjugate to xµ is modified:

pµ = gµν ẋ
ν +

i

4
[ψa, ψb]ω

ab
µ . (3.22)

Using eq.(3.22) and replacing pµ → −i∂µ, ψa → γa/
√
2 in the expression for Q in eq.(3.17),

we get the natural curved space generalization of eq.(3.15):

Q =
1√
2
ieµaγ

a
(

∂µ +
1

8
ωbcµ [γb, γc]

)

=
1√
2
i/D . (3.23)
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3.1 Adding Gauge Fields

The gauge field terms in the curved space covariant derivative (2.73) are reproduced by

adding new fermionic degrees of freedom c∗A and cA, where A runs over the dimension of

the representation R associated to eq.(2.73). The fields cA and c∗A transform under the

representation R and its complex conjugate R of the gauge group G, respectively. The

Lagrangian associated to these fields is

LA =
i

2
(c∗Aċ

A − ċ∗Ac
A) + ic∗AA

A
µBẋ

µcB +
1

2
c∗Ac

BψµψνFAµνB , (3.24)

where AAµ B = Aαµ(T
α)AB , F

A
µν B = Fαµν(T

α)AB are the connection and field strength asso-

ciated to the group G, with generators Tα. In order to simplify the notation, it is quite

convenient to define the one-form A ≡ Aµψ
µ and two-form F = Fµνψ

µψν and suppress

the gauge indices. In this more compact notation the Lagrangian (3.24) reads

LA =
i

2
(c∗ċ− ċ∗c) + ic∗Aµc ẋ

µ + c∗Fc . (3.25)

The Lagrangian (3.25) is invariant under SUSY transformations of the form

δc = −iǫAc , δc∗ = −iǫc∗A , (3.26)

together with the transformations (3.3) that are left unchanged.

Exercise 6: Show that LA is invariant under the transformations (3.3) and

(3.26). Hint: use a compact notation and recall that DF = dF + [A,F ] = 0.

The canonical momenta of the fields c∗ and c read

πc =
i

2
c∗ , πc∗ =

i

2
c . (3.27)

Like the fermions ψµ before, eq.(3.27) should be interpreted as a set of constraints among

the fields c, c∗ and their momenta πc and πc∗: χc = πc − ic∗/2 = 0, χc∗ = πc∗ − ic/2 =

0. Using eq.(3.8), it is straightforward to find the consistent Dirac (anti)commutation

relations between the fields cB and c∗A:

{

c⋆A, c
B
}

= δBA . (3.28)

Considering c∗ and c as creation and annihilation operators, respectively, the Hilbert space

of the system includes (in addition to excited states) the vacuum |0〉, “1-particle” states
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c⋆A|0〉, “2-particle” states c⋆Ac
⋆
B |0〉, etc. Among all these states, only the 1-particle states

correspond to the representation R of the gauge group G, the vacuum being a singlet of

G and “multiparticle” states leading to tensor products of the representation R. On such

particle states, the operator c∗A(T
α)ABc

B acts effectively as (Tα)AB . The supercharge is

given by eq.(3.17), but the momentum conjugate to xµ gets another term, coming from

LA:

pµ = gµν ẋ
ν +

i

4
[ψa, ψb]ω

ab
µ + ic∗Aµc . (3.29)

It is straightforward to check that the transformations (3.26) are reproduced by acting

with Q on the fields c∗ and c.

Summarizing, the total Lagrangian is given by L = Lg + LA, with

L =
1

2
gµν ẋ

µẋν +
i

2
ψaψ̇

a +
i

4

[

ψa, ψb
]

ωabµ ẋ
µ

+
i

2
(c⋆Aċ

A − ċ⋆Ac
A) + ic∗AA

A
µB ẋ

µcB +
1

2
c⋆Ac

BψaψbFAab B ,

(3.30)

and is invariant under a SUSY transformation Q that acts on the Hilbert space as

Q =
i√
2
eµaγ

a

[

(

∂µ +
1

8
ωabµ
[

γa, γb
]

)

δAB +Aαµ T
A
α B

]

=
1√
2
i/DR . (3.31)

We have finally determined a SUSY quantum mechanical model with Hamiltonian given

by eq.(3.1).

4 The Chiral Anomaly

In the path-integral formulation of QFT, anomalies arise from the transformation of the

measure used to define the fermion path integral [9].

Let ψA(x) be a massless Dirac fermion on a d = 2n-dimensional manifold M2n in an

arbitrary representation R of a gauge group G (A = 1, . . . ,dimR). The minimal coupling

of the fermion to the gauge and gravitational fields is described by the Lagrangian

L = e ψ̄(x)Ai(/D)AB ψ
B , (4.1)

where e is the determinant of the vielbein, i/D is the Dirac operator (2.73) and for simplicity

we drop from now on the subscript R in the covariant derivative.

The classical Lagrangian (4.1) is invariant under the global chiral transformation

ψ → eiαγ2n+1ψ , ψ̄ → ψ̄eiαγ2n+1 , (4.2)

where γ2n+1 is given in eq.(2.20) and α is a constant parameter. The associated classically

conserved chiral current reads Jµ2n+1 = ψ̄Aγ2n+1γ
µψA. At the quantum level, however,
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this conservation law can be violated. Consider the quantum effective action Γ defined by

e−Γ(e,ω,A) =

∫

DψDψ̄ e−
∫
d2nxL , (4.3)

and study its behavior under an infinitesimal version of the chiral transformation (4.2)

with a space-time-dependent parameter ǫ(x), given by6

δǫψ = iǫ(x)γ2n+1ψ(x) , δǫψ̄ = iǫ(x)ψ̄(x)γ2n+1 . (4.4)

Since the external fields e, ω and A are inert, the transformation (4.4) represents a redefi-

nition of dummy integration variables, and should not affect the effective action: δǫΓ = 0.

This statement carries however a non-trivial piece of information, since neither the ac-

tion nor the integration measure is invariant under eq.(4.4). The variation of the clas-

sical action under eq.(4.4) is non-vanishing only for non-constant ǫ, and has the form

δǫ
∫

L =
∫

Jµ2n+1∂µǫ. The variation of the measure is instead always non-vanishing, be-

cause the transformation (4.4) leads to a non-trivial Jacobian factor, which has the form

δǫ[DψDψ̄] = [DψDψ̄](−2i
∫

ǫA), as we will see below. In total, the effective action there-

fore transforms as

δǫΓ =

∫

d2nxe ǫ(x)
[

2iA(x)− 〈∂µJµ2n+1(x)〉
]

. (4.5)

The condition δǫΓ = 0 implies the anomalous Ward identity:

〈∂µJµ2n+1〉 = 2iA . (4.6)

In order to compute the anomaly A, we need to define the integration measure more

precisely. This is best done by considering the eigenfunctions of the Dirac operator i/D.

Since the latter is Hermitian, the set of its eigenfunctions ψk(x) with eigenvalues λk,

defined by i/Dψn = λnψn, form an orthonormal and complete basis of spinor modes:
∫

d2nx eψ†
k(x)ψl(x) = δkl ,

∑

k

eψ†
k(x)ψk(y) = δ(2n)(x− y) . (4.7)

The fermion fields ψ and ψ̄, which are independent from each other in Euclidean space,

can be decomposed as

ψ =
∑

k

akψk , ψ̄ =
∑

k

b̄kψ
†
k , (4.8)

so that the measure becomes

DψDψ̄ =
∏

k,l

dakdb̄l . (4.9)

6For simplicity of the notation, we omit the gauge index A in the following equations. It will be

reintroduced later on in this section.
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Under the chiral transformation (4.4), we have

a′k = ak + i

∫

d2nx e
∑

l

ψ†
kǫγ2n+1ψlal , b̄′k = b̄k + i

∫

d2nx e
∑

l

b̄lψ
†
l ǫγ2n+1ψk , (4.10)

and the measure (4.9) transforms as

Dψ′Dψ̄′ =DψDψ̄ det(δkl + i

∫

d2nx eψ†
kǫγ2n+1ψl)

−2

=⇒ δǫ[DψDψ̄] =[DψDψ̄]
(

− 2i
∑

k

∫

d2nx eψ†
kǫγ2n+1ψk +O(ǫ2)

)

.
(4.11)

