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Abstract

Stress—dilatancy relations have played a crucial role in the understand-
ing of the mechanical behavior of soils and in the development of realis-
tic constitutive models for their response. Recent investigations on the
mechanical behavior of materials with crushable grains have called into
question the validity of classical relations such as those used in Critical
State Soil Mechanics.

In this paper, a method to construct thermodynamically consistent
(isotropic, three—invariant) elasto—plastic models based on a given stress—
dilatancy relation is discussed. Extensions to cover the case of granular
materials with crushable grains are also presented, based on the interpre-
tation of some classical model parameters (e.g., the stress ratio at critical
state) as internal variables that evolve according to suitable hardening
laws.
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1 Introduction

In recent years, granular materials whose mechanical response is affected by
changes of internal micro—structure induced by the loading process have at-
tracted considerable attention, from the point of view of both theory and ex-
periment. These include, in particular, materials with crushable grains [24],
[30], [14], [39], weak rocks or cemented aggregates whose bonds suffer progres-
sive degradation due to applied loads and other physico—chemical mechanisms
[33, 3, 1], [42, 17, 31, 43], and structured clays [15, 50].

In view of the expected strong non-linearities, a detailed understanding of
the behavior of such materials seems necessary for reliable quantitative predic-
tions of their mechanical response in engineering applications, such as: i) stabil-
ity of natural slopes and open cuts , see e.g. [9]; ii) tunnelling and underground
excavations, see e.g. [7]; iii) driven piles in calcareous soils, see e.g. [2, 16, 6]. In
addition, research on these materials offers an opportunity to assess critically
and to reconsider some of the central hypotheses underlying continuum theories
developed for soils and, in particular, Critical State Soil Mechanics (CSSM). The
key question to be addressed is: how do grain crushing and debonding affect
the macroscopic properties of a granular aggregate? From the point of view of
CSSM, this amounts to asking how the evolution of the micro—structure affects
yield surfaces, flow rules and hardening laws. There are many complementary
angles of attack to this question. One of them, explored, e.g., in [35], is to
try and deduce macroscopic constitutive equations from micromechanical con-
sideration of some underlying microscopic process. Another, more macroscopic
possibility is to probe experimentally the limits of applicability of existing theo-
ries, to single out those macroscopic parameters which are sensitive to changes of
microstructure, and to identify the new ingredients that are needed to capture
the macroscopic fingerprints of the microscopic processes. The experimental
background of our present study [10], together with [8], give an example of this
second approach.

An extensive experimental campaign on Pozzolana Nera (PN), a weak py-
roclastic rock from the region South—East of Rome, has revealed a number of
peculiar features in the mechanical properties of this material that may be at-
tributed to the changes of the internal structure induced by loading [10]. PN is
an extremely polydisperse granular material, as shown in Figure 1. Bonds and
grains are made of the same constituents, so that grain crushing and bond break-
ing are two complementary aspects of the same destructuration phenomenon.
The material does crush at rather small loads, as shown in Figure 2. This results
in observed stress—dilatancy curves which are at odds with one of the most basic
ingredients of CSSM models, namely, the existence of a well defined one—to—one
relation between dilatancy and stress ratio at yield [56].

To place this discussion into context, let us recall that a stress—dilatancy
relation is an identity of the type

my = 22 = a(d) (1.1)

Dy
linking the ratio 1 of deviatoric to volumetric components of the stress at yield
and the dilatancy d := é2/éf, i.e., the ratio between volumetric and devia-
toric components of the plastic deformation rate. Relationships of this kind
have played a fundamental role in understanding and interpreting the observed
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Figure 1: Scanning electron micrographs of Pozzolana Nera at increasing mag-
nification factors (adapted from [10]). a) magnification 180x; b) blow—up of
circled area in (a), at 1800x.
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Figure 2: Quantitative and visual evidence of grain crushing in Pozzolana Nera.
a) grading curves before and after TX compression tests at increasing confining
stress (after [10]); b) thin section of grains crushed after shear (adapted from

[11]).



behavior of granular materials, see e.g. [48, 49, 51, 52], as well as in the formu-
lation of constitutive models within CSSM. In particular, setting ®(d) = M —d
in (1.1), one obtains
By _ p—g (1.2)
Dy
defining the original Cam—Clay model, see, e.g., [53].

In hindsight, that a relation like (1.1) should fail in a material with crushable
grains is not too surprising. Equation (1.2) expresses the fundamental fact that,
in order to shear a dilatant material (d < 0), one has to apply extra shear stress
to overcome the work that pressure expends against the increase of volume.
Dilation is due to rearrangements of the internal micro—structure, with increase
of void ratio for an initially dense material, and decrease for an initially loose
specimen. No material can dilate forever: the hardening laws of Cam Clay are
such that an asymptotic state (the critical state, defined by the condition d = 0)
is always reached under monotonic shearing. At critical state, the void ratio has
reached a characteristic steady value, and the frictional behavior of the granular
assembly (in particular, the stress ratio at critical state, M) depends only on the
intrinsic properties of the solid skeleton (say, the size distribution, the shape,
and the angularity of the grains), and not on its initial relative density.

The argument above shows, however, that if a material has crushable grains,
then parameter M should be thought of as a quantity able to evolve with the
changes of grading induced by the loading process. This is the key idea behind
a constitutive model proposed in [8] to explain the observed stress—dilatancy
curves in PN. Let us assume, for the sake of the argument, the existence of a
virgin state for the intact material and of a fully degraded state for the mate-
rial which has undergone grain crushing and debonding. At each instant of a
loading process starting from the virgin sate, the current state of the material
is intermediate between the virgin and the fully degraded state, and it may be
described through the use of internal variables which evolve during the loading
process. In particular, parameter M evolves, typically decreasing as the grains
crush. Each intermediate state is characterized by a one—to—one (e.g., linear as

n (1.2)) relationship between d and 7, while the d:n, paths traced upon loading

result from the material spanning with continuity different intermediate states.
This may give rise to stress—dilatancy relations which are not one-to—one, as
observed in PN, see Figure 3.

The goal of this paper is to place the model proposed in [8] on a thermo-
dynamically sound basis. We do this in two steps. First, we focus on the
thermodynamic structure of models of soil behavior which are consistent with
a given (one—to—one) stress—dilatancy relation. This will lead to the proposal of
a general method to construct (three—invariant, isotropic) models which stem
from such relations. Later, we extend the range of validity of this approach to
deal with the case of crushable grains, for which more complex stress—dilatancy
relation are to be expected.

