Dissecting Mg2+-RNA interactions using atomistic molecular dynamics

Author: Richard André Cunha
Supervisor: Dr. Giovanni BuSSI

A thesis submitted in fulfillment of the requirements for the degree of Philosophiae Doctor in Physics and Chemistry of Biological Systems in the Molecular and Statistical Biophysics Sector

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY
Dissecting Mg$^{2+}$-RNA interactions using atomistic molecular dynamics

Author: Richard André Cunha
Supervisor: Dr. Giovanni Bussi

A thesis submitted in fulfillment of the requirements for the degree of Philosophiae Doctor in Physics and Chemistry of Biological Systems in the Molecular and Statistical Biophysics Sector

October, 2017
Declaration of Authorship

I, Richard André Cunha, declare that this thesis titled, “Dissecting Mg$_2^+$-RNA interactions using atomistic molecular dynamics” and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this Institute.

- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

- Where I have consulted the published work of others, this is always clearly attributed.

- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

- I have acknowledged all main sources of help.

- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed: [Signature]

Date: September 27th, 2017.
Contents

1 Preface

2 Introduction to ion-RNA interactions
 2.1 Ribonucleic acids 5
 2.2 The Ion-RNA Interaction 10
 2.3 The importance of Magnesium ions to RNA 15
 2.4 Experimental description of the Mg\(^{2+}\)-RNA interaction ... 17

3 Mg\(^{2+}\)-RNA simulations
 3.1 Overview 19
 3.2 Molecular Dynamics 19
 3.2.1 RNA force fields 23
 3.2.2 Mg\(^{2+}\) force fields 27
 3.3 Sampling Mg\(^{2+}\)-RNA interactions 30
 3.4 Summary 36

4 Force Field and Methodological Evaluation for describing Mg\(^{2+}\)-RNA binding
 4.1 Introduction 37
 4.2 Force field dependent binding affinities 39
 4.3 Methods to calculate converged Mg\(^{2+}\) (PO\(_4\))\(^-\) affinities ... 44
 4.4 Summary 49

5 Dissecting Mg\(^{2+}\)-RNA interactions
 5.1 Introduction 51
 5.2 Methods 53
 5.3 Mg\(^{2+}\) binding on a flexible duplex 59
 5.4 Effects on the Mg\(^{2+}\)-RNA binding affinity 62
 5.4.1 Ion competition 63
 5.4.2 RNA flexibility 64
 5.4.3 RNA hybridization 65
 5.5 Conclusion 66
6 Conclusions and Perspectives 79
A Appendix 1 81
Bibliography 85
Dedicated to my family.
Chapter 1

Preface

The central dogma of molecular biology [1] summarizes one of the most important mechanisms for the functioning of living organisms, stating that deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA), which is then translated into proteins. However, it is still not sufficient to capture how important RNA are for cellular life. Nucleic acids are at the core of any living cell on this planet and thus deserve indisputably deserve scientific attention. In particular, RNA molecules are proposed as the key chemical species that ignited the beginning of life on pre-biotic earth [2–4]. Independently of this hypothesis, studying RNA molecules today is essential for numerous applications in life sciences, spanning from drug development to cancer treatment [5–7]. That being said, in the last half century there have been unprecedented efforts into understanding RNAs and their role in the cell to the utmost detail. RNA is transcribed from DNA and translated into proteins, which then perform an abundance of functions in the cell. On top of that, it can catalyze chemical reactions, regulate gene expression and even carry genetic information which is retrotranscribed into DNA [8–11]. The outstanding versatility of RNA molecules is due to their unique chemical features, resulting in a very flexible backbone combined with strong interactions between the nucleobases [12]. The balance between canonical base pairs and a multitude of backbone conformations is the main factor for RNA being well structured yet dynamical [13]. On the other hand, RNA folding can only occur in the presence of positively charged particles that compensate the electrostatic repulsion arising from the negatively charged sugar-phosphate backbone, inevitably tying nucleic acids and ions together [14].

Metal ions are instrumental for proper RNA folding and dynamics, while also being crucial cofactors for ribozyme catalysis [15]. Monovalent cations (Na+, K+) are the workhorses compensating the overall negatively charge nucleic acids [16], while divalent cations are frequently the protagonists of relevant folding events and catalysis [17–19]. Mg2+ ions, which are the most
freely available divalent cations in cells, commonly perform as structural pillars in RNA tertiary structures [20, 21]. Despite the ubiquitous presence of Mg^{2+} around RNA, the experimental characterization of their interaction is challenging, because Mg^{2+} do not offer a direct spectroscopic handle for detection and requires high-resolution X-ray crystallography [22]. On top of that, their assignment through X-ray diffraction is difficult, since the Mg^{2+} is isoelectronic with water and $\text{Na}^+ \text{ ions}$ [23, 24]. Therefore, the use of theoretical and computational tools can clearly help reinforce the experimental characterization of Mg^{2+}-RNA interaction and contribute to the most needed dynamical view of these molecules [25].

The results presented in this thesis aim to provide a meaningful description of the interaction between Mg^{2+} ions and RNA through atomistic molecular dynamics coupled with enhanced sampling techniques. The simulations done in this work were designed to tackle the two most fundamental issues in describing divalent ions interaction with RNA using molecular dynamics. First, the quality and fidelity of the models used, and second the proper sampling of rare events. Through the employment of modified state-of-the-art simulations techniques, I was able to predict Mg^{2+} binding sites and their correspondent affinities on an RNA duplex. The affinities qualitatively agree with the interaction frequency trends observed in the structural databases (PDB 1 or NDB 2). Furthermore, I evaluated relevant aspects of RNA simulation concerning force field choices for Mg^{2+} ions, RNA backbone non-bridging oxygens, and water. Lastly, I developed a robust methodological framework that allows for future molecular dynamics simulations aimed to study multiple concurrent binding events associated with high free-energy barriers. Since RNA folding is intrinsically dependent on ionic conditions, I hope that this work will facilitate future research on this important subject.

The work presented in this thesis is organized as follows: Chapter 2 presents a general introduction to ribonucleic acids, their interaction with ions, and a few considerations on the experimental characterization of the Mg^{2+}-RNA interaction. Chapter 3 is dedicated to a brief review of the underlying theory supporting the simulation techniques used in this work, namely molecular dynamics and enhanced sampling. Chapter 4 presents a comparison of Mg^{2+} binding affinities obtained from different force fields against experimental titration affinities, and also from different methodological schemes. At last, Chapter 5 is devoted to a detailed discussion on how I combined

1https://www.rcsb.org/
2http://ndbserver.rutgers.edu/
well-tempered metadynamics, bias exchange, and replica-specific biases to assess Mg$^{2+}$ binding in a flexible duplex. In the same Chapter, I discuss how flexibility, monovalent ion competition, and hybridization affect Mg$^{2+}$ affinity to RNA.

The results presented in Chapter 4 are part of a manuscript in preparation. In addition, the data presented on 5 are largely based on the following publication:

Parts of this thesis were inspired by the ensuing coauthored paper.

Chapter 2

Introduction to ion-RNA interactions

This Chapter discusses fundamental concepts related to ribonucleic acids and their interaction with ions. Section 2.1 presents details about the structure of RNA, with emphasis on its implications for RNA function. Additionally, this part offers a brief insight on the biological impact of the RNA functions in the cell. Section 2.2 is entirely focused on the particularities of ions-RNA interactions and aims to portray the characteristics of the RNA ionic cloud, while Section 2.3 focuses on the unique role of Mg\(^{2+}\) ions to RNA. In the last part, Section 2.4, a few considerations on the relevant experimental techniques that support and validate a significant parcel of the work in this thesis are presented. Part of this Section focuses on a few approximations related to X-ray crystallography since the analysis of the crystallographic presence of Mg\(^{2+}\) is an integral part of future chapters.

2.1 Ribonucleic acids

There are five naturally occurring nucleobases that are primarily classified in purines and pyrimidines (see Figure 2.1). The purine nucleobases are adenine (A) and guanine (G), and the pyrimidine ones are cytosine (C), uracil (U) and thymine (T). Nucleobases determine the identity of nucleosides which contains a furanone-ring bound to the nucleobase through a glycosidic bond. The hydroxyl group bound to the 2’-carbon of the pentose classifies it as a ribose, as it can be seen in Figure 2.1. Nucleotides are the basic monomers of nucleic acids molecules and are defined as a nucleoside with a phosphate moiety bound to the pentose. Successive nucleotides are linked through phosphodiester bonds, in which the 3’-carbon atom of the ribose is connected through the phosphate to the 5’-carbon of the next one (see Figure 2.1). Therefore, nucleic acid molecules have unlinked nucleotides at the end.
of the polyanionic chains with hydroxyl groups attached to the 5’ or the 3’-carbon. Consequently, RNA chains are asymmetric, such that the same sequence of monomers constitute different molecules if the first nucleotide starts at the 5’ or the 3’-end. Due to the direction of the synthesis of the RNA polymerase, the 5’-end of the chain is considered the beginning of the RNA strand. The sugar ring moiety is an integral part of both RNA and DNA backbones. The difference between ribose and deoxyribose is the key factor for the exceptional disparity in chemical and functional behaviors between the two groups of nucleic acids. The hydroxyl group in the 2’-carbon position in riboses significantly increases the reactivity of RNAs. This might be linked to the fact that nature chose the more stable and structured DNA molecule to carry genetic information, while RNA also performs other functions, including catalyzing reactions [18].

RNA and DNA bases forms the so-called Watson-Crick (WC) or canonical base pairs. In RNA molecules G pairs with C and A with U, while in DNA the A-U pair is substitute by A-T. The canonical base pair interactions contribute to the stability of RNA double helices by about 4-12 kJ mol\(^{-1}\) per base pair [27]. Many non-canonical interactions in RNA have been discussed. An example is the G-U wobble pair, which is present in a significant fraction of A-form RNA helices. There are a number of ways that nucleobases might interact with each other, which varies with the edges of the bases that are interacting. This leads to a repertoire of complex non-helical structures like the commonly found hairpin loops, or the complex pseudoknots [12, 28]. Apart from base-edges pairings, which are hydrogen-bond based, there is also stacking interactions between neighboring nucleobases. RNA and DNA duplexes are heavily stabilized by both base pairing and stacking. Among the helical structures of RNA the most common is the A-form duplex, which is also the most recurrent motif found in RNA structures deposited on the PDB [29, 30].

The depiction of RNA molecules is essentially done in three modes of incremental complexity: primary, secondary and tertiary structures. The primary structure of RNA molecules refers to the sequence in which its nucleotides are sequentially distributed in the chain. Sequencing techniques have emerged as revolutionary tools in genomics. The increased throughput and massive decreasing in cost, compared to older sequencing technologies, made an immense amount of data on primary structures of RNAs available [31, 32]. The secondary structure of RNAs displays all the WC base pairs in
2.1. Ribonucleic acids

Figure 2.1: The figure shows the sketched chemical structures of all the five canonical, or primary, bases and their respective names. In the figure it is also evidenced the structural elements of a nucleoside and a nucleotide. The pentose ring is colored in green, the nucleobases in blue, and the phosphate moiety in red. The pentose and phosphates are part of the so-called RNA backbone, since they are common to any RNA molecule.

As a result, the canonical contacts are then translated into a two-dimensional map. Although RNA molecules are mostly single-stranded, sequences of nonidentical nucleobases often fold towards themselves resulting in WC-complementary sequences thus producing a series of short antiparallel canonical double helices. Secondary structure only contains information about canonical pairs, but it completely lacks a description of non-canonical interactions. Therefore, the information about the position with respect to other bases for some nucleotides is missing from secondary structure maps. The analysis of the tertiary structure of RNA molecules offers a complete three-dimensional molecular description. The polymeric and chemical nature of RNA allows for an organized yet dynamical tridimensional arrangement of the bases, which means that their tertiary structure does not arise from a single type of interaction. Even though canonical interactions are crucial for the stability of duplexes by locking the relative position of the bases, the intrinsic flexibility of the backbone brings into play numerous other degrees of freedom. There are approximately 50 rotamers which arise from combinations of seven consecutive dihedral angles along the backbone [33], see Figure 2.2. Therefore, the multitude of conformations resulting from the backbone flexibility promotes the formation of non-canonical interactions emerging from base-phosphate and base-sugar contacts making such interactions fundamental to RNA folding.

As discussed above, RNA structures are the product of a multitude of interactions within its moieties. Differently from DNA, the function an RNA
molecule exerts in the cell depends on its tertiary structure, secondary structure (helices based on WC pairs), and on its primary structure. The relative importance of the RNA structural level depends on the precise function it will perform. As an example, ribozymes commonly catalyze reactions by spatially arranging reactants and products in a favorable way for the reaction to occur. Consequently, changes in the secondary structure that do not alter the catalytic scaffold are irrelevant for its functioning. Evolutionary analysis of the ribosome, one the most complex mixed RNA-protein machinery in the cell, concluded that only 72% of the primary structure is conserved while tertiary contacts are sustained up to 90% [34]. Such particularities make RNA an extremely versatile molecule, such that it participates in all essential molecular mechanisms of cellular life. The central dogma of molecular biology states that the genetic information carried by the messenger RNA (mRNA) is translated into a sequence of amino acids utilizing the transfer RNA (tRNA) as a molecular adaptor [1, 35, 36]. The versatility of RNA allows it to exert functions that extend further the central dogma. The discover of ribozymes paved the way for the idea that RNA could do more than transport genetic information [8, 37]. A significant amount of transcribed RNA is not coding for proteins [38]. Although there is much to know about the non-coding RNAs, a large fraction of it has already been assigned functions [39]. Non-coding regulatory RNAs such as riboswitches further confirm the array of genetic functions that RNA can perform [10, 40]. In conclusion, nowadays it is known that RNA can carry and store genetic information (retroviruses) and on top of that it can also perform functions once thought to be performed only by proteins, like catalyzing chemical reactions or regulate gene expression. The versatility of RNA is related to its enormous folding space, which is comparable, if not bigger, than the one of proteins while still carrying the
currency for genetic information.
2.2 The Ion-RNA Interaction

As discussed in the previous Sections, the three-dimensional arrangement of RNA molecules relies on specific molecular interactions that may occur within combinations of its constituent moieties. Since RNA is a polyanionic molecule, an obvious energetic barrier to the formation of any structural organization comes from the negative charge repulsion arising from the backbone phosphates. Thus, the effect of ions is surely crucial to RNA folding and function. In fact, ions stabilize all degrees of RNA structures [14]. At first, the overall charge screening provided by cations mediate the long-range repulsion that would not let RNA chains assemble by interacting with themselves [41]. Concerning the secondary structure, the presence of cations in the grooves of the A-form duplexes directly contributes to their stability [42]. Furthermore, certain ionic conditions can even enforce particular modes of helicity [43, 44]. At last, the formation of some tertiary contacts strongly dependent on the presence of ions, and even in some cases on ion-specific direct contacts [15, 16, 45]. In addition, displacement and interchanges of ions balance the free-energy of binding of RNA with other biomolecules such as proteins [46].

FIGURE 2.3: The figure shows the interaction modes of a Mg\(^{2+}\) ion (grey) with the phosphate moiety of a G dinucleotide. On the left panel (A) it is show a fully hydrated Mg\(^{2+}\) in which two waters of its first coordination shell are forming hydrogen bonds with the phosphate oxygens. The hydrogen bonds are represented by the yellow dotted lines. On the right (B) it is show a partially dehydrated ion, chelated with the oxygen of the phosphate. This interaction is often called direct, or inner sphere contact. In this figure carbon atoms are represented in white, oxygens in red, nitrogens in blue and the phosphate atom in orange.

The ion-RNA interactions have long been appreciated, especially with
2.2. The Ion-RNA Interaction

cations. In fact, the responsiveness of RNA folding to salt conditions was evident even in early studies of tRNAs [17, 47]. There are two main ways that cations interact with RNA. The first and most typical mode of interaction is through indirect contacts mediated by water molecules, often called outer-sphere or indirect contacts (Figure 2.3A). In this mode, the RNA atoms will be occupying the second coordination shell of the ion, thus the ion-RNA interactions is mediated by a water molecule. The other mode, called inner-sphere binding, occurs through direct contact between the ion and the RNA molecule (Figure 2.3B). Hence, an RNA atom is placed directly in the first coordination shell of the ion. This mode of interaction is less frequent, yet not less important. Some of the ions bound to RNA might be identified through X-ray crystallography and NMR spectroscopy [22, 48]. There are difficulties in the determination of the precise ion-binding positions through the interpretation of their electron density, yet most of the inner-sphere bound cations could, in principle, be characterized by X-ray crystallography. Notwithstanding, the amount of bound ions identified in all the known RNA structures does not compensate their total molecular charge, thus indicating that the majority of the ions interacting with RNA are diffuse and virtually invisible to traditional structural biology [49].

Concerning NMR spectroscopy, although it allows identifying ion-binding scaffolds in solution while accounting for the dynamic aspects of ion-RNA binding, the predictions are often less accurate since NMR rely on equivalent ions, regarding the charge, that can produce a spectroscopic signal [19]. Among the most used ions are transition metals that strongly interact with RNA due to large polarizability and/or free d orbitals. Although the spectroscopic properties of metals such as Mn^{2+}, Cd^{2+}, Pb^{2+}, Eu^{3+}, and Ti^{+} are very purposeful in terms of detectability, one has to assume that they will produce the same effects on RNA as the non-detectable cations commonly found in vivo (K^+ and Mg^{2+}).

Despite the fact that ion-RNA interactions are crucial to its functioning, and that it is possible to characterize them using structural biology techniques, their physical properties and energetics are often misinterpreted. One might expect that a traditional two-state approximation would suffice to describe ion-RNA relations, but often that’s not the case [14]. The charged chemical species around RNA form an ionic cloud that has a dynamic and non-trivial behavior [50]. Nonetheless, there are powerful underlying physical-chemical principles that help assessing the effects of a polyanionic molecule. The most important one is the concept of charge neutrality in solution. With
the support of the charge neutrality principle, one might define the RNA ionic cloud as the integration of all charged chemical species in the space around the nucleic acid such that the total charge of the ion atmosphere exactly cancels that of the nucleic acid. Moreover, the inner-sphere contacts might induce conformational changes that interfere in the underlying kinetics and thermodynamics of such interactions. [51].

The concepts behind ion-RNA interactions might seem counter-intuitive at times. The ion atmosphere is responsible for achieving charge neutrality, as emphasize before, however the amount of cations in it does not exactly match the negative charge of the nucleic acid. Figure 2.4, gives a overall idea of how Mg$^{2+}$ ions might be distribute around a RNA duplex, but still a deeper description is needed in order to proper account for all the factors underlying the ion cloud behavior. This is because the amount of positive ions around RNA depends on its negative charge and on the increase of coion activity in the bulk. The increase of the anionic activity in the bulk occurs due to exclusion of coions from the RNA close surroundings. The energetic compensation provided by cations to RNA is massive. Moreover, there is also an entropic interplay arising from the organization of the layers of the ion atmosphere, and entrapment of ions by structural changes in the nucleic acid [52, 53]. Thus, RNA folding and ionic effects are so much interwoven that one is only comprehensible when considering the other as well [54].

