Scattering Amplitudes and Extra Dimensions in AdS/CFT

Eric Perlmutter

Caltech, Simons Collaboration on Nonperturbative Bootstrap

SISSA/ICTP Joint Seminar, 18 September 2019
One of the physical world's most fascinating features is its dependence on scale.

In quantum field theory, this dependence is encoded in the renormalization group.

A **conformal field theory** (CFT) is a renormalization group fixed point, and hence essential to the study of quantum field theory.
We are living in a **golden age of CFT**.

There has been a proliferation of new ideas about what, fundamentally, a CFT *is*.

Conformal bootstrap: the program of classifying conformal field theories using symmetries and other abstract constraints.
We are living in a **golden age of CFT**.

There has been a proliferation of new ideas about what, fundamentally, a CFT *is*.

Conformal bootstrap: the program of classifying conformal field theories using symmetries and other abstract constraints.
We are living in a **golden age of CFT**.

There has been a proliferation of new ideas about what, fundamentally, a CFT *is*.

Conformal bootstrap: the program of classifying conformal field theories using symmetries and other abstract constraints.

Space of possible consistent CFTs
We are living in a **golden age of CFT**.

There has been a proliferation of new ideas about what, fundamentally, a CFT **is**.

Conformal bootstrap: the program of classifying conformal field theories using symmetries and other abstract constraints.

- What is the range of **possible quantum critical behaviors**?
- What **hidden structures** govern CFTs?

Space of possible consistent CFTs
The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.
The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.
The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.

The conformal bootstrap is a non-perturbative window into quantum gravity.
The conformal bootstrap is a non-perturbative window into quantum gravity.

The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.
The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.

The conformal bootstrap is a non-perturbative window into quantum gravity.
The conformal bootstrap is a non-perturbative window into quantum gravity.

The bootstrap paradigm is especially powerful in the context of the AdS/CFT Correspondence.

"Stringy" (?)
At first, AdS/CFT was mostly used as a tool for determining strongly coupled field theory dynamics from simple, semiclassical calculations in gravity.

\[\text{AdS} \rightarrow \text{CFT} \]

More recently,

\[\text{AdS} \leftarrow \text{CFT} \]

We are learning about quantum gravity from insights and precision computations in CFT.
The conformal bootstrap typically constrains CFT correlation functions.

AdS scattering amplitudes \longleftrightarrow CFT correlation functions

Loop expansion in AdS \longleftrightarrow $1/N$ expansion in CFT

\[
\langle O_1 O_2 O_3 O_4 \rangle = \text{Planar (1/N}^2\text{)} + \text{Non-planar (1/N}^4 + \ldots \text{)}
\]

Today’s talk will focus on AdS loop amplitudes: their computation, using bootstrap-inspired techniques, and their utility in answering questions about string theory.
The conformal bootstrap typically constrains CFT correlation functions.

AdS scattering amplitudes \leftrightarrow CFT correlation functions
Loop expansion in AdS \leftrightarrow $1/N$ expansion in CFT

The talk has 3 components.
I. Loops in AdS

Why loops?

1. **Curved space** amplitude-ology
2. The only known approach to generic **non-planar CFT** data at strong coupling
3. **Fundamental** objects in AdS quantum gravity
I. Loops in AdS

Why loops?

1. *Curved space* amplitude-ology
2. The only known approach to generic non-planar CFT data at strong coupling
3. *Fundamental* objects in AdS quantum gravity

Before 2016, what was known?

New idea: *AdS Unitarity Method*
II. Application: String amplitudes from N=4 SYM

String perturbation theory is stuck in the genus expansion.
State-of-the-art for graviton 4-pt amplitude in Minkowski space:

[D'Hoker, Phong '05: “Two-loop superstrings VI: Non-renormalization theorems and the 4-point function”]

[Gomez, Mafra '13]
II. Application: String amplitudes from N=4 SYM

String perturbation theory is stuck in the genus expansion.

State-of-the-art for graviton 4-pt amplitude in Minkowski space:

\[\forall \alpha' \]

\[\sim \alpha'^6 f(p_i) + \ldots \]

N=4 SYM has a type IIB string dual on AdS\(_5 \times S^5\).

Its non-planar correlators encode bulk string loop amplitudes...

\(\rightarrow \) **Compute string amplitudes** holographically.

\[L_{\text{AdS}} \to \infty \]
III. The String Landscape and Extra Dimensions in AdS/CFT

What is the landscape of AdS vacua in string/M-theory?

One simpler (but still hard!) question is whether there exist fully rigorous AdS x M vacua with parametrically small extra dimensions (i.e. hierarchy/scale-separation).

Define D as the total number of large (AdS sized) bulk dimensions. The question is whether $D = d+1$ is possible. (There are no fully controlled examples.)
Consider the uniqueness question for N=4 SYM. Why AdS$_5 \times$ S5 instead of “pure” AdS$_5$?
Consider the uniqueness question for N=4 SYM. Why AdS$_5 \times S^5$ instead of “pure” AdS$_5$? Hard question: what is the bulk dual of QCD? Of a “typical” SCFT?
Consider the uniqueness question for N=4 SYM. Why AdS$_5 \times$ S5 instead of “pure” AdS$_5$? Hard question: what is the bulk dual of QCD? Of a “typical” SCFT? Easier question: dimension of the
Consider the uniqueness question for N=4 SYM. Why AdS$_5 \times S^5$ instead of “pure” AdS$_5$?

Hard question: what is the bulk dual of QCD? Of a “typical” SCFT?