Given the complexity of the phenomena involved at the microscopic level, it
seems advisable to ensure thermodynamic consistency at the macroscopic level,
by relying as much as possible on a thermodynamically consistent formulation
of flow rules and hardening laws. Moreover, rather than being interested in
fitting specific sets of data, we are after sharp predictions of qualitative features
and trends which can be used as conceptual benchmarks. For these reasons, we
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Figure 3: Stress—dilatancy relation for a material with crushable grains. a)
conceptual sketch; b) experimental evidence for Pozzolana Nera (after [10]).

place ourselves in the tighter environment of associative models, with respect
to both flow rules and hardening laws. Non—associativity can easily be brought
back if so required by experimental evidence, as in [8].

The paper is organized as follows. We review the essentials of rate-independent
elasto—plasticity in Section 2, mostly to fix notation. In Section 3 we specialize
to the associative case, discussing two dual formulations: direct (i.e., based on
yield surfaces and flow rules) and dual (i.e., based on a dissipation potential).
The two formulations are summarized in Boxes 1 and 2. Their equivalence, given
by equation (3.19), is the main result of this section. The flexibility gained by
moving back and forth between direct and dual formulation is used in Section
4 to propose a method to construct three-invariant isotropic models consistent
with a given stress—dilatancy relation. The method is summarized in Box 3.
Given the relevance of stress—dilatancy relations for the subject matter of this
paper, their conceptual status with respect to direct and dual flow rules is re-
viewed in subsection 4.5. Finally, in Section 5, a specific choice of yield function
is made, and hardening laws are proposed to describe the impact of debonding
and grain crushing on the predicted macroscopic response.

Throughout the paper, the stress tensor and all the related quantities are
effective stresses as defined by Terzaghi, unless otherwise stated. The usual
sign convention of soil mechanics (compression positive) is adopted throughout.
Direct notation is used to represent vector and tensor quantities. Following
standard notation, for any two vectors v, w € R®, the dot product is defined as:
v - w = v;w;, and the dyadic product as: [v ® w);; := v;w;. Similarly, for any
two second—order tensors &, Yy, & - ¥ = &;;¥;; and [ @ Ylijk = TijYrs-

2 Flow theory of rate—independent
elasto—plasticity

We start with the additive decomposition of strain

€= —%(Vu + VauT) (2.1)



where u is the displacement, into elastic, reversible part € and plastic, irre-
versible part €”:

e=€"+¢€v. (2.2)

In addition, we introduce an array of strain-like internal variables & describing
changes of the microstructure of the material (associated with, say, hardening,
debonding, grain crushing , etc.), and define a generalized plastic strain

a = (€",§) (2.3)

For the free energy density 1 = (€%, £), assuming that elastic moduli are not
affected by microstructure changes, the following additive decomposition holds

P(e%,€) = ¥(e°) +¥P(§). (24)
The stress-like variables, work-conjugate to € and € are thus
ey = O¥° _ oy

U(G ) - 866 X(g) - a£ (25)

and they define a generalized stress A
A=(0,%). (2.6)

We assume that (2.5)2 is invertible and write

£€=£(x) (2.7)
for the inverse. The dissipation inequality reads
og-é—Yp=0c-P+x-£=D>0 (2.8)

where D, the dissipation (in fact, the volumetric density of the rate of dissipa-
tion), can also be written as

D=A-&. (2.9)
The yield function is

flo,x:0) =F(A;() <0 (2.10)

where ¢ are hardening parameters which, contrary to those contained in x, have
no corresponding work-conjugate strain-like variables. The evolution laws for
€P and & are the flow rules

& =57 (o,x;¢) (2.11)
E=79h(0,%x0). (2.12)
Note that the plastic flow direction tensor r is typically defined in terms of the

gradient of a scalar function g, known as plastic potential, so that eq. (2.11) is
often written as:

0
& =45(0,x:C).- (2.13)



The evolution laws for the hardening parameters ¢ are called hardening laws

¢ =—%2(0,x¢) (2.14)

Note that the flow rule for & induces an evolution law for x. This is also a
hardening law which takes, however, the special form

_WW@QZ_ﬁ6%N9h (2.15)
0€ ® 0¢ 0€ ® 0¢
Defining the symmetric tensors of hardening moduli
%P N
De(€) = se g D) =DeE(x)  (216)
and the tensor of elastic moduli
824°
f = W%ee (2.17)
we get the relations
o=D°>&—¢é) (2.18)
x = —Dyh. (2.19)
Plastic flow is governed by the Karush-Kuhn-Tucker (KKT) conditions
420 , 4f=0 (2.20)

(recall that, by definition, f < 0), implying that plastic flow (4 > 0) can occur
only at yield (f = 0). In a time interval in which it does not vanish, the plastic
multiplier 4 is obtained from the consistency condition f = 0, leading to

f<0, 4f=0 (2:21)
so that
;_ Of of of
= — == . 2.22
>0 = f= gy o+ o X + ac =0 (2.22)
Using the expressions (2.14), (2.18), (2.19) for ¢, &, x, and in view of the flow
rule (2.11), (2.22) implies
1 rof
-Dfe 2.23
= (52 -v¢) (2.23)
whenever 4 does not vanish, where the plastic modulus
of 6f 6f
== D" -Dyh 2.24
K, = 90 -Dfr 8 + == 3C (2.24)

is assumed to be strictly positive. Plugging (2.23) into (2.11) and substituting
in (2.18) we get

e iHy=0 (2.25)
Dre ify >0
where
1 of
D =Df — — [ D* DfF—= ). 2.26
K, ( Te 60’) ( )



3 Associative plasticity: yield function and
dissipation potential

The flow rules are said to be associative if

P (0,%0) = 5 f(@,X:0) (31)
h (o, x;€) = %f(mx;C) (32)
so that
& =5 g—i (3.3)
. 3f
E=i 5 (3.4)

or, in a more compact form

. OF
The hardening law for x becomes
of
Dy .
x=-7Dy(x)5= x (3.6)

By analogy, the hardening law for ¢ is said to be associative if it can be expressed
in the form

s of - of
&= Be(O) 5 e =D (37)
The plastic modulus takes now the expression
K,=D_~ of 8f +D of [ of + D, 8f of (3.8)

oo o Xox Ox ca¢ o

while formula (2.23) for the plastic multiplier % is unchanged. Note that, in the
associative case, K is certainly positive, provided that the tensors of elastic
and hardening moduli D¢, D, and D, are positive definite. Positivity of D° and
D, is guaranteed if ¢ and 9P are strictly convex.

