SISSA: Data Science Offer for AY 2020-21

Final version – 30 September 2020
Roberto Trotta, Guido Sanguinetti & Sebastian Goldt

Introduction

This document sets out the structure and contents of the graduate offer in Data Science by the Data Science Excellence Department, starting in October 2020 (in-person or remote teaching) for the AY 2020-21.

This initial curriculum is intended to form the backbone of what will eventually become the PhD in Data Science for AY 2021-22.

Data Science modules will generally run in the afternoons, so that students from other PhD programmes (which are usually taught in the mornings) will be able to attend.

We kindly request that students from other PhD programmes who are interested in following our modules register their interest by filling out this form:

https://forms.gle/LosEvjrXyUaBhbdy7

This is for logistical (especially in view of COVID-19 restrictions to teaching spaces) and pedagogical reasons. **Deadline is Fri Oct 2nd 2020.**

Our formal learning opportunities will be flanked with a vigorous programme of online seminars (the “SISSA Data Science Seminar Series”, or SISSA DS³), held approximately fortnightly from January 2021, with a focus on showcasing a young and diverse line-up of world-class speakers from all over the world.

Further details will be published on our webpage: https://www.sissa.it/data-science-excellence-department-initiative-ds

Framework

- Students from the Data Science Excellence Department must take all core modules offered in Data Science and take at least 3 optional modules, which can also be chosen from the offering from other PhD programmes.
- To proceed to year 2, Data Science Excellence Department students must achieve an average of 27/30 in the the core modules.
- Credit size conversion: 1 credit = 6 hrs of lectures or labs.
- All of our Data Science modules are open to students from other PhD programmes. Credit can be accrued by such students with the written agreement of their PhD programme coordinator.
Frontal lecturing generally takes place in 2 hrs slots, 2-4pm (but see timetable below for details, with some Labs, Ethics in AI and Journal Club taking place in the mornings due to timetabling constraints), while Labs are 3 hrs slots (2-5pm or 9-12am when necessary).

Teaching Staff

1. Guido Sanguinetti (SISSA)
2. Roberto Trotta (SISSA)
3. Sebastian Goldt (SISSA)
4. Alessandro Laio (SISSA)
5. Andrea de Simone (SISSA/Uni Camerino)
6. Jean Barbier (ICTP)
7. Luca Bortolussi (UniTS) + Guest lecturers
8. Guest lecturers for “Ethics in AI” module.

Modules on offer and timetable

<table>
<thead>
<tr>
<th>Module name</th>
<th>Lecturer</th>
<th>Term</th>
<th>Type</th>
<th>Weeks</th>
<th>Dates</th>
<th>Lectures (hrs)</th>
<th>Labs (hrs)</th>
<th>Total (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to statistical modelling and inference</td>
<td>De Simone (delivered remotely)</td>
<td>1</td>
<td>Core</td>
<td>4</td>
<td>05/10 - 30/10</td>
<td>20</td>
<td>6</td>
<td>26</td>
<td>4.33</td>
</tr>
<tr>
<td>Bayesian inference I</td>
<td>Sanguinetti</td>
<td>1</td>
<td>Core</td>
<td>7</td>
<td>19/10 - 04/12</td>
<td>24</td>
<td>12</td>
<td>36</td>
<td>6.00</td>
</tr>
<tr>
<td>Information Theory and Inference</td>
<td>Barbier</td>
<td>1</td>
<td>Core</td>
<td>5</td>
<td>04/11 - 04/12</td>
<td>20</td>
<td>6</td>
<td>26</td>
<td>4.33</td>
</tr>
<tr>
<td>Unsupervised Learning and non-Parametric methods</td>
<td>Laio</td>
<td>2</td>
<td>Core</td>
<td>6</td>
<td>11/01 - 19/02</td>
<td>20</td>
<td>18</td>
<td>38</td>
<td>6.33</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>Goldt</td>
<td>2</td>
<td>Core</td>
<td>6</td>
<td>25/01 - 05/03</td>
<td>24</td>
<td>12</td>
<td>36</td>
<td>6.00</td>
</tr>
<tr>
<td>Bayesian Inference II</td>
<td>Trotta</td>
<td>2</td>
<td>Core</td>
<td>6</td>
<td>11/01 - 24/02</td>
<td>24</td>
<td>12</td>
<td>36</td>
<td>6.00</td>
</tr>
<tr>
<td>Ethics in AI</td>
<td>Trotta + guests</td>
<td>year long</td>
<td>Core</td>
<td></td>
<td>9/11 onwards</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>3.33</td>
</tr>
<tr>
<td>Scientific Programming and Algorithms</td>
<td>Bortolussi + guests</td>
<td>2 or 3</td>
<td>Core</td>
<td>4</td>
<td>18/01-23/02</td>
<td>24</td>
<td>12</td>
<td>36</td>
<td>6.00</td>
</tr>
<tr>
<td>Monographics courses</td>
<td>Sanguinetti, Trotta, Goldt</td>
<td>3</td>
<td>Option</td>
<td>21</td>
<td>14/01 - 24/06</td>
<td>42</td>
<td>0</td>
<td>42</td>
<td>7.00</td>
</tr>
</tbody>
</table>
SISSA Data Science Offering 2020/21