The ionic atmosphere compensates the RNA charge and has a dynamic behavior, due to the interchangeability of the charged species in solution. The synergy of the ionic cloud with nucleic acids makes the direct ionic effect difficult to single out. There are a few techniques that can provide a estimation for the number of excess ions in the RNA ionic cloud, and they can help indicating how changes in the structure depend on ions. Measuring the interaction coefficients (Γ) it is possible to determine the number of ions detracted from the solution to serve exclusively to RNA charge screening, thus giving a more quantitative view of the ionic cloud around RNA. Γ_+ represents the number of (PO$_2$)$^-$ moieties that are neutralized by the excess of cations. Similarly Γ_- measures the charge neutralized by the deficiency of anions, and is negative. Γ_+ and Γ_- must add to the total negative charge of the RNA. The definition of the interaction coefficient for monovalent cations can be expressed as

$$\Gamma_+ \equiv \left(\frac{\partial c_+}{\partial c_{RNA}} \right)_{\mu_+} \approx \left(\frac{c_+ - c_{bulk}}{c_{RNA}} \right)_{\mu_+} ,$$

(2.1)
2.2. The Ion-RNA Interaction

Figure 2.4: Each point displayed in this figure represents the position of a Mg\(^{2+}\) ion interacting with a \((GC)_4\) A-form duplex obtained on a 9 µs bias-exchanged simulation (details on Chapter 5). The upper and lower panel shows different angles of an overall view of the Mg\(^{2+}\) ion distribution. The blue colored dots, show directly bound ions while the green represents the indirectly bound ones.

In which \(c_+\) and \(c_{RNA}\) are the molalities of the monovalent cations and RNA, respectively. At constant cation activity \((\mu_+)\), \(\Gamma_+\) is the equivalent of measuring the ‘extra’ cations constricted to interact with RNA. This interactions could be through inner or outer-sphere constants, but it is important to note that these cations are detracted from the bulk. A way to measure \(\Gamma_+\) is by performing a equilibrium dialysis experiment, in which variations in the \(c_+\) can be measure in response to \(c_{RNA}\) and posed against \(c_{bulk}\) in the opposite site of the dialysis membrane [55].

Based on the main molecular forces driving the ion-RNA interaction it is possible to conceptually divide it in three different categories. First, diffusively associated ions which are mobile but still captured by the RNA electrostatic field. Notice that this class of ions are considered to be associated but not strictly bound to RNA, and are often separated from the nucleic acid by
two or more layers of water [56]. Secondly, indirectly bound cations, which might occupy a binding position through a water intermediated interaction, as show in Figure 2.3 A and in green points in Figure 2.4. The molecular forces associated with indirectly bound cations are more than only electrostatic, since the formation of hydrogen bond networks between the ions first-shell depends on a few factors like number of waters coordinated with their geometry complex. Moreover, polarization effects affect the strength of the hydrogen bond of the ion-coordinated waters [25, 57]. This kind of interaction might lead to a higher ion affinity for certain RNA scaffolds like the duplex major groove where the electrostatic potential is high [58]. However, fully hydrated cations, especially monovalents, are still fairly mobile with residence times reaching at most hundreds of ns [59]. Lastly, directly bound cations, in which the ion is coordinating a RNA atom. A special subclass of this mode of interaction are structural ions, which are often bound to more than one RNA atom and inserted deep inside the structures, and have important structural and catalytic roles. The proper description of this kind of interaction takes into account all the molecular forces involved with the previous ones, plus the dehydration free energies and the charge transfer between the ion and the RNA atom bound to it. As pointed out previously these kinds of ions have a very high residence time, which reaches up to ms.

RNA folds hierarchically and the process is environmentally dependent as is the stability of the folded structures. In fact, charge compensation performed by monovalent cations, which are abundant in the cellular environment, leads to the formation of secondary structure but not tertiary contacts. Divalent cations, are much more efficient in this task, given the entropic advantage of neutralizing the same amount of charge with half the number of ions [41]. Among the divalent cations, Mg$^{2+}$ stands out as the most effective in RNA folding and stabilization, as it will be discussed in detail in the next section.
2.3 The importance of Magnesium ions to RNA

It is convenient first to understand the chemical attributes of cations which are relevant to how they contribute to RNA folding. Properties such as ionic radius, hydration free-energy, water coordination number, ligand exchange rate, and reactivity are key to define the ion interaction with RNA. Mg$^{2+}$ and K$^+$ are the most abundant cations in vivo, and also the most commonly found interacting with RNA. Due to their closed-shell electronic configuration, the metals from the first groups of the alkali and alkaline earth period interact with RNA predominantly through electrostatic forces. Thus, only part of the interaction is attributed to electron transfer effects meaning that they have a small reactivity in terms of formation of covalent bonds with RNA [60].

As a further matter, any alkaline earth metal has a smaller ionic radius than its immediate alkali group neighbor. The difference between the radii of Mg$^{2+}$ and K$^+$ is even bigger than of an alkali/alkaline earth group neighbors since the monovalent have an extra electron shell with respect to the divalent. As a consequence, Mg$^{2+}$ ionic radius of 0.72 Å is roughly half of the K$^+$ radius of 1.38 Å. The combination of a small radius with a +2 charge makes steric effects milder for Mg$^{2+}$ and results in a clear enthalpic and entropic advantage on the ion-RNA interaction. The high charge density of Mg$^{2+}$ let it accommodate six tightly bound water molecules in an octahedral geometry, while generating a strong enough dipole-dipole interaction to even have a structured second coordination shell [60]. In comparison, K$^+$ can have six to eight water molecules in its first coordination shell, and its hydration free energy is around -330 kJ mol$^{-1}$ while the Mg$^{2+}$ one is -1900 kJ mol$^{-1}$ [60–62].

The unique role of the Mg$^{2+}$-RNA interaction is defined by the way it interacts with RNA. Both direct and indirect contacts have entropic and enthalpic advantages in comparison to the same interaction done by other common cations in the cell. Mg$^{2+}$ ions promote an overall RNA structure stabilization by charge screening. However, this kind of associated ions, interacting only through electrostatics, can often be equally substituted by high concentrations of monovalent cations. Nonetheless, to achieve the same positive charge density around the RNA surface, it is needed twice the number of monovalent ions, which introduces extra repulsion between themselves. In the case of other competing divalent cations, such as Ca$^{2+}$, their bigger ionic radius result in a lower positive charge density in comparison to Mg$^{2+}$. For these reasons, Mg$^{2+}$ is a known RNA folding agent [63]. A common way to the ion-dependent dynamics of RNA folding is by plotting the fraction of
folding RNA molecules as a function of Mg\(^{2+}\) ion concentration, in an approach known as Mg\(^{2+}\) titration \([64–66]\).

FIGURE 2.5: Putative Mg\(^{2+}\) binding sites in RNA. The four natural nucleobases in RNA are displayed together with their numbering scheme. In the case of guanine, the attached phosphate-sugar backbone are also shown. The major metal ion binding positions are shown in bordered bold grey. Additional binding sites could be adenine N1 and cytosine N3, but they are blocked by hydrogen bonds in Watson-Crick base pairs. In addition to the nucleobase sites show, ions seldom bind to adenine N3 \([67]\), and to the ribose 2'-OH \([68]\). Similarly, steric impediments make the bridging oxygen atoms of the phosphodiester linkage not accessible for direct metal coordination. Figure adapted from reference \([69]\).

In principle, Mg\(^{2+}\) could form complexes with any RNA atom with a free electron pair. However, due to either steric impediments or the disposition of the bases with respect to each other in a duplex, some sites do not bind metals. For example, the bridging oxygen atoms of the phosphodiester are steric inaccessible. Similarly, the adenine N1 and cytosine N3 do not bind Mg\(^{2+}\) since they are directly involved Watson-Crick hydrogen bonds. The possible metal binding sites are shown in figure 2.5.

Directly bound ions can coordinate multiple RNA atoms forming complex architectures in RNA structures. This kind of interaction is readily observed in the group II intron ribozymes and have an important catalytic role \([18–20]\). Zheng et. al. in reference \([70]\), classified all directly bound Mg\(^{2+}\) ions found in the PDB database with their respective ligands. They proposed a repertoire of binding positions within the analyzed RNA structures, showing that the number of different ligands and their combinations formed by Mg\(^{2+}\)-RNA contacts is vast and not straightforward to predict.
2.4 Experimental description of the Mg$^{2+}$-RNA interaction

Visualizing the Mg$^{2+}$ ions associated to RNA thus present in the ionic atmosphere is not trivial. The ever-changing nature of the ionic cloud surrounding nucleic acids makes it invisible to traditional structural biology techniques, such as X-ray crystallography, NMR, or (cryo-)electron microscopy. However, so-called ion counting experiments can estimate interaction coefficients (Γ) and give quantitative information about the constitution of the ions associated to RNA. These methods use atomic emission spectroscopy-based measurements to quantify the elemental composition of the solution around RNA [71–73]. As an example, buffer equilibration-atomic emission spectroscopy compares the ion concentration in the nucleic acid containing sample with the flow-through, buffer-only one [74]. Anomalous small-angle X-ray scattering is also employed in ion counting, and have the advantage of providing information about the spatial distribution of ions [75].

NMR and X-ray crystallography can characterize Mg$^{2+}$ ions bound to RNA (Figure 2.3 A and B). Positions determined by X-ray crystallography provide in-depth detail of the Mg$^{2+}$-RNA ligands and its binding positions but lack the description of dynamics provided by solution experiments. It is worth noting that many structures deposited in the PDB contain wrongly assigned Mg$^{2+}$ ions [76, 77]. These errors have roots beyond the fact that Mg$^{2+}$ is isoelectronic with Na$^+$ [24]. In some instances, other divalent cations, such as Zn$^{2+}$, Mn$^{2+}$, and Cd$^{2+}$, which are often used in the crystallization process, bind to sites that are then misidentified as Mg$^{2+}$ binding positions [78].

It is useful to have solution experiments as a complement to X-ray crystallography, and often NMR spectroscopy does the job. However, NMR has to rely on detectable ions such as Co(NH$_3$)$_6^{3+}$ and Mn$^{2+}$ to mimic the indirect and direct bound Mg$^{2+}$ ions [79]. If the precise site that the Co(NH$_3$)$_6^{3+}$ complex or the Mn$^{2+}$ binds has a high enough occupancy, then NMR data will most likely agree with X-ray crystallography. Nonetheless, it is not always true that the cations used in NMR experiments to substitute Mg$^{2+}$, always behave in the same way as Mg$^{2+}$ [80].

There are experimental approaches that capture the thermodynamics of Mg$^{2+}$-RNA binding. As an example, Mg$^{2+}$ titrations quantify the contribution of Mg$^{2+}$ to folding using the Hill equation [64–66]. Other techniques
such as hydrolytic cleavage experiments, equilibrium dialysis, and spectroscopic techniques like EPR and NMR together with titration provides Mg$^{2+}$-RNA general affinity. However, a single RNA molecule often has several binding sites that are equivalent and have similar affinities. The difference between sites is mostly neglected since a direct characterization of their specific affinities is hard to get for complex RNA molecules. [19] More precisely, NMR chemical shift maps does not yield enough information to define if the changes with respect to Mg$^{2+}$ concentration are due to direct metal ion binding or by structural changes due to Mg$^{2+}$ coordination nearby [81].
Chapter 3

Mg\(^{2+}\)-RNA simulations

3.1 Overview

In this Chapter the basic theory behind the methodologies utilized in this work will be presented. The first section will be dedicated to describing the fundamentals of a molecular dynamics simulation. Moreover, force field approximations relevant to a proper description of the interaction of Mg\(^{2+}\) with RNA (Sub-Sections 3.2.1 and 3.2.2) will be discussed. For a similar purpose, in Section 3.3 we will tackle difficulties associated to the Mg\(^{2+}\)-RNA binding sampling problem. In the same Sections it will also be discussed the rare event techniques which were applied to solve the aforementioned problem. Such techniques could be classified in two ways, which depend on the basic way they promote sampling, namely importance sampling and annealing-based methods. The objective of both approaches is the same, that is sample metastable states separated by high energy barriers. The difference is that the former does it by introducing bias on a specific relevant order parameter that can be rigorously removed later, while the latter does it by increasing the rate of barrier crossing events sampling from multiple replicas with different temperatures. The Section 3.3 will also focus on well-tempered metadynamics, which works in accordance with the importance sampling approach. Later on, it will be presented a description of an approach based on Hamiltonian replica exchange methods in with extra bias potential added designed to sample Mg\(^{2+}\)-RNA binding.

3.2 Molecular Dynamics

The purpose of molecular dynamics simulations (MD) of biologic systems is to obtain biochemical insights at atomistic resolution. To achieve this goal MD simulations utilize classical mechanics to let the positions and velocities
of the particles of the system of interest evolve through time while under a potential energy function designed to reproduce the relevant atomic interactions. In this way, when combining a starting model, usually obtained from experiments, with massive computational resources, MD simulations will produce trustable trajectories containing an ensemble of structures sampled from a canonical distribution. Furthermore, this kind of equilibrium computer simulation provide insights on how different molecular configurations are and quantify their correspondent populations within its sampling capabilities. Ensembles generated by MD might still linger around a metastable state, such as a folded structure. Recent progress in computational power and very expensive simulations described the folding of small proteins, with calculations that reach up to a few ms \([82–84]\). This kind of computational power is not readily accessible, and the majority of simulations of biomolecules are limited to a few dozens of microseconds at most and thus fated to sample transitions between states separated by a few \(K_BT\). Nevertheless, MD can provide information on the molecular behavior response to a range of conditions such as different temperatures or solution composition, and even describe fast ligand binding events \([85]\).

The fundamental recipe for MD has not changed much in the last few decades, meaning that the underlying algorithm and most of the approximations are still useful to an array of applications which aim to study the dynamics of systems in equilibrium \([86, 87]\). The next paragraphs will discuss the basic MD algorithm and the most common approximations utilized in simulations of biomolecules.

It is important to understand that MD simulations are performed within the domain of classical mechanics. This means that all quantum related effects should be in principle incorporated in the basic MD model, such that the interatomic interactions should be tuned to reproduce what in reality is a product of both quantum and classical effects. The atomic model used in MD is basically a charged Lennard-Jones particle, such that non-bonded interactions have three control parameters (\(\sigma, \epsilon\) and \(q\)) and the bonded ones are harmonic potentials tailored to different interactions. As an example, the interaction of a Mg\(^{2+}\) ion with water which, previously discussed in Section 2.3, is dominated by electrostatics but still has a degree of covalent contribution and charge transfer. A percentage of the cation charge is redistributed to its six bounded water molecules resulting in partial charge smaller than +2, which is not directly taken into account on standard MD simulations \([88]\).
3.2. Molecular Dynamics

Nonetheless, Mg$^{2+}$ models are developed to reproduce certain experimentally observed properties, and this can be achieved by tuning its interactions so that their sum ends up cancelling out polarization effects and covalent effects [89]. Details on the parameters and development of models for simulating RNA and Mg$^{2+}$ ions will be presented later.

MD simulations generate real time trajectories starting from a given initial three dimensional structure, whose set of vectors $r^N = \{r_1, r_2, r_3, \ldots, r_N\}$ contains the coordinates r_i of its N composing atoms, under a certain temperature and pressure. MD simulations assume that the N point particles interact through a continuous potential energy function, V_{r^N}, known as the force field (FF). The FF describes bonded interactions in terms of bond equilibrium length, angles between bonds and dihedral angles. Non-bonded interactions are characterized by Lennard-Jones and Coulomb pairwise potentials. The sum of the gradient of the energy function $V_{r_{ij}}$, where $r_{ij} = ||r_i - r_j||$ calculated for every ij atom pair, results in the total force F_{ij}, or $-F_{ji}$, according to the equation

$$ F_{ij} = \sum_{ij} -\nabla V_{r_{ij}}, (j \neq i). $$

Knowing the total force acting on each particle, by simply using Newton’s equation one can calculate the acceleration of each particle, sub-sequentially updating its position for a δt time increment. A few algorithms [90] performs this operations in a optimized and reliable way, such as the leap frog [91], Verlet [92] and velocity Verlet [93]. Starting from a set of coordinates r^N and velocities (v^N), the velocity Verlet algorithm evolves them in time by Δt increments, which are typically of 2 fs. The following repeating sequence of steps summarizes the way the algorithm works, given a starting set of r^N and v^N at time t,

1. compute velocities for half time step ($v^N_{(t+\Delta t/2)}$),
2. compute new positions at full time step ($r^N_{(t+\Delta t)}$),
3. compute forces using the new positions $V_{(t+\Delta t)}$, $\nabla V_{r_{ij}}$, where $r_{ij} = ||r_i - r_j||$,
4. compute new velocities at full time step ($v^N_{(t+\Delta t)}$),
5. advance to the next step and repeat.

Considering solvent molecules explicitly helps to mimic the molecular behavior of RNA in water properly contributing to the realism of MD simulations. The current computational power available allows for systems with
hundreds of thousands of particles to be simulated, making standard the use of explicit solvent. To minimize unphysical finite-size and boundary effects, periodic boundary conditions (PBC) are applied thus allowing to obtain solution properties [94]. The minimum size of a simulation box has to be considered with care, since the interaction of a particle with itself through its multiple periodic images may lead to artifacts, especially when simulating highly charged species such as RNA and its ionic cloud [95, 96]. In other words, the simulation box containing RNA and ions has to be large enough for the ionic atmosphere to equilibrate without interacting with a periodic image of itself [73, 97].

Despite the tremendous importance of ion binding to RNA structural dynamics, it is still a challenge to characterize it experimentally (see 2.2). Thus, efforts from MD-based simulations could complement the available experimental data and provide insights otherwise unreachable to each approach alone. Combining the trustability of experimental results with the real time description of RNA-ion dynamics arising from MD simulations, one might have enough information to interpret or even to plan new experiments. Thus, improving the quality of FFs and the reachable timescale for simulations might lead to a synergy of experiments and simulation which certainly would help to deal with the challenge of characterizing ion-RNA binding and dynamics. In cases in which the molecular phenomena to be studied can not be assessed through classical MD, the simulations might still support other approaches, for example complementing quantum mechanics (QM) calculations which are limited to systems with fewer particles [98].
3.2. Molecular Dynamics

3.2.1 RNA force fields

The development of models capable of accurately describing the dynamic properties of nucleic acids by mimicking their chemical interactions is a extremely difficult task. Years of FF developing and research result on very accurate proteins models [84] while for DNA [99] and RNA there is much to be done. The RNA tertiary structure depends on combinations of a very diverse array of conformations, while the tertiary structure of proteins relies on more stable and less numerous motifs [100]. RNA structure and dynamics is a result of a balance of forces arising from canonical and non-canonical base-pairing, stacking, sugar-base and sugar-phosphate contacts, solvent and ions interactions which results in a enormous available conformational space [101, 102]. The interatomic interactions in MD result from a potential energy function \(V_{rN} \), which is parametrized to reproduce experimental observables. The most common FFs used for modeling RNA are CHARMM [103] and AMBER [104]. Although, they are parametrized differently, the functional form \(V_r \) for both FFs is similar. The AMBER FF uses this energy function

\[
V_{rN} = \sum_{\text{bonds}} k_b(l - l_{(eq)})^2 + \sum_{\text{angles}} k_a(\theta - \theta_{(eq)})^2 + \sum_{\text{dihedrals}} \frac{k_{\phi}}{2}[1 + \cos(n\phi - \phi_{(eq)})]^2 + \sum_{\text{non-bondedpairs}} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{\text{non-bondedpairs}} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}. \tag{3.2}
\]

The equilibrium values for bonds, angles, and dihedrals can be taken from experiments or high-level QM calculations. As show by the Coulomb non-bonded term of the FF, every atom has its own pre-set partial charge \(q_i \) which is kept constant throughout the whole simulation [105]. Even though they may be chosen to reproduce a few given ensemble properties such as the molecule electro-static potential (ESP), the charge distribution in real molecules is dynamic and structure-dependent [106]. An obvious consequence of this approximation is that the partial charge of a hydrogen bond donor would be the same independently of the nature of the acceptor. Since the differences in charge between the possible donor/acceptor pairs in RNA are not too drastic, the strength and equilibrium distance of the hydrogen bonds are captured
relatively well. Most importantly, QM calculations suggest that RNA properties which depend on particular hydrogen bonds or electrostatic interactions, such as base-pairing stacking stability, are relatively well described with the fixed charge model [107, 108].