Easier question: Why does our universe appear 3+1-dimensional?

Could it have been otherwise? What symmetry principles govern this?
Today we will address the following modest question about the AdS landscape:

Take $D =$ number of “large” (= AdS-sized) bulk dimensions.

Given the planar OPE data of a large N, strongly coupled CFT, what is D?
Today we will address the following modest question about the AdS landscape:

Take $D = \text{number of \ "large" \ (= \text{AdS-sized}) \ \text{bulk dimensions}}$.

Given the planar OPE data of a large N, strongly coupled CFT, what is D?
Outline

1. Bootstrap basics and large N CFT

2. Loops in AdS

3. Application: String amplitudes from N=4 super-Yang-Mills

4. The String Landscape and Extra Dimensions in AdS/CFT

Based on:

- 1612.03891, with O. Aharony, F. Alday, A. Bissi
- 1808.00612, with J. Liu, V. Rosenhaus, D. Simmons-Duffin
- 1809.10670, with F. Alday, A. Bissi
- 1906.01477, with F. Alday
- To appear, with D. Meltzer, A. Sivaramakrishnan
What are Conformal Field Theories (made of)?

I. Local operators: $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \ldots$

These carry a conformal dimension (Δ), Lorentz spins, and maybe other charges.

II. Their interactions: $\mathcal{O}_i(x)\mathcal{O}_j(0) \sim \sum_k C_{ijk}\mathcal{O}_k(0)x^{\Delta_k-\Delta_i-\Delta_j}$

This is the operator product expansion (OPE).

"OPE data" $\{\Delta_i, C_{ijk}\}$ completely determine local operator dynamics of a CFT.
What are Conformal Field Theories (made of)?

I. Local operators: \[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \ldots \]
These carry a conformal dimension (\(\Delta \)), Lorentz spins, and maybe other charges.

II. Their interactions:
\[\mathcal{O}_i(x) \mathcal{O}_j(0) \sim \sum_k C_{ijk} \mathcal{O}_k(0)x^{\Delta_k - \Delta_i - \Delta_j} \]
This is the operator product expansion (OPE).

“OPE data” \(\{\Delta_i, C_{ijk}\} \) completely determine local operator dynamics of a CFT.

Charting theory space = Constraining the sets \(\{\Delta_i, C_{ijk}\} \)

Note: No reference to Lagrangians!
What are Conformal Field Theories (made of)?

We can glue these vertices to make higher-point correlation functions.

These obey dynamical laws which constrain the underlying data \(\{\Delta_i, C_{ijk}\} \).
What are Conformal Field Theories (made of)?

We can glue these vertices to make higher-point correlation functions.

These obey dynamical laws which constrain the underlying data \(\{\Delta_i, C_{ijk}\} \).

- **Unitarity:** \(\Delta_i \geq \Delta_* \geq 0 \) and \(C_{ijk}^2 \geq 0 \)

- **Associativity:**

\[
\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 = \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3
\]

The latter implies crossing symmetry of four-point functions.
The conformal bootstrap program has three main threads:

1. The **space** of CFTs
2. The **properties** of *all* CFTs
3. The **properties** of *specific* (universality classes of) CFTs

Originally, these investigations were numerical. Now, **analytics** are exploding.

How the bootstrap works – i.e. what symmetries and abstract constraints are used – is time-dependent, as we discover new facts about field theory.
Some classic bootstrap questions:

Is there an upper bound on the dimension of the lightest operator in any CFT? In a given OPE?

Are there bounds on OPE coefficients – for example, central charges or anomaly coefficients?

Assuming certain features, is there a CFT at all? If so, can we determine the precise value of its critical exponents, etc?

How special are the CFTs we already know about?

In a given CFT, what hidden structures relate apparently independent OPE data?
Bootstrap 2.0: Analytics

Some landmark results:

- Every CFT has an infinite number of primaries.
- Every 2d CFT has a lightest primary below a universal upper bound.
- CFTs with higher spin currents are free.
- Central charges – measures of anomalies and/or degrees of freedom – are bounded.
- Many classes of superconformal theories have soluble subsectors that are completely determined by 2d chiral algebras.

[Komargodski, Zhiboedov; Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Hellerman; Maldacena, Zhiboedov; Hofman, Maldacena; Beem, Rastelli, van Rees; Afkhami-Jeddi, Hartman, Kundu, Jain; Caron-Huot]
Bootstrap 2.0: Analytics

Some landmark results:

- Every CFT has an infinite number of primaries.
- Every 2d CFT has a lightest primary below a universal upper bound.
- CFTs with higher spin currents are free.
- Central charges – measures of anomalies and/or degrees of freedom – are bounded.
- Many classes of superconformal theories have soluble subsectors that are completely determined by 2d chiral algebras.

Some of these proven using new approaches, not just crossing symmetry!

