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1 Introduction

There are different ways of regularizing a Quantum Field Theory (QFT). The best choice
of regulator is the one which keeps the maximum number of symmetries of the classical
action unbroken. Cut-off regularization, for instance, breaks gauge invariance while this is
unbroken in the somewhat more exotic dimensional regularization. It might happen, how-
ever, that there exists no regulator that preserves a given classical symmetry. When this
happens, we say that the symmetry is anomalous, namely the quantum theory necessarily
breaks it, independently of the choice of regulator.

Roughly speaking, anomalies can affect global or local symmetries. The latter case is
particularly important, because local symmetries are needed to decouple unphysical states.
Indeed, anomalies in linearly realized local gauge symmetries lead to inconsistent theories.

Theories with anomalous global symmetries are instead consistent, yet the effect of the



anomaly can have important effects. The first anomaly, discovered by Adler, Bell and
Jackiw [1], was associated to the non-conservation of the axial current in QCD. Among

0 — 2v decay rate,

other things, the axial anomaly resolved a puzzle related to the =
predicted by effective Lagrangian considerations to be about three orders of magnitude
smaller than the observed one.

In this course we will study in some detail a particularly relevant class of anomalies,
those associated to chiral currents (so called chiral anomalies) and their related anomalies
in local symmetries. Emphasis will be given to certain mathematical aspects, in particular
the close connection between anomalies and index theorems, while most physical aspects
will not be discussed. The computation of anomalies will be mapped to the evaluation of
the partition function of a certain (supersymmetric) quantum mechanical model, following
the seminal paper [2]. Although this might sound unusual, if compared to the more
standard treatments using one-loop Feynman diagrams, and requires a bit of background
material to be attached, the ending result will be very rewarding. This computation will
allow us to get the anomalies associated to gauge currents (so called gauge anomalies)
and stress-energy tensor (so called gravitational anomalies) in any number of space-time
dimensions! Moreover, it is the best way to reveal the above mentioned connection with
index theorems. Since the notion of chirality is restricted to spaces with an even number of
space-time dimensions, and the connection with index theorems is best seen for euclidean
spaces, we will consider in the following QFT on even dimensional euclidean spaces.

Some exercises are given during the lectures (among rows and in bold face in the text).
They are simple, yet useful, and the reader should be able to solve them without any
problem.

These notes are a slightly revised version of my lecture notes [3], mostly based on
the review paper [4]. Basic, far from being exhaustive, references to some of the original

papers are given in the text.

2 Basics of Differential Geometry

We recall here some basic aspects of differential geometry that will be useful in understand-
ing anomalies in QFT. This is not a comprehensive review. There are several excellent
introductory books in differential geometry, see e.g. ref.[5]. A basic well written overview

with a clear physical perspective can be found e.g. in refs.[6] and [7].



2.1 Vielbeins and Spinors

Given a manifold M, of dimension d, a tensor of type (p,q) is given by

0 0
_ M1 Hp V1 v,
T=T ViVo e P dz" ... dx"? (2.1)
where p;,v; = 1,...,d. A manifold is called Riemannian if it admits a positive definite

symmetric (0,2) tensor. We call such tensor the metric g = g, dz"dz”. On a general My
a vector acting on a (p, q) tensor does not give rise to a well-defined tensor, e.g. if V,, are
the components of a (0,1) tensor, d,V,, are not the components of a (0,2) tensor. This
problem is solved by introducing the notion of connection and covariant derivative. If My
has no torsion (as will be assumed from now on), then 9,V,, — V,V,,, where
1

Vo =0,V, =17, V,, TV, = 59“’(8“91/0 + 0u9uo — OsGuv) - (2.2)

The (not tensor) field T', is called the Levi-Civita connection. In terms of it, we can

construct the fundamental curvature (or Riemann) tensor

R, =0 Y, — 0,T% + T2, 1 — T . (2.3)

vpo ovt ap pv- aoc

Other relevant tensors constructed from the Riemann tensor are the Ricci tensor R,, =
R vuo and the scalar curvature R = g"" R,,.

The transformation properties under change of coordinates of (p,q) tensors is easily
obtained by looking at eq.(2.1). For instance, under a diffeomorphism z# — 2#(zx), a

vector transforms as

Vi(z) = V(') = Z8(x)VY (). (2.4)
where B
Zh(z) = 8”; _ (2.5)

At each space-time point x, the matrix Z} is an element of GL(d,R) and we can say
that a (1,0) vector transforms in the fundamental representation of GL(d, R). Similarly a
(0,1) vector transforms in the dual fundamental representation given by Z~!. A generic
(p, q) tensor transforms in the appropriate product of these basic representations. In flat
space tensors are defined in terms of their transformation properties under the Lorentz
SO(d) group. Since SO(d) D GL(d, R), given a GL(d, R) representation, we can always
decompose it in terms of SO(d) ones. Contrary to tensors, spinors are representations
of SO(d) that do not arise from representations of GL(d, R). For this reason, spinors in
presence of gravity require to replace diffeomorphisms with local Lorentz transformations.

At each point of the manifold, we can write the metric as
.g,uu(x) = GZ(SE)EZ(JE)UQI) ) (2.6)
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where a,b=1,...,d.! The fields e/‘j(a:) are called vielbeins. They are not uniquely defined

by eq.(2.6). If we perform the local Lorentz transformation
e () = (A% (@)e) (), (2.7)

the metric is left invariant. It is important to distinguish the index p form the index a.
The first transforms under diffeomorphisms and is invariant under local Lorentz transfor-
mations, viceversa for the second: invariant under diffeomorphisms and transforms under
local Lorentz transformations. They are sometimes denoted curved and flat indices, re-
spectively. We will denote a curved index with a greek letter, and a flat index with a
roman letter. From eq.(2.6) we have g = det g, = (det 63)2. Since the metric is positive
definite, this implies that e, is a non-singular d x d matrix at any point. We denote its
inverse by ek eﬁez = n“b, eﬁeﬁ = 8. Tt is easy to see that el is obtained from eZ by
using the inverse metric g"’: el = g"e,,. Curved indices are lowered and raised by the
metric gy, and its inverse g". The vielbeins € can be seen as a set of orthonormal (1,0)
vectors in the tangent space. As such, we can decompose any vector V# in their basis:
VH = ¢,V Similarly for the (0,1) vectors in cotangent space: V,, = €;,Va. So any tensor
with curved indices can be converted to a tensor with flat indices. In other words, we can

project the (p,q) tensor (2.1) in the basis

T =T | Bay o Bae . e, (2.8)
where 3
E, = eﬁfﬁ , e = ey dat. (2.9)

We can then trade, as already mentioned, diffeomorphisms for local Lorentz transfor-
mations. In order to ensure invariance under local Lorentz transformations, we should

introduce a gauge field connection w,, transforming in the adjoint representation of SO(d):
wy(r) = A H(@)w, (2)A(2) + A (2)0,A () . (2.10)

The components of an SO(d) connection can be represented with a pair of antisymmetric
indices in the fundamental representation: wfjb = —wff”, a,b=1,...d. This field is called
the spin connection and is the analogue of the Levi-Civita connection I'},, for diffeomor-

phisms. Derivative of tensors with flat indices are promoted to covariant derivatives:

D,T* = 0,T" + wi , T (2.11)

IFor euclidean spaces 7qp = dqb, but we write it here more generally 7,5 so our considerations will also

apply for Lorentzian spaces.



As the Levi-Civita connection is a function of the metric, the spin connection is a function
of the vielbeins and cannot be an independent field (otherwise we would have too many

gravitational degrees of freedom).

Exercise 1: Prove that demanding the compatibility of the covariant derivative
(2.11) with the one defined in eq.(2.2),

v, 1, =e,D,T,, (2.12)
leads to the following equation:

Vel +wiyeh = 0. (2.13)

a
wb
the expression of I'},, in eq.(2.2)). We will not report this expression, not needed in what

Using eq.(2.13) one could determine the explicit expression of wj; , = wj,(e) (as well

follows. The curvature tensor is given by
a _ a _ a a a (& a C
uub_D#wub_auwub_anub+wucwub_wucwub' (214)

By using eq.(2.12) and the properties [V, V,]V? = R’ ,,,V?, [D,, D,|V® = R, V0, we
have

Ry, = egey R, (2.15)
Let us come back to spinors. First of all, recall that the definition of gamma matrices in
d euclidean dimensions is a straightforward generalization of the usual one known in four

dimensions:

{7*,7"} = 26°. (2.16)

We have written 7% and not v because in a curved space v(x) = eh(x)y* # v*. The
algebra defined by eq.(2.16) is called a Clifford algebra. For even d, the case relevant
in these lectures, the lowest dimensional representation in d dimensions require 242 x
2%/2 matrices. Hence a (Dirac) spinor in d dimensions has 2%/2 components. A linearly

independent basis of matrices is given by antisymmetric products of gamma matrices:
I,’Ya,"}/ala2 7”.,.Yl...d7 (217)

where

aj..ap __

1
vy p (7“1 Loyt (p—1)! perms) (2.18)



is completely antisymmetrized in the indices a; ...a,. The total number of elements of
the base is
[ d
> ( ) =27 = 99/2 » 24/2 (2.19)
p=0 \ P
which is then complete. Notice the close analogy between gamma matrices and differential
forms, analogy that we will use in a crucial way in the next sections. In d euclidean
dimensions, the gamma matrices can be taken all hermitian: (7%)" = v*. We can also

define a matrix 441, commuting with all other y*’s:

d
vapr =" 7" (2:20)
a=1

The factor i" ensures that ’yﬁ 1 = 1 for any d. Needless to say, 7441 is the generalization
of the usual chiral gamma matrix 75 in 4d QFT. A spinor ¢ can be decomposed in two
irreducible components: ¥ = ¥ +_, with y441¢+ = £¢1. Weyl spinors in d dimensions

have then 2%/2-1 components. Using eq.(2.16), the matrices

1 1
T =1 = (2.21)

are shown to be (anti-hermitian) generators of SO(d). Under a global Lorentz transfor-

mation, a spinor v transforms as follows:
Wb — e ey (2.22)

where A\, are the d(d — 1)/2 parameters of the transformation. The covariant derivative

of a fermion in curved space is obtained by replacing
Lo
Oy — D, =0,+ 5@)3 ab - (2.23)
The Lagrangian density of a massive Dirac fermion coupled to gravity is finally given by
Ly=ce (ieg‘vaD“ - m>¢ , (2.24)

where e = det ez.

A manifold is generally described by different open sets (charts) U, and transition

a
o

globally on the manifold, but locally on U, we can always found one eZ ()" At inter-

functions between the different charts. In general it might not be possible to define e

sections Uag) = U(q) N U(gy we can use either (omitting indices) the vielbein e(,) or e(g.

The two are equivalent provided they are related by a local Lorentz transformation A(,g):
€(a) (%) = Mag) (@)e() () (2.25)
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Similarly we have

W(a) (x) = A(_alﬁ) (a;)w(g) (a;)A(aﬁ) (x) + A(_alﬁ) (x)aA(aB) (x). (2.26)

The local Lorentz transformation A,g) is called a transition function and characterizes

the non-triviality of the manifold. A manifold is topologically trivial if it admits a unique

a
J73

A similar analysis can be made for gauge fields. A topologically non-trivial gauge field

globally defined vielbein e}, namely one can choose A(,g) = 1 at any intersection U,g).

configuration is one in which the connection A, cannot be specified uniquely over the

manifold. We define a connection A,y on U(,), and on intersections

Ay (@) = 9ol (@) As) (@)9(a) @) + 90y (@)9g(as) (@) (2.27)

where g(qs) (z) is a gauge transformation. Non-trivial gauge configurations, as well as
nontrivial manifolds, are classified by topological invariant quantities. A subset of these
are given by characteristic classes, namely integrals of antisymmetric tensors of type (0, p),
also denoted differential forms. In the next two subsections we review basics of differential

forms and characteristic classes, respectively.