A significant contribution to the success of the AMBER FF comes from a charge fitting that works for base pairing and stacking interactions [104, 105, 109]. Concerning the RNA backbone, the fixed-charges approach cannot concurrently describe the ESPs for all the multiple relevant backbone conformers (combination of dihedral angles) [33, 110]. A possible solution would be a framework in which the charge settings change as the RNA conformation demand. Still, one could opt for using polarizable FF developed for RNA. However, this approach not only is in its early stages of development but is also very computationally demanding [111–113].

The AMBER FF constantly improves, in particular with respect to the description of backbone dihedrals angles. Its latest version, referred from here onwards as AMBER-ff12, includes the parmbsc0 changes to the α/γ backbone torsions [115] and the OL corrections to the χ backbone torsion [116]. Another correction has been proposed, namely a change in the van der Waals parameters of the non-bridging phosphate oxygen, which will be referred as a "vdWbb" [117]. Another interesting aspect that should be taken into account is that the RNA molecules described by the AMBER-FF might present different physical behavior depending on the water model that they are used with. The most common water models are the fixed three-point charge ones, SPC [118] and TIP3P [119], and the fixed four-point charges TIP4P [120], TIP4P-ew [121] and the most recent OPC [122].

A recent study by Bergonzo and Cheatham III compared the relative conformational populations of r(GACC) and r(CCCC) tetraneucleotides against different water models. The results presented in this paper were obtained using multidimensional replica exchange molecular dynamics since plain MD would not be computationally viable to sample the tetraneucleotide conformations extensively. As shown in Figure 3.1, certain combinations of water models with AMBER-ff12 + vdwbb can drastically influence the final conformational ensemble. In addition, the population percentages do not qualitatively agree with the experimental ones. The r(CCCC) tetraneucleotide most populated conformations are not even detected in the NMR data. In light of these results, when performing MD one has to check structures and results against experiments carefully [25].

In summary, FFs employed for RNA simulations have been developed to
mimic RNA’s physical properties, and are still under development. Despite all approximations, the performance of classical force fields has been readily tested and proved against experiments. Continuous FFs development and quality assessments are pushing the frontiers of MD simulations. Fundamental assumptions such as having fixed charges on atoms helps MD simulations become computationally viable. However, these same approximations might result in a lack of a fundamental physical basis to reproduce some molecular properties. Hence, fitting and tweaking parameters can only bring us so
far. Assuming that one is aware of the caveats and strengths of FF-based MD simulations of nucleic acids, there are many applications in which this technique can be extremely useful.
3.2. Molecular Dynamics

3.2.2 Mg$^{2+}$ force fields

The inclusion of Mg$^{2+}$ ions in RNA MD simulations is a delicate issue. Real charged molecules greatly affect the electronic environment around them. The high charge density of Mg$^{2+}$ ions lead to strong polarization/charge-transfer effects. As an immediate consequence of this fact, Mg$^{2+}$ ions alter the strength of the hydrogen bonds of the waters in its first coordination shell, and would also induce charge-transfer if bound to a RNA atom [123]. Figure 3.2 displays a schematic representation of charge-transfer effects upon Mg$^{2+}$ binding to a non-bridging oxygen in the phosphate moiety of the RNA backbone. Pair-additive force fields are usually a combination of a 12-6 Lenard-Jones term and an electrostatic potential, which does not explicitly account for polarization and charge-transfer effects. To explicitly account for these effects, it would be necessary to use variable electrostatic terms and parameters that react to external electric fields [124].

There are many models employed to describe Mg$^{2+}$ ions in MD simulations, the most common being the 12-6 LJ based ones. Despite their limitations, current nonbonded models are widely used in MD simulation. This could be due to their simple form, which can be adjusted to simulate desired experimental properties. It is believed that the most important properties of the Mg$^{2+}$ ion aimed to be described are hydration free energies, distances between the ion and the water oxygen in the first solvation shell, water exchange rate, and lastly the coordination number with water. It is obvious that these properties are correlated, and that are many combinations of parameters that might lead to the same values. The challenge is to find a set of parameters that offers a good compromise between all of them. Another point to be observed is that nonbonded models have limited transferability, meaning that different combination rules between FF and various water models result in different values of the desired properties.

Many efforts have been put into finding a suitable set of parameters for Mg$^{2+}$ ions. In this work, we utilized the 12-6 LJ model for Mg$^{2+}$ proposed by Allnèr, and Villa et al. [125] and Li and Merz et al. [126]. Li and Merz also introduced a 12-6-4 LJ model that, in principle, better describe ion polarization [127], which we briefly assessed (see Chapter 4). The first model (Alnnér-Villa) was designed so as to reproduce the water exchange rate of Mg$^{2+}$ ions, in combination with the TIP3P [119] and SPC [118] water model. In Alnnér-Villa’s work, the free-energy barrier of binding of Mg$^{2+}$ ions to a dimethyl-phosphodiester, described by the CHARMM forcefield, was calculated using umbrella-sampling calculations, resulting in a good agreement.
Figure 3.2: Schematic representation of charge-transfer effects upon Mg$^{2+}$ binding to a non-bridging oxygen in the phosphate moiety of the RNA backbone. The different intensity of the shadings around the displayed atoms is a qualitative indication of how charges will be distributed in each scenario. Blue and red shadings depict the positive and negative charges, respectively. The red, white, ochre and black spheres are representations of the oxygen, hydrogen, phosphorous and magnesium atoms, respectively. It is worth noting that with the increase of the number of ligands in the inner coordination shell of Mg$^{2+}$, going from zero ligands in panel A, one in panel B, two in panel C and to six in panel D, the nominal charge of the cation is reduced. Also, the charge of the ligands is changed upon Mg$^{2+}$ binding. The non-bridging phosphate oxygen donates charge to the Mg$^{2+}$ ion while the phosphorous atom itself becomes slightly more positive. The changes in the charge on the non-bridging phosphate oxygens in panels B, C and D are related to the increase in the number of charge donors bound to the Mg$^{2+}$ cation. Figure taken from [25].
with experiments (around 40 kJ mol\(^{-1}\)). Li and Merz et.al work has a different approach, and calculated the best set of models to reproduce hydration free energies, distance between the ion and the water oxygen in the first solvation shell, and lastly the coordination number with water, for SPC, TIP3P, TIP4P [120] and TIP4P-ew [121] water models. Then, they proposed a compromise model for SPC, TIP3P, and TIP4P-ew, obtained by considering the best parameters for each property and aiming to minimize the error on the calculated properties. The parameters for the Li-Merz and Alnnér-Villa models are displayed on table 3.1

Table 3.1: Table containing \(\sigma \) and \(\epsilon \) values for the 12-6 Lennard-Jones Mg\(^{2+} \) parameters for different water models

<table>
<thead>
<tr>
<th>Mg(^{2+}) models</th>
<th>Water models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPC</td>
</tr>
<tr>
<td></td>
<td>(\sigma) (Å)</td>
</tr>
<tr>
<td>Alnnér-Villa [125]</td>
<td>2.77</td>
</tr>
<tr>
<td>Li-Merz [126]</td>
<td>1.36</td>
</tr>
</tbody>
</table>
3.3 Sampling Mg2+-RNA interactions

In addition to the approximations discussed in previous Sections, one of the bottlenecks of MD simulations is the accessible timescale, which, in practical terms, is determined by the available computer resources. The standard MD recipe makes the molecular conformation of the system of interest evolve in real time by incremental steps in the order of fs. Timescales for Mg2+ binding on RNA could be from ns, for indirectly bound ions, up to ms, for directly bound ones. In a regular, single copy simulation of an RNA system in a solution containing Mg2+ ions, chelation events will rarely be observed, compromising the accuracy of thermodynamic and kinetic properties predicted from such calculation. Thus, to overcome sampling problems one might use the so-called rare event techniques, one of them being metadynamics.

Well-tempered metadynamics (WT-MetaD) is a methodology developed by Barducci, Bussi, and Parrinello [128] proposed in 2008. The algorithm is a variant of the original metadynamics approach [129] and, like its predecessor, can be coupled with MD-based calculations. WT-MetaD enhances the sampling of rare events that would otherwise not be observed enough times to generate reliable statistics. It can provide an estimation of a free energy $F(s)$ characterized by the existence of diverse metastable states and written with respect to a continuous function of the system coordinates x called a collective variable (CV) $s(x)$. The CVs are chosen based on a priori knowledge of the slow transition being investigated.

To estimate $F(s)$, WT-MetaD alters the dynamics of slow transitioning CVs by adding an adaptive bias potential $(V(s, t))$ built as a sum of Gaussians centered along the trajectory of the observable s:

$$V_G(s(x), t) = \int_0^t dt' \frac{w_G}{\tau_G} e^{(-\frac{V_G(s(x), t')}{k_B T})} e^{-\left[\frac{(s(x) - s(x(t')))^2}{2\sigma^2}\right]} , \quad (3.3)$$

in which $w_G e^{(-\frac{V_G(s(x), t')}{k_B T})}$ is the height and σ the width of the Gaussians and τ_G the stride between the Gaussian deposition. In WT-MetaD, w_G decreases as $V_G(s(x))$ gradually increases, such that after some time the height of the Gaussians added is so small that the total bias potential will converge and the system will sample a quasi-static distribution. Such a potential will allow for a full exploration of the available space for the CV, it does so by reducing the probability of already visited states and scaling the barrier of the related transitions. Considering that the bias grows uniformly with time, it is possible to rigorously show [128, 130] that the bias
will tend to:

\[V(s, t \to \infty) = -\frac{\Delta T}{\Delta T + T} F(s) + C(t). \]

(3.4)

The conditional probability distribution of \(s \) will be:

\[P(s, t \to \infty) \propto \exp \left(-\frac{F(s)}{k_B(\Delta T + T)} \right). \]

(3.5)

In which \(\Delta T \) sets the effective temperature for the CV.

The accuracy of the \(F(s) \) estimate depends on the number of independent transitions observed, which is correlated with the simulation length, and with the choice of the parameters \(w_G, \tau_G, \) and \(\sigma \) [131]. Additionally, the CV choice affects the convergence of the free-energy estimate independently of how correctly \(\omega, \tau_G, \) and \(\sigma \) are chosen. Thus, the selected CV has to be a good descriptor of the relevant metastable states and free-energy barriers of the process of interest [131].

It is possible to employ WT-MetaD simulations to describe direct-binding of \(Mg^{2+} \) ions to RNA. The interaction can be characterized using a combination of CVs, namely the distance between \(Mg^{2+} \) and the binding atomic position, such as an oxygen atom, and coordination number with water (\(CN_w \)). The distance well defines bound and unbound states to specific sites and at the same time enhances ion diffusion around RNA. \(Mg^{2+} \) diffusion is important since even when not directly bound to RNA, it might be trapped within its electrostatic potential minima and form indirect contacts that might be poorly sampled in short simulations. Biasing the \(Mg^{2+} \) coordination number with water enhances the first shell ligand exchanges which are necessary for the formation of \(Mg^{2+} \)-RNA complexes.

Another interesting point is that playing with different combinations of CVs or even changing the dimension of the bias potential applied could, in principle, allow a \(Mg^{2+} \) ion to bind to any electronegative atom in an RNA molecule. For example, one might try using multiple concurrent unidimensional WT-MetaD, as proposed for instance in reference [132], biasing separately the \(CN_w \) and all the distances to the possible binding sites, resulting in as many WT-MetaD biases as binding sites plus one. However, the binding mechanism is concerted, and changes in the distance and \(CN_w \) occur at the same time, having separated unidimensional WT-MetaD would significantly reduce the sampling efficiency. Moreover, distance alone is not a good CV to describe multiple equivalent metastable states, which is the case for \(Mg^{2+} \)-RNA binding. If multiple binding sites are simultaneously sampled, hysteresis could arise since same values of the distance between \(Mg^{2+} \) and
a target atom could correspond to different bound states, in various binding positions. A Mg$^{2+}$ within 10 Å from a particular phosphate might be bound to a Guanine O6 or another neighboring phosphate moiety.

Besides the fact that obtaining relative free energies of different binding sites seems like a more interesting problem than having multiple Mg$^{2+}$ competing to the same site but only being able to bind there, there might still be cases where the latter approach is interesting. In this way, assuming that only one Mg$^{2+}$ ion binds at the time to the same position, a set of collective variables that describe well this interaction could be composed by the distance between the closest Mg$^{2+}$ and the binding site and again the CN_w of each cation. In this case, hysteresis with respect to the distance might not be an issue. On the other hand, a practical difficulty could arise from having to calculate CN_w at every step, since its computational cost depends on the number of water molecules and scales linearly with the number of Mg$^{2+}$ in solution. Usually, performing this calculation for a single Mg$^{2+}$ ion slows down the simulation but not to the point that it becomes impractical, especially with the implementation of neighbor list searching [92]. Nonetheless, this approach would not be optimal, especially when other more practical solutions involving multiple replicas of the same system running in parallel are at our disposition.

WT-MetaD is suitable to describe the binding of a single Mg$^{2+}$ ion with a single binding position, but complications arise when one aims to sample multiple ion-binding events to different binding sites concurrently. A possible way to tackle this issue is by using replica-exchange methods [133]. In this work, bias exchange metadynamics (BE-MetaD) [134] and Hamiltonian replica exchange (HREX) [135] were used. Both approaches derive from the same principle, where many simulations are performed at the same time using different control parameters and exchanging conformations at defined time interval with a certain probability calculated by the Metropolis-criterion [136].

BE-MetaD was proposed by Piana and Laio [134], and simulate each replica under a different metadynamics with its own set of CVs. After a defined time interval, exchange attempts between random replicas are performed, and their acceptance is calculated considering exclusively the replica-specific bias potential applied since each replica is described by the same potential function (FF) under the same temperature T. Considering n non-interacting replicas of a system, each of them under a time dependent bias $V^r(s(x),t) = V^r(s'(x),t)$ applied in a WT-MetaD fashion to a replica-specific CV, $s'(x)$,
3.3. Sampling Mg2+-RNA interactions

$r = 1, \cdots, n$, the acceptance α of an exchange attempt is calculated as \cite{134, 137}:

$$\alpha = \min \left[1, e^{-\frac{k_B T}{e^{1/k_B T}} \left(V^i(s(x_i),t) + V^j(s(x_j),t) \right)} \right],$$

(3.6)

This combined approach allows for the estimation of free energies when the dimensionality of the CV space is very large. In practice, the amount of replicas depends only on the number of CVs that one wants to investigate. The exchange between copies of the system introduces jumps in its configurations promoting further exploration of the CV space. That is, even if the WT-MetaD only addresses a few CVs per replica, by combining all the accessible individual replica CV spaces through exchanges, the system configurations will eventually explore the free-energy surface spanned by all CVs. Thus, it will significantly improve the free energy estimator, which is dependent on the correlation time of the dynamics in CV space \cite{131}.

Going back to the problem of sampling Mg2+-RNA binding, BE-MetaD could, in principle, be straightforwardly employed in the issue of sampling multiple RNA binding positions for a single Mg2+ ion. In principle, bi-dimensional WT-MetaD is suitable to describe the binding of a single Mg2+ ion with a single binding position, when applied using the distance between Mg2+ and the target binding position in combination with CN_w. Applying one independent WT-MetaD per binding site per replica would, in principle, solve the issue of sampling concurrently multiple binding sites. However, after a certain time the bias potential applied would allow for a hydrated Mg2+ to freely exchange water molecules while also accelerating its diffusion around RNA. Since the bias potential applied is similar to all the replicas and there is no barrier holding the ion from binding in other equivalent positions, nor force to promoting unbinding, Mg2+ could get stuck, by directly binding, to positions which are not the ones targeted to be sampled in that replica. Consequently, even exchanging conformations would only marginally improve sampling \cite{26}.

To tackle this matter, one might take advantage of the fact that any bias can be applied uniquely to each replica, and include a constraint to avoid Mg2+ binding on positions that are not being sampled on that specific replica. Then, when calculating the acceptance for a replica exchange, the extra penalty bias potential would also be taken into account. If Mg2+ binds to a prohibited position, the restraint potential will increase the difference in the energy between replicas leading to a high exchange acceptance such that these coordinates would migrate to a replica where this binding position is allowed.
The added biases, either from WT-MetaD or from the restrain Mg\(^{2+}\) binding, can be reweighted a posteriori, allowing to recover the equilibrium probability distribution [138, 139].

The next interesting point to assess is, how can one accelerate water exchange and Mg\(^{2+}\) diffusion and binding for multiple ions in many positions without making it impractically heavy in terms of computational cost. A possible answer is by enhancing water exchange tweaking the Mg\(^{2+}\) FF parameters with HREX while accelerating multiple Mg\(^{2+}\) binding events with BE-MetaD applied as described early in the Section. The difference in potential energy of replicas at the same temperature is the only parameter necessary to calculate the acceptance for swapping configuration, and could come from both re-scaling parts (or the whole) potential energy function of the system, or adding extra bias potentials using metadynamics.

HREX utilizes a similar approach to parallel tempering [133], where replicas are disposed in a sort of ladder and swaps are only between neighboring replicas. The lowest replica represents an ideal condition (experimental temperature), while the artificiality gradually progresses until reaching its maximum in the last replica (artificially high temperature), where the desired rare event has a higher probability of happening. In HREX, the first replica contains the standard FF parametrization the highest one a modified version of it, where transitions are more likely to be observed. The FF parameters in the highest replica might be also be standard MD FF parameters, but for a different particle or bond potential, for example Mg\(^{2+}\) in the lowest replica scaling to K\(^{+}\) at the highest. Usually, the parameters of the FF are rescaled in a geometric progression in the replica ladder. In the Mg\(^{2+}\)-RNA case, the highest replica might be a Mg\(^{2+}\) ion with modified LJ radius to ensure water exchanges. In another words, if in the highest replica the LJ parameters of the Mg\(^{2+}\) allow for it to accommodate 7 ligands in its first coordination shell, it ensures that swap attempts down the replica ladder also mean ligand exchanges. The number of replicas would be chosen to find a compromise between a good exchange acceptance and computational cost and will depend on the number of modified particles.