- Causality and analyticity
- Regge physics/quantum chaos
- Energy conditions (e.g. ANEC)
- In 2d, modular invariance

[Komargodski, Zhiboedov; Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Hellerman; Maldacena, Zhiboedov; Hofman, Maldacena; Beem, Rastelli, van Rees; Afkhami-Jeddi, Hartman, Kundu, Jain; Caron-Huot]
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Single-trace” operators</td>
<td>Elementary fields</td>
</tr>
<tr>
<td>O_i</td>
<td>ϕ_i</td>
</tr>
</tbody>
</table>

ϕ_i
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Single-trace” operators</td>
<td>Elementary fields</td>
</tr>
<tr>
<td>O_i</td>
<td>ϕ_i</td>
</tr>
<tr>
<td>Stress tensor</td>
<td>Graviton</td>
</tr>
<tr>
<td>$T_{\mu\nu}$</td>
<td>$g_{\mu\nu}$</td>
</tr>
</tbody>
</table>
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Single-trace” operators</td>
<td>Elementary fields</td>
</tr>
<tr>
<td>O_i</td>
<td>ϕ_i</td>
</tr>
<tr>
<td>Stress tensor</td>
<td>Graviton</td>
</tr>
<tr>
<td>$T_{\mu\nu}$</td>
<td>$g_{\mu\nu}$</td>
</tr>
<tr>
<td>“Multi-trace” composites</td>
<td>Multi-particle states</td>
</tr>
<tr>
<td>$[O_iO_j]$, $[O_iO_jO_k]$, ...</td>
<td>$[\phi_i\phi_j]$, $[\phi_i\phi_j\phi_k]$, ...</td>
</tr>
</tbody>
</table>

ϕ_i

$g_{\mu\nu}$

$[\phi_i\phi_j]$
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Single-trace" operators O_i</td>
<td>Elementary fields ϕ_i</td>
</tr>
<tr>
<td>Stress tensor $T_{\mu\nu}$</td>
<td>Graviton $g_{\mu\nu}$</td>
</tr>
<tr>
<td>"Multi-trace" composites $[O_i O_j],\ldots$</td>
<td>Multi-particle states $[\phi_i \phi_j],\ldots$</td>
</tr>
<tr>
<td>Conformal dimensions Δ_i</td>
<td>Masses $m_i^2 = \Delta_i(\Delta_i - d)$</td>
</tr>
</tbody>
</table>

- ϕ_i: Elementary fields
- $g_{\mu\nu}$: Graviton
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Single-trace" operators</td>
<td>Elementary fields</td>
</tr>
<tr>
<td>O_i</td>
<td>ϕ_i</td>
</tr>
<tr>
<td>Stress tensor</td>
<td>Graviton</td>
</tr>
<tr>
<td>$T_{\mu\nu}$</td>
<td>$g_{\mu\nu}$</td>
</tr>
<tr>
<td>"Multi-trace" composites</td>
<td>Multi-particle states</td>
</tr>
<tr>
<td>$[O_i O_j], [O_i O_j O_k], \ldots$</td>
<td>$[\phi_i \phi_j], [\phi_i \phi_j \phi_k], \ldots$</td>
</tr>
<tr>
<td>Conformal dimensions</td>
<td>Masses</td>
</tr>
<tr>
<td>Δ_i</td>
<td>$m_i^2 = \Delta_i (\Delta_i - d)$</td>
</tr>
<tr>
<td>Central charge</td>
<td>Planck scale (loop expansion)</td>
</tr>
<tr>
<td>$c \sim N#$</td>
<td></td>
</tr>
</tbody>
</table>
Large N Conformal Field Theory

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Single-trace” operators O_i</td>
<td>Elementary fields ϕ_i</td>
</tr>
<tr>
<td>Stress tensor $T_{\mu\nu}$</td>
<td>Graviton $g_{\mu\nu}$</td>
</tr>
<tr>
<td>“Multi-trace” composites $[O_iO_j], [O_iO_jO_k], \ldots$</td>
<td>Multi-particle states $[\phi_i\phi_j], [\phi_i\phi_j\phi_k], \ldots$</td>
</tr>
<tr>
<td>Conformal dimensions Δ_i</td>
<td>Masses $m_i^2 = \Delta_i(\Delta_i - d)$</td>
</tr>
<tr>
<td>Central charge $c \sim N^#$</td>
<td>Planck scale (loop expansion)</td>
</tr>
<tr>
<td>Correlation function</td>
<td>Amplitude</td>
</tr>
</tbody>
</table>
Strongly-coupled quark-gluon plasma

\[\frac{\eta}{s} = \frac{1}{4\pi} \]

Huge landscape of non-Lagrangian CFTs

Area law entanglement

\[S_{EE} = \frac{A_{RT}}{4G_N} \]

Strongly coupled anomalous dimensions

\[\Delta \sim M_{\text{string}} \sim \lambda^\# > 0 \]
AdS \leftrightarrow CFT
Outline

1. Bootstrap basics and large N CFT

2. Loops in AdS

3. Application: String amplitudes from N=4 super-Yang-Mills

4. The String Landscape and Extra Dimensions in AdS/CFT
(A quick word on notation:)

\[
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle = \frac{1}{x_{12}^{2\Delta\phi} x_{34}^{2\Delta\phi}} A(z, \bar{z})
\]
CFT decomposition of bulk amplitude $<\phi\phi\phi\phi>$.

$$\sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} [\phi\phi]_{n,\ell}$$

Double-trace composites:

$$[\phi\phi]_{n,\ell} \simeq \phi \Box^n \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi$$

$$\Delta_{n,\ell} = 2\Delta_\phi + 2n + \ell + \gamma_{n,\ell}$$
CFT decomposition of bulk amplitude $<\phi\phi\phi\phi>$.

$$= \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} \left[\phi\phi\right]_{n,\ell}$$

Double-trace composites:

$$[\phi\phi]_{n,\ell} \sim \phi^{n} \partial_{\mu_{1}} \ldots \partial_{\mu_{\ell}} \phi$$

$$\Delta_{n,\ell} = 2\Delta_{\phi} + 2n + \ell + \gamma_{n,\ell} = 0 \text{ in MFT}$$
CFT decomposition of bulk amplitude $\langle \phi \phi \phi \phi \rangle$.