All modules will take place in Aula 128-129 (capacity: up to 28), except for Journal Club and monographic courses which will be in Aula 005 (capacity 16+9 floating)

2020

| Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|-------|---|---|---|---|---|---|---|---|---|----|
| Oct | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Nov | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Dec | Tu | Fr | Sa | Mo | Tu | Fr | Sa |

2021

| Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|-------|---|---|---|---|---|---|---|---|---|----|
| Jan | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Feb | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Mar | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Apr | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| May | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
| Jun | Tu | Fr | Sa | Mo | Tu | Fr | Sa |
Term 1 (October-Dec)

1. **Introduction to Statistical Modelling and Inference** (Andrea de Simone)
 Each topic requires 4 hours = 20 hours + 2 x 3hrs Lab = 26 hours (4 weeks: 05/10-30/10)
 Pre-requisites: familiarity with Python and jupyter installed on students’ computers.
 iii. **Lab 1**: hands-on jupyter lab on probability and statistics.
 vi. **Lab 2**: hands-on jupyter lab on hypothesis testing.

2. **Bayesian Inference I** (Guido Sanguinetti)
 Each lecture requires 2 hrs; 12 lectures + 4 labs = 32 hours (7 weeks: 19/10 - 4/12)
 i. The multivariate Gaussian distribution: conditionals, marginals, and conjugate prior (and its problems)
 ii. Laplace method and Fisher matrix
 iii. Linear/ Gaussian models: probabilistic PCA and linear regression. Basis function regression.
 iv. Gaussian processes for regression and Bayesian Optimization.
 v. **Lab 1**: linear regression and Gaussian Processes
 vii. Generalised linear models (GLMs) and inference; Gaussian processes for classification.
 viii. **Lab 2**: Bayesian GLMs.
 ix. Graphical models and hierarchical Bayesian models. Gibbs sampling.
 x. Mixture models and topic models.
 xi. Variable augmentation: probit and logistic regression with auxiliary variables
 xii. **Lab 3**: Gibbs sampling for mixture models.
 xiii. Variational inference: prelude, the EM algorithm
 xiv. Mean-field variational inference
 xvi. **Lab 4**: Variational mean field for mixture models.
3. **Information Theory and Inference** (Jean Barbier):
 10 x 2 hours + 2 x 3 hrs Labs = 26 hours (5 weeks: 04/11 - 04/12)

 i. Bayesian inference, information theory and statistical mechanics:
 i. Statistical inference, Bayes formula and decision theory
 ii. Surprise, Shannon entropy and mutual information
 iii. Statistical mechanics of disordered systems 101, and links with Bayesian inference

 iv. **Lab 1**

 ii. Information-theoretic limits
 i. Replica symmetric formula for the mutual information
 ii. A powerful (exact) heuristic: the replica method
 iii. Why ensembles matter? Concentration of the free energy

 iv. Replica symmetry in inference: overlap concentration

 v. Rigorous approach 1: the (adaptive) interpolation method

 vi. Rigorous approach 2: the cavity method

 vii. **Lab 2**

 iii. Algorithmic limits
 i. Message-passing
 ii. State evolution, and optimality of approximate message-passing

4. **Ethics in AI** (Trotta as lead, plus guest lecturers):
 10 x 2 hours throughout the year, 1 meeting fortnightly (starts 09/11).
 This interactive module will provide an introduction and overview to ethical issues in ML and AI, and illustrate them with contributions from guest speakers from a variety of fields. A detailed programme will be announced soon.

Term 2 (Jan-Apr)

5. **Unsupervised Learning and Non-parametric Methods** (Alessandro Laio & guest lecturer Alex Rodriguez, ICTP)
 10 x 2 hours + 6 x 3 hrs Labs = 38 hours (6 weeks: 11/01-19/02)

 i. Introduction: choosing the features and the metric.

 ii. **Lab 1**

 iii. Dimensional reduction and manifold learning
 i. Linear methods: principal component analysis and multidimensional scaling
 ii. Curved manifolds: ISOMAP, kernel PCA and Sketchmap
 iii. **Lab 2**

 iv. Diffusion Map and Stochastic Neighbor Embedding
 v. Characterizing the embedding manifold: the intrinsic dimension
 vi. **Lab 3**

 iv. Estimating the probability density
 i. Parametric density estimators
 ii. Non-parametric estimators: Histograms, Kernel density estimator and k-nearest neighbor estimator
 iii. Adaptive density estimators
 iv. **Lab 4**

 v. Clustering
 i. Partitioning schemes: k-means, k-medoids and k-centers.
 ii. hierarchical and spectral clustering
 iii. **Lab 5**

 iv. Density-based clustering
v. Clustering techniques exploiting kinetic information
vi. Lab 6