The tensor of tangent (elasto-plastic) moduli is given by

1 af of

D =D° — D* ® D — 3.9

( . 50 (3.9)

showing that, whenever the flow rule for € is associative, D°? is symmetric.

If, in addition, also the hardening laws are associative, the symmetry property

is carried over to the algorithmic moduli consistent with the Backward Euler

closest—point projection algorithms widely used in computational plasticity, see
[54].

Associativity confers to the flow theory of rate—independent elasto—plasticity

a very rich structure through the use of convex duality. Rather than using a



formulation based on a yield function in stress space which delivers flow rules for
the conjugate strain-like variables, one may start from a dissipation function D
depending on the rates of strain—like quantities, and derive the conjugate stress—
like variables through differentiation. Thermodynamic consistency is thus guar-
anteed by the properties of D. This is a key achievement of the French School,
[38, 18, 22, 19], see also [34, 45, 23]. The same format has been first used in Soil
Mechanics in [37]. The advantages of ensuring thermodynamic consistency in
the constitutive modelling of soils has been emphasized by Houlsby [26, 27] and
implemented in a number of concrete models of soil behavior, see e.g. [13, 28, 12]
To illustrate the use of convex duality, let us start from the yield function
F of (2.10) in which we drop, for simplicity, the dependence on ¢, and let us
denote by A the set of admissible & and by A* the set of admissible A. Assume
that the yield locus
K={AeA*: F(A) <0} (3.10)

defined by F' is a closed convex set containing the origin, and define the indicator
function of K as

0 ifAek
Ix(A) = 3.11
(4 {+oo otherwise. (3-11)
The flow rule (3.5) can be written as
& € 0Ic(A) = Ni(A) (3.12)

where 0l (A) is the subgradient of Ix at A and Ny (A) is the normal cone
to K at A, see e.g. [46, 23, 5]. The identity in (3.12) is a classical result of
convex analysis. Note that, if A is on the boundary of K, then (3.12) expresses
normality of & to OK, while if A is in the interior of K, then (3.12) implies that
& = 0. Consider now the Legendre—Fenchel transform of I

(Ix)* (@) =Asgﬁ* {A-o'z—I)C(A)}zjléI’)C A-o. (3.13)

It is easy to show! that, in fact, (Ix)* is the dissipation function
(Ix)* (&) = D(a). (3.14)

A fundamental result of convex analysis?, relating the subgradients of a function
and of its Legendre transform, then implies that

& € Nc(A) & A € dD(a). (3.15)

This shows that the associative flow rule & € Ny (A) for a leads to the pre-
scription A € 0D(a&) for the conjugate stress variable A.

!Indeed, if &« = 0, then both (Ix)*(¢&) and D(&) vanish. If instead & # 0, then by

normality
A:=argmax A-c&
AeK

is such that & € Nx(A) and both (Ixc)*(cx) and D(&) equal A-c&x. The physical interpretation
of this result, obtained by comparing egs. (3.13) and (3.14), is that associative plastic flow
obeys the principle of maximum dissipation.

2We are using convex duality, i.e., the fact that if f* is the Legendre transform of a convex
function f, and if df* and Of are their subgradients, then

z* €df(z) &z e df(z*)
see, e.g., [46].

10



Box 1. From yield-locus-based to dissipation-based formulation.

F yield function
K={A:F(A) <0} elastic domain and yield locus (a closed
convex set containing the origin)
0 if Ae
Ix(A) = ' . indicator function of X
+o00 otherwise
(Ix)* (@) =sup A-a Legendre-Fenchel transform of I
Ack
D(a) = (Ix)* (@) dissipation function

OD*(A) = 0Ix(A) = Ni(A) from convex analysis (Nx(A) normal
cone to K at A)

& € Ng(A) => A €0D(a) from convex duality

To illustrate the reverse path, let D be a given dissipation function. We as-
sume that D(&) is a gauge, i.e., a non—negative, convex, lower—semi—continuous,
positively homogeneous function of degree one vanishing at the origin. Define
the set

K={Ae A" : A-a <D(a)} (3.16)

which is a closed, convex subset of A* containing the origin. Note that on
0K, A - & matches D(cx), hence A is a yield stress, while in the interior X°
of K, A- & < D(a) hence K° is the elastic domain. K can be interpreted
as the zero sublevel set of a yield function F' by choosing any F' such that
{A: F(A) <0} =K. For given K, there is an arbitrariness in the selection of F'
which can be eliminated through a canonical choice, see [23]. We can now invoke
a standard result of convex analysis which guarantees that the Legendre—Fenchel
transform of a gauge is the indicator function of a closed convex set containing
the origin. In fact, the Legendre transform of the dissipation function is the
indicator function of X

(D)*(A) = Ix(A). (3.17)

By convex duality, eq. (3.15), we can conclude that
A € 0D(&) = & € N(A), (3.18)

i.e., if one prescribes an evolution process in which the stress-like quantities
A are derived from the dissipation function D, then the conjugate strain-like
variables a evolve according to the associative flow rule & € Ni(A).

The paths from classical (i.e., based on yield locus and normality rule) to
dual (i.e., based on a dissipation potential) formulations of associative plasticity,
and viceversa, are summarized in Boxes 1 and 2. For 9/ smooth, and if D is

11



Box 2. From dissipation-based to yield-locus-based formulation.

D dissipation function (a gauge)

K={A: A -a<D(a)} elastic domain and yield locus (choose
F such that {A: F(A) <0} =K)

Ix(A) = (D)*(A) Legendre—Fenchel transform of D
0D*(A) = 0Ix(A) = Nx(A) from convex analysis

A € 9D(&) = & € N(A) from convex duality

smooth away from & = 0, we can rewrite (3.15) in the simpler form

0 0
Ay = —D(a) & a=45-—F(A) (3.19)
oo 0 0A A=Ay

where Ay is a yield value for A, i.e., such that F(Ay) = 0. This is the key
result of this section with respect to the further developments of this paper.
The identity on the right side of the equivalence sign in (3.19) is the classical
associative flow rule, according to which the generalized plastic strain rate is
parallel to the gradient of the yield function F', hence normal to the yield surface
{F =0} . We will refer to the left side of (3.19) as the ‘dual’ (of the) flow rule.