Combining both approaches, BE-MetaD and HREX, one can sample Mg\(^{2+}\) water exchanges for multiple ions, while binding to multiple binding sites. Considering the most complex case in which multiple ions and various binding positions are concurrently sampled, adjustments in the definition of CVs would still be needed. Firstly, the number of replicas needed scales with the number of Mg\(^{2+}\) ions to be biased. All the Mg\(^{2+}\) ions are identical in all
the replicas, so applying WT-MetaD using the minimum distance between a binding site and a Mg$^{2+}$ in solution as CV would promote binding, unbinding and ion diffusion. For multiple sites, one now can apply concurrently multiple one-dimensional WT-MetaD, which will be as many as the targeted binding sites. The bias introduced by the WT-MetaD can always be reweighted \textit{a posteriori}.

In the next Chapters, I hope to present all the practical details needed to apply the aforementioned methodologies to sample Mg$^{2+}$-RNA binding.
3.4 Summary

In this Chapter, I discussed the basic of the methodologies used in this Thesis. A particular emphasis was given to the approximation and features of the approximations and models used in MD relevant to RNA simulations in water solutions containing Mg\(^{2+}\) ions. Mg\(^{2+}\) ligand exchanges happen in time scale not readily achievable for standard MD (Sections 3.2). Section 3.3 progressively explaining how enhanced sampling can be applied to describe Mg\(^{2+}\)-RNA binding. The Section starts describing how well-tempered metadynamics can be used to sample the simplest Mg\(^{2+}\)-RNA case (one ion directly binding to one site). Then, the discussion escalated to an innovative application of restraining potentials in bias exchange metadynamics which would then allow for a proper sampling of multiple binding positions concurrently. Lastly, it was presented a possible combination of bias exchange metadynamics with Hamiltonian replica exchange that ultimately would allow for many Mg\(^{2+}\) ions sampling to bind and unbind in multiple sites concurrently. The next Chapter will discuss results obtained by applying this methodologies.
Chapter 4

Force Field and Methodological Evaluation for describing Mg$^{2+}$-RNA binding

In this Chapter it will be discussed how the Mg$^{2+}$-RNA affinity is affected by the choice the Mg$^{2+}$ parameters coupled with the water models and state-of-art RNA forcefields. In addition, it will be provided an assessment of convergence, strengths and caveats of different methodological approaches to sample RNA-Mg$^{2+}$ binding through enhanced sampling. It was found that, the combination of Li-Merz Mg$^{2+}$ parameters [126] with the Case et al. [117] corrections to the non-bridging phosphate oxygens of RNA is the best option for reproducing the experimental affinities. This result is consistent independently of use of TIP3P or OPC water models. Using replica exchange methods, such as HREX, in combination with multiple one-dimensional WT-MetaD, with the minimum distance between a Mg$^{2+}$ and a binding site as collective variable, efficiently allow to capture Mg$^{2+}$-RNA interactions while being computationally accessible.

4.1 Introduction

Understanding the molecular behavior of ribonucleic acids in solution is an intrinsically difficult problem since even a well-defined sequence of nucleotides often can adopt multiple tridimensional structures within a tight range of folding energies of each other [140]. Different structures in an ensemble of RNA molecules can be interchangeable within thermal fluctuations. RNAs structure distributions are highly sensitive to interactions with proteins, cofactors, and ionic conditions [141]. For that matter, the effect of ions on RNA is particularly interesting since cations, such as Mg$^{2+}$, are essential for RNA
Chapter 4. Force Field and Methodological Evaluation for describing Mg$^{2+}$-RNA binding

Mg$^{2+}$ ions are extensively present in molecular biology and have a unique capacity of shaping RNA structures \[45, 142\]. These cations compensate for the electrostatic repulsion of the RNA backbone and contribute to the overall decrease of entropy necessary for folding to occur \[53, 143\]. Most of the Mg$^{2+}$ ions around RNA are loosely bound, present in the so-called ionic cloud that surrounds RNA molecules. This kind of ions indirectly interact with RNA atoms through water molecules forming complex hydrogen bond networks. Nevertheless, there is a small percentage of Mg$^{2+}$ ions that tightly bind to RNA through direct coordination. In those cases, the directly bound Mg$^{2+}$ ions are highly localized and have a slow ligand exchange rate, in the order of ms \[14\]. Due to the high residence times of directly bound cations, they are often correlated with the formation of well structured tertiary contacts \[142\]. Therefore, the proper accounting for ionic effects and positioning of magnesium ions in atomistic simulations can be determinant, if not essential, for a trustworthy description of nucleic acids in solution.

Biomolecular simulations face the fundamental issue that the more refined is a model, the more expensive a calculation become, thus the smaller will be the system scale and the reachable simulation time \[144\]. Even though the employment of massive resources in the development of dedicated hardware to perform MD lead to outstanding results, this technology is still not accessible to everyone \[82, 83\]. Thus, if not for enhanced sampling techniques, most of the modern molecular dynamics calculations would be limited to sampling conformations around a chosen RNA native structure \[25\]. Nonetheless, it is still possible to gather valuable insights of specific interactions through molecular dynamics. In the case of ions, a proper description of their effects on RNA molecules is hindered by two main factors, the precision of the models utilized, and the extent of sampling. With respect to the first problem, most of the current molecular dynamics simulations utilize ionic models consisting of an atom-centered point charged particle surrounded by pairwise Lennard-Jones based nonelectrostatic potentials. This kind of model is computationally efficient, however it can’t directly include effects of polarization and charge transfer. In the case of Mg$^{2+}$, the ion’s pairwise nonelectrostatic potential is fitted to reproduce meaningful properties such as water exchange rates, distance between the ion and the water oxygens as well as coordination number and hydration free-energies \[126\]. On top of that, Mg$^{2+}$ ions parameters have to in constant improvement to couple well with the existing water and RNA force fields \[89\]. With respect to sampling issues, the indirectly bound ions are limited by their diffusion rates, which
4.2 Force field dependent binding affinities

are still accessible by standard molecular dynamics simulations [145]. Despite that, the exploration of all binding modes of Mg$^{2+}$ is hindered by high free-energy barriers associated to water exchanges in the first coordination shell in combinations with ion competition and entropic effects [19, 26]. We believe that measuring binding affinities is a rigorous way to assess the synergy, or the lack of it, between different combinations of models for atomistic RNA molecular dynamics simulations.

4.2 Force field dependent binding affinities

To assess how RNA and Mg$^{2+}$ force fields (FF) in combination with different water model influence the overall cation affinity to the RNA phosphate moiety, we performed a set of well-tempered metadynamics (WT-MetaD) [128] calculations for various FF combinations.

Figure 4.1: Structure of the guanine dinucleotide (GpG) taken from an ideal A-form helix.

The system composition was the same for all the simulations in the set, containing a guanine dinucleotide (GpG) without the 5’ phosphate. The initial structure for the GpG was generated by the make-na webserver [146] as if taken from an ideal A-form helix (shown in Figure 4.1). The dinucleotide was immersed in ≈ 2900 water molecules in a truncated dodecahedral also containing 0.1 mol L$^{-1}$ of K$^+$ and Cl$^-$ and one Mg$^{2+}$ atom. Ions were initially included by substituting randomly selected water molecules. Water was modeled using the popular TIP3P [119] and the relatively recent OPC [122] force fields. TIP3P was chosen due to its popularity in the MD simulation community, while the OPC model has been shown to improve the agreement of RNA simulations with NMR data [114].

Molecular dynamics (MD) simulations were performed using GROMACS 4.6.7 [147]. Production runs were 1.0 μs long and performed in an NVT ensemble using a 2 fs time-step. The temperature was kept at 300 K by a stochastic velocity rescale thermostat [148]. Non-bonded and electrostatic interactions were calculated using the Verlet cutoff scheme and particle-mesh
Ewald respectively [149]. The FF used for K\(^+\) was the one proposed by Cheatham et al. [150], and the GpG molecule and Cl\(^-\) were described using the AMBER-ff12 [104, 115, 116]. In some simulations, the parameter for the non-bridging phosphate oxygen from AMBER-ff12 was substituted by the one proposed by Case and collaborators in reference [117], and as mentioned in Section 3.2.1, when this modification is applied it will be noted by the "vdWbb" postfix. Mg\(^{2+}\) models were taken from the references Allnér et al. (Allnér-Villa) [125] and Li et al. (Li-Merz) [126], discussed previously on Section 3.2.2. It is important to note that Li and Merz et al. proposed different parameterizations to be used with different water models (SPC, TIP3P, TIP4P and TIP4P-ew), while Allnér and Villa et al. was designed based on SPC and TIP3P water models. The Li-Merz Mg\(^{2+}\) parameters for the TIP4P-ew were utilized in the simulations containing OPC water models since the models are very similar [122].

![Figure 4.2: Free energy as a function of the distance between the biased Mg\(^{2+}\) and the center of mass of the GpG RNA fragment (CoM\(_{\text{RNA}}\)). ΔG is computed as Δ\(G_{(d)}\) = \(-k_B T \log P(d) + k_B T \log d^2\), where \(P(d)\) is the probability to find Mg\(^{2+}\) at distance \(d\) from CoM\(_{\text{RNA}}\). The error is shown in red shades and it was calculated using block analysis over 4 blocks. Since the Mg\(^{2+}\)-RNA distance is evaluated using the minimal image convention, it is not possible for this distance to be larger than half the box size. Thus, it can be seen that the free-energy profile consistently increases at that distance.

Page 4 of 40
Well-tempered metadynamics (WT-MetaD) \[128\] was used to accelerate Mg\(^{2+}\)-(PO\(_4^2\))\(^-\) binding, applying bias on a two-dimensional collective variable (CV) composed of the distance between the Mg\(^{2+}\) ion and phosphate atom \((d_{Mg-P})\) in the GpG and the coordination number of Mg\(^{2+}\) with the water oxygen \((CN_W)\). Coordination number is defined by the switching function

\[
CN_W = \sum_i \left(1 + \left(d_{Mg-OW_i}/r_0\right)^6\right)^{-1}
\]

in which \(d_{Mg-OW_i}\) is the distance between Mg\(^{2+}\) and the \(i\)-th water oxygen (OW). \(r_0\) is a cutoff that define if a water molecule is bound to Mg\(^{2+}\) and is set to 2.61 Å. The initial Gaussian height was set to 0.3 kJ mol\(^{-1}\), and the width 0.5 Å and 0.1 for \(d_{Mg-P}\) and \(CN_W\) respectively. Gaussians were deposited every 500 steps and the well-tempered bias factor (\(\gamma\)) was set to 15. PLUMED 2.2 was used to couple the WT-MetaD framework to the MD simulation and include any of the additional restraining biases. To optimize the sampling of Mg\(^{2+}\) binding to the phosphodiester moiety avoiding direct binding on other positions, repulsive harmonic potentials were activated every time the distance between the Mg\(^{2+}\) ion and the guanine O6 and N7 and the Cl\(^-\) ions was smaller than 3.0 Å. The force constant to the repulsive restraint was set to 50.0 kJ mol\(^{-1}\) Å\(^{-1}\). Also, the atomic positions for the RNA atoms were kept fixed, since a considerable extra amount of computational time would be needed to adequately sample all the GpG conformational space \[151, 152\]. The binding affinity \((K_a)\) was calculated using the equilibrium distributions recovered from the WT-MetaD simulations. The \(K_a\) is computed as

\[
K_a = \frac{w_b}{w_{shell}}V_{shell}
\]

in which \(w_b\) is the accumulated weight of the bound states, defined by a cutoff of 2.6 Å on the distance between Mg\(^{2+}\) and a phosphodiester non-bridging oxygen (or equivalently 3.5 Å from the phosphate atom). The \(w_{shell}\) is the sum of the total weight in the bulk (shell) region, and \(V_{shell}\) is its volume. Weights are computed using the final WT-MetaD bias, as proposed in reference \[153\]. The bulk region is defined as the region in which the free energy with respect from the distance between Mg\(^{2+}\) and the GpG center of mass is flat (see Figure 4.2). The binding free energy at the standard 1M Mg\(^{2+}\) concentration was calculated accounting for the probability of the cation to be found in the bulk region \[154\] and is defined as \(\Delta G = -k_BT \log K_a\). The statistical error was computed for all the reported quantities. For a free energies whose best estimate is \(X\) and the confidence interval is \([X - \Delta_1, X + \Delta_2]\), the
value is reported as $X^{+}\Delta H$. Errors were computed by block averaging over 4 blocks without discarding any part of the simulation similarly to Reference [132]. Table 4.1 displays the binding free energies for different combinations of water, non-bridging phosphate oxygen, and Mg$^{2+}$ FFs.

TABLE 4.1: Table containing Mg$^{2+}$ direct-binding free-energies to the phosphodiester group in a guanine dinucleotide with respect to the different combinations of water, non-bridging phosphate oxygens and Mg$^{2+}$ force fields. The ff12 and the ff12+vdWbb notations refer to the standard AMBER-ff12 FF and the Case et. al [117] versions to the phosphodiester non-bridging oxygen.

<table>
<thead>
<tr>
<th>Mg$^{2+}$ models</th>
<th>TIP3P</th>
<th>OPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Merz [126]</td>
<td>-12.5</td>
<td>-20.0</td>
</tr>
<tr>
<td></td>
<td>$^{+1.1}_{-0.8}$</td>
<td>$^{+3.3}_{-1.4}$</td>
</tr>
<tr>
<td></td>
<td>-19.3</td>
<td>-29.7</td>
</tr>
<tr>
<td></td>
<td>$^{+1.3}_{-0.8}$</td>
<td>$^{+1.5}_{-0.9}$</td>
</tr>
<tr>
<td></td>
<td>-15.7</td>
<td>-28.1</td>
</tr>
<tr>
<td></td>
<td>$^{+3.3}_{-1.4}$</td>
<td>$^{+1.6}_{-1.0}$</td>
</tr>
<tr>
<td>Allnér-Villa [125]</td>
<td>-14.6</td>
<td>-20.0</td>
</tr>
<tr>
<td></td>
<td>$^{+1.0}_{-0.7}$</td>
<td>$^{+3.3}_{-1.4}$</td>
</tr>
<tr>
<td></td>
<td>-30.2</td>
<td>-29.7</td>
</tr>
<tr>
<td></td>
<td>$^{+0.7}_{-0.6}$</td>
<td>$^{+1.5}_{-0.9}$</td>
</tr>
<tr>
<td></td>
<td>-28.1</td>
<td>-28.1</td>
</tr>
<tr>
<td></td>
<td>$^{+1.5}_{-0.9}$</td>
<td>$^{+1.6}_{-1.0}$</td>
</tr>
</tbody>
</table>

The experimental value for the standard binding free energy of Mg$^{2+}$ cations to a phosphodiester moiety, estimated by Sigel et al. [155] using potentiometric titrations, is -6.0 ± 1.7 kJ mol$^{-1}$. Although none of the available force fields can quantitatively reproduce the experiment, the AMBER-ff12+vdWbb FF combination lead to a better agreement with the experimental estimation of the free energy, for all the choices of water and Mg$^{2+}$ parameters, with the exception of the Allnér-Villa parameters combined with the OPC water model. The Allnér-Villa parameters were designed to reproduce water exchange rates and the free-energy barrier of binding with an RNA phosphodiester, in combination with three-point charge water models (TIP3P and SPC), which might explain why it performs poorly when combined with OPC, but not in the TIP3P/AMBER-ff12 combination. Interestingly, even though the Li-Merz parameters were devised to reproduce a compromise between the average Mg$^{2+}$-water oxygen distances and hydration free-energies, disregarding the interaction with a phosphodiester moiety, it still consistently perform better than Allnér-Villa.

In another work, Li and Merz Jr. [127] suggested that a different formulation for the LJ function, including a term proportional to r^{-4}, might help to mitigate the (counter)effects of not explicitly considering polarization leading to a more accurate description of the interaction with water and highly charged species. We also calculated the affinity for the 12-6-4 model in combination with the TIP3P water and AMBER-ff12, which result in an affinity
of $-14.0^{+0.9}_{-0.7}$ kJ mol$^{-1}$. The 12-6-4 model performs slightly better than its 12-6 counterpart. However, this calculation was performed in a smaller simulation box (≈ 1200 waters) and thus might not be directly equivalent to the other ones. The 12-6-4 functional form is not supported by GROMACS, and the extra term was added on the fly using the PLUMED pluging. The extra term was calculated for all the interactions between Mg$^{2+}$ and the water oxygens, G-O6, G-N7 and the phosphodiester oxygens with the appropriate $C4$ value for each interaction pair. The extra potential term is a function of distance, and has to be calculated at every step, which substantially slows down the simulation. This result indicates that the standard 12-6 LJ formulation, while simpler and less computationally demanding, might still be a viable one in comparison to more refined functional forms.

It is noticeable that, considering the Li-Merz set, the difference in the affinity coming from the vdWbb modification to the AMBER-ff12 is within statistical error, but this does not hold for the Allnér-Villa parameter. The reason might reside on a balance between the strength of the Mg$^{2+}$-water / (PO$_2$)$^-$-water interactions, which leads to nontrivial effects. These results reinforce that 12-6 LJ parameters are not very portable across water models, and even RNA FF, and should be used with attention.
Chapter 4. Force Field and Methodological Evaluation for describing
Mg2+-RNA binding

4.3 Methods to calculate converged Mg2+ (PO\textsubscript{2})- affinities

In the previous Section, the binding free energies of a single Mg2+ ion with the phosphodiester moiety of a guanine dinucleotide was presented as obtained through long WT-MetaD simulations. Equilibrium probability distributions obtained from these simulations helped assessing FF accuracy. Additionally, this approach could directly assist experimental interpretations. As an example, the relative affinity between directly and indirectly bound Mg2+ ions to a site could be used to further clarify NMR data, which often rely on the use of cations such as Co(NH\textsubscript{3})\textsubscript{6}3+ and Mn2+ to indirectly identify Mg2+ binding positions \cite{71, 79}. In principle, it would be straight-forward to apply the methodology previously presented to sample a Mg2+ binding to a different, and more interesting, RNA molecule. Nonetheless, there are many applications for which sampling thoroughly a single binding position is not enough to properly describe ion binding. Biologically relevant RNA molecules have a number of binding positions that are often related. Sampling exclusively one binding position at a time would nullify possible correlation effects between binding sites in the estimated free energies. For example, the binding of the 5'-exon-intron recognition duplex of the Sc.ai5\textgamma self-splicing ribozyme contains three metal ion binding positions that dictates the kinetics of the exon-intron binding according to their relative occupancy \cite{156}.

Concurrently sampling multiple binding positions with many Mg2+ ions using MD simulations would allow tackling more relevant and complex biological problems. Interestingly, it also steeply escalates the complexity of the sampling approach needed (see Section 3.3). Here, it will be discussed a set of simulations performed with elaborate methodological combinations to deal with multi-site and muti-Mg2+ concurrently sampling.

The set of simulations performed here follow the same MD protocol and is composed of the same system described in the previous Section. The AMBER-ff12 + vdWbb \cite{104, 115–117} FF version was used in combination with TIP3P \cite{119} water and Allnér-Villa \cite{125} parameters for the Mg2+ cation. The Allnér-Villa parameters were chosen based on our previous work \cite{26}, that in this Thesis, is presented later in Chapter 5.

Table 4.2 summarizes the different methodological approaches for each simulation. The bias-exchange metadynamics (BE-MetaD) simulation (scheme A) was performed accordingly with our work (Chapter 5) \cite{26}. This approach
4.3. Methods to calculate converged Mg\(^{2+}\) (PO\(_2\))\(^-\) affinities

TABLE 4.2: Table summarizing the methodologies utilized to sample Mg\(^{2+}\) binding to a GpG dinucleotide. In which, \(d_{\text{Mg}-X}\) is the minimum distance between a Mg\(^{2+}\) ion and a GpG atom \(X\), which could be a P, 1G-O6, 2G-O6, 1G-N7, or 2G-N7 atom, and \(r\) is the replica index. The bias penalty potentials (restraints) do not allow direct Mg\(^{2+}\) binding to the Y GpG atom.