2.2 Differential Forms

A differential form w), is commonly denoted a p-form and is represented as

1
wp = ﬁwul---ﬂpd‘rm AL ANdxtr (2’28)

The wedge product A in eq.(2.28) represents the completely antisymmetric product of the

basic 1-forms dxi:

d' A Ndatr =Y sign (P)datPo) L dat o) (2.29)
PeS,

where P denotes a permutation of the indices and S, is the group of permutations of p

objects. For each point in a manifold of dimension d, the dimension of the vector space

d d!
()t 050

The total vector space spanned by all p-forms, p =0,...,d, equals

i (d
Z( ):2d. (2.31)

p=0 p

spanned by w,, equals



Given a p-form wj, and a g-form x,, their wedge product w, A x4 is a (p + ¢)-form. From
eq.(2.29) one has

wp A Xq = (=) xg Aw
p N Xg q /N Wp (2.32)
(wp A Xg) A1l = wp A (Xg A1) -
One has clearly w, A xq = 0if p+ ¢ > d and wy, A w, = 0 if p is odd. Given a p-form w,,

we define the exterior derivative d, as the (p + 1)-form given by
1
Hauwlwmmupdx“f’“ Adxtt N A datr . (2.33)

dpwp =

Notice that in eq.(2.33) we have the ordinary, rather than the covariant derivative, because
upon antisymmetrization their action is the same:

P

V19t ctip]) = Opair Wan o] — Z L i@l cofiiettn] = Olpryar Wpan sy - (2.34)
i=1

The hat in the index u; means that the index should be removed, while the square brackets
indicate complete antisymmetrization in the p+1 p; indices (the | indicates that the index
a is excluded by the antisymmetrization). Since the Levi-Civita connection is symmetric
in its two lower indices, the second equality in eq.(2.34) immediately follows. The exterior
derivative d is covariant independently of the metric. A differential operator like d can only
be defined for differential forms and this explains their importance in the classification of
the topological properties of manifolds.

Given eq.(2.32), we have

dp+q(wp A Xq) = dpwp A Xq + (=) wp AdgXg - (2.35)

From the definition (2.33) it is clear that dp,y1d, = 0 on any p-form.

A p-form is called closed if dyw, = 0 and exact if w, = d,_1xp—1 for some (p — 1)-
form xp—1. Clearly, if w, = d,—1xp—1, then dyw, = 0 (exact — closed) but not viceversa.
Correspondingly, the image of d,_1, the space of p-forms such that w, = d,_1xp-1, is
included in the kernel of d,, the space of p-forms such that dyw, = 0: Im d,_1 C Ker d,,.
The coset space Ker d,/Im dp,_; is called the de Rham cohomology group on the manifold
M,. By Stokes theorem, the integral of an exact p-form on a p-dimensional cycle C, of My

with no boundaries necessarily vanish:

/ Wp = / dep—l = / Xp—1 = 0. (236)
Cp Cp Cp

Notice that on U(a) a closed form can always be written as w,o = dp—1Xp—1o for some

(p—1)-form. Exactness means that this decomposition applies globally over the manifold.



Since the action of d, on a p-form is clear from the context, we will drop from now on the
subscript p in the exterior derivative and denote it simply with d.
Gauge fields are conveniently written in terms of differential forms. For a U(1) gauge

theory the connection is a 1-form A = A, dx*, with
1 1
F=dA= i(GMA,, — 0, Ay )dx! Ndx¥ = iFwdw“ A dz” (2.37)

being the associated field strength 2-form. In order to generalize this geometric picture
of gauge theories to the non-abelian case, we have to introduce the notion of Lie-valued
differential forms. We then define

A= AT, A= A%dat, (2.38)

where T are the generators of the corresponding Lie algebra.? We take them to be anti-
hermitian: (T®)" = —T°. This unconventional (in physics) choice allows us to get rid of
some factors of ’s in the formulas that will follow. Given two Lie-valued forms w, and x4,

we define their commutator as
Wy, Xq] = Wi AXD[T,TP) = wd AXETOTP — ()P0 Awy TPT™. (2.39)

The square of a Lie valued p-form does not necessarily vanish when p is odd, like ordinary

p-forms. One has

1 1
wp ANwp = 5 [Ta7 Tﬁ]wgl---Mpwgval---MZpd:L'Ml A Ndatr = 5 [wpv wp] : (240)

The action of the exterior derivative d on a Lie-valued p-form does not give rise to a

well-defined covariant p + 1-form. Under a gauge transformation g, we have
A—gtAg+ g tdg, (2.41)

and F' = dA does not transform properly. A covariant transformation is provided by the

covariant derivative

F=DA=dA+ANA. (2.42)

Exercise 2: i) Show that F' — ¢~ 'Fg under a gauge transformation. ii) Show
that dF = —[A, F|, so that DF = dF + [A, F]=0 (Bianchi identity).

*Needless to say, the gauge index a here should not be confused with the index (a) in eqs.(2.25)-(2.27),

that was used to label the charts covering a manifold.
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In complete analogy to eq.(2.42), we can view the components of the Riemann tensor

(2.14) as defining a curvature two-form
Rab = Dwab = dwab + wac A wcb . (243)

A differential form notation can also be introduced to describe the Levi-Civita connection
(2.2) and the Riemann tensor (2.3). One defines the matrix of one-forms I', = '}, dx”
and the curvature two-form

ag 1 g
RF, =dlH, +TH NT7, = ER“ dxP N dx? . (2.44)

vpo

Mathematically speaking, a gauge field is a connection on a fibre bundle. A fiber F’
is the vector space that can be associated to each point of the manifold M, (called also
the base space in this context). The total space given by the base space and the fibre
is called the fibre bundle. It can always be locally written as a direct product My x F.
Globally only trivial gauge bundles (those where g(,3) in eq.(2.27) can be chosen to be 1
at any intersection Ul,g)) admit such decomposition, very much like the choice of local
coordinates in a non-trivial manifold. We will not discuss the formulation of non-abelian

gauge theories in terms of fibre bundles.

2.3 Characteristic Classes

Characteristic classes is the name for certain cohomology classes that measure the non-
triviality of a manifold or of its gauge bundle. They are essentially given by integrals of
gauge invariant combinations of curvature two-forms, like (omitting flat SO(d) indices)
trRA...ANRortr FA...AF. For simplicity of notation we will omit from now the wedge
product among forms. Given the covariant transformation of F' and R under gauge or
local Lorentz transformations, tr F"* and tr R™ are well defined over the manifold, namely
tr F(T(;) =tr (’}’3) on Uap) so we can write tr I globally over the manifold. In a topologi-
cally non-trivial situation, gauge fields are classified in terms of families belonging to the
same topological class. More precisely, two gauge fields A and A’ are of the same topo-
logical class if on U(,g) they transform as in eq.(2.27), with the same transition function
9(ap) (z). The same considerations apply to tr R™. In fact, since the spin connection can
be viewed as an SO(d) gauge connection, there is no need of a separate discussion for the
gravitational case and all the analysis that follow will automatically apply.

The simplest example of characteristic class is provided by a U(1) gauge field, where
we can consider the integral of F' over a compact two-dimensional subspace of M;. The
field strength F' is well-defined on M, and by the Bianchi identity it is closed: dF = 0.

11



If it is exact, namely there is a globally defined connection A for which F' = dA, then by
Stokes theorem [ F' = 0. In general F might not be exact, in which case [ F # 0 measures
the topological non-triviality of the space (the U(1) gauge bundle).

In the U(1) case, the difference of two gauge fields A and A’ in the same topological
class is an exact, globally defined, one-form. We have F/ — F = d(A’ — A) and hence for

any two-dimensional compact subspace of My
/ F= / F (2.45)

A non-trivial U(1) gauge configuration is provided by a magnetic monopole. Given

is a topological invariant quantity.

(say) a two-sphere S? surrounding the monopole, we should have

/ F+£0 (2.46)
S2

and proportional to the monopole charge. A monopole induces a magnetic field of the

form B = g7/r3 and correspondingly there is no globally defined connection on S2.

Exercise 3: Show that in radial coordinates the connection 1-forms in the

northern and southern hemispheres can be taken as

A(N) = —ig(1l —cos @)do, A(S) =ig(1 + cos@)do. (2.47)

More precisely, we split S? = Yy + X5y, (), (s) being the northern and southern

hemispheres, and compute

52 () (s

where the closed integral is around the equator at § = 7/2. From the exercise 3 we have

Any — A(s) = —2igd¢ and hence
o [T s =2 (2.49)
2w S2 N 2 0 9) =<9 '

We now show that 2g must be an integer in order to have a well-defined quantum theory. If

a charged particle moves along the equator S, its action will contain the minimal coupling

12



of the particle with the gauge field. In a path-integral formulation, it corresponds to a
term

efsl A = efDF7 (250)

where we used Stokes’ theorem and D is any two-dimensional space with S as boundary:
0D = S'. Both ¥ (n) and Xg) are possible choices for D. We get

R R C L L (2.51)

Combining with eq.(2.49), we get the condition
g=—=, neZl. (2.52)

We have assumed here the electric charge to be unit normalized. For a generic charge
q, €q.(2.52) gives the known Dirac quantization condition between electric and magnetic
charges:

qg = g, nez. (2.53)

We can now show the topological nature of characteristic classes more in general.
Consider a G-valued two form field-strength F' and define the gauge-invariant 2n-form
Qon(F) = tr F™. Using the results of Exercise 1, it is easy to show that Qa,(F') is closed:

n—1
dQon(F) == tr F'[A,FIF" "' = —tr [A,F"] = 0. (2.54)

i=0
In general, Q2,(F) is not exact, but so it will be the difference Qa,(F) — Q2,(F"), where
F an F' are two arbitrary field strengths in the same topological class. Hence the integral
of Q2,(F) over a 2n-dimensional compact sub-manifold Ca,, of My (or over the entire M)

does not depend on F"

Con Con
and defines the cohomology class called the characteristic class of the polynomial Qg (F).
Let us prove that Qo (F)—Qa2, (F’) is an exact form. Although the proof is a bit involved, it
will turn out to be very useful when we will discuss the so called Wess-Zumino consistency
conditions for anomalies. Let A and A’ be one-form connections associated to F' and F’

and define an interpolating connection A; as
A=A+ t(A - A), te[0,1]. (2.56)

We clearly have Ay = A, Ay = A’. Let us also denote by # = A’ — A the difference of the

two connections. We have (recall eq.(2.39))

Fy=dA; + A7 = dA+tdf + (A+10)* = F +t(df + [A,0]) + 262 (2.57)

13



We can also write

1 1
Qon(F') — Qo(F) = /0 dt 5 Qan(F) = /0 i (U

) (2.58)
= n/ dt(tr DOF)™ + 2t tr 92Ft"_1> .
0
On the other hand, we have
n—2 ' '
dtr OF) ™" = tr dfF}"" = " tr OF{dF,F} (2.59)
=0
— tw DOFP ! —tr (A0 FP - (tr OFDF,FM 2 — tr OF}|A, Ft]Ft"_Z_2> .
1=0

The second and fourth terms in eq.(2.59) combine into a total commutator that vanishes
inside a trace: tr [A,0F" '] = 0. The derivative DF; equals

DF, = dF, + [A, F}] = dF, + [A; — Ay + A, F}| = D,F, — t[0, F}) = —t[0, F}],  (2.60)

given that D, F; = 0. We also have

0=tr[0,0F" ' =tr 20°F"! — niftr OF (0, F)F—2. (2.61)
i=0
Plugging eqs.(2.60) and (2.61) in eq.(2.59) gives
dtr OF ' = tr DOF ™" + 2t tr 92 F L. (2.62)
We have then proved that
Qan(F') — Q2(F) = dxan-1, (2.63)
with .
Xon-1 =" /0 dttr OF . (2.64)

Notice that 2,1 is globally defined, because both 6 and F; transform covariantly.