4 Isotropic flow rules and yield criteria from a
stress—dilatancy relation

The goal of this section is to show how specific forms of the flow rule and of
the yield function can be inferred from experimental observations. Our primary
experimental input comes from stress—dilatancy relations, which are commonly
recorded in the experimental testing of geomaterials. Our method consists of
deducing the yield locus from the combination of a stress—dilatancy relation
with a dual flow rule, and it is applied to the derivation of a class of isotropic,
three—invariant models.

4.1 Isotropy

We restrict our attention to isotropic models. Although this framework may
prove too restrictive to capture such effect as stress—induced or inherent anisotropy,
or to reproduce correctly the response to cyclic loading, it has the advantage
to keep the mathematical structure of the model to an acceptable level of com-
plexity. In many cases this may be the most reasonable compromise between
the competing requirements of ‘generality’ and ‘tractability’ of the theory, in
the spirit of, e.g., critical state models for fine-grained soils [53], [47], [56], or
the works of Lade [29] and Nova [40, 44, 41] for coarse—grained soils. In fact,
application of hardening elasto—plasticity to the numerical solution of practical

12



engineering problems remains, at present, mostly confined to isotropic models.
The assumption of isotropy brings in the following consequences:

i) the strain-like and stress-like internal variables &, x, ¢ all consist of n-
tuples of uncorrelated scalar quantites, i.e.,

€ = {&} (k=1,...,n5) (4.1)
x = {xx} (k=1,...,ny) (4.2)
CZ{Ck} (k=1,...,n§) (4.3)

ii) the dissipation function D depends on the plastic strain rate tensor €”
only through its invariants, i.e.:
D(ép7£) = D(ég7é€7263£) (4'4)

where

D — P P — 2 oP2 — qj - tr(é”3)
& =tr(e?), &= [gtr(e )] , Ze =sin(36,) = \/EW (4.5)

are the invariants of the plastic strain rate tensor €°, €¥ = dev(éP) is its
deviatoric part, and 6, is the Lode angle of &”

iii) the yield function (and the plastic potential, if any) depends on the stress
tensor o only through its invariants, i.e.:

flo,x:¢) = f(p.a, 2.x:€) (4.6)
where
1
1 3 5] _ tr(s®)
p= gtr(cr), q= [§tr(s )] , z=sin(36) = \/EW (4.7
s = dev(o) is the stress deviator and 6 is the Lode angle of the stress

tensor o;

iv) the flow rules (2.13) and (3.3) imply the coaxiality between the stress and
plastic strain rate tensors, see, e.g., [4].

v) due to (iv), the expression (2.8) for D can be written as
D =pél + qéPcos (0 —0.) + x - & (4.8)

At yield, the stresses can be obtained from the dual flow rule (3.19), i.e., by
differentiating the dissipation function. In the isotropic case, we obtain from
(4.8)

1 oD oD
= 1. (P P — 7y ==
Dy _py(evaesaze) - 3tI‘ <66p> aeg (49)
3 1/2
tr(s3)

2y = 3, (0,0, 2) = V6 (4.11)

[tr(sp)]/2

8y = dev (%) .

13
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4.2 Dependence on Lode angles

In order to develop a full three—invariant formulation, we will restrict attention
to situations in which function 2, of (4.11) is of special form. We assume that
2y depends only on z, i.e.:

zy = 2(2¢) (4.12)

and that Z is invertible:
2 = 5(2) (4.13)

These assumptions turn out to be satisfied under relatively mild restrictions
for the specific functional form (4.6) assumed for the yield surface, and are
verified in a very large class of elasto—plastic models for soils. Essentially, the
assumption is consistent with yield functions of the form (4.14), giving rise to
a convex yield locus. This is detailed in the following two propositions.

Proposition 4.1. An associative flow rule with o yield function of the form

f(p,q,z,x;C)=f< ,ﬁ,xm) : (4.14)

where M (z) is a scalar function of the third invariant of the stress tensor z,
implies that the third invariant of the plastic strain rate tensor z. depends only
on z.

Proof. The general definition of z, eq. (4.5)3, requires the evaluation of the
scalar invariants tr(éP?), tr(e?®) of é?. In view of (4.14), and of the associative
flow rule (3.3), we have

ep_a'f@_ka'f%—af

= -2 - = B B 4.1
0q0o 0z00 Og* (Bi + By) (4.15)
where ¢* := ¢/M(z) and
oq* Jq oq* 0z
B = — By = — — 4.1
! dq 0o 2 0z 0o (4.16)

are two symmetric second order tensors, both coaxial with o, which are homo-
geneous functions of degree zero in o and independent of the specific choice for
the yield function f. It follows that

9F\2
tr(eP?) = ( aq{ ) by (4.17)

9f\>
tr(eP?) = ( aq{ ) by (4.18)
where, since B; and B, commute, the scalar functions b; and by are given by
b1 = tr (B} + B} + 2B B) (4.19)
b, = tr (B} + 3B} B, + 3B, B + B3) (4.20)

In principle, b; and bs could depend on the stress tensor through both second
and third invariant. However, since B; and Bj are homogeneous of degree zero

14



in o, so have to be both b; and b,. Thus, dependence on ¢ is ruled out. In
fact, a lengthy but otherwise straightforward calculation shows that, for every
possible choice of the yield function f,

1 3 2 o (M2
3 M N2A% s [(MN?
by = YSYE {z—g(l—z )ﬁ —272(1 - 2%) o +27(1 - 27%) 573
(4.22)
Thus, plugging (4.17) and (4.18) into eq. (4.5)3, we obtain
b
2 = 2.(2) = \/5% (4.23)
[b1(2)]
as claimed. O

Remark 4.1. Proposition 4.1 can be extended to the case of a non—associative
flow rule (2.13), provided that the plastic potential g has the same dependence
on q and z as the one assumed for the yield function f, see eq. (4.14).

Invertibility of the function Z. is guaranteed if the trace of the yield locus
on the deviatoric plane is a convex curve, as proved below.

