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“Because I came here with a load
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Introduction

Thin structures are three-dimensional bodies whose thickness in one direction is much

smaller than the other dimensions (such as a membrane, a plate, or a shell), or whose cross-

section is much smaller than the length (as a string or a rod). The subject of this thesis is

the rigorous deduction of lower dimensional models for thin structures in the framework of

nonlinear elasticity and of plasticity.

The rigorous derivation of lower dimensional theories for thin structures is a classical

question in mechanics. Indeed, both from an analytical and a numerical point of view, one-

or two-dimensional models can be handled in an easier way than their three-dimensional

counterparts. In the classical approach, lower dimensional models are typically deduced

arguing by formal asymptotic expansions of the three-dimensional theories in terms of the

thickness parameters or by assuming a priori kinematical restrictions on the structure of the

admissible deformations (see e.g. [12, 13, 46] for an overview of the classical results). Hence,

the range of validity of these limit theories is often unclear.

The first rigorous results have been obtained in the framework of linearized elasticity

([5, 8]). However, since thin elastic bodies can easily undergo large rotations, even under

small loads, this linearized theories have only limited applications.

In the early 90’s a rigorous approach to dimension reduction problems has emerged in

the stationary framework and in the context of nonlinear elasticity [2, 40, 41]. This approach

is based on Γ-convergence: a variational convergence which guarantees, roughly speaking,

convergence of minimizers (and of minima) of the three-dimensional energies to minimizers

(and minima) of the reduced models. For the definition and properties of Γ-convergence we

refer to the monograph [14].

The Γ convergence method consists in proving two inequalities: a liminf inequality, which

provides a lower bound for the limit functional, together with some compactness properties

for sequences with equibounded energies, and a limsup inequality, based on the construction

of a recovery sequence, which guarantees that the lower bound is indeed optimal. In our

framework, to prove compactness of deformations with equibounded energies, two key tools

are Korn inequalities and their nonlinear counterpart, i.e. the rigidity estimate proved by

Friesecke, James and Müller in [33] (see Section 1.2).

The seminal paper [33] has paved the way for the identification, through the Γ-convergence

method, of hierarchies of limit models for plates [33, 34], rods [53, 54, 57, 58], and shells

[32, 42, 43]. The different limit models in the hierarchy correspond to different scaling of the

elastic energy, which, in turn, are determined by the scaling of the applied loads in terms of
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the thickness parameters. In particular, high scalings of the applied forces lead at the limit

to linearized models. In this regime it is shown that deformations converge to the identity

deformation. To obtain a nontrivial limit model therefore, one is led to introduce some

linearized quantities associated to the deformations, to study their asymptotic behaviour,

and to express the Γ-limit energy in terms of their limits.

In the last years, the Γ-convergence approach has gained attention also in dimension

reduction problems arising in the evolutionary framework: in nonlinear elasticity [1], crack

propagation [6, 31], linearized elastoplasticity with hardening [44, 45], and delamination

problems [51]. In the previous setting, we mention in particular an abstract criterion of evo-

lutionary Γ-convergence for rate-independent systems by Mielke, Roub́ıček and Stefanelli

[50].

In this thesis we focus on the derivation, by Γ-convergence, of linearized lower dimen-

sional models for thin structures in the frameworks of nonlinear elasticity, perfect plasticity,

and finite plasticity with hardening. The thesis consists of two parts. The first part con-

cerns nonlinearly elastic thin-walled beams in a stationary framework. In the second part

we consider thin plastic plates in a quasistatic evolutionary setting.

Thin-walled beams are slender, three-dimensional structural elements, whose length is

much larger than the diameter of the cross-section, which, in turn, is much larger than the

thickness of the cross-section. This kind of beams are commonly used in mechanical engi-

neering, since they combine good resistance properties with a reasonably low weight. From

a mathematical point of view, these thin structures are of interest because their behaviour

is determined by the interplay of two different thickness parameters: the diameter and the

thickness of the cross-section.

In the framework of nonlinear elasticity, an analysis of lower dimensional models for

thin-walled beams has been performed in the recent papers [29, 30], under the assumption

of a rectangular cross-section. In Chapter 2, instead, we analyse the case where the cross-

section of the beam is a thin tubular neighbourhood of a smooth curve. More precisely, let

γ : [0, 1] −→ R3 , γ(s) = γ2(s)e2 + γ3(s)e3 , be a smooth and simple planar curve, whose

curvature is not identically equal to zero, and let n(s) denote the normal vector to the curve

at the point γ(s). We consider an elastic beam of reference configuration

Ωh :=
{
x1e1 + hγ(s) + δhtn(s) : x1 ∈ (0, L), s ∈ (0, 1), t ∈

(
− 1

2
,

1

2

)}
,

where L is the length of the beam and h, δh are positive parameters. To model a thin-walled

beam, we assume

h→ 0 and
δh
h
→ 0 (as h→ 0).

In other words, the diameter of the cross-section is of order h and is assumed to be much

larger than the cross-sectional thickness δh .

To any deformation u ∈W 1,2(Ωh;R3) of the beam, we associate the elastic energy (per

unit cross-section) defined as

Eh(u) :=
1

hδh

ˆ
Ωh

W (∇u(x))dx,

2



Introduction

where the energy density W satisfies the usual assumptions of nonlinear elasticity (see

Section 2.2). We are interested in understanding the behaviour, as h → 0, of sequences of

deformations (uh) satisfying

Eh(uh) ≤ Cε2h, (0.0.1)

where (εh) is a given sequence of positive numbers. Estimate (0.0.1) is satisfied, for instance,

by global minimizers of the total energy

Eh(u)− 1

hδh

ˆ
Ωh

u · fhdx

when the applied body force fh : Ωh −→ R3 is of a suitable order of magnitude with respect

to εh (see [29, 30]). The asymptotic behaviour of (uh), as h→ 0, can be characterized by

identifying the Γ-limit of the sequence of functionals (ε−2
h Eh). Here we focus on the case

where the sequence (εh) is infinitesimal and satisfies

lim
h→0

εh
δ2
h

=: ` ∈ [0,+∞). (0.0.2)

In analogy with the results of [30], these scalings are expected to correspond at the limit to

partially or fully linearized models.

Assuming εh = o(δh), as h → 0, we first show (Theorem 2.5.2) that any sequence

(uh) satisfying (0.0.1) converges, up to a rigid motion, to the identity deformation on the

mid-fiber of the rod; more precisely, defining

Ω := (0, L)× (0, 1)×
(
− 1

2
,

1

2

)
and considering a change of variables ψh : Ω −→ Ωh , given by

ψh(x1, s, t) := x1e1 + hγ(s) + δhtn(s)

for every (x1, s, t) ∈ Ω, we have that, up to rigid motions,

yh := uh ◦ ψh → x1e1

strongly in W 1,2(Ω;R3).

As we already mentioned, to express the limiting functional, we introduce and study the

compactness properties of some linearized quantities associated with the scaled deformations

yh . We consider the tangential derivative of the tangential displacement

gh(x1, s, t) :=
1

εh
∂1(yh1 − x1)

for a.e. (x1, s, t) ∈ Ω, and the twist function

wh(x1, s) :=
δh
hεh

ˆ 1
2

− 1
2

∂s(y
h − ψh) · ndt

for a.e. (x1, s) ∈ (0, L)× (0, 1). In Theorem 2.5.2, under assumption (0.0.2), we prove that

gh ⇀ g weakly in L2(Ω),

wh → w strongly in L2((0, L)× (0, 1)),

3



for some g ∈ L2((0, L) × (0, 1)) and w ∈ W 1,2(0, L). Moreover, the sequence of bending

moments
(

1
h∂sw

h
)

converges in the following sense:

1

h
∂sw

h ⇀ b weakly in W−1,2((0, L)× (0, 1))

for some b ∈ L2((0, L) × (0, 1)) (see Proposition 2.5.3). In Theorem 2.6.2 we show that

the limit quantities w, g, b must satisfy some compatibility conditions that depend on the

relative order of magnitude between δh and h . More precisely, assuming the existence of

the limit

µ := lim
h→0

δh
h3
,

three main regimes can be identified:

• µ = +∞,

• µ ∈ (0,+∞),

• µ = 0.

Heuristically, we expect that in the regime µ = 0 (i.e. when δh is much smaller than h3 ),

the thin-walled beam behaves like a shell whose thickness is converging to zero, whereas for

δh much bigger than h3 its asymptotic description is closer to the one of a thin beam.

In the first regime µ = +∞ , one has that g is the tangential derivative of the first

component of a Bernoulli-Navier displacement in curvilinear coordinates, that is, there exists

v ∈W 1,2((0, L)× (0, 1);R3) such that

∂1v · e1 = g, ∂sv · τ = 0, ∂sv · e1 + ∂1v · τ = 0 on (0, L)× (0, 1),

where τ(s) denotes the tangent vector to the curve γ at the point γ(s). The structure of

the cross-sectional components of v depends on the existence and the value of the limit

λ := lim
h→0

δh
h2
.

Indeed, if λ = +∞ , there exist α, β ∈W 1,2(0, L) such that

v(x1, s) · e2 = α(x1) and v(x1, s) · e3 = β(x1)

for every (x1, s) ∈ (0, L) × (0, 1). If λ ∈ (0,+∞), one can show that the twist function w

belongs to W 2,2(0, L) and the cross-sectional components of v depend on w in the following

way:

v(x1, s) · e2 = α(x1)− 1
λ w(x1)γ3(s) and v(x1, s) · e3 = β(x1) + 1

λ w(x1)γ2(s)

for every (x1, s) ∈ (0, L)× (0, 1) and for some α, β ∈W 1,2(0, L). Finally, if λ = 0, the twist

function w is affine, while the cross-sectional components of v satisfy

v(x1, s) · e2 = α(x1)− δ(x1)γ3(s) and v(x1, s) · e3 = β(x1) + δ(x1)γ2(s)

for every (x1, s) ∈ (0, L) × (0, 1) and for some α, β, δ ∈ W 1,2(0, L). In other words, in

the regime µ = +∞ , the structure of g is essentially one-dimensional. As for the bending

moment b , it simply belongs to L2((0, L)× (0, 1)).
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Introduction

In the regime µ = 0 we still have that g is the tangential derivative of the first component

of a Bernoulli-Navier displacement in curvilinear coordinates, but only in an approximate

sense (see the definition of the class G in Section 2.4). Moreover, the bending moment b is

associated with an infinitesimal isometry of the cylindrical surface

{x1e1 + γ(s) : x1 ∈ (0, L), s ∈ (0, 1)},

in the sense that there exists φ ∈ L2((0, L)× (0, 1);R3), with ∂sφ ∈ L2((0, L)× (0, 1);R3),

such that

∂1φ · e1 = 0, ∂sφ · τ = 0, ∂sφ · e1 + ∂1φ · τ = 0 on (0, L)× (0, 1)

and

∂s(∂sφ · n) = b on (0, L)× (0, 1).

The equalities are intended in the sense of distributions; some higher regularity for φ can

be proved (see Remark 2.4.6). In other words, in this regime the limit kinematic description

of the thin-walled beam is intrinsically two-dimensional.

In the intermediate regime µ ∈ (0,+∞), the limit quantities g and b are no more

mutually independent but they must satisfy the following constraint: there exists φ ∈
L2((0, L)× (0, 1);R3), with ∂sφ ∈ L2((0, L)× (0, 1);R3), such that

∂1φ · e1 = µg, ∂sφ · τ = 0, ∂sφ · e1 + ∂1φ · τ = 0 on (0, L)× (0, 1)

and

∂s(∂sφ · n) = b on (0, L)× (0, 1).

Finally, the twist function w is affine for µ ∈ [0,+∞).

The Γ-limit functional is expressed in terms of the limit quantities w, g, b and, according

to the values of λ and µ , is finite only on the class Aλ,µ of triples (w, g, b) with the structure

described above. In Theorems 2.6.3 and 2.7.1 we prove that for (w, g, b) ∈ Aλ,µ the Γ-limit

is given by the functional

Jλ,µ(g, w, b) =
1

24

ˆ L

0

ˆ 1

0

Qtan(s, ∂1w, b) dsdx1 +
1

2

ˆ L

0

ˆ 1

0

Eg2 dsdx1,

where Qtan is a positive definite quadratic form and E is a positive constant, for which

explicit formulas are provided (see (2.6.43) and (2.6.44)).

The dependence of the Γ-limits on the rate of convergence of the thickness parameter

δh with respect to the cross-section diameter h is an effect of the nontrivial geometry of

the cross-section. Indeed, in the case of a rectangular cross-section this phenomenon is not

observed for the scalings (0.0.2) and is conjectured to arise only for scalings εh such that

δ2
h � εh ≤ δh (see [29, 30]).

Another difference with respect to [30] is that, in general, one can not rely on a three-

dimensional Korn inequality on Ω to guarantee compactness of the sequence of cross-

sectional displacements. However, one can use a rescaled two-dimensional Korn inequality in
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curvilinear coordinates (Theorem 2.3.2) to implicitly determine the cross-sectional displace-

ments in the limit models through the characterization of g (see the proof of Theorem 2.6.2).

The proofs of compactness and of the liminf inequality rely both on the rigidity estimate

(Theorem 1.2.1) and on the rescaled two-dimensional Korn inequality. The key ingredients

in the construction of the recovery sequences are some approximation results for triples

in the classes Aλ,µ in terms of smooth functions (see Section 2.4). In the regime µ = 0

the approximation result is proved under the additional assumption that the set where the

curvature of γ vanishes is the union of a finite number of intervals and isolated points.

Therefore, for µ = 0 the Γ-convergence result is valid only under this additional restriction.

The second part of the thesis concerns the rigorous justification of quasistatic evolution

models for thin elasto-plastic plates. We consider a thin plate of reference configuration

Ωε := ω × (− ε2 ,
ε
2 ),

where ε > 0 is the thickness parameter and ω is a domain in R2 with a C2 boundary.

We assume that ∂ω can be partitioned into the union of two disjoint sets γd and γn and

their common boundary, and we prescribe a time-dependent boundary datum on a subset

Γε := γd × (− ε2 ,
ε
2 ) of the lateral surface.

In Chapter 3 we consider the linear framework of perfect plasticity, for which existence

of three-dimensional quasistatic evolutions is guaranteed by [15, 59]. In Chapters 4 and 5

we discuss the more difficult case of finite plasticity.

The quasistatic evolution problem in linearized perfect plasticity can be formulated as

follows. Assume that the elastic behaviour of the plate is linear and isotropic and its plastic

response is governed by the Prandtl-Reuss flow rule without hardening. Let uε(t) denote

the displacement field at time t and let Euε(t) denote the infinitesimal strain tensor at t ,

that is, the symmetric part of Duε(t). Let σε(t) be the stress tensor at t and let eε(t)

and pε(t) (a deviatoric symmetric matrix) be the elastic and plastic strain tensors at t . Let

wε(t) be the time-dependent boundary condition prescribed on Γε . Assume also that for

simplicity there are no applied loads. The classical formulation of the quasistatic evolution

problem on a time interval [0, T ] consists in finding uε(t), eε(t), pε(t), and σε(t) such that

the following conditions are satisfied for every t ∈ [0, T ] :

(cf1) kinematic admissibility: Euε(t) = eε(t) + pε(t) in Ωε and uε(t) = wε(t) on Γε ;

(cf2) constitutive law: σε(t) = Ceε(t) in Ωε , where C is the elasticity tensor;

(cf3) equilibrium: div σε(t) = 0 in Ωε and σε(t)ν∂Ωε = 0 on ∂Ωε \ Γε , where ν∂Ωε is the

outer unit normal to ∂Ωε ;

(cf4) stress constraint: σεD(t) ∈ K , where σεD is the deviatoric part of σε and K is a

given convex and compact subset of deviatoric 3×3 matrices, representing the set of

admissible stresses;

6
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(cf5) flow rule: ṗε(t) = 0 if σεD(t) ∈ intK , while ṗε(t) belongs to the normal cone to K at

σεD(t) if σεD(t) ∈ ∂K .

The first existence result of a quasistatic evolution in perfect plasticity has been proved

in [59] by means of viscoplastic approximations. More recently, in [15] the problem has

been reformulated within the framework of the variational theory for rate-independent pro-

cesses, developed in [47]. This variational formulation reads as follows: to find a triple

(uε(t), eε(t), pε(t)) such that for every t ∈ [0, T ] we have

(qs1) global stability: (uε(t), eε(t), pε(t)) satisfies Euε(t) = eε(t)+pε(t) in Ωε , uε(t) = wε(t)

on Γε , and minimizes

1
2

ˆ
Ωε

Cf : f dx+

ˆ
Ωε

H(q − pε(t)) dx

among all kinematically admissible triples (v, f, q), where H is the support function

of K , i.e., H(p) := sup{σ : p : σ ∈ K} ;

(qs2) energy balance:

1
2

ˆ
Ωε

Ceε(t) : eε(t) dx+

ˆ t

0

ˆ
Ωε

H(ṗε(s)) dxds

= 1
2

ˆ
Ωε

Ceε(0) : eε(0) dx+

ˆ t

0

ˆ
Ωε

Ceε(s) :Eẇε(s) dxds.

The existence of a quasistatic evolution according to the previous formulation and the extent

to which this is equivalent to the original formulation is the main focus of [15].

Our purpose is to characterize the limiting behaviour of a sequence of solutions (uε(t), eε(t), pε(t)),

as ε → 0. We observe that the abstract theory of evolutionary Γ-convergence for rate-

independent systems developed in [50] cannot be directly applied here. Indeed, it consists in

studying separately the Γ-limit of the stored-energy functionals and that of the dissipation

distances and in coupling them through the construction of a joint recovery sequence. This

technique has been applied, e.g., in [44, 45], where the presence of hardening gives rise to a

stored-energy functional that is coercive in the L2 norm both with respect to e and p . This

approach is not suited to our case, since the elastic energy is coercive only with respect to

the elastic strain e , while the plastic strain p can be controlled only through the dissipation.

For this reason, to identify the correct limiting energy we study the Γ-convergence of the

total energy functional, given by the sum of the stored energy with the dissipation distance.

We first focus on the static case, that is, we consider a boundary displacement wε

independent of time, we introduce the functional

Eε(u, e, p) := 1
2

ˆ
Ωε

Ce : e dx+

ˆ
Ωε

H(p) dx (0.0.3)

defined on the class Aε(wε,Ωε) of all triples (u, e, p) satisfying Eu = e + p in Ωε and

u = wε on Γε , and we study its limit, as ε→ 0, in the sense of Γ-convergence.
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As pointed out in [15], because of the linear growth of H , the functional Eε is not coercive

in any Sobolev norm. The natural setting for a weak formulation is the space BD(Ωε) of

functions with bounded deformation for the displacement u and the space Mb(Ωε∪Γε;M3×3
D )

of trace-free M3×3 -valued bounded Borel measures on Ωε ∪ Γε for the plastic strain p

(see Section 1.4 for an overview on the basic properties of BD functions). This is also

natural from a mechanical point of view, because in absence of hardening it is well known

that displacements may develop jump discontinuities along so-called slip surfaces, on which

plastic strain concentrates.

In particular, the functional ˆ
Ωε

H(p) dx

has to be interpreted according to the theory of convex functions of measures, developed in

[35, 60] (see also Section 3.2), as

ˆ
Ωε∪Γε

H
( dp
d|p|

)
d|p|,

where dp/d|p| is the Radon-Nicodym derivative of p with respect to its total variation |p| .
Moreover, the boundary condition is relaxed by requiring that

p = (wε − u)� ν∂ΩεH2 on Γε, (0.0.4)

where � denotes the symmetric tensor product. The mechanical interpretation of (0.0.4) is

that u may not attain the boundary condition: in this case a plastic slip is developed along

Γε , whose amount is proportional to the difference between the prescribed boundary value

and the actual value.

For simplicity we assume that the prescribed boundary datum wε is a displacement of

Kirchhoff-Love type of Sobolev regularity (see (3.2.6)). As observed in Remark 3.4.3, more

general boundary conditions can also be considered.

Setting Γd := γd × (− 1
2 ,

1
2 ), we show that the Γ-limit of Eε (rescaled to the domain

Ω := ω × (− 1
2 ,

1
2 ) independent of ε) is finite only on the class AKL(w) of triples (u, e, p)

such that u ∈ BD(Ω), e ∈ L2(Ω;M3×3
sym), p ∈Mb(Ω ∪ Γd;M3×3

sym), and

Eu = e+ p in Ω, p = (w − u)� ν∂ΩH2 on Γd, (0.0.5)

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1, 2, 3, (0.0.6)

where ν∂Ω is the outer unit normal to ∂Ω. On this class the Γ-limit is given by the

functional

J (u, e, p) := 1
2

ˆ
Ω

Cre : e dx+Hr(p) (0.0.7)

where

Hr(p) :=

ˆ
Ω∪Γd

Hr

( dp
d|p|

)
d|p|

and the tensor Cr and the function Hr are defined through pointwise minimization formulas

(see (3.4.1), (3.4.5), and (3.4.7)).

Conditions (0.0.5)–(0.0.6) imply that u is a Kirchhoff-Love displacement in BD(Ω), that

is, u3 belongs to the space BH(ω) of functions with bounded Hessian (see Section 1.4) and

8
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there exists ū ∈ BD(ω) such that

u(x) =
(
ū1(x′)− x3∂1u3(x′), ū2(x′)− x3∂2u3(x′), u3(x′)

)
for a.e. x = (x′, x3) ∈ Ω.

Moreover,

(Eu)αβ = (Eū)αβ − x3∂
2
αβu3 for α, β = 1, 2.

We note that the averaged tangential displacement ū may exhibit jump discontinuities,

while, because of the embedding of BH(ω) into C(ω), the normal displacement u3 is

continuous, but its gradient may have jump discontinuities. Moreover, the second equality in

(0.0.5), together with the second condition in (0.0.6), implies that u3 satisfies the boundary

condition u3 = w3 on γd . In particular, in the limit model slip surfaces are vertical surfaces

whose projection on ω is the union of the jump set of ū and the jump set of ∇u3 .

We also remark that conditions (0.0.5)–(0.0.6) do not imply that e and p are affine with

respect to the x3 variable. Therefore, in contrast with the case of linearized elasticity [5, 8],

the limit functional J cannot be in general expressed in terms of two-dimensional quantities

only. A precise characterization of conditions (0.0.5)–(0.0.6) in terms of the moments of e

and p is given in Proposition 3.3.5.

We then introduce time and study the convergence of quasistatic evolutions. We prescribe

on Γε a boundary datum wε(t) of Kirchhoff-Love type and we consider a sequence of initial

data (uε0, e
ε
0, p

ε
0), that is compact in a suitable sense. We show (Theorem 3.5.4) that, if

for every ε > 0 the triple (uε(t), eε(t), pε(t)) is a quasistatic evolution in the sense of

(qs1)–(qs2) for the boundary datum wε(t) and the initial datum (uε0, e
ε
0, p

ε
0), then, up to a

suitable scaling, (uε(t), eε(t), pε(t)) converges, as ε → 0, to a limit triple (u(t), e(t), p(t))

that satisfies:

(qs1)r reduced global stability: for every t ∈ [0, T ] (u(t), e(t), p(t)) ∈ AKL(w(t)) and mini-

mizes
1
2

ˆ
Ω

Crf : f dx+Hr(q − p(t))

among all triples (v, f, q) in AKL(w(t));

(qs2)r reduced energy balance: for every t ∈ [0, T ]

1
2

ˆ
Ω

Cre(t) : e(t) dx+

ˆ t

0

Hr(ṗ(s)) ds = 1
2

ˆ
Ω

Cre(0) : e(0) dx+

ˆ t

0

ˆ
Ω

Cre(s) :Eẇ(s) dxds.

We call a triple satisfying (qs1)r –(qs2)r a reduced quasistatic evolution.

The proof of Theorem 3.5.4 mainly relies on the Γ-convergence result in the static case.

Even if the abstract theory of [50] cannot be directly applied, we follow the general scheme

proposed in that paper. In particular, the role of the so-called joint recovery sequence is

played in our case by the recovery sequence constructed at fixed time.

In the last part of the Chapter 3 we discuss some properties of reduced quasistatic

evolutions. We show three equivalent formulations in rate form (Theorem 3.6.13). In all of

them the global stability condition is replaced by a system of two equilibrium conditions, one

for the stretching component of the stress and the other for the bending component. These

9



two components are coupled in the energy balance, which is rephrased in the three different

formulations in terms of a maximal dissipation principle, of a flow rule in a weak form, and

of a variational inequality for the stress (analogous to the formulation considered in [59]

in the case of three-dimensional perfect plasticity), respectively. To prove these results we

define a suitable notion of duality between stresses and plastic strains in the footsteps of

[37] and [22].

In the last subsection of Chapter 3 we focus on two examples, where a reduced quasistatic

evolution can be characterized in terms of two-dimensional quantities only. In particular,

(Proposition 3.6.16) we show that, if the set K is symmetric with respect to the origin

and the boundary datum and the initial data are properly chosen, our notion of reduced

quasistatic evolution coincides with that studied in [9, 24, 25].

In Chapters 4 and 5 we turn our attention to a model in finite plasticity. We consider a

plate of reference configuration Ωε and assume that the deformations η ∈ W 1,2(Ωε;R3) of

the plate fulfill the multiplicative decomposition

∇η(x) = Fel(x)Fpl(x) for a.e. x ∈ Ωε,

where Fel ∈ L2(Ωε;M3×3) represents the elastic strain, Fpl ∈ L2(Ωε;SL(3)) is the plastic

strain and SL(3) := {F ∈ M3×3 : detF = 1}. To guarantee coercivity in the plastic

strain variable, we suppose to be in a hardening regime. More precisely, the stored energy

associated to a deformation η and to its elastic and plastic strains is expressed as

E(η, Fpl) :=

ˆ
Ωε

Wel(∇η(x)F−1
pl (x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx

=

ˆ
Ωε

Wel(Fel(x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx,

where Wel is a nonlinear frame-indifferent elastic energy density and Whard , which is

finite only on a compact subset of SL(3) having the identity as an interior point, de-

scribes hardening. The plastic dissipation is expressed by means of a dissipation distance

D : M3×3 ×M3×3 → [0,+∞] , which is given via a positively 1-homogeneous potential HD ,

and represents the minimum amount of energy that is dissipated when the system moves

from a plastic configuration to another (see Section 4.2).

The existence of a quasistatic evolution in this nonlinear setting is a quite delicate is-

sue, and it has only recently been solved in [48] by adding to the stored-energy functional

some further regularizing terms in the plastic component. We shall not add these further

terms here, we rather show, in the last section, that our convergence result can be extended

to sequences of approximate discrete-time quasistatic evolutions, whose existence is always

guaranteed (see Theorem 5.5.2).

In Chapter 4, as in the case of linearized perfect plasticity, we first consider the static

problem and we study the asymptotic behaviour of sequences of pairs (ηε, F εpl) whose total

energy per unit thickness satisfies

1

ε

(
E(ηε, F εpl) + εα−1

ˆ
Ωε

D(F ε,0pl , F
ε
pl) dx

)
≤ Cε2α−2, (0.0.8)

10
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where α ≥ 3 is a positive parameter and (F ε,0) ⊂ L2(Ωε;SL(3)) is a given sequence

representing preexistent plastic strains. It was proved in [34] that in the absence of plastic

deformation (that is, when F ε,0 = Fpl = Id) these energy scalings lead to the Von Kármán

plate theory for α = 3 and to the linear plate theory for α > 3. The scaling of the dissipation

energy is motivated by its linear growth (see (4.2.20)). In analogy with the results of [34] in

the framework of nonlinear elasticity, we expect these scalings to correspond to partially or

fully linearized plastic models.

On Γε we prescribe a boundary datum

φε(x) :=
( x′

x3

)
+
( εα−1u0(x′)

εα−2v0(x′)

)
− εα−2x3∇v0(x′) (0.0.9)

for x = (x′, εx3) ∈ Ωε , where u0 ∈ W 1,∞(ω;R2) and v0 ∈ W 2,∞(ω). This structure of the

boundary conditions is compatible with that of the minimal energy configurations in the

absence of plastic deformations (see Remark 4.2.5).

We first show that, given any sequence of pairs (ηε, F εpl) satisfying (0.0.8) and the bound-

ary conditions

ηε = φε H2 - a.e. on γd ×
(
− ε

2 ,
ε
2

)
, (0.0.10)

as ε → 0, the deformations ηε converge to the identity deformation on the mid-section of

the plate, and the plastic strains F εpl tend to the identity matrix. More precisely, defining

Ω := ω ×
(
− 1

2 ,
1
2

)
and ψε(x) := (x′, εx3) for every (x′, x3) ∈ Ω, and assuming

F ε,0pl ◦ ψ
ε = Id+ εα−1pε,0

with

pε,0 ⇀ p0 weakly in L2(Ω;M3×3), (0.0.11)

we show that

yε := ηε ◦ ψε →
( x′

0

)
strongly in W 1,2(Ω;R3)

and

P ε := F εpl ◦ ψε → Id strongly in L2(Ω;M3×3).

To express the limit functional, we introduce and study the compactness properties of some

linearized quantities associated with the scaled deformations and plastic strains: the in-plane

displacements

uε(x′) :=
1

εα−1

ˆ 1
2

− 1
2

(( yε1
yε2

)
− x′

)
dx3

for a.e. x′ ∈ ω , the out-of-plane displacements

vε(x′) :=
1

εα−2

ˆ 1
2

− 1
2

yε3(x) dx3,

for a.e. x′ ∈ ω , and the linearized plastic strains

pε(x) :=
P ε(x)− Id

εα−1

11



for a.e. x ∈ Ω. We prove (Theorem 4.3.3) that, under assumptions (0.0.8), (0.0.10) and

(0.0.11) the sequence of triples (uε, vε, pε) converges in a suitable sense to a triple (u, v, p) ∈
W 1,2(ω;R2)×W 2,2(ω)× L2(Ω;M3×3), such that tr p = 0, and

u = u0, v = v0, ∇v = ∇v0 H1-a.e. on γd.

Moreover, we show that the Γ-limit functional can be expressed in terms of the limit quan-

tities u, v, and p , and is given by

Jα(u, v, p) :=

ˆ
Ω

Q2

(
sym∇′u+ Lα

2 ∇
′v ⊗∇′v − x3(∇′)2v − p′

)
dx+

ˆ
Ω

B(p) dx

+

ˆ
Ω

H(p− p0) dx, (0.0.12)

where Lα = 0 for α > 3 and Lα = 1 for α = 3 (see Theorems 4.3.3, 4.4.1 and 4.5.1). In

the previous formulas, ∇′ denotes the gradient with respect to x′ , p′ is the 2 × 2 minor

given by the first two rows and columns of the map p , and Q2 and B are positive definite

quadratic forms on M2×2 and M3×3 , respectively, for which an explicit characterization is

provided (see Sections 3.4 and 4.3).

The constant Lα in the limit problem encodes the main differences between the cases α >

3 and α = 3. Indeed, for α = 3, the limit energy contains the nonlinear term 1
2∇
′v ⊗∇′v ,

which accounts for the stretching due to the out-of-plane displacement. For α > 3 the

limit problem is completely linearized and, in the absence of hardening, coincides with the

functional (0.0.7) identified starting from three-dimensional linearized elasto-plasticity under

the assumption that D2Wel(Id) = C (where C is the tensor in (0.0.3)). However, we point

out that the role of the hardening term in the present formulation is fundamental to deduce

compactness of the three-dimensional evolutions (see Step 1, Proof of Theorem 5.3.9).

We also remark that in the absence of plastic dissipation (p0 = p = 0) the two Γ-limits

reduce to the functionals deduced in [34] in the context of nonlinear elasticity. As in the case

of linearized elasto-plasticity though, also in this context the limit functional Jα cannot be,

in general, expressed in terms of two-dimensional quantities only because the limit plastic

strain p depends nontrivially on the x3 variable (see Section 4.5).

The setting of the problem and some proof arguments are very close to those of [52],

where it is shown that three-dimensional linearized plasticity can be obtained as Γ-limit of

three-dimensional finite plasticity. The proof of the compactness and the liminf inequality

rely on the rigidity estimate (Theorem 1.2.1). This theorem can be applied owing to the

presence of the hardening term, which provides one with a uniform bound on the L∞ norm

of the scaled plastic strains P ε . The construction of the recovery sequence is obtained by

combining some results of [34, Sections 6.1 and 6.2] about dimension reduction in nonlinear

elasticity and [52, Lemma 3.6].

In Chapter 5 we finally assume that u0 and v0 (and hence φε ) are time-dependent maps,

and we study the convergence of quasistatic evolutions associated to φε , assuming a priori

their existence. To deal with the nonlinear structure of the energy, we follow the approach

of [28]: we assume φε(t) to be a C1 diffeomorphism on R3 and we write deformations

η ∈W 1,2(Ωε;R3) as

η ◦ ψε = φε(t) ◦ z,

12
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where z ∈W 1,2(Ω;R3) satisfies the boundary condition

z(x) = ψε(x) = (x′, εx3) H2 - a.e. on γd ×
(
− 1

2 ,
1
2

)
.

To any plastic strain Fpl ∈ L2(Ωε;SL(3)) we associate a scaled plastic strain P ∈ L2(Ω;SL(3))

defined as

P := Fpl ◦ ψε

and we rewrite the stored energy as

Fε(t, z, P ) :=

ˆ
Ω

Wel(∇φε(t, z(x))∇εz(x)) dx+

ˆ
Ω

Whard(P (x)) dx =
1

ε
E(η, Fpl),

where ∇εz := (∇′z| 1ε∂3z).

In this setting, according to the variational theory for rate-independent processes de-

veloped in [47], a quasistatic evolution for the boundary datum φε is a function t 7→
(z(t), P (t)) ∈ W 1,2(Ω;R3) × L2(Ω;SL(3)) such that for every t ∈ [0, T ] the following two

conditions are satisfied:

(gs) global stability: there holds

z(t) = ψε H2 - a.e. on γd ×
(
− 1

2 ,
1
2

)
and (z(t), P (t)) minimizes

Fε(t, z̃, P̃ ) + εα−1

ˆ
Ω

D(P (t), P̃ ) dx,

among all (z̃, P̃ ) ∈ W 1,2(Ω;R3) × L2(Ω;SL(3)) such that z̃ = ψε H2 - a.e. on

γd ×
(
− 1

2 ,
1
2

)
;

(eb) energy balance:

Fε(t, z(t), P (t)) + εα−1D(P ; 0, t)

= Fε(0, z(0), P (0)) + εα−1

ˆ t

0

ˆ
Ω

Eε(s) :
(
∇φ̇ε(s, z(s))(∇φε)−1(s, z(s))

)
dx ds.

In the previous formula, D(P ; 0, t) is the plastic dissipation in the interval [0, t] (see Section

5.3), Eε(t) is the stress tensor, defined as

Eε(t) :=
1

εα−1
DWel

(
∇φε(t, z(t))∇εz(t)(P )−1(t)

)(
∇φε(t, z(t))∇εz(t)(P )−1(t)

)T
,

and α ≥ 3 is the same exponent as in the expression of the boundary datum.

The main result of Chapter 5 is the characterization of the asymptotic behaviour of

(zε(t), P ε(t)), as ε→ 0. More precisely, in Theorem 5.3.9 (and Corollaries 5.4.2 and 5.4.3)

we show that, given a sequence of initial data (zε0, P
ε
0 ) which is compact in a suitable sense,

if t 7→ (zε(t), P ε(t)) is a quasistatic evolution for the boundary datum φε (according to

(gs)–(eb)), satisfying zε(0) = zε0 and P ε(0) = P ε0 , then defining the in-plane displacement

uε(t) :=
1

εα−1

ˆ 1
2

− 1
2

(( φε1(t, zε(t))

φε2(t, zε(t))

)
− x′

)
dx3,
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the out-of-plane displacement

vε(t) :=
1

εα−2

ˆ 1
2

− 1
2

φε3(t, zε(t)) dx3

and the scaled linearized plastic strain

pε(t) :=
P ε(t)− Id
εα−1

,

for every t ∈ [0, T ] we have

pε(t)→ p(t) strongly in L2(Ω;M3×3),

where p(t) ∈ L2(Ω;M3×3) with tr p(t) = 0 a.e. in Ω. If α > 3 there holds

uε(t)→ u(t) strongly in W 1,2(ω;R2), (0.0.13)

vε(t)→ v(t) strongly in W 1,2(ω), (0.0.14)

for every t ∈ [0, T ] , where u(t) ∈ W 1,2(ω;R2) and v(t) ∈ W 2,2(ω). If α = 3, the con-

vergence of the in-plane and out-of-plane displacements holds only on a t-dependent sub-

sequence. Moreover, t 7→ (u(t), v(t), p(t)) is a solution of the reduced quasistatic evolution

problem associated to the functionals Jα defined in (0.0.12).

The proof of this results follows along the general lines of [50]. A major difficulty in the

proof of the reduced energy balance is related to the compactness of the stress tensors Eε(t).

In fact, due to the physical growth assumptions on Wel , weak L2 compactness of Eε(t) is

in general not guaranteed. However, the sequence of stress tensors satisfies the following

properties: there exists a sequence of sets Oε(t), which converges in measure to Ω, such that

on Oε(t) the stresses Eε(t) are weakly compact in L2 , while in the complement of Oε(t)

their contribution is negligible in the L1 norm. This mixed-type convergence is enough to

pass to the limit in the three-dimensional energy balance. This argument of proof is similar

to that used in [55] by Mora and Scardia, to prove convergence of critical points for thin

plates under physical growth conditions for the energy density.

A further difficulty arises because of the physical growth conditions on Wel : the global

stability (gs) does not secure that zε(t) fulfills the usual Euler-Lagrange equations. This

is crucial to identify the limit stress tensor. This issue is overcome by proving that zε(t)

satisfies the analogue of an alternative first order condition introduced by Ball in [6, Theorem

2.4] in the context of nonlinear elasticity (see Section 1.3), and by adapting some techniques

in [55].

Finally, to obtain the reduced global stability condition, we need an approximation result

for triples (u, v, p) ∈W 1,2(ω;R2)×W 2,2(ω)× L2(Ω;M3×3) such that

u = 0, v = 0, ∇′v = 0 H1 - a.e. on γd (0.0.15)

in terms of smooth triples. This is achieved arguing as in the linearized elasto-plastic setting

(Section 3.3), under additional regularity assumptions on ∂ω and on γd (see Lemma 5.2.1).

The results of Chapter 2 will appear in [18]. The results of Chapter 3 have been obtained

in collaboration with Maria Giovanna Mora, and will appear in [21]. The content of Chapter

4 corresponds to the article [19] and that of Chapter 5 to the article [20].
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Chapter 1

Preliminary results

In this chapter we collect some notation and preliminary results that will be useful in

the sequel.

The first three sections contain some results related to dimension reduction problems in

the framework of elasticity: in Section 1.1 we collect some statements of the Korn inequalities

and we recall a lemma due to J.L. Lions that will be crucial in Chapter 2. In Section 1.2 we

recall the rigidity estimate proved by Friesecke, James and Müller in [33], whereas Section

1.3 concerns an alternative first order stationarity condition proved by Ball in [7], which is

compatible with physical growth conditions for the elastic energy density.

Section 1.4 is a collection of the main properties of functions of bounded deformation

and of bounded Hessian, which will play a key role in Chapter 3, whereas the last section

concerns to two slightly refined versions of the classical Helly theorem that we will use in

Chapter 5.

Notation

Throughout the thesis we shall denote the canonical basis of R3 by {e1, e2, e3} . The k -th

component of a vector v will be denoted by vk . For every v, w ∈ Rn , we shall denote their

scalar product by v · w . We endow the space Mn×n of n × n matrices with the euclidean

norm

|M | :=
√
Tr(MTM) =

√ ∑
i,j=1,··· ,n

m2
ij

and denote by the colon : the associated scalar product. We shall adopt the classical notation

to indicate the following subsets of Mn×n :

Mn×n
+ := {F ∈Mn×n : det F > 0},

Mn×n
sym := {F ∈Mn×n : F = FT },

Mn×n
skew := {F ∈Mn×n : F = −FT },

Mn×n
D := {F ∈Mn×n

sym : tr F = 0},

SO(n) := {F ∈Mn×n
+ : FTF = Id}.

For every j ∈ N , we will denote by Cj0(A;Rm) and C∞0 (A;Rm) respectively the standard

spaces of Cj and C∞ functions with compact support in A .

15



1.1 Korn inequalities

1.1 Korn inequalities

Korn inequalities are an essential tool to establish coerciveness of differential operators in

the framework of linear elasticity. Indeed these inequalities allow to bound the W 1,p norm

of a map with the Lp norms of the symmetric part of its gradient and of the map itself.

The classical statement of Korn inequalities on bounded Lipschitz domains reads as

follows.

Proposition 1.1.1 (Korn inequalities). Let U be a bounded Lipschitz domain in Rn , n ≥ 2 ,

and let 1 < p < +∞ . Consider the space

Ep(U) := {u ∈ Lp(U ;Rn) : sym∇u ∈ Lp(U ;Mn×n)}.

Then Ep(U) = W 1,p(U ;Rn) ,

‖u‖W 1,p(U ;Rn) ≤ Cp(U)(‖u‖Lp(U ;Rn) + ‖sym∇u‖Lp(U ;Mn×n))

and

min{‖u−Ax− b‖W 1,p(U ;Rn) : A ∈Mn×n
skew, b ∈ Rn} ≤ Cp(U)‖sym∇u‖Lp(U ;Mn×n).

If Γ ⊂ ∂U has positive Hn−1 measure then

‖u‖W 1,p(U ;Rn) ≤ Cp(U ; Γ)‖sym∇u‖Lp(U ;Mn×n) for all u such that u = 0 Hn−1 - a.e. on Γ.

Proof. See [34, Proposition 1].

For a survey on Korn inequalities on bounded domains we refer to [36]. Some Korn

inequalities can be proved also for general surfaces, by introducing a formulation with curvi-

linear coordinates. A crucial result in this framework is the following lemma, due to J.L.

Lions.

Lemma 1.1.2 (Lemma of J.L. Lions). Let U be a bounded, connected, open set in Rn with

Lipschitz boundary and let v be a distribution on U . If v ∈W−1,2(U) and ∂iv ∈W−1,2(U)

for i = 1, · · · , n , then v ∈ L2(U) .

By combining Lemma 1.1.2 and the closed graph theorem we obtain in particular the

following result, that we will use in Chapter 2 to prove a rescaled Korn inequality and to

characterize the class of limit displacements and bending moments.

Corollary 1.1.3. Let U be a bounded, connected, open set in Rn with Lipschitz boundary

and let (vn) be a sequence of distributions in W−1,2(U) . If there exists a map v ∈ L2(U)

such that

vn → v strongly in W−1,2(U),

∇vn → ∇v strongly in W−1,2(U ;Rn),

then

vn → v strongly in L2(U).

An overview on standard Korn inequalities in curvilinear coordinates as well as a detailed

bibliography on Lions Lemma can be found in [13, Sections 2.6 and 2.7] and [13, Section

1.7], respectively.
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1. Preliminary results

1.2 The rigidity estimate

A tool that will be crucial to establish compactness of deformations with equibounded

elastic energies is the following rigidity estimate, due to Friesecke, James, and Müller [33,

Theorem 3.1].

Theorem 1.2.1. Let U be a bounded Lipschitz domain in Rn , n ≥ 2 . Then there exists

a constant C(U) with the following properties: for every v ∈ W 1,2(U ;Rn) there is an

associated rotation R ∈ SO(n) such that

‖∇v −R‖L2(U) ≤ C(U)‖dist(∇v, SO(n))‖L2(U).

Remark 1.2.2. The constant C(U) in Theorem 1.2.1 is invariant by translations and

dilations of U and is uniform for families of sets which are uniform bi-Lipschitz images of a

cube.

The previous theorem implies, in particular, the following result.

Corollary 1.2.3 (Liouville Theorem). Let U be a bounded Lipschitz domain in Rn , n ≥ 2 .

Let v ∈ W 1,2(U,Rn) be such that ∇v(x) ∈ SO(3) for a.e. x ∈ U . Then, there exists

R ∈ SO(3) such that ∇v = R , that is v is a rigid motion.

1.3 Ball’s first order stationarity condition

In this section we recall a first order stationarity condition proved by Ball in [7, Theorem

2.4] in the framework of nonlinear elasticity. A modified version of (1.3.1) will be essential

in Chapter 5 to identify the limit stress tensor.

Theorem 1.3.1. Let W : M3×3 → [0,+∞] be a map satisfying the following assumptions:

• W (F ) = +∞ for every F ∈M3×3 , W (F )→ +∞ as det F → 0+ ,

• W is C1 on M3×3
+ ,

• There exists a constant k such that |DW (F )FT | ≤ k(W (F )+1) for every F ∈M3×3
+ .

Let U ⊂ R3 be a bounded open set with Lipschitz boundary ∂U = ∂U1 ∪ ∂U2 ∪N , where

∂U1 and ∂U2 are disjoint and open in the relative topology of ∂U , and N has null H2

measure. Let ω ∈ H1/2(∂U,R3) and let f ∈ L2(U,R3). Let ω ∈ W 1,2(U,R3) be a local

minimum of the functional

F(ω) :=

ˆ
U

W (∇ω)dz −
ˆ
U

f · ωdz

satisfying the boundary condition

ω = ω H2 - a.e. on ∂U1,

namely, assume there exists ε > 0 such that F(ω) ≤ F(v) for every v ∈ W 1,2(U,R3)

satisfying {
‖v − ω‖W 1,2(U ;R3) ≤ ε,
v = ω H2 - a.e. on ∂U1.
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1.4 Functions of bounded deformation and bounded Hessian

Then: ˆ
U

DW (∇ω)(∇ω)T : ∇φ(ω)dz =

ˆ
U

f · φ(ω)dz (1.3.1)

for every φ ∈ C1(R3,R3) ∩W 1,∞(R3,R3) such that φ ◦ ω = 0 H2 - a.e. on ∂U1 .

We omit the proof of this result, which can be found in [7, Proof of Theorem 2.4]. We

only remark that the main idea of the proof is to perform external variations of the form

ωτ (z) := ω(z) + τφ(ω(z)),

where τ ∈ R is a small parameter, which is supposed to be tending to zero, and φ ∈
C1(R3,R3) ∩W 1,∞(R3,R3).

1.4 Functions of bounded deformation and bounded Hes-

sian

In this section we recall some notions from measure theory and from the theory of

functions with bounded deformation and with bounded Hessian.

Measures. Given a Borel set B ⊂ RN and a finite dimensional Hilbert space X , Mb(B;X)

denotes the space of all bounded Borel measures on B with values in X , endowed with the

norm ‖µ‖Mb
:= |µ|(B), where |µ| ∈Mb(B;R) is the variation of the measure µ . For every

µ ∈Mb(B;X) we consider the Lebesgue decomposition µ = µa+µs , where µa is absolutely

continuous with respect to the Lebesgue measure LN and µs is singular with respect to

LN . If µs = 0, we always identify µ with its density with respect to LN , which is a function

in L1(B;X).

If the relative topology of B is locally compact, by Riesz representation Theorem the

space Mb(B;X) can be identified with the dual of C0(B;X), which is the space of all

continuous functions ϕ : B → X such that the set {|ϕ| ≥ δ} is compact for every δ > 0.

The weak* topology on Mb(B;X) is defined using this duality.

Convex functions of measures. For every µ ∈ Mb(B;X) let dµ/d|µ| be the Radon-

Nicodym derivative of µ with respect to its variation |µ| . Let H0 : X → [0,+∞) be a

convex and positively one-homogeneous function such that

r0|ξ| ≤ H0(ξ) ≤ R0|ξ| for every ξ ∈ X,

where r0 and R0 are two constants, with 0 < r0 ≤ R0 . According to the theory of convex

functions of measures, developed in [35], we introduce the nonnegative Radon measure

H0(µ) ∈Mb(B) defined by

H0(µ)(A) :=

ˆ
A

H0

( dµ
d|µ|

)
d|µ|

for every Borel set A ⊂ B . We also consider the functional H0 : Mb(B;X) → [0,+∞)

defined by

H0(µ) := H0(µ)(B) =

ˆ
B

H0

( dµ
d|µ|

)
d|µ|
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1. Preliminary results

for every µ ∈Mb(B;X). One can prove that H0(µ) coincides with the measure studied in

[60, Chapter II, Section 4]. Hence,

H0(µ) = sup
{ˆ

B

ϕ : dµ : ϕ ∈ C0(B;X), ϕ(x) ∈ K0 for every x ∈ B
}
, (1.4.1)

where K0 := ∂H0(0) is the subdifferential of H0 at 0. Moreover, H0 is lower semicontinuous

on Mb(B;X) with respect to weak* convergence.

Functions with bounded deformation. Let U be an open set of RN . The space BD(U)

of functions with bounded deformation is the space of all functions u ∈ L1(U ;RN ) whose

symmetric gradient Eu := symDu (in the sense of distributions) belongs to Mb(U ;MN×N
sym ).

It is easy to see that BD(U) is a Banach space endowed with the norm

‖u‖L1 + ‖Eu‖Mb
.

We say that a sequence (uk) converges to u weakly* in BD(U) if uk ⇀ u weakly in

L1(U ;RN ) and Euk ⇀ Eu weakly* in Mb(U ;MN×N
sym ). Every bounded sequence in BD(U)

has a weakly* converging subsequence. If U is bounded and has Lipschitz boundary, BD(U)

can be embedded into LN/(N−1)(U ;RN ) and every function u ∈ BD(U) has a trace, still

denoted by u , which belongs to L1(∂U ;RN ). Moreover, if Γ is a nonempty open subset of

∂U , there exists a constant C > 0, depending on U and Γ, such that

‖u‖L1(Ω) ≤ C‖u‖L1(Γ) + C‖Eu‖Mb
. (1.4.2)

(see [60, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the

space BD(U) we refer to [60].