The invariant polynomials we will be interested in comes from generating functions of
polynomials defined in any number of dimensions. We will briefly mention here the ones
featuring in anomalies. The first is given by the Chern character

ch (F) = tr ebr . (2.65)
The Taylor expansion of the exponential gives rise to the series of 2n-forms denoted by

n'™ Chern characters

ey (F) = ~tr (g)" (2.66)



It is clear that for any given d, ch,(F') = 0 for n > d/2.

The second involves the curvature two-form R%, defined in eq.(2.43). For simplicity
of notation we will denote it just by R, omitting the flat indices a and b. It should not
be confused with the scalar curvature that will never enter in our considerations! An

interesting characteristic class is the Pontrjagin class defined by
(R) = det (1+ 5) (2.67)
PV = 2/ :

The expansion of p(R) in invariant polynomials is obtained by bringing the curvature
2-form Ry, into a block-diagonal form (this can always be done by an appropriate local

Lorentz rotation) of the type

Ry = , (2.68)
0 Ad/2
—Ag2 0

where \; are 2-forms. In this way it is not difficult to find the terms in the expansion
of p(R). Due to the antisymmetry of R, there are only even terms in R and hence the

invariant polynomials are 4n-forms. The first two terms with n = 1,2 are
(2.69)

Like for the Chern class, on a manifold with dimension d all 4n-forms with 4n > d are
trivially vanishing. There is however a way in which we can define an other class from
the formally vanishing pog(R) term. We see from eq.(2.67) that the 2d-form equals just
det R/2m (if the factor 1 is taken in any diagonal entry in evaluating the determinant, one
necessarily gets a form with lower degree). The determinant of an antisymmetric matrix
is always a square of a polynomial called the Pfaffian. Combining these two facts, we can
define a d-form e(R) called the Euler class as

paa(R) = e(R)*. (2.70)

The integral over the manifold of e(R) is an important invariant called the Euler charac-

teristic of the manifold.
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Exercise 4: Compute e(R) for a two-sphere S? and show that

x(S?%) = /S2 e(R) = +2. (2.71)

The characteristic class entering directly in the evaluation of anomalies is the so-called
roof-genus, defined as
/2
) z5/2 1 1 )
A(R) = ————=1——p1(R)+ ——(Tp1(R)" — 4p2(R 2.72
(® = 1T it sy =1 g+ g (1 (R — () + (272
where xp = A\ /2.

An important theorem by Atiyah and Singer, called index theorem, relates the spectral
properties of differential operators on a manifold My with its topology (fibers included).
This is a remarkable property, because at first glance the two concepts might seem un-
related. We will not discuss index theorems in general, but just states the result for a

specific operator that will feature in the following: the dirac operator
1
Dr = il (au + 5l e + Aang) . (2.73)

In eq.(2.73) the subscript R refers to the representation of the fermion under the (unspec-
ified) gauge group G, and T are the generators in the corresponding representation. The
index of the Dirac operator is nothing else that the difference between the number of zero

energy eigenfunctions of positive and negative chirality. One has

ny —n_ = indexilPr = / chr (F)A(R), (2.74)
My
where
chr (F) = trresn . (2.75)

As we will see in the next sections, eq.(2.74) gives the contribution of a Dirac fermion to the
so called chiral anomaly in d dimensions. It is a remarkable compact formula that should
be properly understood. For any given dimension d, one should expand the integrand in
eq.(2.74) and selects the form of degree d, which is the only one that can be meaningfully
integrated over the manifold M.

Let us conclude by spending a few words on the character chg (F'). If a representation
R = R1®Ra, one has chg (F') = chg, (F)chg,(F). For example, for G = SU(N), we have
fund. ® fund. = adj. @ 1. Correspondingly,

chagy.(F) = ch(F)ch(—F) — 1, (2.76)
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where the Chern character without subscript refers to the fundamental representation and
we used the fact that chy () = ch(—F). Expanding eq.(2.76) we have

1 1
N2—1—§trAdj_F2—|—... :(N—atrFZ—i-...)Z—l, (2.77)

from which we deduce the known result

trag t*t? = 2N trt” . (2.78)

3 Supersymmetric Quantum Mechanics

For reasons that will be clear in the next section, the most elegant computation of anoma-
lies, that makes clear its connection with index theorems and eq.(2.74), is essentially
mapped to a computation in a quantum mechanical model whose Hamiltonian equals the

square of the Dirac operator (2.73):
H = (dPr)*. (3.1)

Let us start by considering the simplest situation of flat space R? with vanishing gauge
potential. The hamiltonian (3.1) reduces to H = (ip)? = —83 = —V = p?, namely twice
the hamiltonian of a free particle moving in R% with unit mass. Despite the hamiltonian
is the correct one, there is no obvious way to see p? as coming from y?>. The “spinor”
structure is simply absent. The problem is fixed by adding fermionic variables ¥* and
write the lagrangian?®

1 L
L= ikt + %ww. (3.2)

The first term is the usual free kinetic term for a particle, the second is a somewhat
more unusual “free kinetic term” for fermion coordinates.* Notice that * are Grassmann
variables in one dimension but transform as vectors on R%. The system described by the

lagrangian (3.2) is invariant under the following supersymmetric (SUSY) transformation:

ozt = e,

St = —eih (3.3)

where ¢ is a constant Grassmann variable, €2 = 0, anticommuting with *. It is easy to
check that. We have

SL = dlieh + L (—eit ) + Lo (—eit) = em (hyph) . (3.4)
2 2 2 dt
3We are in flat euclidean space, so upper and lower vector indices are equivalent.
4Notice that we are not discussing a QFT here, so ¥* do not represent fermion particles. The interpre-

tation of " will be given shortly.
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Since the Lagrangian transforms as a total derivative the action S = [ dtL is invariant and

eq.(3.3) is a good symmetry. Let us define canonical momenta and impose quantization:

_dL

1 b
Pr= g

dL i (3.5)
o= L Lyw

dapt 2

In the bosonic sector we can straightforwardly proceed with the usual replacement of
Poisson brackets with quantum commutators, i.e. [z#, z¥] = [pt,p¥] = 0, [zH,p”] = i6".

In the fermion sector one has to be more careful because the naive anti-commutators
Wy p = {r", 7"} p =0, {¥*, 7} p = id"” (3.6)

are clearly incompatible with the actual form of 7# in eq.(3.5). This problem is solved by

looking at the definition of 7* in eq.(3.5) as a constraint
=k — %W = 0. (3.7)

The quantization of theories with constrains is known (see e.g. section 7.6 of ref.[8] for
an excellent introduction). If the matrix of the Poisson brackets among the constraints
x* is non-singular (computed using the brackets (3.6)), we say that the constraints are of
second class. This is our case, since {x*,x"}p = ¢*¥ = §"”. A consistent quantization
in presence of second class constraints is obtained by replacing the Poisson bracket with
the so called Dirac bracket. More in general, for two anti-commuting operators A and B

subject to a series of second class constraints of the form y* = 0, we have
{A,B}p ={A, B}p — {A, X"} p ci/n (X", B} p, (3.8)

where ¢! is the inverse of the matrix of brackets MY = {x™, xV1p. A similar formula
applies for bosonic fields, with commutators replacing anti-commutators. Coming back to
our case, if we take A = x” or B = x” in eq.(3.8) we get a vanishing result, consistently

with the constraints y* = 0. The consistent anti-commutators for fermions are then
1 i
Wil =0, {nfnfip = =30, Whrtip =50 (39)

The Hamiltonian of the system is given by (pay attention to the order of the fermion
fields)
1, 1

H =p,a" +m, " — L = oPu = —§V, (3.10)

namely it is just the standard free hamiltonian in absence of fermions! The fermion

generator of SUSY is given by
Q = —yYtit = —Hph. (3.11)
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We can easily check that it leads to the correct transformation properties:

ozt = [eQ, zt] = —e)”[p”, 2] = iept |

3.12
6¢U = [EQJ/}M] = _[ewl/pl/,r[/}ﬂ] = _Epu{wuﬂbu} - —EPM - _G-Z"u . ( )

The fermion Dirac brackets in eq.(3.9) generate the same Clifford algebra of gamma ma-

trices in d dimensions. The action in the Hilbert space of v, is then that of a gamma
matrix: .

B — Ay, 3.13

(8 757 (3.13)

The anti-commutator of two supercharges equal
{Q,Q} ={v'p' '’} =p;, =2H — Q* = H . (3.14)

Plugging eq.(3.13) in the supercharge @ in eq.(3.11) gives
g L,
V2 V2

namely the supercharge acts in the Hilbert space as the Dirac operator. Thanks to the

Q=" = —id). (3.15)

fermion operators, we can now reinterpret the hamiltonian (3.10) as the square of the
Dirac operator. In quantum mechanics, the existence of SUSY is the statement about
the possibility of classifying the spectrum of the system using a fermion number operator.
If |B) is a bosonic state, then the state ¥*|B) is fermionic. Correspondingly, given a
bosonic state |B), Q|B) is a fermionic one. Viceversa, if |F') is a fermionic state, then
Q|F) is a bosonic one. States are grouped in multiplets that rotate as spinors do in d
dimensions upon the action of the operator *. For d even, we might then split the
spectrum into “boson” and “fermion” states, according to the action of the matrix 411
defined in eq.(2.20). States with v44; = 1 and 7441 = —1 will be denoted bosons and
fermions, respectively. The chiral matrix v441 is then equivalent to a fermion number
operator (—)F.

Let us finally compute the SUSY transformation of the generator @ itself:
0Q = —OpHit — Yreit = et it — P (iept) = 2¢l. (3.16)

We notice two important properties of @): its square is proportional to the Hamiltonian
and its SUSY variation is proportional to the Lagrangian.® In turn, the variation of the

Lagrangian is proportional to the time derivative of @, see eq.(3.4).

This is true in the Lagrangian formulation. In the Hamiltonian formulation we have 6Q = [¢Q, Q] =

{Q,Q} = 2¢H.
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Consider now a particle moving on a general manifold My. The SUSY transformations
(3.3) do not depend on the metric of My and are unchanged. Correspondingly @ should
be given by the straightforward generalization of eq.(3.11):

Q = —gu(x)Prs” . (3.17)

The simplest way to get the curved space generalization of the Lagrangian (3.2) is to use
eq.(3.16).

Exercise 5: Compute the curved space lagrangian L, by using eqs.(3.16) and
(3.17) and show that
1 v v Wea

0 (D)8 L g (2 (B + T (i) (3.18)

where 1" is the Levi-Civita connection (2.2).