6. **Neural Networks** (Sebastian Goldt + guest lecturers)
 12x2h lectures + 4x3hrs labs = 36 hours (6 weeks: 25/01 - 05/03)
 i. **Lab 0 (optional):** fundamental programming tools and best practice
 ii. Introduction to learning (in high dimensions): Goals of learning; classification vs regression; training vs validation vs testing; linear regression, kernels; fully-connected feedforward networks: representational power; breaking the curse of dimensionality with neural networks?
 iii. **Lab 1:** neural networks from scratch
 iv. Computer Vision: analysing spatial correlations using convolutions; (the importance of) datasets (CIFAR10 / 100, ImageNet), basic training algorithm: mini-batch SGD; modern architectures (AlexNet, GoogLeNet, ResNet, DenseNet); acceleration techniques (Nesterov, Adam); dropout, batch normalisation.
 v. **Lab 2:** computer vision with pyTorch
 vi. Machine Learning for the sciences: solving quantum many-body problems with neural networks (case study); guest lectures (TBC)
 vii. Robustness in Deep Learning: adversarial examples and defences
 viii. Unsupervised learning: GANs and normalising flows; semi-supervised learning.
 ix. Recurrent neural networks: Hopfield networks (joint with guest lectures, TBC); vanishing and exploding gradients in recurrent nets; LSTM
 x. **Lab 3:** Generative models for images
 xi. Graph Neural Networks: introduction to GNNs and one application in science, e.g. protein-protein interactions.
 xii. **Lab 4:** Reinforcement learning
 xiii. **Outlook:** From the practice of deep learning to its science; surprises in high dimensions (failure of statistical learning theory bounds), the generalisation puzzle; open problems

7. **Bayesian Inference II** (Roberto Trotta)
 Each bloc requires 6 hrs; 24 lectures + 4 x 3 hrs labs = 36 hours (5 weeks: 11/01-24/02)
 i. Foundations of Bayesianism: Jaynes’ robot; Cox theorem, objective and subjective Bayes; prior choice (maximum entropy, conjugacy, Jeffreys’ prior, empirical Bayes, hyperpriors, etc); sensitivity analysis.
 ii. **Lab 1:** Sensitivity analysis and volume effects.
 iii. Advanced sampling methods: slice sampling, Langevin and Hamiltonian Monte Carlo, collapsed and augmented Gibbs sampling, reversible jump MC.
 iv. **Lab 2:** Writing an MCMC from scratch.
 v. Bayesian model comparison: stopping rule paradox, p-values, Lindley paradox; Bayesian evidence, Bayes factor and interpretation. Savage-Dickey Density Ratio, Laplace approximation, Approximate Bayesian Computation (ABC).
 vi. **Lab 3:** Applications of Bayesian model comparison.
 vii. Bayesian model averaging, Bayesian optimization and experiment design.
 viii. **Lab 4:** Bayesian optimization.

8. **Scientific Programming and Algorithms** (Luca Bortolussi (lead)+ Guest lecturers: Giulio Caravagna, Luca Manzoni, Lorenzo Castelli - UniTS)
 Each bloc requires 6 hrs of lectures and 3 hrs of Labs = 9 x 4 = 36 hours (18/01-23/02)
 i. Scientific computing in Python (Giulio Caravagna, UniTS)
ii. Programming methods and software development (Luca Manzoni, UniTS)
 i. Reproducibility and version management: virtual environments and git
 ii. How to make a library: Python modules and how to structure the code
 iii. Introduction to testing

iii. Introduction to algorithm and computational complexity (Luca Bortolussi)
 i. Introduction to algorithms, algorithmic design and complexity. Sorting.

iv. Introduction to mathematical optimization (Lorenzo Castelli, UniTS)
 i. Introduction to mathematical optimisation. Linear programming.
 ii. Integer programming
 iii. Exact, approximate and heuristic algorithms.

Term 3 (April-June)

Optional courses

A series of monographic courses will be offered in Term 3, introducing some key open problems in the chosen area and with the aim of taking students to the cutting edge of the current research in this area.

Duration and format of each module will be defined at a later point in time, with the aim of achieving a comparable student experience and workload across the different topics.

Each course will meet for 3 hours (1 afternoon, 2-5pm) weekly over 8 weeks, for the period 19/04-11/06.

Topics offered:
- Machine learning applications to single-cell genomics (Sanguinetti)
- Topics in Bayesian inference and modelling (Trotta)
- Current topics in the theory of neural networks: Dynamics and Data (Goldt)