Functions with bounded Hessian. Let U be an open set of RN . The space BH(U)

of functions with bounded Hessian is the space of all functions u ∈W 1,1(U) whose Hessian

D2u belongs to Mb(U ;MN×N
sym ). It is easy to see that BH(U) is a Banach space endowed

with the norm

‖u‖L1 + ‖∇u‖L1 + ‖D2u‖Mb
.

If U has the cone property, then BH(U) coincides with the space of functions in L1(U)

whose Hessian belongs to Mb(U ;MN×N
sym ). If U is bounded and has Lipschitz boundary,

BH(U) can be embedded into W 1,N/(N−1)(U). If, in addition, the boundary of U is C2 ,

then BH(U) is embedded into C(U), which is the space of all continuous functions on U .

Moreover, if U is bounded and has a C2 boundary, for every function u ∈ BH(U) one can

define the traces of u and of ∇u , still denoted by u and ∇u ; they satisfy u ∈ W 1,1(∂U),

∇u ∈ L1(∂U ;RN ), and ∂u
∂τ = ∇u · τ in L1(∂U), where τ is any tangent vector to ∂U . For

the general properties of the space BH(U) we refer to [23].

1.5 Helly Theorem

We conclude this chapter of preliminary results by recalling two generalizations of the

classical Helly Theorem for real valued functions with uniformly bounded variation.
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1.5 Helly Theorem

Let X be the dual of a separable Banach space. Given f : [0, T ] → X and a, b ∈ [0, T ]

with a ≤ b , denote the total variation of f on [a, b] by

V(f ; a, b) := sup
{ N∑
i=1

‖f(ti)− f(ti−1)‖X : a = t0 ≤ t1 ≤ · · · ≤ tN = b, N ∈ N
}
. (1.5.1)

The first result of this section is a lemma proved by Dal Maso, DeSimone and Mora in

[15, Lemma 7.2], which generalizes the classical Helly Theorem, as well as its extension to

reflexive separable Banach spaces (see, e.g., [10, Chapter 1, Theorem 3.5]). We shall use this

lemma in Chapter 5 to prove the existence of a quasistatic evolution for our reduced model.

Lemma 1.5.1. Let fk : [0, T ] → X be a sequence of functions such that fk(0) and

V(fk; 0, T ) are bounded uniformly with respect to k . Then there exist a subsequence, still

denoted fk , and a function f : [0, T ] → X with bounded variation on [0, T ] , such that

fk(t) ⇀ f(t) weakly* for every t ∈ [0, T ] .

In Chapter 5 we shall refer also to a different generalization of Helly Theorem proved by

Mielke, Roub́ıček and Stefanelli in [50, Theorem A.1]. To state this result we first introduce

some notations.

Let Z be a Hausdorff topological space. Assume that (Dk)k∈N∪{+∞} is a sequence of

maps Dk : Z × Z → [0,+∞] such that

(A.1) Dk(z, z) = 0 for every k ∈ N, z ∈ Z,
and Dk(z1, z3) ≤ Dk(z1, z2) +Dk(z2, z3) for every k ∈ N, z1, z2, z3 ∈ Z ;

(A.2) For all sequentially compact K ⊂ Z we have:

if zk ∈ K and min{D∞(zk, z),D∞(z, zk)} → 0, then zk → z ;

(A.3) If zk → z and z̃k → z̃ then D∞(z, z̃) ≤ lim infk→+∞Dk(zk, z̃k).

For every function z : [0, T ]→ Z , for every k ∈ N ∪ {+∞} and s, t ∈ [0, T ] with s < t , set

Dissk(z; [s, t]) := sup
{ N∑
i=1

Dk(z(tj−1), z(tj)), s = t0 < t1 < · · · < tN ≤ t, N ∈ N
}
.

We are now in a position to state [50, Theorem A.1].

Theorem 1.5.2. Assume that the sequence (Dk) satisfies conditions (A.1)–(A.3). Let K
be a sequentially compact subset of Z and zk : [0, T ]→ Z , k ∈ N be a sequence satisfying

(A.4) (i) zk(t) ∈ K for every t ∈ [0, T ] and k ∈ N (ii) supk∈NDissk(zk; [0, T ]) < +∞.

Then there exist a subsequence (zkl)l∈N and limit functions z : [0, T ]→ Z and δ : [0, T ]→
[0,+∞] with the following properties:

δ(t) = lim
l→+∞

Disskl(zkl ; [0, t]) for every t ∈ [0, T ],

zkl(t)→ z(t) for every t ∈ [0, T ],

Diss∞(z; [s, t]) ≤ δ(t)− δ(s) for every s, t ∈ [0, T ] with s < t.

The previous theorem will be essential in Chapter 5 to prove convergence of time-

dependent plastic strains in the framework of finite plasticity.
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Chapter 2

Thin-walled beams in nonlinear

elasticity

2.1 Overview of the chapter

A thin-walled beam is a three-dimensional body, whose length is much larger than the

diameter of the cross-section, which, in turn, is much larger than the thickness of the cross-

section. This kind of beams are commonly used in mechanical engineering, since they

combine good resistance properties with a reasonably low weight.

In this chapter we consider a nonlinearly elastic thin-walled beam whose cross-section is

a thin tubular neighbourhood of a smooth curve. Denoting by h and δh , respectively, the

diameter and the thickness of the cross-section, we analyse the case where the scaling factor

of the elastic energy is of order ε2h , with εh/δ
2
h → ` ∈ [0,+∞), and we rigorously deduce,

by Γ-convergence techniques, different lower dimensional linearized models, according to

the relative order of magnitude between the cross-section diameter and the cross-section

thickness.

The chapter is organized as follows. In Section 2.2 we describe the setting of the prob-

lem. In Section 2.3 we prove a technical lemma and a rescaled Korn inequality in curvilinear

coordinates. In Section 2.4 we discuss some approximation results for displacements and

bending moments. Section 2.5 is devoted to the proof of the compactness results, while

Section 2.6 to the liminf inequality. Finally, in Section 2.7 we construct the corresponding

recovery sequences.

Notation. Throughout this chapter if α : (0, L) −→ Rm is a function of the x1 variable,

we shall denote its derivative, when it exists, by α′ , while if α : (0, 1) −→ Rm is a function

of the s variable, we shall denote its derivative by α̇ .
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2.2 Setting of the problem

2.2 Setting of the problem

Let (h), (δh) be two sequences of positive numbers such that h→ 0 and

lim
h→0

δh
h

= 0. (2.2.1)

We shall consider a thin-walled elastic beam, whose reference configuration is the set

Ωh : =
{
x1e1 + hγ(s) + δhtn(s) : x1 ∈ (0, L), s ∈ (0, 1), t ∈

(
− 1

2 ,
1
2

)}
,

where γ : [0, 1] −→ R3 , γ(s) = (0, γ2(s), γ3(s)) is a simple, planar curve of class C6

parametrized by arclength and n(s) is the normal vector to the curve γ at the point γ(s).

We first introduce some notation. We shall denote by τ(s) := γ̇(s) the tangent vector to γ

at the point γ(s), so that

n(s) =

( 0

−τ3(s)

τ2(s)

)

for every s ∈ [0, 1]. The orthonormal frame associated to the curve γ is encoded by the

map R0 : [0, 1] −→ SO(3) given by

R0(s) :=
(
e1

∣∣∣ τ(s)
∣∣∣n(s)

)
for every s ∈ [0, 1]. Let k(s) := τ̇(s) · n(s) be the curvature of γ at the point γ(s). We

shall assume that k is not identically equal to zero. Finally, let N,T : [0, 1] −→ R be the

functions defined by N(s) := γ(s) · n(s) and T (s) := γ(s) · τ(s) for every s ∈ [0, 1].

It will be useful to consider also the following quantities: the two-dimensional vectors

τ(s) :=
( τ2(s)

τ3(s)

)
, n(s) :=

( −τ3(s)

τ2(s)

)
and the 2× 2 rotation

R0(s) := (τ(s)
∣∣∣n(s))
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2. Thin-walled beams in nonlinear elasticity

for every s ∈ [0, 1].

We define the elastic energy (per unit cross-section) associated with every deformation

u ∈W 1,2(Ωh;R3) as

Eh(u) :=
1

hδh

ˆ
Ωh

W (∇u(x))dx, (2.2.2)

where the stored-energy density W : M3×3 → [0,+∞] satisfies the usual assumptions in

nonlinear elasticity, namely:

(H1) W is continuous;

(H2) W (RF ) = W (F ) for every R ∈ SO(3), F ∈M3×3 (frame indifference);

(H3) W = 0 on SO(3);

(H4) ∃C > 0 such that W (F ) ≥ C dist2(F, SO(3)) for every F ∈M3×3 ;

(H5) W is of class C2 in a neighbourhood of SO(3).

2.2.1 Change of variables and formulation of the problem

As usual in problems of dimension reduction, we scale the deformations and the corre-

sponding energy to a fixed domain. We set Ω := (0, L)× (0, 1)× (− 1
2 ,

1
2 ) and we define the

maps ψh : Ω −→ Ωh as

ψh(x1, s, t) := x1e1 + hγ(s) + δhtn(s),

for every (x1, s, t) ∈ Ω. We notice in particular that there exists h0 > 0 such that ψh

is a bijection for every h ∈ (0, h0). To every deformation u ∈ W 1,2(Ωh;R3) we associate

a scaled deformation y ∈ W 1,2(Ω;R3), given by y := u ◦ψh . The elastic energy can be

rewritten in terms of the scaled deformations as

Eh(u) = J h(y) :=

ˆ
Ω

(h− δhtk
h

)
W (∇h,δhyRT0 ) dx1dsdt, (2.2.3)

where

∇h,δhy :=
(
∂1y

∣∣∣ 1

h− δhtk
∂sy

∣∣∣ 1

δh
∂ty
)
.

We observe that

∇h,δhψh = R0.

Moreover, denoting by

S := (0, 1)× (− 1
2 ,

1
2 )

the scaled cross-section, since k is a bounded function, by (2.2.1) we have

h− δhtk
h

→ 1 (2.2.4)
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2.3 Preliminary lemmas

uniformly in S . In particular, for h small enough it follows that h − δhtk > 0 for every

s ∈ [0, 1] and t ∈ [− 1
2 ,

1
2 ] .

Throughout this chapter we shall consider sequences of scaled deformations (yh) in

W 1,2(Ω;R3) satisfyingˆ
Ω

(h− δhtk
h

)
W (∇h,δhyhRT0 ) dx1dsdt ≤ Cε2h, (2.2.5)

where (εh) is a given sequence of positive numbers. We shall mainly focus on the case where

(εh) is infinitesimal of order larger or equal than (δ2
h), that is, we shall assume that

∃ lim
h→0

εh
δ2
h

=: ` ∈ [0,+∞). (2.2.6)

2.3 Preliminary lemmas

In this section we collect two results which will be useful to prove a liminf inequality for the

rescaled energies defined in (2.2.3). A first crucial result in the proof of the liminf inequality

is a modified version of the Korn inequality in curvilinear coordinates (see Section 1.1).

We first fix some notation. We recall that S = (0, 1) × (− 1
2 ,

1
2 ). For any ε > 0 and

v ∈W 1,2(S;R2) we set

∇εv :=
( 1

1− εtk
∂sv
∣∣∣1
ε
∂tv
)

(2.3.1)

and we consider the subspace

Mε :=
{
v ∈W 1,2(S;R2) : sym(∇εvR

T

0 ) = 0
}
.

We remark that the expression sym(∇εvR
T

0 ) represents the linearized strain associated with

the displacement v ◦ (ψε)−1 , where

ψε(s, t) := γ(s) + εtn(s) (2.3.2)

for every (s, t) ∈ S . Since Mε is closed in W 1,2(S;R2), the orthogonal projection

Πε : W 1,2(S;R2) −→Mε

is well defined. We also introduce the set

M0 :=
{
v ∈W 1,2(S;R2) : ∂tv = 0, ∂sv · τ = 0, ∂s(∂sv · n) = 0

}
, (2.3.3)

which will play a key role in the proof of the Korn inequality.

The following characterization of the spaces Mε and M0 can be given.

Lemma 2.3.1. Let v ∈M0 . Then there exist α1, α2, α3 ∈ R such that

v(s, t) =
( α2

α3

)
+ α1

( −γ3(s)

γ2(s)

)
(2.3.4)

for every (s, t) ∈ S .

Let v ∈Mε . Then there exist α1, α2, α3 ∈ R such that

v(s, t) =
( α2

α3

)
+ α1

( −γ3(s)

γ2(s)

)
− εtα1τ(s) (2.3.5)

for every (s, t) ∈ S .

24



2. Thin-walled beams in nonlinear elasticity

Proof. It is immediate to see that, if v ∈M0 , then ∂sv = δn for some constant δ ∈ R , from

which (2.3.4) follows.

If v ∈ Mε , then v ◦ (ψε)−1 is an infinitesimal rigid displacement, that is, there exist

α1, α2, α3 ∈ R such that

(
v ◦ (ψ

ε
)−1
)

(x2, x3) =
( α2

α3

)
+ α1

( −x3

x2

)
for every (x2, x3) ∈ ψε(S). This implies (2.3.5).

We are now in a position to state and prove a rescaled Korn inequality in curvilinear

coordinates.

Theorem 2.3.2 (Korn inequality). There exist two constants ε0 > 0 and C > 0 such that

for every ε ∈ (0, ε0) , v ∈W 1,2(S;R2) , there holds

‖v −Πε(v)‖W 1,2(S;R2) ≤
C

ε
‖sym(∇εvR

T

0 )‖L2(S;M2×2). (2.3.6)

Remark 2.3.3. An analogous dependance of Korn constant on the thickness of a thin

structure has been proved, e.g. in [38, Proposition 4.1], in the case of a thin plate with

rapidly varying thickness.

Proof of Theorem 2.3.2. By contradiction, assume there exist a sequence (εj) and a se-

quence of maps (vj) ⊂W 1,2(S;R2) such that εj → 0 and

‖vj −Πεj (v
j)‖W 1,2(S;R2) >

j

εj
‖sym(∇εjvjR

T

0 )‖L2(S;M2×2), (2.3.7)

for every j ∈ N . Up to normalizations, we can assume that

‖vj −Πεj (v
j)‖W 1,2(S;R2) = 1. (2.3.8)

We set φj := vj −Πεj (v
j). By definition φj ∈ W 1,2(S;R2), φj is orthogonal to Mεj in

the sense of W 1,2 , and

‖sym(∇εjφjR
T

0 )‖L2(S;M2×2) <
εj
j

(2.3.9)

for every j . By the normalization hypothesis (2.3.8), we have ‖φj‖W 1,2(S;R2) = 1 for every

j . Hence, there exists φ ∈ W 1,2(S;R2) such that, up to subsequences, φj ⇀ φ weakly in

W 1,2(S;R2).

Let now u ∈ M0 . We claim that there exists a sequence (uj) such that uj ∈ Mεj for

every j ∈ N and uj → u strongly in W 1,2(S;R2). Indeed, by Lemma 2.3.1, the map u has

the following structure:

u =
( α2

α3

)
+ α1

( −γ3

γ2

)
for some α1, α2, α3 ∈ R . Therefore, the maps uj given by

uj := u− εjtα1τ
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have the required properties. Since 〈φj , uj〉W 1,2 = 0 for any j ∈ N , passing to the limit we

deduce

〈φ, u〉W 1,2 = 0 for every u ∈M0, (2.3.10)

that is φ is orthogonal to M0 in the sense of W 1,2 .

To deduce a contradiction we shall prove that the convergence of (φj) is actually strong

in W 1,2(S;R2) and φ ∈M0 .

To this purpose, we first remark that by (2.3.9) there holds

‖sym(R0
T∇εjφj)‖L2(S;M2×2) = ‖R0

T
(sym(∇εjφjR

T

0 ))R0‖L2(S;M2×2) ≤
Cεj
j

(2.3.11)

for every j ∈ N . This implies, in particular, that

∂sφ
j · τ → 0, ∂tφ

j · τ → 0, and
1

εj
∂tφ

j · n→ 0 (2.3.12)

strongly in L2(S). To show the strong convergence of φj in W 1,2(S;R2), it remains to

prove that ∂sφ
j · n→ ∂sφ · n strongly in L2(S). By Lemma 1.1.2 and Corollary 1.1.3, it is

enough to prove that

∂sφ
j · n→ ∂sφ · n strongly in W−1,2(S)

and

∇(∂sφ
j · n)→ ∇(∂sφ · n) strongly in W−1,2(S;R2).

Convergence of (∂sφ
j · n) in W−1,2(S) is a direct consequence of the strong convergence of

(φj) in L2(S;R2), whereas strong convergence of (∂t∂sφ
j · n) in W−1,2(S;R2) follows by

the identity

∂t∂sφ
j · n = ∂s(∂tφ

j · n) + k∂tφ
j · τ

and by property (2.3.12). To prove convergence of (∂s(∂sφ
j ·n)) we notice that, by (2.3.11),

1

εj
‖∂t(sym(R0

T∇εjφj)11)‖W−1,2(S) ≤
C

j
(2.3.13)

for every j ∈ N , and

∂s(sym(R0
T∇εjφj)12)→ 0 strongly in W−1,2(S).

Furthermore,

1

εj
∂t(sym(R0

T∇εjφj)11) =
∂t∂sφ

j · τ
εj(1− εjtk)

+
k(∂sφ

j · τ)

(1− εjtk)2

=
2∂s(sym(R0

T∇εjφj)12)

1− εjtk
− k

1− εjtk
∂tφ

j · n
εj

− 1

1− εjtk
∂s

( ∂sφj · n
1− εjtk

)
+
k(∂sφ

j · τ)

(1− εjtk)2
.

By combining (2.3.12) and (2.3.13), we obtain

∂s(∂sφ
j · n)→ 0 strongly in W−1,2(S). (2.3.14)

26



2. Thin-walled beams in nonlinear elasticity

By collecting the previous remarks we deduce

φj → φ strongly in W 1,2(S;R2).

Now, on the one hand ‖φj‖W 1,2(S;R2) = 1 for any j ∈ N , hence ‖φ‖W 1,2(S;R2) = 1. On the

other hand by combining (2.3.10), (2.3.12) and (2.3.14) we deduce that φ both belong to

M0 and is orthogonal to M0 . Hence φ must be identically equal to zero. This leads to a

contradiction and completes the proof of the lemma.

Denote by ω the set

ω := (0, L)× (0, 1).

We conclude this section by proving a technical lemma.

Lemma 2.3.4. Let (αhi ) ⊂W−2,2(0, L) , i = 1, 2, 3, and let f ∈W−2,2(ω) be such that

αh1N + αh2τ2 + αh3τ3 ⇀ f weakly in W−2,2(ω), (2.3.15)

as h→ 0 . Then, there exist αi ∈W−2,2(0, L) , i = 1, 2, 3 , such that for every i

αhi ⇀ αi weakly in W−2,2(0, L),

as h→ 0 , and

f = α1N + α2τ2 + α3τ3. (2.3.16)

If, in addition, there exists g ∈ L2(ω) such that f = ∂sg , then αi ∈ L2(0, L) for every

i = 1, 2, 3 . If f = 0 , then αi = 0 for every i = 1, 2, 3 .

Proof. To simplify the notation, throughout the proof we shall use the symbol 〈· , ·〉 to

denote the duality pairing between W−2,2(ω) and W 2,2
0 (ω).

We recall that every α ∈ W−2,2(0, L) can be identified with an element of the space

W−2,2(ω) by setting

〈α, δ〉 :=

ˆ 1

0

〈α, δ(s, ·)〉W−2,2(0,L),W 2,2
0 (0,L) ds (2.3.17)

for every δ ∈ C∞0 (ω), and extending it by density to W 2,2
0 (ω). Moreover, for every α ∈

W−2,2(0, L) and β ∈ C2(0, 1), we can define the product αβ as

〈αβ, δ〉 := 〈α, βδ〉 =

ˆ 1

0

〈α, δ(s, ·)〉W−2,2(0,L),W 2,2
0 (0,L)β(s) ds

for every δ ∈ C∞0 (ω).

Consider now the maps ϕ ∈W 2,2
0 (0, L) and ψ ∈ Cj+2

0 (0, 1), with j ∈ N . We claim that

〈αhi , ϕ∂jsψ〉 = 0. (2.3.18)

Indeed, let (ϕl) ⊂ C∞0 (0, L) be such that ϕl → ϕ strongly in W 2,2(0, L). Then,

〈αhi , ϕ∂jsψ〉 = lim
l→+∞

〈αhi , ϕl∂jsψ〉.
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On the other hand,

〈αhi , ϕl∂jsψ〉 =

ˆ 1

0

∂s〈αhi , ϕl∂j−1
s ψ〉W−2,2(0,L),W 2,2

0 (0,L) ds = 0

for every l ∈ N . Therefore, we deduce claim (2.3.18).

By (2.3.15), for every ϕ ∈W 2,2
0 (0, L) and ψ ∈ Cj+2

0 (0, 1), there holds

〈αh1N, ϕ∂jsψ〉+
∑
i=2,3

〈αhi τi, ϕ∂jsψ〉 → 〈f, ϕ∂jsψ〉.

Claim (2.3.18) yields

〈αh1kT + αh2kτ3 − αh3kτ2, ϕ∂j−1
s ψ〉 → 〈f, ϕ∂jsψ〉. (2.3.19)

Hence, choosing j = 1, we obtain

〈αh1kT + αh2kτ3 − αh3kτ2, ϕψ〉 → 〈f, ϕ∂sψ〉 (2.3.20)

for every ϕ ∈W 2,2
0 (0, L) and ψ ∈ C3

0 (0, 1).

Let now ϕ ∈ W 2,2
0 (0, L) and ψ ∈ Cj+3

0 (0, 1). Taking ϕ∂jsψ as test function in (2.3.20)

and applying again (2.3.18), we deduce

〈−αh1 (k̇T + k + k2N)− αh2 (k̇τ3 + k2τ2) + αh3 (k̇τ2 − k2τ3), ϕ∂j−1
s ψ〉 → 〈f, ϕ∂j+1

s ψ〉,

which in turn gives

〈−αh1 (k̇T + k + k2N)− αh2 (k̇τ3 + k2τ2) + αh3 (k̇τ2 − k2τ3), ϕψ〉 → 〈f, ϕ∂2
sψ〉, (2.3.21)

for every ϕ ∈W 2,2(0, L) and ψ ∈ C4
0 (0, 1).

Consider a map φ ∈ C∞0 (0, 1). By regularity of the curve γ , the map kφ belongs to

C4
0 (0, 1). Therefore, for every ϕ ∈W 2,2

0 (0, L) we can choose ϕkφ as test function in (2.3.21)

and we obtain

〈−αh1 (kk̇T + k2 + k3N)− αh2 (kk̇τ3 + k3τ2) + αh3 (kk̇τ2 − k3τ3), ϕφ〉 → 〈f, ϕ∂2
s (kφ)〉.

On the other hand, by (2.3.15) there holds

〈αh1N +
∑

1=2,3

αhi τi, ϕk
3φ〉 → 〈f, ϕk3φ〉,

whereas (2.3.20) yields

〈αh1kT + αh2kτ3 − αh3kτ2, ϕk̇φ〉 → 〈f, ϕ∂s(k̇φ)〉.

By collecting the previous remark we deduce

〈αh1 , ϕk2φ〉 → −〈f, ϕ(∂2
s (kφ) + k3φ+ ∂s(k̇φ))〉 (2.3.22)

for every ϕ ∈W 2,2(0, L) and φ ∈ C∞0 (0, 1).

Let now φ ∈ C∞0 (0, 1) be such that

ˆ 1

0

k2φds = 1
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(such φ exists because k is not identically equal to zero in (0, 1)). Convergence (2.3.22)

implies that

αh1 ⇀ α1 weakly in W−2,2(0, L), (2.3.23)

where

〈α1, ϕ〉W−2,2(0,L),W 2,2
0 (0,L) = −〈f, ϕ(∂2

s (kφ) + k3φ+ ∂s(k̇φ))〉 (2.3.24)

for every ϕ ∈ W 2,2
0 (0, L). By definition (2.3.17) it is immediate to see that, identifying

αh1 , α1 with elements of W−2,2(ω), we also have

αh1 ⇀ α1 weakly in W−2,2(ω). (2.3.25)

Let again ϕ ∈W 2,2
0 (0, L) and φ ∈ C∞0 (0, 1). Taking ϕkτ2φ and ϕτ3φ as test functions

respectively in (2.3.15) and (2.3.20) we deduce

〈αh1N + αh2τ2 + αh3τ3, ϕkτ2φ〉 → 〈f, ϕkτ2φ〉 (2.3.26)

and

〈αh1kT + αh2kτ3 − αh3kτ2, ϕτ3φ〉 → 〈f, ϕ∂s(τ3φ)〉. (2.3.27)

By summing (2.3.26) and (2.3.27) and using (2.3.25), we obtain

〈αh2 , kφϕ〉 → 〈f, ϕ(kτ2φ+ ∂s(τ3φ))〉 − 〈α1, ϕkγ3φ〉

for every ϕ ∈W 2,2
0 (0, L) and φ ∈ C∞0 (0, 1).

Choosing φ̂ such that
´ 1

0
kφ̂ ds = 1 and arguing as in the proof of (2.3.23), we deduce

αh2 ⇀ α2 weakly in W−2,2(0, L), (2.3.28)

where

〈α2, ϕ〉W−2,2(0,L),W 2,2(0,L) = 〈f, ϕ(kτ2φ̂+ ∂s(τ3φ̂))〉 − 〈α1, ϕkγ3φ̂〉 (2.3.29)

for every ϕ ∈W 2,2
0 (0, L).

Similarly, one can prove that

αh3 ⇀ α3 weakly in W−2,2(0, L) (2.3.30)

where

〈α3, ϕ〉W−2,2(0,L),W 2,2
0 (0,L) = 〈f, ϕ(kτ3φ̂− ∂s(τ2φ̂))〉+ 〈α1, ϕkγ2φ̂〉 (2.3.31)

for every ϕ ∈W 2,2
0 (0, L).

By combining (2.3.15), (2.3.25), (2.3.28), and (2.3.30), we obtain the representation

(2.3.16).

If f = ∂sg , with g ∈ L2(ω), then by (2.3.24) there holds

〈α1, ϕ〉W−2,2(0,L),W 2,2
0 (0,L) =

ˆ L

0

ˆ 1

0

g∂s(∂
2
s (kφ) + k3φ+ ∂s(k̇φ))ϕdsdx1,

for every ϕ ∈W 2,2
0 (0, L). This implies that α1 ∈ L2(0, L). Similarly equalities (2.3.29) and

(2.3.31) yield α2, α3 ∈ L2(0, L).

Finally, if f = 0, by properties (2.3.24), (2.3.29) and (2.3.31) it follows immediately that

αi = 0 for every i .
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2.4 Limit classes of displacements and bending moments

and approximation results

In this section we introduce some classes of displacements and bending moments, that will

play a key role in the characterization of the limit models, and we discuss their properties

and their approximation by means of smooth functions.

We begin by introducing the limit class of the tangential derivatives of the tangential

displacements

G :=
{
g ∈ L2(ω) : ∃(vε) ⊂ C5(ω;R3) such that ∂sv

ε
1 + ∂1v

ε · τ = 0,

∂sv
ε · τ = 0 for every ε > 0 and g = lim

ε→0
∂1v

ε
1

}
, (2.4.1)

where the limit is intended with respect to the strong convergence in L2(ω). In other words,

if for every v ∈ W 1,2(ω;R3) we consider the symmetric gradient e(v) ∈ L2(ω;M2×2
sym) of v ,

defined by

e(v) :=

(
∂1v1

1
2 (∂sv1 + ∂1v · τ)

1
2 (∂sv1 + ∂1v · τ) ∂sv · τ

)
, (2.4.2)

a function g ∈ L2(ω) belongs to G if and only if there exists a sequence (vε) ⊂ C5(ω;R3)

such that

e(vε) =

(
∂1v

ε
1 0

0 0

)
→

(
g 0

0 0

)
strongly in L2(ω;M2×2

sym), as ε→ 0.

The following characterization of the class G can be proved.

Lemma 2.4.1. Let g ∈ L2(ω) and assume there exists a sequence (vε) ⊂W 1,2(ω;R3) such

that

e(vε) ⇀
( g 0

0 0

)
(2.4.3)

weakly in L2(ω;M2×2
sym) as ε→ 0 . Then g ∈ G .

Proof. Condition (2.4.3) can be rewritten as

∂1v
ε
1 ⇀ g weakly in L2(ω), (2.4.4)

∂sv
ε
1 + ∂1v

ε · τ ⇀ 0 weakly in L2(ω), (2.4.5)

∂sv
ε · τ ⇀ 0 weakly in L2(ω). (2.4.6)

Moreover, by Mazur Lemma, we may assume that the convergence in (2.4.4), (2.4.5) and

(2.4.6) is strong in L2(ω).

For every ε , let ũε ∈ W 1,2(ω), with ∂2
1 ũ

ε ∈ L2(ω), be such that ∂1ũ
ε = vε1 . By (2.4.5)

and Poincaré inequality

∂sũ
ε + vε · τ −

 L

0

∂sũ
ε dx1 −

 L

0

vε · τ dx1 → 0 (2.4.7)
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strongly in L2(ω). Let now νε ∈W 1,2(ω) be such that ∂sν
ε = vε · τ . Setting

uε := ũε −
 L

0

ũε dx1 −
 L

0

νε dx1,

then uε ∈W 1,2(ω), ∂2
1u

ε ∈ L2(ω) and (2.4.7) yields

∂su
ε + vε · τ → 0 strongly in L2(ω). (2.4.8)

Finally, by (2.4.4) there holds

∂2
1u

ε → g strongly in L2(ω). (2.4.9)

We want to approximate uε and vε by smooth functions in such a way that (2.4.9) holds

and the quantities in (2.4.6) and (2.4.8) are equal to zero for every ε > 0. To this purpose,

we first extend uε and vε to the set

ωδ := (−δ, L+ δ)× (0, 1),

with 0 < δ < L
3 . For every ε , we define

v̊ε(x1, s) :=


vε(x1, s) in ω,

6vε(−x1, s)− 8vε(−2x1, s) + 3vε(−3x1, s) in (−δ, 0)× (0, 1),

6vε(2L− x1, s)− 8vε(3L− 2x1, s) + 3vε(4L− 3x1, s) in (L,L+ δ)× (0, 1)

and

ůε(x1, s) :=


uε(x1, s) in ω,

6uε(−x1, s)− 8uε(−2x1, s) + 3uε(−3x1, s) in (−δ, 0)× (0, 1),

6uε(2L− x1, s)− 8uε(3L− 2x1, s) + 3uε(4L− 3x1, s) in (L,L+ δ)× (0, 1).

Clearly, v̊ε and ůε are extensions of vε and uε , respectively, to ωδ . Moreover, we have

ůε ∈ W 1,2(ωδ) with ∂2
1 ů

ε ∈ L2(ωδ), and v̊ε ∈ W 1,2(ωδ). Finally, by (2.4.6) and (2.4.8) we

deduce

∂sv̊
ε · τ → 0, and ∂sů

ε + v̊ε · τ → 0 strongly in L2(ωδ). (2.4.10)

Furthermore, defining

g̊ :=


g(x1, s) in ω,

6g(−x1, s)− 32g(−2x1, s) + 27g(−3x1, s) in (−δ, 0)× (0, 1),

6g(2L− x1, s)− 32g(3L− 2x1, s) + 27g(4L− 3x1, s) in (L,L+ δ)× (0, 1)

there holds g̊ ∈ L2(ωδ), g̊ = g a.e. in ω , and

∂2
1 ů

ε → g̊ strongly in L2(ωδ). (2.4.11)

We set v̊εt := v̊ε · n and v̊εs := v̊ε · τ . For every ε , let vεt ∈ C∞(ωδ) be such that

‖vεt − v̊εt‖W 1,2(ωδ) ≤ Cε. (2.4.12)
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Let now vεs ∈ C5(ωδ) be the solution of

∂sv
ε
s = kvεt in ωδ, (2.4.13)

satisfying
´ 1

0
vεs(x1, s)ds ∈ C∞(−δ, L+ δ), with

ˆ 1

0

vεs(x1, s)ds−
ˆ 1

0

v̊εs(x1, s)ds→ 0 strongly in L2(−δ, L+ δ).

By (2.4.13) we deduce

‖∂s(vεs − v̊εs)‖L2(ωδ) ≤ ‖k(vεt − v̊εt )‖L2(ωδ) + ‖kv̊εt − ∂sv̊εs‖L2(ωδ).

Hence, owing to (2.4.10) and (2.4.12),

‖∂s(vεs − v̊εs)‖L2(ωδ) → 0, (2.4.14)

and by Poincaré inequality

‖vεs − v̊εs‖L2(ωδ) → 0. (2.4.15)

Finally, let uε ∈ C6(ωδ) be such that

∂su
ε + vεs = 0 in ωδ, (2.4.16)

with
´ 1

0
uε(x1, s) ds ∈ C∞(−δ, L+ δ) and

ˆ 1

0

uε(x1, s) ds−
ˆ 1

0

ůε(x1, s) ds→ 0 strongly in L2(−δ, L+ δ).

By (2.4.16) there holds

‖∂s(uε − ůε)‖L2(ωδ) ≤ ‖∂sů
ε + v̊εs‖L2(ωδ) + ‖̊vεs − vεs‖L2(ωδ).

Therefore, by (2.4.10) and (2.4.15), we deduce

∂s(u
ε − ůε)→ 0 strongly in L2(ωδ),

which in turn, by Poincaré inequality, yields

uε − ůε → 0 strongly in L2(ωδ). (2.4.17)

To guarantee convergence of the second derivative in the x1 variable of the sequence

(uε), we regularize both (uε) and (vε) by mollification in the x1 variable. To this purpose,

we consider a map ρ ∈ C∞0 (−λ, λ) with 0 < λ < δ , and we define
v̂εs(x1, s) := (vεs(·, s) ∗ ρ)(x1),

v̂εt (x1, s) := (vεt(·, s) ∗ ρ)(x1),

ûε(x1, s) := (uε(·, s) ∗ ρ)(x1),

for a.e. (x1, s) ∈ ω and for every ε > 0. The regularized maps satisfy (v̂εt ) ⊂ C∞(ω),

(v̂εs) ⊂ C5(ω), and (ûε) ⊂ C6(ω). Moreover, by (2.4.13) and (2.4.16), there holds

∂sv̂
ε
s = kv̂εt and ∂sû

ε + v̂εs = 0 in ω.

32
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Finally, (2.4.17) yields

∂2
1(ûε − (̊uε(·, s) ∗ ρ)) = (uε(·, s)− ůε(·, s)) ∗ ρ′′ → 0

strongly in L2(ω) as ε→ 0. On the other hand, by (2.4.11) we have

∂2
1 (̊uε(·, s) ∗ ρ) = ∂2

1 ů
ε(·, s) ∗ ρ→ g̊(·, s) ∗ ρ

strongly in L2(ω) as ε→ 0; hence we deduce

∂2
1 û

ε → g̊(·, s) ∗ ρ

strongly in L2(ω) as ε→ 0.

The conclusion of the lemma follows now by considering a sequence of convolution kernels

in the x1 variable, and by applying a diagonal argument.

Remark 2.4.2. An equivalent characterization of the class G is the following:

G =
{
g ∈ L2(ω) : ∃(uε) ⊂ C5(ω), (zε) ⊂ C4(ω) such that

∂2
su

ε = kzε for every ε > 0 and g = lim
ε→0

∂1u
ε
}
, (2.4.18)

where the limit is intended with respect to the strong convergence in L2(ω).

Indeed, let G′ be the class defined in the right-hand side of (2.4.18). If g ∈ G , setting

uε = vε1 and zε = −∂1v
ε · n for every ε > 0, it is easy to check that g ∈ G′ .

Viceversa, if g ∈ G′ , it is enough to define

vε(x1, s) = uε(x1, s)e1 −
ˆ x1

0

(∂su
ε(ξ, s)τ(s) + zε(ξ, s)n(s))dξ

for every (x1, s) ∈ ω and for every ε > 0. The conclusion follows then by Lemma 2.4.1.

By (2.4.18) it follows in particular that if g ∈ G , then there exist (ûε) ⊂ C5(ω) and

(ẑε) ⊂ C4(ω) such that ∂sû
ε = kẑε and ∂2

1 û
ε → g strongly in L2(ω). Indeed, let (uε) and

(zε) be the sequences in (2.4.18), and for every ε let ũε ∈ C5(ω) be such that ∂1ũ
ε = uε .

Then

∂1

(
∂2
s ũ

ε + k

ˆ x1

0

zε(ξ, s) dξ
)

= 0.

Hence, setting

ẑε :=

ˆ x1

0

zε(ξ, s) dξ,

we have ẑε ∈ C4(ω) and there exists φ ∈ C2([0, 1]) such that

∂2
s ũ

ε + kẑε = φ̈.

The thesis follows now by taking ûε := ũε − φ.

Remark 2.4.3. The class G is always nonempty as it contains all g ∈ L2(ω) which are

affine with respect to s . Indeed, assume there exist a0, a1 ∈ L2(0, L) such that

g(x1, s) = a0(x1) + sa1(x1)
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for a.e. (x1, s) ∈ ω and let âi ∈ W 1,2(0, L) be a map satisfying â′i = ai , i = 0, 1. Then,

there exists (âεi) ⊂ C∞([0, L]) such that âεi → âi strongly in W 1,2(0, L) as ε→ 0, i = 0, 1.

Hence, setting

uε(x1, s) := âε0(x1) + sâε1(x1)

for every (x1, s) ∈ ω and zε = 0 for every ε > 0, the claim follows by Remark 2.4.2.

We also remark that if g ∈ L2(ω) and there exist αi ∈ L2(0, L), i = 1, 2, 3, such that

∂sg = α1N + α2τ2 + α3τ3, (2.4.19)

then g ∈ G . Indeed, by (2.4.19) there exists α4 ∈ L2(0, L) such that

g = α1

ˆ s

0

N(ξ)dξ + α2γ2 + α3γ3 + α4.

Let α̂i ∈W 1,2(0, L) be such that α̂′i = αi for i = 1, 2, 3. Then, setting

u := α̂1

ˆ s

0

N(ξ)dξ + α̂2γ2 + α̂3γ3 + α̂4,

and

z := −α̂1T − α̂2τ3 + α̂3τ2,

we have u ∈W 1,2(ω), ∂isu ∈ L2(ω) for i = 2, · · · , 6, and z ∈W 1,2(ω), with ∂isz ∈ L2(ω) for

i = 2, · · · , 5 and ∂2
su = kz . For every i = 1, · · · , 4 consider a sequence (αεi) ∈ C∞([0, L])

such that αεi → α̂i strongly in W 1,2(0, L), as ε→ 0. By defining

uε := αε1

ˆ s

0

N(ξ)dξ + αε2γ2 + αε3γ3 + αε4,

and

zε := −αε1T − αε2τ3 + αε3τ2,

there holds

∂1u
ε → g strongly in L2(ω),

∂2
su

ε = kzε for every ε > 0,

and both sequences (uε) and (zε) have the required regularity.

Remark 2.4.4. The structure of the class G depends on the behaviour of the curvature k

of the curve γ .

For instance, if k vanishes only at a finite number of points, then G = L2(ω). Indeed,

let

0 = p0 < p1 < · · · < pm = 1

be such that k(s) 6= 0 for every s ∈ (pi, pi+1), i = 0, · · · ,m−1. For any function g ∈ L2(ω)

there exists a sequence (gε) ⊂ C∞0
(
(0, L) ×

⋃m−1
i=0 (pi, pi+1)

)
such that gε → g strongly in

L2(ω). By choosing

uε(x1, s) =

ˆ x1

0

gε(ξ, s)dξ
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for every s ∈ (0, 1), then (uε) ⊂ C∞(ω) and for every ε > 0 there exists λε > 0 such that

2λε < min
i=0,··· ,m−1

(pi+1 − pi)

and ∂2
su

ε = 0 in

(0, L)×
⋃

i=0,··· ,m−1

(
(pi, pi + λε) ∪ (pi+1 − λε, pi+1)

)
.

By setting

zε =


∂2
su
ε

k in (0, L)×
⋃m−1
i=0 (pi + λε, pi+1 − λε),

0 otherwise

we deduce immediately by Remark 2.4.2 that g ∈ G .

Assume instead that the sign of k has the following behaviour: there exists a finite

number of points

0 = p0 < p1 < · · · < pm = 1

such that, for every i = 0, · · · ,m − 1, there holds k(s) > 0 for every s ∈ (pi, pi+1), or

k(s) < 0 for every s ∈ (pi, pi+1), or k(s) = 0 for every s ∈ (pi, pi+1). In other words,

{s ∈ [0, 1] : k(s) = 0} =
⋃
i∈I1

[pi−1, pi] ∪
⋃
i∈I2

{pi}.

with I1 ⊂ {1, · · · ,m} , I2 ⊂ {0, · · · ,m} disjoint. Then

G :=
{
g ∈ L2(ω) : g is affine in the s variable in (0, L)×

⋃
i∈I1

(pi, pi+1)
}
. (2.4.20)

In particular, if k ≡ 0 on [0, 1], then G is the set of all functions g ∈ L2(ω) that are affine

in the s variable.

To prove (2.4.20), assume for simplicity that m = 2 and {s ∈ [0, 1] : k(s) = 0} = [p1, p2] .

Denoting by G′ the class in the right hand side of (2.4.20), the inclusion G ⊂ G′ follows by

Remark 2.4.2. Viceversa, let g be affine in the s variable in (0, L) × (p1, p2). Then, there

exist a, b ∈ L2(0, L) such that

g(x1, s) = a(x1) + sb(x1)

for a.e. (x1, s) ∈ (0, L)× (p1, p2). Let now 0 < δ < L
3 and let ε > 0. We define

gε(x1, s) =

a(x1) + sb(x1) in (0, L)× (p1 − ε, p2 + ε),

g(x1, s) otherwise in ω,

and arguing as in the proof of Lemma 2.4.1, we extend gε to the set

ωδ := (−δ, L+ δ)× (−δ, 1 + δ).

It is easy to see that gε → g strongly in L2(ωδ) and ∂2
sg
ε = 0 in the sense of distributions

in the set (−δ, L+ δ)× (p1 − ε, p2 + ε) for every ε > 0.
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2.4 Limit classes of displacements and bending moments and approximation results

Fix ε , let 0 < λ < min{ ε2 ,
δ
2} and let ρ ∈ C∞0 ((−λ, λ)2). By setting ĝε := gε ∗ ρ , we

obtain ĝε ∈ C∞(ω) and ∂2
s ĝ
ε = 0 in (0, L)× (p1 − λ, p2 + λ). Define now

uε(x1, s) =

ˆ x1

0

ĝε(ξ, s)dξ.

Then, uε ∈ C∞(ω) and ∂2
su

ε = 0 in (0, L)× (p1 − λ, p2 + λ). Hence, setting

zε =

0 in (0, L)× (p1 − λ, p2 + λ)
∂2
su
ε

k otherwise,

the claim follows by Remark 2.4.2, considering a sequence of convolution kernels and applying

a diagonal argument.

An easy adaptation of the previous argument leads to the proof of (2.4.20) in the general

case.

From here to the end of the section we shall assume that

∃ lim
h→0

δh
h2

:= λ and ∃ lim
h→0

δh
h3

:= µ. (2.4.21)

For every 0 < µ < +∞ , we introduce the class

Cµ :=
{

(g, b) ∈ L2(ω)× L2(ω) : ∃v ∈ L2(ω;R3) such that

∂sv ∈ L2(ω;R3), ∂sv · τ = 0, ∂s(∂sv · n) = b and ∂2
1v · τ + µ∂sg = 0

}
, (2.4.22)

where the last two equalities hold in the sense of distributions.

For µ = 0 we define

C0 := G × B, (2.4.23)

where

B :=
{
b ∈ L2(ω) : ∃v ∈ L2(ω;R3) such that

∂sv ∈ L2(ω,R3), ∂sv · τ = 0, ∂s(∂sv · n) = b and ∂2
1v · τ = 0

}
, (2.4.24)

and again the last two equalities hold in the sense of distributions.

Remark 2.4.5. Let b ∈ B and let v be as in (2.4.24). Then the tangential component v · τ
belongs to W 3,2(ω). Indeed, since ∂s(∂sv · n) = b and ∂sv ∈ L2(ω;R3), we deduce that

∂2
s (v ·n) ∈ L2(ω). Since ∂sv ·τ = 0, we have ∂s(v ·τ) = k(v ·n) and then ∂2

s (v ·τ), ∂3
s (v ·τ) ∈

L2(ω). By the last condition in (2.4.24), there holds

∂1(v · τ) ∈W−1,2(ω), ∂2
1(v · τ) ∈ L2(ω)

and

∂s∂1(v · τ) = ∂1∂s(v · τ) ∈W−1,2(ω).

Therefore, by Lemma 1.1.2, we obtain ∂1(v · τ) ∈ L2(ω). Arguing analogously, by Lemma

1.1.2 we deduce that ∂1∂s(v · τ) ∈ L2(ω), therefore v · τ ∈ W 2,2(ω) and ∂3
s (v · τ) ∈ L2(ω).

Applying again Lemma 1.1.2, it is straightforward to see that v ·τ ∈W 3,2(ω). No regularity
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2. Thin-walled beams in nonlinear elasticity

conditions can be deduced for the derivatives with respect to x1 of the normal component

of v .

In the case where µ 6= 0, if (g, b) ∈ Cµ and v is as in (2.4.22), then the regularity of

v · τ and v · n with respect to s is the same as in the previous case. It is still true that

∂1(v · τ) ∈ L2(ω) but in general one cannot guarantee that v · τ ∈W 2,2(ω).

Remark 2.4.6. A function b ∈ L2(ω) belongs to B if and only if there exists a map

φ ∈ L2(ω;R3), with

φ · τ ∈W 3,2(ω), φ · e1 ∈W 1,2(ω) and ∂s(φ · n), ∂2
s (φ · n) ∈ L2(ω),

such that

e(φ) = 0 (2.4.25)

and

∂s(∂sφ · n) = b. (2.4.26)

In other words, φ is an infinitesimal isometry of the cylindrical surface

Σ :=
{
x1e1 + γ(s) : x1 ∈ (0, L), s ∈ (0, 1)

}
satisfying (2.4.26).

We first observe that the regularity of φ is sufficient to guarantee that e(φ), defined as

in (2.4.2), belongs to L2(ω;M2×2
sym). Moreover, if b ∈ L2(ω) and v is as in (2.4.24), then

there exists v1 ∈W 1,2(ω) such that∂1v1 = 0,

∂sv1 = −∂1v · τ.

The map φ := v1e1 + v satisfies (2.4.25) and (2.4.26). The converse statement is trivial.

Similarly, a pair (g, b) ∈ L2(ω)×L2(ω) belongs to Cµ if and only if there exists a function

φ ∈ L2(ω;R3) with φ · τ ∈ W 1,2(ω), ∂2
s (φ · τ), ∂3

s (φ · τ) ∈ L2(ω), φ · e1 ∈ W 1,2(ω) and

∂s(φ · n), ∂2
s (φ · n) ∈ L2(ω), such that

e(φ) =
( µg 0

0 0

)
and

∂s(∂sφ · n) = b.

Remark 2.4.7. As in the case of the class G introduced in (2.4.1), the structure of B and

Cµ depends on the behaviour of the curvature k of γ .

For instance, if k ≡ 0 on [0, 1], then B = L2(ω). Indeed, condition (2.4.25) implies in

this case that there exist some α, β, δ ∈ R such that

φ(x1, s) = (αs+ β)e1 + (−αx1 + δ)τ + φt(x1, s)n

for a.e. (x1, s) ∈ ω , while condition (2.4.26) reads as ∂2
sφt = b . Hence B = L2(ω). Similarly,

it can be deduced that Cµ = {g ∈ L2(ω) : g is affine in s} × L2(ω).

If, instead, k(s) 6= 0 for every s ∈ [0, 1], then B = {b ∈ L2(ω) : b is affine in x1} .
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2.4 Limit classes of displacements and bending moments and approximation results

We conclude this section by proving some approximation results. The first result concerns

the class Cµ in the case µ 6= 0.

Lemma 2.4.8. Let (g, b) ∈ Cµ with µ 6= 0 . Then, there exists a sequence (φε) ⊂ C5(ω;R3)

such that

e(φε) =
( ∂1φ

ε
1 0

0 0

)
→
( µg 0

0 0

)
(2.4.27)

strongly in L2(ω;M2×2
sym) and

∂s(∂sφ
ε · n)→ b (2.4.28)

strongly in L2(ω) .

Remark 2.4.9. By Lemma 2.4.8 it follows, in particular, that if (g, b) ∈ Cµ and µ 6= 0,

then g ∈ G .