Ly=

It is important for our purposes to rewrite eq.(3.18) in terms of vielbeins. We have
P = ek, so that
d d . :
S = ) = ()i 4 el (3.19)
where from now on we omit the dependence of vielbeins, metric, etc. on the coordinates

x#. The terms in the Lagrangian (3.18) involving the fermions can be rewritten as
Guut? (97 + T @)0757 ) = et ((Oel )i u? + efi? + T efutir)

= ¢a¢'}a + ¢awbiu(ea ,U«eg + eprup, )

. . P (3.20)
= Yo + Yatp wueb( a e + Fgu p)
. 1 i
= ¢awa + 5[#&17 ¢b]xuwub
where in the last step we used eq.(2.13). The Lagrangian (3.18) becomes
1 U A .
L, = 5gu,,(ac)gcugg + §¢a¢ + Z[zpa,q/;b]w“bx“, (3.21)
The momentum conjugate to z* is modified:
Pu = guuﬂj + - W’aa¢b] . (3-22)

Using eq.(3.22) and replacing p,, — —i0,,, * — 7?/+/2 in the expression for @ in eq.(3.17),
we get the natural curved space generalization of eq.(3.15):
1

Q—Tzeu 7 (0 + w el e =50 (3.23)
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3.1 Adding Gauge Fields

The gauge field terms in the curved space covariant derivative (2.73) are reproduced by
adding new fermionic degrees of freedom c¥ and ¢, where A runs over the dimension of
the representation R associated to eq.(2.73). The fields ¢* and ¢’y transform under the
representation R and its complex conjugate R of the gauge group G, respectively. The

Lagrangian associated to these fields is

' 1
La= %(c;c‘f‘ — &3e") +ich Al pit e + SO F g (3.24)
where Aﬁ B = fj(TO‘)AB, F ;}j s =Fun (TO‘)AB are the connection and field strength asso-

ciated to the group G, with generators T'*. In order to simplify the notation, it is quite
convenient to define the one-form A = A,Y* and two-form I’ = F,,¢"9" and suppress

the gauge indices. In this more compact notation the Lagrangian (3.24) reads
La= %(c*é —&*e) +ic* Ayt + ¢t Fe. (3.25)

The Lagrangian (3.25) is invariant under SUSY transformations of the form

oc = —ieAc, oc" = —iec*A, (3.26)

together with the transformations (3.3) that are left unchanged.

Exercise 6: Show that L, is invariant under the transformations (3.3) and
(3.26). Hint: use a compact notation and recall that DF = dF + [A, F] = 0.

The canonical momenta of the fields ¢* and ¢ read
i, i
Te = 5¢" Mer = 5C. (3.27)

Like the fermions " before, eq.(3.27) should be interpreted as a set of constraints among
the fields ¢, ¢* and their momenta 7. and 7e«: xo = e — ic*/2 = 0, X = Ter — ic/2 =
0. Using eq.(3.8), it is straightforward to find the consistent Dirac (anti)commutation

relations between the fields ¢? and cy
{ch. P =068, (3.28)

Considering ¢* and ¢ as creation and annihilation operators, respectively, the Hilbert space

of the system includes (in addition to excited states) the vacuum |0), “l-particle” states
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c4|0), “2-particle” states ¢} cj|0), etc. Among all these states, only the 1-particle states
correspond to the representation R of the gauge group G, the vacuum being a singlet of
G and “multiparticle” states leading to tensor products of the representation R. On such
particle states, the operator ¢’ (T O‘)ABCB acts effectively as (TQ)AB. The supercharge is
given by eq.(3.17), but the momentum conjugate to z# gets another term, coming from
Ly:

= gud” + — [wa,wb]wzb +ic"Ayuc. (3.29)

It is straightforward to check that the transformations (3.26) are reproduced by acting
with @ on the fields ¢* and c.
Summarizing, the total Lagrangian is given by L = L, + L 4, with

1 . ] . ] .
L= 59/11/%“‘#/ + §¢a¢“ + 1 [%, 1/%} Wszu

‘ (3.30)
+ ;(CZCA — M) + ic*AAAB P + c S PPt EA o
and is invariant under a SUSY transformation () that acts on the Hilbert space as
Q= —=e'v"| (O + zw®[va, ] )6 + AL T —iﬂﬁ (3.31)
- \/—ea7 8(“‘}” Ya,s Vo B wraB| — \/5 R - .

We have finally determined a SUSY quantum mechanical model with Hamiltonian given
by eq.(3.1).

4 The Chiral Anomaly

In the path-integral formulation of QFT, anomalies arise from the transformation of the
measure used to define the fermion path integral [9].

Let 14(x) be a massless Dirac fermion on a d = 2n-dimensional manifold My, in an
arbitrary representation R of a gauge group G (A =1,...,dimR). The minimal coupling
of the fermion to the gauge and gravitational fields is described by the Lagrangian

L= ep(2)ail@) 59", (4.1)

where e is the determinant of the vielbein, ) is the Dirac operator (2.73) and for simplicity
we drop from now on the subscript R in the covariant derivative.

The classical Lagrangian (4.1) is invariant under the global chiral transformation
) — N2+ 1g) ) — ettt (4.2)

where 9,41 is given in eq.(2.20) and « is a constant parameter. The associated classically

conserved chiral current reads Jh L= Y ayan17* A, At the quantum level, however,
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this conservation law can be violated. Consider the quantum effective action I' defined by
e tewd) — [ pypge I#eL, (43)

and study its behavior under an infinitesimal version of the chiral transformation (4.2)

with a space-time-dependent parameter €(z), given by®

bt = ie(x)yanm1tp(x), O = ie(x)h(z)V2n+1 - (4.4)

Since the external fields e, w and A are inert, the transformation (4.4) represents a redefi-
nition of dummy integration variables, and should not affect the effective action: §.I' = 0.
This statement carries however a non-trivial piece of information, since neither the ac-
tion nor the integration measure is invariant under eq.(4.4). The variation of the clas-
sical action under eq.(4.4) is non-vanishing only for non-constant €, and has the form
b [ L = [JL,,10,€e. The variation of the measure is instead always non-vanishing, be-
cause the transformation (4.4) leads to a non-trivial Jacobian factor, which has the form
5 [DYDY] = [DYDP](—2i [ €A), as we will see below. In total, the effective action there-

fore transforms as
5 = /d2"xe e(z) [21’./4(35) — (O ()| - (4.5)

The condition 6. I" = 0 implies the anomalous Ward identity:
(Ouhy 1) = 2iA. (4.6)

In order to compute the anomaly A, we need to define the integration measure more
precisely. This is best done by considering the eigenfunctions of the Dirac operator ip.
Since the latter is Hermitian, the set of its eigenfunctions ¢y (x) with eigenvalues g,

defined by @D1),, = A1)y, form an orthonormal and complete basis of spinor modes:
/d2"33 el (@)n(z) =, Y el (@)n(y) =6 (z —y). (4.7)
k

The fermion fields v and 1), which are independent from each other in Euclidean space,

can be decomposed as

Y= Zak%, P = ZEWL, (4.8)
k k
so that the measure becomes
DYDY = [ [ dardb . (4.9)
k.l

SFor simplicity of the notation, we omit the gauge index A in the following equations. It will be

reintroduced later on in this section.
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Under the chiral transformation (4.4), we have
aj, = aj + i / dre’y dleyrithar, by = b+ / d'wey b eranty,  (4.10)
l l
and the measure (4.9) transforms as

DYDY DD det(di + i [ e v]ernii)
) ) (4.11)
— 6[DyDy] =[DyDi] (-2 Y / % it + O())
k

We can now take € to be constant. The expression (4.11) is ill-defined as it stands since
it decomposes into a vanishing trace over spinor indices (tr~s,+1 = 0) times an infinite
sum over the modes (), 1 = 00). A convenient way of regularizing this expression is to
introduce a gauge-invariant Gaussian cut-off. The integrated anomaly Z = [ A can then
be defined as

Z=1m > ¥y —BX;/2
by 4 VY v2nt+1¥ke
— lim Tv [fygnﬂe—/f(W/? , (4.12)
B—0

where the trace has to be taken over the mode and the spinor indices, as well as over
the gauge indices. Equation (4.12) finally provides the connection between anomalies
and quantum mechanics. Indeed, it represents the high-temperature limit (7" = 1/3) of
the partition function of the quantum mechanical model (3.30) that has as Hamiltonian
H = (dp)?/2 and as density matrix p = yo,s1e ?H: Z = Trp. Z is not clearly the
ordinary thermal partition function of the system, because of the presence of the chirality
matrix yo,+1. Its effect is rather interesting. As we mentioned in the previous section,
Yan+1 acts as the fermion counting operator (—)¥. In supersymmetric quantum mechanics,
with H = Q?, any state |E) with strictly positive energy E > 0 is necessarily paired with
its supersymmetric partner |E): Q|E) = VE|E). Of course, |E) and |E) have the same
energy but a fermion number F' differing by one unit. Independently of the bosonic or
fermionic nature of |E), the contribution to Z of |E) and |E) is equal and opposite and
always cancels. The only states that might escape this pairing are the ones with zero
energy. In this case Q|E = 0) = 0 and hence these states are not necessarily paired. We
conclude that

Z=n4—n_ (4.13)

independently of 3, where n4 are the number of zero energy bosonic and fermionic states.

Interestingly enough, Z does not depend on smooth deformations of the system. If a state
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|E) with E > 0 approaches E = 0, so has to do its partner |E). Viceversa, zero energy
states can be deformed to F > 0 only in pairs. So, while n, and n_ individually might
depend on the details of the theory, their difference is an invariant object, called Witten
index [10]. Since ny correspond to the number of zero energy eigenfunctions of positive
and negative chirality of the Dirac operator, we see that Z coincides with the index of the
Dirac operator defined in eq.(2.74). Using the Atiyah-Singer theorem we could read the
result for the chiral anomaly from the right hand side of eq.(2.74). However, it is actually
not so difficult to compute Z. This computation can be seen as a physical way to prove
the Atiyah-Singer theorem applied to the Dirac operator [11].

The integrated anomaly Z can be derived by computing directly the partition function
of the above supersymmetric model in a Hamiltonian formulation. In order to obtain the
correct result, however, one has to pay attention when tracing over the fermionic operators
¢y and c?. As discussed below eq.(3.28), only the 1-particle states ¢ |0) correspond to
the representation R of the gauge group G. In order to compute the anomaly for a
single spinor in the representation R, it is therefore necessary to restrict the partition
function to such 1-particle states. On the other hand, the partition function of a system
at finite temperature 7' = 1/ can be conveniently computed in the canonical formalism by
considering an euclidean path integral where the (imaginary) time direction is compactified
on a circle of radius 1/(27T). The insertion of the fermion operator (—)¥ amounts to
change the fermion boundary conditions from anti-periodic (the usual one in canonical
formalism) to periodic. So the best way to proceed is to use a hybrid formulation, which
is Hamiltonian with respect to the fields ¢% and ¢, and Lagrangian with respect to the
remaining fields z# and ¢®. Starting from the hamiltonian H, we then define a modified
Lagrange transform (technically called Routhian R) with respect to the fields z# and ¢®

only. After Wick-rotating to Euclidean time 7 — —i7, the index Z can be written as

Z = Treer /PDx“ /Pmﬂ exp{—/OﬁdTR(g;ﬂ(T),wa(T),c;,cA>}. (4.14)

The subscript P on the functional integrals stands for periodic boundary conditions along
the closed time direction 7, Tr. .~ represents the trace over the 1-particle states c¢%|0), and

the Euclidean Routhian R is given by

1
Z [wav ¢b] wzbjju

1
+ c}AﬁBi:“cB — §c§cB¢“¢bF£ B- (4.15)

1 - 1 .
R = 59#1/13”117” + §¢a¢a +

Equation (4.14) should be understood as follows: after integrating over the fields z* and

1®, one gets an effective Hamiltonian H (¢,c*) for the operators ¢ and c?, from which
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one computes Trc,c*e_ﬁH (ee?). Although this procedure looks quite complicated, we will
see that it drastically simplifies in the high-temperature limit we are interested in.