<table>
<thead>
<tr>
<th>Label</th>
<th>Methods</th>
<th>CVs</th>
<th>Num. of Replicas</th>
<th>Restraints</th>
<th>Sim. time (ns)</th>
<th>Num. of biased Mg(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BE-MetaD</td>
<td>(d_{\text{Mg}-X,r}), (CN_W)</td>
<td>5</td>
<td>(d_{\text{Mg}-Y,r}), (\forall Y_r \neq X_r)</td>
<td>1125</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>HREX + WT-MetaD</td>
<td>(d_{\text{Mg}-P})</td>
<td>6</td>
<td>–</td>
<td>2614</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>HREX + multi WT-MetaD</td>
<td>(d_{\text{Mg}-X})</td>
<td>6</td>
<td>–</td>
<td>2614</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>HREX + WT-MetaD</td>
<td>(d_{\text{Mg}-P})</td>
<td>9</td>
<td>–</td>
<td>3510</td>
<td>2</td>
</tr>
</tbody>
</table>

allows for concurrently sampling of multiple binding positions by a single Mg\(^{2+}\) ion. Each replica runs a two-dimensional WT-MetaD on the distance between Mg\(^{2+}\) and a target binding site together with its coordination number with water \((CN_W)\). The number of replicas only depends on the number of putative binding sites to be sampled. In this approach 5 replicas were used to sample directly binding on phosphodiester moiety, the guanine O6 and N7 atoms. A group of replica-specific restraining bias potentials keeps Mg\(^{2+}\) from binding directly on the binding sites not targeted by that replica. The WT-MetaD bias, after a certain time, allows for the ion to freely diffuse around the RNA molecule while also easily exchanging its first coordination shell waters. The added restrained potentials avoid Mg\(^{2+}\) being stuck in positions that are not directly affected by the metadynamics bias. Exchange attempts between random replicas are accepted based on the difference on the total sum of the biases applied to each replica. However, this approach is designed for a single Mg\(^{2+}\) ion binding to a single site per replica, which does not directly consider possible correlations between binding sites.

Methodological schemes B, C and D utilize the same principle. Hamiltonian replica exchange (HREX), scaling up the \(\sigma\) parameter of the LJ function describing Mg\(^{2+}\) ions, enhances ligand exchanges in the first coordination shell of Mg\(^{2+}\), while multiple concurrent one-dimensional WT-MetaD promotes ion diffusion (see Section 3.3). This approach does not require a two-dimensional CV to describe Mg\(^{2+}\) binding, since first shell ligand exchanges are now sampled independently from the distance. Schemes B, and C only differ in the number of concurrent WT-MetaD. Schemes B and D both only bias the minimum distance between Mg\(^{2+}\) and the phosphate atom, however scheme D has an extra Mg\(^{2+}\) ion.
Chapter 4. Force Field and Methodological Evaluation for describing Mg\(^{2+}\)-RNA binding

The maximum value of \(\sigma\) was chosen to ensure that first-shell ligand exchanges are possible within thermal fluctuations in the highest replica, consequently improving Ergodicity in the lowest replica through conformational swaps. Mg\(^{2+}\) FFs are designed to reproduce the experimental Mg\(^{2+}\) \(CN_W\) of 6. Thus, ensuring that the highest replica at some point has 7 ligands significantly increases the probability that conformational swaps down the replica ladder also correspond to ligand exchanges. Based on this, we choose the minimum \(\sigma\) value necessary to have equilibrium between hexahydrate and heptahydrate forms with close to equal populations of the artificial ionic species. The number of replicas was decided in terms of a compromise between a good acceptance (larger than 15\%) and computational cost. \(\sigma\) was scaled from 2.77 Å (original FF) to 3.30 Å in a geometric progression across the 6-replica ladder. Similarly to conventional parallel tempering, the number of replicas required to span a given range of sigma is proportional to the square root of the number of modified particles, which here are the Mg\(^{2+}\) ions. We thus increase the number of replicas proportionally to \(\sqrt{n_{Mg}}\). For all the HREX simulations (Scheme B, C and D) exchanges were attempted every 400 steps (0.8 ps).

<table>
<thead>
<tr>
<th>Binding position</th>
<th>Methodological schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>G-N7</td>
<td>35.7 ±0.1</td>
</tr>
<tr>
<td>G-O6</td>
<td>12.2 ±0.3</td>
</tr>
<tr>
<td>G-O1P</td>
<td>-16.4 +1.0</td>
</tr>
<tr>
<td>G-O2P</td>
<td>-5.4 +2.4</td>
</tr>
</tbody>
</table>

Data from different replicas were incorporated using the weighted histogram analysis method (WHAM) \([138]\) combining the sum of the last bias from all the WT-MetaD \([153]\) and the difference in the total potential energy, arising from the scaled LJ interactions, concerning the unmodified replica.
4.3. Methods to calculate converged Mg$^{2+}(PO_2)^-$ affinities

This procedure is closely related to the standard way used to analyze BE-MetaD simulations [139] but was here performed in a binless fashion that allows a large number of bias potentials to be simultaneously reweighted.

The binding free energies obtained from each method are presented in Table 4.3. The direct binding affinity of Mg$^{2+}$ to the O1P atom dominates over the O2P, as G-O6 is also preferred over G-N7. The binding affinities of the nucleobase sites G-O6 and G-N7 are very small compared to the phosphodiester moiety. Zheng et al. performed an analysis of the binding frequency of Mg$^{2+}$ ions in RNA structures deposited in the PDB that also show the same trends. [70]. The initial GpG atomic positions are taken from an ideal A-form duplex and are kept frozen throughout the simulation. The A-duplex is the most recurrent RNA motif, this could explain why experimental trends are recovered.

The methodological schemes A and C have dedicated bias potentials to promote sampling in positions G-O6 and G-N7. In contrast B and D, do not promote binding to the nucleobase. The clear difference between the estimated binding free energy in the A-C and B-D methodological pairs indicates that those sites can be very poorly sampled, even on a µs simulation which Mg$^{2+}$ can, in principle, freely exchange first-shell ligands. Despite of that, the schemes A and C show a relatively good agreement reinforcing that at least the affinity ranks are consistent. Also, the difference in the binding affinity of the G-O6 and G-N7 is an indication that errors are underestimated.

The possible underestimation of the errors calculated through block analysis can be further assessed by analyzing the methodological scheme D. The difference in the free energies of binding between Mg-1 and Mg-2 could only come from statistical errors since the two cations are exactly equivalent. Despite that, the fact that free-energy values ± the error do not overlap is an indication of how much the errors are being underestimated. Taking the average difference between the affinities and comparing with the average errors values tells us that the underestimation of the error is about 0.5 kJ mol$^{-1}$.

Interestingly, the scheme B, which utilizes multiple concurrent one-dimensional WT-MetaD has, in average, smaller errors than all the other approaches. A fair comparison can be made against the approach B, since the only difference is the extra one-dimensional WT-MetaD applied on the distances between Mg$^{2+}$ and 1G-O6, 2G-O6, 1G-N7 and 2G-N7 atoms. The errors in the O1P and O2P affinities are higher that in the ones obtained using approach B, suggesting that, for this situation, having multiple concurrent metadynamics
help enhancing the sampling even on seemingly uncorrelated binding positions.

In summary, it is both practically and methodologically possible to simulate multiple RNA binding positions concurrently together with many Mg2+ binding. Applying multiple one-dimensional WT-MetaD together with HREX is a suitable combination for tackling Mg2+-RNA binding issues. Apart from the normal computational cost of a MD simulation, the impact on the computational cost of adding extra WT-MetaD using the distance between Mg2+ and a putative binding position is irrelevant. Thus, the expensiveness of these approaches (B, C or D) increases with the number of replicas needed, which consequently scales with the square root of the number of Mg2+ ions to be addressed. The minimum number of replicas for addressing a single Mg2+ ion depends on its LJ parameters and requires previous short MD simulations to determine it. We believe that the methods and results presented here could be applied to more complex systems and biologically relevant problems.
4.4 Summary

In this Chapter I discussed the two main issues with simulating Mg2+-RNA binding, namely the quality of the force fields and proper sampling. Section 4.1 is a short introduction with a few directions on why and how one could tackle Mg2+-RNA binding problems. The next two Sections are dedicated to the methodology, results and discussion of the obtained binding free energies against various methodological approaches. In summary, the common 12-6 LJ parameters does not quantitatively agree with experimental affinities and also are not very portable across water models, and even RNA FF, and should be used with attention. With respect to sampling, rescaling the α LJ parameter from the ion non-bonded function using Hamiltonian replica exchanges allow for overcoming the very high dehydration free-energy barrier. This methodological approach, in combination with multiple concurrent well-tempered metadynamics, using the minimum distance between a Mg2+ ion and the binding sites to be addressed results in a computationally efficient sampling of Mg2+-rna binding.
Chapter 5

Dissecting Mg$^{2+}$-RNA interactions

Interaction with divalent cations is of paramount importance for RNA structural stability and function. In this chapter it will be reported a detailed molecular dynamics study of all the possible binding sites for Mg$^{2+}$ on a RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg$^{2+}$ affinity due to ion competition and hybridization respectively, and predict that RNA flexibility has a site dependent effect. This suggests a non trivial interplay between RNA conformational entropy and divalent cation binding. The results and methods presented in this chapter are based on the reference [26].

5.1 Introduction

The relevance of RNA in molecular biology has systematically grown since the discovery that it can not only transfer genetic information, but also catalyze chemical reactions [157] and RNA is now considered a key player in many of the regulatory networks of the cell [158]. Functions such as catalysis and regulation of gene expression rely on the peculiar structure and dynamics of RNA molecules. The folding of RNA three-dimensional structure stands in a delicate balance between canonical interactions and strong electrostatics mediated by the presence of cations. Cations, together with water, are indeed crucial to compensate for the large repulsion between the charged
phosphate groups present in the RNA backbone. They allow for the formation
of tertiary contacts \([13, 14]\), and can also provide entropic stabilization
to RNA motifs \([53]\). Among cations, \(\text{Mg}^{2+}\) is particularly relevant because of
its double charge and small radius and abundance in the cell \([159]\). \(\text{Mg}^{2+}\) can
be both directly and indirectly bound to RNA, that is RNA atoms can be part
of \(\text{Mg}^{2+}\) inner coordination sphere or interact through hydrogen bonds with
its hydration sphere \([160]\). The inner sphere ions mainly contribute to the
formation of specific structural motifs \([52]\). The outer sphere ones might also
bind to specific motifs and additionally take part to the ion atmosphere and
stabilize RNA structures by screening electrostatic repulsion \([41]\). Several experi-
mental works have provided valuable insights on the thermodynamics of
RNA-\(\text{Mg}^{2+}\) interactions in solution \([51, 73, 161, 162]\). Titration experiments
have been used to characterize the overall affinity of RNA for \(\text{Mg}^{2+}\) \([155]\).
Affinities for individual \(\text{Mg}^{2+}\) binding sites on RNA nucleosides and small
RNA motifs have also been reported \([19]\). The role of functional metal ions
on small RNAs have also been investigated through nuclear magnetic reso-
nance spectroscopy \([163–165]\). However, the precise characterization of typi-
cal \(\text{Mg}^{2+}\) binding sites in large RNA molecules has largely been obtained by
analyzing crystal structures \([76, 166]\). A recent database survey allowed for
a classification of all the binding modes observed in crystallographic struc-
tures \([70]\). Molecular modeling could in principle provide a powerful tool
to bridge the gap between detailed crystallographic structures and solution
experiments \([167]\). In this respect, several works at different level of resolu-
tion have been reported, ranging from quantum-chemistry calculations \([52, 88, 168–170]\), to explicit solvent molecular dynamics (MD) \([97, 125, 171]\), im-
plicit solvent methods \([172, 173]\), and coarse-grained models \([174]\). Among
the computational methods, MD presents an excellent compromise between
accuracy and computational cost, though the development of an appropri-
ate parametrization for \(\text{Mg}^{2+}\)-RNA interactions is still a debated topic \([89, 145]\).
Moreover, due to the high energetic barriers involved in \(\text{Mg}^{2+}\)-RNA
and \(\text{Mg}^{2+}\)-water interaction \([175]\), which brings the lifetime of these com-
plexes to the ms timescale, coupling of MD with enhanced sampling methods
is required.

In this Chapter, it will be shown a unique combination of enhanced sam-
pling techniques together with a recently published parametrization \([125]\) for
\(\text{Mg}^{2+}\) to compute its affinity on a flexible RNA duplex. RNA duplexes are
the most recurring motifs observed in ribosomal RNA \([30]\). The computed
affinities for all the relevant binding sites are compared with previously reported thermodynamic data and with an statistical analysis of the protein databank (PDB). Furthermore, by performing simulations on an appropriately chosen set of model systems it was possible to investigate the interplay between Mg$^{2+}$-RNA binding affinity and competition with monovalent ions, RNA flexibility, and RNA hybridization.

![Figure 5.1: A-form RNA duplex with sequence \(\text{GGGG} \text{CCCC} \). Target Mg$^{2+}$ binding sites are highlighted.](image)

5.2 Methods

The initial RNA structure was generated using the *make-na* webserver [146] as an ideal A-form helix with sequence \(\text{GGGG} \text{CCCC} \) (see Figure 5.1). Molecular dynamics (MD) simulations of the duplex were performed using GROMACS 4.6.7 [147]. RNA was described using the AMBER-ff12 force field with parmbsc0 and \(\chi \text{OL} \) corrections [104, 115, 116]. The choice of the FF is based on the discussion presented on the 3.2.1. These parameters are available at http://github.com/srnas/ff. The modeling of the monovalent ions (K$^+$ and Cl$^-$), was done using the parameters proposed by Cheatham and co-workers [150]. For Mg$^{2+}$ we used a parametrization developed in ref. [125], which was also discussed further previously on chapters 3 and 4. The duplex was solvated in a truncated dodecahedral box filled with explicit TIP3P water molecules [176]. Ions were
added by substituting randomly selected water molecules. Bonds were con-
strained using the LINCS algorithm, and the integration of the equations of
motion were performed with a 2 fs timestep. The temperature was set
to 300K, and it was kept constant by a stochastic velocity rescale thermo-
stat \cite{148}. Non-bonded interactions were calculated using the Verlet cutoff
scheme, and electrostatics using particle-mesh Ewald \cite{149}. The cutoff was
initially set to 1 nm and is adjusted adaptively so as to balance the load of
real-space and reciprocal-space contributions. Pressure was kept constant at
1bar using the Berendsen barostat for the equilibration phase \cite{177} and the
Parrinello-Rahman scheme during the production runs \cite{178}. Simulations
with a rigid duplex had the RNA atomic positions kept fixed, and were per-
formed at constant volume.

Enhanced sampling simulations were then performed combining GRO-
MACS with PLUMED 2.2 \cite{179}. A modified version of bias-exchange meta-
dynamics (BE-MetaD)\cite{134} was used to sample all the possible sites for inner
sphere Mg$^{2+}$ binding. In each replica we applied a bias potential according
to MetaD in its well-tempered formulation,\cite{128,129} acting simultaneously
on two collective variables, namely coordination number with water (CN_w)
and distance d_i between Mg$^{2+}$ and i-th target binding sites, resulting in as
many replicas as potential binding sites. A bidimensional free-energy surface
profile corresponding to binding on one of the duplex phosphate moieties is
shown on Figure 5.2.

In this thesis we identify the possible binding sites for both inner and
outer sphere binding using the name of the corresponding ligand (as high-
lighted in Figure 5.1). To this aim, we only considered binding sites with an
expected affinity large enough to require enhanced sampling (phosphates,
O6 and N7 in guanine, O2 in cytosine, see Figure 5.1). We chose these sites
based on preliminary simulations that we performed for all 4 RNA nucleo-
sides and a guanine dinucleoside monophosphate and also on available ex-
perimental information, such as the frequency that Mg$^{2+}$ appear close to the a
RNA atom in the PDB and potentiometric titrations. \cite{70,155} This procedure
resulted in 18 replicas and a total simulation time of 9 μs (18 replicas \times 0.5μs).
With the exception of a control simulation all the MD runs contained only one
Mg$^{2+}$ ion, which is the one being biased by the MetaD. In the control simula-
tion including multiple Mg$^{2+}$ ions only one of them was biased. The coordi-
nation number of the remaining Mg$^{2+}$ was restrained so as to avoid them to
directly bind RNA. In simulations performed with a larger box to study RNA
hybridization the total time was 3.6 μs (18 replicas \times 0.2μs). On the table 5.1
5.2. Methods

Figure 5.2: Sample free-energy profile as a function of the distance between Mg$^{2+}$ and 2G-P (phosphate of second guanine) $d_{(Mg^{2+}-2G-P)}$ and of the coordination number of Mg$^{2+}$ with water (CN_W), as obtained from the simulation with flexible RNA and explicit K$^+$ ions. The profile results from the bias potential accumulated on a single replica, and is thus subject to the penalizing restraints applied on that replica. An unbiased profile can be obtained using the reweighting procedure discussed in the methods, on the main text. In this figure it can be seen that Mg$^{2+}$ can bind on other positions which are not the ones being biased by metadynamics on that replica ($CN_W < 5.5$ and $d > 0.5$). However, there is a large penalty bias on those, which avoids the cation being trapped in those positions but still allows for sampling.

It is summarized the number of atoms, number of water molecules, number of ions and length for each simulation. Additionally, penalty bias potentials were added to avoid the competition of different binding sites in the same replica. This is not usually done in BE-MetaD but was required here to avoid Mg$^{2+}$ to be trapped in unbiased binding sites. We also tried using the conventional BE-MetaD approach, but the sampling was undermined due to the Mg$^{2+}$ being stuck in other positions. To ensure that the RNA helical structure was maintained through the enhanced sampling simulations, restraints were added to the distance and angles of all the hydrogen bonds corresponding to the four Watson-Crick base pairs. All the replicas were run simultaneously, and the acceptance rate was calculated taking into account the bias potentials introduced by the MetaD and penalty potentials on the unbiased binding sites. All the replicas have the same temperature, and the difference between the ensembles comes from the bias introduced by the MetaD and from the penalty potentials, which are unique for each replica. The acceptance for an exchange between replica i and replica j is thus evaluated as

$$\alpha = \min \left(1, e^{-\frac{V_i(q_j) + V_j(q_i) - V_i(q_i) - V_j(q_j)}{k_B T}} \right)$$
TABLE 5.1: Table containing the list of the studied systems, its components and the total simulation time. The simulations vary in the following parameters: small box (sb) vs large box (lb), rigid (fixed RNA atomic positions) vs flexible (restraints only on the hydrogen bonds of the Watson-Crick base pairs, for more details on the restraints used refer to the methods) and K\(^+\) or KCl vs Uniform positive background (UB+). On the GpG the RNA atoms were not frozen, instead the RMSD with respect to an equivalent RNA duplex fragment was restrained to 0 nm.