We can now take ǫ to be constant. The expression (4.11) is ill-defined as it stands since

it decomposes into a vanishing trace over spinor indices (tr γ2n+1 = 0) times an infinite

sum over the modes (
∑

k 1 = ∞). A convenient way of regularizing this expression is to

introduce a gauge-invariant Gaussian cut-off. The integrated anomaly Z =
∫

A can then

be defined as

Z = lim
β→0

∑

k

ψ†
kγ2n+1ψke

−βλ2k/2

= lim
β→0

Tr
[

γ2n+1e
−β(i/D)2/2

]

, (4.12)

where the trace has to be taken over the mode and the spinor indices, as well as over

the gauge indices. Equation (4.12) finally provides the connection between anomalies

and quantum mechanics. Indeed, it represents the high-temperature limit (T = 1/β) of

the partition function of the quantum mechanical model (3.30) that has as Hamiltonian

H = (i/D)2/2 and as density matrix ρ = γ2n+1e
−βH : Z = Tr ρ. Z is not clearly the

ordinary thermal partition function of the system, because of the presence of the chirality

matrix γ2n+1. Its effect is rather interesting. As we mentioned in the previous section,

γ2n+1 acts as the fermion counting operator (−)F . In supersymmetric quantum mechanics,

with H = Q2, any state |E〉 with strictly positive energy E > 0 is necessarily paired with

its supersymmetric partner |Ẽ〉: Q|E〉 =
√
E|Ẽ〉. Of course, |E〉 and |Ẽ〉 have the same

energy but a fermion number F differing by one unit. Independently of the bosonic or

fermionic nature of |E〉, the contribution to Z of |E〉 and |Ẽ〉 is equal and opposite and

always cancels. The only states that might escape this pairing are the ones with zero

energy. In this case Q|E = 0〉 = 0 and hence these states are not necessarily paired. We

conclude that

Z = n+ − n− (4.13)

independently of β, where n± are the number of zero energy bosonic and fermionic states.

Interestingly enough, Z does not depend on smooth deformations of the system. If a state
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|E〉 with E > 0 approaches E = 0, so has to do its partner |Ẽ〉. Viceversa, zero energy

states can be deformed to E > 0 only in pairs. So, while n+ and n− individually might

depend on the details of the theory, their difference is an invariant object, called Witten

index [10]. Since n± correspond to the number of zero energy eigenfunctions of positive

and negative chirality of the Dirac operator, we see that Z coincides with the index of the

Dirac operator defined in eq.(2.74). Using the Atiyah-Singer theorem we could read the

result for the chiral anomaly from the right hand side of eq.(2.74). However, it is actually

not so difficult to compute Z. This computation can be seen as a physical way to prove

the Atiyah-Singer theorem applied to the Dirac operator [11].

The integrated anomaly Z can be derived by computing directly the partition function

of the above supersymmetric model in a Hamiltonian formulation. In order to obtain the

correct result, however, one has to pay attention when tracing over the fermionic operators

c⋆A and cA. As discussed below eq.(3.28), only the 1-particle states c⋆A|0〉 correspond to

the representation R of the gauge group G. In order to compute the anomaly for a

single spinor in the representation R, it is therefore necessary to restrict the partition

function to such 1-particle states. On the other hand, the partition function of a system

at finite temperature T = 1/β can be conveniently computed in the canonical formalism by

considering an euclidean path integral where the (imaginary) time direction is compactified

on a circle of radius 1/(2πT ). The insertion of the fermion operator (−)F amounts to

change the fermion boundary conditions from anti-periodic (the usual one in canonical

formalism) to periodic. So the best way to proceed is to use a hybrid formulation, which

is Hamiltonian with respect to the fields c⋆A and cA, and Lagrangian with respect to the

remaining fields xµ and ψa. Starting from the hamiltonian H, we then define a modified

Lagrange transform (technically called Routhian R) with respect to the fields xµ and ψa

only. After Wick-rotating to Euclidean time τ → −iτ , the index Z can be written as

Z = Trc,c⋆

∫

P
Dxµ

∫

P
Dψa exp

{

−
∫ β

0
dτ R

(

xµ(τ), ψa(τ), c⋆A, c
A
)

}

. (4.14)

The subscript P on the functional integrals stands for periodic boundary conditions along

the closed time direction τ , Trc,c⋆ represents the trace over the 1-particle states c⋆A|0〉, and
the Euclidean Routhian R is given by

R =
1

2
gµν ẋ

µẋν +
1

2
ψaψ̇

a +
1

4

[

ψa, ψb
]

ωabµ ẋ
µ

+ c⋆AA
A
µ Bẋ

µcB − 1

2
c⋆Ac

BψaψbFAab B . (4.15)

Equation (4.14) should be understood as follows: after integrating over the fields xµ and

ψa, one gets an effective Hamiltonian Ĥ(c, c⋆) for the operators c⋆A and cA, from which
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one computes Trc,c⋆e
−βĤ(c,c⋆). Although this procedure looks quite complicated, we will

see that it drastically simplifies in the high-temperature limit we are interested in.

The computation of the path-integral is greatly simplified by using the background-field

method and expanding around constant bosonic and fermionic configurations in normal

coordinates [12]. These are defined as the coordinates for which around any point x0 the

spin-connection (or equivalently, the Christoffel symbol) and all its symmetric derivatives

vanish. It is convenient to rescale τ → βτ and define

xµ(τ) = xµ0 +
√

β eµa(x0)ξ
a(τ) , ψa(τ) =

1√
β
ψa0 + λa(τ) . (4.16)

In this way, it becomes clear that it is sufficient to keep only quadratic terms in the

fluctuations, which have a β-independent integrated Routhian, since higher-order terms

in the fluctuations come with growing powers of β. In normal coordinates one has

ωabµ (x)ẋµ(τ) =
√

βωabµ (x0)e
µ
d (x0)ξ̇

d(τ) + β∂νω
ab
µ (x0)e

µ
d (x0)ξ̇

d(τ)eνc (x0) ξ
c(τ) +O(β3/2)

= 0 + β∂[νω
ab
µ] (x0)e

µ
d (x0)e

ν
c (x0)ξ̇

d(τ)ξc(τ) +O(β3/2) (4.17)

= βRabcd(x0)ξ̇
d(x0)ξ

c(x0) +O(β3/2) .

The term proportional to Aµ in eq.(4.15) vanishes in this limit because it is of order β.

Using these results, eq. (4.15) reduces to the following effective quadratic Routhian, in

the limit β → 0:

Reff =
1

2

[

ξ̇aξ̇
a + λaλ̇

a +Rab(x0, ψ0)ξ
aξ̇b
]

− c⋆AF
A
B(x0, ψ0)c

B , (4.18)

where

Rab(x0, ψ0) =
1

2
Rabcd(x0)ψ

c
0ψ

d
0 ,

FAB(x0, ψ0) =
1

2
FAab B(x0)ψ

a
0ψ

b
0 . (4.19)

Since the fermionic zero modes ψa0 anticommute with each other,7 they define a basis of

differential forms on M2n, and the above quantities behave as curvature 2-forms.

From eq.(4.18) we see that the gauge and gravitational contributions to the chiral

anomaly are completely decoupled. The former is determined by the trace over the 1-

particle states c⋆A|0〉, and the latter by the determinants arising from the Gaussian path

integral over the bosonic and fermionic fluctuation fields:

Z =

∫

d2nx0

∫

d2nψ0 Trc,c⋆
[

ec
⋆
AF

A
Bc

B
]

det
−1/2
P

[

−∂2τ δab +Rab∂τ

]

det
1/2
P

[

∂τδab

]

. (4.20)

7The anticommuting ψa
0 ’s are simply Grassmann variables in a path integral and should not be confused

with the operator-valued fields ψa entering eq.(3.30), which satisfy the anticommutation relations (3.9).
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The trace yields simply

Trc,c⋆e
c⋆AF

A
Bc

B

= trRe
F . (4.21)

The determinants can be computed by decomposing the fields on a complete basis of

periodic functions of τ on the circle with unit radius, and using the standard ζ-function

regularization. Let us quickly recall how ζ-function regularization works by computing

the partition function of a free periodic real boson x on a line:

Z free
B =

∫

P
Dxe−m

2

∫ t

0
ẋ2dτ . (4.22)

We expand x in Fourier modes xn, x−n = x∗n and rewrite

Z free
B =

∫

dx0

∞
∏

n=1

dxndx
∗
ne

−mt
∑∞

n=1

(

2πn
t

)2
|xn|2 =

∫

dx0

∞
∏

n=1

( t

2πmn2

)

. (4.23)

Using the identity
∞
∏

n=1

fn = exp
(

− lim
s→0

d

ds

∞
∑

n=1

f−sn

)

, (4.24)

we compute

∞
∏

n=1

( t

2πmn2

)

= exp
(

− d

ds

( t

2πm

)s
∞
∑

n=1

n2s
)

s=0
= exp

(

ζ(0) log
t

2πm
+ 2ζ ′(0)

)

, (4.25)

where ζ(0) = −1/2, ζ ′ = − log 2π/2 are the value in zero of the ζ function and its first

derivative. We then find

Z free
B = L

( m

2πt

)1/2
, (4.26)

where L is the length of the line. The partition function of a free periodic fermion ψ on

a line vanishes because of the integration over the Grassmannian zero mode ψ0. Inserting

one ψ0 in the path integral and proceeding as in the bosonic case, one gets

Z free
F =

∫

P
Dψ ψ e i

2
m

∫ t
0 ψψ̇dτ = m−1/2 . (4.27)

Coming back to the evaluation of the determinants in eq.(4.20), it is useful to bring the

curvature 2-form Rab into the block-diagonal form (2.68), so that the bosonic determinant

decomposes into n distinct determinants with trivial matrix structure.