The computation of the path-integral is greatly simplified by using the background-field
method and expanding around constant bosonic and fermionic configurations in normal
coordinates [12]. These are defined as the coordinates for which around any point x( the
spin-connection (or equivalently, the Christoffel symbol) and all its symmetric derivatives
vanish. It is convenient to rescale 7 — 87 and define
1
VB

In this way, it becomes clear that it is sufficient to keep only quadratic terms in the

ah(r) = af + VB e (o) (1), () Yo + A7) (4.16)

fluctuations, which have a S-independent integrated Routhian, since higher-order terms

in the fluctuations come with growing powers of 5. In normal coordinates one has

wit ()it (r) = VB (xo)el(wo)é(r) + BAuw (wo)ely (0)E" (T)ef (o) €°(7) + O(B*?)
= 0+ BOwy (wo)ef (xo)e (x0)EH(T)E°(7) + O(5*?) (4.17)
= BR(w0)E (x0)& (x0) + O(5*?).

The term proportional to A, in eq.(4.15) vanishes in this limit because it is of order .
Using these results, eq. (4.15) reduces to the following effective quadratic Routhian, in
the limit § — O:

1r. . . .
R = 2 |€a€” + AN + Rap (w0, 40)87€" | — (o, Yo)e” (4.18)
where
1
Rap(w0,%0) = 5 Rabed(x0) U605 ,

2
F4 (w0, %0) = 2F2 plo)udud. (4.19)

2
Since the fermionic zero modes 9@ anticommute with each other,” they define a basis of
differential forms on Ms,, and the above quantities behave as curvature 2-forms.

From eq.(4.18) we see that the gauge and gravitational contributions to the chiral
anomaly are completely decoupled. The former is determined by the trace over the 1-

particle states ¢%|0), and the latter by the determinants arising from the Gaussian path

integral over the bosonic and fermionic fluctuation fields:

Z = / 42z / 2"y Tre,er [eczF%cB] det}l/z[—aféab—l—RabaT} det /2 [afaab]. (4.20)

"The anticommuting 1b§’s are simply Grassmann variables in a path integral and should not be confused

with the operator-valued fields ¢* entering eq.(3.30), which satisfy the anticommutation relations (3.9).
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The trace yields simply

Trc,c*ecj‘\F%CB = trrel . (4.21)

The determinants can be computed by decomposing the fields on a complete basis of
periodic functions of 7 on the circle with unit radius, and using the standard (-function
regularization. Let us quickly recall how (-function regularization works by computing

the partition function of a free periodic real boson x on a line:
Zfee / Dye~ 5 Jod%dr (4.22)

We expand z in Fourier modes x,,, x_,, = z} and rewrite

ee —mt % 27m 2|mn|2 - a t
f /dl'O H dl’ndl’ e ™ K3 ) = /diﬂog (m) . (4.23)
Using the identity
;E[lfn:exp<—lmé£Zf ) (4.24)

we compute

lo_O[1 <27Ttw> - < a %(ﬁ)s i"%)SZO = exp (g(o) 10g

— +2¢(0)) , (4.25)

where ((0) = —1/2, ' = —log2n/2 are the value in zero of the ¢ function and its first
derivative. We then find o
m
zg = 1(5) 4.2
51) (4.26)

where L is the length of the line. The partition function of a free periodic fermion 1 on
a line vanishes because of the integration over the Grassmannian zero mode . Inserting

one gy in the path integral and proceeding as in the bosonic case, one gets
froe / D)) e mfo pdr _ m—1/2 ) (427)

Coming back to the evaluation of the determinants in eq.(4.20), it is useful to bring the
curvature 2-form R, into the block-diagonal form (2.68), so that the bosonic determinant

decomposes into n distinct determinants with trivial matrix structure.

Exercise 7: Compute the determinants appearing in eq.(4.20) and show that

1/2 2 -n . Ai /2
det [ 8264 + RapOr ] (27) ];[1 SO (4.28)
det/? [aTaab] = (—i)". (4.29)
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The final result for the anomaly is obtained by putting together eqs.(4.21), (4.28) and
(4.29), and integrating over the zero modes. The Berezin integral over the fermionic zero

modes vanishes unless all of them appear in the integrand, in which case it yields

[ g = 1y e, (4.30)

and automatically selects the 2n-form component from the expansion of the integrand in
powers of the 2-forms F and R. Since this is a homogeneous polynomial of degree n in F
and R, the factor (i/(2m))" arising from the normalization of eqs.(4.28), (4.29) and (4.30)
amounts to multiplying F' and R by i/(27). The final result for the integrated anomaly

can therefore be rewritten more concisely as
Z= chr(F) A(R), (4.31)
Map
where ch(F) and A(R) have been defined in eqs.(2.72) and (2.75). As explained below
eq.(2.75), only the 2n-form component of the integrand has to be considered.

The anomalous Ward identity (4.6) for the chiral symmetry can be formally written,

in any even dimensional space, as
<8ﬂ']gn+1> =2 Ch'R(F)A(R)bn—form ) (4.32)
where the volume form is understood to be omitted on the right hand side of eq.(4.32).

In 4 space-time dimensions, for instance, eq.(4.32) gives

dimR
tr F;wFpg + WRpuaﬁRpoaﬁ . (433)

(Ol = i€ | 1o

5 Consistency Conditions for Gauge and Gravitational Anomalies

Anomalies can also affect currents related to space-time dependent symmetries. For sim-
plicity, we will consider in the following anomalies related to spin gauge fields only, i.e.
gauge anomalies. Gravitational anomalies can be analyzed in almost the same way, mod-
ulo some subtleties we will mention later on. In presence of a gauge anomaly, the theory
is no longer gauge-invariant. This is best seen by considering the effective action I' in
eq.(4.3). Under an infinitesimal gauge transformation A — A — De;

ST(A)
JA,

0, T(A) = — /dzna:tr Dyer = /d%a:trDMJ“el = /d2"a:tra61 =T7(e1), (5.1)
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where a,, is the gauge anomaly and we have defined its integrated form (including the
gauge parameter ¢) by Z.8 The WT identities associated to the conservation of currents in
a gauge theory allows us to define a consistent theory, where unphysical states decouple.
The anomaly term a that would appear in the WT identities associated to the (would-be)
conservation of the current would have the devastating effect of spoiling this decoupling.
Gauge anomalies lead to inconsistent theories, where unitarity is broken at any scale.
The structure of the gauge anomalies that can occur in local symmetries is strongly
constrained by the group structure of these symmetry transformations. In particular, two
successive transformations d., and J., with parameters €; and e; must satisfy the basic

property: [5517552] = Ol ,e5]- We should then have
[Oe15 06, ] T(A) = e, e T (A) (5.2)
or in terms of the anomaly Z defined in eq.(5.1):
de,Z(€2) — de;I(€1) = L([er, €2]) - (5.3)

The above relations are called Wess—Zumino consistency conditions [13].

The general solution of this consistency condition can be characterized in an elegant
way in terms of a (2n + 2)-form with the help of the so-called Stora—Zumino descent
relations [14]. For any local symmetry with transformation parameter € (a 0-form), con-
nection A (a 1-form) and curvature F' (a 2-form), these are defined as follows. Starting

from a generic closed and invariant (2n + 2)-form Qg,12(F'), one can define an equiva-

lence class of Chern—Simons (2n + 1)-forms ngn) +1(A, F) through the local decomposition

Qopto = ng,? +1, like in section 2.3. In this way, we specify Qg;) 41 only modulo exact

2n-forms, implementing the redundancy associated to the local symmetry under consider-

ation. One can then define yet another equivalence class of 2n-forms QSL) (e, A, F'), modulo

exact (2n — 1)-forms, through the transformation properties of the Chern—Simons form

under a local symmetry transformation: 5595(7)3 1= dQ;l)

1)

n

. It is the unique integral of this

class of 2n-forms Qg that gives the relevant general solution of eq.(5.3):

Z(e) = 2mi /M (e . (5.4)

n

To understand this, notice that by Stokes theorem

oflo= [ dilo=s [ o, (5:5)
M M)

Man 2n+1 2n+41

8We denote the anomaly by a and not A as in the last section, because we will later on denote by A a

certain connection entering the Stora-Zumino descent relations.
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where M/, 41 is an arbitrary 2n + 1-dimensional manifold whose boundary is May,: M, =
aMénH. For instance, if My, = 5", Mo, 11 can be taken to be the 2n 4+ 1 dimensional
ball B2"*1. Notice that eq.(5.5) is valid only if Q;l) (€) is globally well-defined, so we have
to assume that either the gauge transformation € is non-vanishing on a single chart only,
or that the gauge bundle on My, is trivial. This does not necessarily imply that the formal

2n + 2 dimensional gauge field is trivial [6]. Eq. (5.4) can be rewritten as

I(e) = 2mi 6, / o), (5.6)
M/

2n+1

and clearly provides a solution of eq.(5.3), since it is manifestly in the form of the variation
of some functional under the symmetry transformation. The descent construction also
insures that eq.(5.6) characterizes the most general non-trivial solution of eq.(5.3), modulo
possible local counterterms. This can be understood more precisely within the BRST
formulation of the Stora—Zumino descent relations, which we described in the next section.

The above reasoning applies also to gravitational anomalies. Both gauge and gravita-
tional anomalies in a 2n-dimensional theory are then characterized by a gauge-invariant
(2n+2)-form. We shall see in the next section that the chiral anomaly form s, 12 provides
precisely the (2n + 2)-form defined above through which we can solve the Wess-Zumino
consistency relations. The gauge and gravitational anomalies in 2n dimensions are then
obtained through the descent procedure, defined respectively with respect to gauge trans-

)

formations and diffeomorphisms (or local Lorentz transformations), as Z = 27 [ M%le .

6 The Stora—Zumino Descent Relations

The Stora—Zumino descent relations are best analyzed by using a differential-form nota-
tion.? As we have seen in the previous section, starting from a gauge-invariant (2n+2)-form
Qon42(F) we can define a Chern-Simons (2n + 1)-form through the local decomposition
Qont2(F) = dQop+1(A, F). The gauge variation of the latter defines a 2n-form s, (A, F')
through the transformation law §,Q2,11(A, F) = dQg, (v, A, F).

Under gauge transformations g(z,f) depending on the coordinates x* and on some

(ordinary, not Grassmann) parameters %, A and F transform as
A(2,0) = g7 (w,0) (A(2) + d) g(x,0) (6.1)
F(x,0) = g~ (x,0)F(x)g(x,0). (6.2)

We can define, besides the usual exterior derivative d = dx#d,, with respect to the coor-

dinates z*, an additional exterior derivative d = d#d, with respect to the parameters

9This section closely follows section 3.C of ref.[6], adopting the same notation.

30



0“. The range of values of the index « is for the moment undetermined. The operators
d and d anticommute and are both nilpotent, d?> = d? = 0. This implies that their sum
A =d+d is also nilpotent: A? = 0. The operator d naturally defines a transformation

parameter v through the expression:

o(z,0) = g~ (x,0)dg(x,0) . (6.3)

Exercise 8: Verify that

o =—0>, dA=—-Do, dF = —[0,F]. (6.4)

Equations (6.4) show that d generates an infinitesimal gauge transformation with param-
eter ¥ on the gauge field A and its field-strength F. Interestingly enough, these can also
be interpreted as BRST transformations, the ghost fields being identified with ©. At this
point, it is possible to define yet another connection A and field-strength F as
A= g (A+A)g=A+0, (6.5)
F=AA+ A =g 'Fg=F. (6.6)

The last relation is easily proved. Using eqs.(6.4) one has

F = (d+d)(A+0)+ (A+10)?