Proof of Lemma 2.4.8. Without loss of generality we may assume that µ = 1. By the

definition of Cµ and by Remark 2.4.6 there exists φ ∈ L2(ω;R3) with φ · τ ∈ W 1,2(ω),

∂2
s (φ · τ), ∂3

s (φ · τ) ∈ L2(ω), φ · e1 ∈W 1,2(ω) and ∂s(φ · n), ∂2
s (φ · n) ∈ L2(ω), such that

e(φ) =
( g 0

0 0

)
(2.4.29)

and ∂s(∂sφ · n) = b . By (2.4.29) it follows that

∂1φ · τ + ∂sφ · e1 = 0. (2.4.30)

Hence, there exists u ∈ W 1,2(ω), with ∂1u ∈ W 1,2(ω) such that ∂1u = φ · e1 and the

equality

φ · τ + ∂su = 0 (2.4.31)

holds in the sense of L2(ω). Indeed, by (2.4.30), if u ∈W 1,2(ω) satisfies ∂1u = φ · e1 , there

exists ϕ ∈W 1,2(0, 1) such that

φ · τ + ∂su = ϕ̇.

Defining u := u− ϕ , then u has the required properties.

We set

v = (φ · τ)τ + (φ · n)n.

For the sake of simplicity, we divide the proof into two steps.

Step 1.

We claim that we can always reduce to the case where

u ∈W 4,2(ω), vs := v · τ ∈W 3,2(ω), and vt := v · n ∈W 2,2(ω),

with ∂i1u, ∂
i
1vt, ∂

i
1vs, ∂

i
1g ∈ L2(ω) for every i ∈ N .

Indeed, let 0 < δ < L
3 . Arguing as in the proof of Lemma 2.4.1 we extend u and v to

the set

ωδ := (−δ, L+ δ)× (0, 1)
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2. Thin-walled beams in nonlinear elasticity

in such a way that, denoting by ṽ and ũ the extended maps and setting

g̃ = ∂2
1 ũ and b̃ = ∂s(∂sṽ · n)

in ωδ , then g̃ and b̃ are respectively extensions of g and b to ωδ . Moreover, there

holds ũ ∈ W 1,2(ωδ) with ∂1ũ ∈ W 1,2(ωδ), ṽs ∈ W 1,2(ωδ) with ∂2
s ṽs, ∂

3
s ṽs ∈ L2(ωδ) and

ṽt, ∂sṽt, ∂
2
s ṽt ∈ L2(ωδ). Finally, by (2.4.29) and (2.4.31), the pair (ũ, ṽ) solves

∂sṽ · τ = 0 and ṽ · τ + ∂sũ = 0 a.e. in ωδ.

We now mollify the functions ũ, ṽ, g̃, and b̃ with respect to the x1 variable. Let 0 < ε <

δ , consider a sequence (ρε) ⊂ C∞0 (−ε, ε) of convolution kernels and set

ũε(x1, s) := (ũ(·, s) ∗ ρε)(x1),

ṽεs(x1, s) := (ṽs(·, s) ∗ ρε)(x1),

ṽεt (x1, s) := (ṽs(·, s) ∗ ρε)(x1),

b̃ε(x1, s) := (̃b(·, s) ∗ ρε)(x1),

g̃ε(x1, s) := (g̃(·, s) ∗ ρε)(x1)

for a.e. (x1, s) ∈ ω and for every ε . By defining ṽε := ṽεsτ + ṽεtn , the pair (ũε, ṽε) solves

∂2
1 ũ

ε = g̃ε, ∂sṽ
ε · τ = 0, ṽε · τ + ∂sũ

ε = 0 and ∂s(∂sṽ
ε · n) = b̃ε (2.4.32)

a.e. in ω for every ε . Moreover b̃ε → b̃ in L2(ω) and g̃ε → g̃ in L2(ω). Now,

(ṽεs) ⊂W 3,2(ω) and (ṽεt ) ⊂W 2,2(ω)

with (∂i1ṽ
ε
s), (∂

i
1ṽ
ε
t ) ⊂ L2(ω) for every i ∈ N . Therefore, by (2.4.32) we deduce that (∂sũ

ε) ⊂W 3,2(ω).

As (∂i1ũ
ε) ⊂ L2(ω) for every i ∈ N , it follows that (ũε) ⊂W 4,2(ω) and the proof of the

claim is completed.

Step 2.

Assume now that u ∈W 4,2(ω),

vs := v · τ ∈W 3,2(ω) and vt := v · n ∈W 2,2(ω),

with ∂i1u, ∂
i
1vt, ∂

i
1vs, ∂

i
1g ∈ L2(ω) for every i ∈ N . Since vt ∈W 2,2(ω), there exists a

sequence (vεt ) ⊂ C∞(ω) such that

vεt → vt strongly in W 2,2(ω). (2.4.33)

Let vεs ∈ C5(ω) be the solution of

∂sv
ε
s = kvεt (2.4.34)

in ω , with
´ 1

0
vεs(x1, s) ds ∈ C∞([0, L]) for every ε > 0 and

ˆ 1

0

vεs(x1, s) ds→
ˆ 1

0

vs(x1, s) ds strongly in W 3,2(0, L). (2.4.35)

By Poincaré inequality, (2.4.29) and (2.4.34) we deduce

‖vεs − vs‖L2(ω) ≤ C
(∥∥∥ˆ 1

0

(vεs − vs) ds
∥∥∥
L2(ω)

+ ‖k(vεt − vt)‖L2(ω)

)
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2.4 Limit classes of displacements and bending moments and approximation results

and hence, by (2.4.33)–(2.4.35)

vεs → vs and ∂sv
ε
s → ∂svs strongly in L2(ω). (2.4.36)

Let uε ∈ C6(ω) be the solution of

∂su
ε + vεs = 0 (2.4.37)

in ω , with
´ 1

0
uε(x1, s) ds ∈ C∞([0, L]) ,

ˆ 1

0

uε(x1, s) ds→
ˆ 1

0

u(x1, s) ds strongly in W 4,2(0, L). (2.4.38)

By Poincaré inequality, (2.4.29), (2.4.31) and (2.4.37), there holds

‖∂2
1∂s(u

ε − u)‖L2(ω) = ‖∂2
1(vεs − vs)‖L2(ω)

≤ C
(∥∥∥ˆ 1

0

∂2
1(vεs − vs) ds

∥∥∥
L2(ω)

+ ‖k∂2
1(vεt − vt)‖L2(ω)

)
.

The right-hand side of the previous inequality converges to zero due to (2.4.33) and (2.4.35).

Hence, by (2.4.38) and Poincaré inequality

∂2
1u

ε → ∂2
1u = g strongly in L2(ω). (2.4.39)

By defining

φε := ∂1u
εe1 + vε,

property (2.4.27) follows by (2.4.34), (2.4.37) and (2.4.39). Moreover

∂s(∂sφ
ε · n) = ∂2

sv
ε
t + k̇vεs + k∂sv

ε
s.

Therefore, (2.4.28) follows by (2.4.33) and (2.4.36), and the proof of the lemma is completed.

The next lemma, under a suitable additional condition on the sign of the curvature,

provides us with an approximation result for the elements of the class B introduced in

(2.4.24).

Lemma 2.4.10. Assume there exists a finite number of points

0 = p0 < p1 < · · · < pm = 1

such that, for every i = 0, · · · ,m − 1 , there holds k(s) > 0 for every s ∈ (pi, pi+1) , or

k(s) < 0 for every s ∈ (pi, pi+1) or k(s) = 0 for every s ∈ (pi, pi+1) . Let b ∈ B . Then,

there exists a sequence (φε) ⊂ C5(ω;R3) such that

e(φε) = 0 for every ε > 0 (2.4.40)

and

∂s(∂sφ
ε · n)→ b (2.4.41)

strongly in L2(ω) as ε→ 0 .
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2. Thin-walled beams in nonlinear elasticity

Proof. By definition of B there exists v ∈ L2(ω;R3), with ∂sv ∈ L2(ω;R3), such that

∂sv · τ = 0, (2.4.42)

∂s(∂sv · n) = b, (2.4.43)

∂2
1v · τ = 0. (2.4.44)

Arguing as in Step 1 of the proof of Lemma 2.4.8, we may extend both v and b to the

set ωδ := (−δ, L+ δ)× (0, 1) for 0 < δ < L
3 . By Remark 2.4.6 up to a regularization in the

x1 variable, we may assume that

vt := v·n ∈W 2,2(ω), vs := v·τ ∈W 3,2(ω) and ∂i1vt, ∂
i
1vs, ∂

i
1b ∈ L2(ω) for every i ∈ N.

Moreover, by (2.4.44) there exist α0, α1 ∈W 3,2(0, 1) such that

vs(x1, s) = α0(s) + x1α1(s), (2.4.45)

for a.e. (x1, s) ∈ ω .

Let Z := {s ∈ [0, 1] : k(s) = 0} . By assumption, Z is the union of a finite number of

intervals with a finite number of isolated points. For simplicity, we divide the proof into

three steps. We first consider the case where Z is a finite union of points. In the second

step, we assume Z to be a finite union of closed intervals and in the third step we study the

general case.

Step 1.

Assume that Z =
⋃
i∈I{pi} for some I ⊂ {0, · · · ,m} . By (2.4.42) and (2.4.44), there holds

k∂2
1vt = 0

a.e. in ω , which in turn implies

∂2
1vt = 0 (2.4.46)

a.e. in ω . Hence, by (2.4.42), (2.4.45), and (2.4.46), there exist β0, β1 ∈ W 2,2(0, 1) such

that

vt(x1, s) = β0(s) + x1β1(s) and α̇i(s) = k(s)βi(s), i = 0, 1, (2.4.47)

a.e. in ω . In particular, there exist two sequences (βε0), (βε1) ⊂ C∞([0, 1]) such that

βεi → βi (2.4.48)

strongly in W 2,2(0, 1), for i = 0, 1. Let αεi ∈ C5([0, 1]) be the solution of

α̇εi = kβεi in (0, 1) (2.4.49)

such that
´ 1

0
αεi ds =

´ 1

0
αi ds for every ε , for i = 0, 1. By Poincaré inequality and (2.4.49),

we deduce

‖αεi − αi‖L2(0,1) ≤ C‖k(βεi − βi)‖L2(0,1),

hence (2.4.48) implies

αεi → αi strongly in W 1,2(0, 1), i = 0, 1. (2.4.50)
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2.4 Limit classes of displacements and bending moments and approximation results

Taking φε1 ∈ C6([0, 1]) to be a solution of

φ̇ε1 = −αε1 (2.4.51)

for every ε and setting

φε := φε1e1 + (αε0 + x1α
ε
1)τ + (βε0 + x1β

ε
1)n,

we have φε ∈ C5(ω,R3), property (2.4.40) holds owing to (2.4.49) and (2.4.51), while

convergence (2.4.41) is a straightforward consequence of (2.4.43), (2.4.45), (2.4.47), (2.4.48)

and (2.4.50).

Step 2.

Assume that Z = [p1, 1], with 0 < p1 < 1. By (2.4.42) and (2.4.44), there holds

∂2
1vt = 0 in (0, L)× (0, p1).

Arguing as in the proof of Lemma 2.4.1, we define

ωδ := (−δ, L+ δ)× (−δ, 1 + δ)

and we extend vt to the set ωδ for a suitable δ > 0 in such a way that vt ∈W 2,2(ωδ) and

∂2
1vt = 0 in (−δ, L+ δ)× (−δ, p1).

We slightly modify the map vt close to the point p1 so that it remains affine with respect

to x1 in a neighbourhood of this point. More precisely, for ε < δ
2 , we set

vεt (x1, s) := vt(x1, s− ε) in ω
δ
2 .

It is easy to see that (vεt ) ⊂W 2,2(ω
δ
2 ), moreover

vεt → vt, ∂sv
ε
t → ∂svt and ∂2

sv
ε
t → ∂2

svt strongly in L2(ω
δ
2 )

and

∂2
1v
ε
t = 0 in

(
− δ

2 , L+ δ
2

)
× (−ε, p1 + ε).

To conclude, we regularize the sequence (vεt ) by mollification. Let 0 < λ < ε and let

ρ ∈ C∞0 ((−λ, λ)2). Defining ṽεt := vεt ∗ ρ , we have ṽεt ∈ C∞(ω) and

∂2
1 ṽ
ε
t = 0 in (0, L)× (0, p1). (2.4.52)

By considering a sequence of convolution kernels and applying a diagonal argument we may

also assume that

ṽεt → vt, ∂sṽ
ε
t → ∂svt and ∂2

s ṽ
ε
t → ∂2

svt strongly in L2(ω). (2.4.53)

By (2.4.52), for every ε we may choose a map vεs ∈ C5(ω) such that

∂sv
ε
s = kṽεt , ∂2

1v
ε
s = 0 and

ˆ 1

0

vεs ds =

ˆ 1

0

vs ds in ω.

The conclusion of the lemma follows now arguing as in Step 1.
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The same argument applies to the case where Z = [0, p1] , with 0 < p1 < 1, by choosing

vεt (x1, s) := vt(x1, s+ ε) in ω
δ
2

and by arguing as in the previous case.

Finally, assume that

Z = [p1, p2] ∪ [p3, 1]

with 0 < p1 < p2 < p3 < 1. Let ϕ ∈ C∞0 (R) be such that 0 ≤ ϕ(s) ≤ 1 for every s ∈ R ,

ϕ(s) = 1 for all s ∈ [p2 − η, p2 + η] and ϕ(s) = 0 for s ≤ p1 + η or s ≥ p3 − η for some

η > 0 such that

η < min{p1,
p2−p1

2 , p3−p22 , 1− p3}.

The argument shown at the beginning of this step applies now choosing

vεt (x1, s) := (1− ϕ(s))vt(x1, s− ε) + ϕ(s)vt(x1, s+ ε) in ω
δ
2

for ε small enough.

The case where Z is a finite union of disjoint intervals is a simple adaptation of the

previous cases.

Step 3.

Consider now the general case and assume there exist I1 ⊂ {1, · · · ,m} , I2 ⊂ {0, · · · ,m}
disjoint such that

Z =
⋃
i∈I1

[pi−1, pi] ∪
⋃
i∈I2

{pi}.

Then ∂2
1vt = 0 a.e. in (0, L) \

(⋃
i∈I1 [pi−1, pi]

)
and the thesis follows arguing as in Step

2.

2.5 Compactness results

In this section we deduce some compactness properties for sequences of deformations (yh)

satisfying the uniform energy estimate (2.2.5).

Assumption (H4) on W provides us with a control on the L2 norm of the distance of

the rescaled gradients from SO(3). Applying Theorem 1.2.1 on a scale of order δh , we can

construct a sequence of approximating rotations (Rh), whose L2 distance from the rescaled

gradients is still of order εh . Because of the different scaling of the cross-section diameter

and the cross-section thickness, the approximating rotations turn out to depend both on

the mid-fiber coordinate x1 and on the arc-length coordinate s. Moreover, the derivatives

of (Rh) in the two variables have a different order of decay, as h→ 0.

More precisely, the following result holds true.

Theorem 2.5.1. Assume that εh
δh
→ 0 . Let (yh) be a sequence of deformations in W 1,2(Ω;R3)

satisfying (2.2.5). Then, there exists a sequence of constant rotations (Ph) and a sequence

(Rh) ⊂ C∞(ω;M3×3) with the following properties: setting Y h := (Ph)T yh − ch, where (ch)

43



2.5 Compactness results

is any sequence of constants in R3 , for every h > 0 there holds

‖∇h,δhY hRT0 −Rh‖L2(Ω;M3×3) ≤ Cεh, (2.5.1)ˆ
Ω

(
∇h,δhY hRT0 − (∇h,δhY hRT0 )T

)
dx1dsdt = 0, (2.5.2)

Rh(x1, s) ∈ SO(3) for every (x1, s) ∈ ω, (2.5.3)

‖Rh − Id‖L2(ω;M3×3) ≤ C
εh
δh
, (2.5.4)

‖∂1R
h‖L2(ω;M3×3) ≤ C

εh
δh
, (2.5.5)

‖∂sRh‖L2(ω;M3×3) ≤ C
hεh
δh

. (2.5.6)

Proof. By (2.2.5) and (H4), the sequence (yh ◦ (ψh)−1) satisfies
ˆ

Ωh

dist2(∇(yh ◦ (ψh)−1), SO(3))dx ≤ Chδhε2h. (2.5.7)

Let us consider the sets

Aih :=
{
x1e1 + hγ(s) + δhtn(s) : x1 ∈

(
i1L
ηh
, (i1+1)L

ηh

)
,

s ∈
(
i2
kh
, (i2+1)

kh

)
, t ∈

(
− 1

2 ,
1
2

)}
,

where

ηh =
[ L
δh

]
, kh =

[ h
δh

]
and i = (i1, i2),

with i1 = 0, · · · , ηh − 1, and i2 = 0, · · · , kh − 1. By Theorem 1.2.1 and Remark 1.2.2 there

exist a sequence of constant rotations (Q
i

h) ⊂ SO(3) and a constant C independent of h

and i satisfying
ˆ
Aih

|∇(yh ◦ (ψh)−1)−Qih|2dx ≤ C
ˆ
Aih

dist2(∇(yh ◦ (ψh)−1), SO(3))dx. (2.5.8)

To see that C does not depend on h , we first notice that each set Aih has the same rigidity

constant of the set Ãih that is obtained by a uniform dilation of Aih of factor 1
δh

. Defining

φih : (0, 1)3 −→ Ãih as

φih(x1, s, t) =
( (i1+x1)L

ηhδh
, h
δh
γ
(
i2+s
kh

)
+
(
t− 1

2

)
n
(
i2+s
kh

))
,

we conclude that the sets Ãih are images of the unitary cube through a family of uniformly

bi-Lipschitz transformations. Therefore by Remark 1.2.2 the constant C is the same for

every i and for every h .

Let Qh : ω −→ SO(3) be the piecewise constant map given by

Qh(x1, s) := Q
i

h for (x1, s) ∈
( i1L
ηh

,
(i1 + 1)L

ηh

)
×
( i2
kh
,
i2 + 1

kh

)
,

where i1 = 0, · · · , ηh − 1 and i2 = 0, · · · , kh − 1. By summing (2.5.8) over i , changing

variables and using (2.2.4) and (2.5.7), we deduce that
ˆ

Ω

|∇h,δhyhRT0 −Qh|2dx ≤ C
ˆ

Ω

dist2(∇h,δhyhRT0 , SO(3))dx. ≤ Cε2h. (2.5.9)
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Consider now the sets

Bih :=
{
x1e1 + hγ(s) + δhtn(s) : x1 ∈

(
(i1 − 1) Lηh , (i1 + 2) Lηh

)
,

s ∈
(
(i2 − 1) 1

kh
, (i2 + 2) 1

kh

)
, t ∈

(
− 1

2 ,
1
2

)}
,

for i1 = 1, · · · , ηh − 2, and i2 = 1, · · · , kh − 2, and for every h > 0. Applying the rigidity

estimate to the sets Bih we obtain that for every (i1, i2) there exists a map Q̂ih ⊂ SO(3)

satisfying
ˆ
Bih

|∇(yh ◦ (ψh)−1)− Q̂ih|2dx ≤ C
ˆ
Bih

dist2(∇(yh ◦ (ψh)−1), SO(3))dx.

Let now jk be an integer in the set {ik − 1, ik, ik + 1} , k = 1, 2 and let j = (j1, j2). As

Ajh ⊂ Bih , there holds

L3(Ajh)
∣∣Qh( j1Lηh , j2kh )− Q̂ih∣∣2 ≤ 2

ˆ
Ajh

∣∣Qh( j1Lηh , j2kh )−∇(yh ◦ (ψh)−1)
∣∣2dx (2.5.10)

+2

ˆ
Bih

|∇(yh ◦ (ψh)−1)− Q̂ih|2dx ≤ C
ˆ
Bih

dist2(∇(yh ◦ (ψh)−1), SO(3))dx.(2.5.11)

Hence, by (2.5.7) we deduce

L3(Aih)
∣∣Qh( (i1±1)L

ηh
, i2±1
kh

)
−Qh

(
i1L
ηh
, i2kh

)∣∣2 ≤ Chδhε2h, (2.5.12)

for every i1 = 1, · · · ηh − 2, and i2 = 1, · · · kh − 2.

We first extend the map Qh to the strip R× (0, 1) by setting

Qh(x1, s) =

Qh(0, s) if (x1, s) ∈ (−∞, 0)× (0, 1),

Qh(L, s) if (x1, s) ∈ (L,+∞)× (0, 1),

and then to the whole R2 by

Qh(x1, s) =

Qh(x1, 0) if (x1, s) ∈ R× (−∞, 0),

Qh(x1, 1) if (x1, s) ∈ R× (1,+∞).

Since Qh is constant in each set Aih , inequality (2.5.12) yields

|Qh(x1 + ξ, s+ λ)−Qh(x1, s)|2 ≤ C
hε2h
δ2
h

(2.5.13)

for every (x1, s) ∈ ω , for |ξ| ≤ L
ηh

and |λ| ≤ 1
kh

. Moreover, since Qh is piecewise constant,

(2.5.12) implies

ˆ(
i1L
ηh

,
(i1+1)L
ηh

)
×
(
i2
kh
,
i2+1
kh

) |Qh(x1 + ξ, s+ λ)−Qh(x1, s)|2dx1ds

≤ C

hδh

ˆ
Bih

dist2
(
∇(yh ◦ (ψh)−1), SO(3)

)
, (2.5.14)

for every i1 = 1, · · · , ηh − 2, and i2 = 1, · · · , kh − 2.
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Let now ω′ ⊂⊂ ω . For h small enough, there holds

ω′ ⊂
( L
ηh
, L− L

ηh

)
×
( 1

ηh
, 1− 1

ηh

)
.

Hence, by (2.5.7) and (2.5.14), as every x ∈ Ωh belongs to at most nine sets of the form

Bih , summing over the indices ik , we deduce
ˆ
ω′
|Qh(x1 + ξ, s+ λ)−Qh(x1, s)|2dx1ds ≤ Cε2h, (2.5.15)

for |ξ| ≤ δh , and |λ| ≤ δh
h .

To obtain a sequence of smooth rotations, we regularize (Qh) by means of convolution

kernels. Let η ∈ C∞0 (0, 1), η ≥ 0,
´ 1

0
η(s)ds = 1. We define

ϕh(ξ, λ) :=
h

δ2
h

η
( ξ
δh

)
η
(hλ
δh

)
for every ξ ∈ (0, δh) and λ ∈

(
0, δhh

)
, and we notice that, for h small enough, supp ϕh is

contained into a ball whose radius is smaller than the distance between ω′ and the boundary

of ω .

Setting Q̃h := Qh ∗ ϕh , by Holder inequality and (2.5.15) we obtain
ˆ
ω′
|Q̃h(x1, s)−Qh(x1, s)|2dx1ds ≤ Cε2h,

which in turn implies

‖Q̃h −Qh‖L2(ω;M3×3) ≤ Cεh (2.5.16)

for the constant C does not depend on the choice of ω′ . Analogously we deduce the estimate

‖∂1Q̃
h‖L2(ω;M3×3) ≤ C

εh
δh

(2.5.17)

and

‖∂sQ̃h‖L2(ω;M3×3) ≤ C
hεh
δh

. (2.5.18)

Finally, let U be a neighbourhood of SO(3) where the projection

Π : U −→ SO(3)

is well defined and regular. By (2.5.13), there holds

|Q̃h(x1, s)−Qh(x1, s)|2 ≤ ‖ϕh‖2
L2
(

(0,δh)×(0,
δh
h )
) δ2

h

h

hε2h
δ2
h

≤ Chε
2
h

δ2
h

, (2.5.19)

for every (x1, s) ∈ ω . Since εh
δh
→ 0, then Q̃h ∈ U for h small enough and, thus, its

projection on SO(3)

R̃h := Π(Q̃h)

is well defined. It is immediate to see that, for every h > 0, the map R̃h satisfies (2.5.3).

Furthermore, by (2.5.17) and (2.5.18) and by the regularity of Π, properties(2.5.5) and

(2.5.6) hold true. By definition of R̃h ,

‖R̃h − Q̃h‖L2(ω;M3×3) ≤ ‖Qh − Q̃h‖L2(ω;M3×3) (2.5.20)
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therefore (2.5.1) follows by (2.5.9) and (2.5.16).

By Poincaré inequality, given

R
h

:=

 
ω

R̃hdx1ds,

properties (2.5.5) and (2.5.6) yield

‖R̃h −Rh‖L2(ω;M3×3) ≤ C(‖∂1R̃
h‖L2(ω;M3×3) + ‖∂sR̃h‖L2(ω;M3×3))+ ≤ C

εh
δh
.

This implies that dist(R
h
, SO(3)) ≤ C εh

δh
. Hence, there exists a sequence of constant rota-

tions (Sh) ∈ SO(3) such that |Rh − Sh| ≤ C εh
δh

, which in turn implies

‖R̃h − Sh‖L2(ω;M3×3) ≤ C
εh
δh
. (2.5.21)

We define R̂h := (Sh)T R̃h and ŷh = (Sh)T yh . By the properties of the sequence (R̃h) and

by (2.5.21), R̂h satisfies (2.5.1) and (2.5.3)–(2.5.6).

To construct a sequence of rotations satisfying also (2.5.2), we argue as in [29, Lemma

3.1] and we introduce the matrices

Fh :=

 
Ω

∇h,δh ŷhRT0 dx1dsdt.

We notice that

|Fh − Id| ≤
 

Ω

|∇h,δh ŷhRT0 − Id|dx1dsdt ≤ C
εh
δh
, (2.5.22)

as R̂h satisfies (2.5.1) and (2.5.4). It turns out that detFh > 0 for h small enough, therefore

by polar decomposition theorem, for every h there exist Ph ∈ SO(3) and Uh ∈M3×3
sym such

that

Fh = PhUh,

and

|Uh − Id| = dist(Fh, SO(3)) ≤ |Fh − Id|. (2.5.23)

The symmetry of Uh , together with (2.5.22) and (2.5.23), yields

|Ph − Id| ≤ |Ph − Uh|+ |Uh − Id| ≤ C|Fh − Id| ≤ C εh
δh

(2.5.24)

for every h > 0. Defining Rh := (Ph)T R̂h and Y h := (Ph)T ŷh , then (2.5.1), (2.5.3), (2.5.5)

and (2.5.6) follow immediately. Moreover,

‖Rh− Id‖L2(ω) ≤ ‖Rh− R̂h‖L2(ω) + ‖R̂h− Id‖L2(ω) ≤ C(‖Ph− Id‖L2(ω) + ‖R̂h− Id‖L2(ω)).

Hence, (2.5.4) holds due to (2.5.24) and from the fact that R̂h satisfies (2.5.4). Finally, by

symmetry of Uh , for every h > 0 we obtain
ˆ

Ω

(∇h,δhY hRT0 − (∇h,δhY hRT0 )T ) dx1dsdt = L3(Ω)((Ph)TFh − (Fh)TPh)

= L3(Ω)(Uh − (Uh)T ) = 0,

which concludes the proof of (2.5.2) and of the proposition.

47



2.5 Compactness results

From now on we shall refer to the sequence of deformations (Y h) introduced in Theorem

2.5.1, where the constants ch are chosen in such a way to satisfy
ˆ

Ω

(Y h − ψh) dx1dsdt = 0. (2.5.25)

We introduce the tangential derivative of the tangential displacement, associated with Y h ,

given by

gh(x1, s, t) :=
1

εh
∂1(Y h1 − ψh1 ), (2.5.26)

for a.e. (x1, s, t) ∈ Ω, and the (averaged) twist function, associated with Y h , given by

wh(x1, s) :=
δh
hεh

ˆ 1
2

− 1
2

∂s(Y
h − ψh) · ndt, (2.5.27)

for a.e. (x1, s) ∈ ω .

We are now in a position to prove the first compactness result.

Theorem 2.5.2. Assume that εh
δh
→ 0 . Let (yh) be a sequence of deformations in W 1,2(Ω;R3)

satisfying (2.2.5). Let (Rh) and (Y h) be the sequences introduced in Theorem 2.5.1, with

(ch) such that (2.5.25) holds. Then,

Y h → x1e1 strongly in W 1,2(Ω;R3). (2.5.28)

Let (gh) and (wh) be the sequences defined in (2.5.26) and (2.5.27). Then, there exist

g ∈ L2(Ω) and w ∈W 1,2(0, L) such that, up to subsequences,

wh → w strongly in L2(ω), (2.5.29)

Ah :=
δh
εh

(Rh − Id) ⇀ A weakly in W 1,2(ω;M3×3), (2.5.30)

δh
εh

(∇h,δhY hRT0 − Id)→ A strongly in L2(Ω;M3×3), (2.5.31)

δ2
h

ε2h
sym(Rh − Id)→ A2

2
strongly in L2(ω;M3×3), (2.5.32)

where

A(x1) = w(x1)(e3 ⊗ e2 − e2 ⊗ e3) (2.5.33)

for a.e. x1 ∈ (0, L) , and if (2.2.6) holds

gh ⇀ g weakly in L2(Ω). (2.5.34)

Moreover, (Y h) satisfies

‖sym(∇h,δhY hRT0 − Id)‖L2(Ω;M3×3) ≤ C
(
εh +

ε2h
δ2
h

)
. (2.5.35)

Finally, there exists b ∈ L2(ω) such that, setting

B(x1, s) =

( 0 w′(x1)τ3(s) −w′(x1)τ2(s)

−w′(x1)τ3(s) 0 −b(x1, s)

w′(x1)τ2(s) b(x1, s) 0

)
(2.5.36)
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for a.e. (x1, s) ∈ ω , up to subsequences there holds

δh
hεh

∂sR
h ⇀ B weakly in L2(ω;M3×3). (2.5.37)

Proof. By properties (2.5.4), (2.5.5) and (2.5.6), the sequence (Ah) is uniformly bounded in

W 1,2(ω;M3×3). Therefore, there exists A ∈ W 1,2(ω;M3×3) such that, up to subsequences,

(2.5.30) holds. Since

‖∂sAh‖L2(ω;M3×3) ≤ Ch

by (2.5.6), we deduce that A = A(x1).

By the Sobolev embedding theorems, convergence of (Ah) is actually strong in Lq(ω;M3×3)

for every q ∈ [1,+∞). Hence, the equality

symAh = − εh
δh

(Ah)TAh

2
(2.5.38)

yields (2.5.32) and implies that A(x1) ∈M3×3
skew for a.e. x1 ∈ (0, L).

By (2.5.1) and by strong convergence of (Ah) in L2 , we obtain (2.5.31). In particular,

∂1Y
h → e1 and ∂sY

h, ∂tY
h → 0 strongly in L2(Ω;R3).

Now (2.5.28) follows owing to (2.5.25) and Poincaré inequality. Moreover,

‖sym(∇h,δhY hRT0 −Id)‖L2(Ω;M3×3) ≤ ‖sym(∇h,δhY hRT0 −Rh)‖L2(Ω;M3×3)+‖sym(Rh−Id)‖L2(Ω;M3×3).

Hence, (2.5.35) holds due to (2.5.1) and (2.5.32).

By (2.5.6), there exists a map B ∈ L2(ω;M3×3) satisfying (2.5.37). Differentiating the

identity

(Rh)TRh = Id,

we obtain

(∂sR
h)T (Rh − Id) + (Rh − Id)T∂sR

h = −2sym ∂sR
h.

Thus, by (2.5.30) and (2.5.37), we deduce that B is skew-symmetric.

We claim that

Be1 = A′τ. (2.5.39)

Indeed, let ϕ ∈W 1,2
0 (Ω;R3). Then

〈 δh
hεh

∂s∂1(Y h − ψh), ϕ〉W−1,2×W 1,2
0

=

−
ˆ

Ω

δh
hεh

(∇h,δhY h −RhR0)e1 · ∂sϕdx1dsdt+

ˆ
Ω

δh
hεh

∂sR
he1 · ϕdx1dsdt. (2.5.40)

The first term in (2.5.40) is infinitesimal due to (2.5.1), whereas (2.5.37) yieldsˆ
Ω

δh
hεh

∂sR
he1 · ϕdx1dsdt→

ˆ
Ω

Be1 · ϕdx1dsdt.

On the other hand, we have

〈 δh
hεh

∂s∂1(Y h − ψh), ϕ〉W−1,2×W 1,2
0

=

−
ˆ

Ω

δh(h− δhtk)

hεh
(∇h,δhY h −R0)e2 · ∂1ϕdx1dsdt,
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which in turn gives

〈 δh
hεh

∂s∂1(Y h − ψh), ϕ〉W−1,2×W 1,2
0
→

ˆ
Ω

A′τ · ϕdx1dsdt. (2.5.41)

owing to (2.2.4) and (2.5.31). By combining (2.5.40) and (2.5.41), we obtain (2.5.39).

Since B is skew-symmetric, the following equality holds true

0 = B11(x1, s) = A′12(x1)τ2(s) +A′13(x1)τ3(s),

for a.e. x1 ∈ (0, L) and s ∈ (0, 1). This last condition, together with the assumption that

k is not identically zero, implies

A′12 = A′13 ≡ 0. (2.5.42)

On the other hand, by (2.5.2) and (2.5.31) we deduce that

ˆ L

0

A(x1) dx1 = 0.

Hence,

A12 = A13 = 0. (2.5.43)

To conclude the proof of the Theorem, we consider the sequences (gh) and (wh). To

prove (2.5.34), we notice that

gh =
1

εh

(
(∂1Y

h
1 −Rh11) + (Rh11 − 1)

)
. (2.5.44)

Since we are assuming that (2.2.6) holds, it follows from (2.5.1) and (2.5.32) that the sequence

(gh) is uniformly bounded in L2(Ω). Therefore, there exists g ∈ L2(Ω) such that (2.5.34)

holds up to subsequences.

As for the twist function wh , by (2.2.4) and (2.5.31) we deduce

δh
hεh

∂s(Y
h − ψh)→ Aτ strongly in L2(Ω;R3),

which in turn yields (2.5.29). In particular, by (2.5.43) and by skew-symmetry of A there

holds w = A32 , hence w ∈ W 1,2(0, L) and the proof of (2.5.33) is complete. Finally, by

(2.5.39) we deduce the representation (2.5.36).

In the next proposition, under stronger assumptions on the order of decay of εh with

respect to the cross-sectional thickness δh , we show further compactness properties of the

twist functions wh .

Proposition 2.5.3. Under the same assumptions of Theorem 2.5.2, let wh and b be the

functions introduced in (2.5.27) and (2.5.36). If εh
hδh
→ 0 , there holds

1

h
∂sw

h ⇀ b weakly in W−1,2(ω). (2.5.45)

Proof. Assume that εh
hδh
→ 0. By definition of the functions wh , we deduce

1

h
∂sw

h =
δh
h2εh

∂s

ˆ 1
2

− 1
2

(∇h,δhY h −RhR0)e2 · n(h− δhtk) dt+
δh
hεh

∂s((R
h−Id)τ ·n). (2.5.46)
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By (2.2.4) and (2.5.1), the first term in the right-hand side of (2.5.46) converges to zero

strongly in W−1,2(ω). The second term can be further decomposed as

δh
hεh

∂s((R
h − Id)τ · n) =

δh
hεh

∂sR
hτ · n+

δh
hεh

(Rhn · n−Rhτ · τ)k.

Hence, (2.5.45) follows by combining (2.5.32), (2.5.36) and (2.5.37).

2.6 Characterization of the limit strain and liminf in-

equality

In this section we shall prove a liminf inequality for the rescaled energies 1
ε2h
J h defined in

(2.2.3). To this purpose we introduce the strains:

Gh :=
1

εh

(
(Rh)T∇h,δhY hRT0 − Id

)
, (2.6.1)

where (Rh) and (Y h) are the sequences introduced in Theorem 2.5.1, and we prove their

convergence to a limit strain G . In Theorem 2.6.2 we deduce a characterization of G ,

together with some further properties of the limit functions g , w , and b introduced in

(2.5.34), (2.5.29), and (2.5.36).

We first prove a characterization of g .

Proposition 2.6.1. Under the same assumptions of Theorem 2.5.2, let (2.2.6) be satisfied.

Let g be the function introduced in (2.5.34) and let G be the class defined in (2.4.1). Then

g ∈ G .

Proof. Let (Y h) be as in Theorem 2.5.2. For every h > 0 let

vh :=
1

εh

ˆ 1
2

− 1
2

(Y h1 − x1)e1 dt+
h

εh

ˆ 1
2

− 1
2

(
(Y h2 − ψh2 )e2 + (Y h3 − ψh3 )e3

)
dt.

By definition, vh ∈ W 1,2(ω;R3) for every h > 0; moreover by (2.2.6) and (2.5.35), there

holds ∥∥∥ h
εh
∂s(Y

h − ψh) · τ
∥∥∥
L2(Ω)

=
∥∥∥h(h− δhtk)

εh
(∇h,δhY hRT0 − Id)τ · τ

∥∥∥
L2(Ω)

≤ Ch2,

which implies

∂sv
h · τ → 0 strongly in L2(ω).

Similarly, by (2.5.35) we deduce

∂sv
h
1 + ∂1v

h · τ → 0 strongly in L2(ω).

By (2.5.26) and (2.5.34) we also have

∂1v
h
1 ⇀ g weakly in L2(ω).

The thesis follows now by Lemma 2.4.1.
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We are now in a position to state the first theorem of this section. For every matrix

M ∈M3×3 we use the notation Mtan to denote the matrix

Mtan := (e1|τ)T (Me1|Mτ).

Theorem 2.6.2. Let the assumptions of Theorem 2.5.2 be satisfied. Assume in addition

(2.2.6). Let (Y h) and (Rh) be as in Theorem 2.5.2 and let Gh be defined as in (2.6.1).

Then there exists G ∈ L2(Ω;M3×3) such that, up to subsequences,

Gh ⇀ G weakly in L2(Ω;M3×3). (2.6.2)

Let g, w, b be the maps introduced in (2.5.34), (2.5.29), and (2.5.36). Then

Gtan(x1, s, t) = −t

(
0 w′(x1)

w′(x1) b(x1, s)

)
+Gtan(x1, s, 0) (2.6.3)

for a.e. (x1, s, t) ∈ Ω and

(Gtan)11 = G11 = g (2.6.4)

a.e. in Ω .

If in addition (2.4.21) holds, then:

a) if µ = +∞ , there exist α1, α2, α3 ∈ L2(0, L) such that

∂sg = α1N + α2τ2 + α3τ3; (2.6.5)

b) if λ = +∞ , then (2.6.5) holds with α1 = 0;

c) if 0 < λ < +∞ , then w ∈W 2,2(0, L) and (2.6.5) holds with α1 = 1
λw
′′;

d) if λ = 0 , then w′′ = 0;

e) if 0 ≤ µ < +∞ , then (g, b) ∈ Cµ , where Cµ is the class defined in (2.4.22)–(2.4.23).

Proof. By (2.5.1), the sequence (Gh) is uniformly bounded in L2(Ω;M3×3); therefore there

exists G ∈ L2(Ω;M3×3) such that (2.6.2) holds. By (2.6.2), and since Rh converges to the

identity boundedly in measure by (2.5.4), we deduce

∂t(R
hGhR0e1) ⇀ ∂tGe1 weakly in W−1,2(Ω;R3).

On the other hand, by (2.5.31) there holds

∂t(R
hGhR0e1) =

1

εh
∂t(∇h,δhY h −RhR0)e1 =

1

εh
∂t(∂1Y

h)

=
δh
εh
∂1

(∂tY h
δh

)
=
δh
εh
∂1

(∂tY h
δh
− n

)
→ A′n

strongly in W−1,2(Ω). Hence,

G(x1, s, t)e1 = tA′(x1)n(s) +G(x1, s, 0)e1 (2.6.6)

for a.e. (x1, s, t) ∈ Ω.
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To characterize Gτ we observe that

∂t(R
hGhR0e2) =

1

εh
∂t(∇h,δhY h −RhR0)e2 =

1

εh
∂t
(∂s(Y h − ψh)

h− δhtk
)

=
1

εh

δh
h− δhtk

∂s
(∂t(Y h − ψh)

δh

)
+

δhk

εh(h− δhtk)

∂s(Y
h − ψh)

h− δhtk

=
1

εh

δh
h− δhtk

(
∂s(∇h,δhY h −RhR0)e3 + k(∇h,δhY h −RhR0)e2

)
+

1

εh

δh
h− δhtk

(∂sR
h)n.

The first term on the right hand side of the previous equality is converging to zero strongly

in W−1,2(Ω;R3) due to (2.5.1), therefore by (2.2.4) and (2.5.37) we deduce

∂t(R
hGhR0e2) ⇀ Bn weakly in W−1,2(Ω;R3).

On the other hand, (2.6.2) yields

∂t(R
hGhR0e2) ⇀ ∂tGτ weakly in W−1,2(Ω;R3).

Hence

G(x1, s, t)τ(s) = tB(x1, s)n(s) +G(x1, s, 0)τ(s) (2.6.7)

for a.e. (x1, s, t) ∈ Ω. By combining (2.5.33), (2.5.36), (2.6.6) and (2.6.7), we obtain (2.6.3).

By (2.5.32) and (2.6.1), there holds

1

εh
∂1(Y h1 − ψh1 ) ⇀ G11 = (Gtan)11 weakly in L2(Ω). (2.6.8)

Therefore (2.6.4) follows owing to (2.5.26) and (2.5.34).

Assume now that (2.4.21) holds true. To prove properties a)–e), we first claim that

(h− δhtk)

εh
∂2

1(Y h − ψh) · τ ⇀ −∂sg weakly in W−1,2(Ω). (2.6.9)

Indeed, by (2.5.35) we deduce the following estimate

∥∥∥h− δhtk
εh

(∂s(Y h1 − ψh1 )

h− δhtk
+ ∂1(Y h − ψh) · τ

)∥∥∥
L2(Ω)

≤ 2
∥∥∥h− δhtk

εh
sym(∇h,δhY hRT0 − Id)

∥∥∥
L2(Ω;M3×3)

≤ Ch
(

1 +
εh
δ2
h

)
,

where the quantity in the last inequality converges to zero by (2.2.6). Thus, (2.6.9) follows

by (2.6.8) and (2.6.4).

We introduce the maps vh ∈W 1,2(Ω;R2), given by

vh :=
( vh2
vh3

)
=

h

εh

( Y h2 − ψh2
Y h3 − ψh3

)
(2.6.10)

for every h > 0. By (2.2.4) and (2.6.9), we have

∂2
1v
h · τ ⇀ −∂sg weakly in W−1,2(Ω). (2.6.11)

53



2.6 Characterization of the limit strain and liminf inequality

Let ∇ δh
h

be the operator introduced in (2.3.1), with ε replaced by δh
h . By straightforward

computations and by (2.5.35), we obtain

‖sym(∇ δh
h

vhR
T

0 )‖L2(Ω;M2×2) ≤
h2

εh

∥∥∥sym(∇h,δhY hRT0 − Id)
∥∥∥
L2(Ω;M3×3)

≤ Ch2 (2.6.12)

for every h > 0. Applying the Korn inequality proved in (2.3.6) and using the notation of

Theorem 2.3.2, we deduce

‖vh −Π δh
h

(vh)‖W 1,2(S;R2) ≤ C
h

δh
‖sym(∇ δh

h

vhR
T

0 )‖L2(S;M2×2), (2.6.13)

for a.e. x1 ∈ (0, L). Integrating (2.6.13) with respect to x1 , by (2.6.12) it follows that

‖vh −Π δh
h

(vh)‖L2(Ω;R2) ≤ C
h3

δh
, (2.6.14)

‖∂s(vh −Π δh
h

(vh))‖L2(Ω;R2) ≤ C
h3

δh
, (2.6.15)

‖∂t(vh −Π δh
h

(vh))‖L2(Ω;R2) ≤ C
h3

δh
. (2.6.16)

By Lemma 2.3.1, for every h > 0 there exist αh1 , α
h
2 , α

h
3 ∈ L2(0, L) such that Π δh

h

(vh) has

the following structure:

Π δh
h

(vh) =
( αh2
αh3

)
+ αh1

( −γ3

γ2

)
− δh

h
tαh1τ . (2.6.17)

Moreover, by (2.5.27) there holds

δh
h2

ˆ 1
2

− 1
2

∂sv
h · ndt = wh (2.6.18)

for every h > 0 and for a.e. (x1, s) ∈ ω . On the other hand, by (2.6.17)

δh
h2

ˆ 1
2

− 1
2

∂sΠ δh
h

(vh) · ndt =
δh
h2
αh1 (2.6.19)

for every h > 0 and for a.e. (x1, s) ∈ ω . Therefore, by estimate (2.6.15), we obtain

‖αh1 −
h2

δh
wh‖L2(ω) ≤ C

h3

δh
, (2.6.20)

which in turn, by (2.5.29) implies

δh
h
tαh1τ → 0 strongly in L2(Ω). (2.6.21)

We first consider the case where µ = +∞ . By (2.6.11) and (2.6.14), we have

∂2
1(Π δh

h

(vh)) · τ ⇀ −∂sg weakly in W−2,2(Ω). (2.6.22)

Hence, by (2.6.17), (2.6.21) and by Lemma 2.3.4 there exist α1, α2, α3 ∈ L2(0, L) such that

(2.6.5) holds true and the proof of a) is completed.
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The proof of b) follows immediately once we notice that if λ = +∞ , then by (2.6.20),

α1 = 0.

Consider now the case where 0 ≤ λ < +∞ . By (2.6.11) and (2.6.14), there holds

δh
h2
∂2

1(Π δh
h

(vh)) · τ ⇀ −λ∂sg weakly in W−2,2(Ω) (2.6.23)

for every 0 ≤ λ < +∞ . By (2.6.17), (2.6.21) and by Lemma 2.3.4, there exist β1, β2, β3 ∈
L2(0, L) such that

δh
h2

(αhi )′′ ⇀ βi weakly in W−2,2(0, L), i = 1, 2, 3 (2.6.24)

and

λ∂sg = β1N + β2τ2 + β3τ3. (2.6.25)

Now, if 0 < λ < +∞ , by (2.6.20) and (2.6.24) we obtain β1 = w′′ and w ∈ W 2,2(0, L).

This proves c). To prove d) we observe that if λ = 0, by (2.6.25) and by Lemma 2.3.4 we

have β1 = β2 = β3 = 0, hence w′′ = 0.

Consider now the case where 0 < µ < +∞ . Defining

v̂h := vh −Π δh
h

(vh),

by (2.6.14)–(2.6.16) there exists v̂ ∈ L2(Ω;R2) with ∂sv̂, ∂tv̂ ∈ L2(Ω;R2) such that, up to

subsequences

v̂h ⇀ v̂, ∂sv̂
h ⇀ ∂sv̂, ∂tv̂

h ⇀ ∂tv̂, weakly in L2(Ω;R2). (2.6.26)

Since

sym(∇ δh
h

v̂hR
T

0 ) = sym(∇ δh
h

vhR
T

0 ), (2.6.27)

for every h > 0, by combining (2.6.12) with (2.6.26), we deduce

∂sv̂ · τ = 0, and ∂tv̂ = 0. (2.6.28)

By (2.5.45) and (2.6.18), it follows that

δn
h3
∂s

ˆ 1
2

− 1
2

∂sv
h · ndt ⇀ b weakly in W−1,2(ω). (2.6.29)

On the other hand, by (2.6.19), we have

δh
h3
∂s

( ˆ 1
2

− 1
2

∂sv
h · ndt) =

δh
h3
∂s

(ˆ 1
2

− 1
2

(∂sv
h − ∂sΠ δh

h

(vh)) · ndt) =
δh
h3
∂s

(ˆ 1
2

− 1
2

∂sv̂
h · ndt

)
.

(2.6.30)

Therefore, (2.6.26) and (2.6.29) yield

µ∂s(∂sv̂ · n) = b, (2.6.31)

whenever 0 < µ < +∞ . By (2.6.11), (2.6.14) and (2.6.26) we obtain that

∂2
1(Π δh

h

(vh)) · τ ⇀ −∂sg − ∂2
1 v̂ · τ weakly in W−2,2(Ω).
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By Lemma 2.3.4, by (2.6.17) and (2.6.21) there exist α1, α2, α3 ∈W−2,2(0, L) such that

∂sg = −α2τ2 − α3τ3 + α1N − ∂2
1 v̂ · τ . (2.6.32)

For i = 1, 2, 3, let now α̂i ∈ L2(0, L) be such that (α̂i)
′′ = αi and let

v = µ

( 0

v̂ +
( α̂2

α̂3

)
+ α̂1

( −γ3

γ2

) ).
By (2.6.28), (2.6.31), and (2.6.32) we deduce

∂sv · τ = 0, ∂s(∂sv · n) = b, and ∂2
1v · τ + µ∂sg = 0,

where the last two equalities hold in the sense of distributions. Therefore, in particular,

(g, b) ∈ Cµ .