Exercise 7: Compute the determinants appearing in eq.(4.20) and show that

det
−1/2
P

[

−∂2τ δab +Rab∂τ

]

= (2π)−n
n
∏

i=1

λi/2

sin(λi/2)
, (4.28)

det
1/2
P

[

∂τ δab

]

= (−i)n . (4.29)
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The final result for the anomaly is obtained by putting together eqs.(4.21), (4.28) and

(4.29), and integrating over the zero modes. The Berezin integral over the fermionic zero

modes vanishes unless all of them appear in the integrand, in which case it yields

∫

d2nψ0 ψ
a1
0 . . . ψa2n0 = (−1)n ǫa1...a2n , (4.30)

and automatically selects the 2n-form component from the expansion of the integrand in

powers of the 2-forms F and R. Since this is a homogeneous polynomial of degree n in F

and R, the factor (i/(2π))n arising from the normalization of eqs.(4.28), (4.29) and (4.30)

amounts to multiplying F and R by i/(2π). The final result for the integrated anomaly

can therefore be rewritten more concisely as

Z =

∫

M2n

chR(F ) Â(R) , (4.31)

where ch(F ) and Â(R) have been defined in eqs.(2.72) and (2.75). As explained below

eq.(2.75), only the 2n-form component of the integrand has to be considered.

The anomalous Ward identity (4.6) for the chiral symmetry can be formally written,

in any even dimensional space, as

〈∂µJµ2n+1〉 = 2i chR(F )Â(R)|2n−form , (4.32)

where the volume form is understood to be omitted on the right hand side of eq.(4.32).

In 4 space-time dimensions, for instance, eq.(4.32) gives

〈∂µJµ5 〉 = −iǫµνρσ
[

1

16π2
trFµνFρσ +

dimR
384π2

R αβ
µν Rρσαβ

]

. (4.33)

5 Consistency Conditions for Gauge and Gravitational Anomalies

Anomalies can also affect currents related to space-time dependent symmetries. For sim-

plicity, we will consider in the following anomalies related to spin gauge fields only, i.e.

gauge anomalies. Gravitational anomalies can be analyzed in almost the same way, mod-

ulo some subtleties we will mention later on. In presence of a gauge anomaly, the theory

is no longer gauge-invariant. This is best seen by considering the effective action Γ in

eq.(4.3). Under an infinitesimal gauge transformation A→ A−Dǫ1

δǫ1Γ(A) = −
∫

d2nx tr
δΓ(A)

δAµ
Dµǫ1 =

∫

d2nx trDµJ
µǫ1 =

∫

d2nx tr aǫ1 ≡ I(ǫ1) , (5.1)
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where aα is the gauge anomaly and we have defined its integrated form (including the

gauge parameter ǫ) by I.8 The WT identities associated to the conservation of currents in

a gauge theory allows us to define a consistent theory, where unphysical states decouple.

The anomaly term a that would appear in the WT identities associated to the (would-be)

conservation of the current would have the devastating effect of spoiling this decoupling.

Gauge anomalies lead to inconsistent theories, where unitarity is broken at any scale.

The structure of the gauge anomalies that can occur in local symmetries is strongly

constrained by the group structure of these symmetry transformations. In particular, two

successive transformations δǫ1 and δǫ2 with parameters ǫ1 and ǫ2 must satisfy the basic

property:
[

δǫ1 , δǫ2
]

= δ[ǫ1,ǫ2]. We should then have

[δǫ1 , δǫ2 ]Γ(A) = δ[ǫ1,ǫ2]Γ(A) , (5.2)

or in terms of the anomaly I defined in eq.(5.1):

δǫ1I(ǫ2)− δǫ2I(ǫ1) = I([ǫ1, ǫ2]) . (5.3)

The above relations are called Wess–Zumino consistency conditions [13].

The general solution of this consistency condition can be characterized in an elegant

way in terms of a (2n + 2)-form with the help of the so-called Stora–Zumino descent

relations [14]. For any local symmetry with transformation parameter ǫ (a 0-form), con-

nection A (a 1-form) and curvature F (a 2-form), these are defined as follows. Starting

from a generic closed and invariant (2n + 2)-form Ω2n+2(F ), one can define an equiva-

lence class of Chern–Simons (2n+ 1)-forms Ω
(0)
2n+1(A,F ) through the local decomposition

Ω2n+2 = dΩ
(0)
2n+1, like in section 2.3. In this way, we specify Ω

(0)
2n+1 only modulo exact

2n-forms, implementing the redundancy associated to the local symmetry under consider-

ation. One can then define yet another equivalence class of 2n-forms Ω
(1)
2n (ǫ,A, F ), modulo

exact (2n − 1)-forms, through the transformation properties of the Chern–Simons form

under a local symmetry transformation: δǫΩ
(0)
2n+1 = dΩ

(1)
2n . It is the unique integral of this

class of 2n-forms Ω
(1)
2n that gives the relevant general solution of eq.(5.3):

I(ǫ) = 2πi

∫

M2n

Ω
(1)
2n (ǫ) . (5.4)

To understand this, notice that by Stokes theorem

∫

M2n

Ω
(1)
2n (ǫ) =

∫

M ′
2n+1

dΩ
(1)
2n (ǫ) = δǫ

∫

M ′
2n+1

Ω
(0)
2n+1 , (5.5)

8We denote the anomaly by a and not A as in the last section, because we will later on denote by A a

certain connection entering the Stora-Zumino descent relations.
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where M ′
2n+1 is an arbitrary 2n+1-dimensional manifold whose boundary is M2n: M2n =

∂M ′
2n+1. For instance, if M2n = S2n, M2n+1 can be taken to be the 2n + 1 dimensional

ball B2n+1. Notice that eq.(5.5) is valid only if Ω
(1)
2n (ǫ) is globally well-defined, so we have

to assume that either the gauge transformation ǫ is non-vanishing on a single chart only,

or that the gauge bundle onM2n is trivial. This does not necessarily imply that the formal

2n+ 2 dimensional gauge field is trivial [6]. Eq. (5.4) can be rewritten as

I(ǫ) = 2πi δǫ

∫

M ′
2n+1

Ω
(0)
2n+1 , (5.6)

and clearly provides a solution of eq.(5.3), since it is manifestly in the form of the variation

of some functional under the symmetry transformation. The descent construction also

insures that eq.(5.6) characterizes the most general non-trivial solution of eq.(5.3), modulo

possible local counterterms. This can be understood more precisely within the BRST

formulation of the Stora–Zumino descent relations, which we described in the next section.

The above reasoning applies also to gravitational anomalies. Both gauge and gravita-

tional anomalies in a 2n-dimensional theory are then characterized by a gauge-invariant

(2n+2)-form. We shall see in the next section that the chiral anomaly form Ω2n+2 provides

precisely the (2n + 2)-form defined above through which we can solve the Wess-Zumino

consistency relations. The gauge and gravitational anomalies in 2n dimensions are then

obtained through the descent procedure, defined respectively with respect to gauge trans-

formations and diffeomorphisms (or local Lorentz transformations), as I = 2πi
∫

M2n
Ω
(1)
2n .