<table>
<thead>
<tr>
<th>System Description</th>
<th>Num. of atoms</th>
<th>Num. of ions</th>
<th>Num. of waters</th>
<th>(V_{box}) (nm(^3))</th>
<th>Sim. time (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleosides</td>
<td></td>
<td>Mg(^{2+})</td>
<td>K(^+)</td>
<td>Cl(^-)</td>
<td></td>
</tr>
<tr>
<td>Adenosine</td>
<td>1545</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>504</td>
</tr>
<tr>
<td>Cytidine</td>
<td>2623</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>864</td>
</tr>
<tr>
<td>Guanosine</td>
<td>1480</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>482</td>
</tr>
<tr>
<td>Uridine</td>
<td>1698</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>556</td>
</tr>
<tr>
<td>Rigid GpG</td>
<td>1814</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>582</td>
</tr>
<tr>
<td>Rigid sb UB+</td>
<td>6577</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2106</td>
</tr>
<tr>
<td>Rigid sb K(^+)</td>
<td>6569</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2102</td>
</tr>
<tr>
<td>Rigid lb K(^+)</td>
<td>73298</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>24345</td>
</tr>
<tr>
<td>SS Rigid lb K(^+)</td>
<td>73256</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>24339</td>
</tr>
<tr>
<td>Flexible sb UB+</td>
<td>6580</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2107</td>
</tr>
<tr>
<td>Flexible sb</td>
<td>6572</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2103</td>
</tr>
<tr>
<td>Flexible sb KCl</td>
<td>6556</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>2095</td>
</tr>
<tr>
<td>Flexible lb KCl</td>
<td>33333</td>
<td>1</td>
<td>24</td>
<td>20</td>
<td>11010</td>
</tr>
<tr>
<td>Flexible lb KCl + MgCl</td>
<td>33323</td>
<td>4</td>
<td>22</td>
<td>24</td>
<td>11005</td>
</tr>
</tbody>
</table>

Here \(V_i\) is the bias potential acting on replica \(i\), including both the MetaD potential and the penalty bias potential, and \(q_i\) are the coordinates for the replica \(i\). Ergodicity was thus ensured by accelerating the binding and unbinding events on all the possible binding sites with significant free-energy barriers. A sample input file for one of the model systems is provided in Figure A.1.

The \(K_o\) related to individual binding sites were calculated using the equilibrium distributions recovered from the BE-MetaD simulations. The simulations were reweighted using the umbrella sampling relationship \([180]\), combining the last bias from MetaD \([153]\) and the penalty bias potentials which were unique to each replica. Data from different replicas were combined with the weighted histogram analysis method (WHAM) \([138]\). This procedure is closely related to the standard way used to analyse BE-MetaD simulations \([139]\) but was here performed in a binless fashion that allows a large number of restraints to be simultaneously reweighted. The binding free energy at the standard 1M Mg\(^{2+}\) concentration was calculated accounting for the
5.2. Methods

probability of the cation to be found in the bulk region [154]. The bulk region was defined as a spherical shell around the center of mass of the RNA duplex (CoM$_{RNA}$) in which the free-energy profile as a function of the Mg$^{2+}$-CoM$_{RNA}$ distance was flat as shown in Figure 5.3.

\[\Delta G(d) = -k_B T \log P(d) + k_B T \log d^2, \]

where $P(d)$ is the probability to find Mg$^{2+}$ at distance d from CoM$_{RNA}$. The error is shown by the red, gray and blue shades of the respective curves and it was calculated using block analysis over 4 blocks. The free-energy curves are aligned on the minimum and the bulk region is defined by the flat free energy part (shown by the light-gray and light-blue boxes) corresponding to the Mg$^{2+}$ unbound states. Since the Mg$^{2+}$-RNA distance is evaluated using the minimal image convention, it is not possible for this distance to be larger than half the box size. Thus, it can be seen that the free-energy profile consistently increases at that distance.

The total weight w_i corresponding to the i-th binding site was obtained by accumulating the corresponding WHAM weights, and the affinities were
computed as

\[K_a^i = \frac{w_i}{w_{shell}} V_{shell} \]

Here \(w_{shell} \) is the total weight accumulated in the bulk (shell) region and \(V_{shell} \) is its volume. \(\text{Mg}^{2+} \) binding free energies were then defined as \(\Delta G_i = -k_B T \log K_a^i \). Since \(K_a \) is expressed in molar units, a positive \(\Delta G \) indicates that at a nominal \(\text{Mg}^{2+} \) concentration of 1 M one would expect the probability of finding a \(\text{Mg}^{2+} \) bound to be smaller than the probability of finding no \(\text{Mg}^{2+} \) bound.

The following set of simulations were designed and performed in order to evaluate the effect of the box size and of the ionic composition of the buffer: (I) a flexible duplex in a large box (\(\approx 11000 \) explicit water molecules) and a buffer of KCl at 0.1 M concentration; (II) a flexible duplex with the same box and a buffer with KCl and MgCl\(_2\) at 0.1 M and 0.02 M concentration respectively; (III) a flexible duplex with a smaller box (\(\approx 2100 \) explicit water molecules) and a buffer of KCl at 0.1 M concentration. In this way, by comparing the affinities and the free energy of the biased \(\text{Mg}^{2+} \) against the center of mass of the RNA duplex (see Figure 5.3) we could single out the effect of the having extra \(\text{Mg}^{2+} \) in the bulk ((I) vs (II)) and the effects of the box size in the \(\text{Mg}^{2+} \) affinity ((I) vs (III)).

To dissect the contributions to \(\text{Mg}^{2+} \)-RNA binding we performed calculations on the following systems using a box with \(\approx 2100 \) explicit water molecules: (a) a flexible duplex with and without explicit K\(^+\); (b) a rigid duplex with and without explicit K\(^+\); (c) a rigid duplex and two rigid separated strands with sequences GGGG and CCCC in a larger simulation box (\(\approx 24000 \) explicit water molecules). In this latter case the K\(^+\) concentration was \(\approx 0.01 \) M. When not using explicit monovalent ions, K\(^+\) was replaced by a uniform positive background (UB\(^+\)). This combination of setups allowed for the following factors to be considered: ion competition, RNA flexibility, and RNA hybridization. All the simulations followed the same protocols described above.

It is important to consider that a proper description of the kinetic and thermodynamic behavior of \(\text{Mg}^{2+} \) cations is very difficult to achieve without explicitly taking polarization and charge transfer effects into account [52, 124]. Several models have been introduced to effectively include polarization either using standard force field terms [125, 126], by means of \textit{ad hoc} modified Lennard-Jones potentials [181], or within a Drude model [182]. We here decided to opt for the parameters developed in reference [125] which were optimized to improve \(\text{Mg}^{2+} \) kinetic behavior in water and interaction with
phosphate. We already used these parameters in previous applications to model ATP-bound Mg\(^{2+}\) and to describe the effect of Mg\(^{2+}\) on tertiary contacts in a riboswitch [183, 184]. We notice that a proper balance in Mg\(^{2+}\)-RNA interaction is not granted by available force fields [89]. For this reason, we checked the robustness of the reported results by using a reweighting procedure. We applied a pragmatic correction, adding a posteriori a contribution to the interaction between Mg\(^{2+}\) and individual binding sites on RNA proportional to a switching function

\[
V_{\text{correction}} = \sum_{i} \lambda_i (1 + (d_i/R_0)^6)^{-1}
\]

Here \(d_i\) is the distance between Mg\(^{2+}\) and the \(i\)-th target binding site. \(R_0\) is a cutoff radius that defines the directly bound state and is chosen to correspond to the barrier separating inner and outer sphere binding. \(\lambda_i\) are Lagrangian multipliers found with an iterative procedure so as to enforce the experimental value of the affinity on individual binding sites. Affinities calculated on nucleosides as well as \(\lambda_i\) and \(R_0\) values are reported in Table 5.2. The weight used to compute the affinities are then corrected by a factor \(e^{-\frac{V_{\text{correction}}}{k_B T}}\). This procedure follows the MaxEnt prescription [185] stating that the minimal correction to a force field so as to enforce the average value of an observable should be proportional to the same observable. This procedure is expected to provide results comparable to those reported in ref. [181]. The difference between the results with or without these corrections is discussed when appropriate.

5.3 Mg\(^{2+}\) binding on a flexible duplex

The main output of our simulations is the binding affinity of Mg\(^{2+}\) on all the possible binding sites in a RNA duplex. In this section it will be reported a detailed analysis of the obtained affinities and the correspondence with frequencies from the PDB. A comparison with the thermodynamic data available for nucleosides and a dinucleoside monophosphate is reported in Table 5.2.

In the next Sections will be shown a set of simulations performed in different conditions to dissect the important contributions to Mg\(^{2+}\)-RNA binding. The reported affinities were calculated by averaging over atoms of the same type in the central bases of the duplex, so as to mitigate terminal effects. For all the reported quantities we also computed statistical errors. For a quantity whose best estimate is \(X\) and the confidence interval is \([X - \Delta_1, X + \Delta_2]\), the value is reported as \(X^{\pm\Delta_2}_{\Delta_1}\). Errors are computed by block averaging over 4 blocks without discarding any part of the simulation. When relevant we also
Table 5.2: Affinities (ΔG_N) calculated for target binding sites on nucleosides (G, C, A and U) and a dinucleoside monophosphate (GpG), which is used here to probe the phosphate moiety. The experimental values reported here (ΔG_{exp}) are taken from Sigel and Sigel, Acc. Chem. Res. 2010, 43, 974. Lagrangian multipliers λ_i and cutoff values (R_0) are also reported. λ_i values were found with an iterative procedure and enforce the calculated affinity to be identical to the experimental one. R_0 is the cutoff distance which define the Mg$^{2+}$ direct bound state.

<table>
<thead>
<tr>
<th>Binding Sites</th>
<th>ΔG_N (kJ/mol)</th>
<th>ΔG_{exp} (kJ/mol)</th>
<th>λ_i (kJ/mol)</th>
<th>R_0 (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G O6</td>
<td>11.7 $^{0.4}_{-0.4}$</td>
<td>-2.6</td>
<td>-13.72</td>
<td>0.267</td>
</tr>
<tr>
<td>G N7</td>
<td>37.2 $^{0.7}_{-0.5}$</td>
<td>-2.6</td>
<td>-13.72</td>
<td>0.280</td>
</tr>
<tr>
<td>C O2</td>
<td>18.2 $^{inf}_{-4.4}$</td>
<td>-2.9</td>
<td>-5.85</td>
<td>0.245</td>
</tr>
<tr>
<td>Phosp. O1P</td>
<td>-30.3 $^{0.5}_{-0.4}$</td>
<td>-4.3</td>
<td>25.27</td>
<td>0.261</td>
</tr>
<tr>
<td>Phosp. O2P</td>
<td>-28.6 $^{2.6}_{-1.3}$</td>
<td>-4.3</td>
<td>25.27</td>
<td>0.261</td>
</tr>
<tr>
<td>A N1</td>
<td>58.7 $^{0.4}_{-0.4}$</td>
<td>—</td>
<td>—</td>
<td>0.270</td>
</tr>
<tr>
<td>A N7</td>
<td>44.5 $^{0.5}_{-0.5}$</td>
<td>-2.0</td>
<td>-55.74</td>
<td>0.270</td>
</tr>
<tr>
<td>A N3</td>
<td>55.0 $^{5.2}_{-1.6}$</td>
<td>—</td>
<td>—</td>
<td>0.270</td>
</tr>
<tr>
<td>U O2</td>
<td>23.4 $^{0.2}_{-0.2}$</td>
<td>-2.0</td>
<td>-17.60</td>
<td>0.263</td>
</tr>
<tr>
<td>U O4</td>
<td>11.2 $^{0.01}_{-0.01}$</td>
<td>-2.0</td>
<td>-17.60</td>
<td>0.263</td>
</tr>
</tbody>
</table>

discuss the results obtained by applying a correction that enforces the experimental affinity on all the binding sites of a nucleoside (MaxEnt correction, see 5.2).

Table 5.3 reports the binding affinity for Mg$^{2+}$ of a flexible RNA duplex in presence of explicit K$^+$ and Cl$^-$ ions. Reported results are obtained with the large simulation box (\approx 11000 water molecules). With our approach one can obtain affinities for both inner and outer sphere binding on all the possible binding sites. For the sake of clarity we repeat here that outer sphere binding is defined by any state in which at least one explicit water molecule is between Mg$^{2+}$ and a electronegative donor.

Affinity for inner sphere binding is clearly dominated by the phosphates, with a preference for the strand composed of guanines. We observed a significant preference for direct binding on G-O2P with respect to the G-O1P. This is not seen for cytosines, where the difference between C-O1P and C-O2P is within statistical error. Nitrogens that are involved in base pairing never formed direct contacts with Mg$^{2+}$. Affinity of C-O2 was extremely low, being
surpassed by the O2’ in the sugar moiety. The only atoms in the nucleobase displaying significant affinities were G-O6 and G-N7. All these observations are in striking agreement with interaction frequencies observed in the PDB taken from ref. [70] that are also reported in Table 5.3. The only exception is the inversion in the binding free energies of C-O2 and O2’. Our underestimation of the affinity of C-O2 might be biased by our choice to simulate a RNA duplex. Indeed, affinity of C-O2 is expected to be increased when cytosine is not involved in a canonical base pair. Interestingly, in a simulation performed on a isolated nucleoside (see Table 5.2) the affinity of C-O2 was significantly larger. Still, it is possible that neighboring Cytosines hinder the affinity of inner-sphere binding Magnesium(II) to the O2 atom, since we observed that in the rigid simulations containing two separated single strands (SS Rigid lb, described in Table 5.1), we did not observe binding in the central C-O2 atoms but only in the terminal ones. It might be that this is an artifact since the RNA atoms were frozen, or the duplex was too short.

When analyzing the outer sphere binding, both nucleobase and phosphate backbone contribute to the overall affinity (see Table 5.3). Also in this case, there is a preference for the strand composed of guanines, and binding on G-O2P is more favorable with respect to binding on G-O1P. The affinity of G-O6 and G-N7 is comparable to the affinity of phosphates. Also the sugar oxygens have a relatively large affinity. These observations agree with the interaction frequencies observed in the PDB. The only two exceptions are related to O5’ and O3’, for which the reported frequency is low and to the G-O6 and G-N7 affinities which are in the inverse order but within error of each other. The former discrepancy could be related to the fact that, at variance with our approach, in the reported experimental frequency the outer sphere binding with phosphates were excluded from the count on the O5’ and O3’ interaction frequencies. The latter discrepancy could be related to the sequence we choose to sample. It must be also noticed that binding of Mg$^{2+}$ on G-N7 can happen in a large variety of equivalent and consequently non-comparable structural contexts. On another note, it there are structures deposited on the PDB wrongly assigning magnesium(II) cations bound to G-N7. [78] Moreover, the difference in the reported experimental frequencies is very small.

One might be tempted to convert the observed frequencies into binding free energies that can be quantitatively compared with our results. Even though the correlation is good ($R^2 = 0.61$ for inner sphere and $R^2 = 0.67$ for outer sphere binding), indicating that the ranking is consistent, the slope
of the fitting line is very far from unity, as shown in Figure 5.4. This might be due to imbalance in the force field [89] as well as to the fact that PDB distributions are not necessarily representative of the canonical or any thermodynamic ensemble. Additionally, it is not clear how much these frequencies could be used to anticipate location of Mg$^{2+}$ ions in solution.

Remarkably, our calculation can recapitulate the most important trends observed in experimental frequencies, namely: preference for G with respect to C; preference for major-groove with respect to minor groove; relative preference between all the relevant binding sites.

Table 5.3: Calculated Mg$^{2+}$ affinities on a duplex and PDB frequencies from ref. [70]. Frequencies for sugar and phosphate moieties were reported independently of the base identity.

<table>
<thead>
<tr>
<th>Binding sites</th>
<th>Inner sphere</th>
<th>Outer sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔG^inner PDB (kJ/mol)</td>
<td>F^inner PDB</td>
</tr>
<tr>
<td>Bases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>G N3</td>
<td>—</td>
<td>0.002</td>
</tr>
<tr>
<td>N9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N7 O6</td>
<td>25.2 1.35</td>
<td>-10.9 3.62</td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>33.4 0.07</td>
<td>0.4 0.54</td>
</tr>
<tr>
<td>O3'</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>O4'</td>
<td>—</td>
<td>0.004</td>
</tr>
<tr>
<td>O5'</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>Phosp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G O1P</td>
<td>-43.5 4.19</td>
<td>-8.4 1.91</td>
</tr>
<tr>
<td>O2P</td>
<td>-48.1 4.99</td>
<td>-10.5 2.78</td>
</tr>
<tr>
<td>C O1P</td>
<td>-22.8 4.19</td>
<td>-7.0 1.91</td>
</tr>
<tr>
<td>O2P</td>
<td>-28.2 4.99</td>
<td>-6.6 2.78</td>
</tr>
</tbody>
</table>

5.4 Effects on the Mg$^{2+}$-RNA binding affinity

We then repeated the calculations in several different conditions with the aim of dissecting important contributions to RNA-Mg$^{2+}$ binding affinity. Simulations with explicit K$^+$ ions were compared with equivalent ones using a uniform positive background (UB+) in order to account for ion competition effects. In the same spirit, simulations with flexible RNA were compared
against equivalent ones with rigid RNA, in order to account for flexibility and conformational entropy effects. These simulations are performed with a box containing approximately 2100 water molecules, which is large enough to observe a clearly flat free-energy profile as a function of the distance of the Mg\(^{2+}\) from the CoM\(_{RNA}\). Profiles obtained with control simulations are shown in Figure 5.3. The hybridization effects on Mg\(^{2+}\) affinity can be clarified by comparing affinities obtained by simulations done on single stranded (ssRNA) and double stranded RNA (dsRNA). The conditions for each set of simulation were previously discussed in detail, and can be seen in Section 5.2.

5.4.1 Ion competition

We first use our simulations to quantify how much the competition with K\(^+\) influences the RNA affinity for Mg\(^{2+}\). To this aim we compared the affinities on individual binding sites using either an uniform positive background (UB+) or explicit K\(^+\) ions. To avoid sampling complications related to the interaction of counterions and coions, we only added 4 monovalent cations so as to neutralize the system. Inner sphere binding free-energies reported in Figure 5.6 A shows the effect of explicit K\(^+\) ions on Mg\(^{2+}\)-RNA affinity. Here it is possible to appreciate that competition of K\(^+\) ions decreases the overall Mg\(^{2+}\) affinity, both when RNA is kept rigid and when it is modeled as flexible. The change in the total binding free energy is quantified as 10.5 \(\pm 1.0\) kJ/mol for flexible RNA and as 9.5 \(\pm 0.7\) kJ/mol for rigid RNA. The effect of the presence of K\(^+\) ions on the affinity can be also rationalized by measuring the conditional Mg\(^{2+}\) affinity on individual sites when there is a K\(^+\) ion in proximity of the same site. Results are reported in Figure 5.5 and are consistent with the fact that the decreased affinity is an effect of the competition between the two species for the same binding site. We notice that the effect of competition is local and propagates in a few case to the nearest neighbor binding sites, suggesting that also a short model duplex can be used to quantify ion competition.