Proposition 4.2. Assume that the yield locus {f = 0} is convez, so that each
deviatoric section is convex and, in particular, the curve defined by the following
parametric representation

z +— {R(z) cos O(z), R(z) sin O(z)} z € [-1,1] (4.24)
where
2 1 .
R(z) := gq(z) 0(z) := 3 [ +sin'(2)]
and q(z) is defined implicitly by the equation
q .
f(po, W,XO;CO) =0 (for po, X0, Co 8iven)

is convex. Then the function Z. is invertible.

Proof. Equation (4.24) gives the representation of the deviatoric section C of
the yield locus at p = pp in polar coordinates (note that ©® = 7/3 + 6). The
unit vector normal to the curve (which has the direction of the deviatoric part
of the plastic strain increment) is given by

Np=(cosO,sin®,), O,:= g +6.. (4.25)
Denoting arc-length by s, one has that the curvature & of C is given by
d d
k(s) = %96(5) = 506(5), (4.26)

see [20]. For the convex curve C, k(s) has a fixed sign (say, strictly positive),
hence O.(s) is invertible. This shows that C admits a paremetrization in terms
of the normal angle ©, = [ + sin™"(2.)]/3. This establishes a one-to-one cor-
respondence between the parameter z in (4.24) and z., as claimed. [l
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©=0+mr/3
©.=60 + «/3

0, O,

Figure 4: Deviatoric section of the yield surface at p = pg. In view of symmetry,
only the sector with Lode angle § € (—7/6,7/6), i.e., © € (7/6,7/2) is shown.

The link between the Lode angles of stress and plastic strain rate introduced
by eqs. (4.12) and (4.13) allows us to construct the yield locus section—wise.
First, sections at z = const., can be obtained by setting z. = const. in the
appropriate derivatives of the dissipation function, see eqs. (4.9) and (4.10);
second, the shape of the yield locus on the deviatoric plane can be defined by
prescribing function £ or its inverse 2, in eqs. (4.12) and (4.13).

The homogeneity properties of D force p, and g, to be homogenous functions
of degree zero in €”. Hence the functions p, and §, in eqgs. (4.9) and (4.10) are
homogeneous functions of degree zero in the invariants € and é2. In particular,
we assume

~—

by = py,e(é) = ﬁy (67 Ze (4.27)
9y = Qy,e (6) = dy (6, 2) (4.28)

in which the function 4, defined as:

P (4.20)
" cos(0—0.) & '

is a generalization of the classical definition of the dilatancy

i=% (4.30)

= .

employed in axisymmetric stress and deformation states (for which 6 = 6,).
Eqgs. (4.27) and (4.28) mean that the meridian sections of the yield locus
(i-e., sections at z = const.) can be parametrized by the dilatancy d. This is
always the case for a convex yield locus, as shown in the following proposition.
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Q

N, = (cosf2, sin{)

z

b, p

Figure 5: Meridian section of the yield surface in ¢ : p plane, for z = z5. The
angle (2 is defined by Q := tan™! §, where § is the dilatancy.

Proposition 4.3. Assume that the yield locus {f = 0} is convez, so that each
meridian section is convex and, in particular, the one at z = zo defined by the
following parametric representation

p+ a(p) P € [0, Pmax] (4.31)
where q(p) is defined implicitly by the equation

q

f(p, maXO;Co) =0 for 20, X, Co given

is a convexr curve. Then each meridian section admits a parametrization in
terms of the dilatancy 6.

Proof. The proof follows from the same argument used in proposition 4.2, i.e.,
that a convex curve can be parametrized in terms of the normal angle. The unit
normal vector N, to the meridian section at z = z is proportional to (€8, ToéP),
where T'g = cos[#(29) — 8¢(20)], hence

N, = (sinQ,cosQ), Q:=tan"'§. (4.32)

Thus, a parametrization in terms of the normal angle 7 /2— induces a parametriza-
tion in terms of the dilatancy §. O

4.3 Construction of yield locus from stress—dilatancy and
dual flow rule

For each fixed z., equations (4.27) and (4.28) define parametrically a 6 =
constant section of the yield locus

8+ {Py,e(6),qy,e(0) } - (4.33)

We want to eliminate parameter § from the previous expression, to obtain a
representation of the yield locus in the form

(Py,2) = gy = §(py, 2) - (4.34)
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In order to proceed, let us first notice that equations (4.27) and (4.28) imply
the existence of a stress—dilatancy relation of the form

n= 2 $(5,2) = 8.(6), (4.35)
Dy
where 7) is the stress ratio g, /p, at yield and the third identity simply defines a
shorthand notation for function ®(4, z.). With (4.35), the dissipation function
(4.8) can be rewritten as:

D=Dp+x &=I(O)T(z)& + x & (4.36)
where
Dp:=0-€" =%.(0)[(2c)€" (4.37)
is the plastic power density and
E.(0) = 2(9, 2e) 1= py,e(0) [0 + D(0)] (4.38)
T (z¢) := cos(6 — 6,) . (4.39)

Expressions similar to eq. (4.36) above are discussed in [21].
From (4.9) and (4.37), we have

oD 9D, 35,

having used the fact that

0 1
— = = 4.41
0éb  Téb (441)
More explicitly, differentiating (4.38) with respect to &
B (0) = [0 + @(9)] Py, (0) + [1 + DL(0)] Py, (9) , (4.42)
we obtain from (4.40)
0+ )Py + PPy, =0, (4.43)
an ordinary differential equation (ODE) in the unknown function
0 > py,(9) (4.44)

For each fixed z, (4.43) may be solved and function (4.44) may be inverted
to give

0 =06.(py) = 0(py, 2e) - (4.45)
Plugging this into (4.35), and assigning the function z, = z.(z), we obtain
ay = py® (0(py, 2e(2)), 2e(2)) = A(py, 2) (4.46)

as desired. The procedure is summarized in Box 3.

In practice, since an experimental identification of the function z, = z(2)
is far from trivial, we determine (4.46) for z. = z = +n/6 (uniaxial compres-
sion and extension, the two cases accessible with the use of a standard triaxial
apparatus), and then assign the dependence on z by prescribing the function
z — M(z) in (4.14) consistently with the requirement that the yield locus should
be convex, e.g., & la van Eekelen [55].
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Box 3. Yield locus from stress-dilatancy relation (two-invariant theory, 6, = 6,

is recovered with T' := cos( — 6.) = 1 and dropping subscript ¢).