$$
\sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} [\phi \phi]_{n,\ell} = \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} a_{n,\ell}^{(0)} G_{n,\ell}^{(s)}
$$

Squared OPE coefficients of MFT

S-channel conformal blocks

Double-trace composites:

$$
[\phi \phi]_{n,\ell} \simeq \phi \Box_n \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi
$$

$\Delta_{n,\ell} = 2\Delta_\phi + 2n + \ell + \gamma_{n,\ell}$

=0 in MFT
CFT decomposition of bulk amplitude $<\phi\phi\phi\phi>$.

\[
\begin{align*}
= & \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} [\phi\phi]_{n,\ell} \\
= & \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} a_{n,\ell}^{(0)} G_{n,\ell} \\
\end{align*}
\]

Double-trace composites:

\[
[\phi\phi]_{n,\ell} \simeq \phi \square^n \partial_{\mu_1} \ldots \partial_{\mu_{\ell}} \phi
\]

\[
\Delta_{n,\ell} = 2\Delta_\phi + 2n + \ell + \gamma_{n,\ell}
\]

$[\phi\phi]$ anomalous dimension:

\[
\gamma_{n,\ell} = \frac{\gamma_{n,\ell}^{(1)}}{c} + \frac{\gamma_{n,\ell}^{(2)}}{c^2} + \ldots
\]

Tree-level

Fixed by single-trace data
CFT decomposition of bulk amplitude $\langle \phi \phi \phi \phi \rangle$.

\[
\begin{align*}
\langle \phi \phi \rangle &= \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} [\phi \phi]_{n,\ell} = \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} a_{n,\ell}^{(0)} G_{n,\ell} \\
\mathcal{O} &= \sum_{n=0}^{\infty} \sum_{\ell=0}^{\infty} [\phi \phi]_{n,\ell}
\end{align*}
\]

Double-trace composites:

\[
[\phi \phi]_{n,\ell} \simeq \phi \square^n \partial_{\mu_1} \ldots \partial_{\mu_\ell} \phi
\]

\[
\Delta_{n,\ell} = 2\Delta_\phi + 2n + \ell + \gamma_{n,\ell}
\]

$[\phi \phi]$ anomalous dimension:

\[
\gamma_{n,\ell} = \frac{\gamma_{n,\ell}^{(1)}}{c} + \frac{\gamma_{n,\ell}^{(2)}}{c^2} + \ldots
\]

Tree-level Fixed by single-trace data

1-loop Fixed by tree-level data... how?
In the world of amplitudes, the dominant paradigm is that of “unitarity methods”.

Recall the optical theorem for an S-matrix:

$$S = 1 + iT \quad \xrightarrow{\text{Disc}(T) = T^\dagger T} \quad \text{Unitarity of } S$$

This buys you one order in perturbation theory. e.g. at 1-loop,

Unitarity methods = constructing loop-level amplitudes from low-order ones by cutting.

(Basic idea: A Lagrangian defines the set of tree-level amplitudes, so from these, one must be able to construct the S-matrix to all orders in perturbation theory.)
In AdS, no asymptotic states: instead, dual CFT operators…

“AdS Unitarity Method”: a prescription for constructing loop-level AdS amplitudes from OPE data of lower-order ones.

Like ordinary unitarity methods, but reconstructed from operations in the CFT.

[Aharony, Alday, Bissi, EP]
AdS Unitarity Method

Nicely phrased using CFT dispersion relation (Lorentzian inversion).

Schematically:

\[A(z, \bar{z}) \approx \int K(z, \bar{z}; z', \bar{z}') \, d\text{Disc}(A(z', \bar{z}')) \]

(“dDisc constructibility”)

where

\[d\text{Disc}_t(A(z, \bar{z})) = \frac{1}{2} \text{Disc}^{\circ}_{z=1}(A(z, \bar{z})) + \frac{1}{2} \text{Disc}^{\circ}_{\bar{z}=1}(A(z, \bar{z})) \]

For identical external scalar operators, dDisc acts on conformal blocks G as follows:

\[d\text{Disc}_t(G^{(t)}_{\Delta, \ell}) = 2 \sin^2 \left(\frac{\pi}{2} (\Delta - \ell - 2\Delta_\phi) \right) G^{(t)}_{\Delta, \ell} \]

→ Annihilates double-trace operators with \(\gamma = 0 \).

→ In the 1/c expansion,

\[d\text{Disc}_t(A^{1-\text{loop}}) \supset \frac{\pi^2}{2} \sum_{n, \ell} a^{(0)}_{n, \ell} (c^{(1)}_{n, \ell})^2 G^{(t)}_{n, \ell} \]

1-loop anomalous dimension does not appear = Fixed by tree-level!

[Caron-Huot]

[Aharony, Alday, Bissi, EP]
AdS Unitarity Method

“Glue” CFT data at leading order in $1/N$ (AdS tree) to compute higher orders (AdS loops).

Diagrammatic suggestion:
AdS Unitarity Method

This picture can be made precise.

• We can glue two tree amplitudes together (CFT shadow techniques).
• Because the internal propagator is off-shell, the correct procedure requires an infinite sum of such pairs of glued trees, with specific dimensions.

(Reverse: “split representation” of bulk-bulk propagator)
This picture can be made precise.