6 The Stora–Zumino Descent Relations

The Stora–Zumino descent relations are best analyzed by using a differential-form nota-

tion.9 As we have seen in the previous section, starting from a gauge-invariant (2n+2)-form

Ω2n+2(F ) we can define a Chern–Simons (2n + 1)-form through the local decomposition

Ω2n+2(F ) = dΩ2n+1(A,F ). The gauge variation of the latter defines a 2n-form Ω2n(A,F )

through the transformation law δvΩ2n+1(A,F ) = dΩ2n(v,A, F ).

Under gauge transformations g(x, θ) depending on the coordinates xµ and on some

(ordinary, not Grassmann) parameters θα, A and F transform as

Ā(x, θ) = g−1(x, θ)
(

A(x) + d
)

g(x, θ) , (6.1)

F̄ (x, θ) = g−1(x, θ)F (x)g(x, θ) . (6.2)

We can define, besides the usual exterior derivative d = dxµ∂µ with respect to the coor-

dinates xµ, an additional exterior derivative d̂ = dθα∂α with respect to the parameters

9This section closely follows section 3.C of ref.[6], adopting the same notation.
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θα. The range of values of the index α is for the moment undetermined. The operators

d and d̂ anticommute and are both nilpotent, d2 = d̂2 = 0. This implies that their sum

∆ = d + d̂ is also nilpotent: ∆2 = 0. The operator d̂ naturally defines a transformation

parameter v̂ through the expression:

v̂(x, θ) = g−1(x, θ)d̂g(x, θ) . (6.3)

Exercise 8: Verify that

d̂v̂ = −v̂2 , d̂Ā = −D̄ v̂ , d̂F̄ = −[v̂, F̄ ] . (6.4)

Equations (6.4) show that d̂ generates an infinitesimal gauge transformation with param-

eter v̂ on the gauge field Ā and its field-strength F̄ . Interestingly enough, these can also

be interpreted as BRST transformations, the ghost fields being identified with v̂. At this

point, it is possible to define yet another connection A and field-strength F as

A = g−1
(

A+∆
)

g = Ā+ v̂ , (6.5)

F = ∆A+A2 = g−1Fg = F̄ . (6.6)

The last relation is easily proved. Using eqs.(6.4) one has

F = (d+ d̂)(Ā+ v̂) + (Ā+ v̂)2

= dĀ+ dv̂ − D̄v̂ − v̂2 + v̂2 + Āv̂ + v̂Ā+ Ā2 (6.7)

= dĀ+ Ā2

= F̄ . (6.8)

The crucial point is that A and F are defined with respect to ∆ exactly in the same way

as Ā and F̄ are defined with respect to d. Therefore, the corresponding Chern–Simons

decompositions must have the same form:

Q2n+2(F) = ∆Q2n+1(A,F) , (6.9)

Q2n+2(F̄ ) = dQ2n+1(Ā, F̄ ) . (6.10)

On the other hand, eq.(6.6) implies that the left-hand sides of these two equations are

identical. Equating the right-hand sides and using eq.(6.5) yields:

(d+ d̂)Q2n+1(Ā+ v̂, F̄ ) = dQ2n+1(Ā, F̄ ) . (6.11)
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In order to extract the information carried by this equation, it is convenient to expand

Q2n+1(Ā+ v̂, F̄ ) in powers of v̂ as

Q2n+1(Ā+ v̂, F̄ ) = Q
(0)
2n+1(Ā, F̄ ) +Q

(1)
2n (v̂, Ā, F̄ ) + . . .+Q

(2n+1)
0 (v̂, Ā, F̄ ) , (6.12)

where the superscripts denote the powers of v̂ and the subscript the dimension of the form

in real space. Substituting this expansion in eq.(6.11) and equating terms with the same

power of v̂, we finally find the Stora–Zumino descent relations [14]:

d̂Q
(0)
2n+1 + dQ

(1)
2n = 0 ,

d̂Q
(1)
2n + dQ

(2)
2n−1 = 0 ,

. . .

d̂Q
(2n)
1 + dQ

(2n+1)
0 = 0 ,

d̂Q
(2n+1)
0 = 0 . (6.13)

For gauge anomalies I(v) =
∫

tr(v a), eq.(5.3) reads

δv1

∫

tr(v2 a)− δv2

∫

tr(v1 a)−
∫

tr([v1, v2] a) = 0 . (6.14)

The two transformations with parameters v1 and v2 can be incorporated into a family of

transformations parametrized by θ1 and θ2, with parameter

v̂ = v1dθ
1 + v2dθ

2 = vαdθ
α. (6.15)

In this way, vα = g−1∂αg. At θα = 0, g(x, 0) = 1 and therefore Ā(x, 0) = A(x) and

F̄ (x, 0) = F (x). At that point, d̂ generates ordinary gauge transformations on A and F ,

with d̂ = dθαδvα . For instance, eq.(5.1) can be rewritten as

d̂Γ =

∫

tr v̂a (6.16)

The condition (6.14) can be multiplied by dθ1dθ2 and rewritten as

0 = dθ1dθ2
(∫

tr(v2δv1 a)−
∫

trv1δv2 a)−
∫

tr[v1, v2]a

)

= dθαdθβ
(
∫

tr(vβδvα a)−
∫

tr[vα, vβ]a

)

(6.17)

= −
∫

tr(v̂d̂ a)−
∫

trv̂2a .

Since d̂v̂ = −v̂2, this can be rewritten simply as

d̂

∫

tr(v̂ a) = 0 . (6.18)
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The Wess–Zumino consistency condition is therefore the statement that the anomaly is

d̂-closed,

d̂I(v̂) = 0 . (6.19)

It is clear that the trivial d̂-exact solutions I(v̂) = d̂
∫

f(A) in terms of a local functional

f(A) of the gauge field correspond to the gauge variation of local counterterms that can

be added to the theory. Anomalies emerge from the non-local part of the effective action

and are therefore encoded in the cohomology of d̂. Locality is crucial. Any anomaly could

otherwise be cancelled by the use of a non-local counterterm. For instance, we will see in

the next section that for U(1) gauge fields the anomaly is proportional to

δǫΓ(A) ∝
∫

ǫFn . (6.20)

If we would add to Γ(A) the non-local functional10

f(A) ∝
∫

Fn
1

✷
∂µAµ (6.21)

with the appropriate coefficient, the new action Γ(A)+f(A) would be gauge invariant. But

counterterms must be local, because non-local terms are finite and free of UV-ambiguities.

In other words, adding a non-local functional to the action amounts to a change in the

physics.

From the second relation appearing in the Stora–Zumino descent relations (6.13), we

see that the general non-trivial element of the d̂-cohomology is of the form I(v̂) =
∫

Q
(1)
2n .

With the above definitions, we have Q2n+2 = dQ
(0)
2n+1 and δvQ

(0)
2n+1 = −dQ(1)

2n . We can

therefore identify

Ω2n+2 ↔ Q2n+2, Ω
(0)
2n+1 ↔ Q

(0)
2n+1 , Ω

(1)
2n ↔ −Q(1)

2n , (6.22)

where Ω are the forms defined at the end of the last section.

7 Path Integral for Gauge and Gravitational Anomalies

Gauge and gravitational anomalies in 2n dimensions can be computed starting from the

chiral anomaly in 2n+2 dimensions using the Stora-Zumino descent relations. They arise

from the Jacobian of the transformation in the integration measure, since the classical

action is invariant. Differently from the chiral anomaly, gauge and gravitational anomalies

can arise only from massless chiral fermions, with given chiralities ±. For a Dirac fermion

10We are using in eq.(6.21) a mixed notation in terms of differential forms and explicit components, but

hopefully the point should be clear.
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in euclidean space, if ψ transforms under a representation R of a gauge group G, ψ̄ should

transform in the complex conjugate representation R⋆, otherwise the mass term ψ̄ψ would

not be invariant. In this case, the Jacobian factors associated to ψ and ψ̄ exactly cancel,

resulting in no anomaly. Similarly for local Lorentz transformations. The Lagrangian to

start with is then that of a chiral fermion

L = e ψ̄(x)i/DPη ψ , (7.1)

where

Pη =
1

2

(

1 + ηγ2n+1

)

, η = ±1 , (7.2)

is the chiral projector. The computation is technically analogous to the one we performed

for the chiral anomaly, except that the transformation law is now different and acts with

opposite signs on ψ and ψ̄. Moreover, the full Dirac operator is now i/Dη = i/DPη , and
is not Hermitian. For this reason we have to use the eigenfunctions φηn of the Hermitian

operator (i/Dη)
†i/Dη to expand ψ and the eigenfunctions ϕηn of i/Dη(i/Dη)

† to expand ψ̄:

ψ =
∑

k

akφ
η
k , ψ̄ =

∑

k

bkϕ
η†
k . (7.3)

Let us first consider the case of gauge anomalies. Under an infinitesimal gauge transfor-

mation with parameter v = vαTα, the fermion fields transform as

δvψ = −vψ , δvψ̄ = ψ̄v . (7.4)

Given the commutation properties of γ2n+1, we clearly have φ±k = ϕ∓
k , This induces a

variation of the integration measure given by

δv

[

DψDψ̄
]

= DψDψ̄
(

∑

k

∫

d2nx e
(

φη†k vαT
αφηk − ϕη†k vαT

αϕηk

))

. (7.5)

As in the case of the chiral anomaly, this formal expression needs to be regularized, and

we can define the integrated gauge anomaly to be

Igauge(v) = − lim
β→0

∑

k

(

φη†k vαT
αe−β(i/Dη)†i/Dη/2φηk − ϕη†k vαT

α e−βi/Dη(i/Dη)†/2ϕηk

)

. (7.6)

The trace over the two chiral eigenspinor basis can be combined in one single trace by

inserting the chirality matrix γ2n+1 to give

Igauge(v) = −η lim
β→0

Tr
[

γ2n+1Q
gaugee−β(i/D)2/2

]

. (7.7)
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The operator Qgauge is defined in such a way to act as vαT
α on the Hilbert space. A

concrete realization of it within the supersymmetric quantum mechanics introduced in the

previous subsection is

Qgauge → c∗vc . (7.8)

The computation of eq.(7.7) is similar to that of eq.(4.12), the only difference being the

insertion of the operator (7.8) into the trace (4.21). This insertion is equivalent to substi-

tute F → F +v in eq.(4.21) and take the linear part in v of the result. Hence the anomaly

would read (neglecting for the moment the gravitational term Â(R)):

Igauge
cov (v) = −η 1

n!

( i

2π

)n
∫

M2n

tr vFn . (7.9)

The anomaly computed in this form is called “covariant”, because it transforms covariantly

under the local symmetry, with no gauge connections appearing explicitly. The covariant

anomaly however does not satisfy the Wess-Zumino consistency conditions. The general

form of the anomaly Q
(1)
2n satisfying the Wess–Zumino consistency conditions (called “con-

sistent”) depends explicitly on A, as we will see later on. Notice that if one could compute

directly the anomaly from a given non-local functional Γ by making an infinitesimal gauge

transformation δǫΓ, the result would satisfy the Wess-Zumino consistency conditions, be-

cause eq.(5.2) would be automatically satisfied. This implies that the anomaly (7.9) cannot

arise from the variation of an action. So, what went wrong in our computation? The “mis-

take” can be traced to the violation of the Bose symmetry among the external states. In

the path integral derivation one computes the gauge anomaly associated to a single exter-

nal gauge field, while a Bose-symmetric result would require to distribute democratically

the anomaly over all the external legs. Bose symmetry can be restored by focusing on the

part of the anomaly containing n+ 1 fields, which corresponds effectively to take the dA

from any F in eq.(7.9) and divide the result by 1/(n + 1). In this way the integrand of

eq.(7.9) gives

− η
1

(n + 1)!

( i

2π

)n
tr v(dA)n . (7.10)

It is straightforward to find the 2n+2 gauge invariant form Ω2n+2(F ) whose part containing

n+1 fields gives eq.(7.10) as descent 2n-form Ω
(1)
2n , because the descent procedure is trivial

at this order (all fields are effectively abelian). One has

Ω2n+2(F ) =
2iπ

(n+ 1)!

( i

2π

)n+1
trFn+1 . (7.11)

There is no need to Bose-symmetrize the terms containing more than n+ 1 fields. Given

Ω2n+2(F ) in eq.(7.11), the Stora-Zumino descent relations automatically give the correct
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consistent form of the entire anomaly. We clearly see the close connection between chiral

anomalies in 2n + 2 dimensions and gauge anomalies in 2n dimensions. The consistent

form of the integrated gauge anomaly is therefore

Igauge(v) = 2πiη

∫

M2n

[

chR(F )
](1)

Â(R) . (7.12)

Notice that covariant and consistent anomalies contain the same information, and there

is a well-defined procedure to switch from one to the other [6].

The case of gravitational anomalies is similar. Under an infinitesimal diffeomorphism

with parameter ǫµ, the fermion fields transform as scalars, δǫψ = −ǫµ∂µψ, δǫψ̄ = −ǫµ∂µψ̄.
We can turn the ordinary derivative into a covariant one, by performing a local Lorentz

transformation with parameter αab ∝ ǫµωabµ . In this way we get

δǫψ = −ǫµDµψ , δǫψ̄ = −ǫµDµψ̄ , (7.13)

which induces the following variation of the integration measure (recall eq.(7.3)):

δǫ

[

DψDψ̄
]

= DψDψ̄
(

∑

k

∫

d2nx e
(

φη†k ǫ
µDµφ

η
k + (Dµϕ

η†
k )ǫµϕηk

))

= DψDψ̄
(

∑

k

∫

d2nx e
(

φη†k ǫ
µDµφ

η
k − ϕη†k ǫ

µDµϕ
η
k

))

. (7.14)

The regularized expression for the integrated gravitational anomaly is then

Igrav(ǫ) = − lim
β→0

∑

k

(

φ†ke
−β(i/Dη)†i/Dη/2ǫµDµφk − ϕ†

ke
−βi/Dη(i/Dη)†/2ǫµDµϕk

)

= −η lim
β→0

Tr
[

γ2n+1Q
grave−β(i/D)2/2

]

. (7.15)

The operator Qgrav must act as ǫµDµ on the Hilbert space. Since iẋµ → Dµ upon canonical

quantization, we can identify

Qgrav → iǫµẋ
µ . (7.16)

We have (recall the rotation to euclidean time τ → −iτ):

Igrav(ǫ) = ηTrc,c⋆

∫

P
Dxµ

∫

P
Dψaǫµ(x)

dxµ(τ)

dτ
exp

{

−
∫ β

0
dτ R

(

xµ(τ), ψa(τ), c⋆A, c
A
)

}

.

(7.17)

Thanks to the periodic boundary conditions, the path integral does not depend on the

point where we insert Qgrav, so we can replace in eq.(7.17)

ǫµ(x)
dxµ(τ)

dτ
→ 1

β

∫ β

0
dτ ǫµ(x)

dxµ(τ)

dτ
. (7.18)
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Rescaling τ → βτ , using eq.(4.16) and expanding in normal coordinates gives, modulo

irrelevant higher order terms in β,

1

β

∫ β

0
dτ ǫµ(x)

dxµ(τ)

dτ
=

1

β

∫ 1

0
dτ
(

ǫµ(x0) +∇νǫµ(x0)
√

βξν(τ) +O(β)
)

√

β
dξµ(τ)

dτ

=
1√
β
ǫµ(x0)

∫ 1

0
dτ
dξµ(τ)

dτ
+∇νǫµ(x0)

∫ 1

0
dτξν

dξµ(τ)

dτ
(7.19)

=
1

2
Daǫb(x0)

∫ 1

0
dτ(ξaξ̇b − ξbξ̇a) ,

where in the second row the first term and the symmetric part of the second vanish, being

total derivatives of periodic functions. It is convenient to exponentiate the action of Qgrav

and notice that it amounts to the shift Rab → Rab−Daǫb+Dbǫa in the effective Routhian

(4.18). The original expression (7.15) is recovered by keeping only the linear piece in ǫ.

After adding the appropriate symmetrization factors and following the same procedure

as for the gauge anomaly to switch to a consistent form of the anomaly, this implements

the Stora–Zumino descent with respect to diffeomorphisms. The consistent form of the

integrated gravitational anomaly is finally found to be

Igrav(ǫ) = 2πiη

∫

M2n

chR(F )
[

Â(R)
](1)

. (7.20)

We see from eq.(7.20) that purely gravitational anomalies, i.e. F = 0 in eq.(7.20), can

only arise in d = 4n+ 2 dimensions.