P
€y

D, =0 -& = 5, (5)[¢"

_ 0D, 06 o
Py = 55 e = e (9)
Yo =[0+@]py +[L+ Py

[0+ @] py .+ Ppy, =0

6= Ter dilatancy

Iy _ ®.(9) stress—dilatancy

Dy

Dy =Dy,e(0), @y = qy,(9) convexity of yield locus

plastic power using stress—dilatancy
dual flow rule, eq. (4.40)

eq. (4.42), from X, := [0 + ] py.c

ODE in 6 = py ., from (4.40),(4.42)

be(py) inverse of § — py

qy = Py P (0c(py)) yield locus

Remark 4.2. The explicit expression of the plastic dissipation in terms of plastic
strain rates can be obtained by plugging the solution § — py ((6) into the expres-
sion (4.37) for Dp. This becomes a function of the plastic strain rates through
0, €8, and z,

Dp = py(6; 2¢e) [6 + (3, 2¢)| T(zc )€y

which can, in principle, be used to derive z, by differentiation with the use of
the dual flow rule (4.11).

(4.47)

4.4 Examples

As an example, consider the linear stress—dilatancy relation

1
nzM—EzS d=m(M —n), (4.48)
i.e., a relation of the form (4.35), in which function ®. is given by
1
&.(8) = D(d,2.) = M(z.) — — d. (4.49)

Here m and M are material parameters representing, respectively, the slope
of the stress—dilatancy line in the § : 1 plane and its intercept on the 7 axis.
Substituting into the ODE (4.43), we obtain

1 1
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ie.,

[mM + (m —1)d] ply . — Py, =0. (4.51)
This is easily integrated to give
1
m—1 1 1]m™-1
py((saze):ps Tm—M(S'f‘E , m#1, (4.52)

where p, is the value of p, corresponding to the maximal dilatancy 6 = mM
compatible with (4.48) and positivity of g. Note that ps gives the intercept of
the yield locus with the axis of isotropic compression, and the yield locus must
be a closed surface. Therefore the integration constant ps, which in principle
should depend on z, must in fact be independent of the Lode angle.

Inverting expression (4.52) giving p, as a function of § we obtain

m—1 2
Dy 1| m*M
— ({Py S Ikl 1 4.
6(pyaze) [(ps> m] m—1 ’ m# ) ( 53)
and hence, substituting into (4.48),
m p m—1
— (&

Qy = M(ze)pym 1 [1 (ps) ] , m#1. (4.54)

Remark 4.3. Define po as the value of py corresponding to null dilatancy:

Do = py(‘sa Ze)l(s:o (4.55)

Then the ratio between py and p,

Po _ (l) = (4.56)

Ds m
is independent of the Lode angle, provided that m is independent of z..

Remark 4.4. Assuming M independent of z., and taking m = 1 in (4.48) gives
the stress—dilatancy relation

B —p—s (4.57)
by

of the original Cam Clay model. The relation between p, and d is, in this case,

py(0) = psexp (% - 1) (4.58)

and the corresponding yield locus is obtained by taking the limit m — 1 in (4.54)
leading to

gy = Mp,In (%) : (4.59)

8

The explicit expression (4.47) of the dissipation D, as a function of the plastic
strain and strain rates has been obtained in [37] and is given by

Dy = py(OME = pooxp (1 —1) ML (4.60)

Typically, it is assumed that ps = ps(ef) = P exp (ps (8 — €)) consistently with
the classical (non-associative) volumetric hardening law ps = psps€k.
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As a second example, we consider the model proposed in [32] starting from
the stress-dilatancy relation

&:m@4_m(1+m%), (4.61)

where a is a dimensionless (regularization) parameter, typically much smaller
than one. The corresponding yield function is

f=ARICp 1O —p,, (4.62)
where
— 1 g
A(p,q,9) 1+Kdﬂ®5 (4.63)
B@ﬂﬁf_1+KJ%®% (4.64)
__m(l—a) 4a(1 —m)
_Klﬁ_gaijEj{1+- 1__5XT1755} (4.66)
__m(l—a) 4a(1 —m)
m_j(_m{l I_MLWV} (4.67)
M(@@8) := c1[1 + c2sin(36)]™ M, (4.68)

and c¢;, ¢ and n are material constants. The quantities ¢; and cs can be
expressed as functions of the ratio ¢p := M, /M, between the values taken by
the function M(6) in axisymmetric extension (§ = —n/6) and axisymmetric
compression (6 = 7/6):

N 1-— (CM)I/n

- 1 1/nin .
c = 2_n[1 + (CM) ] C2 1= 71 n (CM)I/" .

(4.69)
Equation (4.69) defines the dependence of the stress ratio at critical state on the
Lode angle. It has been proposed by van Eekelen in [55], where the conditions
ensuring the convexity of the deviatoric section of the resulting yield locus are
also discussed.

4.5 Remarks on stress—dilatancy relations

We have made systematic use of stress—dilatancy relations, i.e., of relations of
the form

n=2 _ 3 (4.70)
Dy
or of the form .
61}

5= =A0)- (4.71)

Here, and throughout this subsection, we restrict our discussion to the axisym-
metric case [i.e., [ = 1 in (4.39)] for the sake of simplicity. The relevance of
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relations of this kind in describing the observed stress—strain behavior of geo-
materials goes back a long way, see e.g. [48], [49], [51], [52]. Stress—dilatancy
relations have been measured experimentally for a wide range of both natural
and artificial granular materials, and they have been extensively used in the
development of constitutive models, see Box 4.

Relation (4.71) expresses the dependence of plastic strain rates from the

form . 99/0
é 9/9p q
v = =A(2). 4.72
5 09/94q], (p) (t72)

current stress. Thus, it is conceptually a flow rule. In fact, referring to the

non-associative expression (2.13) for greater generality, it is a relation of the
7=

Assuming that the set {g = 0} in the ¢ : p plane can be described as the graph

of a function p — g(p), i-e.,

{:0):9(p,9) =0} ={(p,0) : ¢ = a(p)} (4.73)
we can rewrite (4.72) in the form
VRN ()]
q(p)—A<p>- (4.74)

Integrating this ODE one can determine ¢ and hence the zero level set {g = 0}
of the plastic potential. In the associative case f = g, and the same procedure
leads to the determination of the yield locus {f = 0}. This is the approach
most commonly used in CSSM.