- We can glue two tree amplitudes together (CFT shadow techniques).
- Because the internal propagator is off-shell, the correct procedure requires an infinite sum of such pairs of glued trees, with specific dimensions.
 (Reverse: “split representation” of bulk-bulk propagator)
- Choosing to glue s- or t-channel trees gives the different 1-loop diagrams. e.g.
Q: What corresponds to a cut?

A in bulk: Taking the internal legs on-shell.

A in CFT: Isolating part of the conformal block expansion from double-trace operators whose constituents are dual to the internal lines.
Q: What corresponds to a cut?

A in bulk: Taking the internal legs on-shell.

A in CFT: Isolating part of the conformal block expansion from double-trace operators whose constituents are dual to the internal lines.
Q: What corresponds to a cut?

A in bulk: Taking the internal legs on-shell.

A in CFT: Isolating part of the conformal block expansion from double-trace operators whose constituents are dual to the internal lines.

\[
\text{dDisc}_t(\text{box})
\]

\text{dDisc is the cut operator!}
Aside: A nice mathematical connection

When gluing diagrams, \textit{6j symbols} for the conformal group appear.

\[\sum \int (6j)^2 \]

\textit{6j symbol} \sim \text{AdS ladder kernel}

[Liu, EP, Rosenhaus, Simmons-Duffin]
We are now able to compute all of these amplitudes (and various others) using AdS unitarity:
Outline

1. Bootstrap basics and large N CFT

2. Loops in AdS

3. Application: String amplitudes from $\text{N}=4$ super-Yang-Mills

4. The String Landscape and Extra Dimensions in AdS/CFT
One of the most beautiful – and elemental – aspects of string/M-theory is that they predict specific corrections to general relativity.

What are they?
One of the most beautiful – and elemental – aspects of string/M-theory is that they predict specific corrections to general relativity.

What are they?

In M-theory,

\[S_{\text{M-theory}} \sim \int d^{11}x \sqrt{g}(R + R^4 + D^6 R^4 + \ldots) \]
One of the most beautiful – and elemental – aspects of string/M-theory is that they predict specific corrections to general relativity.

What are they?

In M-theory,

\[S_{\text{M-theory}} \sim \int d^{11}x \sqrt{g} (R + R^4 + D^6 R^4 + \ldots) \]

Known (fixed by SUSY) \quad Unknown

In type II string theory,

\[S_{\text{type-II strings}} \sim \int d^{10}x \sqrt{g} (R + f(g_s)R^4 + g(g_s)D^4 R^4 + h(g_s)D^6 R^4 + \ldots) \]

Known (fixed by SUSY) \quad Unknown

(Non-holomorphic SL(2,Z) modular forms)

Missing terms reflect a paucity of results in scattering amplitudes (as noted earlier).
Taking stock of string perturbation theory:

Most recent work on string perturbation theory has focused on issues at low-genus.

i) Shoring up issues of principle: unitarity, renormalization

ii) Mathematical structure of moduli space integrands = “Modular graph functions”

iii) Transcendentality and double-copy

[De Lacroix, Erbin, Pius, Rudra, Sen, Witten]

[Basu, D'Hoker, Duke, Green, Gurdogan, Kaidi, Miller, Pioline, Vanhove]

[D'Hoker, Green, Mafra, Schlotterer]
Taking stock of string perturbation theory:

A couple of big questions:

1. **$D^8 R^4$ coefficient is unknown.** Has been conjectured to obey **perturbative non-renormalization beyond four loops**.

 \[
 S_{\text{type-II strings}} \sim \int d^{10}x \sqrt{g} (R + \tilde{f}(g_s) R^4 + g(g_s) D^4 R^4 + h(g_s) D^6 R^4 + \ldots)
 \]

 Perturbative truncation at $g=1,2,3$, respectively...

2. The coefficients appearing in the low-energy expansion appear to obey a form of **maximal transcendentality**. No one knows why.
A new approach to string perturbation theory

1) Holographically compute the one-loop amplitude for strings in AdS, as a nonplanar correlator in a dual CFT.

2) Take a “flat space limit”

[Albay, Caron-Huot; Alday, Bissi, EP]
A new approach to string perturbation theory

1) Holographically compute the one-loop amplitude for strings in AdS, as a nonplanar correlator in a dual CFT.

2) Take a “flat space limit”

[Alay, Caron-Huot; Alday, Bissi, EP]
A new approach to string perturbation theory

1) Holographically compute the one-loop amplitude for strings in AdS, as a nonplanar correlator in a dual CFT.

2) Take a “flat space limit”

String scattering amplitudes from 1/N expansion of local operator data in CFT.

[Albay, Caron-Huot; Alday, Bissi, EP]
A new approach to string perturbation theory

The prototypical CFT with a string dual is 4d maximally supersymmetric Yang-Mills:

We compute the leading non-planar correction to a four-point function.
In practice, we take a low-energy limit = CFT strong coupling expansion.
Genus-one strings in \(\text{AdS}_5 \times S^5 \)

Strong coupling (\(\lambda \to \infty \)) single-trace spectrum:
\[\mathcal{O}_p \in [0p0] \text{ of } SU(4)_R \]
\[\Delta_p = p \text{ , where } p = 2, 3, \ldots \]

Only \(\frac{1}{2} \)-BPS multiplets.