Finally, we study the case where µ = 0. For every h > 0, we define

ṽh :=
δh
h3
v̂h. (2.6.33)

By (2.6.12), there holds

‖sym(∇ δh
h

ṽhR
T

0 )‖L2 ≤ C δh
h
. (2.6.34)

By (2.6.14)–(2.6.16) there exists ṽ ∈ L2(Ω;R2), with ∂sṽ, ∂tṽ ∈ L2(Ω;R2), such that, up to

subsequences,

ṽh ⇀ ṽ, ∂sṽ
h ⇀ ∂sṽ, ∂tṽ

h ⇀ ∂tṽ, weakly in L2(Ω;R2). (2.6.35)

By (2.6.29), (2.6.30) and (2.6.34), ṽ satisfies

∂sṽ · τ = 0, ∂tṽ = 0 and ∂s(∂sṽ · n) = b. (2.6.36)

Moreover, by (2.6.11) and by (2.6.35) we deduce that

∂2
1(Π δh

h

(ṽh)) · τ ⇀ −∂2
1 ṽ · τ weakly in W−2,2(Ω). (2.6.37)

Hence, by (2.6.21) and Lemma 2.3.4, there exist α1, α2, α3 ∈W−2,2(0, L) such that

∂2
1 ṽ · τ = −α2τ2 − α3τ3 + α1N. (2.6.38)

Let now α̂1, α̂2, α̂3 ∈ L2(0, L) be such that α1 = (α̂1)′′ , α2 = (α̂2)′′ and α3 = (α̂3)′′ . By

defining

v =

( 0

ṽ +
( α̂2

α̂3

)
+ α̂1

( −γ3

γ2

) ),
properties (2.6.36) and (2.6.38) yield

∂sv · τ = 0, ∂s(∂sv · n) = b and ∂2
1v · τ = 0,

where the last two equalities hold in the sense of distributions. By Proposition 2.6.1, the

proof of the theorem is complete.
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We are now in a position to deduce a lower bound for the rescaled energies ε−2
h J h . To

this purpose, from here to the end of the paper we shall assume that (2.4.21) holds and we

introduce the classes Aλ,µ defined as follows. We set

A∞,∞ :=
{

(w, g, b) ∈W 1,2(0, L)× L2(ω)× L2(ω) :

∂sg = α2τ2 + α3τ3, with αi ∈ L2(0, L), i = 2, 3
}
. (2.6.39)

For λ ∈ (0,+∞) we define

Aλ,∞ :=
{

(w, g, b) ∈W 2,2(0, L)× L2(ω)× L2(ω) :

∂sg = 1
λw
′′N + α2τ2 + α3τ3, with αi ∈ L2(0, L), i = 2, 3

}
, (2.6.40)

and for λ = 0

A0,∞ :=
{

(w, g, b) ∈W 2,2(0, L)× L2(ω)× L2(ω) : w′′ = 0 and

∂sg = α1N + α2τ2 + α3τ3, with αi ∈ L2(0, L), i = 1, 2, 3
}
. (2.6.41)

Finally, for µ ∈ [0,+∞), let

A0,µ :=
{

(w, g, b) ∈W 2,2(0, L)× Cµ : w′′ = 0
}
. (2.6.42)

A key role will be played by the quadratic form of linearized elasticity

Q : M3×3 −→ [0,+∞)

defined by

Q(F ) := D2W (Id)F : F for every F ∈M3×3.

The limiting functionals will involve the constant

E := min
a,b∈R3

Q(e1|a|b) (2.6.43)

and the quadratic form Qtan : [0, 1]× R2 −→ [0,+∞) defined by

Qtan(s, a, b) = min
σi∈R

Q

(
R0(s)

( 0 a σ1

a b σ2

σ1 σ2 σ3

)
RT0 (s)

)
(2.6.44)

for any s ∈ [0, 1] and for any (a, b) ∈ R2 . It is well known that, owing to (H2)–(H5), Q is a

positive semi-definite quadratic form and is positive definite on symmetric matrices. Hence,

E > 0 and Qtan(s, a, b) is strictly positive for every s ∈ [0, 1] and every (a, b) 6= (0, 0) .

We consider the functionals Jλ,µ : W 1,2(0, L)× L2(ω)× L2(ω) −→ [0,+∞] , defined as

Jλ,µ(w, g, b) :=
1

24

ˆ L

0

ˆ 1

0

Qtan(s, w′, b) dsdx1 +
1

2

ˆ L

0

ˆ 1

0

Eg2 dsdx1 (2.6.45)

for (w, g, b) ∈ Aλ,µ , and Jλ,µ(w, g, b) = +∞ otherwise, where Qtan and E are the quadratic

form and the constant given by (2.6.44) and (2.6.43), respectively.

With these definitions at hand the following liminf inequality for the scaled energy func-

tionals can be proved.
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Theorem 2.6.3. Assume that (2.2.6) and (2.4.21) hold. Let Aλ,µ be the classes defined

in (2.6.39)–(2.6.42) and let (yh) ⊂ W 1,2(Ω;R3) be a sequence of deformations satisfying

(2.2.5). Then, there exist rotations Ph ∈ SO(3) and constants ch ∈ R3 such that, setting

Y h := (Ph)T yh−ch and defining gh and wh as in (2.5.26) and (2.5.27), up to subsequences

there holds
gh ⇀ g weakly in L2(Ω),

wh → w in L2(ω),
1
h∂sw

h ⇀ b weakly in W−1,2(ω),

(2.6.46)

where (w, g, b) ∈ Aλ,µ. Moreover,

lim inf
h→0

1

ε2h
J h(Y h) ≥ Jλ,µ(w, g, b), (2.6.47)

where Jλ,µ is the functional defined in (2.6.45).

Proof. The convergence properties (2.6.46) follow by Theorem 2.5.2 and Proposition 2.5.3.

Moreover, Proposition 2.6.1 and Theorem 2.6.2 guarantee that

(w, g, b) ∈ Aλ,µ.

The proof of the lower bound (2.6.47) is an adaptation of [33, Proof of Corollary 2]. We

sketch some details for convenience of the reader.

Let Gh be defined as in (2.6.1). We introduce the functions

χh(x) :=

1 if |Gh| < 1√
εh

0 otherwise.

It is easy to see that χh → 1 in measure and χhGh ⇀ G weakly in L2(Ω;M3×3). By frame

indifference of W ,

lim inf
h→0

J h(Y h)

ε2h
= lim inf

h→0

1

ε2h

ˆ
Ω

W (∇h,δhY hRT0 ) dx1dsdt

= lim inf
h→0

1

ε2h

ˆ
Ω

W (Id+ εhG
h) dx1dsdt

≥ lim inf
h→0

1

ε2h

ˆ
Ω

χhW (Id+ εhG
h) dx1dsdt. (2.6.48)

Owing to assumptions (H2), (H3), and (H5), a Taylor expansion of W around the identity

yields:

W (Id+ F ) =
1

2
Q(F ) + η(F ),

for every F ∈M3×3 , where η(F )
|F |2 → 0 as |F | → 0. Setting

ξ(t) := sup
|F |≤t

η(F )

|F |2
,

then ξ(t)→ 0 as t→ 0 and

χhW (Id+ εhG
h) ≥ χh

ε2h
2
Q(Gh)− χhε2hξ(εh|Gh|)|Gh|2.
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Thus, we can continue the chain of inequalities in (2.6.48) as

lim inf
h→0

J h(Y h)

ε2h
≥ lim inf

h→0

{1

2

ˆ
Ω

Q(χhG
h) dx1dsdt−

ˆ
Ω

χhξ(ε
h|Gh|)|Gh|2 dx1dsdt

}
.

(2.6.49)

By the assumptions on W, Q is a positive semi-definite quadratic form, hence the first term

in (2.6.49) is lower semicontinuous with respect to the weak convergence in L2 . By definition

of the sequence of functions (χh) and by the uniform boundedness of ‖Gh‖L2(Ω;M3×3) , the

second term in (2.6.49) can be bounded as

1

2

ˆ
Ω

χhξ(ε
h|Gh|)|Gh|2 dx1dsdt ≤ Cξ(

√
εh)

and therefore converges to zero as h → 0. By collecting the previous remarks, it follows

that

lim inf
h→0

J h(Y h)

ε2h
≥ 1

2

ˆ
Ω

Q(G) dx1dsdt.

We can decompose G as

G =
(
G−

ˆ 1
2

− 1
2

Gdt
)

+

ˆ 1
2

− 1
2

Gdt,

where by the characterizations (2.6.3) and (2.6.4)(
G−

ˆ 1
2

− 1
2

Gdt
)
tan

= −t
( 0 w′

w′ b

)
and

ˆ 1
2

− 1
2

G11 dt = g.

Therefore, by developing the quadratic form and using (2.6.43) and (2.6.44), we obtain

ˆ
Ω

Q(G) dx1dsdt =

ˆ
Ω

Q
(
G−

ˆ 1
2

− 1
2

Gdt
)
dx1dsdt+

ˆ L

0

ˆ 1

0

Q
(ˆ 1

2

− 1
2

Gdt
)
dsdx1

≥ 1

12

ˆ L

0

ˆ 1

0

Qtan(s, w′, b) dsdx1 +

ˆ L

0

ˆ 1

0

Eg2 dsdx1.

This last inequality concludes the proof of the theorem.

2.7 Construction of the recovery sequence

In this section we shall prove that the lower bound obtained in Theorem 2.6.3 is optimal by

exhibiting a recovery sequence. The structure of such an optimal sequence varies according

to the values of λ and µ .

Theorem 2.7.1. Assume (2.2.6) and (2.4.21). Let Aλ,µ be the classes defined in (2.6.39)–

(2.6.42). Then, if µ > 0 , for every (w, g, b) ∈ Aλ,µ there exists a sequence of deformations

(yh) ⊂W 1,2(Ω;R3) such that, defining gh and wh as in (2.5.26) and (2.5.27), there holds

yh → x1e1 strongly in W 1,2(Ω;R3), (2.7.1)

gh → g strongly in L2(Ω), (2.7.2)

wh → w strongly in L2(ω), (2.7.3)

∂sw
h

h
→ b strongly in L2(ω). (2.7.4)
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Moreover,

lim sup
h→0

1

ε2h
J h(yh) ≤ Jλ,µ(w, u, b), (2.7.5)

where Jλ,µ is the functional defined in (2.6.45).

The same conclusion holds if µ = 0 , assuming in addition the hypotheses of Lemma

2.4.10.

Proof. For the sake of simplicity, we divide the proof into five steps. In the first step we

consider the case where λ = +∞ . Then we show how the recovery sequence must be

modified for different values of λ and µ .

Step 1: λ = µ = +∞ .

Let (w, g, b) ∈ A∞,∞ . We can assume that w ∈ C∞([0, L]) , b ∈ C∞(ω), and there exist

αi ∈ C∞([0, L]) , i = 2, 3, 4, such that

g = α′′2γ2 + α′′3γ3 + α′′4 .

The general case follows by approximation and standard arguments in Γ-convergence.

Let σi ∈ C5(ω), i = 1, 2, 3, be such that

Qtan(s, w′, b) = Q

(
R0

( 0 w′ σ1

w′ b σ2

σ1 σ2 σ3

)
RT0

)
(2.7.6)

for every (x1, s) ∈ ω , and let H ∈ C5(ω;M3×3
sym), H = (hij), be defined as

H := R0

( 0 0 σ1

0 0 σ2

σ1 σ2 σ3

)
RT0 .

For every h > 0 we introduce the functions σh ∈ C5(Ω;R3) given by

σh := εhδh

( t2
2
− 1

24

)( 2σ1

2σ2τ2 − σ3τ3

2σ2τ3 + σ3τ2

)
.

It is easy to see that

sym(∇h,δhσhRT0 ) = εhtH + o(εh). (2.7.7)

Let also F ∈M3×3 be the matrix defined by

E = Q(e1 ⊗ e1 + F ), (2.7.8)

where E is the quantity introduced in (2.6.43).

Finally, let v ∈ C6(ω;R2), v = (v2, v3) be a solution to

∂sv · τ = 0 in ω, (2.7.9)

∂s

(
∂sv · n

)
= b in ω (2.7.10)

and let ψ
δh
h be the map introduced in (2.3.2), with ε = δh

h .
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2. Thin-walled beams in nonlinear elasticity

We consider the sequence

ŷh = ψh + εh

( α′2
α′3

)
· ψ

δh
h e1 + εhα

′
4e1 −

εh
h

( 0

α2

α3

)

+ εhF
(
h
(
α′′4γ +

∑
i=2,3

α′′i

ˆ s

0

γi(ξ)τ(ξ)dξ
)

+ δht
(
α′′4 +

∑
i=2,3

α′′i γi

)
n
)

+
εh
δh
w

(
h

( 0

−γ3

γ2

)
− δhtτ

)
− hεh

δh
w′
(
δhtT − h

ˆ s

0

N(ξ)dξ
)
e1

− thεh

(
∂sv · n

)
τ +

h2εh
δh

( 0

v

)
− σh − ε2h

2δ2
h

w2(hγ + δhtn).

We briefly comment on the structure of ŷh : the terms in the first line are related to conditions

(2.7.1) and (2.7.2), the second line is a corrective term to obtain the optimal constant E ,

the terms in the third and the fourth line are introduced to satisfy respectively conditions

(2.7.3) and (2.7.4), and the last line contains a further corrective term.

We first prove that ŷh satisfies (2.7.1)–(2.7.4). By (2.2.6) we have

‖ŷh − x1e1‖W 1,2(Ω;R3) ≤ Ch,

which in turn implies (2.7.1). Condition (2.7.2) holds since

∂1(ŷh1 − x1) = εhg +
h2εh
δh

w′′
ˆ s

0

N(ξ)dξ + o(εh) (2.7.11)

and λ = +∞ . By the equality

δh
hεh

ˆ 1
2

− 1
2

∂s(ŷ
h − ψh) · ndt = w + h∂sv · n+ o(h),

and by (2.7.10), we deduce (2.7.3) and (2.7.4).

To prove convergence of the energies, we first compute the rescaled gradient of the

deformations. By (2.7.9) and (2.7.10), we obtain

∇h,δh ŷh = R0 + εhge1 ⊗ e1 + εhgF
(
0
∣∣τ ∣∣n)

+
εh
h

( 0 α′2τ2 + α′3τ3 α′3τ2 − α′2τ3
−α′2 0 0

−α′3 0 0

)

− εht
(
w′τ
∣∣w′e1 + bτ

∣∣0)+
( εh
δh
w +

hεh
δh

∂sv · n
)(

0
∣∣n∣∣− τ)

+
hεh
δh

w′

( 0 N −T
−γ3 0 0

γ2 0 0

)
−∇h,δhσh −

ε2h
2δ2
h

w2
(
0
∣∣τ ∣∣n)+ o(εh).
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We point out that the two terms

(h2εh
δh

w′′
ˆ s

0

N(ξ)dξ
)
e1 ⊗ e1 and

h2εh
δh

( 0

∂1v2

∂1v3

)
⊗ e1

are infinitesimal of order larger than εh since we are assuming λ = +∞ . Therefore both

terms can be included in the error term o(εh).

The previous equality in turn gives:

∇h,δh ŷhRT0 = Id+ εhg(e1 ⊗ e1 + F ) +
εh
h

( 0 α2 α3

−α2 0 0

−α3 0 0

)

− εht
(
w′τ
∣∣w′e1 + bτ

∣∣0)RT0 +
( εh
δh
w +

hεh
δh

∂sv · n
)( 0 0 0

0 0 −1

0 1 0

)

+
hεh
δh

w′

( 0 γ3 −γ2

−γ3 0 0

γ2 0 0

)
−∇h,δhσhRT0 −

ε2h
2δ2
h

w2

( 0 0 0

0 1 0

0 0 1

)

+ o(εh).

The identity (Id+ F )T (Id+ F ) = Id+ 2symF + FTF yields

(∇h,δh ŷhRT0 )T (∇h,δh ŷhRT0 ) = Id+ 2εhM + o(εh),

where M is given by

M := g(e1 ⊗ e1 + symF )− t

(
R0

( 0 w′ 0

w′ b 0

0 0 0

)
RT0 +H

)
,

owing to (2.7.7). Hence, by frame-indifference,

W (∇h,δh ŷhRT0 ) = W
(√

(∇h,δh ŷhRT0 )T (∇h,δh ŷhRT0 )
)

= W (Id+ εhM + o(εh)).

Since M is bounded in L∞ , it follows that there exists h such that if h < h , then Id +

εhM + o(εh) belongs to the neighbourhood of SO(3) where W is C2 , therefore a Taylor

expansion around the identity gives:

1

ε2h
W (∇h,δh ŷhRT0 )→ 1

2
Q(M) pointwise ,

and
1

ε2h
W (∇h,δh ŷhRT0 ) ≤ C(|M |2 + 1),

for some constant C . By the dominated convergence theorem and by (2.7.6) and (2.7.8) we

deduce

lim
h→0

J h(ŷh)

ε2h
=

1

2

ˆ
Ω

Q(M) dx1dsdt

=
1

24

ˆ L

0

ˆ 1

0

Qtan(s, w′, b) dsdx1 +
1

2

ˆ L

0

ˆ 1

0

Eg2 dsdx1,
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2. Thin-walled beams in nonlinear elasticity

which concludes the proof of (2.7.5) in the case where λ = +∞ .

Step 2: 0 < λ < +∞ and µ = +∞ .

Let (w, g, b) ∈ Aλ,∞ . We can assume that w ∈ C∞([0, L]) , b ∈ C∞(ω), and there exist

αi ∈ C∞(0, L), i = 2, 3, 4, such that

g =
1

λ
w′′

ˆ s

0

N(ξ)dξ + α′′2γ2 + α′′3γ3 + α′′4 .

Let v be defined as in (2.7.9)–(2.7.10) and let u ∈ C6(ω) be such that ∂su+ ∂1v · τ = 0 in

ω .

We consider the sequence

yh = ŷh +
h2εh
δh

F
(
hw′′

ˆ s

0

(ˆ ξ

0

N(η)dη
)
τ(ξ)dξ + δhtw

′′
(ˆ s

0

N(ξ)dξ
)
n
)

+
h3εh
δh

(
u− δh

h
t∂1v · n

)
e1,

which is obtained adding to the sequence (ŷh) introduced in Step 1 two corrective terms.

The first corrective term is due to the different structure of g , while the second one is needed

to cancel the contribution to the energy of the quantity

h2εh
δh

( 0

∂1v2

∂1v3

)
⊗ e1,

which is now of order εh . We observe that the term(h2εh
δh

w′′
ˆ s

0

N(ξ)dξ
)
e1 ⊗ e1

is now included in the expression of g .

The proof of (2.7.1)–(2.7.4) is analogous to the one in Step 1. To prove convergence of

the energies, we argue as in Step 1 and we deduce

lim
h→0

J h(yh)

ε2h
=

1

24

ˆ L

0

ˆ 1

0

Qtan(s, w′, b) dsdx1 +
1

2

ˆ L

0

ˆ 1

0

Eg2 dsdx1.

A standard approximation argument leads then to the conclusion.

Step 3: λ = 0 and µ = +∞ .

Let (w, g, b) ∈ A0,∞ . Then w is affine. Moreover, we can assume that b ∈ C∞(ω), and

there exist αi ∈ C∞([0, L]) , i = 1, · · · , 4, such that

g = α′′1

ˆ s

0

N(ξ)dξ + α′′2γ2 + α′′3γ3 + α′′4 .

Let v and u be defined as in the previous step. We consider the sequence:

yh = ŷh + εhα
′
1

ˆ s

0

N(ξ)dξe1 −
εhδht

h
α′1Te1 +

εh
h
α1

( 0

−γ3

γ2

)
− εhδht

h2
α1τ

+ εhF
(
h
(
α′′1

ˆ s

0

(ˆ ξ

0

N(η)dη
)
τ(ξ)dξ

)
+ δhtα

′′
1

(ˆ s

0

N(ξ)dξ
)
n
)

+
h3εh
δh

(
u− δh

h
t∂1v · n

)
e1,
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2.7 Construction of the recovery sequence

where (ŷh) is the sequence introduced in Step 1.

We observe that the previous sequence is obtained by a slight modification of the recovery

sequence introduced in Step 2, due to the fact that, since λ = 0, the contribution of w′′ to

the energy is zero and the role of w′′ in the structure of g is now played by α′′1 .

Arguing as in the previous steps, it is straightforward to prove (2.7.1)–(2.7.4). The same

computations of Step 1 yield also convergence of the energies and the conclusion follows by

approximation.

Step 4: λ = 0 and 0 < µ < +∞ .

Let (w, g, b) ∈ A0,µ . Then w is affine. Moreover, by Lemma 2.4.8 we can reduce to the case

where g ∈ C4(ω), b ∈ C3(ω), and there exists φ ∈ C5(ω;R3) such that

∂1φ1 = µg, ∂sφ · τ = 0, ∂sφ1 + ∂1φ · τ = 0, and ∂s(∂sφ · n) = b.

We define

yh := ψh +
h3εh
δh

φ1e1 + εhF
(
h

ˆ s

0

g(x1, ξ)τ(ξ)dξ + δhtgn
)

+ εh

(
− twτ +

h

δh
w

( 0

−γ3

γ2

))
− εh

(
thw′T − h2

δh
w′

ˆ s

0

N(ξ)dξ
)
e1

− thεh(∂sφ · n)τ +
h2εh
δh

( 0

φ2

φ3

)
− h2εht∂1φ · ne1

− σh − ε2h
2δ2
h

w2(hγ + δhtn),

where the terms in the first line are related to conditions (2.7.1) and (2.7.2) and to the

optimal constant E , whereas the second and the third lines are related to conditions (2.7.3)

and (2.7.4) and to the quadratic form Qtan .

Arguing as in the previous steps it is straightforward to prove that conditions (2.7.1)–

(2.7.4) are satisfied and that

lim
h→0

J h(yh)

ε2h
=

1

24

ˆ L

0

ˆ 1

0

Qtan(s, w′, b) dsdx1 +
1

2

ˆ L

0

ˆ 1

0

Eg2 dsdx1.

Step 5: λ = µ = 0 .

Assume that there exists a finite number of points

0 = p0 < p1 < · · · < pm = 1

such that for every i = 0, · · · ,m − 1 there holds k(s) > 0 for every s ∈ (pi, pi+1), or

k(s) < 0 for every s ∈ (pi, pi+1) or k(s) = 0 for every s ∈ (pi, pi+1).

Let (w, g, b) ∈ A0,0 . Then w is affine. Moreover, by Remark 2.4.2, we can reduce to

the case where g ∈ C3(ω) and there exist two maps u ∈ C5(ω) and z ∈ C4(ω) such that

∂2
1u = g and ∂2

su = kz . By Lemma 2.4.10 we can also assume that b ∈ C3(ω) and there

exists φ ∈ C5(ω;R3) such that

∂1φ1 = 0, ∂sφ · τ = 0, ∂sφ1 + ∂1φ · τ = 0 and ∂s(∂sφ · n) = b.
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2. Thin-walled beams in nonlinear elasticity

We define:

yh := ψh + εh

(
∂1u+

δh
h
t∂1z

)
e1 −

εh
h

(∂suτ + zn) +
εhδh
h2

t(∂suk + ∂sz)τ

+ εhF
(
h

ˆ s

0

gτdξ + δhtgn
)

+ εh

(
− twτ +

h

δh
w

( 0

−γ3

γ2

))
− εh

(
thw′T − h2

δh
w′

ˆ s

0

Ndξ
)
e1

− thεh(∂sφ · n)τ +
h2εh
δh

( 0

φ2

φ3

)
− h2εht∂1φ · ne1 +

h3εh
δh

φ1e1

− σh − ε2h
2δ2
h

w2(hγ + δhtn),

where the first line contains now some corrective terms to compensate the contribution given

by ∂su , and the terms in the other lines play the same role as in the previous steps.

Arguing as in the previous steps, it is immediate to prove (2.7.1)–(2.7.4). The same

computations of Step 1 yield also (2.7.5). Hence, the proof of the theorem is completed.
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Chapter 3

A quasistatic evolution model

for perfectly plastic thin plates

3.1 Overview of the chapter

The subject of this chapter is the rigorous derivation of a quasistatic evolution model for

a three-dimensional plate of small thickness, whose elastic behaviour is linear and isotropic

and whose plastic response is governed by the Prandtl-Reuss flow rule without harden-

ing. As the thickness of the plate tends to zero, we prove via Γ-convergence techniques that

solutions to the three-dimensional quasistatic evolution problem of Prandtl-Reuss elastoplas-

ticity converge to a quasistatic evolution of a suitable reduced model. In this limiting model

the admissible displacements are of Kirchhoff-Love type and the stretching and bending

components of the stress are coupled through a plastic flow rule. Some equivalent formula-

tions of the limiting problem in rate form are derived, together with some two-dimensional

characterizations for suitable choices of the data.

The chapter is organised as follows: in Section 3.2 we recall some preliminary results and

describe the formulation of the problem. In Section 3.3 we discuss the properties of Kirchhoff-

Love admissible triples and prove some approximation results. Section 3.4 is devoted to the

Γ-convergence result in the stationary case, while Section 3.5 concerns the convergence of

quasistatic evolutions. Finally, in Section 3.6 we show some equivalent formulations of the

reduced quasistatic evolution problem and discuss some examples.

3.2 Preliminaries and setting of the problem

3.2.1 Formulation of the problem

Throughout the chapter ω is a bounded and connected open set of R2 with a C2

boundary. We suppose that the boundary ∂ω is partitioned into two disjoint open subsets

γd , γn and their common boundary ∂b∂ωγd = ∂b∂ωγn (topological notions refer here to
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3.2 Preliminaries and setting of the problem

the relative topology of ∂ω ). We assume that γd 6= Ø and that ∂b∂ωγd = {P1, P2} , where

P1, P2 are two points in ∂ω .

The reference configuration of the plate is given by the set

Ωε := ω × (− ε2 ,
ε
2 ),

where ε > 0. We denote by Γε the Dirichlet part of the boundary, given by Γε := γd ×
(− ε2 ,

ε
2 ), and by ν∂Ωε the outer unit normal to ∂Ωε .

The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric positive

definite linear operator C : M3×3
sym → M3×3

sym and let Q : M3×3
sym → [0,+∞) be the quadratic

form associated with C , given by

Q(ξ) := 1
2Cξ : ξ for every ξ ∈M3×3

sym. (3.2.1)

It follows that there exist two constants rC and RC , with 0 < rC ≤ RC , such that

rC|ξ|2 ≤ Q(ξ) ≤ RC|ξ|2 for every ξ ∈M3×3
sym. (3.2.2)

These inequalities imply

|Cξ| ≤ 2RC|ξ| for every ξ ∈M3×3
sym. (3.2.3)

The dissipation potential. Let M3×3
D be the space of all matrices in M3×3

sym with zero

trace. Let K be a closed convex set of M3×3
D such that there exist two constants rK and

RK , with 0 < rK ≤ RK , such that

{ξ ∈M3×3
D : |ξ| ≤ rK} ⊂ K ⊂ {ξ ∈M3×3

D : |ξ| ≤ RK}.

The boundary of K is interpreted as the yield surface. The plastic dissipation potential is

given by the support function H : M3×3
D → [0,+∞) of K , defined as

H(ξ) := sup
σ∈K

σ : ξ.

It follows that H is a convex and positively one-homogeneous function such that

rK |ξ| ≤ H(ξ) ≤ RK |ξ| for every ξ ∈M3×3
D . (3.2.4)

In particular, H satisfies the triangle inequality

H(ξ + ζ) ≤ H(ξ) +H(ζ) for every ξ, ζ ∈M3×3
D . (3.2.5)

Admissible triples and energy. On Γε we prescribe a boundary datum wε ∈W 1,2(Ωε;R3)

of the following form:

wε(z) :=
(
w̄1(z′)− z3

ε ∂1w3(z′), w̄2(z′)− z3
ε ∂2w3(z′), 1

εw3(z′)
)

for a.e. z = (z′, z3) ∈ Ωε,

(3.2.6)

68



3. A quasistatic evolution model for perfectly plastic thin plates

where w̄α ∈ W 1,2(ω), α = 1, 2, and w3 ∈ W 2,2(ω). The set of admissible displacements

and strains for the boundary datum wε is denoted by A(Ωε, w
ε) and is defined as the class

of all triples (v, f, q) ∈ BD(Ωε)× L2(Ωε;M3×3
sym)×Mb(Ωε;M3×3

D ) satisfying

Ev = f + q in Ωε,

q = (wε − v)� ν∂ΩεH2 on Γε,

where � stands for the symmetrized tensor product and H2 is the two-dimensional Haus-

dorff measure. The function v represents the displacement of the plate, while f and q are

called the elastic and plastic strain, respectively.

For every admissible triple (v, f, q) ∈ A(Ωε, w
ε) we define the associated energy as

Eε(v, f, q) :=

ˆ
Ωε

Q(f(z)) dz +

ˆ
Ωε∪Γε

H
( dq
d|q|

)
d|q|. (3.2.7)

The first term represents the elastic energy, while the second term accounts for plastic

dissipation.

3.2.2 The rescaled problem

As usual in dimension reduction problems, it is convenient to perform a change of variable

in such a way to rewrite the system on a fixed domain independent of ε . To this purpose,

we set

Ω := ω × (− 1
2 ,

1
2 ), Γd := γd × (− 1

2 ,
1
2 ), Γn := γn × (− 1

2 ,
1
2 ),

and we denote by ν∂Ω the outer unit normal to ∂Ω. We consider the change of variable

ψε : Ω→ Ωε given by

ψε(x) := (x′, εx3) for every x = (x′, x3) ∈ Ω

and the linear operator Λε : M3×3
sym →M3×3

sym given by

Λεξ :=


ξ11 ξ12

1
εξ13

ξ21 ξ22
1
εξ23

1
εξ31

1
εξ32

1
ε2 ξ33

 for every ξ ∈M3×3
sym.

To any triple (v, f, q) ∈ A(Ωε, w
ε) we associate a triple (u, e, p) ∈ BD(Ω)×L2(Ω;M3×3

sym)×
Mb(Ω ∪ Γd;M3×3

sym) defined as follows:

u := (v1 ◦ ψε, v2 ◦ ψε, εv3 ◦ ψε), e := Λ−1
ε f ◦ ψε, p := 1

εΛ−1
ε ψ#

ε (q).

Here the measure ψ#
ε (q) ∈Mb(Ω ∪ Γd;M3×3

D ) is the pull-back measure of q , satisfying

ˆ
Ω∪Γd

ϕ : dψ#
ε (q) =

ˆ
Ωε∪Γε

ϕ ◦ ψ−1
ε : dq for every ϕ ∈ C0(Ω ∪ Γd;M3×3

D ).

According to this change of variable we have

Eε(v, f, q) = εQ(Λεe) + εH(Λεp),
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3.3 The class of Kirchhoff-Love admissible triples

where

Q(Λεe) :=

ˆ
Ω

Q(Λεe(x)) dx, H(Λεp) :=

ˆ
Ω∪Γd

H
( dΛεp

d|Λεp|

)
d|Λεp|.

We also introduce the scaled Dirichlet boundary datum w ∈W 1,2(Ω;R3), given by

w(x) := (w̄1(x′)− x3∂1w3(x′), w̄2(x′)− x3∂2w3(x′), w3(x′)) for every x ∈ Ω.

From the definition of the class A(Ωε, w
ε) it immediately follows that the scaled triple

(u, e, p) satisfies the equalities

Eu = e+ p in Ω, (3.2.8)

p = (w − u)� ν∂ΩH2 on Γd, (3.2.9)

p11 + p22 + 1
ε2 p33 = 0 in Ω ∪ Γd. (3.2.10)

We are thus led to introduce the class Aε(w) of all triples (u, e, p) ∈ BD(Ω)×L2(Ω;M3×3
sym)×

Mb(Ω ∪ Γd;M3×3
sym) satisfying (3.2.8)–(3.2.10), and to define the functional

Jε(u, e, p) := Q(Λεe) +H(Λεp) (3.2.11)

for every (u, e, p) ∈ Aε(w). In the following we shall study the asymptotic behaviour of the

minimizers of Jε and of the quasistatic evolution associated with Jε , as ε→ 0.

3.3 The class of Kirchhoff-Love admissible triples

In this section we introduce the class of Kirchhoff-Love admissible triples, which will be

the domain of the minimum problem describing the asymptotic behaviour of minimizers of

Jε , as ε→ 0, and the space where the limiting quasistatic evolution takes place. We prove

some approximation results, which will be crucial in the proofs of both convergence results.

To this purpose we first define the set of Kirchhoff-Love displacements as

KL(Ω) :=
{
u ∈ BD(Ω) : (Eu)i3 = 0 for i = 1, 2, 3

}
.

Remark 3.3.1. Note that u ∈ KL(Ω) if and only if u3 ∈ BH(ω) and there exists ū ∈
BD(ω) such that

uα = ūα − x3∂αu3, α = 1, 2.

In particular, if u ∈ KL(Ω), then (Eu)αβ = (Eū)αβ − x3∂
2
αβu3 for α, β = 1, 2. If, in

addition, u ∈ W 1,p(Ω;R3), then ū ∈ W 1,p(ω;R2) and u3 ∈ W 2,p(ω). We call ū, u3 the

Kirchhoff-Love components of u .

For every w ∈ W 1,2(Ω;R3) ∩ KL(Ω) we define the class AKL(w) of Kirchhoff-Love

admissible triples for the boundary datum w as the set of all triples (u, e, p) ∈ KL(Ω) ×
L2(Ω;M3×3

sym)×Mb(Ω ∪ Γd;M3×3
sym) satisfying

Eu = e+ p in Ω, p = (w − u)� ν∂ΩH2 on Γd,

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1, 2, 3.
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3. A quasistatic evolution model for perfectly plastic thin plates

Remark 3.3.2. The space {
ξ ∈M3×3

sym : ξi3 = 0 for i = 1, 2, 3
}

is canonically isomorphic to M2×2
sym . Therefore, in the following, given a triple (u, e, p) ∈

AKL(w) we will usually identify e with a function in L2(Ω;M2×2
sym) and p with a measure

in Mb(Ω ∪ Γd;M2×2
sym).

We notice that the set AKL(w) is always nonempty as it contains the triple (w,Ew, 0).

We also point out that if (u, e, p) ∈ AKL(w), then in general one cannot conclude that e

and p are affine in the x3 variable. However, some conditions on the structure of e and p

can be deduced. To this purpose, we introduce the following definitions.

Definition 3.3.3. Let f ∈ L2(Ω;M3×3
sym). We denote by f̄ , f̂ ∈ L2(ω;M3×3

sym) and by

f⊥ ∈ L2(Ω;M3×3
sym) the following orthogonal components (in the sense of L2(Ω;M3×3

sym))

of f :

f̄(x′) :=

ˆ 1
2

− 1
2

f(x′, x3) dx3, f̂(x′) := 12

ˆ 1
2

− 1
2

x3f(x′, x3) dx3

for a.e. x′ ∈ ω , and

f⊥(x) := f(x)− f̄(x′)− x3f̂(x′)

for a.e. x ∈ Ω. The component f̄ is called the zero-th order moment of f , while f̂ is called

the first order moment of f .

Definition 3.3.4. Let q ∈Mb(Ω∪Γd;M3×3
sym). The zero-th order moment of q is the measure

q̄ ∈Mb(ω ∪ γd;M3×3
sym) defined by

ˆ
ω∪γd

ϕ : dq̄ :=

ˆ
Ω∪Γd

ϕ : dq

for every ϕ ∈ C0(ω ∪ γd;M3×3
sym), while the first order moment of q is the measure q̂ ∈

Mb(ω ∪ γd;M3×3
sym) defined by

ˆ
ω∪γd

ϕ : dq̂ := 12

ˆ
Ω∪Γd

x3ϕ : dq

for every ϕ ∈ C0(ω ∪ γd;M3×3
sym). We also define q⊥ ∈ Mb(Ω ∪ Γd;M3×3

sym) as the measure

given by

q⊥ := q − q̄ ⊗ L1 − q̂ ⊗ x3L1,

where the symbol ⊗ denotes the usual product of measures.

With these definitions at hand one can easily prove the following characterization of the

class AKL(Ω).

Proposition 3.3.5. Let w ∈W 1,2(Ω;R3)∩KL(Ω) and (u, e, p) ∈ KL(Ω)×L2(Ω;M3×3
sym)×

Mb(Ω∪Γd;M3×3
sym) with ei3 = 0 in Ω and pi3 = 0 in Ω∪Γd for i = 1, 2, 3 . Let ū ∈ BD(ω) ,

u3 ∈ BH(ω) , and w̄ ∈ W 1,2(ω;R2) , w3 ∈ W 2,2(ω) be the Kirchhoff-Love components

of u and w , respectively. Finally, let ē, ê ∈ L2(ω;M3×3
sym) , e⊥ ∈ L2(Ω;M3×3

sym) , p̄, p̂ ∈
Mb(ω ∪ γd;M3×3

sym) , and p⊥ ∈ Mb(Ω ∪ Γd;M3×3
sym) be the moments of e and p , according

to Definitions 3.3.3 and 3.3.4. Then (u, e, p) ∈ AKL(Ω) if and only if the following three

conditions are satisfied:
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(i) Eū = ē+ p̄ in ω and p̄ = (w̄ − ū)� ν∂ωH1 on γd ;

(ii) D2u3 = −(ê+ p̂) in ω , u3 = w3 on γd , and p̂ = (∇u3 −∇w3)� ν∂ωH1 on γd ;

(iii) p⊥ = −e⊥ in Ω and p⊥ = 0 on Γd ,

where we have identified ē, ê with functions in L2(ω;M2×2
sym) and p̄, p̂ with measures in

Mb(ω ∪ γd;M2×2
sym) . Here ν∂ω denotes the outer unit normal to ∂ω and H1 is the one-

dimensional Hausdorff measure.

We now prove some approximation results for Kirchhoff-Love admissible triples. We first

need a technical lemma.

Lemma 3.3.6. Let µ ∈Mb(ω × (− 1
2 ,

1
2 );M2×2

sym) be such that

µ = µ̄⊗ L1 + µ̂⊗ x3L1 + µ⊥,

where µ̄, µ̂ ∈ Mb(ω;M2×2
sym) with |µ̄|(∂ω) = |µ̂|(∂ω) = 0 and µ⊥ ∈ L2(Ω;M2×2

sym) . Let

(ρδ) ⊂ C∞c (R2) be a sequence of mollifiers, with supp ρδ ⊂ Bδ(0) . Then

lim
δ→0

ˆ 1
2

− 1
2

( ˆ
ω

|ρδ ∗ µx3
| dx′

)
dx3 = |µ|(Ω),

where we have set µx3
:= µ̄+ x3µ̂+ µ⊥(·, x3) ∈Mb(ω;M2×2

sym) for L1 -a.e. x3 ∈ (− 1
2 ,

1
2 ) .

Proof. We first observe that, from the assumption µ⊥ ∈ L2(Ω;M2×2
sym) it follows that

µa = µ̄a + x3µ̂
a + µ⊥,

µs = µ̄s ⊗ L1 + µ̂s ⊗ x3L1.

Since µ̄s + x3µ̂
s belongs to L∞((− 1

2 ,
1
2 );Mb(ω;M2×2

sym)), by [4, Corollary 2.29] we have

|µs| = |µ̄s + x3µ̂
s|
gen.
⊗ L1,

where
gen.
⊗ denotes the generalized product of measures (see, e.g., [4, Definition 2.27]). The

equalities above imply that

|µ|(Ω) =

ˆ
Ω

|µa(x)| dx+ |µs|(Ω)

=

ˆ 1
2

− 1
2

ˆ
ω

|µ̄a(x′) + x3µ̂
a(x′) + µ⊥(x)| dx′dx3 +

ˆ 1
2

− 1
2

|µ̄s + x3µ̂
s|(ω) dx3

=

ˆ 1
2

− 1
2

|µx3
|(ω) dx3.

We now extend µx3
to 0 outside ω , so that the convolutions ρδ ∗ µx3

are well defined

on R2 . By Fubini-Tonelli Theorem and the assumption |µ̄|(∂ω) = |µ̂|(∂ω) = 0 we obtain

ˆ
ω

|ρδ ∗ µx3
| dx′ =

ˆ
ω

∣∣∣ˆ
R2

ρδ(x
′ − y′) dµx3

(y′)
∣∣∣ dx′

≤
ˆ
ω

ˆ
R2

ρδ(x
′ − y′) d|µx3 |(y′) dx′ ≤ |µx3 |(ω)
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for L1 -a.e. x3 ∈ (− 1
2 ,

1
2 ). By integrating with respect to x3 we deduce

ˆ 1
2

− 1
2

(ˆ
ω

|ρδ ∗ µx3 | dx′
)
dx3 ≤

ˆ 1
2

− 1
2

|µx3 |(ω) dx3 = |µ|(Ω).

On the other hand, we have that ρδ ∗ µx3
⇀ µx3

weakly* in Mb(ω;M2×2
sym) for L1 -a.e.

x3 ∈ (− 1
2 ,

1
2 ). Hence, by lower semicontinuity

|µx3
|(ω) ≤ lim inf

δ→0

ˆ
ω

|ρδ ∗ µx3
| dx′

for L1 -a.e. x3 ∈ (− 1
2 ,

1
2 ). Integration with respect to x3 and Fatou’s Lemma yield the

thesis.

The next lemma allows one to approximate in energy any Kirchhoff-Love admissible

triple by means of triples (uε, eε, pε) ∈ AKL(Ω) with uε smooth. The proof of this result is

based on an adaptation of [23, Proposition 1.4].

Lemma 3.3.7. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (u, e, p) ∈ AKL(w) . Then, there

exists a sequence of triples (uε, eε, pε) ∈ AKL(w) such that

uε ∈ C∞(Ω;R3) ∩W 1,1(Ω;R3)

and the following properties hold:

uε ⇀ u weakly* in BD(Ω), (3.3.1)

eε → e strongly in L2(Ω;M3×3
sym), (3.3.2)

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym), (3.3.3)

‖pε‖Mb
→ ‖p‖Mb

. (3.3.4)

Proof. Step 1. We first show that any triple (u, e, p) ∈ AKL(w) can be approximated

in the sense of (3.3.1)–(3.3.4) by a sequence of triples (uε, eε, pε) ∈ AKL(w) with uε ∈
C∞(Ω;R3) ∩BD(Ω).

Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (u, e, p) ∈ AKL(w). By Proposition 3.3.5 the

Kirchhoff-Love components ū ∈ BD(ω) and u3 ∈ BH(ω) of u satisfy

Eū = ē+ p̄ in ω, p̄ = (w̄ − ū)� ν∂ωH1 on γd,

D2u3 = −(ê+ p̂) in ω, u3 = w3 on γd, p̂ = (∇u3 −∇w3)� ν∂ωH1 on γd,

where ē, ê have been identified with functions in L2(ω;M2×2
sym) and p̄, p̂ with measures in

Mb(ω ∪ γd;M2×2
sym). Moreover,

p⊥ = −e⊥ in Ω, p⊥ = 0 on Γd.

Fix ε > 0. Let r > 0 be such that the set

ω0 :=
{
x′ ∈ ω : dist(x′, ∂ω) > 1

r

}
satisfies

|p̄|(ω \ ω0) + |p̂|(ω \ ω0) ≤ ε. (3.3.5)
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We set

ωj :=
{
x′ ∈ ω : dist(x′, ∂ω) > 1

j+r

}
for every j ∈ N,

Aj := ωj+1 \ ωj−1 for j ≥ 2, A1 := ω2.

Let {ϕj} be a C∞ partition of unity for ω subordinate to the covering {Aj} , that is,

ϕj ∈ C∞c (Aj), 0 ≤ ϕj ≤ 1 for every j ∈ N , and

∞∑
j=1

ϕj = 1 in ω. (3.3.6)

Let (ρδ) be a sequence of convolution kernels with ρδ ∈ C∞0 (Bδ(0)) for every δ > 0. For

every j ∈ N we choose δj such that

{x′ ∈ ω : dist(x′, suppϕj) < δj} ⊂⊂ Aj , (3.3.7)

‖(ϕju3) ∗ ρδj − ϕju3‖W 1,2 + ‖(ϕj ū) ∗ ρδj − ϕj ū‖L2 ≤ ε2−j , (3.3.8)

‖(ϕj ē) ∗ ρδj − ϕj ē‖L2 + ‖(ϕj ê) ∗ ρδj − ϕj ê‖L2 ≤ ε2−j , (3.3.9)

‖(u3D
2ϕj) ∗ ρδj − u3D

2ϕj‖L2 + ‖(∇u3 �∇ϕj) ∗ ρδj −∇u3 �∇ϕj‖L2 ≤ ε2−j ,(3.3.10)

‖(ū�∇ϕj) ∗ ρδj − ū�∇ϕj‖L2 ≤ ε2−j . (3.3.11)

Moreover, we extend the function ϕje⊥ to 0 outside Aj × (− 1
2 ,

1
2 ) and consider the convo-

lution

(ϕje⊥) ∗ ρδj (x) :=

ˆ
R2

ρδj (x
′ − y′)ϕj(y′)e⊥(y′, x3) dy′

defined for every x ∈ Ω. Since ϕjp = ϕj p̄ ⊗ L1 + ϕj p̂ ⊗ x3L1 − ϕje⊥ , by Lemma 3.3.6 we

can assume δj to be so small that

‖(ϕje⊥) ∗ ρδj − ϕje⊥‖L2(Ω) ≤ ε2−j , (3.3.12)∣∣∣ˆ
Ω

∣∣(ϕj p̄) ∗ ρδj + x3(ϕj p̂) ∗ ρδj − (ϕje⊥) ∗ ρδj
∣∣ dx− |ϕjp|(Ω)

∣∣∣ ≤ ε2−j . (3.3.13)

Finally, we define

ūε :=

∞∑
j=1

(ϕj ū) ∗ ρδj , uε3 :=

∞∑
j=1

(ϕju3) ∗ ρδj , uεα := ūεα − x3∂αu
ε
3 (α = 1, 2),

eε := ēε + x3ê
ε + eε⊥,

where

ēε :=

∞∑
j=1

[
(ϕj ē) ∗ ρδj + (ū�∇ϕj) ∗ ρδj

]
,

êε :=

∞∑
j=1

[
(ϕj ê) ∗ ρδj − (u3D

2ϕj) ∗ ρδj − 2(∇u3 �∇ϕj) ∗ ρδj
]
, eε⊥ :=

∞∑
j=1

(ϕje⊥) ∗ ρδj ,

and

pε :=


∞∑
j=1

[
(ϕj p̄) ∗ ρδj + x3(ϕj p̂) ∗ ρδj − (ϕje⊥) ∗ ρδj

]
in Ω,

(w − u)� ν∂ΩH2 on Γd.
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It is easy to see that ūε ∈ C∞(ω;R2) ∩ BD(ω), uε3 ∈ C∞(ω) ∩ W 2,1(ω), hence uε ∈
C∞(Ω;R3) ∩BD(Ω). Moreover,

Eūε = ēε + p̄ε and D2uε3 = −(êε + p̂ε) in Ω (3.3.14)

for every ε . Arguing as in [23, Proof of Proposition 1.4], one can also show that uε3 = u3 ,

∇uε3 = ∇u3 , and ūε = ū on ∂ω . By Proposition 3.3.5 this implies that (uε, eε, pε) ∈
AKL(w).

By (3.3.6) and (3.3.8) we deduce that

uε → u strongly in L2(Ω;R3), (3.3.15)

while by (3.3.9)–(3.3.12) we obtain (3.3.2).

To prove (3.3.3) it is enough to show that

p̄ε ⇀ p̄ and p̂ε ⇀ p̂ weakly* in (Cb(ω;M2×2
sym))′, (3.3.16)

where Cb(ω;M2×2
sym) is the space of all bounded functions in C(ω;M2×2

sym). Indeed, if (3.3.16)

holds, for every φ ∈ C0(Ω ∪ Γd;M2×2
sym) we haveˆ

Ω∪Γd

φ : dpε =

ˆ
ω

φ̄ : dp̄ε + 1
12

ˆ
ω

φ̂ : dp̂ε −
ˆ

Ω

φ⊥ : eε⊥ dx+

ˆ
Γd

φ : ((w − u)� ν∂Ω) dH2,

where φ̄ , φ̂ , φ⊥ are defined according to Definition 3.3.3. Convergence (3.3.3) follows now

by (3.3.2) and (3.3.16).

We prove (3.3.16) for the sequence (p̄ε), the same argument applies to (p̂ε). By (3.3.2),

(3.3.14), and (3.3.15) it is enough to check that

lim sup
ε→0

‖p̄ε‖Mb(ω) ≤ ‖p̄‖Mb(ω). (3.3.17)

Now, let φ ∈ C∞c (ω;M2×2
sym) with ‖φ‖∞ ≤ 1. Denoting by ρ̌δj the function ρ̌δj (z

′) =

ρδj (−z′) for every z′ ∈ R2 and for every j , we have∣∣∣ˆ
ω

φ : dp̄ε
∣∣∣ ≤ ∣∣∣ ∞∑

j=1

ˆ
ω

φ(x′) :
( ˆ

ω

ϕj(y
′)ρδj (x

′ − y′) dp̄(y′)
)
dx′
∣∣∣

=
∣∣∣ ∞∑
j=1

ˆ
ω

ϕj(φ ∗ ρ̌δj ) : dp̄
∣∣∣

≤
∞∑
j=2

ˆ
ω

ϕj |φ ∗ ρ̌δj | d|p̄|+
ˆ
ω

ϕ1|φ ∗ ρ̌δ1 | d|p̄|

≤ |p̄|(ω \ ω0) + |p̄|(ω).

Hence, (3.3.17) follows from (3.3.5). Therefore, we deduce (3.3.16), which in turn yields

(3.3.3). Combining (3.3.2), (3.3.3), and (3.3.15), we also have (3.3.1).

It remains to prove (3.3.4). We first note that

‖pε‖Mb
= |pε|(Ω) + |p|(Γd)

≤
∞∑
j=1

ˆ
Ω

∣∣(ϕj p̄) ∗ ρδj + x3(ϕj p̂) ∗ ρδj − (ϕje⊥) ∗ ρδj
∣∣ dx+ |p|(Γd)

≤
∞∑
j=1

|ϕjp|(Ω) + |p|(Γd) + ε,
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by (3.3.13). Therefore,

lim sup
ε→0

‖pε‖Mb
≤

∞∑
j=1

|ϕjp|(Ω) + |p|(Γd)

=

∞∑
j=1

ˆ
Ω

ϕj(x
′) d|p|(x) + |p|(Γd) = ‖p‖Mb

.

Since by (3.3.3) and by lower semicontinuity we have

‖p‖Mb
≤ lim inf

ε→0
‖pε‖Mb

,

the proof of (3.3.4) and of Step 1 is complete.