Relation (4.70) expresses the dependence of yield stresses on the correspond-
ing plastic strain rates. Thus, it is conceptually a dual flow rule. More precisely,
it is (4.10) which, in the axisymmetric case, reads as

—_ 6DP
e

qy = py@(5) (4.75)

Indeed, we have from (4.37) that D), = X(6)é2, where ¥ = [ + ®] p,, and hence
oD, 0

9% — 0P (E(é)éls)) = 2(5) - 21(5)(57 (4.76)
having used the fact that
06 1
9 = @9 (4.77)

The right hand side of (4.76) is in turn
[6 + @] py — pyd — {[0 + Bp, + ®'py} 6 = p,®, (4.78)

because p, solves the ODE (4.43), hence proving the claim.

Solution of the ODE (4.43) is anyway necessary to obtain § as a function of
py and to arrive, by substitution into (4.75), at the explicit expression of the
yield locus as the graph of a function p, — G,(p) in the g : p plane.
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Box 4. Yield functions and corresponding stress-dilatancy relations
(CC = original Cam—clay; MCC = modified Cam—clay).

model yield function n = ®(J) 0= A(n)
f ® A
Ref. [53] (CC) % —pln (p%) ) M—q
g mp p\"! 1
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undergoing grain crushing, provided that the effects of grain crushing are ac-
counted for by introducing a set of suitable (scalar) internal variables as, for
example, in [8]. In fact, in the derivation of the yield function from a given
dilatancy rule, the internal variables play the role of constants. Therefore, the
procedure discussed in the previous sections can still be used to associate a fam-
ily of yield loci to the assigned family of stress—dilatancy curves, parametrized
by such internal variables.

The starting point of the phenomenological plasticity model presented in [§]
is the stress—dilatancy relation (4.61), which, in the associative case corresponds
to the yield function (4.62). Available experimental evidence suggests that the
ultimate value of the friction angle at constant volume is an increasing function
of the mean grain diameter (see, e.g., [25, 36]), and that the position of the
virgin compression line (VCL), in the €, : In(p) plane, may also depend on the
mean grain diameter [14]. These effects have been taken into account by Cecconi
et al. by including the parameters M and m of eqs. (4.66)—(4.68) in the set of
internal variables, and replacing the isotropic yield stress in compression, ps,
with p. = bps, where b > 1 is an additional internal variable which allows to
describe a downward translation of the isotropic virgin compression line as the
material degrades. The evolution laws adopted for M, m and b are such that
these quantities vary monotonically with increasing plastic strain magnitude,
from their initial value to a final, ultimate value at a stable (asymptotic) state
in which all grain—crushing phenomena are ceased. In the following, the same
concepts are used to develop a thermodynamically consistent version of the same
model.

5.1 Yield function and hardening laws

Following [8], we adopt as yield function a slight modification of (4.62), namely,

— jKi/CR-K2/C

f (o, Xb, X5 Ps) DXb — Ps (5.1)

where p,, xp and x s represent the internal state variables,

= 1 xwmq

A=14+ -2 5.2
K, »p ( )

~ 1 xmq

B=1+— 222 5.3
% p (5.3)

and K, Ky, and C = (1 — m)(K; — K3) are defined in terms of the material
constants m and a entering the stress—dilatancy equation (4.61) by egs. (4.66)
and (4.67)

By comparing eq. (4.62) (with p, replaced by p. = bp,) with eq. (5.1) and
eqs. (4.63)—(4.64) with egs. (5.2)—(5.3) it is immediately apparent that the two
quantities x; and x s can be interpreted as the inverse of the internal variables
b and M of the Cecconi et al. [8] model:

1 1
Xo =7 XM= 77 (5.4)

i.e., xp represents the ratio ps/p. between the yield stress in isotropic compres-
sion at the stable state, ps, and the current yield stress in isotropic compression,

24



Pe, while x s is the inverse of the stress ratio at the critical state in axisymmetric
compression (6 = 7/6).

The evolution equations for the plastic strain rate are provided by the asso-
ciative flow rule (3.3). The model is completed by specifying hardening laws for
parameters Xas, Xp, and ps.

To endow the model with a thermodynamic structure, we consider the free
energy function

¥ =te(€°) + ¥Ynr(&nr) + u(&p) (5.5)

where

De(€) = (€l ) = B(e5) + SGo(€s)’ (5)

XMoo Z XM 11 _exp(—pmém)}  (5.7)

Ym(ém) = —xMm,00ém +
W(&) = —& + 1;% {1—exp(—py &)} (5.8)

and function ¢(e¢) is given by

X
N

(5.9)

v

pres +pr (€5 — /) /(28) (€

NIV
X

)

In eqgs. (5.6)-(5.9), pr, &, Go, pPM> XM,0, XM,00s Po and Xp0 are material con-
stants®.

The yield locus described by function (5.1) follows from a dissipation function
of the form

e = {fepr exp (€5/A — 1) (€5

D=D,+x &=S(6)T(2) + xménmr + xs6o - (5.10)

Here ¥, = [0 + ®] py,e where ®., obtained from the stress—dilatancy relation
(4.61), is given by

B, = % {[P2) +4aM]* + P.(5)} (5.11)
P.(8) = (1—a)M ~ 5. (5.12)

while x s and x; are given by

xm = =P (Ear) = X000 — (X01,00 — X1,0) €XP(—paréar) (5.13)
xXb = —¢5(&) =1 — (1 = x5,0) exp(—p&s) - (5.14)

Clearly,
XM,00 = XM0 >0 5, 1=Xpoo > Xp0>0- (5.15)

3According to eq. (5.9), for €& > & the free energy function (5.6) describes a pressure—
dependent, hyperelastic behaviour, with a constant shear modulus Go and a bulk modulus
K =p/k. For € < &, the stored energy function reduces to the classical quadratic expression
of linear elasticity. Eq. (5.6) is a simplified version of the stored energy function proposed
by Houlsby, see e.g., [27]. The minor modification introduced with the switch condition (5.9)
allows to extend the validity of the original model to the tensile stress range.
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In view of (3.6), we get from egs. (5.11) and (5.12) the associative hardening
laws

L of

Xm =% pm (XM,00 — XM) Oxur (5.16)
L of

Xo =7 po (1= xp) EI (5.17)