Study <2222>, where 2 = Stress-tensor multiplet.

\[
\text{dDisc}_t(A^{1-\text{loop}}_{2222}) = \frac{\pi^2}{2} \sum_{n,\ell} \langle \gamma_{n,\ell}^{(1)} \rangle^2 a_{n,\ell}^{(0)} G_{n,\ell}^{(t)}
\]
Indicates mixing:

\[[\mathcal{O}_2 \mathcal{O}_2]_{n,\ell} , [\mathcal{O}_3 \mathcal{O}_3]_{n-1,\ell} , \ldots , [\mathcal{O}_{n+2} \mathcal{O}_{n+2}]_{0,\ell} \]

Evaluate in strong coupling (1/\(\lambda \)) expansion:

\[\gamma^{(1)} = \gamma^{(1)}|_{\text{sugra}} + \frac{1}{\lambda^{3/2}} \gamma^{(1)}|_{R^4} + \frac{1}{\lambda^{5/2}} \gamma^{(1)}|_{D^4R^4} + \ldots \]

\(\rightarrow \) Non-planar <2222> in 1/\(\lambda \) expansion \(\iff \) \(A^{1-\text{loop}}_{2222} \) in \(\text{AdS}_5 \times S^5 \) in \(\alpha' \) expansion.
Genus-one strings in R^{10}

We can then take **flat space limit**.

$$L_{\text{AdS}} \rightarrow \infty$$

AdS amplitude \rightarrow Graviton amplitude in R^{10}, with momenta in a five-plane.

At each order in $1/c$ and $1/\lambda$ expansion, leading power of s must match string result.

First few orders in $1/\lambda$:

$$\text{e.g.} \quad \frac{d\text{Disc}(A_{2222}^{1-\text{loop}})R^4|R^4}_{\text{flat}} = \frac{\text{Disc}(A_{IIB}^{g=1})R^4|R^4}{\text{Disc}(A_{IIB}^{g=1})_{\text{sugra}}|R^4} = \frac{3\zeta(3)}{14} \left(\frac{\alpha' s}{4}\right)^3$$

[Okuda, Penedones; Penedones; Maldacena, Simmons-Duffin, Zhiboedov]

[Green, Schwarz]
Compute these diagrams via the strong-coupling expansion of the CFT.
Flat space limit \rightarrow Low-energy expansion of the genus-one string amplitude in $10d$ flat space.

This matches the first several terms in genus-one string perturbation theory.
Outline

1. Bootstrap basics and large N CFT

2. Loops in AdS

3. Application: String amplitudes from N=4 super-Yang-Mills

4. The String Landscape and Extra Dimensions in AdS/CFT
We know necessary CFT conditions for bulk locality...

Large N + higher-spin gap ($s>2$) \Rightarrow Local AdS bulk

...but in what dimension is it local? (CFT: how sparse is the low-spin spectrum?)

All fully-controlled examples of the AdS/CFT Correspondence involve bulk solutions which contain manifolds of parametrically large positive curvature: $D > d+1$

$$\text{AdS}_d \times M_{D-d-1}$$

$$\text{AdS}_5 \times S^5/T^{1,1}/Y^{p,q}/L^{p,q,r}, \quad \text{AdS}_{4/7} \times S^{7/4}, \quad \text{AdS}_3 \times S^3 \times T^4, \quad \text{AdS}_{3/2} \times S^{2/3} \times CY_3, ...$$

Large transverse manifolds means light KK towers, dual to CFT local operators. No pure gravity, or even close!? [Heemskerk, Penedones, Polchinski, Sully; ...]
There are attempts at constructing AdS x Small solutions in string/M-theory. e.g.:

1. **Large Volume Scenario** (non-SUSY AdS$_4$, IIB)
2. **KKLT** (SUSY AdS$_4$, IIB)
3. **DGKT** (SUSY AdS$_4$ IIA)
4. **Polchinski-Silverstein** (SUSY AdS$_4$, AdS$_5$ from F-theory)

These all involve assumptions or arguments based on effective field theory, perturbative/non-perturbative effects in α' and/or g_s, and backreaction of sources.

What we want is to make fully rigorous, quantitative statements from the bootstrap.

Today: set up a dictionary.
Today we will address the following modest question about the AdS landscape:

Take $D =$ number of “large” (= AdS-sized) bulk dimensions.

Given the planar OPE data of a large N, strongly coupled CFT, what is D?
Segue

Q: In the N=4 calculation, why did we get a $D=10$ string amplitude?

A: The bulk dual is $\text{AdS}_5 \times S^5$ where $L_{S^5} = L_{\text{AdS}_5}$...

How exactly does the CFT correlator “know” about the extra five dimensions?
Segue

To match to flat space, either:

1. Match amplitudes
2. Match partial wave coefficients

\[d\text{Disc}_t(A_{2222}^{1-\text{loop}}) = \frac{\pi^2}{2} \sum_{n,\ell} (\gamma^{(1)}_{n,\ell})^2 a^{(0)}_{n,\ell} G^{(t)}_{n,\ell} \]

The dictionary between OPE data and flat space momentum:

\[L\sqrt{s} \sim n \]
Segue

To match to flat space, either:
1. Match amplitudes
2. Match partial wave coefficients

\[d\text{Disc}_t(A_{2222}^{1-\text{loop}}) = \frac{\pi^2}{2} \sum_{n,\ell} \langle \gamma_{n,\ell}^{(1)} \rangle^2 a_{n,\ell}^{(0)} G_{n,\ell}^{(t)} \]

The dictionary between OPE data and flat space momentum:

\[L \sqrt{s} \sim n \]

In N=4 SYM at \(\lambda = \infty \), \(\gamma_{n,\ell}^{(1)} \sim n^3 \) but \(\langle \gamma_{n,\ell}^{(1)} \rangle^2 \sim n^{11} = n^{6+5} \)

[Alday, Caron-Huot]
A 1-loop sum rule for D

Consider a D-dimensional two-derivative theory of gravity + spin ≤ 2 matter.

$$A_D(s, t) = G_N A_D^{\text{tree}}(s, t) + G_N^2 A_D^{1\text{-loop}}(s, t) + \mathcal{O}(G_N^3)$$

Suppose there exists an $\text{AdS}_{d+1} \times \mathcal{M}_{D-d-1}$ vacuum.