The analogue of eq.(5.1) for diffeomorphisms reads

δǫΓ(g) = −
∫

d2nx
δΓ(g)

δgµν
(∇µǫν +∇νǫµ) =

∫

d2nx
√
g∇µT

µνǫν =

∫

aνǫν ≡ Igrav(ǫ) ,

(7.21)

where δǫgµν = −(∇µǫν + ∇νǫµ) and we have defined the symmetric energy-momentum

tensor

T µν ≡ 2√
g

δΓ(g)

δgµν
. (7.22)

A gravitational anomaly leads to a violation of the conservation of the energy-momentum

tensor. It is also possible to see the consequences of a violation of the local Lorentz

symmetry. In this case we see Γ as a functional of the vielbeins eaµ. Under a local Lorentz

transformation for which δLe
a
µ = −αabebµ, we have

δLΓ(e) = −
∫

d2nx
δΓ(e)

δeµa
ǫabe

b
µ =

∫

d2nxeT abǫab =

∫

aabǫab ≡ IL(ǫ) , (7.23)

where we have used the relation

ebµ
δΓ(e)

δeµa
= ebµ2

δΓ(g)

δgµν
eaν = eT ab . (7.24)

37



Since ǫab = −ǫba, an anomaly in a local Lorentz transformation implies a conserved, but

non-symmetric, energy-momentum tensor. It is possible to show that these anomalies

are not independent from those affecting diffeomorphisms, and it is always possible to

add a local functional to the action to switch to a situation in which one or the other of

the anomalies vanish, but not both [6]. Correspondingly, in presence of a gravitational

anomaly, the energy-momentum tensor can be chosen to be symmetric or conserved at

the quantum level, but not both simultaneously. The resulting theory will be inconsistent,

since unphysical graviton modes will not decouple in scattering amplitudes.

We see from eqs.(7.12) and (7.20) that we can also have mixed gauge/gravitational

anomalies, namely anomalies involving both gauge fields and gravitons. Contrary to the

purely gravitational ones, they can arise in both 4n and 4n+2 dimensions. These anomalies

lead to both the non-conservation of the gauge current and of the energy momentum tensor.

However, by adding suitable local counterterms to the effective action, one can in general

bring the whole anomaly in either the gauge current or the energy momentum tensor.

The mixed gauge/gravitational anomaly signals the obstruction in having both currents

conserved at the same time.

7.1 Explicit form of Gauge Anomaly

It is useful to explicitly compute the expressions of the forms that are relevant to gauge

anomalies. The starting point is the (2n + 2)-form characterizing the chiral anomaly in

2n+ 2 dimensions:

Ω2n+2(F ) =
( i

2π

)n+1
Q2n+2(F ) , Q2n+2(F ) = trFn+1 . (7.25)

In order to not carry the unnecessary (i/2π) factors, we will consider in what follows the

form Q, rather than Ω. As shown in section 2.3, Q is a closed form. For topologically

trivial gauge field configurations we can set F = A = 0 in eq.(2.64). Relabelling A′ → A

and F ′ → F , we have At = tA, Ft = tdA+ t2A2 and eq.(2.64) gives

Q
(0)
2n+1(A,F ) = (n+ 1)

∫ 1

0
dt tr

[

AFnt

]

. (7.26)

We compute Q
(1)
2n (v,A, F ) using eq.(6.12). This requires to compute the Chern-Simons

term (7.26) in the ∆-cohomology

Q2n+1(A,F) = Q2n+1(Ā+ v̂, F̄ ) = (n+ 1)

∫ 1

0
dt tr

[

(Ā+ v̂)Fn
t

]

, (7.27)

where A = Ā+ v̂, At = tA, Ft = ∆At+A2
t . Using eq.(6.8), the latter can be expressed as

Ft = tF + (t2 − t)A2 = tF̄ + (t2 − t)(Ā+ v̂)2 . (7.28)
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The quantity we are after is found by expanding in powers of v̂ and retaining the linear

order. We have

Ft = F̄t + (t2 − t)[Ā, v̂] +O(v̂2). (7.29)

It is useful to define the symmetrized trace of generic matrix-valued forms ωi = ωαi

i T
αi as

str (ω1 . . . ωp) =
1

p!
ωα1
1 ∧ . . . ∧ ωαp

p

∑

perms.

tr (Tα1 . . . Tαp) . (7.30)

In this way we find

Q
(1)
2n (v̂, Ā, F̄ ) = (n+ 1)

∫ 1

0
dt str

[

v̂F̄nt + n(t2 − t)Ā
[

Ā, v̂
]

F̄n−1
t

]

= (n+ 1)

∫ 1

0
dt str

[

v̂
(

F̄nt + n(t− 1)
(

t
[

Ā, Ā
]

F̄n−1
t − Ā

[

Āt, F̄
n−1
t

])

)]

= (n+ 1)

∫ 1

0
dt str

[

v̂
(

F̄nt + n(t− 1)
((

∂tF̄t − dĀ
)

F̄n−1
t + ĀdF̄n−1

t

)

)]

= (n+ 1)

∫ 1

0
dt str

[

v̂
(

F̄nt + (t− 1)∂tF̄
n
t + n(1− t)d

(

ĀF̄n−1
t

)

)]

. (7.31)

In the third equality we have used the identities DtF̄
n−1
t = dF̄n−1

t + [Āt, F̄
n−1
t ] = 0 and

∂tF̄t = dĀ+ t[Ā, Ā]. After integrating by parts, the first and second term in the last line

of eq.(7.31) cancel. We can set the gauge parameters θα = 0, where g(x, 0) = 1, so that v̂

turns into v, Ā = A, F̄ = F . Going back to the Ω-forms using eq.(6.22) gives

Ω
(1)
2n (v,A, F ) = −

( i

2π

)n+1
n(n+ 1)

∫ 1

0
dt (1− t) str

[

vd(AFn−1
t )

]

. (7.32)

The generalization of the above relations to the gravitational case is straightforward.

We substitute A and F with the connection Γ and the curvature R in eq.(2.44), and

consider infinitesimal diffeomorphisms. Alternatively, we substitute A and F with the

spin connection ω and the curvature R, and consider infinitesimal SO(2n) local rotations,

when dealing with local Lorentz symmetry.

In order to give a concrete example, let us derive the contribution of a Weyl fermion

with chirality η = ±1 to the non-Abelian gauge anomaly in 4 dimensions. Integrating in

t gives the following anomalous variation of the effective action:

δvΓ(A) = − η

24π2

∫

d4x str
[

vd
(

AF − 1

2
A3
)]

. (7.33)

In model building and phenomenological applications one is mostly interested to see

whether a given set of currents (global or local) is anomalous or not. This is best seen by

looking at the term of the anomaly with the lowest number of gauge fields, the first term
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in square brackets in eq.(7.33), the full form of the anomaly being reconstructed using

the Wess-Zumino consistency conditions. In 4 dimensions this term is proportional to the

factor

Dαβγ ≡ 1

2
tr({Tα, T β}T γ) = 1

3!

∑

perms.

tr (TαT βT γ) . (7.34)

When this factor vanishes, the whole gauge anomaly must vanish.

8 Gravitational Anomalies for Spin 3/2 and Self-Dual Tensors

Chiral spin 1/2 fermions are not the only fields giving rise to gravitational anomalies.

In order to understand which other fields might possibly lead to anomalies, consider the

explicit form of the gauge anomaly in eq.(7.32). In our notations the gauge generators are

anti-hermitian, and hence Ω
(1)
2n is real in any dimension. Using eqs.(5.1) and (5.4), this

implies that gauge anomalies affect only the imaginary part of the euclidean effective action

Γ. Vector-like fermions do not give rise to anomalies and lead to a real effective action.

So we conclude that only the imaginary part of Γ can be affected by anomalies. The same

reasoning applies to gravitational anomalies (consider them as SO(2n) gauge theories).

From this reasoning we conclude that fields transforming in a complex representation

of SO(2n) might lead to anomalies. The group SO(N) admits complex representations

for N = 4n + 2, and hence only in d = 4n + 2 dimensions we might expect purely

gravitational anomalies, in agreeement with our result (7.20) for spin 1/2 fermions. Chiral

spin 3/2 fields also transform under complex representations of SO(4n+2). Interestingly

enough, (anti)self-dual tensors, 2n+ 1-forms, also have complex representations in 4n+ 2

dimensions. This is best seen by looking at the euclidean self-duality condition for forms:

∗Fn = Fn, where ∗ is the Hodge operation on forms. Given a form ωp in d dimensions,

∗ωp is the (d− p)- form given by

⋆ ωp =

√
g

p!(d− p)!
ωµ1...µpǫ

µ1...µp
ν1...νd−p

dxµ1 ∧ . . . ∧ dxµd−p , (8.1)

where ǫµ1...µd is the completely antisymmetric tensor, with ǫ1...d = +1. It is easy to see

that ∗ ∗ ωp = (−1)p(d−p)ωp. Specializing for d = 2n and p = n, gives ∗ ∗ ωn = (−1)n
2
ωn.