= dA+do— Do —0* + 0% 4+ Ado+ 0A + A? (6.7)
= dA+ A?
= F. (6.8)

The crucial point is that A and F are defined with respect to A exactly in the same way
as A and F are defined with respect to d. Therefore, the corresponding Chern-Simons

decompositions must have the same form:

Q2n+2(F) = AQon+1(A, F) , (6.9)
Q2n+2(F) = dQ2n+1(A, F) . (6.10)

On the other hand, eq.(6.6) implies that the left-hand sides of these two equations are
identical. Equating the right-hand sides and using eq.(6.5) yields:

(d+ d)Qons1(A+ 0, F) = dQons1(A, F). (6.11)
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In order to extract the information carried by this equation, it is convenient to expand
Qoni1(A+ 0, F) in powers of o as

Qoni 1 (A+0,F) = QY (A, F)+QS) (0, A, F) + ...+ Q7" (4,4, F), (6.12)

where the superscripts denote the powers of v and the subscript the dimension of the form
in real space. Substituting this expansion in eq.(6.11) and equating terms with the same

power of ¥, we finally find the Stora—Zumino descent relations [14]:

QS +dQy,) =
dQ2n + ng?’L)—l =0,

dQ(2n +dQ (2n+1) o,
dQP™™ =0, (6.13)

For gauge anomalies Z(v) = [ tr(va), eq.(5.3) reads

Sy /tr(v2 a) — Oy, /tr(vl a) — /tr([vl,vg] a)=0. (6.14)

The two transformations with parameters v; and vy can be incorporated into a family of

transformations parametrized by 6 and 62, with parameter
b = v1d0" + vedbh? = v,dh*. (6.15)

In this way, va = ¢ '04g. At 0% = 0, g(x,0) = 1 and therefore A(z,0) = A(z) and
F(x,0) = F(x). At that point, d generates ordinary gauge transformations on A and F,

with d = df#®6,,. For instance, eq.(5.1) can be rewritten as
dr = /trﬁa (6.16)

The condition (6.14) can be multiplied by df'df? and rewritten as

0 = d91d92</tr(v2<5v1 a) — /trv15U2 a) — /tr[vl,vg]a>

- deacwﬁ( / tr(0500, @) — / tr[va,vg]a> (6.17)

— _/tr(@da)—/tr@%.

Since do = —02, this can be rewritten simply as
d/tr(@ a)=0. (6.18)
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The Wess—Zumino consistency condition is therefore the statement that the anomaly is
(i—closed,
dZ(0)=0. (6.19)

It is clear that the trivial d-exact solutions Z(9) = d [ f(A) in terms of a local functional
f(A) of the gauge field correspond to the gauge variation of local counterterms that can
be added to the theory. Anomalies emerge from the non-local part of the effective action
and are therefore encoded in the cohomology of d. Locality is crucial. Any anomaly could
otherwise be cancelled by the use of a non-local counterterm. For instance, we will see in

the next section that for U(1) gauge fields the anomaly is proportional to
dI'(A) x /eF”. (6.20)
If we would add to I'(A) the non-local functional'®

ﬂMa/F%W@ (6.21)

with the appropriate coefficient, the new action I'(A)+ f(A) would be gauge invariant. But
counterterms must be local, because non-local terms are finite and free of UV-ambiguities.
In other words, adding a non-local functional to the action amounts to a change in the
physics.

From the second relation appearing in the Stora—Zumino descent relations (6.13), we
see that the general non-trivial element of the d—cohomology is of the form Z(0) = [ Q;l)
With the above definitions, we have Q2,12 = ng?L)H and 51,@%234_1 = —dQSL). We can
therefore identify

Qont2 ¢ Q2nt2, Qgi)—l—l < Qg?L)—l—l’ ng) < —QSL), (6.22)

where Q are the forms defined at the end of the last section.

7 Path Integral for Gauge and Gravitational Anomalies

Gauge and gravitational anomalies in 2n dimensions can be computed starting from the
chiral anomaly in 2n + 2 dimensions using the Stora-Zumino descent relations. They arise
from the Jacobian of the transformation in the integration measure, since the classical
action is invariant. Differently from the chiral anomaly, gauge and gravitational anomalies

can arise only from massless chiral fermions, with given chiralities +. For a Dirac fermion

10We are using in eq.(6.21) a mixed notation in terms of differential forms and explicit components, but

hopefully the point should be clear.
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in euclidean space, if ¢ transforms under a representation R of a gauge group G, 1) should
transform in the complex conjugate representation R*, otherwise the mass term 1) would
not be invariant. In this case, the Jacobian factors associated to 1 and 1) exactly cancel,
resulting in no anomaly. Similarly for local Lorentz transformations. The Lagrangian to

start with is then that of a chiral fermion

L= eb(@)DPy ¥, (7.1)
where
1
2

is the chiral projector. The computation is technically analogous to the one we performed

7)77 (1 + 77'}’2n+1) ) n= +1 ) (72)

for the chiral anomaly, except that the transformation law is now different and acts with
opposite signs on 1 and ). Moreover, the full Dirac operator is now ﬂl)n = @73,7, and
is not Hermitian. For this reason we have to use the eigenfunctions ¢, of the Hermitian
operator (idD,)1ip, to expand 1 and the eigenfunctions oy of @D, (ip,)" to expand ¢:

v=>ad], b= b (7.3)
k k

Let us first consider the case of gauge anomalies. Under an infinitesimal gauge transfor-

mation with parameter v = v*T,, the fermion fields transform as

Spth = —v1h, Sp1b = v (7.4)

Given the commutation properties of yo2,11, we clearly have Q% = ¢, This induces a

variation of the integration measure given by
5, [Dm)zz] — DYDY ( 3 / 4 e (qﬁZTvaTo‘qﬁZ - cpZTvaTo‘cpZ>> . (7.5)
k

As in the case of the chiral anomaly, this formal expression needs to be regularized, and

we can define the integrated gauge anomaly to be

Igaugo(v) - _ éli)l%)z <¢ZTvaTae—ﬁ(7Dn)T7Dn/2¢Z — (IDZT’UOCTQ G_B@”(@n)T/2(pZ) . (76)
k

The trace over the two chiral eigenspinor basis can be combined in one single trace by

inserting the chirality matrix vo,41 to give

I8 (v) = —n élﬂ% Tr Y2041 Qe A @)/2] (7.7)
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The operator Q%" is defined in such a way to act as v,T* on the Hilbert space. A
concrete realization of it within the supersymmetric quantum mechanics introduced in the
previous subsection is

QB™M& — c*ve. (7.8)

The computation of eq.(7.7) is similar to that of eq.(4.12), the only difference being the
insertion of the operator (7.8) into the trace (4.21). This insertion is equivalent to substi-
tute F' — F'+wv in eq.(4.21) and take the linear part in v of the result. Hence the anomaly
would read (neglecting for the moment the gravitational term A(R)):
auge 1 Z’ " n
TENEE (1) = (-) troF" (7.9)
Mo

n! \ 27

n

The anomaly computed in this form is called “covariant”, because it transforms covariantly
under the local symmetry, with no gauge connections appearing explicitly. The covariant
anomaly however does not satisfy the Wess-Zumino consistency conditions. The general
form of the anomaly le) satisfying the Wess—Zumino consistency conditions (called “con-
sistent”) depends explicitly on A, as we will see later on. Notice that if one could compute
directly the anomaly from a given non-local functional I' by making an infinitesimal gauge
transformation 6.1, the result would satisfy the Wess-Zumino consistency conditions, be-
cause eq.(5.2) would be automatically satisfied. This implies that the anomaly (7.9) cannot
arise from the variation of an action. So, what went wrong in our computation? The “mis-
take” can be traced to the violation of the Bose symmetry among the external states. In
the path integral derivation one computes the gauge anomaly associated to a single exter-
nal gauge field, while a Bose-symmetric result would require to distribute democratically
the anomaly over all the external legs. Bose symmetry can be restored by focusing on the
part of the anomaly containing n + 1 fields, which corresponds effectively to take the dA
from any F in eq.(7.9) and divide the result by 1/(n + 1). In this way the integrand of

eq.(7.9) gives
! ( ! )" tro(da)” (7.10)
—n———=\=—) tro . .
T+ 1) \2r
It is straightforward to find the 2n+2 gauge invariant form s, 2(F') whose part containing
n+1 fields gives eq.(7.10) as descent 2n-form Q;L), because the descent procedure is trivial

at this order (all fields are effectively abelian). One has

— 2im i\t n+1

There is no need to Bose-symmetrize the terms containing more than n + 1 fields. Given

Qopy2(F) in eq.(7.11), the Stora-Zumino descent relations automatically give the correct
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consistent form of the entire anomaly. We clearly see the close connection between chiral
anomalies in 2n + 2 dimensions and gauge anomalies in 2n dimensions. The consistent

form of the integrated gauge anomaly is therefore

e

TEME (v) = 27in / A(R). (7.12)

[ChR(F )}
Moy,
Notice that covariant and consistent anomalies contain the same information, and there
is a well-defined procedure to switch from one to the other [6].

The case of gravitational anomalies is similar. Under an infinitesimal diffeomorphism
with parameter ¢/, the fermion fields transform as scalars, d.¢) = —€#9,1), Setp = —e“(‘)ul/?.
We can turn the ordinary derivative into a covariant one, by performing a local Lorentz

b e“wﬁb. In this way we get

transformation with parameter a®

5e¢ = _EHDM¢7 6612 = _EHD,LﬂZ7 (713)

which induces the following variation of the integration measure (recall eq.(7.3)):

e [Dqﬂ?ﬂ = Dqﬂ??ﬁ(Z /d2nx e (qSZTe“D“qbZ + (DuQDZT)EuQDZ>>
k

DYDY ( D / & e (qﬁZTe“DM(bZ - gpzTeMDWz)) L (T.14)
k
The regularized expression for the integrated gravitational anomaly is then

TE™ (e) = — lim <¢Le—5(@nﬂ@n/2eu Dby — e PP @) 2cn Du%)
k

=~ lim Ty [m HQgrave—B(@)Q/?] , (7.15)

The operator (®*" must act as €#D,, on the Hilbert space. Since i## — D! upon canonical
quantization, we can identify
Q™Y — de,dt . (7.16)

We have (recall the rotation to euclidean time 7 — —i7):

dxt(T)

B
I8 (€) = nTre e /Dm“ / Dw“eu(x)i( exp { —/ dTR(x“(T),l/J“(T),cﬁ,cA) } .
“Jp P dr 0
(7.17)
Thanks to the periodic boundary conditions, the path integral does not depend on the

point where we insert Qgrav, 50 we can replace in eq.(7.17)

T\ T B T\ T
e ()T %/0 dr e () 2. (7.18)

dr dr

36



Rescaling 7 — (7, using eq.(4.16) and expanding in normal coordinates gives, modulo

irrelevant higher order terms in j3,
1
6/ dr dw“ ) - %/ dr e“(:no)—l-v,,e“(xo)\/gfy(ﬂ+O(B))\/gd§;(_7-)

1
= u(o /def“ —I—V,jeu(:zto)/o dT&V%f_T) (7.19)

_ %Daeb(ggo) /0 dr(£2€° — %)

where in the second row the first term and the symmetric part of the second vanish, being
total derivatives of periodic functions. It is convenient to exponentiate the action of 8™
and notice that it amounts to the shift R,, — Rap — Dacp + Dpe, in the effective Routhian
(4.18). The original expression (7.15) is recovered by keeping only the linear piece in e.
After adding the appropriate symmetrization factors and following the same procedure
as for the gauge anomaly to switch to a consistent form of the anomaly, this implements
the Stora—Zumino descent with respect to diffeomorphisms. The consistent form of the
integrated gravitational anomaly is finally found to be

T () — 2mi / chre (F)[A(R) W (7.20)
Mar,

We see from eq.(7.20) that purely gravitational anomalies, i.e. F = 0 in eq.(7.20), can
only arise in d = 4n + 2 dimensions.