Define

$$A_{d+1}(s, t) \equiv \frac{A_D(s, t)}{\text{Vol}(\mathcal{M})} = \frac{L^{d-1}}{c} A_{d+1}^{\text{tree}}(s, t) + \frac{L^{D+d-3}}{c^2} A_{d+1}^{1\text{-loop}}(s, t) + \mathcal{O}(c^{-3})$$

where the CFT central charge $c \sim 1/G_N$.

At high-energy $s, t \gg 1$ and fixed-angle $\cos \theta = 1 + \frac{2t}{s}$,

$$A_{d+1}(s \gg 1, \theta) = \frac{(L \sqrt{s})^{d-1}}{c} f_{d+1}^{\text{tree}}(\theta) + \frac{(L \sqrt{s})^{D+d-3}}{c^2} f_{d+1}^{1\text{-loop}}(\theta) + \mathcal{O}(c^{-3})$$

Order-by-order in $1/c$, flat space limit of a CFT correlator must reproduce this.
Consider a D-dimensional two-derivative theory of gravity + spin ≤ 2 matter.

$$A_D(s, t) = G_N A_D^{\text{tree}}(s, t) + G_N^2 A_D^{1-\text{loop}}(s, t) + \mathcal{O}(G_N^3)$$

Suppose there exists an $\text{AdS}_{d+1} \times \mathcal{M}_{D-d-1}$ vacuum.

Define

$$A_{d+1}(s, t) \equiv \frac{A_D(s, t)}{\text{Vol}(\mathcal{M})} = \frac{L^{d-1}}{c} A_{d+1}^{\text{tree}}(s, t) + \frac{L^{D+d-3}}{c^2} A_{d+1}^{1-\text{loop}}(s, t) + \mathcal{O}(c^{-3})$$

where the CFT central charge $c \sim 1/G_N$.

At high-energy $s, t \gg 1$ and fixed-angle $\cos \theta = 1 + \frac{2t}{s}$,

$$A_{d+1}(s \gg 1, \theta) = \frac{(L\sqrt{s})^{d-1}}{c} f_{d+1}^{\text{tree}}(\theta) + \frac{(L\sqrt{s})^{D+d-3}}{c^2} f_{d+1}^{1-\text{loop}}(\theta) + \mathcal{O}(c^{-3})$$

Order-by-order in $1/c$, flat space limit of a CFT correlator must reproduce this.
A 1-loop sum rule for D

An arbitrary 1-loop correlator has a (t-channel) dDisc of the following form:

$$dDisc_t(A^{1-\text{loop}}(z, \bar{z})) = \sum_{n, \ell} \beta^{1-\text{loop}}_{n, \ell} a^{(0)}_{n, \ell} G^{(t)}_{n, \ell}(z, \bar{z})$$

In flat space limit, matching yields a 1-loop sum rule for D:

$$L\sqrt{s} \sim n$$

where

$$\beta^{1-\text{loop}}_{n \gg 1, \ell} \sim n^{D+d-3} f^{1-\text{loop}}(\ell)$$

$$\beta^{1-\text{loop}}_{n, \ell} = 2 \sum_{\mathcal{O}} \rho_{\text{ST}}(\Delta_{\mathcal{O}}) \left(\frac{\pi^2}{4} \langle \gamma^{(1)}_{n, \ell}(\mathcal{O}) \rangle^2 + \sin^2(\pi(\tau_{\mathcal{O}} - \Delta_{\phi})) ||C^{2}_{\phi\phi[\mathcal{O}\mathcal{O}]_{n, \ell}}|| \right)$$

Single-trace density of states

Degenerate operators

Non-degenerate operators

$$\Delta_{\mathcal{O}} - \Delta_{\phi} \in \mathbb{Z}$$

$$\Delta_{\mathcal{O}} - \Delta_{\phi} \notin \mathbb{Z}$$
A 1-loop sum rule for D

\[\beta_{n,\ell}^{1-\text{loop}} \sim n^{D+d-3} f^{1-\text{loop}}(\ell) \]

Comments:

1. **Positive-definite**, term-by-term \(\rightarrow \) Lower bound D

\[\beta_{n,\ell}^{1-\text{loop}} \equiv 2 \sum_{O} \rho_{\text{ST}}(\Delta_{O}) \left(\frac{\pi^2}{4} \langle \gamma^{(1)}_{n,\ell}(O) \rangle^2 + \sin^2(\pi(\tau_{O} - \Delta_{O})) \| C_{\phi\phi[O\sigma]}^{2}[n,\ell] \| \right) \] N.B. dDisc crucial!