The binding free energies for the indirectly bound ions are also reported (Figure 5.6C) and follow a similar trend being reduced by 4.9 \(\pm 0.03\) kJ/mol for flexible RNA and 9.3 \(\pm 0.06\) kJ/mol for rigid RNA. Errors are much smaller here since the number of binding and unbinding events is significantly larger in the case of outer-sphere binding.
Equivalent data obtained including MaxEnt corrections are shown in Appendix A.2. The changes in binding free energies due to flexibility are not affected by the corrections on the Mg$^{2+}$ parametrization, indicating that these results are robust with respect to the imbalance between binding on nucleobases and phosphates observed in the original force field.

5.4.2 RNA flexibility

We then compared the results obtained with a rigid RNA molecule with those obtained with a flexible one. The flexible RNA molecule had minor restraints so as to conserve its secondary structure, but still could undergo significant local deformations. Flexibility effects on the affinity of the inner sphere bound ions are reported in Figure 5.6B. The effect of flexibility is not trivial. In the system where cations are explicitly included, the affinity of Mg$^{2+}$ on flexible RNA is decreased by 3.9$^{+0.9}_{-0.7}$ kJ/mol with respect to rigid RNA. In the system where cations are replaced with a UB+ the affinity of Mg$^{2+}$ on flexible RNA with respect to rigid is decreased by 2.9$^{+0.8}_{-0.6}$ kJ/mol.

The values of affinity for the indirectly bound ions (Figure 5.6D) follow the same direction, decreasing by 4.3$^{+0.05}_{-0.05}$ kJ/mol in the simulation with explicit K$^+$ ions and 8.7$^{+0.04}_{-0.04}$ kJ/mol to the one with a UB+.

Also these values are barely affected by the corrections on the Mg$^{2+}$ parametrization, indicating that these results are robust with respect to the imbalance between the binding affinity of nucleobases and phosphates observed in the original force field. Equivalent data obtained including MaxEnt corrections are shown in Table A.2.

By dissecting the contribution of the individual binding sites to the overall affinity, it can be seen that the central phosphate of the guanine (G-P), which contributes most to the overall affinity, has a greater affinity for Mg$^{2+}$ when RNA is kept frozen. This is true for all the three G-Ps.

Interestingly, the affinity on the nucleobase binding sites located in major groove (G-O6 and G-N7) is affected by flexibility with an opposite trend. The lower affinity in the ideal rigid structure indicates that the duplex should undergo slight rearrangements so as to bind Mg$^{2+}$ on the major groove. Figures 5.7 and 5.8 show the conditional probability distributions of all RNA backbone dihedrals consequent to Mg$^{2+}$ direct binding for all phosphates. No significant rearrangement can be appreciated on the backbone dihedrals. We notice however that a very small repositioning of the phosphates could lead to a significant change in the electrostatic interaction with Mg$^{2+}$ that would
explain the observed differences. Therefore, the structural integrity of the duplex was maintained even when Mg\(^{2+}\) was directly bound to RNA. It is also relevant to say that for \(\approx 1\%\) of the simulation time flexible RNA underwent a reversible transitions to ladder-like structures [186]. This is consistent with what has been observed in recent simulations of restrained RNA duplexes [187]. Reversibility was checked by monitoring the continuous trajectories so as to avoid false transitions to be observed just due to replica exchanges. To assess the impact of these structures on Mg\(^{2+}\) binding, we recomputed all the affinities by excluding all the snapshots where at least one of the glycosidic torsions was in the range \((-90^\circ, 0^\circ)\), which corresponds to the high anti conformation observed in ladder-like structures. Only the affinities for O5’ at the 5’ termini were affected. All the other affinities where within the statistical error from the calculation including all the data, indicating that transitions to ladder-like structures is not correlated with Mg\(^{2+}\) binding. Since only the affinities for non-terminal nucleotides are discussed in this work, the presence of ladder-like structure does not affect the reported results.

5.4.3 RNA hybridization

Finally, we compare the affinity of Mg\(^{2+}\) with a double stranded RNA (dsRNA) against the one with a pair of single stranded RNAs (ssRNA) with the same sequence. The calculations were performed for both systems in a box that was large enough to contain the two separated strands and in identical ionic conditions. Also these simulations were performed using neutralizing cations only, so that the affinities reported for the duplex presented in this Section corresponded to a lower ionic strength in comparison with those presented above. In all these simulations, RNA was kept rigid. Indeed, sampling all the conformations available for a ssRNA is a formidable task [132, 188] and would have made virtually impossible to obtain converged values for the binding affinities. Moreover, the capability of current force fields to correctly reproduce the conformational ensembles of ssRNA has been questioned [101, 152, 187, 189]. To allow for the affinities to be comparable, it was necessary to treat also the dsRNA as rigid. Affinities for inner sphere binding are reported in Figure 5.9A. Overall the affinity in the dsRNA was larger indicating that hybridization and Mg\(^{2+}\) binding act cooperatively. In other words, when a Mg\(^{2+}\) ion is interacting with RNA, the hybridization free energy is expected to be decreased by \(9^{+1.4}_{-0.9}\) kJ/mol, further stabilizing the duplex. We also notice that the overall affinity on the dsRNA is dominated by direct interactions
with the phosphate. However, it is interesting to see this effect on individual binding sites. In Figure 5.9 it can be seen that the affinity with the G-O6 is affected by hybridization in the opposite manner, so that affinity in the ssRNA is enhanced. This is consistent with the fact that electronegative atoms in the base are more accessible to divalent ions. However, since the contribution of bases to the overall affinity on the dsRNA is negligible with respect the contribution of phosphates, this effect is not visible in the overall affinity.

It is also possible to compare the affinity of Mg$^{2+}$ ions which are directly bound with that of ions that are indirectly bound. As it can be seen in Figure 5.9B, hybridization increases the stability of indirect binding sites as well, by 9.7 ± 0.1 kJ/mol.

5.5 Conclusion

In this chapter it was present extensive MD simulations investigating the binding affinity of Mg$^{2+}$ on all the possible binding sites in a short RNA duplex. Calculations are performed using state-of-the-art force fields and a modified version of bias-exchange metadynamics.

The enhanced sampling method we used is an improved version of the bias-exchange metadynamics (BE-MetaD) procedure designed for this application. At variance with the original approach, we here added different penalizing potentials in each replica to avoid binding events that would trap Mg$^{2+}$ in undesired positions. This procedure was necessary here to achieve converged affinities. The idea of forbidding different events in different replicas can be straightforwardly generalized to cases where one wants to study competing rare events under the same conditions, and could provide a significant improvement in the applicability of BE-MetaD to the description of complex free-energy landscapes. To help reproducibility of our results and application of the procedure to different systems, we included a sample input file in Figure A.1.

Overall, this procedure provides statistically converged affinities for the modeled systems. To further check convergence, we applied the same protocol on a symmetric duplex. The calculated affinities are shown in Table 5.4). This check would show if the reported statistical error were underestimated, since a difference in the affinity between the sides of a perfectly symmetric duplex could only arise from statistical uncertainty.

Our results rely on a few methodological choices and approximations that we here discuss in detail. It is known that the current RNA force fields may
not properly describe unstructured single-stranded oligonucleotides, as discussed previously on Chapter 3.2.1. [101, 187, 189] In this work we focused in the investigation on dsRNAs and on rigid ssRNA. With respect to the Mg$^{2+}$ ion itself we assessed our chosen force field by testing the effect of an a posteriori adjustment of its interactions with RNA so as to enforce binding affinities to be in agreement with potentiometric titration experiments on nucleosides. Similarly to a recently published parametrization, proposed by [181] this procedure did not affect the ion-water and ion-ion interactions. However, the qualitative consistency between the results with and without the corrections indicates robustness with respect to Mg$^{2+}$ force field choice. Another point to consider is that in our simulations we assumed a single Mg$^{2+}$ ion binding to RNA at any time, implying an infinite Mg$^{2+}$ dilution. To verify the effect of the neglecting extra Mg$^{2+}$ in the buffer we performed an extra control simulation including an appropriate MgCl$_2$ buffer. Our results on the competition between K$^+$ and Mg$^{2+}$ suggest that it would be very difficult for multiple Mg$^{2+}$ ions to bind on the same site. However, the double charge of Mg$^{2+}$ could allow for longer range interactions, affecting the affinity of the neighboring binding sites. One in principle should thus simulate a replica corresponding to each pair of potentially cooperative binding sites. Ideally, this could be done after an initial screening where the most important binding sites have been identified. Additionally, since some simulation boxes only had enough ions to counterbalance the negative charge of RNA backbone, some of our results did not consider the effect of anions. To verify the effect of the neglecting Cl$^-$ in the buffer we performed an extra control simulation including an appropriate KCl buffer. We notice that in all these simulations the number of ions rather than their chemical potential is kept constant. This limitation could be overcome using a very large simulation box and an extra potential to control ionic strength in the spirit of ref. [190]. Additionally, the reported control simulations performed with a large box allow the possible artifacts related to box size to be assessed. Here the Mg$^{2+}$ binding affinity might be affected by a larger effective cation concentration in the vicinity of the RNA (see Figure 5.3). However, our results show that relative binding affinities are virtually independent on this effect. Finally the reported results were obtained using a single RNA sequence in a A-form helix. Sequence and structure dependent effects will be the subject of a further investigation. This will be further discussed in later Chapter, in which a similar methodology used here, is applied to more complex system than a duplex.

Our results show that the overall affinity of the inner sphere (direct) bound
Mg$^{2+}$ cations on a RNA duplex is largely dominated by the interaction with phosphates. On the contrary, outer sphere (indirect) bound Mg$^{2+}$ cations interacts more strongly with the nucleobases. We observe that there is a significant preference for inner Mg$^{2+}$ binding on the guanines with respect to cytosines. Interestingly, this is consistent in all our simulations including the ones performed with two separated single strands in the A-helix. This suggests that indirect contacts with guanine N7 might provide extra stabilization. Additionally, we see an overall preference between the three moieties of a nucleotide in the following order: phosphate > bases > sugar. The affinities on specific binding atoms follows the trend O2P > O1P > G-O6 > G-N7 > sugar hydroxyls > C-O2. This trend is not the same when considering the outer sphere contacts, where it is changed to G-N7 \approx G-O6 \approx O2P > O1P > sugar hydroxyls. Our procedure captures the experimental trends observed in the PDB binding frequencies both for inner and outer sphere binding. It must be noticed that the PDB survey reported in ref. [70] considers binding with a variety of RNA motifs. However, the most common RNA motif present in the PDB is the A-helix, which is the same motif addressed by our study. Although Mg$^{2+}$ is expected to mostly bind on specific structures and to stabilize tertiary contacts, the comparison of our study with the discussed PDB analysis indirectly confirms that the patterns of the electrostatic field in the neighborhood of a helix are representative for the general trend observed in structured RNAs. It must be also observed that the interpretation of primary X-ray data is not trivial and the assignment of many of the reported density peaks to Mg$^{2+}$ ions have been recently challenged. [24] However, whereas these errors could affect the interpretation of specific important structures, we expect the overall statistics to be reliable. Moreover, we notice that, although the ranking are correctly reproduced by our calculations, the reported frequencies are not proportional to $e^{-\frac{\Delta G_{\text{Mg}^{2+}}}{k_B T}}$. It is not clear whether the frequencies from the PDB can be assumed as representative of a Boltzmann ensemble. This discrepancy could also be related to an imbalance inherent to the force field in the description of interactions of Mg$^{2+}$ with phosphates and bases which has also been reported in refs. [89, 181]. Ions in MD simulations are usually described by charged Van der Waals spheres. Although this model has proven to be very useful, its accuracy is still debated. The main source of doubt comes from the fact that usual MD does not explicitly includes polarizations effects.

Our procedure also allowed for the dissection of the effect of ion competition, RNA flexibility and RNA hybridization to Mg$^{2+}$ affinity. We found that,
5.5. Conclusion

For both inner and outer sphere binding, ion competition and RNA flexibility reduce Mg\(^{2+}\) overall binding affinity while hybridization increases it.

The effect of ion competition on the inner sphere binding was independent of solute flexibility and amounted to \(\approx 10\) kJ/mol. The same was true for outer sphere binding on a rigid RNA. However, the effect for outer sphere binding on flexible RNA was significantly smaller (\(\approx 4\) kJ/mol). This indicates that local rearrangements that are possible in the flexible RNA could compensate for the repulsion between the cations.

Interestingly, RNA flexibility decreased its affinity for Mg\(^{2+}\). We recall that the total affinity is dominated by the phosphates. Affinity on the nucleobases was on the other hand increased by flexibility. We argue that the flexibility of RNA might affect binding affinity in two opposite ways. First, the enthalpic contribution to the affinity could be increased by RNA flexibility when local rearrangements lead to more favorable RNA-Mg\(^{2+}\) interactions. On the other hand, binding of RNA with Mg\(^{2+}\) constrains RNA leading to a loss in its conformational entropy. \cite{145} Interestingly, it has been recently suggested that multivalent cations make RNA helices more rigid. \cite{191} The simulation of rigid RNA allowed us to explicitly ignore changes in the RNA conformational entropy. We observe that nucleobases are significantly constrained by Watson-Crick pairing and require a local rearrangement so as to bind Mg\(^{2+}\). Conversely, phosphates are accessible for Mg\(^{2+}\) binding even in a rigid RNA model. We hypothesize that in the case of Mg\(^{2+}\) binding on phosphates the second effect dominates over the first effect leading to a decreased affinity in the flexible model.

During the revision process for publication of this work (see ref \cite{26}), an alternative approach was proposed to find Mg\(^{2+}\) binding sites with large affinity using a grand-canonical Monte Carlo scheme. \cite{192} Since the approach presented here addresses the same problem in an orthogonal direction, the two schemes might be combined so as to allow for an even more efficient simulation protocol.

In this Chapter it was presented a computational approach to the detailed and atomistic characterization of Mg\(^{2+}\)-RNA binding. To this aim, we introduced a modified version of bias-exchange metadynamics. The results reproduce statistics observed in structural databases and allow for a dissection of the most important contribution to Mg\(^{2+}\)-RNA interactions, shading a new light on the interplay between RNA flexibility and binding with divalent cations. We foresee the application of our computational approach to the characterization of Mg\(^{2+}\) binding sites on a repertoire of RNA motifs and
sequences. Although there is still controversy regarding Mg\(^{2+}\) ion parameters and the accuracy of the simple Lennard-Jones based models employed, the trends in the binding affinities would likely be consistent. Additionally, the introduced procedure could be used as a benchmark to compare several models. More generally, our procedure could be used to trustfully quantify affinities of ions or small ligands when multiple competing binding sites have to be simultaneously assessed.
5.5. Conclusion

Figure 5.4: Mg$^{2+}$ affinities against the estimated free energies from the PDB interaction frequencies. $\Delta G_{F_{PDB}}^{i} = -k_B T \log F_{PDB}^{i}$, being F_{PDB}^{i} the frequency of Mg$^{2+}$ interaction measured on the PDB, with i indicating inner or outer shell binding. The dotted line is obtained through linear regression of the data. We notice that the reported $\Delta G_{F_{PDB}}^{i}$ are subject to an arbitrary shift due to the normalization of the corresponding frequencies, so that only the slope of this line can be interpreted. The guanine nitrogens (N1, N2, N3 and N9) are labeled as G-Ns and the cytosine oxygens as C-O2. The sugar oxygens (O2', O3', O4' and O5') are labeled as G-O' for guanine and C-O' for cytosine. Error-bars are not shown, but the error estimation for each of the affinities plotted here can be found in the table A.1.
Chapter 5. Dissecting Mg$^{2+}$-RNA interactions

Figure 5.5: Conditional Mg$^{2+}$ affinities upon K$^+$ binding. Each square represents in a color scale the affinity of Mg$^{2+}$ on a specific binding site (vertical axis) when a is close to another binding site (horizontal axis). We notice that binding sites that are spatially close (e.g. sites in the same nucleobase, G-O6 and G-N7 from consecutive nucleotides, and some of the neighboring phosphates) are affected by K$^+$ binding. We also notice that Mg$^{2+}$ affinity is accumulated considering only simulation snapshots where K$^+$ was bound on a specific site. Since some of the sites are rarely occupied by K$^+$, statistical errors for those sites are larger with respect to the reported ones. The affinities shown in this figure were calculated from the simulation on a large box with a buffer of KCl at 0.1 M concentration. The same graph was obtained for the simulations used to analyze the effects of ion competition on the affinity. The pattern of the conditional Mg$^{2+}$ affinities upon K$^+$ binding remained qualitatively identical to the one shown here.
5.5. Conclusion

Figure 5.6: Specific Mg$^{2+}$ binding affinities on a GGGGCCCC duplex under different simulation conditions. The affinities were obtained in a flexible and rigid duplex both with explicit K$^+$ ions and without, thus with a uniform positive background (UB+). Plots A and C show the effect of ion competition (K$^+$ vs UB+) for inner and outer sphere Mg$^{2+}$ binding respectively. Plots B and D show the effect of flexibility (flex vs rigid) for inner and outer sphere Mg$^{2+}$ binding respectively.
Chapter 5. Dissecting Mg\(^{2+}\)-RNA interactions

Figure 5.7: Conditional distributions for α, β and δ backbone dihedral angles upon Mg\(^{2+}\) binding on the phosphates. Each panel shows the distribution of the dihedral from the indicated residue conditioned to Mg\(^{2+}\) being bound on a different phosphate group (different colors). The black line indicates the distribution when Mg\(^{2+}\) is not bound.
Figure 5.8: Conditional distributions for ε, γ and ζ backbone dihedral angles upon Mg$^{2+}$ binding on the phosphates. Each panel shows the distribution of the dihedral from the indicated residue conditioned to Mg$^{2+}$ being bound on a different phosphate group (different colors). The black line indicates the distribution when Mg$^{2+}$ is not bound.
Figure 5.9: Mg$^{2+}$ binding affinities on a dsRNA vs ssRNA. Plot (A) shows inner sphere binding and plot (B) outer sphere. The points are color coded according to Figure 5.6.
TABLE 5.4: Affinities on a \(\text{CGCC} \) \(\text{CCGG} \) duplex. The difference on the affinities of the same binding site on the 3'-5' side with respect to the 5'-3' is only due to statistical errors, since the duplex is completely symmetrical. Here we report errors and affinities in kJ/mol and only for binding sites for the central GC pairs. Notice that the affinities are within error in the large majority of cases, confirming that the calculation provides good statistical convergence. The errors on the \(K_a \) on the \(i - th \) binding site (\(\epsilon_i \)) were calculated over 4 blocks being \(\epsilon_i = \frac{\sigma_i}{\sqrt{n-1}} \). \(\sigma_i \) is the standard deviation of the \(K_a \) calculated for each block \(n \). The affinities here are show as \(\Delta G_i + \Delta \epsilon_i \), in which \(\Delta G = -k_B T \log (K_a - \epsilon_i) - \Delta G_i \) and \(\Delta \epsilon = -k_B T \log (K_a + \epsilon_i) - \Delta G_i \).