The analogue of eq.(5.1) for diffeomorphisms reads

5.I(g9) = — / d*"y ‘T—@(vuey + Vyeu) = / d*x\/gV, T e, = / a’e, = T8 (e),

OGuv
(7.21)
where 0cg,, = —(Vye, + Vye,) and we have defined the symmetric energy-momentum
tensor
i — 2 90(9) (7.22)

VI 0w

A gravitational anomaly leads to a violation of the conservation of the energy-momentum
tensor. It is also possible to see the consequences of a violation of the local Lorentz

symmetry. In this case we see I' as a functional of the vielbeins €};. Under a local Lorentz

transformation for which drej;, = —« bez, we have
orl(e) = /d2" 55( )eabez = /dzna;e T%¢,, = /a“beab = IL(e), (7.23)
€ua
where we have used the relation
e 551;(6) - 6225;(9) e = eI (7.24)
ja Guv



Since €., = —€pq, an anomaly in a local Lorentz transformation implies a conserved, but
non-symmetric, energy-momentum tensor. It is possible to show that these anomalies
are not independent from those affecting diffeomorphisms, and it is always possible to
add a local functional to the action to switch to a situation in which one or the other of
the anomalies vanish, but not both [6]. Correspondingly, in presence of a gravitational
anomaly, the energy-momentum tensor can be chosen to be symmetric or conserved at
the quantum level, but not both simultaneously. The resulting theory will be inconsistent,
since unphysical graviton modes will not decouple in scattering amplitudes.

We see from eqs.(7.12) and (7.20) that we can also have mixed gauge/gravitational
anomalies, namely anomalies involving both gauge fields and gravitons. Contrary to the
purely gravitational ones, they can arise in both 4n and 4n+2 dimensions. These anomalies
lead to both the non-conservation of the gauge current and of the energy momentum tensor.
However, by adding suitable local counterterms to the effective action, one can in general
bring the whole anomaly in either the gauge current or the energy momentum tensor.
The mixed gauge/gravitational anomaly signals the obstruction in having both currents

conserved at the same time.

7.1 Explicit form of Gauge Anomaly

It is useful to explicitly compute the expressions of the forms that are relevant to gauge

anomalies. The starting point is the (2n + 2)-form characterizing the chiral anomaly in
2n + 2 dimensions:

Qopi2(F) = (L

27

In order to not carry the unnecessary (i/27) factors, we will consider in what follows the

n+1
) Qant2(F), Qonio(F) = tr F", (7.25)

form @, rather than . As shown in section 2.3, @ is a closed form. For topologically
trivial gauge field configurations we can set F' = A = 0 in eq.(2.64). Relabelling A’ — A
and F' — F, we have A; = tA, F; = tdA + t>A? and eq.(2.64) gives

1
QY (A F) = (n+1) / dtte [AF7] . (7.26)
0

We compute le) (v, A, F') using eq.(6.12). This requires to compute the Chern-Simons
term (7.26) in the A-cohomology

1
0
where A = A+0, Ay = tA, F; = AA;+ A?. Using eq.(6.8), the latter can be expressed as

Fi=tF+ (t* —t)A> =tF + (> —t)(A + 0)?. (7.28)
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The quantity we are after is found by expanding in powers of ¢ and retaining the linear
order. We have
Fi = F + (t* —t)[A, 0] + O(0%). (7.29)

It is useful to define the symmetrized trace of generic matrix-valued forms w; = w;"T* as

1, el ey o
str(wl...wp):ﬁwll/\.../\wp” Z tr (T ... 7). (7.30)

perms.

In this way we find

1
W(p, A, F) = (n+ 1)/ d str [@Ft” +n(t? —t)A[A, 0] F[H]
0
1

=(n+1) [ dtstr [f} (E" +n(t—1)(t[A, A~ = A[A,, Ftn_l]))]
o

1

=(n+1) [ dtstr |0 F' +n(t — 1)((8tE—dz‘_l)l*:}"_l—kfldﬁtn_l))]

it st [@ (Ft" F(t—1)OF +n(1 - t)d(AFt"—l)ﬂ. (7.31)

S— >— S—

=(n+1)

In the third equality we have used the identities D;F*~' = dF"~ ' + [A;, F~'] = 0 and
O F; = dA + t[A, A]. After integrating by parts, the first and second term in the last line
of eq.(7.31) cancel. We can set the gauge parameters % = 0, where g(z,0) = 1, so that ©
turns into v, A = A, F' = F. Going back to the Q-forms using eq.(6.22) gives

i
prs

) (v, 4,F) = —(

n

)"+ ) / (- st d(AFh] . (7.82)
0

The generalization of the above relations to the gravitational case is straightforward.
We substitute A and F' with the connection I' and the curvature R in eq.(2.44), and
consider infinitesimal diffeomorphisms. Alternatively, we substitute A and F with the
spin connection w and the curvature R, and consider infinitesimal SO(2n) local rotations,
when dealing with local Lorentz symmetry.

In order to give a concrete example, let us derive the contribution of a Weyl fermion
with chirality n = +1 to the non-Abelian gauge anomaly in 4 dimensions. Integrating in

t gives the following anomalous variation of the effective action:

5,0(A) = —# dhastr [vd(AF - %A?’)] . (7.33)

In model building and phenomenological applications one is mostly interested to see
whether a given set of currents (global or local) is anomalous or not. This is best seen by

looking at the term of the anomaly with the lowest number of gauge fields, the first term
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in square brackets in eq.(7.33), the full form of the anomaly being reconstructed using
the Wess-Zumino consistency conditions. In 4 dimensions this term is proportional to the
factor

DY = Ztr({T%, TPYT7) = x >t (TTPT). (7.34)

1
2 3!

perms.

When this factor vanishes, the whole gauge anomaly must vanish.

8 Gravitational Anomalies for Spin 3/2 and Self-Dual Tensors

Chiral spin 1/2 fermions are not the only fields giving rise to gravitational anomalies.
In order to understand which other fields might possibly lead to anomalies, consider the
explicit form of the gauge anomaly in eq.(7.32). In our notations the gauge generators are
1)

n

anti-hermitian, and hence Qé is real in any dimension. Using eqgs.(5.1) and (5.4), this
implies that gauge anomalies affect only the imaginary part of the euclidean effective action
I". Vector-like fermions do not give rise to anomalies and lead to a real effective action.
So we conclude that only the imaginary part of I' can be affected by anomalies. The same
reasoning applies to gravitational anomalies (consider them as SO(2n) gauge theories).
From this reasoning we conclude that fields transforming in a complex representation
of SO(2n) might lead to anomalies. The group SO(N) admits complex representations
for N = 4n + 2, and hence only in d = 4n + 2 dimensions we might expect purely
gravitational anomalies, in agreeement with our result (7.20) for spin 1/2 fermions. Chiral
spin 3/2 fields also transform under complex representations of SO(4n + 2). Interestingly
enough, (anti)self-dual tensors, 2n + 1-forms, also have complex representations in 4n + 2
dimensions. This is best seen by looking at the euclidean self-duality condition for forms:
xF, = F,, where * is the Hodge operation on forms. Given a form w, in d dimensions,
*wp is the (d — p)- form given by

\/g H1---pop

— 238 Ha—
iy = Ty AN A dat, (81)

where €, ,, is the completely antisymmetric tensor, with €; 4 = +1. It is easy to see

2
n
Wh,-

that * % w, = (—=1)P@Ply,. Specializing for d = 2n and p = n, gives * * w, = (—1)
This is 1 for n even and —1 for n odd, hence in 4n and 4n + 2 dimensions (anti)self-dual
tensors transform in real and complex representations of SO(d), respectively.

It is not clear how to consistently get a QFT with (anti)self-dual tensors charged
under gauge fields. Also, in most relevant theories, spin 3/2 fields are neutral under gauge
symmetries. We will then consider the contribution of these fields to pure gravitational

anomalies only. We very briefly outline the derivation, referring the reader to ref.[2] for
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further details. As for spin 1/2 fermions, it turns out that the gravitational anomalies
induced by fields can be obtained starting from chiral anomalies in two dimensions higher
and then apply the Stora-Zumino descent relations. The chiral anomaly can again be
efficiently computed using an auxiliary supersymmetric quantum mechanical model. For
spin 3/2 fermions 1),,, the vector index u can be seen as a gauge field in the fundamental
representation of the group, the connection being wzb and the group SO(d). The associated
quantum mechanical model is given by eq.(4.15), with Aﬁ B — wy,, and F| lf}jB — iRZ?/. In
terms of the skew-eigenvalues x; of the curvature two-form R, defined in eq.(2.72), the

chiral anomaly in 2n dimensions is found to be

R - - Ty /2
Z3/y = /Mzn(tre 2r — 1) A(R) /Mzn ( Z: coshxj — > kl;[l m , (8.2)
where the —1 comes from the need to subtract the spin 1/2-contribution contained in 1.

Anomalies of (anti)self-dual forms are more involved. Roughly speaking, one considers
the contribution of all antisymmetric fields at once. This does not change the anomaly,
since the total contribution of the extra states sum up to zero. The whole series of
antisymmetric fields is equivalent to a bifermion field 1),3. This is understood by recalling
that a matrix A, can be expanded in the basis of matrices given by antisymmetric product
of gamma matrices, eq.(2.17). The analogue of the chiral matrix y2,,+1 in eq.(4.12) is played
by the Hodge operator * and the Hamiltonian is the Laplacian operator on generic p-forms.

By computing the path integral associated to the resulting super quantum mechanical

- __/M2

With these results at hand we can verify that purely gravitational anomalies do indeed

model one gets

tanh Tr (8.3)
k=1

cancel in a non-trivial way in a ten-dimensional gravitational theory, low-energy effective
action of a string theory, called IIB theory. The spectrum of this theory includes a chiral
spin 1/2 fermion, a spin 3/2 fermion with opposite chirality and a self-dual five-form

antisymmetric field. The total gravitational anomaly is obtained by taking the sum
Zip=Z2a+ 23/ — Z1)2, (8.4)

evaluating each term for n = 5 and keeping in the expansion of the series only the form of
degree twelve. This is the relevant form that, after the Stora-Zumino descent procedure,
would give rise to the gravitational anomaly ten-form in ten dimensions. Remarkably, the
coefficient of this form exactly vanishes in the sum (8.4), proving that the IIB theory is

free of any gravitational anomaly.

41



9 The Green—Schwarz Mechanism

The Green—Schwarz anomaly cancellation mechanism was first discovered by Green and
Schwarz in the context of string-derived effective supergravity theories in 10 dimensions
[15]. It achieves in a non-trivial and interesting way the cancellation of gauge and gravita-
tional anomalies, which is guaranteed in the full string theory by its finiteness, stemming
from general principles such as modular invariance or tadpole cancellation. Thanks to
this mechanism, it has been understood that field theories with an anomalous spectrum of
massless fermions can be anomaly-free, and thus consistent, in certain particular circum-
stances. The mechanism involves antisymmetric tensor fields, and the essential idea is that
the anomaly is canceled by the gauge variation of some counterterms, constructed out of
these tensor fields as well as the gauge and gravitational connections and field strengths.