Step 2. To conclude the proof of the lemma we shall prove that any triple (u, e, p) ∈ AKL(w)

with u ∈ C∞(Ω;R3) ∩ BD(Ω) can be approximated in the sense of (3.3.1)–(3.3.4) by a

sequence of triples (uε, eε, pε) ∈ AKL(w) with uε ∈ C∞(Ω;R3) ∩W 1,1(Ω;R3).

Let (u, e, p) ∈ AKL(w) with u ∈ C∞(Ω;R3) ∩BD(Ω). The Kirchhoff-Love components

of u satisfy ū ∈ C∞(ω;R2) ∩ BD(ω) and u3 ∈ C∞(ω) ∩ W 2,1(ω). By [60, Chapter I,

Proposition 1.3] and the regularity of ∂ω we can construct a sequence (ūε) ⊂ C∞(ω;R2)

such that

ūε → ū strongly in L1(ω;R2) and Eūε → Eū strongly in L1(ω;M2×2
sym). (3.3.18)

This implies, in particular, that ūε → ū strongly in L1(Γd;R2). The sequence of triples

(uε, eε, pε) defined by

uεα := ūεα − x3∂αu3 (α = 1, 2), uε3 := u3, eε := e,

and

pε :=

Eūε − e− x3D
2u3 in Ω,

(w − uε)� ν∂ΩH2 on Γd,

satisfies all the required properties.

Remark 3.3.8. We observe that by (3.3.15) and (3.3.18) and the continuous embedding of

BD(ω) into L2(ω;R2) the approximating sequence (uε, eε, pε) in Lemma 3.3.7 satisfies also

ūε → ū strongly in L2(ω;R2). (3.3.19)

Moreover, the construction of (uε, eε, pε) can be modified in such a way to satisfy also the

following convergence properties:

‖Eūε‖L1 → ‖Eū‖Mb
, (3.3.20)

‖D2uε3‖L1 → ‖D2u3‖Mb
, (3.3.21)

uε3 → u3 in C(ω). (3.3.22)

Indeed, let us denote by p̄a , p̂a and p̄s , p̂s the absolutely continuous parts and the singular

parts of p̄ and p̂ , respectively. In Step 1 we can choose δj in such a way to satisfy also the
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3. A quasistatic evolution model for perfectly plastic thin plates

following estimates:

‖(ϕj p̄a) ∗ ρδj − ϕj p̄a‖L1 + ‖(ϕj p̂a) ∗ ρδj − ϕj p̂a‖L1 ≤ ε2−j (3.3.23)∣∣‖(ϕj p̄s) ∗ ρδj‖L1 − ‖ϕj p̄s‖Mb

∣∣+
∣∣‖(ϕj p̂s) ∗ ρδj‖L1 − ‖ϕj p̂s‖Mb

∣∣ ≤ ε2−j , (3.3.24)

‖(ϕju3) ∗ ρδj − ϕju3‖L∞ ≤ ε2−j , (3.3.25)

where we used the continuous embedding of BH(ω) into C(ω). By (3.3.25) we immediately

deduce (3.3.22). By (3.3.23) we have that

∞∑
j=1

(ϕj p̄
a) ∗ ρδj → p̄a strongly in L1(ω;M2×2

sym),

while by (3.3.24) we obtain that

∥∥ ∞∑
j=1

(ϕj p̄
s) ∗ ρδj

∥∥
L1 ≤

∞∑
j=1

‖ϕj p̄s‖Mb
+ ε =

∞∑
j=1

ˆ
ω

ϕj d|p̄s|+ ε = |p̄s|(ω) + ε.

These two facts, together with (3.3.2), yield

lim sup
ε→0

‖Eūε‖L1 ≤ ‖ē+ p̄a‖L1 + |p̄s|(ω) = ‖Eū‖Mb
.

The opposite inequality follows from (3.3.1) by lower semicontinuity. A similar argument

applies to (3.3.21). Finally, it is easy to see that (3.3.20)–(3.3.22) are preserved in the

construction of Step 2, since the approximation result for ū entails strong convergence of

(Eūε) in L1(ω;M2×2
sym).

We now prove an approximation result for Kirchhoff-Love admissible triples in terms of

smooth triples. We denote by C∞c (ω ∪ γn;M2×2
sym) the set of smooth maps whose support

is a compact subset of ω ∪ γn . Morever, we introduce the set L2
∞,c(Ω;M2×2

sym) of all p ∈
L2(Ω;M2×2

sym) satisfying the following two conditions:

(i) ∂kα∂
j
βp ∈ L2(Ω;M2×2

sym) for every k, j ∈ N ∪ {0} , α, β = 1, 2;

(ii) there exists U ⊂⊂ ω ∪ γn such that p = 0 a.e. on ω \ U × (− 1
2 ,

1
2 ).

Note that if p ∈ L2
∞,c(Ω;M2×2

sym), then p(·, x3) ∈ C∞c (ω ∪ γn;M2×2
sym) for a.e. x3 ∈ (− 1

2 ,
1
2 ).

Theorem 3.3.9. Let w ∈ W 1,2(Ω,R3) ∩KL(Ω) and let (u, e, p) ∈ AKL(w) . Then, there

exists a sequence of triples

(uε, eε, pε) ∈
(
W 1,2(Ω;R3)× L2(Ω;M3×3

sym)× L2
∞,c(Ω;M3×3

sym)
)
∩ AKL(w)

such that

uε ⇀ u weakly* in BD(Ω), (3.3.26)

eε → e strongly in L2(Ω;M3×3
sym), (3.3.27)

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym), (3.3.28)

‖pε‖L1 → ‖p‖Mb
. (3.3.29)
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Remark 3.3.10. By Reshetnyak continuity Theorem (see, e.g., [4, Theorem 2.39]), conver-

gences (3.3.28)–(3.3.29) guarantee that H0(pε) → H0(p) for every function H0 : M2×2
sym →

[0,+∞) convex and positively one-homogeneous.

Proof of Theorem 3.3.9. Up to translating u by w , it is enough to prove the theorem for w ≡
0. Moreover, by Lemma 3.3.7 and by the metrizability of the weak* topology on bounded

subsets of Mb(Ω ∪ Γd;M3×3
sym) we can reduce to the case where u ∈ W 1,1(Ω;R3) ∩ KL(Ω)

and there exists q ∈ L1(Ω;M3×3
sym) such that

p = q in Ω, p = −u� ν∂ΩH2 on Γd. (3.3.30)

According to Remark 3.3.2, we identify e and p with a function in L2(Ω;M2×2
sym) and a

measure in Mb(Ω ∪ Γd;M2×2
sym), respectively, and we perform the decomposition of Propo-

sition 3.3.5. By Remark 3.3.1 we have that ū ∈ W 1,1(ω;R2) and u3 ∈ W 2,1(ω), while by

(3.3.30) there exist q̄ , q̂ ∈ L1(ω;M2×2
sym) such that

p̄ = q̄ in ω, p̄ = −ū� ν∂ωH1 on γd, (3.3.31)

and

p̂ = q̂ in ω, p̂ = −∇u3 � ν∂ωH1 on γd. (3.3.32)

Note also that u3 = 0 on γd .

For the sake of simplicity we split the proof into two steps.

Step 1. We claim that we can always reduce to the case where there exists an open set

J ⊂ ∂ω such that γd is compactly contained in J and u3 = 0 on J (topological notions

refer here to the relative topology of ∂ω ).

To prove the claim, it is enough to show that the triple (u, e, p) can be approximated

in the sense of (3.3.26)–(3.3.29) by a sequence of triples (uδ, eδ, pδ) in AKL(w) satisfying

the following property: for every δ > 0 there exists an open set Jδ ⊂ ∂ω such that γd is

compactly contained in Jδ and uδ3 = 0 on Jδ .

To this purpose, let {Ui}i=1,...,n be a finite covering of ∂ω such that for every i , up to

a C2 change of coordinates, ∂ω ∩ Ui is the graph of a C2 map and ω ∩ Ui is the related

subgraph. We also require the covering to be such that for α = 1, 2 there exists an open

neighbourhood UPα of the point Pα satisfying

Pα ∈ UPα ⊂ Uα for α = 1, 2 and UPα ∩ Uβ = ∅ for α 6= β.

We recall that by assumption ∂b∂ωγd = {P1, P2} . Finally, let U0 ⊂ R2 be an open set,

compactly contained in ω , such that {Ui}i=0,...,n is a finite covering of ω , and let {ϕi}i=0,...,n

be a subordinate partition of unity, ϕi ∈ C∞c (Ui), 0 ≤ ϕi ≤ 1 for i = 0, . . . , n , and

n∑
i=0

ϕi = 1 in ω. (3.3.33)

The approximating sequence will be constructed by modifying u in the sets U1 and U2 and

keeping it unchanged in the other sets. More precisely, using the C2 regularity, we shall

straighten the boundary of ω in U1 and U2 , and shift the function u along the tangential

direction in such a way to have the boundary condition satisfied on a set larger than γd .
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3. A quasistatic evolution model for perfectly plastic thin plates

We first consider the set U1 . By our choice of the covering there exist a map φ ∈
C2(U1;R2) and a rectangle R1 := (a, b)×(c, d) such that φ(U1) = R1 and φ−1 ∈ C2(R1;U1);

moreover, there exists h ∈ C2(a, b) such that

φ(U1 ∩ ∂ω) = {(s, h(s)) : s ∈ (a, b)}, φ(U1 ∩ ω) := {(s, t) ∈ R1 : t < h(s)}.

We can assume that for a suitable s1 ∈ (a, b)

φ(U1 ∩ γd) = {(s, h(s)) : s ∈ (s1, b)}.

Let V1 be an open set in R2 such that suppϕ1 ⊂ V1 ⊂⊂ U1 . For δ small enough we

define ψδ : φ(V1)→ R1 as

ψδ(s, t) = (s+ δ, t− h(s) + h(s+ δ))

and φδ : V1 → U1 as

φδ := φ−1 ◦ ψδ ◦ φ.

It is easy to see that for δ small enough

φδ(V1 ∩ ω) ⊂ U1 ∩ ω, φδ(V1 \ ω) ⊂ U1 \ ω,

and

φδ(V1 ∩ ∂ω) ⊂ U1 ∩ ∂ω.

Moreover, setting K1 := suppϕ1 , we have that

‖φδ − id‖C2(K1) → 0, ‖(φδ)−1 − id‖C2(K1) → 0, (3.3.34)

as δ → 0.

We consider the functions ūδ,1 := ϕ1(ū ◦ φδ) and uδ,13 := ϕ1(u3 ◦ φδ), which are well

defined on V1 ∩ ω and are extended to zero outside the support of ϕ1 . By construction

ūδ,1 ∈W 1,1(ω;R2), uδ,13 ∈W 2,1(ω), and

uδ,13 = 0 on Jδ,1, (3.3.35)

where Jδ,1 := (U1 ∩ γd) ∪ (φδ)−1(U1 ∩ γd). Moreover, by (3.3.34) we obtain

ūδ,1 → ϕ1ū strongly in W 1,1(ω;R2), (3.3.36)

uδ,13 → ϕ1u3 strongly in W 2,1(ω). (3.3.37)

Straightforward computations yield the equalities

Eūδ,1 = (ū ◦ φδ)�∇ϕ1 + ϕ1 sym
(
(Dū ◦ φδ)Dφδ

)
, (3.3.38)

D2uδ,13 = (u3 ◦ φδ)D2ϕ1 + 2∇ϕ1 �
(
(Dφδ)T (∇u3 ◦ φδ)

)
+ ϕ1

∑
α=1,2

(∂αu3 ◦ φδ)D2φδα + ϕ1(Dφδ)T (D2u3 ◦ φδ)Dφδ. (3.3.39)

It is therefore natural to introduce the functions ēδ,1, êδ,1 ∈ L2(ω;M2×2
sym), defined as

ēδ,1 := (ū ◦ φδ)�∇ϕ1 + ϕ1 sym
(
(ē ◦ φδ)Dφδ

)
,

êδ,1 := −(u3 ◦ φδ)D2ϕ1 − 2∇ϕ1 � ((Dφδ)T (∇u3 ◦ φδ))

− ϕ1

∑
α=1,2

(∂αu3 ◦ φδ)D2φδα + ϕ1(Dφδ)T (ê ◦ φδ)Dφδ
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3.3 The class of Kirchhoff-Love admissible triples

and the functions q̄δ,1, q̂δ,1 ∈ L1(ω;M2×2
sym), defined as

q̄δ,1 := ϕ1 sym
(
(q̄ ◦ φδ)Dφδ

)
+ ϕ1 sym

(
[(Dū− Eū) ◦ φδ]Dφδ

)
,

q̂δ,1 := ϕ1(Dφδ)T (q̂ ◦ φδ)Dφδ.

By (3.3.38) and (3.3.39) there holds

Eūδ,1 = ēδ,1 + q̄δ,1 in ω, D2uδ,13 = −(êδ,1 + q̂δ,1) in ω. (3.3.40)

By (3.3.34), (3.3.36), and (3.3.37) we deduce the following convergence properties:

ēδ,1 → ū�∇ϕ1 + ϕ1ē strongly in L2(ω;M2×2
sym), (3.3.41)

êδ,1 → −u3D
2ϕ1 − 2∇ϕ1 �∇u3 + ϕ1ê strongly in L2(ω;M2×2

sym), (3.3.42)

q̄δ,1 → ϕ1q̄ strongly in L1(ω;M2×2
sym), (3.3.43)

q̂δ,1 → ϕ1q̂ strongly in L1(ω;M2×2
sym). (3.3.44)

An analogous construction in the set U2 provides us with two triples

(ūδ,2, ēδ,2, q̄δ,2) ∈W 1,1(ω;R2)× L2(ω;M2×2
sym)× L1(ω;M2×2

sym),

(uδ,23 , êδ,2, q̂δ,2) ∈W 2,1(ω)× L2(ω;M2×2
sym)× L1(ω;M2×2

sym),

such that

Eūδ,2 = ēδ,2 + q̄δ,2 in ω, D2uδ,23 = −(êδ,2 + q̂δ,2) in ω, (3.3.45)

and the following convergence properties hold:

ūδ,2 → ϕ2ū strongly in W 1,1(ω;R2), (3.3.46)

uδ,23 → ϕ2u3 strongly in W 2,1(ω), (3.3.47)

ēδ,2 → ū�∇ϕ2 + ϕ2ē strongly in L2(ω;M2×2
sym), (3.3.48)

êδ,2 → −u3D
2ϕ2 − 2∇ϕ2 �∇u3 + ϕ2ê strongly in L2(ω;M2×2

sym), (3.3.49)

q̄δ,2 → ϕ2q̄ strongly in L1(ω;M2×2
sym), (3.3.50)

q̂δ,2 → ϕ2q̂ strongly in L1(ω;M2×2
sym). (3.3.51)

Moreover, the following boundary condition is satisfied:

uδ,23 = 0 on Jδ,2, (3.3.52)

where Jδ,2 is an open subset of ∂ω strictly containing U2 ∩ γd .

To complete the construction of the approximating sequence we set

ūδ := ūδ,1 + ūδ,2 +
∑
i 6=1,2

ϕiū, uδ3 := uδ,13 + uδ,23 +
∑
i 6=1,2

ϕiu3,

and

uδα := ūδα − x3∂αu
δ
3 (α = 1, 2).

It is immediate to see that uδ ∈ W 1,1(Ω;R3) ∩KL(Ω); moreover, by (3.3.35) and (3.3.52)

we have

uδ3 = 0 on Jδ,
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3. A quasistatic evolution model for perfectly plastic thin plates

where Jδ := Jδ,1 ∪ Jδ,2 ∪ γd is an open subset of ∂ω and satisfies γd ⊂⊂ Jδ . By (3.3.33),

(3.3.36), (3.3.37), (3.3.46), and (3.3.47) we also have

uδ → u strongly in W 1,1(Ω;R3). (3.3.53)

By the continuity of the trace operator the previous convergence entails

uδ → u strongly in L1(∂Ω;R3). (3.3.54)

Finally, we introduce the functions eδ ∈ L2(Ω;M2×2
sym) and qδ ∈ L1(Ω;M2×2

sym), defined as

eδ := ēδ,1 + ēδ,2 + x3(êδ,1 + êδ,2) + (ϕ1 + ϕ2)e⊥

+
∑
i 6=1,2

(ϕie+ ū�∇ϕi − x3u3D
2ϕi − 2x3∇ϕi �∇u3),

qδ := q̄δ,1 + q̄δ,2 + x3(q̂δ,1 + q̂δ,2)− (ϕ1 + ϕ2)e⊥ +
∑
i6=1,2

ϕiq,

and the measure pδ ∈Mb(Ω ∪ Γd;M2×2
sym), defined as

pδ := qδ in Ω, pδ := −uδ � ν∂ΩH2 on Γd.

Clearly, (uδ, eδ, pδ) ∈ AKL(w). Moreover, by (3.3.41)–(3.3.44) and (3.3.48)–(3.3.51) we

obtain

eδ → e strongly in L2(Ω;M2×2
sym), (3.3.55)

qδ → q strongly in L1(Ω;M2×2
sym). (3.3.56)

From (3.3.54) and (3.3.56) it follows immediately that

pδ ⇀ p weakly* in Mb(Ω ∪ Γd;M2×2
sym)

and

‖pδ‖Mb
→ ‖p‖Mb

.

Step 2. By Step 1 we can assume that there exists an open set J ⊂ ∂ω such that γd is

compactly contained in J and u3 = 0 on J .

Let us consider a finite covering {Qi}i=1,...,m of ∂ω made of open squares centered at

points on ∂ω , with a face orthogonal to some vector ni ∈ S1 and such that, for every

i = 1, . . . ,m , the set Qi ∩ ω is a C2 subgraph in the direction ni . We also require that for

some m0 ∈ {1, . . . ,m}

γd ⊂⊂
m0⋃
i=1

Qi ∩ ∂ω ⊂⊂ J

and

dist(Qi, γd) > 0 for every i = m0 + 1, . . . ,m.

Let also Q0 be an open set compactly contained in ω such that the collection of open

sets {Qi}i=0,...,m is a finite covering of ω . We consider a subordinate partition of unity
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3.3 The class of Kirchhoff-Love admissible triples

{ϕi}i=0,...,m , with 0 ≤ ϕi ≤ 1, ϕi ∈ C∞c (Qi) for every i = 1, . . . ,m , and
∑m
i=0 ϕi = 1 on

ω .

Denoting by Ω̃ the set

Ω̃ := Ω ∪
m0⋃
i=1

(
Qi × (− 1

2 ,
1
2 )
)
,

we extend the triple (u, e, p) to Ω̃ by setting

u := 0 in Ω̃ \ Ω, e := 0 in Ω̃ \ Ω, p :=

−u� ν∂ΩH2 on Ω̃ ∩ ∂Ω,

0 in Ω̃ \ Ω.

The extended maps satisfy

u ∈ BD(Ω̃) ∩KL(Ω̃), e ∈ L2(Ω̃;M3×3
sym), p ∈Mb(Ω̃;M3×3

sym)

and

Eu = e+ p in Ω̃.

Note, in particular, that since u3 = 0 and ν∂Ω = (ν∂ω, 0) on Ω̃ ∩ ∂Ω, we have that pi3 = 0

in Ω̃ for i = 1, 2, 3. Thus, we can as usual identify e with a function in L2(Ω̃;M2×2
sym) and

p with a measure in Mb(Ω̃;M2×2
sym).

For every i = 1, . . . ,m0 we introduce the outward translations

τi,ε(x
′) := x′ + aεni for x′ ∈ R2,

while for i = m0 + 1, . . . ,m we consider the inward translations

τi,ε(x
′) := x′ − aεni for x′ ∈ R2,

where (aε) is a sequence converging to 0, as ε→ 0. We define

ūε :=

m∑
i=1

(ϕiū) ◦ τi,ε + ϕ0ū, (3.3.57)

ēε :=

m∑
i=1

(ϕiē) ◦ τi,ε + ϕ0ē+

m∑
i=1

(∇ϕi � ū) ◦ τi,ε +∇ϕ0 � ū, (3.3.58)

p̄ε :=

m∑
i=1

τ#
i,ε(ϕip̄) + ϕ0p̄, (3.3.59)

where τ#
i,ε(ϕip̄) denotes the pull-back measure of ϕip̄ . Notice that (ūε, ēε, p̄ε) is well defined

in an open neighbourhood ωε of ω , that is, ūε ∈ BD(ωε), ēε ∈ L2(ωε;M2×2
sym), p̄ε ∈

Mb(ωε;M2×2
sym), and

Eūε = ēε + p̄ε in ωε.

Moreover, by construction there exists an open set Uε ⊂ R2 such that γd ⊂⊂ Uε and

uε = 0, eε = 0, and pε = 0 in Uε . Finally, we can choose aε → 0 in such a way that

τ#
i,ε(ϕip̄)(∂ω ∩Qi) = 0 for i = m0 + 1, . . . ,m,

so that

|p̄ε|(∂ω) = 0 for every ε. (3.3.60)
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3. A quasistatic evolution model for perfectly plastic thin plates

Let now (ρδ) ⊂ C∞c (R2) be a sequence of convolution kernels. For δ < aε we consider

the functions

ūε,δ := ūε ∗ ρδ, ēε,δ := ēε ∗ ρδ, p̄ε,δ := p̄ε ∗ ρδ.

Clearly, we have ūε,δ ∈ C∞(ω;R2) and ēε,δ, p̄ε,δ ∈ C∞(ω;M2×2
sym), and

Eūε,δ = ēε,δ + p̄ε,δ in ω.

Moreover, for δ small enough there holds

ūε,δ = 0 on γd and ēε,δ, p̄ε,δ ∈ C∞c (ω ∪ γn;M2×2
sym). (3.3.61)

We apply a similar construction to the normal component of u and to the first moments

of e and p . We first introduce

uε3 :=

m∑
i=1

(ϕiu3) ◦ τi,ε + ϕ0u3,

êε :=

m∑
i=1

(ϕiê) ◦ τi,ε + ϕ0ê− 2

m∑
i=1

(∇ϕi �∇u3) ◦ τi,ε − 2∇ϕ0 �∇u3

−
m∑
i=1

(D2ϕiu3) ◦ τi,ε −D2ϕ0u3,

p̂ε :=

m∑
i=1

τ#
i,ε(ϕip̂) + ϕ0p̂,

and we then define for δ < aε

uε,δ3 := uε3 ∗ ρδ, êε,δ := êε ∗ ρδ, p̂ε,δ := p̂ε ∗ ρδ.

As before, we can modify the choice of aε → 0 in such a way that

|p̂ε|(∂ω) = 0. (3.3.62)

Moreover, for δ small enough we have that uε,δ3 ∈ C∞(ω), êε,δ, p̂ε,δ ∈ C∞c (ω ∪ γn;M2×2
sym),

and uε,δ3 = 0 on γd , ∇uε,δ3 = 0 on γd . Finally, there holds

D2uε,δ3 = −(êε,δ + p̂ε,δ) in ω.

Analogously, we define

eε⊥ :=

m∑
i=1

(ϕie⊥) ◦ τi,ε + ϕ0e⊥, eε,δ⊥ := eε⊥ ∗ ρδ,

where, with an abuse of notation, the composition (ϕie⊥) ◦ τi,ε stands for the function

(ϕie⊥) ◦ τi,ε(x) = ϕi(τi,ε(x
′)) e⊥(τi,ε(x

′), x3) for a.e. x ∈ Ω,

and the convolution is intended with respect to the variable x′ ∈ R2 . It is immediate to see

that eε,δ⊥ ∈ L2
∞,c(Ω;M2×2

sym). We now set

uε,δα := ūε,δα − x3∂αu
ε,δ
3 (α = 1, 2),

eε,δ := ēε,δ + x3ê
ε,δ + eε,δ⊥ ,

pε,δ := p̄ε,δ + x3p̂
ε,δ − eε,δ⊥ .
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By construction we have

(uε,δ, eε,δ, pε,δ) ∈
(
W 1,2(Ω;R3)× L2

∞,c(Ω;M2×2
sym)× L2

∞,c(Ω;M2×2
sym)

)
∩ AKL(w).

It is convenient to introduce also the measure pε ∈Mb(Ω ∪ Γd;M2×2
sym), defined as

pε := p̄ε ⊗ L1 + p̂ε ⊗ x3L1 − eε⊥.

Lemma 3.3.6, together with equalities (3.3.60) and (3.3.62), guarantees that we can choose

δ = δ(ε) small enough, so that

‖ūε,δ(ε) − ūε‖L2 < ε, ‖uε,δ(ε)3 − uε3‖W 1,2 < ε,

‖ēε,δ(ε) − ēε‖L2 < ε, ‖êε,δ(ε) − êε‖L2 < ε, ‖eε,δ(ε)⊥ − eε⊥‖L2(Ω) < ε,∣∣‖pε,δ(ε)‖L1(Ω) − |pε|(Ω)
∣∣ < ε. (3.3.63)

From the convergence properties above we deduce (3.3.26)–(3.3.28). To conclude the proof

of the theorem it remains to prove (3.3.29). By (3.3.63) we have

lim sup
ε→0

‖pε,δ(ε)‖L1(Ω) ≤ lim sup
ε→0

|pε|(Ω).

On the other hand, since p has been extended to zero on the set ∪m0
i=1(Qi \ ω) × (− 1

2 ,
1
2 ),

while for i = m0 + 1, . . . ,m the map τi,ε is an inward translations, we have

lim sup
ε→0

|pε|(Ω)

≤ |ϕ0p|(Ω) + lim sup
ε→0

m∑
i=1

ˆ 1
2

− 1
2

∣∣τ#
i,ε(ϕip̄+ x3ϕip̂+ ϕie⊥(·, x3))

∣∣(ω ∪ γd) dx3

≤ |ϕ0p|(Ω) +
m∑
i=1

ˆ 1
2

− 1
2

∣∣ϕi(p̄+ x3p̂+ e⊥(·, x3))
∣∣(ω ∪ γd) dx3

=

m∑
i=0

|ϕip|(Ω ∪ Γd) =

m∑
i=0

ˆ
Ω∪Γd

ϕi d|p| = ‖p‖Mb
.

This, together with (3.3.28), completes the proof of (3.3.29) and of the theorem.

Remark 3.3.11. Arguing as in Remark 3.3.8, one can modify the construction of the

sequence (uε, eε, pε) in Theorem 3.3.9 in such a way that the convergence properties (3.3.19)–

(3.3.22) are also satisfied. In particular, (3.3.22) is preserved, since the approximation

argument for u3 involves only local translations and convolutions.

Remark 3.3.12. We point out that the approximation result provided by Lemma 3.3.7 is

crucial in Step 1 of the proof of Theorem 3.3.9. Indeed, it is not in general true that, if

v ∈ BD(ω) and Ψ : U → ω is a smooth bijection with smooth inverse, the composition v◦Ψ
belongs to BD(U). Lemma 3.3.7 allows us to assume ū ∈ W 1,1(ω;R2) and this regularity

guarantees that ū ◦ φδ ∈W 1,1(V1;R2), hence, in particular, ū ◦ φδ ∈ BD(V1).
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3. A quasistatic evolution model for perfectly plastic thin plates

3.4 Γ-convergence of the static functionals

In this section we study the Γ-convergence of the rescaled energies (Jε), as ε→ 0. We

first introduce the limit functional.

Let A : M2×2
sym →M3×3

sym be the operator given by

Aξ :=

 ξ11 ξ12 λ1(ξ)

ξ12 ξ22 λ2(ξ)

λ1(ξ) λ2(ξ) λ3(ξ)

 for every ξ ∈M2×2
sym, (3.4.1)

where for every ξ ∈ M2×2
sym the triple (λ1(ξ), λ2(ξ), λ3(ξ)) is the unique solution to the

minimum problem

min
λi∈R

Q

 ξ11 ξ12 λ1

ξ12 ξ22 λ2

λ1 λ2 λ3

 .

We observe that the triple (λ1(ξ), λ2(ξ), λ3(ξ)) can be characterized as the unique solution

of the linear system

CAξ :

 0 0 ζ1

0 0 ζ2

ζ1 ζ2 ζ3

 = 0 (3.4.2)

for every ζ1, ζ2, ζ3 ∈ R . This implies that A is a linear map.

Let Qr : M2×2
sym → [0,+∞) be the quadratic form given by

Qr(ξ) := Q(Aξ) for every ξ ∈M2×2
sym. (3.4.3)

By (3.2.2) it satisfies the estimates

rC|ξ|2 ≤ Qr(ξ) ≤ RC|ξ|2 for every ξ ∈M2×2
sym. (3.4.4)

We also consider the linear operator Cr : M2×2
sym →M3×3

sym defined as

Crξ := CAξ for every ξ ∈M2×2
sym. (3.4.5)

By (3.4.2) we have

Crξ : ζ = CAξ : ζ = CAξ :Aζ ′′ for every ξ ∈M2×2
sym, ζ ∈M3×3

sym, (3.4.6)

where ζ ′′ ∈M2×2
sym satisfies ζ ′′αβ = ζαβ for α, β = 1, 2. This implies that

Qr(ξ) = 1
2Crξ :

ξ11 ξ12 0

ξ12 ξ22 0

0 0 0

 for every ξ ∈M2×2
sym.

We introduce the functional Qr : L2(Ω;M2×2
sym)→ [0,+∞), defined as

Qr(f) :=

ˆ
Ω

Qr(f(z)) dz for every f ∈ L2(Ω;M2×2
sym).

It describes the limiting elastic energy of a configuration of the plate whose elastic strain is

given by f .
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We define Hr : M2×2
sym → [0,+∞) as

Hr(ξ) := min
λ1,λ2∈R

H

 ξ11 ξ12 λ1

ξ12 ξ22 λ2

λ1 λ2 −(ξ11 + ξ22)

 for every ξ ∈M2×2
sym. (3.4.7)

It turns out that Hr is convex, positively one-homogeneous, and satisfies

rK |ξ| ≤ Hr(ξ) ≤
√

3RK |ξ| for every ξ ∈M2×2
sym. (3.4.8)

For every µ ∈Mb(Ω ∪ Γd;M2×2
sym) we define

Hr(µ) :=

ˆ
Ω∪Γd

Hr

( dµ
d|µ|

)
d|µ|. (3.4.9)

With the previous notation, we introduce the functional J : AKL(w)→ [0,+∞] , defined

as

J (u, e, p) := Qr(e) +Hr(p) (3.4.10)

for every (u, e, p) ∈ AKL(w), where we identify e with a function in L2(Ω;M2×2
sym) and p

with a measure in Mb(Ω;M2×2
sym), according to Remark 3.3.2. We are now in a position to

state the main result of the section.

Theorem 3.4.1. Let Jε and J be the functionals defined in (3.2.11) and (3.4.10). Let

w ∈ W 1,2(Ω;R3) ∩KL(Ω) and for every ε > 0 let (uε, eε, pε) ∈ Aε(w) be a minimizer of

Jε . Then there exist a subsequence (not relabelled) and a triple (u, e, p) ∈ AKL(w) such

that

uε ⇀ u weakly* in BD(Ω), (3.4.11)

eε → e strongly in L2(Ω;M3×3
sym), (3.4.12)

Λεe
ε → Ae strongly in L2(Ω;M3×3

sym), (3.4.13)

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym), (3.4.14)

H(Λεp
ε)→ Hr(p). (3.4.15)

Moreover, (u, e, p) is a minimizer of J and

lim
ε→0
Jε(uε, eε, pε) = J (u, e, p). (3.4.16)

Remark 3.4.2. The existence of a minimizer for Jε is guaranteed by [15, Theorem 3.3].

Remark 3.4.3. More general boundary conditions can be considered in Theorem 3.4.1.

For instance, the thesis continues to hold if for every ε > 0 (uε, eε, pε) is a minimizer of

Jε in the class Aε(wε) and wε ∈ W 1,2(Ω;R3) is such that wε → w strongly in L2(Ω;R3)

with w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and ΛεEw
ε → f strongly in L2(Ω;M3×3

sym) for some f ∈
L2(Ω;M3×3

sym).

The proof of Theorem 3.4.1 is in the spirit of Γ-convergence. We first prove a compactness

result and a liminf inequality for sequences of triples with equibounded energies.
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3. A quasistatic evolution model for perfectly plastic thin plates

Theorem 3.4.4. Let w ∈W 1,2(Ω;R3) ∩KL(Ω) and let (uε, eε, pε) ∈ Aε(w) be such that

Jε(uε, eε, pε) ≤ C for every ε > 0, (3.4.17)

where C is a constant independent of ε . Then, there exist ẽ ∈ L2(Ω;M3×3
sym) and p̃ ∈

Mb(Ω ∪ Γd;M3×3
D ) such that, up to subsequences,

Λεeε ⇀ ẽ weakly in L2(Ω;M3×3
sym), (3.4.18)

Λεpε ⇀ p̃ weakly* in Mb(Ω ∪ Γd;M3×3
D ). (3.4.19)

Moreover, there exists (u, e, p) ∈ AKL(w) , with eαβ = ẽαβ and pαβ = p̃αβ for α, β = 1, 2 ,

such that, up to subsequences,

uε ⇀ u weakly* in BD(Ω), (3.4.20)

eε ⇀ e weakly in L2(Ω;M3×3
sym), (3.4.21)

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym), (3.4.22)

and

J (u, e, p) ≤ lim inf
ε→0

Jε(uε, eε, pε). (3.4.23)

Proof. By the energy estimate (3.4.17) and by (3.2.2) we deduce the bounds

‖eε‖L2 ≤ ‖Λεeε‖L2 ≤ C for every ε. (3.4.24)

Hence, there exist ẽ, e ∈ L2(Ω;M3×3
sym) such that (3.4.18) and (3.4.21) hold up to subse-

quences, with eαβ = ẽαβ for α, β = 1, 2 and ei3 = 0 for i = 1, 2, 3. By the lower semicon-

tinuity of Q with respect to weak convergence in L2(Ω;M3×3
sym) and by the definition of Qr

we also deduce

Qr(e) ≤ Q(ẽ) ≤ lim inf
ε→0

Q(Λεeε). (3.4.25)

By (3.4.17) and (3.2.4) we obtain analogously

‖pε‖Mb
≤ ‖Λεpε‖Mb

≤ C. (3.4.26)

Therefore, there exist p̃ ∈Mb(Ω ∪ Γd;M3×3
D ) and p ∈Mb(Ω ∪ Γd;M3×3

sym) such that (3.4.19)

and (3.4.22) hold up to subsequences, with pαβ = p̃αβ for α, β = 1, 2 and pi3 = 0 for

i = 1, 2, 3. By the lower semicontinuity of H with respect to weak* convergence in Mb(Ω∪
Γd;M3×3

D ) and by the definition of Hr , we have

Hr(p) ≤ H(p̃) ≤ lim inf
ε→0

H(Λεpε), (3.4.27)

which, together with (3.4.25), gives (3.4.23).

Since (uε, eε, pε) ∈ Aε(w), for every ε there holds

Euε = eε + pε in Ω, (3.4.28)

and

pε = (w − uε)� ν∂ΩH2 on Γd. (3.4.29)
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By (3.4.24), (3.4.26), and (3.4.28), the sequence (Euε) is bounded in Mb(Ω;M3×3
sym). By

(3.4.26) and (3.4.29), the traces of (uε) are uniformly bounded in L1(Γd;R3). Hence, by

(1.4.2) the sequence (uε) is bounded in BD(Ω) and (3.4.20) holds up to subsequences.

Moreover, it is immediate to see that Eu = e+ p in Ω, hence u ∈ KL(Ω).

To conclude the proof, it remains to check that p = (w − u) � ν∂ΩH2 on Γd . To this

purpose we argue as in [15, Lemma 2.1]. Since γd is an open subset of ∂ω , there exists an

open set A ⊂ R2 such that γd = A ∩ ∂ω . We set U := (ω ∪ A) × (− 1
2 ,

1
2 ) and we extend

the triples (uε, eε, pε) to the set U in the following way:

vε :=

uε in Ω,

w in U \ Ω,
fε :=

eε in Ω,

Ew in U \ Ω,
qε :=

pε in Ω ∪ Γd,

0 otherwise.

The symmetric part of the gradient of vε satisfies

Evε =


Euε in Ω,

(w − uε)� ν∂ΩH2 on Γd,

Ew in U \ Ω.

Therefore, by (3.4.20), up to subsequences, vε ⇀ v weakly* in BD(U), where

v :=

u in Ω,

w in U \ Ω,
and Ev =


Eu in Ω,

(w − u)� ν∂ΩH2 on Γd,

Ew in U \ Ω.

(3.4.30)

Analogously, up to subsequences, fε ⇀ f weakly in L2(U ;M3×3
sym) and, since the restrictions

to Ω ∪ Γd of functions in C0(U ;M3×3
sym) belong to C0(Ω ∪ Γd;M3×3

sym), there holds qε ⇀ q

weakly* in Mb(U ;M3×3
sym), where

f :=

e in Ω,

Ew in U \ Ω,
and q :=

p in Ω ∪ Γd,

0 otherwise.

Since Evε = fε + qε in U for every ε , we deduce that Ev = f + q in U . The thesis follows

now from (3.4.30).

In the next theorem we show that the lower bound established in Theorem 3.4.4 is

optimal by exhibiting a recovery sequence.

Theorem 3.4.5. Let w ∈ W 1,2(Ω;R3) ∩KL(Ω) and let (u, e, p) ∈ AKL(w) . Then, there

exists a sequence of triples (uε, eε, pε) ∈ Aε(w) such that

uε ⇀ u weakly* in BD(Ω), (3.4.31)

eε → e strongly in L2(Ω;M3×3
sym), (3.4.32)

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym), (3.4.33)

Λεe
ε → Ae strongly in L2(Ω;M3×3

sym), (3.4.34)

H(Λεp
ε)→ Hr(p), (3.4.35)
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3. A quasistatic evolution model for perfectly plastic thin plates

and

lim
ε→0
Jε(uε, eε, pε) = J (u, e, p). (3.4.36)

Proof. By Theorem 3.3.9, Remark 3.3.10, and the metrizability of the weak* topology on

bounded subsets of Mb(Ω ∪ Γd;M3×3
sym) we can reduce to the case where

(u, e, p) ∈
(
W 1,2(Ω;R3)× L2(Ω;M3×3

sym)× L2
∞,c(Ω;M3×3

sym)
)
∩ AKL(w).

In particular, u = w on Γd and p = 0 H2 -a.e. on Γd .

Let now φ1, φ2, φ3 ∈ L2(Ω) be such that

Ae =

e11 e12 φ1

e12 e22 φ2

φ1 φ2 φ3

 .

Since p ∈ L2(Ω;M3×3
sym), by the measurable selection lemma (see, e.g., [26]) and by (3.2.4)

and (3.4.8) there exist η1, η2, η3 ∈ L2(Ω) such that

Hr(p) = H

 p11 p12 η1

p12 p22 η2

η1 η2 −(p11 + p22)

 . (3.4.37)

We argue as in [44, Proposition 4.1] and we approximate the maps φi and ηi by means of

elliptic regularizations. For every ε we define φεi ∈ W
1,2
0 (Ω), i = 1, 2, 3, as the solution of

the elliptic boundary value problem−ε∆φεi + φεi = φi in Ω,

φεi = 0 on ∂Ω,

and ηεα ∈W
1,2
0 (Ω), α = 1, 2, as the solution of−ε∆ηεα + ηεα = ηα in Ω,

ηεα = 0 on ∂Ω.

The standard theory of elliptic equations gives

φεi → φi strongly in L2(Ω), (3.4.38)

ηεα → ηα strongly in L2(Ω), (3.4.39)

as ε→ 0, and

‖∇φεi‖L2 ≤ Cε− 1
2 , ‖∇ηεα‖L2 ≤ Cε− 1

2 . (3.4.40)

We also introduce the function fε ∈ L2(ω;M3×3
sym), defined componentwise as

fεαα(x′) := 2ε

ˆ x3

0

(∂αφ
ε
α(x′, s) + ∂αη

ε
α(x′, s)) ds (α = 1, 2), fε33(x′) := 0,

fε12(x′) := ε

ˆ x3

0

(∂2φ
ε
1(x′, s) + ∂2η

ε
1(x′, s) + ∂1φ

ε
2(x′, s) + ∂1η

ε
2(x′, s)) ds,

fεα3(x′) :=
ε2

2

ˆ x3

0

(∂αφ
ε
3(x′, s)− ∂αp11(x′, s)− ∂αp22(x′, s)) ds (α = 1, 2)
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3.4 Γ -convergence of the static functionals

for a.e. x′ ∈ ω .

We are now in a position to define the recovery sequence. Let

uεα := uα + 2ε

ˆ x3

0

(φεα(x′, s) + ηεα(x′, s)) ds (α = 1, 2),

uε3 := u3 + ε2

ˆ x3

0

(φε3(x′, s)− p11(x′, s)− p22(x′, s)) ds,

and

eε := e+

 0 0 εφε1
0 0 εφε2
εφε1 εφε2 ε2φε3

+ fε, pε := p+

 0 0 εηε1
0 0 εηε2
εηε1 εηε2 −ε2(p11 + p22)

 .

Since u = w on Γd , p ∈ L2
∞,c(Ω;M3×3

sym), and φεi , η
ε
α ∈ W 1,2

0 (Ω), we have that uε = w

on Γd . It is also easy to check that (uε, eε, pε) ∈ Aε(w). From (3.4.38) and (3.4.39) it

follows that uε → u strongly in L2(Ω;R3). By (3.4.38) and (3.4.40) we deduce (3.4.32) and

(3.4.34), while by (3.4.39) we obtain

pε → p strongly in L2(Ω;M3×3
sym),

hence (3.4.33) and (3.4.31) follow. Finally, by (3.4.37) we have (3.4.35), which, together

with (3.4.34), implies the convergence of the energies.

We are now in a position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Since (w,Ew, 0) ∈ Aε(w) for every ε > 0, by minimality we have

that

Jε(uε, eε, pε) ≤ Jε(w,Ew, 0) ≤ RC‖Ew‖2L2 ,

where the last inequality follows from (3.2.2) and the fact that w ∈ KL(Ω). By Theo-

rem 3.4.4 we deduce that there exists (u, e, p) ∈ AKL(Ω) such that, up to subsequences,

uε ⇀ u weakly* in BD(Ω),

eε ⇀ e weakly in L2(Ω;M3×3
sym),

pε ⇀ p weakly* in Mb(Ω ∪ Γd;M3×3
sym),

and

J (u, e, p) ≤ lim inf
ε→0

Jε(uε, eε, pε). (3.4.41)

Let now (v, f, q) ∈ AKL(Ω). By Theorem 3.4.5 there exists a sequence of triples

(vε, fε, qε) ∈ Aε(w) such that

J (v, f, q) = lim
ε→0
Jε(vε, fε, qε) ≥ lim sup

ε→0
Jε(uε, eε, pε), (3.4.42)

where the last inequality follows from the minimality of (uε, eε, pε). Combining (3.4.42) with

(3.4.41), we deduce that (u, e, p) is a minimizer of J and by choosing (v, f, q) = (u, e, p) in

(3.4.42) we obtain (3.4.16).
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3. A quasistatic evolution model for perfectly plastic thin plates

It remains to prove (3.4.12), (3.4.13), and (3.4.15). By the lower semicontinuity of

Q and H with respect to weak convergence in L2(Ω;M3×3
sym) and weak* convergence in

Mb(Ω ∪ Γd;M3×3
sym), respectively, and by the definition of Qr and Hr we have

Qr(e) ≤ lim inf
ε→0

Q(Λεe
ε), Hr(p) ≤ lim inf

ε→0
H(Λεp

ε). (3.4.43)

Combining (3.4.16) and (3.4.43) yields

lim
ε→0
Q(Λεe

ε) = Qr(e), lim
ε→0
H(Λεp

ε) = Hr(p),

so that (3.4.15) is proved. On the other hand, we remark that by (3.4.6)

Q(Λεe
ε − Ae) = Q(Λεe

ε) +Qr(e)−
ˆ

Ω

CAe : Λεe
ε dx

= Q(Λεe
ε) +Qr(e)−

ˆ
Ω

CAe : eε dx (3.4.44)

Therefore, passing to the limit in (3.4.44) and applying again (3.4.6), we obtain

lim
ε→0
Q(Λεe

ε − Ae) = 0,

so that (3.4.13) follows now from (3.2.2). Finally, convergence (3.4.12) is an immediate

consequence of (3.4.13).

3.5 Convergence of quasistatic evolutions

In this section we focus on the quasistatic evolution problems associated with the func-

tionals Jε and J , introduced in the previous section. To this purpose, for every t ∈ [0, T ]

we prescribe a boundary datum w(t) ∈W 1,2(Ω;R3)∩KL(Ω) and assume the map t 7→ w(t)

to be absolutely continuous from [0, T ] into W 1,2(Ω;R3).

Let s1, s2 ∈ [0, T ] , s1 ≤ s2 . For every function t 7→ µ(t) of bounded variation from

[0, T ] into Mb(Ω ∪ Γd;M3×3
D ), we define the dissipation of t 7→ µ(t) in [s1, s2] as

D(µ; s1, s2) := sup
{ n∑
j=1

H(µ(tj)− µ(tj−1)) : s1 = t0 ≤ t1 ≤ · · · ≤ tn = s2, n ∈ N
}
.

Analogously, for every function t 7→ µ(t) of bounded variation from [0, T ] into Mb(Ω ∪
Γd;M2×2

sym) we define the reduced dissipation of t→ µ(t) in [s1, s2] as

Dr(µ; s1, s2) := sup
{ n∑
j=1

Hr(µ(tj)− µ(tj−1)) : s1 = t0 ≤ t1 ≤ · · · ≤ tn = s2, n ∈ N
}

for every s1, s2 ∈ [0, T ] , s1 ≤ s2 .

Definition 3.5.1. Let ε > 0. An ε-quasistatic evolution for the boundary datum w(t) is a

function t 7→ (uε(t), eε(t), pε(t)) from [0, T ] into BD(Ω)×L2(Ω;M3×3
sym)×Mb(Ω∪Γd;M3×3

sym)

that satisfies the following conditions:

91



3.5 Convergence of quasistatic evolutions

(qs1) for every t ∈ [0, T ] we have (uε(t), eε(t), pε(t)) ∈ Aε(w(t)) and

Q(Λεe
ε(t)) ≤ Q(Λεf) +H(Λεq − Λεp

ε(t)) (3.5.1)

for every (v, f, q) ∈ Aε(w(t));

(qs2) the function t 7→ pε(t) from [0, T ] into Mb(Ω∪ Γd;M3×3
sym) has bounded variation and

for every t ∈ [0, T ]

Q(Λεe
ε(t)) +D(Λεp

ε; 0, t) = Q(Λεe
ε(0)) +

ˆ t

0

ˆ
Ω

CΛεe
ε(s) :Eẇ(s) dxds. (3.5.2)

Definition 3.5.2. A reduced quasistatic evolution for the boundary datum w(t) is a function

t 7→ (u(t), e(t), p(t)) from [0, T ] into BD(Ω)×L2(Ω;M3×3
sym)×Mb(Ω∪Γd;M3×3

sym) that satisfies

the following conditions:

(qs1)r for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ AKL(w(t)) and

Qr(e(t)) ≤ Qr(f) +Hr(q − p(t)) (3.5.3)

for every (v, f, q) ∈ AKL(w(t));

(qs2)r the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γd;M3×3
sym) has bounded variation and

for every t ∈ [0, T ]

Qr(e(t)) +Dr(p; 0, t) = Qr(e(0)) +

ˆ t

0

ˆ
Ω

Cre(s) :Eẇ(s) dxds. (3.5.4)

Remark 3.5.3. Since the functions t 7→ pε(t) and t 7→ p(t) from [0, T ] into Mb(Ω ∪
Γd;M3×3

sym) have bounded variation, they are bounded and the set of their discontinuity

points (in the strong topology) is at most countable. By Lemma 3.5.9 below the same

properties hold for the functions t 7→ eε(t) and t 7→ e(t) from [0, T ] into L2(Ω;M3×3
sym), and

for the functions t 7→ uε(t) and t 7→ u(t) from [0, T ] into BD(Ω). Therefore, t 7→ eε(t)

and t 7→ e(t) belong to L∞([0, T ];L2(Ω;M3×3
sym)), while t 7→ uε(t) and t 7→ u(t) belong to

L∞([0, T ];BD(Ω)). As t 7→ Eẇ(t) belongs to L1([0, T ];L2(Ω;M3×3
sym)), the integrals on the

right-hand side of (3.5.2) and (3.5.4) are well defined.

We are now in a position to state the main result of the chapter.

Theorem 3.5.4. Let t 7→ w(t) be absolutely continuous from [0, T ] into W 1,2(Ω;R3) ∩
KL(Ω) . Assume there exists a sequence of triples (uε0, e

ε
0, p

ε
0) ∈ Aε(w(0)) such that

Q(Λεe
ε
0) ≤ Q(Λεf) +H(Λεq − Λεp

ε
0) (3.5.5)

for every (v, f, q) ∈ Aε(w(0)) and every ε > 0 , and

Λεe
ε
0 → ẽ0 strongly in L2(Ω;M3×3

sym), (3.5.6)

‖Λεpε0‖Mb
≤ C (3.5.7)

for some ẽ0 ∈ L2(Ω;M3×3
sym) and some constant C > 0 independent of ε . For every ε > 0 let

t 7→ (uε(t), eε(t), pε(t)) be an ε-quasistatic evolution for the boundary datum w(t) such that
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3. A quasistatic evolution model for perfectly plastic thin plates

uε(0) = uε0 , eε(0) = eε0 , and pε(0) = pε0 . Then, there exists a reduced quasistatic evolution

t 7→ (u(t), e(t), p(t)) for the boundary datum w(t) such that, up to subsequences,

uε(t) ⇀ u(t) weakly* in BD(Ω), (3.5.8)

eε(t)→ e(t) strongly in L2(Ω;M3×3
sym), (3.5.9)

Λεe
ε(t)→ Ae(t) strongly in L2(Ω;M3×3

sym), (3.5.10)

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γd;M3×3
sym) (3.5.11)

for every t ∈ [0, T ] , where A is the operator introduced in (3.4.1). Moreover, the functions

t 7→ u(t) , t 7→ e(t) , and t 7→ p(t) are absolutely continuous from [0, T ] into BD(Ω) ,

L2(Ω;M3×3
sym) , and Mb(Ω ∪ Γd;M3×3

sym) , respectively.