2. Trees are insensitive to D, as they must be: consistent truncations exist.

\[\beta_{n,\ell}^{\text{tree}} \sim n^{d-1} : \text{Einstein scaling} \] [Cornalba, Costa, Penedones]

3. D+d-3 follows from two-derivative approx. (= large HS gap in CFT)

Let us explore some consequences of this sum rule for extra dimensions.
A 1-loop sum rule for D

1. Suppose we have a power law density of non-degenerate single-trace operators:

$$\rho_{\text{ST}}(\Delta_0 \gg 1) \sim \Delta_0^{x-1}$$

Sum dominated by large double-trace dimensions, $1 \ll n \sim \Delta < \Delta_{\text{gap}}$

$$\beta_{n \gg 1, \ell}^{1\text{-loop}} \sim n^{2d+x-1} \quad \Rightarrow \quad D = d + 1 + x$$

$\Rightarrow x$ large extra dimensions.

Converse of a holographic fact: Weyl's law growth of eigenvalues λ on compact manifold \mathcal{M} with smooth boundary.

Parameterizing $\lambda \sim \Delta^2$,

$$\int_{\Delta_* \gg 1} d\Delta \rho_\mathcal{M}(\Delta) \sim \frac{\text{vol}(\mathcal{M})}{(4\pi)^{\frac{\dim(\mathcal{M})}{2}} \Gamma\left(\frac{\dim(\mathcal{M})}{2} + 1\right)} \Delta_*^{\dim(\mathcal{M})}$$
A 1-loop sum rule for D

2. Suppose there is a tower of degenerate operators

$$\Delta_p = \Delta_\phi + p - 2 \ , \ \text{where} \ p = 2, 3, \ldots$$

Assuming a cubic coupling ϕpp.

Result:

$$\left. \langle \gamma^{(1)}_{[\phi\phi]_{n,\ell}} (p) \rangle \right|_{n \sim p} \sim n^{d-3} \cdot C_{\phi pp}^2 \bigg|_{p \gg 1}$$

Depends on asymptotic of C! If $C_{\phi pp} \bigg|_{p \gg 1} \sim \frac{p^{1+\frac{\alpha}{4}}}{\sqrt{c}}$ then $D = d + 2 + \alpha$
Stringy OPE universality

In familiar cases like $\phi = T_{\mu\nu}, \mathcal{L}$, this OPE coefficient is linear ($\alpha = 0$).

Conjecture (OPE universality): for any light operator ϕ and heavy operator ϕ_p with

$$\Delta_\phi \ll \Delta_{\text{gap}} \quad \text{and} \quad \Delta_\phi \ll \Delta_p \ll c#^0$$

the normalized planar OPE coefficient ϕ_{pp} has linear asymptotics, $C_{\phi_{pp}} \bigg|_{\Delta_p \gg 1} \sim \frac{p}{\sqrt{c}}$

p can be KK mode or massive string mode.

Copious evidence from literature (N=4 SYM semiclassical and KK correlators, ABJM, D1-D5)

(N.B. This is *NOT* the same “heavy-heavy-light” as in ETH, 2d CFT, or large charge.)
Bounding holographic spectra

Now turn logic around.
Assume string/M-theory dual with $D \leq 10$ or 11.
What does this imply about single-trace spectrum of planar CFT?

1. Density of states:
 $$\rho_{\text{ST}}(\Delta \gg 1) \lesssim \Delta^{8-d} \quad \text{(string)}$$
 $$\rho_{\text{ST}}(\Delta \gg 1) \lesssim \Delta^{9-d} \quad \text{(M)}$$

2. If ϕ_p furnish sequence of irreps R_p of global symmetry, with asymptotics
 $$\dim(R_p\gg 1) \sim p^{r_p}$$
then since $D = d + 2 + r_p$, the above inequalities bound r_p.
Bounding holographic spectra

Now turn logic around.
Assume string/M-theory dual with $D \leq 10$ or 11.
What does this imply about single-trace spectrum of planar CFT?

1. Density of states:
 \[\rho_{ST}(\Delta \gg 1) \lesssim \Delta^{8-d} \quad \text{(string)} \]
 \[\rho_{ST}(\Delta \gg 1) \lesssim \Delta^{9-d} \quad \text{(M)} \]

2. If ϕ_p furnish sequence of irreps R_p of global symmetry, with asymptotics
 \[\dim(R_p) \gg 1 \sim p^{r_p} \]
then since $D = d + 2 + r_p$, the above inequalities bound r_p.

Why, from CFT, are these things true?
A final speculation

So, then: what is the landscape of AdS vacua?

A possible Holographic Hierarchy Conjecture:

Large Higher-Spin Gap + No Global Symmetries → Local AdS dual with D = d+1

This generalizes arguments of [Polchinski, Silverstein]

[Lust, Palti, Vafa] make the much stronger claim that D = d+1 is not possible...?
A final speculation

So, then: what is the landscape of AdS vacua?

A possible Holographic Hierarchy Conjecture:

Large Higher-Spin Gap + No Global Symmetries \rightarrow Local AdS dual with $D = d+1$

This generalizes arguments of [Polchinski, Silverstein]

[Lust, Palti, Vafa] make the much stronger claim that $D = d+1$ is not possible...?

Let the bootstrapping begin.
Summary

New techniques for AdS loop amplitudes using ideas from the bootstrap

A novel holographic approach to string perturbation theory

A dictionary for finding large extra bulk dimensions from CFT data
Future directions

1. AdS loops:
 - Complete analysis. e.g. a 1-loop basis?
 - What is the L-loop function space/transcendentality properties?

2. Holographic string amplitudes
 - Higher-genus, non-SUSY data

3. Extra dimensions
 - We have a dictionary. Can we bootstrap the landscape?