This is 1 for n even and −1 for n odd, hence in 4n and 4n+ 2 dimensions (anti)self-dual

tensors transform in real and complex representations of SO(d), respectively.

It is not clear how to consistently get a QFT with (anti)self-dual tensors charged

under gauge fields. Also, in most relevant theories, spin 3/2 fields are neutral under gauge

symmetries. We will then consider the contribution of these fields to pure gravitational

anomalies only. We very briefly outline the derivation, referring the reader to ref.[2] for

40



further details. As for spin 1/2 fermions, it turns out that the gravitational anomalies

induced by fields can be obtained starting from chiral anomalies in two dimensions higher

and then apply the Stora-Zumino descent relations. The chiral anomaly can again be

efficiently computed using an auxiliary supersymmetric quantum mechanical model. For

spin 3/2 fermions ψµ, the vector index µ can be seen as a gauge field in the fundamental

representation of the group, the connection being ωabµ and the group SO(d). The associated

quantum mechanical model is given by eq.(4.15), with AAµ B → iωaµ b and F
AB
µν → iRabµν . In

terms of the skew-eigenvalues xi of the curvature two-form Rab defined in eq.(2.72), the

chiral anomaly in 2n dimensions is found to be

Z3/2 =

∫

M2n

(tre
R
2π − 1) Â(R) =

∫

M2n

(

2
n
∑

j=1

cosh xj − 1
)

n
∏

k=1

xk/2

sinh(xk/2)
, (8.2)

where the −1 comes from the need to subtract the spin 1/2-contribution contained in ψµ.

Anomalies of (anti)self-dual forms are more involved. Roughly speaking, one considers

the contribution of all antisymmetric fields at once. This does not change the anomaly,

since the total contribution of the extra states sum up to zero. The whole series of

antisymmetric fields is equivalent to a bifermion field ψαβ . This is understood by recalling

that a matrix Aαβ can be expanded in the basis of matrices given by antisymmetric product

of gamma matrices, eq.(2.17). The analogue of the chiral matrix γ2n+1 in eq.(4.12) is played

by the Hodge operator ∗ and the Hamiltonian is the Laplacian operator on generic p-forms.

By computing the path integral associated to the resulting super quantum mechanical

model one gets

ZA = −1

8

∫

M2n

n
∏

k=1

xk
tanhxk

. (8.3)

With these results at hand we can verify that purely gravitational anomalies do indeed

cancel in a non-trivial way in a ten-dimensional gravitational theory, low-energy effective

action of a string theory, called IIB theory. The spectrum of this theory includes a chiral

spin 1/2 fermion, a spin 3/2 fermion with opposite chirality and a self-dual five-form

antisymmetric field. The total gravitational anomaly is obtained by taking the sum

ZIIB = ZA + Z3/2 −Z1/2 , (8.4)

evaluating each term for n = 5 and keeping in the expansion of the series only the form of

degree twelve. This is the relevant form that, after the Stora-Zumino descent procedure,

would give rise to the gravitational anomaly ten-form in ten dimensions. Remarkably, the

coefficient of this form exactly vanishes in the sum (8.4), proving that the IIB theory is

free of any gravitational anomaly.
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9 The Green–Schwarz Mechanism

The Green–Schwarz anomaly cancellation mechanism was first discovered by Green and

Schwarz in the context of string-derived effective supergravity theories in 10 dimensions

[15]. It achieves in a non-trivial and interesting way the cancellation of gauge and gravita-

tional anomalies, which is guaranteed in the full string theory by its finiteness, stemming

from general principles such as modular invariance or tadpole cancellation. Thanks to

this mechanism, it has been understood that field theories with an anomalous spectrum of

massless fermions can be anomaly-free, and thus consistent, in certain particular circum-

stances. The mechanism involves antisymmetric tensor fields, and the essential idea is that

the anomaly is canceled by the gauge variation of some counterterms, constructed out of

these tensor fields as well as the gauge and gravitational connections and field strengths.

Before describing the Green–Schwarz mechanism and its generalization to any space-

time dimension, it is necessary to introduce the notion of “reducible” and “irreducible”

forms of the anomaly. As shown in eqs.(7.12) and (7.20), a generic gauge or gravitational

anomaly can be written in the form I = 2πi
∫

M2n
Ω
(1)
2n , where Ω

(1)
2n is the Stora–Zumino

descent of a closed and gauge-invariant (2n + 2)-form Ω2n+2, function of the curvature

2-forms F and R.11 The form Ω2n+2(F,R) is said to be “irreducible” when it cannot be

decomposed as a sum of products of closed and gauge-invariant forms of lower degree.

Typical examples are trRn+1 or trFn+1 for a representation that does not admit a de-

composition to lower forms. It is instead said to be “reducible” when Ω2n+2(F,R) can

be decomposed as Ω2n+2 = Ω2kΩ2n+2−2k for some k > 0. Examples of such a type are

trF ktrFn+1−k, trF ktrRn+1−k or trRktrRn+1−k.

The original Green–Schwarz mechanism in 10 dimensions requires the introduction of

a 2-index antisymmetric tensor field, but we will describe here its generalization to 2n di-

mensions and 2l-index antisymmetric tensor fields of the type Cµ1...µ2l2l , with l ≥ 1. These

fields generalize the standard electromagnetic vector potential12 and are conveniently de-

scribed in terms of 2l-forms C2l, subject to the U(1) gauge transformation

δC2l = dλ2l−1 , (9.1)

with λ2l−1 an arbitrary (2l − 1)-form. The gauge-invariant field strengths

H
µ1...µ2l+1

2l+1 = ∂µ1C
µ2...µ2l+1

2l ± permutations , (9.2)

11Here and in the following we will refer to gauge symmetries in a broad sense, including in particular

local Lorentz symmetries, in order to treat gauge and gravitational anomalies at once.
12The “electric” and “magnetic” sources of these fields in 2n dimensions are respectively (2l − 1)- and

(2n− 2l − 3)-dimensional extended objects.
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are correspondingly described by the (2l + 1)-forms H2l+1 = dC2l.

As will become clear below, only reducible anomalies can be canceled through the

Green–Schwarz mechanism. We shall therefore consider a generic reducible anomaly of

the form

I = 2πi

∫

M2n

Ω
(1)
2n , with Ω2n+2 = Ω2k Ω2n+2−2k . (9.3)

Following the Stora–Zumino descent procedure, the Chern–Simons form Ω
(0)
2n+1 correspond-

ing to Ω2n+2 is found to be

Ω
(0)
2n+1 =

k

n+ 1
Ω
(0)
2k−1Ω2n+2−2k +

n+ 1− k

n+ 1
Ω2kΩ

(0)
2n+1−2k

+α d
(

Ω
(0)
2k−1Ω

(0)
2n+1−2k

)

, (9.4)

where α is an arbitrary parameter taking into account the ambiguity in the definition of

Ω
(0)
2n+1. From eq.(9.4) one derives

Ω
(1)
2n =

(

k

n+ 1
− α

)

Ω
(1)
2k−2Ω2n+2−2k +

(

n+ 1− k

n+ 1
+ α

)

Ω2kΩ
(1)
2n−2k . (9.5)

By properly choosing α, we might cancel the first or the second term in eq.(9.5), but not

both at the same time. The choice of α corresponds to the fact that anomalies are defined

modulo local counterterms. In particular, we see that the addition to the action of the

term

S ⊃ −2πiβ

∫

M2n

Ω
(0)
2k−1Ω

(0)
2n+1−2k (9.6)

amounts to the change α→ α−β in the anomaly (9.5). Clearly, the anomaly still persists.