Remark 3.5.5. From [15, Theorem 4.5] it follows that for every triple (uε0, e
ε
0, p

ε
0) ∈

Aε(w(0)) satisfying (3.5.5) there exists an ε -quasistatic evolution t 7→ (uε(t), eε(t), pε(t))

such that uε(0) = uε0 , eε(0) = eε0 , and pε(0) = pε0 . Moreover, by [15, Theorem 5.2] the

functions t 7→ uε(t), t 7→ eε(t), and t 7→ pε(t) are absolutely continuous from [0, T ] into

BD(Ω), L2(Ω;M3×3
sym), and Mb(Ω ∪ Γd;M3×3

sym), respectively, and for a.e. t ∈ [0, T ] we have

‖Λεėε(t)‖L2 ≤ C1‖Eẇ(t)‖L2 , (3.5.12)

‖Λεṗε(t)‖Mb
≤ C2‖Eẇ(t)‖L2 , (3.5.13)

where C1 and C2 are positive constants depending on RK , rC , RC , supt∈[0,T ] ‖Λεeε(t)‖L2 ,

and supt∈[0,T ] ‖Λεpε(t)‖Mb
. We notice that these results are proven in [15] under the assump-

tion of a reference configuration of class C2 , but, as observed in [27], Lipschitz regularity is

enough in the absence of external loads.

Remark 3.5.6. The set of admissibile initial data for Theorem 3.5.4 is nonempty. Indeed,

for every ε > 0 let (uε0, e
ε
0, p

ε
0) ∈ Aε(w(0)) be a minimizer of the functional Jε on Aε(w(0)),

that is,

Q(Λεe
ε
0) +H(Λεp

ε
0) ≤ Q(Λεf) +H(Λεq)

for every (v, f, q) ∈ Aε(w(0)). Since by (3.2.5)

H(Λεq) ≤ H(Λεq − Λεp
ε
0) +H(Λεp

ε
0),

we deduce that (uε0, e
ε
0, p

ε
0) satisfies (3.5.5) for every ε > 0. Moreover, by Theorem 3.4.1

we infer the existence of a triple (u0, e0, p0) ∈ AKL(w(0)) such that (3.5.6) is satisfied with

ẽ0 = Ae0 and

lim
ε→0
H(Λεp

ε
0) = Hr(p0).

This last convergence implies (3.5.7) by (3.2.4).

Remark 3.5.7. Theorem 3.5.4 ensures, in particular, the existence of an absolutely contin-

uous reduced quasistatic evolution for every initial datum (u0, e0, p0) ∈ AKL(w(0)) that is

approximable in the sense of (3.5.8)–(3.5.11) by a sequence of triples (uε0, e
ε
0, p

ε
0) ∈ Aε(w(0))

satisfying (3.5.5). Note that, again by Theorem 3.5.4, every such datum satisfies

Qr(e0) ≤ Qr(f) +Hr(q − p0) (3.5.14)
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for every (v, f, q) ∈ AKL(w(0)).

We mention here that existence of a reduced quasistatic evolution can be actually proved

for every initial datum (u0, e0, p0) ∈ AKL(w(0)) satisfying (3.5.14) by applying the abstract

method for rate-independent processes developed in [47], namely by discretizing time and by

solving suitable incremental minimum problems. Moreover, arguing as in [15, Theorem 5.2],

one can show that every reduced quasistatic evolution is absolutely continuous from [0, T ]

into BD(Ω)× L2(Ω;M3×3
sym)×Mb(Ω ∪ Γd;M3×3

sym).

To prove Theorem 3.5.4 we need two technical lemmas concerning some consequences of

the minimality condition (qs1)r .

Lemma 3.5.8. Let w ∈ W 1,2(Ω;R3) ∩KL(Ω) . A triple (u, e, p) ∈ AKL(w) is a solution

of the minimum problem

min
{
Qr(f) +Hr(q − p) : (v, f, q) ∈ AKL(w)

}
(3.5.15)

if and only if

−Hr(q) ≤
ˆ

Ω

Cre : f dx (3.5.16)

for every (v, f, q) ∈ AKL(0) .

Proof. Let (u, e, p) ∈ AKL(w) be a solution to (3.5.15) and let (v, f, q) ∈ AKL(0). For

every η ∈ R the triple (u+ ηv, e+ ηf, p+ ηq) belongs to AKL(w), hence

Qr(e) ≤ Qr(e+ ηf) +Hr(ηq).

Using the positive homogeneity of Hr , we obtain

0 ≤ ±η
ˆ

Ω

Cre : f dx+ η2Qr(f) + ηHr(±q),

for every η > 0. Dividing by η and sending η to 0 yield (3.5.16).

The converse implication is true by convexity.

Lemma 3.5.9. Let w1, w2 ∈ W 1,2(Ω;R3) ∩ KL(Ω) and for α = 1, 2 let (uα, eα, pα) ∈
AKL(wα) be a solution of the minimum problem

min
{
Qr(f) +Hr(q − pα) : (v, f, q) ∈ AKL(wα)

}
. (3.5.17)

Then there exists a positive constant C , depending only on RK , rC , RC , Ω , and Γd , such

that

‖e2 − e1‖L2 ≤ Cθ12, (3.5.18)

‖Eu1 − Eu2‖Mb
≤ Cθ12, (3.5.19)

‖u1 − u2‖L1 ≤ C(θ12 + ‖w1 − w2‖L2), (3.5.20)

where θ12 is given by

θ12 := ‖p1 − p2‖Mb
+ ‖p1 − p2‖

1
2

Mb
+ ‖Ew1 − Ew2‖L2 .
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. Since (u2 − u1 − w2 + w1, e2 − e1 − Ew2 + Ew1, p2 − p1) ∈ AKL(0), we can choose

v = u2− u1−w2 +w1 , f = e2− e1−Ew2 +Ew1 , and q = p2− p1 in (3.5.16); thus, by the

minimality of (uα, eα, pα), with α = 1, 2, and Lemma 3.5.8 we have

−Hr(p2 − p1) ≤
ˆ

Ω

Cre1 : (e2 − e1 − Ew2 + Ew1) dx,

−Hr(p1 − p2) ≤
ˆ

Ω

Cre2 : (e1 − e2 − Ew1 + Ew2) dx.

Adding term by term, changing sign, and applying (3.4.8) yield

ˆ
Ω

Cr(e2 − e1) : (e2 − e1) dx ≤
ˆ

Ω

Cr(e2 − e1) : (Ew2 − Ew1) dx+ 2
√

3RK‖p2 − p1‖Mb
.

By (3.4.4) we deduce

rC‖e2 − e1‖2L2 ≤ RC‖e2 − e1‖L2‖Ew2 − Ew1‖L2 + 2
√

3RK‖p2 − p1‖Mb
,

which implies (3.5.18) by the Cauchy inequality. Since Eui = ei+p1 in Ω, Hölder inequality

gives

‖Eu2 − Eu1‖Mb
≤ L3(Ω)1/2‖e2 − e1‖L2 + ‖p2 − p1‖Mb

,

so that (3.5.19) follows from (3.5.18). Finally, since p2 − p1 = (w2 −w1 − u2 + u1)� ν∂ΩH2

on Γd , we have

‖u2 − u1‖L1(Γd) ≤ ‖w2 − w1‖L1(Γd) + ‖p2 − p1‖Mb
≤ C‖w2 − w1‖W 1,2 + ‖p2 − p1‖Mb

where we used the continuity of the trace operator from W 1,2(Ω;R3) into L1(∂Ω;R3).

Inequality (3.5.20) now follows from (1.4.2) and (3.5.19).

We are now in a position to prove Theorem 3.5.4.

Proof of Theorem 3.5.4. The proof is subdivided into four steps.

Step 1. Compactness estimates. Let us prove that there exists a constant C , depending

only on the data, such that

sup
t∈[0,T ]

‖Λεeε(t)‖L2 ≤ C, sup
t∈[0,T ]

‖Λεpε(t)‖Mb
≤ C (3.5.21)

for every ε . As t 7→ w(t) is absolutely continuous with values in W 1,2(Ω;R3), the function

t 7→ ‖Eẇ(t)‖2 is integrable on [0, T ] . This fact, together with (3.2.2), (3.2.3), and (3.5.2),

implies that

rC‖Λεeε(t)‖2L2 ≤ RC‖Λεeε(0)‖2L2 + 2RC sup
t∈[0,T ]

‖Λεeε(t)‖L2

ˆ T

0

‖Eẇ(s)‖L2 ds (3.5.22)

for every t ∈ [0, T ] . The former inequality in (3.5.21) follows now from (3.5.6) and Cauchy

inequality. As for the latter, by (3.5.2), (3.5.22), and (3.5.6) we deduce that

D(Λεp
ε; 0, T ) ≤ C.
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By definition of D and (3.2.4) we infer that

rK‖Λεpε(t)− Λεp
ε
0‖Mb

≤ H(Λεp
ε(t)− Λεp

ε(0)) ≤ D(Λεp
ε; 0, t) ≤ C

for every t ∈ [0, T ] , which implies the second inequality in (3.5.21) by (3.5.7).

Combining (3.5.12), (3.5.13), and (3.5.21), we obtain

‖Λεeε(t1)− Λεe
ε(t2)‖L2 ≤ C

ˆ t2

t1

‖Eẇ(s)‖L2 ds

‖Λεpε(t1)− Λεp
ε(t2)‖Mb

≤ C

ˆ t2

t1

‖Eẇ(s)‖L2 ds

for every 0 ≤ t1 ≤ t2 ≤ T , where C is a constant depending only on the data. Therefore, by

Ascoli-Arzelà Theorem there exist two subsequences, still denoted Λεe
ε and Λεp

ε , and two

absolutely continuous functions ẽ : [0, T ]→ L2(Ω;M3×3
sym) and p̃ : [0, T ]→Mb(Ω∪Γd;M3×3

D )

such that

Λεe
ε(t) ⇀ ẽ(t) weakly in L2(Ω;M3×3

sym), (3.5.23)

Λεp
ε(t) ⇀ p̃(t) weakly* in Mb(Ω ∪ Γd;M3×3

D ) (3.5.24)

for every t ∈ [0, T ] .

Let e : [0, T ]→ L2(Ω;M3×3
sym) be defined as

eαβ(t) = ẽαβ(t) (α, β = 1, 2) and ei3(t) = 0 (i = 1, 2, 3)

for every t ∈ [0, T ] and let p : [0, T ]→Mb(Ω ∪ Γd;M3×3
sym) be defined as

pαβ(t) = p̃αβ(t) (α, β = 1, 2) and pi3(t) = 0 (i = 1, 2, 3) (3.5.25)

for every t ∈ [0, T ] . Then t 7→ e(t) is absolutely continuous from [0, T ] into L2(Ω;M3×3
sym),

t 7→ p(t) is absolutely continuous from [0, T ] into Mb(Ω ∪ Γd;M3×3
sym), and by (3.5.23) and

(3.5.24) we have

eε(t) ⇀ e(t) weakly in L2(Ω;M3×3
sym), (3.5.26)

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γd;M3×3
sym) (3.5.27)

for every t ∈ [0, T ] . Using (1.4.2) and the fact that (uε(t), eε(t), pε(t)) ∈ Aε(w(t)) for every

ε > 0, it is easy to see that there exists an absolutely continuous function u : [0, T ]→ BD(Ω)

such that

uε(t) ⇀ u(t) weakly* in BD(Ω)

for every t ∈ [0, T ] . Moreover, arguing as in the proof of Theorem 3.4.4, one can show that

(u(t), e(t), p(t)) ∈ AKL(w(t)).

Step 2. Reduced stability. We now show that the triple (u(t), e(t), p(t)) is a solution to the

minimum problem

min
{
Qr(f) +Hr(q − p(t)) : (v, f, q) ∈ AKL(w(t))

}
(3.5.28)

for every t ∈ [0, T ] .
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3. A quasistatic evolution model for perfectly plastic thin plates

Let us fix t ∈ [0, T ] . By Lemma 3.5.8 it is enough to prove condition (3.5.16). Let

(v, f, q) ∈ AKL(0). By Theorem 3.4.5 there exists a sequence of triples (vε, fε, qε) ∈ Aε(0)

such that

Λεf
ε → Af strongly in L2(Ω;M3×3

sym) (3.5.29)

and

H(Λεq
ε)→ Hr(q). (3.5.30)

By [15, Theorem 3.6] the minimality condition (3.5.1) is equivalent to

−H(Λεq̌) ≤
ˆ

Ω

CΛεe
ε(t) : Λεf̌ dx (3.5.31)

for every (v̌, f̌ , q̌) ∈ Aε(0). Therefore, we have that

−H(Λεq
ε) ≤

ˆ
Ω

CΛεe
ε(t) : Λεf

ε dx

for every ε > 0; hence, combining (3.5.23), (3.5.29), and (3.5.30), we obtain

−Hr(q) ≤
ˆ

Ω

Cẽ(t) :Af dx.

Since Cẽ(t) :Af = CAe(t) :Af = Cre(t) : f a.e. in Ω by (3.4.6), the inequality above reduces

to (3.5.16).

Step 3. Identification of the limiting scaled elastic strain. We shall prove that the function

ẽ(t) in (3.5.23) satisfies

ẽ(t) = Ae(t) (3.5.32)

for every t ∈ [0, T ] .

For every ψ ∈W 1,2(Ω;R3) with ψ = 0 on Γd we can consider the triples (±ψ,±Eψ, 0)

as test functions in (3.5.31). This leads to the condition

ˆ
Ω

CΛεe
ε(t) : ΛεEψ dx = 0 (3.5.33)

for every ψ ∈W 1,2(Ω;R3) with ψ = 0 on Γd and for every ε .

Let now U ⊂ ω , (a, b) ⊂ (− 1
2 ,

1
2 ), and λi ∈ R , i = 1, 2, 3. Let us denote the char-

acteristic functions of the sets U and (a, b) by χU and χ(a,b) , respectively. Finally, let

(ϕki ) ⊂ C1
c (ω) and (ξk) ⊂ C1([− 1

2 ,
1
2 ]) be such that ϕki → λiχU strongly in L4(ω),

i = 1, 2, 3, and (ξk)′ → χ(a,b) strongly in L4(− 1
2 ,

1
2 ). For every ε and k ∈ N we con-

sider the function

ψε,k(x) :=

2εξk(x3)ϕk1(x′)

2εξk(x3)ϕk2(x′)

ε2ξk(x3)ϕk3(x′)


for every x ∈ Ω. Since ψε,k ∈W 1,2(Ω;R3) and ψε,k = 0 on Γd , by (3.5.33) we have

ˆ
Ω

CΛεe
ε(t) : ΛεEψ

ε,k dx = 0
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3.5 Convergence of quasistatic evolutions

for every ε . Passing to the limit with respect to ε→ 0 and then to k →∞ , we deduce

ˆ
U×(a,b)

Cẽ(t) :

 0 0 λ1

0 0 λ2

λ1 λ2 λ3

 dx = 0.

Since U and (a, b) are arbitrary, we conclude that for every λi ∈ R .

Cẽ(t) :

 0 0 λ1

0 0 λ2

λ1 λ2 λ3

 = 0,

a.e. in Ω. This implies (3.5.32) by (3.4.2).

Step 4. Reduced energy balance. By (3.5.2) and lower semicontinuity we have

Qr(e(t)) +D(p; 0, t) ≤ lim
ε→0

{
Q(Λεe

ε(0)) +

ˆ t

0

ˆ
Ω

CΛεe
ε(s) :Eẇ(s) dx ds

}
= Qr(e0) +

ˆ t

0

ˆ
Ω

Cre(s) :Eẇ(s) dx ds,

where the last equality follows from (3.5.6), (3.5.21), (3.5.23), (3.5.32), and the dominated

convergence theorem. Since by (3.5.25) and the definition of Hr there holds

Dr(p; 0, t) ≤ D(p̃; 0, t) (3.5.34)

for every t ∈ [0, T ] , we conclude that

Qr(e(t)) +Dr(p; 0, t) ≤ Qr(e0) +

ˆ t

0

ˆ
Ω

Cre(s) :Eẇ(s) dxds. (3.5.35)

As it is standard in the variational theory for rate-independent processes, the converse energy

inequality follows from the minimality condition (qs1)r . We omit the proof as it follows

closely those of [15, Theorem 4.7] and of [47, Theorem 4.4].

Combining (qs2), (qs2)r , and the fact that the right-hand side of (qs2) converges to the

right-hand side of (qs2)r , we deduce that

Q(Λεe
ε(t)) +D(Λεp

ε; 0, t)→ Qr(e(t)) +Dr(p; 0, t) (3.5.36)

for every t ∈ [0, T ] . On the other hand, by lower semicontinuity of Qr and of Dr we have

Qr(e(t)) ≤ lim inf
ε→0

Q(Λεe
ε(t)) (3.5.37)

and

Dr(p; 0, t) ≤ lim inf
ε→0

D(Λεp
ε; 0, t) (3.5.38)

for every t ∈ [0, T ] . From (3.5.36)–(3.5.38) it follows that

lim
ε→0
Q(Λεe

ε(t)) = Qr(e(t)) = Q(Ae(t))

for every t ∈ [0, T ] . This, together with (3.5.23) and (3.5.32), implies strong convergence of

the scaled strains Λεeε(t), and consequently of the strains eε(t), for every t ∈ [0, T ] . This

concludes the proof of the theorem.
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3. A quasistatic evolution model for perfectly plastic thin plates

3.6 Characterization of reduced quasistatic evolutions

In the following we shall consider the space ΠΓd(Ω) of admissible plastic strains, defined

as the class of all p ∈Mb(Ω∪Γd;M2×2
sym) for which there exist u ∈ BD(Ω), e ∈ L2(Ω;M2×2

sym),

and w ∈W 1,2(Ω;R3) ∩KL(Ω) such that (u, e, p) ∈ AKL(w).

We shall also use the set

Σ(Ω) := {σ ∈ L∞(Ω;M2×2
sym) : divx′ σ̄ ∈ L2(ω;R2), divx′divx′ σ̂ ∈Mb(ω)},

where σ̄, σ̂ ∈ L∞(ω;M2×2
sym) are the zero-th and first order moments of σ , defined accord-

ing to Definition 3.3.3. In the first subsection we shall introduce a duality pairing between

stresses σ ∈ Σ(Ω) and plastic strains p ∈ ΠΓd(Ω). In the second subsection we shall use

this duality pairing to deduce a weak formulation of the classical flow rule for a reduced

quasistatic evolution. In the last subsection we discuss some examples, where reduced qua-

sistatic evolutions can be characterized in terms of two-dimensional quantities.

3.6.1 Stress-strain duality

We first introduce a notion of duality for the zero-th order moments of the stress and the

plastic strain. We essentially follow the theory developed in [37] and [15, Subsection 2.3].

For every σ ∈ Σ(Ω) we can define the trace [σ̄ν∂ω] ∈ L∞(∂ω;R2) of its zero-th order

moment σ̄ through the formulaˆ
∂ω

[σ̄ν∂ω] ·ϕdH1 :=

ˆ
ω

divx′ σ̄ ·ϕdx′ +
ˆ
ω

σ̄ :Eϕdx′ (3.6.1)

for every ϕ ∈ W 1,1(ω;R2). This is well defined since W 1,1(ω;R2) is embedded into

L2(ω;R2).

Let σ ∈ Σ(Ω) and ξ ∈ BD(ω). We define the distribution [σ̄ :Eξ] on ω by

〈[σ̄ :Eξ], ϕ〉 := −
ˆ
ω

ϕdivx′ σ̄ · ξ dx′ −
ˆ
ω

σ̄ : (∇ϕ� ξ) dx′ (3.6.2)

for every ϕ ∈ C∞c (ω). From [37, Theorem 3.2] it follows that [σ̄ :Eξ] is a bounded measure

on ω , whose variation satisfies∣∣[σ̄ :Eξ]
∣∣ ≤ ‖σ̄‖L∞ |Eξ| in ω. (3.6.3)

We can now define a duality between the zero-th order moments of elements in Σ(Ω)

and ΠΓd(Ω). Given σ ∈ Σ(Ω) and p ∈ ΠΓd(Ω), we fix (u, e, w) ∈ BD(Ω)× L2(Ω;M2×2
sym)×

(W 1,2(Ω;R3) ∩KL(Ω)) such that (u, e, p) ∈ AKL(w). Let ū ∈ BD(ω), u3 ∈ BH(ω) and

w̄ ∈W 1,2(ω;R2), w3 ∈W 2,2(ω) be the Kirchhoff-Love components of u and w , respectively.

We then define the measure [σ̄ : p̄] ∈Mb(ω ∪ γd) by setting

[σ̄ : p̄] :=

[σ̄ :Eū]− σ̄ : ē in ω,

[σ̄ν∂ω] · (w̄ − ū)H1 on γd,

so thatˆ
ω∪γd

ϕd[σ̄ : p̄] =

ˆ
ω

ϕd[σ̄ :Eū]−
ˆ
ω

ϕσ̄ : ē dx′ +

ˆ
γd

[σ̄ν∂ω] · ϕ(w̄ − ū) dH1 (3.6.4)

for every ϕ ∈ C(ω).
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Remark 3.6.1. Arguing as in [15], one can prove that the definition of [σ̄ : p̄] is independent

of the choice of the triple (u, e, w). Moreover, if σ̄ ∈ C1(ω;M2×2
sym), then

ˆ
ω∪γd

ϕd[σ̄ : p̄] =

ˆ
ω∪γd

ϕσ̄ : dp̄

for every ϕ ∈ C1(ω). One can prove by approximation that the same equality is true for

every σ̄ ∈ C(ω;M2×2
sym) and ϕ ∈ C(ω).

The following integration by parts formula can be proved.

Proposition 3.6.2. Let σ ∈ Σ(Ω) , w ∈ W 1,2(ω;R3) ∩ KL(Ω) , and (u, e, p) ∈ AKL(w) .

Let also ū ∈ BD(ω) and w̄ ∈ W 1,2(ω;R2) be the tangential Kirchhoff-Love components of

u and w . Then
ˆ
ω∪γd

ϕd[σ̄ : p̄] +

ˆ
ω

ϕσ̄ : (ē− Ew̄) dx′ +

ˆ
ω

σ̄ : (∇ϕ� (ū− w̄)) dx′

= −
ˆ
ω

divx′ σ̄ · ϕ(ū− w̄) dx′ +

ˆ
γn

[σ̄ν∂ω] · ϕ(ū− w̄) dH1 (3.6.5)

for every ϕ ∈ C1(ω) .

Proof. The result is a corollary of [15, Proposition 2.2].

We now introduce a notion of duality for the first order moments of the stress and of the

plastic strain. We follow the lines of [22, Subsection 3.2] and [24, Subsection 2.3].

We start with a proposition concerning the traces of the first order moment of a stress

in Σ(Ω). To this purpose we introduce the space

Σ̂(ω) :=
{
ϑ ∈ L∞(ω;M2×2

sym) : divx′divx′ϑ ∈Mb(ω)
}
,

endowed with the norm ‖ϑ‖L∞ + ‖divx′divx′ϑ‖Mb
. We also denote by T∂ω : W 2,1(ω) →

W 1,1(∂ω) the trace operator on W 2,1(ω). We recall that T∂ω(W 2,1(ω)) 6= W 1,1(∂ω), see

[23, Théorème 2].

Proposition 3.6.3. There exists a surjective continuous linear operator

L : Σ̂(ω) → (T∂ω(W 2,1(ω)))′ × L∞(∂ω)

ϑ 7→ (b0(ϑ), b1(ϑ))

such that for every ϑ ∈ Σ̂(ω) and v ∈W 2,1(ω) there holds
ˆ
ω

ϑ :D2v dx′ −
ˆ
ω

v d(divx′divx′ϑ) = −〈b0(ϑ), v〉+

ˆ
∂ω

b1(ϑ)
∂v

∂ν∂ω
dH1, (3.6.6)

where 〈·, ·〉 denotes the duality pairing between (T∂ω(W 2,1(ω)))′ and T∂ω(W 2,1(ω)) . More-

over, if ϑ ∈ C2(ω;M2×2
sym) , then

b0(ϑ) = divx′ϑ · ν∂ω +
∂

∂τ∂ω
(ϑν∂ω · τ∂ω), (3.6.7)

b1(ϑ) = ϑν∂ω · ν∂ω, (3.6.8)

where τ∂ω is the tangent vector to ∂ω .
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. See [22, Théorème 2.3].

Remark 3.6.4. The second integral on the left-handside of (3.6.6) is well defined because

of the embedding of W 2,1(ω) into C(ω) (see [3, Theorem 4.12]).

Let σ ∈ Σ(Ω) and v ∈ BH(ω). We define the distribution [σ̂ :D2v] on ω by

〈[σ̂ :D2v], ϕ〉 :=

ˆ
ω

ϕv d(divx′divx′ σ̂)− 2

ˆ
ω

σ̂ : (∇ϕ�∇v) dx′ −
ˆ
ω

vσ̂ :∇2ϕdx′

for every ϕ ∈ C∞c (ω). From [24, Proposition 2.1] it follows that [σ̂ :D2v] is a bounded

measure on ω , whose variation satisfies∣∣[σ̂ :D2v]
∣∣ ≤ ‖σ̂‖L∞ |D2v| in ω.

We can now define a duality between the first order moments of elements in Σ(Ω) and

ΠΓd(Ω). Given σ ∈ Σ(Ω) and p ∈ ΠΓd(Ω), we fix (u, e, w) ∈ BD(Ω) × L2(Ω;M2×2
sym) ×

(W 1,2(Ω;R3) ∩KL(Ω)) such that (u, e, p) ∈ AKL(w). We then define the measure [σ̂ : p̂] ∈
Mb(ω ∪ γd) by setting

[σ̂ : p̂] :=


−[σ̄ :D2u3]− σ̂ : ê in ω,

b1(σ̂)
∂(u3 − w3)

∂ν∂ω
H1 on γd,

so thatˆ
ω∪γd

ϕd[σ̂ : p̂] = −
ˆ
ω

ϕd[σ̂ :D2u3]−
ˆ
ω

ϕσ̂ : ê dx′ +

ˆ
γd

ϕb1(σ̂)
∂(u3 − w3)

∂ν∂ω
dH1

for every ϕ ∈ C(ω).

Remark 3.6.5. The definition of [σ̂ : p̂] does not depend on the choice of the triple (u, e, w).

Moreover, if σ̂ ∈ C2(ω;M2×2
sym) and p ∈ ΠΓd(Ω), thenˆ

ω∪γd
ϕd[σ̂ : p̂] =

ˆ
ω∪γd

ϕσ̂ : dp̂ (3.6.9)

for every ϕ ∈ C2(ω). This follows from the equalityˆ
γd

ϕb1(σ̂)
∂(u3 − w3)

∂ν∂ω
dH1 =

ˆ
γd

ϕσ̂ : (∇(u3 − w3)� ν∂ω) dH1,

which, in turn, is a consequence of (3.6.8). By an approximation argument one can show

that (3.6.9) holds true for every σ̂ ∈ C(ω;M2×2
sym) and ϕ ∈ C(ω).

As a corollary of [24, Proposition 2.1], we have the following integration by parts formula.

Proposition 3.6.6. Let σ ∈ Σ(Ω) , w ∈ W 1,2(ω;R3) ∩ KL(Ω) , and (u, e, p) ∈ AKL(w) .

Thenˆ
ω∪γd

ϕd[σ̂ : p̂] +

ˆ
ω

ϕσ̂ : (ê+D2w3) dx′

− 2

ˆ
ω

σ̂ : (∇ϕ�∇(u3 − w3)) dx′ −
ˆ
ω

(u3 − w3)σ̂ :∇2ϕdx′

= −
ˆ
ω

ϕ(u3 − w3) d(divx′divx′ σ̂) + 〈b0(σ̂), ϕ(u3 − w3)〉 −
ˆ
γn

b1(σ̂)
∂(ϕ(u3 − w3))

∂ν∂ω
dH1

(3.6.10)
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3.6 Characterization of reduced quasistatic evolutions

for every ϕ ∈ C2(ω) , where 〈·, ·〉 denotes the duality pairing between (T∂ω(W 2,1(ω)))′ and

T∂ω(W 2,1(ω)) .

Remark 3.6.7. The duality product 〈b0(σ̂), ϕ(u3 − w3)〉 in (3.6.10) is well defined, since

one can show that T∂ω(BH(ω)) = T∂ω(W 2,1(ω)) (see, e.g., [23, Section 2]).

We are now in a position to introduce a duality pairing between Σ(Ω) and ΠΓd(Ω). For

every σ ∈ Σ(Ω) and p ∈ ΠΓd(Ω) we define the measure [σ : p] ∈Mb(Ω ∪ Γd) as

[σ : p] := [σ̄ : p̄]⊗ L1 + 1
12 [σ̂ : p̂]⊗ L1 − σ⊥ : e⊥. (3.6.11)

By Remarks 3.6.1 and 3.6.5 we have that

ˆ
Ω∪Γd

ϕd[σ : p] =

ˆ
ω

ϕσ̄ : dp̄+ 1
12

ˆ
ω

ϕσ̂ : dp̂−
ˆ

Ω

ϕσ⊥ : e⊥ dx (3.6.12)

for every σ ∈ Σ(Ω) with σ̄, σ̂ ∈ C(ω;M2×2
sym) and every ϕ ∈ C(ω). In particular, this implies

that ˆ
Ω∪Γd

ϕd[σ : p] =

ˆ
Ω

ϕσ : dp (3.6.13)

for every σ ∈ Σ(Ω) ∩ C(Ω;M2×2
sym) and every ϕ ∈ C(ω).

Following [15], for every σ ∈ Σ(Ω) and p ∈ ΠΓd(Ω) we consider the duality pairings

〈σ̄, p̄〉 := [σ̄ : p̄](ω ∪ γd), 〈σ̂, p̂〉 := [σ̂ : p̂](ω ∪ γd),

and

〈σ, p〉 := [σ : p](Ω ∪ Γd) = 〈σ̄, p̄〉+ 1
12 〈σ̂, p̂〉 −

ˆ
Ω

σ⊥ : e⊥ dx. (3.6.14)

We shall now discuss the connection between the duality (3.6.14) and the functional Hr
introduced in (3.4.9). To this purpose, we consider the set

Kr := {σ ∈M2×2
sym : σ : ξ ≤ Hr(ξ) for every ξ ∈M2×2

sym},

which coincides with the subdifferential of Hr at the origin. We also set

Kr(Ω) := {σ ∈ L∞(Ω;M2×2
sym) : σ(x) ∈ Kr for a.e. x ∈ Ω}.

By (1.4.1) we have that for every µ ∈Mb(Ω ∪ Γd;M2×2
sym)

Hr(µ) = sup
{ ˆ

Ω∪Γd

τ : dµ : τ ∈ C0(Ω ∪ Γd;M2×2
sym) ∩ Kr(Ω)

}
.

A variant of this equality can be proved using the duality defined in (3.6.14).

Proposition 3.6.8. Let p ∈ ΠΓd(Ω) . Then the following equalities hold:

Hr(p) = sup{〈σ, p〉 : σ ∈ Σ(Ω) ∩ Kr(Ω)} (3.6.15)

= sup{〈σ, p〉 : σ ∈ Θ(Ω)}, (3.6.16)

where Θ(Ω) is the set of all σ ∈ Σ(Ω) ∩ Kr(Ω) such that [σ̄ν∂ω] = 0 on γn , b1(σ̂) = 0 on

γn , and 〈b0(σ̂), v〉 = 0 for every v ∈W 2,1(ω) with v = 0 on γd .
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. Let us set Γ0 := Γn ∪
(
ω ×

{
± 1

2

})
. By [60, Chapter II, Section 4] and (3.6.13) we

have that

Hr(p) = sup
{ˆ

Ω∪Γd

σ : dp : σ ∈ C∞(R3;M2×2
sym) ∩ Kr(Ω), suppσ ∩ Γ0 = ∅

}
≤ sup{〈σ, p〉 : σ ∈ Θ(Ω)}

≤ sup{〈σ, p〉 : σ ∈ Σ(Ω) ∩ Kr(Ω)}. (3.6.17)

To prove the converse inequality, let w ∈ W 1,2(Ω;R3) ∩KL(Ω), u ∈ KL(Ω), and e ∈
L2(Ω;M2×2

sym) be such that (u, e, p) ∈ AKL(w). By Theorem 3.3.9 and Remark 3.3.10 we can

construct a sequence of triples (uε, eε, pε) ∈ (W 1,2(Ω;R3)×L2(Ω;M2×2
sym)×L2

∞,c(Ω;M2×2
sym))∩

AKL(w) such that

uε ⇀ u weakly* in BD(Ω), (3.6.18)

eε → e strongly in L2(Ω;M2×2
sym), (3.6.19)

Hr(pε)→ Hr(p). (3.6.20)

By Remark 3.3.11 we can also assume that

ūε → ū strongly in L2(ω;R2), ‖Eūε‖L1 → ‖Eū‖Mb
, (3.6.21)

uε3 → u3 in C(ω), ‖D2uε3‖L1 → ‖D2u3‖Mb
. (3.6.22)

Let now σ ∈ Kr(Ω) ∩ Σ(Ω). It is clear that

ˆ
Ω

σ : pε dx ≤ Hr(pε). (3.6.23)

We now claim that ˆ
Ω

σ : pε dx→ 〈σ, p〉. (3.6.24)

If the claim is proved, then passing to the limit in (3.6.23) and applying (3.6.20) yield

〈σ, p〉 ≤ Hr(p),

which, together with (3.6.17), implies the thesis.

We now prove (3.6.24). Since ūε ∈ W 1,2(ω;R2) and Eūε = ēε + p̄ε in ω , the following

equalities hold:

ˆ
ω

σ̄ : p̄ε dx′ = −
ˆ
ω

σ̄ : (ēε − Ew̄) dx′ +

ˆ
ω

σ̄ : (Eūε − Ew̄) dx′

= −
ˆ
ω

σ̄ : (ēε − Ew̄) dx′ −
ˆ
ω

divx′ σ̄ · (ūε − w̄) dx′ +

ˆ
γn

[σ̄ν∂ω] · (ūε − w̄) dH1,

where we have used (3.6.1) and the fact that ūε = w̄ on γd . From (3.6.21) it follows that

ūε → ū strongly in L1(∂ω;R2) (see, e.g., [60, Chapter II, Theorem 3.1]). By (3.6.19) and

(3.6.21) we can therefore pass to the limit in the identity above and by (3.6.5) we deduce

that ˆ
ω

σ̄ : p̄ε dx′ → 〈σ̄, p̄〉. (3.6.25)

103



3.6 Characterization of reduced quasistatic evolutions

Similarly, since uε3 ∈W 2,2(ω) and D2uε3 = −(êε + p̂ε) in ω , we have

ˆ
ω

σ̂ : p̂ε dx′ = −
ˆ
ω

σ̂ : (êε +D2w3) dx′ −
ˆ
ω

σ̂ : (D2uε3 −D2w3) dx′

= −
ˆ
ω

σ̂ : (êε +D2w3) dx′ −
ˆ
ω

(uε3 − w3) d(divx′divx′ σ̂)

+ 〈b0(σ̂), uε3 − w3〉 −
ˆ
γn

b1(σ̂)
∂(uε3 − w3)

∂ν∂ω
dH1,

where we have used (3.6.6) and the fact that ∇uε3 = ∇w3 on γd . By (3.6.22) and [22,

Theorem 3.4] we can pass to the limit in the boundary terms. Therefore, by (3.6.19),

(3.6.22), and (3.6.10), we conclude that

ˆ
ω

σ̂ : p̂ε dx′ → 〈σ̂, p̂〉. (3.6.26)

Claim (3.6.24) follows now by combining the identity

ˆ
Ω

σ : pε dx =

ˆ
ω

σ̄ : p̄ε dx′ + 1
12

ˆ
ω

σ̂ : p̂ε dx′ −
ˆ

Ω

σ⊥ : eε⊥ dx

with (3.6.14) and the convergence properties (3.6.19), (3.6.25), and (3.6.26).

We are now in a position to show a further equivalent characterization of the minimality

condition (qs1)r .

Proposition 3.6.9. Let σ ∈ L2(Ω;M2×2
sym) . The following conditions are equivalent:

(a) −Hr(q) ≤
ˆ

Ω

σ : f dx for every (v, f, q) ∈ AKL(0) ,

(b) σ ∈ Θ(Ω) , divx′ σ̄ = 0 in ω , and divx′divx′ σ̂ = 0 in ω .

Proof. Assume (a). Let B ⊂ Ω be a Borel set and let χB denote its characteristic function.

Let ξ ∈M2×2
sym and let f := χBξ . Since (0,−f, f) ∈ AKL(0), by (a) we obtain

σ(x) : ξ ≤ Hr(ξ) for a.e. x ∈ B.

Since B is arbitrary, we deduce that σ ∈ Kr(Ω).

We observe that (±v,±Ev, 0) ∈ AKL(0) for every v ∈ W 1,2(Ω;R3) ∩KL(Ω) such that

v = 0 on Γd . Hence, by (a) we have that

ˆ
Ω

σ :Ev dx = 0 (3.6.27)

for every v ∈W 1,2(Ω;R3)∩KL(Ω) with v = 0 on Γd . Let now v̄ ∈W 1,2(ω;R2) with v̄ = 0

on γd . Choosing vα = v̄α for α = 1, 2 and v3 = 0, we deduce by (3.6.27) that

ˆ
ω

σ̄ :Ev̄ dx′ = 0 (3.6.28)

for every v̄ ∈ W 1,2(ω;R2) with v̄ = 0 on γd . Since this is true, in particular, for v̄ ∈
C∞c (ω;R2), we conclude that divx′ σ̄ = 0 in ω . Moreover, by (3.6.1), (3.6.28), and the

subsequent Lemma 3.6.10, we obtain that [σ̄ν∂ω] = 0 on γn .
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3. A quasistatic evolution model for perfectly plastic thin plates

Let us now consider the function

v(x) =

(
−x3∇v3(x′)

v3(x′)

)
for a.e. x ∈ Ω,

where v3 ∈W 2,2(ω) is such that v3 = 0 and ∇v3 = 0 on γd . Equation (3.6.27) yields
ˆ
ω

σ̂ :D2v3 dx
′ = 0 (3.6.29)

for every v3 ∈ W 2,2(ω) with v3 = 0 and ∇v3 = 0 on γd . Since (3.6.29) is satisfied, in

particular, for every v3 ∈ C∞c (ω), we deduce that divx′divx′ σ̂ = 0 in ω . Moreover, by

(3.6.6), (3.6.29), and Lemma 3.6.10, we obtain that

−〈b0(σ̂), v3〉+

ˆ
γn

b1(σ̂)
∂v3

∂ν∂ω
dH1 = 0

for every v3 ∈ W 2,1(ω) such that v3 = 0 and ∇v3 = 0 on γd . By [23, Théorème 1] the

trace operator from W 2,1(ω) into T∂ω(W 2,1(ω)) × L1(∂ω) that associates to u the traces

of u and of ∂u
∂ν∂ω

on ∂ω is surjective. We deduce that b1(σ̂) = 0 on γn and 〈b0(σ̂), v3〉 = 0

for every v3 ∈ W 2,1(ω) with v3 = 0 on γd , hence σ ∈ Θ(Ω). This concludes the proof of

(b).

Assume now (b). Choosing ϕ ≡ 1 in (3.6.5) and (3.6.10) yields

〈σ̄, q̄〉 = −
ˆ
ω

σ̄ : f̄ dx′, 〈σ̂, q̂〉 = −
ˆ
ω

σ̂ : f̂ dx′

for every (v, f, q) ∈ AKL(0). Therefore, by (3.6.14)

〈σ, q〉 = −
ˆ

Ω

σ : f dx.

Condition (a) follows now from Proposition 3.6.8.

We conclude this subsection with an approximation lemma, that was needed in the proof

of Proposition 3.6.9.

Lemma 3.6.10. (i) Let v̄ ∈ W 1,1(ω;R2) with v̄ = 0 on γd . Then there exists a sequence

(v̄ε) ⊂ W 1,2(ω;R2) such that v̄ε = 0 on γd for every ε > 0 and v̄ε → v̄ strongly in

W 1,1(ω;R2) .

(ii) Let v ∈ W 2,1(ω) with v = 0 and ∇v = 0 on γd . Then there exists a sequence

(vε) ⊂W 2,2(ω) such that vε = 0 and ∇vε = 0 on γd , and vε → v strongly in W 2,1(ω) .

Proof. We only sketch the proof of (i). Statement (ii) can be proved by similar arguments.

Arguing as in Step 1 of the proof of Theorem 3.3.9, we can reduce, without loss of

generality, to the case where there exists an open set J ⊂ ∂ω such that γd is compactly

contained in J and v̄ = 0 on J . As in Step 2 of the proof of Theorem 3.3.9 we consider

the open covering {Qi}i=0,...,m of ω , a subordinate partition of unity {ϕi}i=0,...,m , and the

outward and inward translations τi,ε with aε = ε . We set

ω̃ := ω ∪
m0⋃
i=1

Qi
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3.6 Characterization of reduced quasistatic evolutions

and we extend v̄ to ω̃ by setting v̄ = 0 outside ω , so that v̄ ∈W 1,1(ω̃;R2). We define

v̄ε :=
( m∑
i=1

(ϕiv̄) ◦ τi,ε + ϕ0v̄
)
∗ ρδ(ε),

where ρδ(ε) is a mollifier and δ(ε) < ε is chosen small enough in such a way that v̄ε = 0 on

γd . It is now easy to check that the sequence (v̄ε) has all the required properties.

3.6.2 Equivalent formulations in rate form

From here to the end of the section we will assume t 7→ w(t) to be absolutely continuous

from [0, T ] into W 1,2(Ω;R3)∩KL(Ω). This implies that the maps t 7→ w̄(t) and t 7→ w3(t)

are absolutely continuous from [0, T ] into W 1,2(ω;R2) and W 2,2(ω), respectively.

We first prove some preliminary results. An easy adaptation of [15, Lemma 5.5] provides

us with the following lemma.

Lemma 3.6.11. Let t 7→ (u(t), e(t), p(t)) be an absolutely continuous function from [0, T ]

into BD(Ω)×L2(Ω;M2×2
sym)×Mb(Ω∪Γd;M2×2

sym) with (u(t), e(t), p(t)) ∈ AKL(w(t)) for every

t ∈ [0, T ] . Then (u̇(t), ė(t), ṗ(t)) ∈ AKL(ẇ(t)) for a.e. t ∈ [0, T ] .

For absolutely continuous triples the energy balance can be equivalently written as a

balance of powers, as shown in the next proposition.

Proposition 3.6.12. Let t 7→ (u(t), e(t), p(t)) be an absolutely continuous function from

[0, T ] into BD(Ω) × L2(Ω;M2×2
sym) ×Mb(Ω ∪ Γd;M2×2

sym) and let σ(t) := Cre(t) . Then, the

following conditions are equivalent:

(a) for every t ∈ [0, T ]

Qr(e(t)) +Dr(p; 0, t) = Qr(e(0)) +

ˆ t

0

ˆ
Ω

σ(s) :Eẇ(s) dxds;

(b) for a.e. t ∈ [0, T ]

ˆ
Ω

σ(t) : ė(t) dx+Hr(ṗ(t)) =

ˆ
Ω

σ(t) :Eẇ(t) dx.

Proof. Since t 7→ p(t) is absolutely continuous, by [15, Theorem 7.1] we have

Dr(p; 0, t) =

ˆ t

0

Hr(ṗ(s)) ds.

The equivalence of (a) and (b) follows now by differentiation of (a) and integration of (b).

We are finally in a position to state the main result of this section.

Theorem 3.6.13. Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BD(Ω)×L2(Ω;M2×2
sym)

×Mb(Ω ∪ Γd;M2×2
sym) and let σ(t) := Cre(t) . Then the following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a reduced quasistatic evolution for the boundary datum w(t) ;
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3. A quasistatic evolution model for perfectly plastic thin plates

(b) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ AKL(w(t)) , σ(t) ∈ Θ(Ω) , divx′ σ̄(t) =

0 in ω , and divx′divx′ σ̂(t) = 0 in ω ,

(b2) for a.e. t ∈ [0, T ] there holds

Hr(ṗ(t)) = 〈σ(t), ṗ(t)〉 = 〈σ̄(t), ˙̄p(t)〉+ 1
12 〈σ̂(t), ˙̂p(t)〉 −

ˆ
Ω

σ⊥(t) : ė⊥(t);

(c) t 7→ (u(t), e(t), p(t)) is absolutely continuous and

(c1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ AKL(w(t)) , σ(t) ∈ Θ(Ω) , divx′ σ̄(t) =

0 in ω , and divx′divx′ σ̂(t) = 0 in ω ,

(c2) for a.e. t ∈ [0, T ] and for every τ ∈ Θ(Ω) there holds

〈σ(t)− τ, ṗ(t)〉 ≥ 0;

(d) t 7→ (u(t), e(t)) is absolutely continuous and

(d1) for every t ∈ [0, T ] we have σ(t) ∈ Θ(Ω) , divx′ σ̄(t) = 0 in ω , and divx′divx′ σ̂(t) =

0 in ω ,

(d2) for a.e. t ∈ [0, T ] and for every τ ∈ Θ(Ω) there holds

ˆ
Ω

(τ − σ(t)) : ė(t) dx+

ˆ
ω

divx′ τ̄ · ˙̄u(t) dx′ + 1
12

ˆ
ω

u̇3(t) d(divx′divx′ τ̂)

≥
ˆ
γd

[(τ̄−σ̄)ν∂ω]· ˙̄w(t) dH1+ 1
12 〈b0(τ̂−σ̂(t)), ẇ3(t)〉− 1

12

ˆ
γd

b1(τ̂−σ̂(t))∂ẇ3(t)
∂ν∂ω

dH1,

(d3) for every t ∈ [0, T ] , p(t) = Eu(t)− e(t) on Ω and p(t) = (w(t)− u(t))� ν∂ΩH2

on Γd .

Remark 3.6.14. The duality products 〈σ(t), ṗ(t)〉 and 〈σ(t) − τ, ṗ(t)〉 in conditions (b)

and (c) are well defined since ṗ(t) ∈ ΠΓd(Ω) by Lemma 3.6.11.

Proof of Theorem 3.6.13. We first show that (a) is equivalent to (b). By Remark 3.5.7

every reduced quasistatic evolution is absolutely continuous, while Proposition 3.6.9 and

Lemma 3.5.8 yield the equivalence of (qs1)r and (b1). Hence, by Proposition 3.6.12 it is

enough to show that for every absolutely continuous function satisfying either (b1) or (qs1)r ,

(b2) is equivalent to the following condition: for a.e. t ∈ [0, T ]
ˆ

Ω

σ(t) : ė(t) dx+Hr(ṗ(t)) =

ˆ
Ω

σ(t) :Eẇ(t) dx.

This follows from Propositions 3.6.2 and 3.6.6, once we notice that (u̇(t), ė(t), ṗ(t)) ∈
AKL(ẇ(t)) by Lemma 3.6.11.

To show that (b) and (c) are equivalent, it is enough to prove that, if (b1) holds, then

(b2) is equivalent to (c2). Indeed, condition (c2) is equivalent to

〈σ(t), ṗ(t)〉 ≥ sup
τ∈Θ(Ω)

〈τ, ṗ(t)〉.
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On the other hand, by (b1) there holds

〈σ(t), ṗ(t)〉 ≤ sup
τ∈Θ(Ω)

〈τ, ṗ(t)〉.

By Proposition 3.6.8 we deduce the thesis.

To conclude the proof of the theorem, we show that (c) is equivalent to (d). We first

remark that if t 7→ (u(t), e(t)) is absolutely continuous and (d3) holds, then t 7→ p(t)

is absolutely continuous and (u(t), e(t), p(t)) ∈ AKL(w(t)) for every t ∈ [0, T ] . Hence, it

remains only to prove that, if (c1) holds, then (c2) is equivalent to (d2). By Propositions 3.6.2

and 3.6.6 there holds

〈σ(t)− τ, ṗ(t)〉 =

ˆ
Ω

(τ − σ(t)) : (ė(t)− Eẇ(t)) dx

+

ˆ
ω

divx′ τ̄ · ( ˙̄u− ˙̄w) dx′ + 1
12

ˆ
ω

(u̇3 − ẇ3) d(divx′divx′ τ̂),

therefore (c2) is equivalent to

ˆ
Ω

(τ − σ(t)) : (ė(t)− Eẇ(t)) dx

+

ˆ
ω

divx′ τ̄ · ( ˙̄u− ˙̄w) dx′ + 1
12

ˆ
ω

(u̇3 − ẇ3) d(divx′divx′ τ̂) ≥ 0 (3.6.30)

for a.e. t ∈ [0, T ] and every τ ∈ Θ(Ω). By (c1), (3.6.1), and (3.6.6) we deduce that

ˆ
ω

(τ̄ − σ̄(t)) :E ˙̄w(t) dx′ =

ˆ
γd

[(τ̄ − σ̄(t))ν∂ω] · ˙̄w(t) dH1 −
ˆ
ω

divx′ τ̄ · ˙̄w(t) dx′,

and

ˆ
ω

(τ̂ − σ̂(t)) :D2ẇ3(t) dx′

= −〈b0(τ̂ − σ̂(t)), ẇ3(t)〉+

ˆ
γd

b1(τ̂ − σ̂(t))
∂ẇ3(t)

∂ν∂ω
dH1 +

ˆ
ω

ẇ3 d(divx′divx′ τ̂).