Before describing the Green—Schwarz mechanism and its generalization to any space-
time dimension, it is necessary to introduce the notion of “reducible” and “irreducible”
forms of the anomaly. As shown in eqs.(7.12) and (7.20), a generic gauge or gravitational
anomaly can be written in the form Z = 27 [ MMQSL), where Qg;) is the Stora—Zumino
descent of a closed and gauge-invariant (2n + 2)-form 9,19, function of the curvature
2-forms F' and R.' The form s, 2(F, R) is said to be “irreducible” when it cannot be
decomposed as a sum of products of closed and gauge-invariant forms of lower degree.
Typical examples are tr R"T! or tr F"*! for a representation that does not admit a de-
composition to lower forms. It is instead said to be “reducible” when Qs,12(F, R) can
be decomposed as Q9,10 = Qo oy 19 o for some k > 0. Examples of such a type are
tr Fhtr Frtl=k ¢y Frty RPHIF or tr RFtr RPH17F,

The original Green—Schwarz mechanism in 10 dimensions requires the introduction of
a 2-index antisymmetric tensor field, but we will describe here its generalization to 2n di-
mensions and 2/-index antisymmetric tensor fields of the type C’gll"'“ 2 with [ > 1. These

112

fields generalize the standard electromagnetic vector potential'® and are conveniently de-

scribed in terms of 2[-forms Cy;, subject to the U(1) gauge transformation
(5C21 = d)\gl_l s (91)
with Ag;_1 an arbitrary (20 — 1)-form. The gauge-invariant field strengths

Hgl:'l'””“ = g Cgf"'“”“ + permutations, (9.2)

"Here and in the following we will refer to gauge symmetries in a broad sense, including in particular

local Lorentz symmetries, in order to treat gauge and gravitational anomalies at once.
12The “electric” and “magnetic” sources of these fields in 2n dimensions are respectively (20 = 1)- and

(2n — 2l — 3)-dimensional extended objects.
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are correspondingly described by the (2{ + 1)-forms Hojpq = dCy.
As will become clear below, only reducible anomalies can be canceled through the
Green—Schwarz mechanism. We shall therefore consider a generic reducible anomaly of

the form
I= 271'2/ Q;L) 5 with an_;,_g = ng Q2n+2—2k . (93)
Mo

n

Following the Stora—Zumino descent procedure, the Chern—Simons form Qg;) 1 correspond-

ing to Qa,49 is found to be

0 k 0 n+1—k 0
an)ﬂ = ntl T 1Q§k)—192n+2—2k + +_1 Q2kQ2n+l—2k
0 0
+ad (Qék)—1ggn)+1—2k> ; (9.4)

where « is an arbitrary parameter taking into account the ambiguity in the definition of
Qg%_l. From eq.(9.4) one derives

b — <HL+1 - a> O Qoo + <% 1 a> Q) (9.5)
By properly choosing «, we might cancel the first or the second term in eq.(9.5), but not
both at the same time. The choice of « corresponds to the fact that anomalies are defined
modulo local counterterms. In particular, we see that the addition to the action of the

term
S > —2rif /M ) o . (9.6)
2n

amounts to the change o — a— 8 in the anomaly (9.5). Clearly, the anomaly still persists.
The situation changes if one adds an antisymmetric (2k — 2)-index tensor field Co;_o. In

fact, the anomaly corresponding to eq.(9.5) can be canceled by the following action:

1 2 N2rm
Sag = / [ 3 ‘dC’gk_g + V21 Qé%)_l‘ +1 ¢ Cok—2 Qop—2k+2
Map

An+1-— k 0 0
—2m1 <n7_’_1 + a) ng)—lgén)—‘rl—yc] s (97)

where ¢ is an arbitrary dimensionful parameter. The action (9.7) is not invariant under

local symmetry transformations. The modified kinetic term of the field Co_o makes it

clear that the appropriate definition of its field strength Hop_1 is
Hoj g = dCyy,_o + V270 . (9.8)

This field strength can be made gauge-invariant, provided that Cy_o transforms inhomo-

geneously under gauge transformations, in such a way as to compensate the transforma-

tions of the Chern—Simons form Qg,?_lz
§Copn = —V2m QM) . (9.9)
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In this way §.Hor_1 = 0 and the kinetic term is invariant. However, the Wess—Zumino
coupling Cox 99, _or1+2 (and the last counterterm in eq.(9.7)) transforms non-trivially and
leads to a non-vanishing variation of S that exactly compensates for the 1-loop anomaly
(9.3), independently of the value of &:

555 = —2mi / ol (9.10)
Moan

Although the form of the anomaly (9.3) and of the last term in eq.(9.7) depend on the arbi-
trary parameter «, the gauge variation of S due to the transformation (9.9) is independent
of o and universal. This is the essence of the generalization of the original Green-Schwarz
mechanism to arbitrary dimensions and 2/ antisymmetric forms. Although the construc-
tion might seem ad hoc, it was shown in ref.[15] that the action of certain string-derived
ten-dimensional QFT — where massless antisymmetric 2-forms are present to begin with
— is of the form (9.7), with the correct Q:(,)O) and (23 to make the theory anomaly free.
Since then, the Green-Schwarz mechanism has been shown to be generally at work in
string-derived low energy actions in ten or less space-time dimensions [16]. Independently
of string theory, one can of course cancel reducible gauge/gravitational anomalies in QFT
by adding the forms Cy; as in eq. (9.7).

The Green—Schwarz mechanism described above, involving a single tensor field Cop_9,
can cancel only reducible anomalies of the form o, 19 = QorQopio ok, with 1 < k < n.
This is clear from eq.(9.7), but also from the fact that the involved forms are physical
propagating fields only for 1 < k < n. Notice in particular that the cases k = 0or k = n+1,
corresponding to irreducible anomalies, would formally require (—1)-forms or 2n-forms,
with field strengths dual to each other, which are clearly unphysical. Indeed, the top
2n-form has no physical degrees of freedom, since it cannot have a sensible field strength,
and its equation of motion simply implies that the total charge under it should vanish;
its would-be dual (—1)-form is correspondingly not existing. However, a straightforward
generalization of the basic Green—Schwarz mechanism, involving several physical tensor
fields Céki_z, with 1 < k; < n, can cancel anomalies that are not reducible but can be
decomposed into a sum of reducible ones, with Qa,40 = >, Qo Qo 49-95,, each tensor
field being responsible for the cancellation of one of the terms in the anomaly.

Notice finally that since the anomaly (9.3) is a 1-loop effect, either the Wess—Zumino
coupling or the Chern—Simons form modifying the kinetic term of the antisymmetric tensor
fields in the actions (9.7) must arise at the 1-loop level, depending on n and k. One of these
two terms can therefore be thought of as being induced by the heavy states associated to
the physics in the UV. This was explicitly verified in string theory, where the microscopic

theory is known and computable.
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In four-dimensional QFT, scalar fields can be used in the Green-Schwarz mechanism.
Consider for simplicity a theory with a gauge group of the form U(1) x G, with G a simple
group, and denote by A the U(1) gauge field connection and by S the two-form field
strength of G. Mixed U(1) — S? gauge and U(1)-gravitational anomalies can be cancelled
by the following action:

1
Sug = / d'e <§ (8u<;5 +faA)? + ieﬂm’fi <cltr S Spo + cszaﬁR,mBD L (9.11)
[

where ¢ is the Green-Schwarz scalar field, f, a mass scale and ¢, cz are appropriate
constants. For simplicity, we have omitted to write the local counterterms proportional to
the product of Chern-Simons terms QgO)ng). The generalization to situations involving
multiple abelian and non-abelian gauge fields is straightforward.

Notice that the Green-Schwarz scalar couples to gauge fields as axions do, though,
in contrast to axions, it requires a modified kinetic term to acquire an inhomogeneous
transformation under a gauge/gravitational symmetry. The latter implies that the Green—
Schwarz anomaly cancellation mechanism in 4-dimensions is an Higgs mechanism where ¢
is eaten by the would-be anomalous U (1) gauge field that gets a mass of order f¢.13 As is
clear from eq.(9.11), the Green—Schwarz mechanism cannot be applied in renormalizable

4-dimensional theories, since operators of dimension greater than 4 necessarily appear.

10 Non-perturbative Anomalies

The gauge and gravitational anomalies that we have considered so far concern local sym-
metry transformations connected to the identity, and can therefore be infinitesimal. In
this sense we can call them “perturbative” anomalies. There can be in general additional
non-perturbative gauge and gravitational anomalies concerning symmetry transformations
topologically non-trivial and disconnected from the identity, that hence exist only in a fi-
nite form and cannot be infinitesimal. The latter can occur both for gauge symmetries
and for diffeomorphisms (or local Lorentz transformations). They are also called global
anomalies and were first discovered by Witten [17] in an SU(2) model in 4 dimensions.!4
Differently from perturbative anomalies, the non-perturbative ones cannot be directly
detected through perturbative Feynman diagram computations, and this explains their

name. A general discussion of gauge and gravitational non-perturbative anomalies lies

30n the contrary, in the original string Green-Schwarz mechanism in ten space-time dimensions, the

gauge fields remain massless.
'We avoid the terminology “global anomaly” and use instead “non-perturbative anomaly” for a pos-

sible confusion with the anomalies involving global symmetries, that sometimes are also denoted global

anomalies.
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beyond the aim of this course. In the following, we will just very briefly recall a few basic
features of the former in flat space, and advise the reader interested in the latter to see
ref. [18].

Let us begin by examining which gauge groups G can lead to global gauge anomalies
in a 2n-dimensional flat Euclidean space-time R?". We consider gauge transformations
g(z) that reduce to the identity at infinity, so that they represent maps from S?" (the
2n-dimensional sphere) into the gauge group G. Such gauge transformations are classified
by the 2n-th homotopy group of G, denoted by ma,(G). If the latter is trivial, all the
gauge transformations are connected to the identity and no global anomalies can arise.
On the contrary, if it is not, there exist classes of topologically non-trivial gauge trans-
formations that can potentially be anomalous. Denoting by A9 = ¢~ 'Ag + g~ 'dg the
gauge-transformed connection obtained from A through such a non-trivial gauge transfor-
mation g, a global anomaly can occur if the effective action — which is defined modulo
physically irrelevant multiples of 27i as in eq.(4.3) — changes under the finite transfor-

mation ¢g by an amount I'(A9) — I'(A4) that is not a multiple of 2mi:
[(A%) — T(A) # 2rin, neZ. (10.1)

If the situation (10.1) occurs, the quantum effective action and all the correlation
functions of gauge-invariant operators it describes are not well-defined, and the theory is
inconsistent [17].1> As perturbative gauge anomalies, also non-perturbative gauge anoma-
lies can be induced only by Weyl fermions in even-dimensional space-times and through
the imaginary part of the Euclidean effective action, since Dirac fermions always allow
for a manifestly gauge-invariant regularization. Computing the contribution of a Weyl
fermion to the transformation (10.1) for a generic gauge group G is, however, a compli-
cated mathematical problem. It should be clear that asking whether a theory is afflicted
by non-perturbative anomalies or not is a meaningful question only when all perturbative
ones cancel, the former being defined in terms of homotopy classes and hence modulo local
gauge transformations.

The simplest non-trivial case where non-perturbative anomalies can arise in 4 dimen-
sions is for G = SU(2), since m4[SU(2)] = Zo. It has been show in ref.[17] that an SU(2)

theory with one or any odd number of Weyl doublets is non-perturbatively inconsistent.

15To be precise, €q.(10.1) leads to an inconsistency only if A and AY are connected in field space without
passing infinite action barriers. Otherwise, it is possible to define a sensible quantum effective action by

restricting the functional integral to topologically trivial gauge configurations only.
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