The situation changes if one adds an antisymmetric (2k − 2)-index tensor field C2k−2. In

fact, the anomaly corresponding to eq.(9.5) can be canceled by the following action:

SGS =

∫

M2n

[

1

2

∣

∣

∣
dC2k−2 +

√
2π ξΩ

(0)
2k−1

∣

∣

∣

2
+ i

√
2π

ξ
C2k−2Ω2n−2k+2

−2πi

(

n+ 1− k

n+ 1
+ α

)

Ω
(0)
2k−1Ω

(0)
2n+1−2k

]

, (9.7)

where ξ is an arbitrary dimensionful parameter. The action (9.7) is not invariant under

local symmetry transformations. The modified kinetic term of the field C2k−2 makes it

clear that the appropriate definition of its field strength H2k−1 is

H2k−1 = dC2k−2 +
√
2π ξΩ

(0)
2k−1 . (9.8)

This field strength can be made gauge-invariant, provided that C2k−2 transforms inhomo-

geneously under gauge transformations, in such a way as to compensate the transforma-

tions of the Chern–Simons form Ω
(0)
2k−1:

δǫC2k−2 = −
√
2π ξΩ

(1)
2k−2 . (9.9)
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In this way δǫH2k−1 = 0 and the kinetic term is invariant. However, the Wess–Zumino

coupling C2k−2Ω2n−2k+2 (and the last counterterm in eq.(9.7)) transforms non-trivially and

leads to a non-vanishing variation of S that exactly compensates for the 1-loop anomaly

(9.3), independently of the value of ξ:

δǫSGS = −2πi

∫

M2n

Ω
(1)
2n . (9.10)

Although the form of the anomaly (9.3) and of the last term in eq.(9.7) depend on the arbi-

trary parameter α, the gauge variation of S due to the transformation (9.9) is independent

of α and universal. This is the essence of the generalization of the original Green-Schwarz

mechanism to arbitrary dimensions and 2l antisymmetric forms. Although the construc-

tion might seem ad hoc, it was shown in ref.[15] that the action of certain string-derived

ten-dimensional QFT – where massless antisymmetric 2-forms are present to begin with

– is of the form (9.7), with the correct Ω
(0)
3 and Ω8 to make the theory anomaly free.

Since then, the Green-Schwarz mechanism has been shown to be generally at work in

string-derived low energy actions in ten or less space-time dimensions [16]. Independently

of string theory, one can of course cancel reducible gauge/gravitational anomalies in QFT

by adding the forms C2l as in eq. (9.7).

The Green–Schwarz mechanism described above, involving a single tensor field C2k−2,

can cancel only reducible anomalies of the form Ω2n+2 = Ω2kΩ2n+2−2k, with 1 ≤ k ≤ n.

This is clear from eq.(9.7), but also from the fact that the involved forms are physical

propagating fields only for 1 ≤ k ≤ n. Notice in particular that the cases k = 0 or k = n+1,

corresponding to irreducible anomalies, would formally require (−1)-forms or 2n-forms,

with field strengths dual to each other, which are clearly unphysical. Indeed, the top

2n-form has no physical degrees of freedom, since it cannot have a sensible field strength,

and its equation of motion simply implies that the total charge under it should vanish;

its would-be dual (−1)-form is correspondingly not existing. However, a straightforward

generalization of the basic Green–Schwarz mechanism, involving several physical tensor

fields Ci2ki−2, with 1 ≤ ki ≤ n, can cancel anomalies that are not reducible but can be

decomposed into a sum of reducible ones, with Ω2n+2 =
∑

iΩ2kiΩ2n+2−2ki , each tensor

field being responsible for the cancellation of one of the terms in the anomaly.

Notice finally that since the anomaly (9.3) is a 1-loop effect, either the Wess–Zumino

coupling or the Chern–Simons form modifying the kinetic term of the antisymmetric tensor

fields in the actions (9.7) must arise at the 1-loop level, depending on n and k. One of these

two terms can therefore be thought of as being induced by the heavy states associated to

the physics in the UV. This was explicitly verified in string theory, where the microscopic

theory is known and computable.
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In four-dimensional QFT, scalar fields can be used in the Green-Schwarz mechanism.

Consider for simplicity a theory with a gauge group of the form U(1)×G, with G a simple

group, and denote by A the U(1) gauge field connection and by S the two-form field

strength of G. Mixed U(1)− S2 gauge and U(1)-gravitational anomalies can be cancelled

by the following action:

SGS =

∫

d4x

(

1

2

(

∂µφ+ fφAµ)
2 + iǫµνρσ

φ

fφ

(

c1trSµνSρσ + c2R
αβ

µν Rρσαβ

)

)

, (9.11)

where φ is the Green-Schwarz scalar field, fφ a mass scale and c1, c2 are appropriate

constants. For simplicity, we have omitted to write the local counterterms proportional to

the product of Chern-Simons terms Ω
(0)
1 Ω

(0)
3 . The generalization to situations involving

multiple abelian and non-abelian gauge fields is straightforward.

Notice that the Green-Schwarz scalar couples to gauge fields as axions do, though,

in contrast to axions, it requires a modified kinetic term to acquire an inhomogeneous

transformation under a gauge/gravitational symmetry. The latter implies that the Green–

Schwarz anomaly cancellation mechanism in 4-dimensions is an Higgs mechanism where φ

is eaten by the would-be anomalous U(1) gauge field that gets a mass of order fφ.
13 As is

clear from eq.(9.11), the Green–Schwarz mechanism cannot be applied in renormalizable

4-dimensional theories, since operators of dimension greater than 4 necessarily appear.

10 Non-perturbative Anomalies

The gauge and gravitational anomalies that we have considered so far concern local sym-

metry transformations connected to the identity, and can therefore be infinitesimal. In

this sense we can call them “perturbative” anomalies. There can be in general additional

non-perturbative gauge and gravitational anomalies concerning symmetry transformations

topologically non-trivial and disconnected from the identity, that hence exist only in a fi-

nite form and cannot be infinitesimal. The latter can occur both for gauge symmetries

and for diffeomorphisms (or local Lorentz transformations). They are also called global

anomalies and were first discovered by Witten [17] in an SU(2) model in 4 dimensions.14

Differently from perturbative anomalies, the non-perturbative ones cannot be directly

detected through perturbative Feynman diagram computations, and this explains their

name. A general discussion of gauge and gravitational non-perturbative anomalies lies

13On the contrary, in the original string Green-Schwarz mechanism in ten space-time dimensions, the

gauge fields remain massless.
14We avoid the terminology “global anomaly” and use instead “non-perturbative anomaly” for a pos-

sible confusion with the anomalies involving global symmetries, that sometimes are also denoted global

anomalies.
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beyond the aim of this course. In the following, we will just very briefly recall a few basic

features of the former in flat space, and advise the reader interested in the latter to see

ref. [18].

Let us begin by examining which gauge groups G can lead to global gauge anomalies

in a 2n-dimensional flat Euclidean space-time R2n. We consider gauge transformations

g(x) that reduce to the identity at infinity, so that they represent maps from S2n (the

2n-dimensional sphere) into the gauge group G. Such gauge transformations are classified

by the 2n-th homotopy group of G, denoted by π2n(G). If the latter is trivial, all the

gauge transformations are connected to the identity and no global anomalies can arise.

On the contrary, if it is not, there exist classes of topologically non-trivial gauge trans-

formations that can potentially be anomalous. Denoting by Ag = g−1Ag + g−1dg the

gauge-transformed connection obtained from A through such a non-trivial gauge transfor-

mation g, a global anomaly can occur if the effective action — which is defined modulo

physically irrelevant multiples of 2πi as in eq.(4.3) — changes under the finite transfor-

mation g by an amount Γ(Ag)− Γ(A) that is not a multiple of 2πi:

Γ(Ag)− Γ(A) 6= 2πin , n ∈ Z . (10.1)

If the situation (10.1) occurs, the quantum effective action and all the correlation

functions of gauge-invariant operators it describes are not well-defined, and the theory is

inconsistent [17].15 As perturbative gauge anomalies, also non-perturbative gauge anoma-

lies can be induced only by Weyl fermions in even-dimensional space-times and through

the imaginary part of the Euclidean effective action, since Dirac fermions always allow

for a manifestly gauge-invariant regularization. Computing the contribution of a Weyl

fermion to the transformation (10.1) for a generic gauge group G is, however, a compli-

cated mathematical problem. It should be clear that asking whether a theory is afflicted

by non-perturbative anomalies or not is a meaningful question only when all perturbative

ones cancel, the former being defined in terms of homotopy classes and hence modulo local

gauge transformations.

The simplest non-trivial case where non-perturbative anomalies can arise in 4 dimen-

sions is for G = SU(2), since π4[SU(2)] = Z2. It has been show in ref.[17] that an SU(2)

theory with one or any odd number of Weyl doublets is non-perturbatively inconsistent.

15To be precise, eq.(10.1) leads to an inconsistency only if A and Ag are connected in field space without

passing infinite action barriers. Otherwise, it is possible to define a sensible quantum effective action by

restricting the functional integral to topologically trivial gauge configurations only.
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