Therefore, (3.6.30) is in turn equivalent to (d2) and the proof of the theorem is complete.

3.6.3 Two-dimensional characterizations

In this subsection we show that, under some additional hypotheses on the boundary

datum and the initial data, a reduced quasistatic evolution can be written in terms of

two-dimensional quantities only. The first proposition concerns a quasistatic evolution

(u(t), e(t), p(t)) with “in-plane” boundary datum and initial data. In this case, the triple

given by the tangential component of u(t) and the zero-th order moments of e(t) and p(t)

is a two-dimensional quasistatic evolution in ω in the sense of [15]. It is convenient to in-

troduce the following notation: for every w̄ ∈W 1,2(ω;R2) we denote by ĀKL(w̄) the class

of all triples (v, f, q) in BD(ω) × L2(ω;M2×2
sym) ×Mb(ω ∪ γd;M2×2

sym) such that Ev = f + q

in ω and q = (w̄ − v)� ν∂ωH1 on γd . Moreover, we introduce the space

Σ̄(ω) :=
{
σ ∈ L∞(ω;M2×2

sym) : divx′σ ∈ L2(ω;M2×2
sym)

}
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and the set

Kr(ω) :=
{
σ ∈ L∞(ω;M2×2

sym) : σ(x′) ∈ Kr for a.e. x′ ∈ ω
}
.

Proposition 3.6.15. Let t 7→ w̄(t) be absolutely continuous from [0, T ] into W 1,2(ω;R2)

and let

w(t, x) :=

(
w̄(t, x′)

0

)
for every t ∈ [0, T ] and a.e. x ∈ Ω.

Let (ū0, ē0, p̄0) ∈ ĀKL(w̄(0)) and let

u0(x) :=

(
ū0(x′)

0

)
, e0(x) := ē0(x′) for a.e. x ∈ Ω, p0 := p̄0 ⊗ L1.

Finally, let t 7→ (u(t), e(t), p(t)) be a reduced quasistatic evolution for the boundary value

w(t) such that u(0) = u0 , e(0) = e0 , and p(0) = p0 , and let σ(t) := Cre(t) . Then the map

t 7→ (ū(t), ē(t), p̄(t)) satisfies the following conditions:

(i) t 7→ (ū(t), ē(t), p̄(t)) is absolutely continuous from [0, T ] into BD(ω)×L2(ω;M2×2
sym)×

Mb(ω ∪ γd;M2×2
sym) and ū(0) = ū0 , ē(0) = ē0 , and p̄(0) = p̄0 ;

(ii) for every t ∈ [0, T ] we have (ū(t), ē(t), p̄(t)) ∈ ĀKL(w̄(t)) , σ̄(t) ∈ Σ̄(ω) ∩ Kr(ω) ,

divx′ σ̄(t) = 0 in ω , and [σ̄ν∂ω] = 0 on γn ;

(iii) for a.e. t ∈ [0, T ] there holds

Hr( ˙̄p(t)) = 〈σ̄(t), ˙̄p(t)〉. (3.6.31)

Proof. Condition (i) follows from Remark 3.5.7. By condition (b1) of Theorem 3.6.13 and

the convexity of Kr we deduce condition (ii).

By property (b2) of Theorem 3.6.13 and Proposition 3.6.8 we have

Hr(ṗ(t)) = 〈σ̄(t), ˙̄p(t)〉+ 1
12 〈σ̂(t), ˙̂p(t)〉 −

ˆ
Ω

σ⊥(t) : ė⊥(t) dx

≤ Hr( ˙̄p(t)) + 1
12 〈σ̂(t), ˙̂p(t)〉 −

ˆ
Ω

σ⊥(t) : ė⊥(t) dx

= Hr( ˙̄p(t))− 1
12

ˆ
ω

σ̂(t) : ˙̂e(t) dx−
ˆ

Ω

σ⊥(t) : ė⊥(t) dx, (3.6.32)

where the last inequality follows from (3.6.10) with ϕ ≡ 1 and from the fact that σ(t) ∈ Θ(Ω)

and w3(t) = 0 for every t ∈ [0, T ] . On the other hand, setting

λ(t) := | ˙̄p(t)|+ | ˙̂p(t)|+ L2

for a.e. t ∈ [0, T ] , we have that the measure ˙̄p(t) +x3
˙̂p(t)− ė⊥(·, x3) on ω∪ γd is absolutely

continuous with respect to λ(t) for a.e. x3 ∈ (− 1
2 ,

1
2 ). Therefore, by Jensen inequality we

obtain

Hr(ṗ(t)) =

ˆ 1
2

− 1
2

ˆ
ω∪γd

Hr

(d( ˙̄p(t) + x3
˙̂p(t)− ė⊥(·, x3))

dλ(t)

)
dλ(t)dx3

≥
ˆ
ω∪γd

Hr

( ˆ 1
2

− 1
2

d( ˙̄p(t) + x3
˙̂p(t)− ė⊥(·, x3))

dλ(t)
dx3

)
dλ(t)

=

ˆ
ω∪γd

Hr

( d ˙̄p(t)

dλ(t)

)
dλ(t) = Hr( ˙̄p(t)) (3.6.33)
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for a.e. t ∈ [0, T ] . Combining (3.6.32) and (3.6.33), we deduce that

− d

dt

(
1
12Qr(ê(t)) +Qr(e⊥(t))

)
= − 1

12

ˆ
ω

σ̂(t) : ˙̂e(t) dx−
ˆ

Ω

σ⊥(t) : ė⊥(t) dx ≥ 0.

In particular, this implies that

1
12Qr(ê(t)) +Qr(e⊥(t)) ≤ 1

12Qr(ê(0)) +Qr(e⊥(0)) = 0,

hence ê(t) = 0 and e⊥(t) = 0 for every t ∈ [0, T ] . This, together with (3.6.32) and (3.6.33),

yields (3.6.31).

In this last proposition we consider a quasistatic evolution (u(t), e(t), p(t)) with “out-

of-plane” boundary datum and initial data and we prove that the triple given by the nor-

mal component of u(t) and the first order moment of e(t) and p(t) is a two-dimensional

quasistatic evolution in ω in the sense of [24, Definition 4.1]. To this purpose, for every

w3 ∈ W 2,2(ω) we define the class ÂKL(w3) as the set of all triples (v, f, q) ∈ BH(ω) ×
L2(ω;M2×2

sym) × Mb(ω;M2×2
sym) such that D2v = −(f + q) in ω , v = w3 on γd , and

q = (∇v −∇w3)� ν∂ωH1 on γd .

Proposition 3.6.16. Assume the function H to be homogeneous of degree one, i.e.,

H(λξ) = |λ|H(ξ) for every λ ∈ R, ξ ∈M3×3
sym. (3.6.34)

Let t 7→ w3(t) be absolutely continuous from [0, T ] into W 2,2(ω) and let

w(t, x) :=

(
−x3∇w3(t, x′)

w3(t, x′)

)
for every t ∈ [0, T ] and a.e. x ∈ Ω.

Let (v0, ê0, p̂0) ∈ ÂKL(w3(0)) and let

u0(x) :=

(
−x3∇v0(x′)

v0(x′)

)
, e0(x) := x3ê0(x′) for a.e. x ∈ Ω, p0 := x3p̂0 ⊗ L1.

Finally, let t 7→ (u(t), e(t), p(t)) be a reduced quasistatic evolution for the boundary value

w(t) such that u(0) = u0 , e(0) = e0 , and p(0) = p0 , and let σ(t) := Cre(t) . Then the map

t 7→ (u3(t), ê(t), p̂(t)) satisfies the following conditions:

(i) t 7→ (u3(t), ê(t), p̂(t)) is absolutely continuous from [0, T ] into BH(ω)×L2(ω;M2×2
sym)

×Mb(ω ∪ γd;M2×2
sym) and u3(0) = v0 , ê(0) = ê0 , and p̂(0) = p̂0 ;

(ii) for every t ∈ [0, T ] we have (u3(t), ê(t), p̂(t)) ∈ ÂKL(w3(t)) , σ̂(t) ∈ Σ̂(ω) ∩ Kr(ω) ,

divx′divx′ σ̂(t) = 0 in ω , b1(σ̂(t)) = 0 on γn , and 〈b0(σ̂(t)), v〉 = 0 for every v ∈
W 2,1(ω) with v = 0 on γd ;

(iii) for a.e. t ∈ [0, T ] there holds

Hr( ˙̂p(t)) = 〈σ̂(t), ˙̂p(t)〉. (3.6.35)
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Proof. We first remark that (3.6.34) implies that the same property is fullfilled by Hr . This

latter condition is in turn equivalent to saying that the set Kr is symmetric with respect to

the origin.

Condition (i) follows from Remark 3.5.7. By property (b1) of Theorem 3.6.13 we have

that σ(t) ∈ Kr(Ω) for every t ∈ [0, T ] . Since Kr is convex and symmetric with respect with

the origin, this implies that σ̂(t) ∈ Kr(ω) for every t ∈ [0, T ] . All the other conditions in

(ii) follow from Theorem 3.6.13.

By property (b2) of Theorem 3.6.13 and Proposition 3.6.8 we have

Hr(ṗ(t)) = 〈σ̄(t), ˙̄p(t)〉+ 1
12 〈σ̂(t), ˙̂p(t)〉 −

ˆ
Ω

σ⊥(t) : ė⊥(t) dx

≤ 1
12Hr( ˙̂p(t)) + 〈σ̄(t), ˙̄p(t)〉 −

ˆ
Ω

σ⊥(t) : ė⊥(t) dx

= 1
12Hr( ˙̂p(t))−

ˆ
ω

σ̄(t) : ˙̄e(t) dx−
ˆ

Ω

σ⊥(t) : ė⊥(t) dx, (3.6.36)

where the last inequality follows from (3.6.5) with ϕ ≡ 1 and from the fact that σ(t) ∈ Θ(Ω)

and w̄(t) = 0 for every t ∈ [0, T ] . On the other hand, setting

λ(t) := | ˙̄p(t)|+ | ˙̂p(t)|+ L2

for a.e. t ∈ [0, T ] and applying (3.6.34) and Jensen inequality, we obtain

Hr(ṗ(t)) ≥
ˆ 1

2

− 1
2

ˆ
ω∪γd

|x3|Hr

(d( ˙̄p(t) + x3
˙̂p(t)− ė⊥(·, x3))

dλ(t)

)
dλ(t)dx3

≥
ˆ
ω∪γd

Hr

( ˆ 1
2

− 1
2

x3
d( ˙̄p(t) + x3

˙̂p(t)− ė⊥(·, x3))

dλ(t)
dx3

)
dλ(t)

= 1
12Hr( ˙̂p(t)) (3.6.37)

for a.e. t ∈ [0, T ] . Combining (3.6.36) and (3.6.37), we deduce that

− d

dt

(
Qr(ē(t)) +Qr(e⊥(t))

)
= −

ˆ
ω

σ̄(t) : ˙̄e(t) dx−
ˆ

Ω

σ⊥(t) : ė⊥(t) dx ≥ 0.

In particular, this implies that

Qr(ē(t)) +Qr(e⊥(t)) ≤ Qr(ē(0)) +Qr(e⊥(0)) = 0,

hence ē(t) = 0 and e⊥(t) = 0 for every t ∈ [0, T ] . This, together with (3.6.36) and (3.6.37),

yields (3.6.35).
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Chapter 4

Linearized plastic plate models

as Γ-limits of 3D finite plasticity

4.1 Overview of the chapter

The subject of this chapter is the rigorous derivation of reduced models for a three-

dimensional plate of small thickness, whose elastic behaviour is nonlinear and whose plastic

response is that of finite plasticity with hardening, by means of Γ-convergence. Denoting

by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-

plastic energy is of order ε2α−2 , with α ≥ 3. According to the value of α , partially or fully

linearized models are deduced, which correspond, in the absence of plastic deformation, to

the Von Kármán plate theory and the linearized plate theory.

The chapter is organized as follows: in Section 4.2 we recall some preliminary results and

we discuss the formulation of the problem. Section 4.3 is devoted to prove some compactness

results and liminf inequalities, while in Section 4.4 we show that the lower bounds obtained in

Section 4.3 are optimal. Finally, in Section 4.5 we deduce convergence of almost minimizers

of the three-dimensional energies to minimizers of the limit functionals and we discuss some

examples.

4.2 Preliminaries and setting of the problem

Let ω ⊂ R2 be a connected, bounded open set with Lipschitz boundary. Let ε > 0.

We assume the set Ωε := ω ×
(
− ε

2 ,
ε
2

)
to be the reference configuration of a finite-strain

elastoplastic plate.

We suppose that the boundary ∂ω is partitioned into the union of two disjoint sets γd

and γn and their common boundary, where γd is such that H1(γd) > 0. We denote by

Γε the portion of the lateral surface of the plate given by Γε := γd ×
(
− ε

2 ,
ε
2

)
. On Γε we
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prescribe a boundary datum of the form

φε(x) :=
( x′

x3

)
+
( εα−1u0(x′)

εα−2v0(x′)

)
− εα−2x3∇v0(x′) (4.2.1)

for x = (x′, εx3) ∈ Ωε , where u0 ∈W 1,∞(ω;R2), v0 ∈W 2,∞(ω) and α ≥ 3.

We assume that every deformation η ∈W 1,2(Ωε;R3) of the plate fulfills the multiplica-

tive decomposition

∇η(x) = Fel(x)Fpl(x) for a.e. x ∈ Ωε,

where Fel ∈ L2(Ωε;M3×3) represents the elastic strain, Fpl ∈ L2(Ωε;SL(3)) is the plastic

strain and SL(3) := {F ∈M3×3 : detF = 1}. The stored energy associated to a deformation

η and to its elastic and plastic strains can be expressed as follows:

E(η, Fpl) :=

ˆ
Ωε

Wel(∇η(x)F−1
pl (x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx

=

ˆ
Ωε

Wel(Fel(x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx, (4.2.2)

where Wel is the elastic energy density and Whard describes hardening.

Properties of the elastic energy density

We assume that Wel : M3×3 → [0,+∞] satisfies

(H1) Wel ∈ C1(M3×3
+ ), Wel ≡ +∞ on M3×3 \M3×3

+ ,

(H2) Wel(Id) = 0,

(H3) Wel(RF ) = Wel(F ) for every R ∈ SO(3), F ∈M3×3
+ ,

(H4) Wel(F ) ≥ c1dist2(F ;SO(3)) for every F ∈M3×3
+ ,

(H5) |FTDWel(F )| ≤ c2(Wel(F ) + 1) for every F ∈M3×3
+ .

Here c1, c2 are positive constants, M3×3
+ := {F ∈ M3×3 : detF > 0} and SO(3) := {F ∈

M3×3
+ : FTF = Id} . We also assume that there exists a symmetric, positive semi-definite

tensor C : M3×3 →M3×3
sym such that, setting

Q(F ) :=
1

2
CF : F for every F ∈M3×3, (4.2.3)

the quadratic form Q encodes the local behaviour of Wel around the identity, namely

∀δ > 0 ∃cel(δ) > 0 such that ∀F ∈ Bcel(δ)(0) there holds |Wel(Id+ F )−Q(F )| ≤ δ|F |2.
(4.2.4)

Remark 4.2.1. By [17, Proposition 1.5] and by (H3) and (H5), there holds

|DWel(F )FT | ≤ c3(Wel(F ) + 1) for every F ∈M3×3
+ , (4.2.5)

where c3 is a positive constant. Moreover, by (H1) and (H5), there exist c4, c5, γ > 0 such

that, for every G1, G2 ∈ Bγ(Id) and for every F ∈M3×3
+ the following estimate holds true

|Wel(G1FG2)−Wel(F )| ≤ c4(Wel(F ) + c5)(|G1 − Id|+ |G2 − Id|) (4.2.6)

(see [52, Lemma 4.1]).
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Remark 4.2.2. As remarked in [52, Section 2], the frame-indifference condition (H3) yields

Cijkl = Cjikl = Cijlk for every i, j, k, l ∈ {1, 2, 3}

and

CF = C (symF ) for every F ∈M3×3.

Hence, the quadratic form Q satisfies:

Q(F ) = Q(symF ) for every F ∈M3×3

and by (H4) it is positive definite on symmetric matrices. This, in turn, implies that there

exist two constants rC and RC such that

rC|F |2 ≤ Q(F ) ≤ RC|F |2 for every F ∈M3×3
sym, (4.2.7)

and

|CF | ≤ 2RC|F | for every F ∈M3×3
sym. (4.2.8)

Remark 4.2.3. We note that (4.2.4) entails, in particular,

Wel(Id) = 0, DWel(Id) = 0

and

C = D2Wel(Id), Cijkl =
∂2W

∂Fij∂Fkl
(Id) for every i, j, k, l ∈ {1, 2, 3}.

By combining (4.2.4) with (4.2.8) we deduce also that there exists a constant cel2 such that

|DWel(Id+ F )| ≤ (2RC + 1)|F | (4.2.9)

for every F ∈M3×3 , |F | < cel2 .

Properties of the hardening functional

We assume that the hardening map Whard : M3×3 → [0,+∞] is of the form

Whard(F ) :=

W̃hard(F ) for every F ∈ K,

+∞ otherwise.
(4.2.10)

Here K is a compact set in SL(3) that contains the identity as a relative interior point,

and the map W̃hard : M3×3 → [0,+∞) fulfills

W̃hard is locally Lipschitz continuous,

W̃hard(Id+ F ) ≥ c6|F |2 for every F ∈M3×3, (4.2.11)

where c6 is a positive constant. We also assume that there exists a symmetric, positive

definite tensor B : M3×3 →M3×3 such that, setting

B(F ) :=
1

2
BF : F for every F ∈M3×3,
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the quadratic form B satisfies

∀δ > 0∃ch(δ) > 0 such that ∀F ∈ Bch(δ)(0) there holds |W̃hard(Id+ F )−B(F )| ≤ δB(F ).

(4.2.12)

In particular, by the hypotheses on K there exists a constant ck such that

|F |+ |F−1| ≤ ck for every F ∈ K, (4.2.13)

|F − Id| ≥ 1

ck
for every F ∈ SL(3) \K. (4.2.14)

Combining (4.2.11) and (4.2.12) we deduce also

c6
2
|F |2 ≤ B(F ) for every F ∈M3×3. (4.2.15)

Dissipation functional

Denote by M3×3
D the set of trace-free symmetric matrices, namely

M3×3
D := {F ∈M3×3

sym : tr F = 0}.

Let HD : M3×3
D → [0,+∞) be a convex, positively one-homogeneous function such that

rK |F | ≤ HD(F ) ≤ RK |F | for every F ∈M3×3
D . (4.2.16)

We define the dissipation potential H : M3×3 → [0,+∞] as

H(F ) :=

HD(F ) if F ∈M3×3
D ,

+∞ otherwise.

For every F ∈M3×3 , we consider the quantity

D(Id, F ) := inf
{ˆ 1

0

H(ċ(t)c−1(t)) dt : c ∈ C1([0, 1];M3×3
+ ), c(0) = Id, c(1) = F

}
.

(4.2.17)

Note that if D(Id, F ) < +∞ , then F ∈ SL(3).

We define the dissipation distance as the map D : M3×3 ×M3×3 → [0,+∞] , given by

D(F1, F2) :=

D(Id, F2F
−1
1 ) if F1 ∈M3×3

+ , F2 ∈M3×3

+∞ if F1 /∈M3×3
+ , F2 ∈M3×3.

We note that the map D satisfies the triangle inequality

D(F1, F2) ≤ D(F1, F3) +D(F3, F2) (4.2.18)

for every F1, F2, F3 ∈M3×3 .

Remark 4.2.4. We remark that there exists a positive constant c7 such that

D(F1, F2) ≤ c7 for every F1, F2 ∈ K, (4.2.19)

D(Id, F ) ≤ c7|F − Id| for every F ∈ K. (4.2.20)
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Indeed, by the compactness of K and the continuity of the map D on SL(3)× SL(3) (see

[49]), there exists a constant c̃4 such that

D(F1, F2) ≤ c̃4 for every F1, F2 ∈ K. (4.2.21)

By the previous estimate, (4.2.20) needs only to be proved in a neighbourhood of the identity.

More precisely, let δ > 0 be such that logF is well defined for F ∈ K and |F − Id| < δ . If

F ∈ K is such that |F − Id| ≥ δ , by (4.2.21) we deduce

D(Id, F ) ≤ c̃4
δ
|F − Id|.

If |F − Id| < δ , taking c(t) = exp(t logF ) in (4.2.17), inequality (4.2.16) yields

D(Id, F ) ≤ HD(logF ) ≤ RK | logF | ≤ C|F − Id|

for every F ∈ K . Collecting the previous estimates we deduce (4.2.19) and (4.2.20).

Change of variable and formulation of the problem

As usual in dimension reduction problems we perform a change of variable to formulate the

problem on a domain independent of ε . We consider the set Ω := ω ×
(
− 1

2 ,
1
2

)
and the

map ψε : Ω→ Ωε given by

ψε(x) := (x′, εx3) for every x ∈ Ω.

To every deformation η ∈W 1,2(Ωε;R3) satisfying

η(x) = φε(x) H2- a.e. on Γε

and to every plastic strain Fpl ∈ L2(Ωε;SL(3)) we associate the scaled deformation y :=

η ◦ ψε and the scaled plastic strain P := Fpl ◦ ψε . Denoting by Γd the set γd ×
(
− 1

2 ,
1
2

)
,

the scaled deformation satisfies the boundary condition

y(x) = φε(x′, εx3) H2- a.e. on Γd. (4.2.22)

Applying this change of variable to (4.2.2), the energy functional is now given by

I(y, P ) :=
1

ε
E(η, Fpl) =

ˆ
Ω

Wel(∇εy(x)P−1(x)) dx+

ˆ
Ω

Whard(P (x)) dx,

where ∇εy(x) :=
(
∂1y(x)

∣∣∂2y(x)
∣∣ 1
ε∂3y(x)

)
for a.e. x ∈ Ω.

Denote by Aε(φε) the class of pairs (yε, P ε) ∈ W 1,2(Ω;R3) × L2(Ω;SL(3)) such that

(4.2.22) is satisfied. We associate to each pair (yε, P ε) ∈ Aε(φε) the scaled energy given by

J εα(yε, P ε) :=
1

ε2α−2
I(yε, P ε) +

1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx, (4.2.23)

where α ≥ 3 is the same exponent as in (4.2.1) and P ε,0 is a map in L2(Ω;SL(3)), which

represents a preexistent plastic strain.
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Remark 4.2.5. We are interested in studying the asymptotic behaviour of sequences of pairs

(yε, P ε) ∈ Aε(φε) such that the scaled total energies J εα(yε, P ε) are uniformly bounded.

This, in particular, holds for sequences of (almost) minimizers of

I(y, P )−
ˆ

Ω

fε · y dx, (4.2.24)

whenever the applied forces fε are of order εα , with α ≥ 3. In fact by [34, Theorem 2],

in the absence of plastic deformation (P ε ≡ Id), the elastic energy on (almost) minimizing

sequences scales like ε2α−2 . In order to have interaction between the elastic and the plastic

energy at the limit we are lead to rescale also the hardening functional by ε2α−2 . Finally,

the scaling of the dissipation functional is motivated by its linear growth and by the estimate

(4.2.20).

Our choice of the boundary datum is again motivated by [34, Theorem 2]. Indeed,

as remarked in the introduction, the structure of φε is compatible with the structure of

(almost) minimizers of (4.2.24) in absence of plastic deformation, as ε→ 0+ .

4.3 Compactness results and liminf inequality

In this section we study compactness properties of sequences of pairs in Aε(φε) satisfying

the uniform energy estimate

J εα(yε, P ε) ≤ C for every ε. (4.3.1)

To state the compactness results it is useful to introduce the following notation: given

ϕ : Ω→ R3 , we denote by ϕ′ : Ω→ R2 the map

ϕ′ :=
( ϕ1

ϕ2

)

and for every η ∈ W 1,2(Ω) we denote by ∇′η the vector
( ∂1η

∂2η

)
. Analogously, for every

matrix M ∈M3×3 , we use the notation M ′ to represent the minor

M ′ :=
( M11 M12

M21 M22

)
.

Given a sequence of deformations (yε) ⊂ W 1,2(Ω;R3), we consider some associated

quantities: the in-plane displacements

uε(x′) :=
1

εα−1

ˆ 1
2

− 1
2

(
(yε)′(x′, x3)− x′

)
dx3 for a.e. x′ ∈ ω, (4.3.2)

the out-of-plane displacements

vε(x′) :=
1

εα−2

ˆ 1
2

− 1
2

yε3(x′, x3) dx3 for a.e. x′ ∈ ω, (4.3.3)
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and the first order moments

ξε(x′) :=
1

εα−1

ˆ 1
2

− 1
2

x3

(
yε(x′, x3)−

( x′

εx3

))
dx3 for a.e. x′ ∈ ω. (4.3.4)

A key tool to establish compactness of in-plane and out-of-plane displacements is the

rigidity estimate due to Friesecke, James and Müller (see Section 1.2). The rigidity esti-

mate provided in Theorem 1.2.1 allows us to approximate sequences of deformations whose

distance of the gradient from SO(3) is uniformly bounded, by means of rotations. More

precisely, the following theorem holds true.

Theorem 4.3.1. Assume that α ≥ 3 . Let (yε) be a sequence of deformations in W 1,2(Ω;R3)

satisfying (4.2.22) and such that

‖dist(∇εyε, SO(3))‖L2(Ω;M3×3) ≤ Cεα−1. (4.3.5)

Then, there exists a sequence (Rε) ⊂W 1,∞(ω;M3×3) such that for every ε > 0

Rε(x′) ∈ SO(3) for every x′ ∈ ω, (4.3.6)

‖∇εyε −Rε‖L2(Ω;M3×3) ≤ Cεα−1, (4.3.7)

‖∂iRε‖L2(ω;M3×3) ≤ Cεα−2, i = 1, 2 (4.3.8)

‖Rε − Id‖L2(ω;M3×3) ≤ Cεα−2. (4.3.9)

Proof. Arguing as in [34, Theorem 6 and Remark 5] we can construct a sequence of maps

Rε ∈ W 1,∞(ω;M3×3) satisfying (4.3.6)–(4.3.8). To complete the proof of the theorem it

remains only to prove (4.3.9).

To this aim, we preliminarily recall that there exists a neighbourhood U of SO(3) where

the projection Π : U → SO(3) onto SO(3) is well defined. By Poincaré inequality, (4.3.8)

yields ∥∥∥Rε −  
ω

Rε dx′
∥∥∥
L2(ω;M3×3)

≤ Cεα−2. (4.3.10)

On the other hand, by (4.3.6) we have

dist2
(  

ω

Rε dx′, SO(3)
)
L2(ω) ≤

∥∥∥Rε −  
ω

Rε dx′
∥∥∥2

L2(ω;M3×3)
.

Hence, by (4.3.10) for ε small enough we can define R̂ε := Π(
ffl
ω
Rε dx′), which fulfills∣∣∣R̂ε −  

ω

Rε dx′
∣∣∣ ≤ C∥∥∥Rε −  

ω

Rε dx′
∥∥∥
L2(ω;M3×3)

≤ Cεα−2.

‖R̂ε −Rε‖L2(ω;M3×3) ≤
∥∥∥R̂ε −  

ω

Rε dx′
∥∥∥
L2(ω;M3×3)

+
∥∥∥ 

ω

Rε dx′ −Rε
∥∥∥
L2(ω;M3×3)

≤ Cεα−2.

To prove (4.3.9) it is now enough to show that

|R̂ε − Id| ≤ Cεα−2. (4.3.11)
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To this purpose, we argue as in [39, Section 4.2, Lemma 13]. We consider the sequences

R̃ε := (R̂ε)TRε,

ỹε := (R̂ε)T yε − cε,

ũε(x′) :=
1

εα−1

ˆ 1
2

− 1
2

(
(ỹε)′(x′, x3)− x′

)
dx3 for a.e. x′ ∈ ω,

ṽε(x′) :=
1

εα−2

ˆ 1
2

− 1
2

ỹε3(x′, x3) dx3 for a.e. x′ ∈ ω,

ξ̃ε(x′) :=
1

εα−1

ˆ 1
2

− 1
2

x3

(
ỹε(x′, x3)−

( x′

εx3

))
dx3 for a.e. x′ ∈ ω,

where the constants cε are chosen in such a way that
ˆ

Ω

(
ỹε(x)− x

)
dx = 0.

By [34, Lemma 1 and Corollary 1], there exist ũ ∈ W 1,2(ω;R2), ṽ ∈ W 2,2(ω) and ξ̃ ∈
W 1,2(ω;R3) such that

ũε ⇀ ũ weakly in W 1,2(ω;R2), (4.3.12)

ṽε → ṽ strongly in W 1,2(ω), (4.3.13)

ξ̃ε ⇀ ξ̃ weakly in W 1,2(ω;R3). (4.3.14)

We now write uε, vε and ξε in terms of ũε, ṽε and ξ̃ε . We have( εα−1uε(x′)

εα−2vε(x′)

)
= (R̂ε − Id)

( x′

0

)
+ R̂ε

( εα−1ũε(x′)

εα−2ṽε(x′)

)
+ R̂εcε, (4.3.15)

for a.e. x′ ∈ ω and

ξε(x′) =
1

12εα−2
(R̂ε − Id)e3 + R̂εξ̃ε(x′) for a.e. x′ ∈ ω. (4.3.16)

By (4.3.14) there exists a constant C such that ‖ξ̃ε‖L2(γd;R3) ≤ C for every ε . Moreover,

by (4.2.1) and (4.2.22) there holds

ξε(x′) =
1

εα−1

ˆ 1
2

− 1
2

x3

(
φε(x′, εx3)−

( x′

εx3

))
dx3 =

( − 1
12∇

′v0(x′)

0

)
H1- a.e. on γd,

hence (ξε) is uniformly bounded in L2(γd;R3). Therefore, by (4.3.16) we deduce

|(R̂ε − Id)e3| ≤ Cεα−2‖ξε − R̂εξ̃ε‖L2(Γd;R3) ≤ Cεα−2, (4.3.17)

for every ε . Since R̂ε ∈ SO(3), (4.3.17) implies that

|(R̂ε − Id)T e3| ≤ Cεα−2 (4.3.18)

for every ε and there exists a sequence (Q̂ε) ⊂ SO(2) such that

|(R̂ε)′ − Q̂ε| ≤ Cεα−2. (4.3.19)
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Now, without loss of generality we can assume that

ˆ
γd

x′ dH1(x′) = 0 and

ˆ
γd

|x′|2 dH1(x′) = c > 0. (4.3.20)

By (4.3.12) and (4.3.13) we have ‖ũε‖L2(γd;R2) + ‖ṽε‖L2(γd) ≤ C for every ε . On the other

hand (4.2.1) and (4.2.22) imply that

uε(x′) = u0(x′) and vε(x′) = v0(x′) H1- a.e. on γd,

hence both (uε) and (vε) are uniformly bounded in L2(γd;R2) and L2(γd), respectively.

Therefore, by (4.3.15) and (4.3.19) we deduce

|(Q̂ε − Id)x′ + (R̂εcε)′| ≤ Cεα−2. (4.3.21)

The two terms in the left hand side of (4.3.21) are orthogonal in the sense of L2(γd;R2) by

(4.3.20), hence (4.3.21) implies that

‖(Q̂ε − Id)x′‖2L2(γd;R2) ≤ Cε
2(α−2).

Since Q̂ε ∈ SO(2), it satisfies

2|(Q̂ε − Id)x′|2 = |Q̂ε − Id|2|x′|2 for every x′ ∈ γd.

Therefore, applying again (4.3.20) we obtain

c|Q̂ε − Id|2 = 2

ˆ
γd

|Q̂ε − Id|2|x′|2 dH1(x′) ≤ Cε2(α−2). (4.3.22)

Claim (4.3.11) follows now by collecting (4.3.17)–(4.3.19) and (4.3.22).

In the remaining of this section we shall establish some compactness results for the

displacements defined in (4.3.2) and (4.3.3), and we shall prove a liminf inequality both for

the energy functional and the dissipation potential.

We first introduce the limit functional. Let A : M2×2 →M3×3
sym be the operator given by

AF :=

(
symF

λ1(F )
λ2(F )

λ1(F ) λ2(F ) λ3(F )

)
for every F ∈M2×2,

where for every F ∈ M2×2 the triple (λ1(F ), λ2(F ), λ3(F )) is the unique solution to the

minimum problem

min
λi∈R

Q

(
symF

λ1

λ2

λ1 λ2 λ3

)
.

We remark that for every F ∈ M2×2 , A(F ) is given by the unique solution to the linear

equation

CA(F ) :

( 0 0 λ1

0 0 λ2

λ1 λ2 λ3

)
= 0 for every λ1, λ2, λ3 ∈ R. (4.3.23)
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This implies, in particular, that A is linear.

We define the quadratic form Q2 : M2×2 → [0,+∞) as

Q2(F ) = Q(A(F )) for every F ∈M2×2.

By properties of Q , we have that Q2 is positive definite on symmetric matrices. We also

define the tensor C2 : M2×2 →M3×3
sym , given by

C2F := CA(F ) for every F ∈M2×2. (4.3.24)

We remark that by (4.3.23) there holds

C2F : G = C2F :
( symG 0

0 0

)
for every F ∈M2×2, G ∈M3×3 (4.3.25)

and

Q2(F ) =
1

2
C2F :

( symF 0

0 0

)
for every F ∈M2×2.

Remark 4.3.2. We note that in the case where the tensors in formulas (3.2.1) and (4.2.3)

coincide, then Q2(F ) = Qr(F ) for every M2×2 , where Qr is the quadratic form defined in

(3.4.3).

Denoting by A(u0, v0) the set of triples (u, v, p) ∈W 1,2(Ω;R2)×W 2,2(Ω)×L2(Ω;M3×3
D )

such that

u(x′) = u0(x′), v(x′) = v0(x′), and ∇v(x′) = ∇v0(x′) H1 - a.e. on γd,

we introduce the functionals Jα : A(u0, v0)→ [0,+∞), given by

Jα(u, v, p) :=

ˆ
Ω

Q2(sym∇′u− x3(∇′)2v − p′) dx+

ˆ
Ω

B(p) dx+

ˆ
Ω

HD(p− p0) dx

(4.3.26)

for α > 3, and

J3(u, v, p) :=

ˆ
Ω

Q2

(
sym∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v − p′

)
dx+

ˆ
Ω

B(p) dx

+

ˆ
Ω

HD(p− p0) dx, (4.3.27)

for every (u, v, p) ∈ A(u0, v0). In the expressions of the functionals, p0 is a given map in

L2(Ω;M3×3
D ) that represents the history of the plastic deformations.

Finally, for every sequence (yε) in W 1,2(Ω;R3) satisfying both (4.2.22) and (4.3.5), we

introduce the strains

Gε(x) :=
(Rε(x))T∇εyε(x)− Id

εα−1
for a.e. x ∈ Ω, (4.3.28)

where the maps Rε are the pointwise rotations provided by Theorem 4.3.1.

We are now in a position to state the main result of this section.
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Theorem 4.3.3. Assume that α ≥ 3 . Let (yε, P ε) be a sequence of pairs in Aε(φε)
satisfying

I(yε, P ε) ≤ Cε2α−2 (4.3.29)

for every ε > 0 . Let uε , vε and Gε be defined as in (4.3.2), (4.3.3) and (4.3.28), respec-

tively. Then, there exists (u, v, p) ∈ A(u0, v0) such that, up to subsequences, there hold

yε →
( x′

0

)
strongly in W 1,2(Ω;R3), (4.3.30)

uε ⇀ u weakly in W 1,2(ω;R2), (4.3.31)

vε → v strongly in W 1,2(ω), (4.3.32)

∇′yε3
εα−2

→ ∇′v strongly in L2(Ω;R2), (4.3.33)

and the following estimate holds true∥∥yε3
ε
− x3 − εα−3vε

∥∥
L2(Ω)

≤ Cεα−2. (4.3.34)

Moreover, there exists G ∈ L2(Ω;M3×3) such that

Gε ⇀ G weakly in L2(Ω;M3×3), (4.3.35)

and the 2× 2 submatrix G′ satisfies

G′(x′, x3) = G0(x′)− x3(∇′)2v(x′) for a.e. x ∈ Ω, (4.3.36)

where

symG0 =
(∇′u+ (∇′u)T +∇′v ⊗∇′v)

2
if α = 3, (4.3.37)

symG0 = sym∇′u if α > 3. (4.3.38)

The sequence of plastic strains (P ε) fulfills

P ε(x) ∈ K for a.e. x ∈ Ω, (4.3.39)

and

‖P ε − Id‖L2(Ω;M3×3) ≤ Cεα−1 (4.3.40)

for every ε . Moreover, setting

pε :=
P ε − Id
εα−1

, (4.3.41)

up to subsequences

pε ⇀ p weakly in L2(Ω;M3×3). (4.3.42)

Finally,
ˆ

Ω

Q2(symG′ − p′) dx ≤ lim inf
ε→0

1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx (4.3.43)

and ˆ
Ω

B(p) dx ≤ lim inf
ε→0

1

ε2α−2

ˆ
Ω

Whard(P
ε) dx. (4.3.44)
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If in addition
1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx ≤ C for every ε > 0 (4.3.45)

and there exist a map p0 ∈ L2(Ω;M3×3
D ) and a sequence (pε,0) ⊂ L2(Ω;M3×3) such that

P ε,0 = Id+ εα−1pε,0 , with pε,0 ⇀ p0 weakly in L2(Ω;M3×3) , then
ˆ

Ω

HD(p− p0) dx ≤ lim inf
ε→0

1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx. (4.3.46)

Proof. We first remark that by (4.3.29) there holds
ˆ

Ω

Whard(P
ε) dx ≤ Cε2α−2, (4.3.47)

which, together with (4.2.10), implies (4.3.39). On the other hand, combining (4.2.11) and

(4.3.47) we deduce

c3‖P ε − Id‖2L2(Ω;M3×3) ≤
ˆ

Ω

W̃hard(P
ε) dx ≤ Cε2α−2,

which in turn yields (4.3.40) and (4.3.42).

Let R ∈ SO(3). By (4.2.13), (4.3.39) and (4.3.41) there holds

|∇εyε −R|2 = |∇εyε −RP ε + εα−1Rpε|2 ≤ 2
(
|∇εyε(P ε)−1 −R|2|P ε|2 + ε2α−2|pε|2

)
≤ 2 c2K |∇εyε(P ε)−1 −R|2 + 2ε2α−2|pε|2.

Hence, the growth condition (H4) implies

‖dist(∇εyε, SO(3))‖2L2(Ω;M3×3) ≤ C
(ˆ

Ω

Wel(∇εyε(P ε)−1) dx+ ε2α−2‖pε‖2L2(Ω;M3×3)

)
,

which in turn yields

‖dist(∇εyε, SO(3))‖2L2(Ω;M3×3) ≤ Cε
2α−2

by (4.3.29) and (4.3.42).

Due to (4.2.22), the deformations (yε) fulfill the hypotheses of Theorem 4.3.1. Hence,

we can construct a sequence (Rε) in W 1,∞(ω;M3×3) satisfying (4.3.6)–(4.3.9). Properties

(4.3.30)–(4.3.33) and (4.3.35)–(4.3.38) follow arguing as in [34, Lemma 1, Corollary 1 and

Lemma 2]. The only difference is due to the fact that compactness is now achieved by using

the boundary condition (4.2.22), instead of performing a normalization of the deformations

yε . Moreover the limit in-plane and out-of-plane displacements satisfy u = u0 , v = v0 and

∇′v = ∇′v0 H1 - a.e. on γd .

By Poincaré inequality and the definition of vε , there holds∥∥∥yε3
ε
− x3 − εα−3vε

∥∥∥
L2(Ω)

≤ C
∥∥∥∂3y

ε
3

ε
− 1
∥∥∥
L2(Ω)

,

hence (4.3.34) is a consequence of (4.3.7) and (4.3.9).

Inequality (4.3.46) follows by adapting [52, Lemmas 3.4 and 3.5].

The proof of (4.3.43) and (4.3.44) is based on an adaptation of [52, Proof of Lemma 3.3]:

we give a sketch for convenience of the reader. Fix δ > 0, let Oε be the set

Oε := {x : εα−1|pε(x)| ≤ ch(δ)}
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and let χε be its characteristic function. By (4.3.42) and by Chebyshev inequality there

holds

L3(Ω \Oε) ≤ Cε2α−2,

hence by (4.2.12) and (4.3.29), we deduce

lim inf
ε→0

1

ε2α−2

ˆ
Ω

Whard(P
ε) dx ≥ lim inf

ε→0
(1−δ)

ˆ
Ω

B(pε)χε dx ≥ (1−δ)
ˆ

Ω

B(p) dx (4.3.48)

which yields (4.3.44). To prove the liminf inequality for the elastic energy, we introduce the

auxiliary tensors

wε :=
(P ε)−1 − Id+ εα−1pε

εα−1
= εα−1(P ε)−1(pε)2. (4.3.49)

By (4.2.13) and (4.3.39), there exists a constant C such that

εα−1‖pε‖L∞(Ω;M3×3) ≤ C (4.3.50)

and

εα−1‖wε‖L∞(Ω;M3×3) ≤ C (4.3.51)

for every ε . Furthermore, by (4.3.42),

‖wε‖L1(Ω;M3×3) ≤ Cεα−1 for every ε.

By the two previous estimates it follows that (wε) is uniformly bounded in L2(Ω;M3×3)

and

wε ⇀ 0 weakly in L2(Ω;M3×3). (4.3.52)

For every ε we consider the map

F ε :=
1

εα−1

(
(Id+ εα−1Gε)(P ε)−1 − Id

)
.

By the frame-indifference hypothesis (H3) there holds

Wel(∇εyε(P ε)−1) = Wel(Id+ εα−1F ε).

On the other hand,

F ε = Gε + wε − pε + εα−1Gε(wε − pε).

Combining (4.3.35), (4.3.42) and (4.3.50)–(4.3.52) we deduce

F ε ⇀ G− p weakly in L2(Ω;M3×3).

Therefore, by (4.2.4) and arguing as in the proof of (4.3.48) we conclude that

ˆ
Ω

Q2(symG′ − p′) dx ≤
ˆ

Ω

Q(symG− p) dx

≤ lim inf
ε→0

1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx, (4.3.53)

which in turn implies (4.3.43).
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4.4 Construction of the recovery sequence

In this section, under some additional hypotheses on the sequence (pε,0) and on γd , we

prove that the lower bound obtained in Theorem 4.3.3 is optimal by exhibiting a recovery

sequence.

Theorem 4.4.1. Assume that α ≥ 3 and γd is a finite union of disjoint (nontrivial) closed

intervals (i.e., maximally connected sets) in ∂ω . Let p0 ∈ L∞(Ω;M3×3
D ) be such that there

exists a sequence (pε,0) ⊂ L∞(Ω;M3×3
D ) satisfying

‖pε,0‖L∞(Ω;M3×3
D ) ≤ C for every ε, (4.4.1)

pε,0 → p0 strongly in L1(Ω;M3×3
D ). (4.4.2)

Assume also that for every ε the map P ε,0 := Id + εα−1pε,0 satisfies detP ε,0 = 1 . Let

(u, v, p) ∈ A(u0, v0) . Then, there exists a sequence (yε, P ε) ∈ Aε(φε) such that, defining

uε, vε and pε as in (4.3.2), (4.3.3) and (4.3.41), we have

yε →
( x′

0

)
strongly in W 1,2(Ω;R3), (4.4.3)

uε → u strongly in W 1,2(ω;R2), (4.4.4)

vε → v strongly in W 1,2(ω), (4.4.5)

pε → p strongly in L2(Ω;M3×3). (4.4.6)

Moreover,

lim
ε→0
J εα(yε, P ε) = Jα(u, v, p), (4.4.7)

where J εα and Jα are the functionals introduced in (4.2.23), (4.3.26) and (4.3.27).

Proof. For the sake of simplicity we divide the proof into two steps.

Step 1

Let (u, v, p) ∈ A(u0, v0). We first remark that by a standard approximation argument we

may assume that p ∈ C∞c (Ω;M3×3
D ). Moreover, we claim that we can always reduce to the

case where u ∈W 1,∞(ω;R2) and v ∈W 2,∞(ω). That is, we can approximate the pair (u, v)

in the sense of (4.4.4)–(4.4.5) by a sequence of pairs (uλ, vλ) in W 1,∞(ω;R2) ×W 2,∞(ω)

satisfying the same boundary conditions as (u, v) on γd , and such that, for α > 3,

lim
λ→+∞

ˆ
Ω

Q2

(
sym∇′uλ − x3(∇′)2vλ − p′

)
dx

=

ˆ
Ω

Q2

(
sym∇′u− x3(∇′)2v − p′

)
dx, (4.4.8)

whereas for α = 3

lim
λ→+∞

ˆ
Ω

Q2

(
sym∇′uλ +

1

2
∇′vλ ⊗∇′vλ − x3(∇′)2vλ − p′

)
dx

=

ˆ
Ω

Q2

(
sym∇′u+

1

2
∇′v ⊗∇′v − x3(∇′)2v − p′

)
dx. (4.4.9)
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By the hypotheses on γd , we may apply [33, Proposition A.2], and for every λ > 0 we

construct a pair (uλ, vλ) ∈W 1,∞(ω;R2)×W 2,∞(ω), such that (uλ, vλ, p) ∈ A(u0, v0),

‖uλ‖W 1,∞(ω;R2) + ‖vλ‖W 2,∞(ω) ≤ Cλ, (4.4.10)

and setting

ωλ := {x′ ∈ ω : uλ(x′) 6= u(x′) or vλ(x′) 6= v(x′)},

there holds

lim
λ→+∞

λ2L2(ωλ) = 0. (4.4.11)

Now, by (4.4.10) we obtain

‖uλ − u‖W 1,2(ω;R2) ≤ C
(
‖uλ − u‖L2(ωλ;R2) + ‖∇′uλ −∇′u‖L2(ωλ;M2×2)

)
≤ C

(
‖u‖L2(ωλ;R2) + ‖∇′u‖L2(ωλ;M2×2) + λ

(
L2(ωλ)

) 1
2
)

and, analogously

‖vλ − v‖W 2,2(ω;R2) ≤ C
(
‖v‖L2(ωλ) + ‖∇′v‖L2(ωλ;R2) + ‖(∇′)2v‖L2(ωλ;M2×2) + λ

(
L2(ωλ)

) 1
2
)
.

Hence, by (4.4.11) we deduce

uλ → u strongly in W 1,2(ω;R2) (4.4.12)

and

vλ → v strongly in W 2,2(ω), (4.4.13)

as λ→ +∞ . Therefore, in particular

∇′vλ → ∇′v strongly in Lp(ω;R2) for every p ∈ [2,+∞). (4.4.14)

By (4.4.12)–(4.4.14) we obtain (4.4.8) and (4.4.9).

Step 2

To complete the proof of the theorem we shall prove that for every triple (u, v, p) ∈ A(u0, v0),

with u ∈ W 1,∞(ω;R2), v ∈ W 2,∞(ω) and p ∈ C∞c (Ω;M3×3
D ) we can construct a sequence

(yε, P ε) ∈ A(φε) satisfying (4.4.3)–(4.4.7).

To this purpose, consider the functions

P ε := exp(εα−1p) and pε :=
1

εα−1
(exp(εα−1p)− Id).

Since p ∈ C∞c (Ω;M3×3
D ), it is immediate to see that detP ε(x) = 1 for every ε and for all

x ∈ Ω. Moreover, there exists ε0 > 0 such that

P ε(x) ∈ K for every x ∈ Ω and for all 0 ≤ ε < ε0,

and there holds

pε → p uniformly in Ω,

which in turn implies (4.4.6). Furthermore,

‖P ε − Id‖L∞(Ω;M3×3) ≤ Cεα−1,
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and by (4.2.12), for every δ > 0 there exists εδ such that if 0 ≤ ε < εδ there holds∣∣∣ 1

ε2α−2

ˆ
Ω

Whard(P
ε) dx−

ˆ
Ω

B(pε) dx
∣∣∣ ≤ δ ˆ

Ω

B(pε) dx.

By (4.4.6) we deduce that

lim
ε→0

1

ε2α−2

ˆ
Ω

Whard(P
ε) dx =

ˆ
Ω

B(p) dx. (4.4.15)

To study the dissipation potential, we first remark that by (4.4.1), for ε small enough,

there holds

exp(εα−1pε,0(x))(P ε,0)−1(x) ∈ K for every x ∈ Ω. (4.4.16)

Hence, by (4.2.18) and (4.2.20) the following estimate holds true:

1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx ≤ 1

εα−1

ˆ
Ω

D(P ε,0, exp(εα−1pε,0)) dx

+
1

εα−1

ˆ
Ω

D(exp(εα−1pε,0), exp(εα−1p)) dx

≤ C

εα−1

ˆ
Ω

| exp(εα−1pε,0)(P ε,0)−1 − Id| dx

+
1

εα−1

ˆ
Ω

D(Id, exp(εα−1(p− pε,0))) dx.