Remark 5.1. In view of the additive structure of ¥? in (5.5), which uncouples
the two hardening mechanisms, tensor D¢ (&) = 9?yP/(0€ ® O€) is diagonal.
Notice also that, since

of  xexm x _ _ _
L =227 A 1/C B Ky/C A 1 _ B 1 1
50 =% ( ) (5.18)
and

of Xbd 4K1/C p—Ks2/C(g—1 -1 g of

— === A"V/Y BT®/Y (AT - B = - = 5.19

Oxm C ( ) xm Oq (5:19)
we have

XM,00 — XM

=g e (5.20)

XM = pm
This is a purely deviatoric hardening law showing that, within our associative

model, the rate of change of xr is proportional to the distortional plastic power.
On the other hand, from

ﬁ _ K1/Cp—Ka/C g4 _ XM4r, 1 -1
o xp A B {1 Yo [A B ']} (5.21)
(;9—;{,, = AK/CB-K/Cp > (5.22)

we get

of _p 0f 4 9f (5.23)

s x» Op  x» Oq
and, in turn,

Xb"” {pé? + gt} (5.24)

Xb = o

Thus, in the associative case, the rate of change of x» depends on both the
volumetric and the deviatoric components of the plastic power. In particular, in
azisymmetric conditions (T = 1), the rate at which % evolves is proportional to
the plastic power. A consequence of the associativity of the proposed hardening
laws is that, in an isotropic compression experiment (¢ = 0), Xm vanishes
because €& = 0.

Remark 5.2. The evolution laws (5.16) and (5.17) are consistent with the phe-
nomenological hardening laws employed in [8] for M and b. They describe a
monotonic decay of parameters M and b from the initial values Mo = (xp,0) "t
and bo = (xp0) ! to the final asymptotic values Mo = (XM,00) * and boo =
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Table 1: Material parameters for the Pozzolana Nera.

K 0.002 a 0.001
Go (kPa) | 25105 | m | 2.0
pr (kPa) | 400.0 || ps 14.0
Xaoo | 0.625 || par | 1.0-1072
ear 0.652 | p» | 2010

(Xb,0o) "t = 1 as grain crushing proceeds. Notice, however, that while in our
approach the quantity m is a material constant, in [8] m evolves together with
M so that

mM = const. (5.25)

Therefore, while in [8] the dilatancy curves rotate in the § : n plane about a fized
point as M wvaries, in the present model they are parallel with one another.

Finally, a hardening law for p; is needed. We will follow tradition, in assum-
ing the classical (non-associative) volumetric hardening law

Ds = PsDs€l (5.26)
Here
1
= = , 5.27
=3 (5.27)

where \ gives the asymptotic slope (i.e., at xp = 1) of the isotropic virgin
compression curve in the €, : Inp plane.

5.2 Application to Pozzolana Nera

As an example of the capability of the model to reproduce the observed be-
haviour of real granular materials, we compare theoretical predictions with the
experimental results obtained by [10] on Pozzolana Nera, in a series of drained
triaxial compression tests at different values of the confining stress.

The values of the material constants adopted in the simulations are summa-
rized in Tab. 1.

The initial values of the state variables assumed for each tests are given in
Tab. 2. Note that a single set of internal variables has been used for all the
simulations.

Figures 6-7 illustrate the comparison between model predictions and ob-
served behaviour, in the ¢q : €; and €, : €5 plane. Overall, a good qualitative and
quantitative agreement between predictions and measurements can be observed.
In particular, the model appears to reproduce well the transition between a
fragile, dilatant behaviour at low confining stresses to a ductile, contractant
behaviour at high confining stresses. At high confining stresses, the model is ca-
pable to capture the experimentally observed slight reduction in the deviatoric
stress at relatively large deviatoric strains, due to the progressive increase of xas
(i-e., reduction of the slope of the critical state line, M). As for the volumetric
behavior, the behavior observed at low confining stress is also captured quite
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Table 2: Initial state assumed in the simulations.

test # Po Qo Ds0 Xb,0 | XMo
(kPa) | (kPa) | (kPa) | (-) @)
PNO020 | 214.0 0.0 1800.0 | 0.556 | 0.455
PNO035 | 357.0 0.0 1800.0 | 0.556 | 0.455
PN140 | 1404.0 0.0 1800.0 | 0.556 | 0.455
PN285 | 2840.0 0.0 1800.0 | 0.556 | 0.455

(a)

9000 -

6000 —

q (kPa)

3000

1

po= 2800 kPa

400 kPa

200 kPa

(b)

po= 2800 kPa

1400 kPa

350 kPa

200 kPa

0.12

0.06 —

-0.06 —

po= 2800 kPa

1

400 kPa

350 kPa

200 kPa

T T T T
po= 2800 kPa

1400 kPa
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-0.12

0.05 0.1

Figure 6: Drained triaxial compression test: a) experimental data; b) model

predictions.

28



20 T 2.0 T
(a) (b)
151 B 151 B
P, = 2800 kPa P, = 2800 kPa
10k B 1.0~ 1400 kPa N
0 0.5 1400 kPa — © 0.5— -
0.0 — 0.0~ |
Ykpa

05— = -0.5— —
200 kPa 200 kPa

10 ! ! ! ! ! 10 ! ! ! ! !

0.0 0.5 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 3.0
n n

Figure 7: Stress—dilatancy curves: a) experimental data; b) model predictions.

well, whereas computed volumetric strains are sensibly overestimated at small
to moderate strains.

The stress—dilatancy curves from the same drained compression tests are
plotted in Fig. 7. Here the experimental data on plastic dilatancy are those of
[10] and are obtained as follows. It is assumed that axial deformations are en-
tirely plastic, while volumetric plastic deformations are obtained by subtracting
from the measured total deformation the elastic component calculated using the
experimentally determined swelling coefficient (see [10], equations 2 and 3).

From the figure, it is apparent that the model is capable of reproducing
qualitatively, and to a certain extent also quantitatively, the characteristic shape
of the experimental curves. In particular, the model correctly predicts that, at
all confining stresses, the peak of the stress ratio 7 always precedes the point of
minimum dilatancy §. The predictions for the two tests at high confining stresses
are less satisfactory from a quantitative point of view, due to an overestimation
of the dilatancy in the initial part of the test. Even in this case, however, the
model captures correctly the shape of the observed stress—dilatancy curves, with
the characteristic backward bending before reaching the critical state conditions.
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