<table>
<thead>
<tr>
<th>Binding Sites</th>
<th>(\Delta G_{\text{inner}}^{\text{corr}}) (kJ/mol)</th>
<th>(\Delta G_{\text{outer}}^{\text{corr}}) (kJ/mol)</th>
<th>(\Delta G_{\text{outer}}) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>22.9 (\pm 0.9)</td>
<td>32.9 (\pm 7.7)</td>
<td>1.2 (\pm 0.3)</td>
</tr>
<tr>
<td>N2</td>
<td>1.1 (\pm 0.3)</td>
<td>1.2 (\pm 0.3)</td>
<td>0.2 (\pm 0.3)</td>
</tr>
<tr>
<td>N3</td>
<td>6.7 (\pm 0.1)</td>
<td>6.7 (\pm 0.2)</td>
<td>6.7 (\pm 0.1)</td>
</tr>
<tr>
<td>N7</td>
<td>3.0 (\pm 0.4)</td>
<td>25.0 (\pm 0.5)</td>
<td>2.0 (\pm 0.2)</td>
</tr>
<tr>
<td>N9</td>
<td>14.8 (\pm 0.7)</td>
<td>15.9 (\pm 1.0)</td>
<td>0.1 (\pm 0.1)</td>
</tr>
<tr>
<td>O6</td>
<td>8.5 (\pm 0.3)</td>
<td>6.9 (\pm 0.6)</td>
<td>-8.0 (\pm 0.1)</td>
</tr>
<tr>
<td>N1</td>
<td>15.8 (\pm 0.9)</td>
<td>20.4 (\pm 3.3)</td>
<td>-1.4 (\pm 1.4)</td>
</tr>
<tr>
<td>N3</td>
<td>12.3 (\pm 1.5)</td>
<td>12.1 (\pm 0.3)</td>
<td>1.0 (\pm 0.3)</td>
</tr>
<tr>
<td>N4</td>
<td>-7.4 (\pm 0.1)</td>
<td>-7.4 (\pm 0.1)</td>
<td>0.1 (\pm 0.1)</td>
</tr>
<tr>
<td>O2</td>
<td>54.7 (\pm 0.5)</td>
<td>54.1 (\pm 0.4)</td>
<td>0.3 (\pm 0.3)</td>
</tr>
<tr>
<td>O2’</td>
<td>33.5 (\pm 5.0)</td>
<td>33.5 (\pm 5.0)</td>
<td>1.5 (\pm 0.2)</td>
</tr>
<tr>
<td>O3’</td>
<td>-4.0 (\pm 0.1)</td>
<td>-4.0 (\pm 0.1)</td>
<td>1.0 (\pm 0.1)</td>
</tr>
<tr>
<td>O4’</td>
<td>6.1 (\pm 1.1)</td>
<td>6.1 (\pm 1.3)</td>
<td>-0.3 (\pm 0.3)</td>
</tr>
<tr>
<td>O5’</td>
<td>-4.4 (\pm 0.1)</td>
<td>-4.4 (\pm 0.1)</td>
<td>0.1 (\pm 0.1)</td>
</tr>
<tr>
<td>O2’</td>
<td>32.1 (\pm 1.9)</td>
<td>34.6 (\pm 2.9)</td>
<td>-0.6 (\pm 0.2)</td>
</tr>
<tr>
<td>O3’</td>
<td>-4.1 (\pm 1.1)</td>
<td>-3.8 (\pm 0.1)</td>
<td>0.2 (\pm 0.2)</td>
</tr>
<tr>
<td>O4’</td>
<td>4.3 (\pm 0.2)</td>
<td>4.3 (\pm 0.2)</td>
<td>-0.2 (\pm 0.2)</td>
</tr>
<tr>
<td>O5’</td>
<td>-4.7 (\pm 0.1)</td>
<td>-4.3 (\pm 0.1)</td>
<td>0.1 (\pm 0.1)</td>
</tr>
<tr>
<td>Phosp.</td>
<td>6.5 (\pm 0.1)</td>
<td>-9.3 (\pm 0.1)</td>
<td>-6.3 (\pm 0.1)</td>
</tr>
<tr>
<td>C</td>
<td>-6.0 (\pm 0.1)</td>
<td>-5.9 (\pm 0.1)</td>
<td>0.1 (\pm 0.1)</td>
</tr>
<tr>
<td>O2P</td>
<td>-10.4 (\pm 1.0)</td>
<td>-8.4 (\pm 1.0)</td>
<td>-5.9 (\pm 0.1)</td>
</tr>
</tbody>
</table>
Chapter 6

Conclusions and Perspectives

In this Thesis, state-of-the-art simulations techniques for rare events were applied to sampling Mg$^{2+}$ binding to RNA with molecular dynamics and assessing current force field accuracy. Results indicate that current Mg$^{2+}$ force fields do not reproduce well experimental values of the Mg$^{2+}$-phosphodiester binding free energy and the measured affinities are sensitive to water models utilized and different versions of the RNA force field. Furthermore, we proposed an innovative combination of enhanced sampling techniques to sample many Mg$^{2+}$ ions potentially binding to multiple RNA is an expensive and complex computational task. Simulations performed to investigate Mg$^{2+}$ binding to a four-base-pairs RNA duplex thoroughly, indicate that the relative affinity between the phosphodiester moieties and the RNA bases are not affected by the choice of Mg$^{2+}$ force field. Also, the obtained affinities qualitatively agree with experimental distributions of Mg$^{2+}$ ions bound to RNA obtained by an analysis of structures deposited on the PDB. This indicates that, although not able to give thermodynamic stabilities in quantitative agreement with experiments, these simulations can be used to reliably predict Mg$^{2+}$ binding sites. Lastly, effects of solute flexibility, ion competition and RNA hybridization on the Mg$^{2+}$-RNA affinity were also quantified, indicating that ion competition and RNA hybridization decreases and increases the RNA overall affinity, while flexibility affects affinity in a non-trivial way due to entropic effects.

The methodologies and results proposed here could be applied to describing Mg$^{2+}$ affinities to different RNA structures or Mg$^{2+}$ dependent biological problems. Relative affinities for all the possible Mg$^{2+}$ binding positions of known metal-binding structures such as the GNRA tetraloops and S-turns could be directly compared with available NMR data [164, 193]. In addition, one might apply the approaches proposed in this thesis to understand better why Mg$^{2+}$ ions interact differently with RNA and DNA [42, 171], or
even to possibly describing the Mg\(^{2+}\) dependency of some biological processes, such as gene regulation performed by riboswitches or the intro-exon recognition site binding in ribozymes [156, 194, 195]. Some work in those directions are already in progress, although it not presented here. Furthermore, the enhanced sampling approaches proposed in this work could be applied to a different ligand-binding pair where multiple concurrent and relatively equivalent binding sites need to be explored. The next step could be towards understanding how Mg\(^{2+}\) ions affect the free-energy landscape of RNA folding for small molecules, for which it might be useful to integrate state-of-the-art enhanced sampling techniques used to assess RNA folding landscape [196] and the methods proposed here.
Appendix A

Appendix 1

Start of cvs.dat file
#
insert inside {} the correspondent index number of the described atoms.
@atom type={}@residue

MOLINFO
STRUCTURE=my-initial-configuration.pdb MOLTYPE=rna

Essential when calculating CoM
WHOLEMOLECULES STRIDE=10 ENTITY0={first RNA atom}−{last RNA atom}

Assign atoms to group names.
Chooses only the water oxygens for coordination number with water (CN_W)
OW: GROUP ATOMS={first water oxygen}−{last water oxygen}:3
Mg: GROUP ATOMS={Mg}
rna: GROUP ATOMS={first RNA atom}−{last RNA atom}
P: GROUP ATOMS=@P−2
N31: GROUP ATOMS=@N3−1
N32: GROUP ATOMS=@N3−2
N71: GROUP ATOMS=@N7−1
N72: GROUP ATOMS=@N7−2
O2a1: GROUP ATOMS=@O2'−1
O2a2: GROUP ATOMS=@O2'−2
O3a1: GROUP ATOMS=@O3'−1
O3a2: GROUP ATOMS=@O3'−2
O4a1: GROUP ATOMS=@O4'−1
O4a2: GROUP ATOMS=@O4'−2
O5a1: GROUP ATOMS=@O5'−1
O61: GROUP ATOMS=@O6−1
O62: GROUP ATOMS=@O6−2

dP: DISTANCE ATOMS=Mg,P
dN71: DISTANCE ATOMS=Mg,N71
dN72: DISTANCE ATOMS=Mg,N72
dO61: DISTANCE ATOMS=Mg,O61
dO62: DISTANCE ATOMS=Mg,O62
cn: COORDINATION GROUPA=Mg GROUPB=OW R_0=0.261 NLSTRIDE=100

rnacom: COM ATOMS=rna

End of cvs.dat file

==
One will need as many plumed.dat files as replicas to simulate
For each plumed file there will be one MetaD acting on the distance between
Mg2+ and the target binding site and the coordination number of Mg2+ with water.
Notice how the lines are commented, the penalty potentials act on all the binding
positions but the one enhanced on this replica.
The same pattern will be repeated for all the other replicas.
==

RESTART
Necessary when one is performing the simulations by parts.
RANDOM_EXCHANGES
Helps achieve better ergodicity.
INCLUDE FILE=cvs.dat
Feeds the file with the declared CV to all the replicas.

Well tempered metadynamics
metadP: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
#metadN71: METAD ARG=dN71,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dN71
#metadN72: METAD ARG=dN72,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dN72
#metadO61: METAD ARG=dO61,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dO61
#metadO62: METAD ARG=dO62,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dO62

One can improve the computational performance of Plumed by using grids when calculating and storing
the MetaD potentials. For more information refer to Plumed manual.

Penalty potentials on the binding positions which are not biased on this specific replica.

Start of plumed.dat file

One will need as many plumed.dat files as replicas to simulate
For each plumed file there will be one MetaD acting on the distance between
Mg2+ and the target binding site and the coordination number of Mg2+ with water.
Notice how the lines are commented, the penalty potentials act on all the binding
positions but the one enhanced on this replica.
The same pattern will be repeated for all the other replicas.
Well tempered metadynamics

metadP1: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP2: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP3: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP4: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP5: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP6: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP7: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP8: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP9: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP
metadP10: METAD ARG=dP,cn SIGMA=0.05,0.1 HEIGHT=0.3 PACE=500 TEMP=300 BIASFACTOR=15 FILE=HILLS_dP

Penalty potentials on the binding positions which are not biased on this specific replica.

Assign atoms to group names.
Chooses only the water oxygens for coordination number with water (CN_W)
OW: GROUP ATOMS={first water oxygen}−{last water oxygen}:3
Mg: GROUP ATOMS={Mg}
rna: GROUP ATOMS={first RNA atom}−{last RNA atom}
P: GROUP ATOMS=@P−2
N31: GROUP ATOMS=@N3−1
N32: GROUP ATOMS=@N3−2
N71: GROUP ATOMS=@N7−1
N72: GROUP ATOMS=@N7−2
O2a1: GROUP ATOMS=@O2'−1
O2a2: GROUP ATOMS=@O2'−2
O3a1: GROUP ATOMS=@O3'−1
O3a2: GROUP ATOMS=@O3'−2
O4a1: GROUP ATOMS=@O4'−1
O4a2: GROUP ATOMS=@O4'−2
O5a1: GROUP ATOMS=@O5'−1
O61: GROUP ATOMS=@O6−1
O62: GROUP ATOMS=@O6−2

dP: DISTANCE ATOMS=Mg,P
dN71: DISTANCE ATOMS=Mg,N71
dN72: DISTANCE ATOMS=Mg,N72
dO61: DISTANCE ATOMS=Mg,O61
dO62: DISTANCE ATOMS=Mg,O62
cn: COORDINATION GROUPA=Mg GROUPB=OW R_0=0.261 NLSTRIDE=100

rnacom: COM ATOMS=rna

End of plumed.dat file

==
One will need as many plumed.dat files as replicas to simulate
For each plumed file there will be one MetaD acting on the distance between
Mg2+ and the target binding site and the coordination number of Mg2+ with water.
Notice how the lines are commented, the penalty potentials act on all the binding
positions but the one enhanced on this replica.
The same pattern will be repeated for all the other replicas.
==

FIGURE A.1: Sample PLUMED input file for a GpG dinucleoside monophosphate.
Table A.1: Reported inner sphere Mg$^{2+}$ affinities calculated for the possible binding sites on a $\text{GGGG}_{\text{CCCC}}$ duplex. Columns are displaying affinities and errors in kJ/mol for the following simulations: flexible RNA with explicit K$^+$ (Flex K$^+$), flexible RNA with uniform positive background (Flex UB+), rigid RNA with explicit K$^+$ (rigid K$^+$), rigid RNA with uniform positive background (rigid UB+), rigid RNA on a large simulation box with explicit K$^+$ (dsRNA) and two separated rigid single strands (GGGG and CCCC) on the same conditions as the latter (ssRNA).

<table>
<thead>
<tr>
<th>Binding sites</th>
<th>Flex K$^+$</th>
<th>Flex UB+</th>
<th>Rigid K$^+$</th>
<th>Rigid UB+</th>
<th>dsRNA</th>
<th>ssRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N7</td>
<td>27.5 $^{0.5}_{-0.4}$</td>
<td>22.8 $^{0.4}_{-0.4}$</td>
<td>33.2 $^{0.7}_{-0.5}$</td>
<td>24.1 $^{1.0}_{-0.7}$</td>
<td>26.0 $^{0.8}_{-0.6}$</td>
<td>36.4 $^{1.1}_{-0.8}$</td>
</tr>
<tr>
<td>N9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O6</td>
<td>24.6 $^{0.4}_{-0.3}$</td>
<td>18.2 $^{0.2}_{-0.2}$</td>
<td>53.5 $^{0.8}_{-0.6}$</td>
<td>44.4 $^{0.7}_{-0.5}$</td>
<td>46.7 $^{1.7}_{-1.6}$</td>
<td>3.9 $^{3.0}_{-0.3}$</td>
</tr>
<tr>
<td>O2</td>
<td>61.4 $^{0.5}_{-0.4}$</td>
<td>59.5 $^{0.9}_{-0.6}$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50.3 $^{2.6}_{-1.2}$</td>
</tr>
<tr>
<td>O2'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O3'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O4'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O5'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O2'</td>
<td>37.5 $^{2.2}_{-1.1}$</td>
<td>40.4 $^{8.1}_{-1.7}$</td>
<td>49.8 $^{0.5}_{-0.5}$</td>
<td>47.8 $^{0.7}_{-0.6}$</td>
<td>41.3 $^{4.9}_{-1.3}$</td>
<td>40.1 $^{3.5}_{-1.4}$</td>
</tr>
<tr>
<td>O3'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O4'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O5'</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O1P</td>
<td>-30.7 $^{inj}_{-1.7}$</td>
<td>-39.5 $^{2.8}_{-1.3}$</td>
<td>-31.1 $^{0.9}_{-0.7}$</td>
<td>-28.4 $^{5.8}_{-1.6}$</td>
<td>8.6 $^{inj}_{-1.9}$</td>
<td>-38.1 $^{2.7}_{-1.3}$</td>
</tr>
<tr>
<td>O2P</td>
<td>-37.5 $^{0.9}_{-0.7}$</td>
<td>-48.3 $^{0.8}_{-0.6}$</td>
<td>-41.8 $^{0.6}_{-0.5}$</td>
<td>-51.4 $^{0.4}_{-0.3}$</td>
<td>-51.2 $^{1.1}_{-0.8}$</td>
<td>-41.2 $^{1.0}_{-0.7}$</td>
</tr>
<tr>
<td>O1P</td>
<td>-31.6 $^{0.5}_{-0.4}$</td>
<td>-38.5 $^{2.8}_{-1.3}$</td>
<td>-29.2 $^{0.9}_{-0.7}$</td>
<td>-30.2 $^{2.7}_{-1.3}$</td>
<td>-36.8 $^{3.1}_{-1.3}$</td>
<td>-29.1 $^{0.3}_{-0.3}$</td>
</tr>
<tr>
<td>O2P</td>
<td>-31.0 $^{2.6}_{-1.2}$</td>
<td>-39.8 $^{1.7}_{-1.0}$</td>
<td>-32.3 $^{1.3}_{-0.9}$</td>
<td>-33.0 $^{1.4}_{-0.9}$</td>
<td>-39.8 $^{4.5}_{-1.5}$</td>
<td>-16.1 $^{inj}_{-1.9}$</td>
</tr>
</tbody>
</table>
Table A.2: The reported Mg$^{2+}$ affinities were calculated using a correction to the force field described in the methods. Columns are displaying affinities and errors in kJ/mol for the following simulations: flexible RNA with explicit K$^+$ (Flex K$^+$), flexible RNA with uniform positive background (Flex UB+), rigid RNA with explicit K$^+$ (rigid K$^+$), rigid RNA with uniform positive background (rigid-UB+), rigid RNA on a large simulation box with explicit K$^+$ (dsRNA) and two separated rigid single strands (GGGG and CCCC) on the same conditions as the latter (ssRNA).

<table>
<thead>
<tr>
<th>Binding sites</th>
<th>Flex K$^+$</th>
<th>Flex UB+</th>
<th>Rigid K$^+$</th>
<th>Rigid UB+</th>
<th>dsRNA</th>
<th>ssRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>G</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N7</td>
<td>14.8 ± 0.5</td>
<td>10.3 ± 0.3</td>
<td>21.2 ± 0.5</td>
<td>12.4 ± 0.6</td>
<td>13.8 ± 0.6</td>
<td>24.0 ± 1.1</td>
</tr>
<tr>
<td>N9</td>
<td>10.4 ± 0.3</td>
<td>3.9 ± 0.2</td>
<td>40.9 ± 0.7</td>
<td>31.9 ± 0.4</td>
<td>34.2 ± 1.0</td>
<td>-10.3 ± 0.2</td>
</tr>
<tr>
<td>O6</td>
<td>56.9 ± 0.5</td>
<td>54.9 ± 0.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>49.6 ± 2.4</td>
</tr>
<tr>
<td>O2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.6 ± 0.5</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O2$'$</td>
<td>37.4 ± 2.2</td>
<td>40.4 ± 4.4</td>
<td>49.8 ± 0.6</td>
<td>47.8 ± 0.7</td>
<td>41.3 ± 4.9</td>
<td>40.1 ± 3.5</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O3$'$</td>
<td>7.0 ± 0.9</td>
<td>-15.7 ± 2.8</td>
<td>-7.4 ± 0.9</td>
<td>-3.7 ± 0.5</td>
<td>28.1 ± 2.8</td>
<td>-14.4 ± 2.5</td>
</tr>
<tr>
<td>O2P</td>
<td>-13.3 ± 0.9</td>
<td>-24.1 ± 0.7</td>
<td>-17.2 ± 0.6</td>
<td>-26.8 ± 0.4</td>
<td>-26.6 ± 1.1</td>
<td>-17.4 ± 1.0</td>
</tr>
<tr>
<td>O1P</td>
<td>-7.9 ± 0.5</td>
<td>-14.8 ± 2.7</td>
<td>-5.3 ± 0.9</td>
<td>-6.3 ± 2.7</td>
<td>-12.9 ± 3.0</td>
<td>-5.6 ± 0.2</td>
</tr>
<tr>
<td>O2P</td>
<td>-6.6 ± 2.6</td>
<td>-15.5 ± 1.7</td>
<td>-7.5 ± 1.3</td>
<td>-8.3 ± 1.4</td>
<td>-15.1 ± 4.4</td>
<td>8.0 ± 1.9</td>
</tr>
</tbody>
</table>
Bibliography

JA Cowan. “Metallobiochemistry of RNA. Co(NH₃)₆³⁺ as a probe for Mg²⁺ binding sites”. *Journal of inorganic biochemistry* 49.3 (1993), pp. 171–175.