By the positive homogeneity of HD and taking c(t) = exp(εα−1(p − pε,0)t) in (4.2.17), we

obtain
1

εα−1

ˆ
Ω

D(Id, exp(εα−1(p− pε,0))) dx ≤
ˆ

Ω

HD(p− pε,0) dx.

On the other hand, by (4.4.1) there holds
ˆ

Ω

| exp(εα−1pε,0)(P ε,0)−1 − Id| dx ≤ cK
ˆ

Ω

| exp(εα−1pε,0)− Id− εα−1pε,0| dx ≤ Cε2α−2.

Collecting the previous estimates we deduce

1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx ≤
ˆ

Ω

HD(p− pε,0) dx+ Cεα−1,

which in turn, by (4.4.2), yields

lim sup
ε→0

1

εα−1

ˆ
Ω

D(P ε,0, P ε) dx ≤
ˆ

Ω

HD(p− p0) dx. (4.4.17)

Let d ∈ C∞c (Ω;R3) and consider the deformations

yε(x) :=
( x′

εx3

)
+ εα−1

( u(x′)− x3∇′v(x′)

0

)
+ εα−2

( 0

v(x′)

)
+ εα

ˆ x3

− 1
2

d(x′, s) ds

for every x ∈ Ω. It is immediate to see that the sequence (yε) fulfills both (4.2.22) and

(4.4.3). We note that

uε(x′) = u(x′) + ε

ˆ 1
2

− 1
2

ˆ x3

− 1
2

d′(x′, s) ds dx3
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and

vε(x′) = v(x′) + ε2

ˆ 1
2

− 1
2

ˆ x3

− 1
2

d3(x′, s) ds dx3

for every x′ ∈ ω , hence both (4.4.4) and (4.4.5) hold true. To complete the proof of the

theorem, it remains to show that for α > 3

lim
ε→0

1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx =

ˆ
Ω

Q
(

sym
( ∇′u− x3(∇′)2v

0

∣∣∣d)− p) dx, (4.4.18)

and for α = 3,

lim
ε→0

1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx

=

ˆ
Ω

Q
(

sym
( ∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v

0

∣∣∣ d′

d3 + |∇′v|2
)
− p
)
dx.

(4.4.19)

Indeed, if (4.4.18) holds, then by a standard approximation argument we may assume that

Q
(

sym
( ∇′u− x3(∇′)2v

0

∣∣∣d)− p) = Q2

(
sym∇′u− x3(∇′)2v − p′

)
.

Analogously, if (4.4.19) holds we may assume that

Q
(

sym
( ∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v

0

∣∣∣ d′

d3 + |∇′v|2
2

)
− p
)

= Q2

(
sym∇′u+

1

2
∇′v ⊗∇′v − x3(∇′)2v − p′

)
.

In both cases by (4.4.15), (4.4.17), and Theorem 4.3.3, we obtain (4.4.7).

To prove (4.4.18) and (4.4.19) we first note that

∇εyε = Id+ εα−1
( ∇′u− x3(∇′)2v

0

∣∣∣d)+ εα−2
( 0 −∇′v

(∇′v)T 0

)
+O(εα).

Hence, in particular, det(∇εyε) > 0 for ε small enough. On the other hand, by the frame-

indifference hypothesis (H3), there holds

Wel(∇εyε(P ε)−1) = Wel

(√
(∇εyε)T∇εyε(P ε)−1

)
a.e. in Ω.

A direct computation yields√
(∇εyε)T∇εyε = Id+ εα−1sym

( ∇′u− x3(∇′)2v

0

∣∣∣d)
+
ε2α−4

2

( ∇′v ⊗∇′v 0

0 |∇′v|2
)

+ o(εα−1),

and

Wel

(
∇εyε(P ε)−1

)
= Wel

(
Id+ εα−1Mα + o(εα−1)

)
a.e. in Ω,
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where

Mα :=


sym

( ∇′u− x3(∇′)2v

0

∣∣∣d)− p if α > 3,

sym
( ∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v

0

∣∣∣ d′

d3 + |∇′v|2
2

)
− p if α = 3.

Fix δ > 0. For every α ≥ 3 we have Mα ∈ L∞(Ω;M3×3), therefore for ε small enough

‖εα−1Mα + o(εα−1)‖L∞(Ω;M3×3) ≤ cel(δ).

By (4.2.4), we deduce

lim sup
ε→0

∣∣∣ 1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx−
ˆ

Ω

Q(Mα) dx− o(ε2α−2)

ε2α−2

∣∣∣ ≤ δ ˆ
Ω

Q(Mα) dx.

Claims (4.4.18) and (4.4.19) follow now by letting δ tend to zero.

4.5 Convergence of minimizers and characterization of

the limit functional

In this section we deduce convergence of almost minimizers of the three-dimensional

energies to minimizers of the limit functional and we show some examples where a charac-

terization of the limit functional can be provided in terms of two-dimensional quantities.

The compactness and liminf inequalities proved in Theorem 4.3.3 and the limsup in-

equality deduced in Theorem 4.4.1 allow us to obtain the main result of the chapter.

Theorem 4.5.1. Assume that α ≥ 3 and γd is a finite union of disjoint (nontrivial) closed

intervals in the relative topology of ∂ω . Let p0 ∈ L∞(Ω;M3×3
D ) be such that there exists a

sequence (pε,0) ⊂ L∞(Ω;M3×3
D ) satisfying

‖pε,0‖L∞(Ω;M3×3
D ) ≤ C,

pε,0 → p0 strongly in L1(Ω;M3×3
D ).

Assume also that for every ε the map P ε,0 := Id + εα−1pε,0 satisfies detP ε,0 = 1 a.e. in

Ω . Let φε be defined as in (4.2.1) and let J εα and Jα be the functionals given by (4.2.23),

(4.3.26) and (4.3.27). For every ε > 0 , let (yε, P ε) ∈ Aε(φε) be such that

J εα(yε, P ε)− inf
(y,P )∈Aε(φε)

J εα(y, P ) ≤ sε, (4.5.1)

where sε → 0+ as ε→ 0 . Finally, let uε , vε and pε be the displacements and scaled plastic

strain introduced in (4.3.2), (4.3.3) and (4.3.41). Then, there exists a triple (u, v, p) ∈
A(u0, v0) such that, up to subsequences, there holds

uε → u strongly in W 1,2(ω;R2), (4.5.2)

vε → v strongly in W 1,2(ω), (4.5.3)

pε → p strongly in L2(Ω;M3×3). (4.5.4)
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4. Linearized plastic plate models as Γ -limits of 3D finite plasticity

Moreover, (u, v, p) is a minimizer of Jα and

lim
ε→0
J εα(yε, P ε) = Jα(u, v, p). (4.5.5)

Proof. By Theorems 4.3.3 and 4.4.1 and by standard arguments in Γ-convergence we deduce

(4.5.3), we show that

uε ⇀ u weakly in W 1,2(ω;R2),

pε ⇀ p weakly in L2(Ω;M3×3),

where (u, v, p) ∈ A(u0, v0) is a minimizer of Jα , and we prove (4.5.5). Strong convergence

of uε and pε follows by (4.5.5) and by adaptating Corollaries 5.4.3 and 5.4.2.

We remark that the limit plastic strain p depends nontrivially on the x3 variable. There-

fore, the limit functionals Jα cannot, in general, be expressed in terms of two-dimensional

quantities only. A characterization of the functionals in terms of the zeroth and first or-

der moments of p can be obtained arguing as follows. Denote by p̄, p̂ ∈ L2(ω;M3×3
D ) and

p⊥ ∈ L2(Ω;M3×3
D ) the following orthogonal components (in the sense of L2(Ω;M3×3

D )) of

the plastic strain p :

p̄(x′) :=

ˆ 1
2

− 1
2

p(x′, x3) dx3, p̂(x′) := 12

ˆ 1
2

− 1
2

x3p(x
′, x3) dx3 for a.e. x′ ∈ ω,

and

p⊥(x) := p(x)− p̄(x′)− x3p̂(x
′) for a.e. x ∈ Ω.

Then the functionals Jα can be written in terms of p̄, p̂, p⊥ as

Jα(u, v, p) =

ˆ
ω

Q2(sym∇′u− p̄′) dx′ + 1

12

ˆ
ω

Q2((∇′)2v + p̂′) dx′

+

ˆ
Ω

Q2(p′⊥) dx+

ˆ
ω

B(p̄) dx′ +
1

12

ˆ
ω

B(p̂) dx′

+

ˆ
Ω

B(p⊥) dx+

ˆ
Ω

HD(p− p0) dx,

for α > 3, and

J3(u, v, p) =

ˆ
ω

Q2

(
sym∇′u+ 1

2∇
′v ⊗∇′v − p̄′

)
dx′

+
1

12

ˆ
ω

Q2((∇′)2v + p̂′) dx′ +

ˆ
Ω

Q2(p′⊥) dx+

ˆ
ω

B(p̄) dx′

+
1

12

ˆ
ω

B(p̂) dx′ +

ˆ
Ω

B(p⊥) dx+

ˆ
Ω

HD(p− p0) dx,

for every (u, v, p) ∈ A(u0, v0).

Under additional hypotheses on the boundary data and the preexistent limit plastic

strain p0 , some two-dimensional characterizations of the limit model can be deduced in the

case α > 3. To this purpose, we introduce the reduced functionals

J̄α(u, p̄) :=

ˆ
ω

Q2(sym∇′u− p̄′) dx′ +
ˆ
ω

B(p̄) dx′ +

ˆ
ω

HD(p̄− p̄0) dx′ (4.5.6)
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for every (u, p̄) ∈W 1,2(ω;R2)× L2(ω;M3×3
D ) such that u = u0 H1 - a.e. on γd , and

Ĵα(v, p̂) :=

ˆ
ω

Q2((∇′)2v + p̂′) dx′
ˆ
ω

B(p̂) dx′ +

ˆ
ω

HD(p̂− p̂0) dx′, (4.5.7)

for every (v, p̂) ∈ W 2,2(ω) × L2(ω;M3×3
D ) such that v = v0 and ∇′v = ∇′v0 H1 - a.e. on

γd .

We first show an example where Jα reduces to J̄α , that is the limit model depends just

on the in-plane displacement and the zeroth moment of the plastic strain.

Theorem 4.5.2. Under the hypotheses of Theorem 4.5.1, if α > 3 , p0 = p̄0 , with p̄0 ∈
L∞(ω;M3×3

D ) , and v0 = 0 then, denoting by p̄ the zeroth moment of the limit plastic strain

p , the pair (u, p̄) is a minimizer of J̄α and

lim
ε→0
J εα(yε, P ε) = J̄α(u, p̄).

Proof. By Jensen inequality,ˆ
Ω

HD(p− p0) dx ≥
ˆ
ω

HD(p̄− p̄0) dx′,

hence there holds

Jα(u, v, p) ≥ J̄α(u, p̄).

On the other hand, by setting

P̃ ε := exp (εα−1p̄)

and

ỹε :=
( x′,

εx3

)
+ εα−1

( u

0

)
+ εα

ˆ x3

− 1
2

d(x′, s) ds,

with d ∈ C∞c (Ω;R3), then (ỹε, P̃ ε) ∈ Aε(φε) and an adaptation of Theorem 4.4.1 yields

lim
ε→0
J εα(ỹε, P̃ ε) = J̄α(u, p̄).

By combining the previous remarks we have

Jα(u, v, p) ≥ J̄α(u, p̄) = lim
ε→0
J εα(ỹε, P̃ ε) ≥ lim

ε→0
J εα(yε, P ε).

The thesis follows now by Theorem 4.5.1

We conclude this section by providing an example where, if HD is homogeneous of degree

one, the Γ-limit Jα reduces to Ĵα , that is the limit model depends just on the out-of-plane

displacement and the first order moment of the plastic strain.

Theorem 4.5.3. Assume the function HD to be homogeneous of degree one, i.e.,

HD(λξ) = |λ|HD(ξ) for every λ ∈ R, ξ ∈M3×3. (4.5.8)

Under the hypotheses of Theorem 4.5.1, if α > 3 , p0 = x3p̂
0 , with p̂0 ∈ L∞(ω;M3×3

D ) , and

u0 = 0 then, denoting by p̂ the first order moment of the limit plastic strain p , the pair

(v, p̂) is a minimizer of Ĵα and

lim
ε→0
J εα(yε, P ε) =

1

12
Ĵα(v, p̂).
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Proof. By Jensen inequality and (4.5.8) we deduce,

ˆ
Ω

HD(p− p0) dx ≥
ˆ

Ω

|x3|HD(p− p0) dx =

ˆ
Ω

HD(x3p− x3p
0) dx ≥ 1

12

ˆ
ω

HD(p̂− p̂0) dx′,

which in turn implies

Jα(u, v, p) ≥ 1

12
Ĵα(v, p̂).

On the other hand, by setting

P̃ ε := exp (εα−1x3p̂)

and

ỹε :=
( x′,

εx3

)
− εα−1x3

( ∇′v
0

)
+ εα−2

( v

0

)
+ εα

ˆ x3

− 1
2

d(x′, s) ds,

with d ∈ C∞c (Ω;R3), an adaptation of Theorem 4.4.1 yields

lim
ε→0
J εα(ỹε, P̃ ε) =

1

12
Ĵα(v, p̂).

The conclusion follows now arguing as in the proof of Theorem 4.5.2.
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Chapter 5

Quasistatic evolution models for

thin plates in finite plasticity

5.1 Overview of the chapter

In this chapter we deduce by Γ-convergence some partially and fully linearized qua-

sistatic evolution models for a thin plate, whose elastic behaviour is nonlinear and whose

plastic response is governed by finite plasticity with hardening. Denoting by ε the thickness

of the plate, we study the case where the scaling factor of the elasto-plastic energy is of order

ε2α−2 , with α ≥ 3. We show that solutions to the three-dimensional quasistatic evolution

problems converge, as the thickness of the plate tends to zero, to quasistatic evolutions as-

sociated to the reduced models identified in Chapter 4.

The chapter is organized as follows: in Section 5.2 we set the problem and we prove

some preliminary results. Section 5.3 concerns the formulation of the quasistatic evolution

problems, the statement of the main result of the chapter and the construction of the mutual

recovery sequence, whereas Section 5.4 is entirely devoted to the proofs of the convergence

of quasistatic evolutions. Finally, in Section 5.5 we discuss convergence of approximate

discrete-time quasistatic evolutions. In the appendix (Section 5.6), we show existence of a

quasistatic evolution associated to our reduced model for α = 3.

5.2 Preliminaries and setting of the problem

Let ω ⊂ R2 be a connected, bounded open set with C2 boundary. Let ε > 0. We assume

that the set Ωε := ω×
(
− ε

2 ,
ε
2

)
is the reference configuration of a finite-strain elastoplastic

plate, and every deformation η ∈W 1,2(Ωε;R3) fulfills the multiplicative decomposition

∇η(x) = Fel(x)Fpl(x) for a.e. x ∈ Ωε,

where Fel ∈ L2(Ωε;M3×3) represents the elastic strain, Fpl ∈ L2(Ωε;SL(3)) is the plastic

strain and SL(3) := {F ∈ M3×3 : detF = 1}. The stored energy (per unit thickness)
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associated to a deformation η and to its elastic and plastic strains can be expressed as

follows:

E(η, Fpl) :=

ˆ
Ωε

Wel(∇η(x)F−1
pl (x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx,

=

ˆ
Ωε

Wel(Fel(x)) dx+

ˆ
Ωε

Whard(Fpl(x)) dx (5.2.1)

where Wel is a nonlinear elastic energy density, Whard describes hardening, and both maps

satisfy the same assumptions as in Section 4.2.

Given a preexistent plastic strain F 0
pl ∈ L2(Ωε;SL(3)), we define the plastic dissipation

potential associated to a plastic configuration F ∈ L2(Ωε;SL(3)) as

εα−1

ˆ
Ωε

D(F 0
pl;F ) dx, (5.2.2)

where α ≥ 3 is a given parameter and D is the dissipation distance considered in Section

4.2.

5.2.1 Change of variables and formulation of the problem

In this chapter we adopt a slightly different formulation of the problem with respect to

that of Chapter 4. Indeed we shall add further regularity assumptions both on ∂ω and γd

and on the boundary datum φε . We suppose that the boundary ∂ω is partitioned into two

disjoint open subsets γd and γn , and their common boundary ∂b∂ωγd = ∂b∂ωγn (topological

notions refer here to the relative topology of ∂ω ). We assume that γd is nonempty and that

∂b∂ωγd = {P1, P2} , where P1, P2 are two points in ∂ω . We denote by Γε the portion of the

lateral surface of the plate given by Γε := γd ×
(
− ε

2 ,
ε
2

)
. On Γε we prescribe a boundary

datum of the form

φε(x) :=
( x′

x3

)
+
( εα−1u0(x′)

0

)
+ εα−2

( −x3∇′v0(x′)

v0(x′)

)
(5.2.3)

for every x = (x′, εx3) ∈ Ωε , where u0 ∈ C1(ω;R2), v0 ∈ C2(ω) and α ≥ 3 is the same

parameter as in (5.2.2).

We consider deformations η ∈W 1,2(Ωε;R3) satisfying

η = φε H2 - a.e. on Γε. (5.2.4)

Arguing as in Chapter 4, we consider the set Ω := ω ×
(
− 1

2 ,
1
2

)
and the map ψε : Ω→ Ωε

given by

ψε(x) := (x′, εx3) for every x ∈ Ω. (5.2.5)

To every deformation η ∈ W 1,2(Ωε;R3) satisfying (5.2.4) and to every plastic strain Fpl ∈
L2(Ωε;SL(3)), we associate the scaled deformation y := η ◦ψε and the scaled plastic strain

P := Fpl ◦ ψε . Denoting by Γd the set γd ×
(
− 1

2 ,
1
2

)
, the scaled deformation satisfies the

boundary condition

y = φε ◦ ψε H2 - a.e. on Γd. (5.2.6)
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We still denote by Aε(φε) the class of pairs (yε, P ε) ∈W 1,2(Ω;R3)×L2(Ω;SL(3)) such

that (5.2.6) is satisfied. Applying the change of variable (5.2.5) to (5.2.1) and (5.2.2), the

energy functional is now given by

I(y, P ) :=
1

ε
E(η, Fpl) =

ˆ
Ω

Wel(∇εy(x)P−1(x)) dx+

ˆ
Ω

Whard(P (x)) dx, (5.2.7)

where ∇εy(x) :=
(
∂1y(x)

∣∣∂2y(x)
∣∣ 1
ε∂3y(x)

)
for a.e. x ∈ Ω. The plastic dissipation potential

is given by

εα−1

ˆ
Ω

D(P ε,0, P ) dx (5.2.8)

where P ε,0 := F 0
pl ◦ ψε is a scaled preexistent plastic strain.

5.2.2 Approximation results

We still denote by A(u0, v0) the set of triples (u, v, p) ∈ W 1,2(Ω;R2) × W 2,2(Ω) ×
L2(Ω;M3×3

D ) such that

u = u0, v = v0, and ∇′v = ∇′v0 H1 - a.e. on γd.

We conclude this section by stating an approximation result for triples (u, v, p) ∈ A(u0, v0)

by means of smooth triples. Denoting by C∞c (ω ∪ γn) the sets of smooth maps having

compact support in ω ∪ γn , the following lemma holds true.

Lemma 5.2.1. (i) Let u ∈ W 1,2(ω) with u = 0 H1 - a.e. on γd . Then there exists a

sequence uk ∈ C∞c (ω ∪ γn) such that uk → u strongly in W 1,2(ω) . (ii) Let v ∈ W 2,2(ω)

with v = 0 and ∇′v = 0 H1 - a.e. on γd . Then there exists a sequence vk ∈ C∞c (ω ∪ γn)

such that vk → v strongly in W 2,2(ω) .

Proof. The proof is an adaptation of the arguments in Theorem 3.3.9 and Lemma 3.6.10.

In particular, the previous lemma implies the following density result.

Corollary 5.2.2. Let (u, v, p) ∈ A(u0, v0) . Then there exists a sequence of triples (uk, vk, pk) ∈
C∞c (ω ∪ γn;R2)× C∞c (ω ∪ γn)× C∞c (Ω;M3×3

D ) such that

uk → u strongly in W 1,2(ω;R2),

vk → v strongly in W 2,2(ω),

pk → p strongly in L2(Ω;M3×3
D ).

Proof. The approximation of the plastic strain p is obtained by standard arguments. The

approximation of the in-plane displacements and out-of-plane displacements follows by ap-

plying Lemma 5.2.1 to the maps u− u0 and v − v0 .

5.3 The quasistatic evolution problems

In this section we set the quasistatic evolution problem for the scaled energy functional

defined in (5.2.7).
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For every t ∈ [0, T ] we prescribe a boundary datum φε(t) ∈W 1,∞(Ω;R3)∩C∞(R3;R3),

defined as

φε(t, x) :=
( x′

x3

)
+ εα−1

( u0(t, x′)

0

)
+ εα−2

( −x3∇′v0(t, x′)

v0(t, x′)

)
,

for every x ∈ R3 , where the map t 7→ u0(t) is assumed to be C1([0, T ];C1(R2;R2)) and the

map t 7→ v0(t) is C1([0, T ];C2(R2)). We consider deformations t 7→ yε(t) from [0, T ] into

W 1,2(Ω;R3) that satisfy

yε(t, x) = φε(t, (x′, εx3)) H2 - a.e. on Γd,

and plastic strains t 7→ P ε(t) from [0, T ] into L2(Ω;SL(3)).

For technical reasons, it is convenient to modify the map t 7→ φε(t) outside the set Ω.

We consider a truncation function θε ∈W 1,∞(R) ∩ C1(R) satisfying

θε(s) = s in (−`ε, `ε), (5.3.1)

|θε(s)| ≤ |s| for every s ∈ R, (5.3.2)

‖θε‖L∞(R) ≤ 2`ε, (5.3.3)

θ̇ε(s) = 0 if |x3| ≥ `ε + 1, (5.3.4)

‖θ̇ε(s)‖L∞(R) ≤ 2, (5.3.5)

where `ε is such that

εα−1−γ`ε → 0, (5.3.6)

ε`ε → +∞, (5.3.7)

ε2α−2`3ε → 0, (5.3.8)

for some 0 < γ < α− 2. For α > 3 we also require

εα−1`2ε → 0. (5.3.9)

Remark 5.3.1. A possible choice of `ε is `ε = 1
ε1+λ

, with 0 < λ < min{α−3
2 , α − 2 − γ}

when α > 3, and 0 < λ < min{ 1
3 , 1− γ} in the case α = 3.

With a slight abuse of notation, for every t ∈ [0, T ] we still denote by φε(t) the map

defined as

φε(t, x) :=
( x′

x3

)
+ εα−1

( u0(t, x′)− θε
(
x3

ε

)
∇′v0(t, x′)

0

)
+ εα−2

( 0

v0(t, x′)

)
(5.3.10)

for every x ∈ R3 .

Remark 5.3.2. Conditions (5.3.1) and (5.3.7) guarantee that φε(t) is indeed an extension

of the originally prescribed boundary datum, for ε small enough. Conditions (5.3.3) and

(5.3.5) provide a uniform bound with respect to t on the W 1,∞(R3;R3) norm of φε(t)− id .

By (5.3.3), (5.3.5) and (5.3.6), there exists ε0 > 0 such that, for every t ∈ [0, T ] and ε < ε0 ,

the map φε(t) : R3 → R3 is invertible with smooth inverse ϕε(t). Since

φε(t, ϕε(t, x)) = x for every x ∈ R3,
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by (5.3.10) there holds

(ϕε)′(t)− x′ = −εα−1u0(t, (ϕε)′(t)) + εα−1θε
(ϕε3(t)

ε

)
∇′v0(t, (ϕε)′(t)), (5.3.11)

ϕε3(t)− x3 = −εα−2v0(t, (ϕε)′(t)), (5.3.12)

for every t ∈ [0, T ] . Hence, by the smoothness of u0 and v0 and by (5.3.3), we deduce the

estimates

‖(ϕε)′(t)− x′‖L∞(R3;R2) ≤ Cεα−1`ε, (5.3.13)

and

‖ϕε3(t)− x3‖L∞(R3) ≤ Cεα−2, (5.3.14)

where both constants are independent of t . In particular, (5.3.11) yields

∇(ϕε)′(t)−
( 1 0 0

0 1 0

)
= −εα−1∇′u0(t, (ϕε)′(t))∇(ϕε)′(t)

+εα−1θε
(ϕε3(t)

ε

)
(∇′)2v0(t, (ϕε)′(t))∇(ϕε)′(t)

+εα−2θ̇ε
(ϕε3(t)

ε

)
∇′v0(t, (ϕε)′(t))⊗∇ϕε3(t), (5.3.15)

and (5.3.12) implies

∇ϕε3(t)− e3 = −εα−2(∇(ϕε)′(t))T∇′v0(t, (ϕε)′(t)), (5.3.16)

for every t ∈ [0, T ] .

A direct computation shows that

∇φε(t, x) = Id+ εα−1
( ∇′u0(t, x′) 0

0 0

)
− εα−1

( θε
(
x3

ε

)
(∇′)2v0(t, x′) 0

0 0

)
+εα−2

( 0 −θ̇ε
(
x3

ε

)
∇′v0(t, x′)

(∇′v0(t, x′))T 0

)
for every x ∈ R3. (5.3.17)

Hence by (5.3.3), (5.3.5) and (5.3.6) there holds

‖∇ϕε(t)‖L∞(R3;M3×3) ≤ ‖(∇φε(t))−1‖L∞(R3;M3×3) ≤ C, (5.3.18)

for every t ∈ [0, T ] and for every ε < ε0 . Therefore, (5.3.3), (5.3.5), (5.3.7), (5.3.15) and

(5.3.16) yield

‖∇(ϕε)′(t)− (e1|e2|0)‖L∞(R3;M3×2) ≤ Cεα−1`ε, (5.3.19)

and

‖∇ϕε3(t)− e3‖L∞(R3;R3) ≤ Cεα−2. (5.3.20)

By Remark 5.3.2 for ε small enough the function φε(t) is a smooth diffeomorphism for

every t ∈ [0, T ] . This implies that we are allowed to define a map t 7→ zε(t) from [0, T ] into

W 1,2(Ω;R3) as the pointwise solution of

yε(t, x) = φε(t, zε(t, x))
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for every t ∈ [0, T ] . We note that

zε(t) = (x′, εx3) H2 - a.e. on Γd (5.3.21)

for every t ∈ [0, T ] . According to this change of variable, the elastic energy at time t

associated to the deformation yε(t) can be written in terms of zε(t) asˆ
Ω

Wel(∇εyε(t)(P ε)−1(t)) dx =

ˆ
Ω

Wel

(
∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)

)
dx.

For every t ∈ [0, T ] we define the three-dimensional stress as

Eε(t) :=
1

εα−1
DWel

(
∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)

)(
∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)

)T
.

Let s1, s2 ∈ [0, T ] , with s1 ≤ s2 . For every function t 7→ P (t) from [0, T ] into L2(Ω;SL(3)),

we define its dissipation as

D(P ; s1, s2) := sup
{ N∑
i=1

ˆ
Ω

D(P (ti−1), P (ti)) dx : s1 = t0 < t1 < · · · < tN = s2

}
.

Analogously, for every function t 7→ p(t) from [0, T ] into L2(Ω;M3×3
D ), we define its HD -

dissipation as

DHD (p; s1, s2) := sup
{ N∑
i=1

ˆ
Ω

HD(p(ti)− p(ti−1)) dx : s1 = t0 < t1 < · · · < tN = s2

}
.

Finally, we denote by Fε(t, z, P ) the quantity

Fε(t, z, P ) :=

ˆ
Ω

Wel

(
∇φε(t, z)∇εzP−1

)
dx+

ˆ
Ω

Whard(P ) dx

for every t ∈ [0, T ] , z ∈ W 1,2(Ω;R3) and P ∈ L2(Ω;SL(3)). We are now in a position to

give the definition of quasistatic evolution associated to the boundary datum t 7→ φε(t).

Definition 5.3.3. Let ε > 0. An ε-quasistatic evolution for the boundary datum t 7→ φε(t)

is a function t 7→ (zε(t), P ε(t)) from [0, T ] into W 1,2(Ω;R3) × L2(Ω;SL(3)) that satisfies

the following conditions:

(gs) global stability: for every t ∈ [0, T ] we have zε(t, x) = (x′, εx3) H2 - a.e. on Γd ,

P ε(t, x) ∈ K for a.e. x ∈ Ω and

Fε(t, zε(t), P ε(t)) ≤ Fε(t, z̃, P̃ ) + εα−1

ˆ
Ω

D(P ε(t), P̃ ) dx,

for every (z̃, P̃ ) ∈W 1,2(Ω;R3)×L2(Ω;SL(3)) such that z̃(x) = (x′, εx3) H2 - a.e. on Γd

and P̃ (x) ∈ K for a.e. x ∈ Ω;

(eb) energy balance: the map

s 7→
ˆ

Ω

Eε(s) :
(
∇φ̇ε(s, zε(s))(∇φε)−1(s, zε(s))

)
dx

is integrable in [0, T ] and for every t ∈ [0, T ]

Fε(t, zε(t), P ε(t)) + εα−1D(P ε; 0, t)

= Fε(0, zε(0), P ε(0)) + εα−1

ˆ t

0

ˆ
Ω

Eε(s) :
(
∇φ̇ε(s, zε(s))(∇φε)−1(s, zε(s))

)
dx ds.
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Remark 5.3.4. We remark that if the function t → (zε(t), P ε(t)) satisfies condition (gs),

then Eε(t) ∈ L1(Ω;M3×3) for every t ∈ [0, T ] . Indeed, by (gs), taking z̃(x) = (x′, εx3) for

every x ∈ Ω and P̃ = P ε(t), we deduce
ˆ

Ω

Wel

(
∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)

)
dx ≤

ˆ
Ω

Wel

(
∇φε(t, (x′, εx3))(P ε)−1(t)

)
dx.

(5.3.22)

On the other hand, P ε(t, x) ∈ K for a.e. x ∈ Ω and for ε small enough there exists

two constants C1 and C2 such that det(∇φε(t, (x′, εx3))) ≥ C1 for every x ∈ Ω and

‖∇φε(t, (x′, εx3))‖L∞(Ω;M3×3) ≤ C2 . Therefore, by hypothesis (H1) (see Section 4.2) the

quantity in (5.3.22) is finite and

det
(
∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)

)
> 0 a.e. in Ω (5.3.23)

for ε small enough. Hence, by (4.2.5) we obtain
ˆ

Ω

|Eε(t)| dx ≤ c3
εα−1

(ˆ
Ω

Wel(∇φε(t, zε(t))∇εzε(t)(P ε)−1(t)) dx+ 1
)
< +∞.

Remark 5.3.5. By the frame-indifference (H3) of Wel (see Section 4.2), there holds

DWel(F )FT = F (DWel(F ))T for every F ∈M3×3
+ .

Therefore, by (5.3.23), for ε small enough Eε(t, x) ∈M3×3
sym for every t ∈ [0, T ] and for a.e.

x ∈ Ω.

Set

Lα :=

0 if α > 3

1 if α = 3.

For every α ≥ 3 we define a reduced quasistatic evolution as follows.

Definition 5.3.6. For α ≥ 3, a reduced quasistatic evolution for the boundary data t 7→
u0(t) and t 7→ v0(t) is a map t 7→ (u(t), v(t), p(t)) from [0, T ] into W 1,2(ω;R2)×W 2,2(ω)×
L2(Ω;M3×3

D ), that satisfies the following conditions:

(gs)rα for every t ∈ [0, T ] there holds (u(t), v(t), p(t)) ∈ A(u0(t), v0(t)), and setting

eα(t) := sym∇′u(t) + Lα
2 ∇

′v(t)⊗∇′v(t)− x3(∇′)2v(t)− p′(t), (5.3.24)

we haveˆ
Ω

Q2(eα(t)) dx+

ˆ
Ω

B(p(t)) dx ≤
ˆ

Ω

Q2

(
sym∇′û+ Lα

2 ∇
′v̂ ⊗∇′v̂ − x3(∇′)2v̂ − p̂′

)
dx

+

ˆ
Ω

B(p̂) dx+

ˆ
Ω

HD(p̂− p(t)) dx,

for every (û, v̂, p̂) ∈ A(u0(t), v0(t));

(eb)rα the map

s→
ˆ

Ω

C2eα(s) :
( ∇′u̇0(s) + Lα∇′v̇0(s)⊗∇′v(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx
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is integrable in [0, T ] . Moreover for every t ∈ [0, T ] there holds

ˆ
Ω

Q2(eα(t)) dx+

ˆ
Ω

B(p(t)) dx+DH(p; 0, t) =

ˆ
Ω

Q2(eα(0)) dx+

ˆ
Ω

B(p(0)) dx

+

ˆ t

0

ˆ
Ω

C2eα(s) :
( ∇′u̇0(s) + Lα∇′v̇0(s)⊗∇′v(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx ds.

Remark 5.3.7. An adaptation of [15, Theorem 4.5] guarantees that, if α > 3, for every

triple (u, v, p) ∈ A(u0(0), v0(0)) satisfying

ˆ
Ω

Q2

(
sym∇′u− x3(∇′)2v + Lα

2 ∇
′v ⊗∇′v − p′) dx+

ˆ
Ω

B(p) dx

≤
ˆ

Ω

Q2

(
sym∇′û− x3(∇′)2v̂ + Lα

2 ∇
′v̂ ⊗∇′v̂ − p̂′

)
dx+

ˆ
Ω

B(p̂) dx+

ˆ
Ω

HD(p̂− p) dx,

for every (û, v̂, p̂) ∈ A(u0(0), v0(0)), there exists a reduced quasistatic evolution t 7→
(u(t), v(t), p(t)) (according to Definition 5.3.6) such that u(0) = u , v(0) = v and p(0) = p .

Moreover, by adapting [15, Theorem 5.2 and Remark 5.4] one can show that the maps

t 7→ u(t), t 7→ v(t) and t 7→ p(t) are Lipschitz continuous from [0, T ] into W 1,2(ω;R2),

W 2,2(ω) and L2(Ω;M3×3
D ), respectively.

In the case α = 3, the existence of a reduced quasistatic evolution t 7→ (u(t), v(t), p(t))

such that (u(0), v(0), p(0)) = (u, v, p) can still be proved by adapting [15, Theorem 4.5]. We

remark that the proof of this result is more subtle than its counterpart in the case α > 3,

due to the presence of the nonlinear term 1
2∇
′v⊗∇′v . In fact, some further difficulties arise

when trying to prove the analogous of [15, Theorem 4.7], that is, to deduce the converse

energy inequality by the minimality. To do this, one can apply [16, Lemma 4.12], which

guarantees the existence of partitions of [0, T ] on which the Bochner integrals of some

relevant quantities can be approximated by Riemann sums, and argue as in [6, Lemma 5.7]

(see Theorem 5.6.3).

Remark 5.3.8. By taking p̂ = p(t) in (gs)rα , it follows that a reduced quasistatic evolution

t 7→ (u(t), v(t), p(t)) satisfies

ˆ
Ω

Q2(eα(t)) dx ≤
ˆ

Ω

Q2(sym∇′û+ Lα
2 ∇

′v̂ ⊗∇′v̂ − x3(∇′)2v̂ − p′(t)) dx

for every (û, v̂) ∈W 1,2(ω;R2)×W 2,2(ω) such that

û = u0(t), v̂ = v0(t) and ∇′v̂ = ∇′v0(t) H1 - a.e. on γd.

Hence, in particular, there holds

ˆ
Ω

C2eα(t) : ∇′ζ dx = 0

for every ζ ∈W 1,2(ω;R2) such that ζ = 0 H1 - a.e. on γd .

With the previous definitions at hand we are in a position to state the main result of the

chapter.
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Theorem 5.3.9. Let α ≥ 3 . Assume that t 7→ u0(t) belongs to C1([0, T ];W 1,∞(R2;R2) ∩
C1(R2;R2)) and t 7→ v0(t) belongs to C1([0, T ];W 2,∞(R2) ∩ C2(R2)) , respectively. For

every t ∈ [0, T ] , let φε(t) be defined as in (5.3.10). Let (̊u, v̊, p̊) ∈ A(u0(0), v0(0)) be such

that ˆ
Ω

Q2(sym∇′ů− x3(∇′)2v̊ + Lα
2 ∇

′̊v ⊗∇′̊v − p̊′) dx+

ˆ
Ω

B(p̊) dx

≤
ˆ
ω

Q2(∇′û− x3(∇′)2v̂ + Lα
2 ∇

′v̂ ⊗∇′v̂ − p̂′) dx′ +
ˆ

Ω

B(p̂) dx+

ˆ
Ω

H(p̂− p̊) dx,

for every (û, v̂, p̂) ∈ A(u0(0), v0(0)) . Assume there exists a sequence of pairs (yε0, P
ε
0 ) ∈

Aε(φε(0)) such that

I(yε0, P
ε
0 ) ≤ I(ŷ, P̂ ) + εα−1

ˆ
Ω

D(P ε0 , P̂ ) dx, (5.3.25)

for every (ŷ, P̂ ) ∈ Aε(φε(0)) , and

uε0 :=
1

εα−1

ˆ 1
2

− 1
2

(
(yε0)′ − x′

)
dx3 → ů strongly in W 1,2(ω;R2), (5.3.26)

vε0 :=
1

εα−2

ˆ 1
2

− 1
2

(yε0)3 dx3 → v̊ strongly in W 1,2(ω), (5.3.27)

pε0 :=
P ε0 − Id
εα−1

→ p̊ strongly in L2(Ω;M3×3
D ), (5.3.28)

lim
ε→0

1

ε2α−2
I(yε0, P

ε
0 ) =

ˆ
Ω

Q2(sym∇′ů− x3(∇′)2v̊ + Lα
2 ∇

′̊v ⊗∇′̊v − p̊′) dx

+

ˆ
Ω

B(p̊) dx. (5.3.29)

Finally, for every ε > 0 , let t 7→ (zε(t), P ε(t)) be an ε-quasistatic evolution for the boundary

datum φε(t) such that

zε(0) = ϕε(0, yε0) a.e. in Ω

and

P ε(0) = P ε0 .

Then, there exists a reduced quasistatic evolution t 7→ (u(t), v(t), p(t)) for the boundary data

(u0(t), v0(t)) (according to Definition 5.3.6), such that u(0) = ů , v(0) = v̊ , p(0) = p̊ and,

up to subsequences,

pε(t) :=
P ε(t)− Id
εα−1

⇀ p(t) weakly in L2(Ω;M3×3) (5.3.30)

for every t ∈ [0, T ] . Moreover, for α > 3 up to subsequences there holds

uε(t) :=
1

εα−1

ˆ 1
2

− 1
2

(
(φε)′(t, zε(t))− x′

)
dx3 ⇀ u(t) weakly in W 1,2(ω;R2),

(5.3.31)

vε(t) :=
1

εα−2

ˆ 1
2

− 1
2

φε3(t, zε(t)) dx3 → v(t) strongly in W 1,2(ω), (5.3.32)
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for every t ∈ [0, T ] . For α = 3 , for every t ∈ [0, T ] there exists a t-dependent subsequence

εj → 0 such that

uεjt(t) :=
1

εα−1
jt

ˆ 1
2

− 1
2

(
(φεjt)′(t, zεjt(t))− x′

)
dx3 ⇀ u(t) weakly in W 1,2(ω;R2),

(5.3.33)

vεjt(t) :=
1

εα−2
jt

ˆ 1
2

− 1
2

φ
εjt
3 (t, zεjt(t)) dx3 → v(t) strongly in W 1,2(ω). (5.3.34)

Remark 5.3.10. In the case α > 3 the convergence result is stronger than the analogous

result for α = 3 as the convergence of uε(t) and vε(t) holds on a subsequence independent

of t . This is related to the fact that, for α > 3, once t 7→ p(t) is identified, both t 7→ u(t)

and t 7→ v(t) are uniquely determined. In the case α = 3 this property is not true anymore

because of the presence of the nonlinear term 1
2∇
′v(t)⊗∇′v(t).

We shall prove the previous theorem in the next section. To conclude this section, we

prove a technical lemma concerning some properties of the truncation maps θε and we

provide the construction of the so-called “joint recovery sequence”, that will be used in the

proof of Theorem 5.3.9.

Lemma 5.3.11. Let θε ∈ W 1,∞(R) ∩ C1(R) be such that (5.3.1)–(5.3.7) hold and let (ζε)

be a sequence in L2(Ω) such that

‖ζε‖L2(Ω) ≤ Cε. (5.3.35)

Then, ∥∥∥1− θ̇ε
(ζε
ε

)∥∥∥
L2(Ω)

≤ 3

`ε
. (5.3.36)

Moreover, if ζε satisfies ∥∥ζε
ε
− x3 − εα−3v

∥∥
L2(Ω)

→ 0, (5.3.37)

for some v ∈ L2(ω) , then

θε
(ζε
ε

)
→

x3 if α > 3

x3 + v if α = 3
strongly in L2(Ω). (5.3.38)

Proof. Denoting by Oε the set

Oε :=
{
x ∈ Ω : |ζε(x)| ≥ ε`ε

}
,

by (5.3.35) and by Chebychev inequality, there holds

L3(Oε) ≤
C

`2ε
.

Hence, by (5.3.1) and (5.3.5),∥∥∥1− θ̇ε
(ζε
ε

)∥∥∥
L2(Ω)

=
∥∥∥1− θ̇ε

(ζε
ε

)∥∥∥
L2(Oε)

≤ 3

`ε
.
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To prove (5.3.38), we note that by (5.3.37) there holds

θε
(ζε
ε

)
→

x3 if α > 3

x3 + v if α = 3
a.e. in Ω.

On the other hand, (5.3.2) yields
∣∣θε( ζεε )∣∣ ≤ ∣∣ ζεε ∣∣ for every ε and for a.e. x ∈ Ω. Therefore

(5.3.38) follows by the dominated convergence theorem.

For the sake of simplicity, in the next theorem we omit the time dependence of u0 and

v0 . With a slight abuse of notation, we denote by φε the map

φε(x) :=
( x′

x3

)
+ εα−1

( u0(x′)− θε(x3

ε )∇′v0(x′)

0

)
+ εα−2

( 0

v0(x′)

)
,

for a.e. x ∈ Ω, where u0 ∈W 1,∞(R2;R2) ∩ C1(R2;R2) and v0 ∈W 2,∞(R2) ∩ C2(R2). We

are now in a position to construct the joint recovery sequence.

Theorem 5.3.12. Let (yε, P ε) ∈ Aε(φε) satisfy (4.3.29) for every ε > 0 . Let u, v,G, p

be defined as in Theorem 4.3.3 and let û := u + ũ , v̂ := v + ṽ , and p̂ := p + p̃ , where

ũ ∈ C∞c (ω∪ γn;R2) , ṽ ∈ C∞c (ω∪ γn) and p̃ ∈ C∞c (Ω;M3×3
D ) . Then, there exists a sequence

of pairs (ŷε, P̂ ε) ∈ Aε(φε) , such that

ŷε →
( x′

0

)
strongly in W 1,2(Ω;R3), (5.3.39)

ûε :=
1

εα−1

ˆ 1
2

− 1
2

(
(ŷε)′ − x′

)
dx3 ⇀ û weakly in W 1,2(ω;R2) for α > 3,(5.3.40)

ûε ⇀ û− v∇ṽ weakly in W 1,2(ω;R2) for α = 3, (5.3.41)

1

εα−2

ˆ 1
2

− 1
2

ŷε3 dx3 → v̂ strongly in W 1,2(ω), (5.3.42)

P̂ ε(x) ∈ K for a.e. x ∈ Ω, (5.3.43)

p̂ε :=
P̂ ε − Id
εα−1

⇀ p̂ weakly in L2(Ω;M3×3). (5.3.44)

Moreover, the following inequalities hold true:

lim sup
ε→0

1

ε2α−2

(ˆ
Ω

Whard(P̂
ε) dx−

ˆ
Ω

Whard(P
ε) dx

)
≤
ˆ

Ω

B(p̂) dx−
ˆ

Ω

B(p) dx, (5.3.45)

lim sup
ε→0

1

εα−1

ˆ
Ω

D(P ε, P̂ ε) dx ≤
ˆ

Ω

HD(p̂− p) dx, (5.3.46)

and

lim sup
ε→0

1

ε2α−2

(ˆ
Ω

Wel(∇εŷε(P̂ ε)−1) dx−
ˆ

Ω

Wel(∇εyε(P ε)−1) dx
)

≤
ˆ

Ω

Q2(sym Ĝ′ − p̂′) dx−
ˆ

Ω

Q2(symG′ − p′) dx,

(5.3.47)
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where the submatrix Ĝ′ satisfies

Ĝ′(x′, x3) := Ĝ0(x′)− x3(∇′)2v̂(x′) for a.e. x ∈ Ω,

and

sym Ĝ0 =
(∇′û+ (∇′û)T +∇′v̂ ⊗∇′v̂)

2
for α = 3,

sym Ĝ0 = sym∇′û for α > 3.

Proof. We divide the proof into four steps. In the first step we exhibit a sequence of defor-

mations (ŷε) satisfying (5.3.39)–(5.3.42). In the second step we construct a sequence (P̂ ε)

of plastic strains and we prove the limsup inequality for the hardening and the dissipation

terms. In the third step we rewrite the elastic energy in terms of some auxiliary quantities

and in the fourth step we prove the limsup inequality for the elastic energy.

We first remark that by (4.3.29) and the boundary condition

yε(x) = φε(x′, εx3) H2 - a.e. on Γd, (5.3.48)

the sequence (yε, P ε) fulfills the hypotheses of Theorems 4.3.1 and 4.3.3. Hence, there

exists a sequence (Rε) ⊂ W 1,∞(ω;M3×3) such that (4.3.6)–(4.3.9) hold true, and (yε)

satisfies (4.3.30). Moreover, defining uε, vε, and Gε according to (4.3.2), (4.3.3) and (4.3.28),

properties (4.3.31)–(4.3.38) hold true. The sequence of plastic strains (P ε) satisfies

P ε(x) ∈ K for a.e. x ∈ Ω, (5.3.49)

and defining pε as in (4.3.41), there holds

pε ⇀ p weakly in L2(Ω;M3×3). (5.3.50)

Finally, by Theorem 4.3.3, (u, v, p) ∈ A(u0, v0) and, by (4.3.32) and (4.3.34), the sequence

(yε3) fulfills the hypotheses of Lemma 5.3.11, hence

θε
(yε3
ε

)
→

x3 if α > 3

x3 + v if α = 3
strongly in L2(Ω), (5.3.51)

and by (5.3.7) and (5.3.36) we have

1

ε
− 1

ε
θ̇ε
(yε3
ε

)
→ 0 strongly in L2(Ω). (5.3.52)

Step 1: Construction of the deformations

Let d ∈ C∞c (R3;R3) with supp d ⊂ Ω. Consider the map

ηε(x) :=

ˆ x3
ε

− 1
2

d(x′, s) ds for every x ∈ R3.

Since d has compact support in Ω, there holds

|ηε(x)| ≤
ˆ ∣∣ x3

ε

∣∣
− 1

2

|d(x′, s)| ds ≤
ˆ 1

2

− 1
2

|d(x′, s)| ds ≤ ‖d‖L∞(R3) for every x ∈ R3
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and analogously

‖∇′ηε‖L∞(R3;M3×2) ≤ ‖∇′d‖L∞(R3;M3×2). (5.3.53)

A straightforward computation yields

∂3η
ε(x) =

1

ε
d
(
x′,

x3

ε

)
for every x ∈ R3. (5.3.54)

Hence,

‖ηε‖W 1,∞(R3;R3) ≤
C

ε
. (5.3.55)

In particular, the map ηε ◦ yε satisfies

‖ηε ◦ yε‖L∞(Ω;R3) ≤ C, (5.3.56)

‖∇′(ηε ◦ yε)‖L2(Ω;M3×2) ≤ C‖∇′(yε)′‖L2(Ω;M2×2) +
C

ε
‖∇′yε3‖L2(Ω;R2). (5.3.57)

We extend ũ and ṽ to zero outside their support, we consider the functions

fε(x) := x+
( εα−1ũ(x′)

εα−2ṽ(x′)

)
−
( εα−1θε

(
x3

ε

)
∇′ṽ(x′)

0

)
+ εαηε(x)

for every x ∈ R3 , and we set

ŷε := fε ◦ yε.

It is easy to see that ŷε ∈W 1,2(Ω;R3), we now check that

ŷε = φε(x′, εx3) H2 - a.e. on Γd. (5.3.58)

To prove it, we first remark that by (5.3.48)

ŷε = fε(φε(x′, εx3)) H2 - a.e. on Γd. (5.3.59)

Hence, it remains only to show that

fε(φε(x′, εx3)) = φε(x′, εx3) H2 - a.e. on Γd. (5.3.60)

Let A ⊂ R2 be an open set such that γd ⊂ (A ∩ ∂ω) and ũ, ṽ,∇′ṽ = 0 in A . Since d

has compact support in Ω, without loss of generality we may assume that ηε(x) = 0 for all

x ∈ A × R and every ε . Therefore, we have fε(x) = x in A × R . Let now O ⊂ R2 be an

open set such that γd ⊂ (O ∩ ∂ω) and O ⊂ A , and let 0 < δ0 < dist(O, ∂A). By (5.3.2),

there holds

|(φε)′(x′, εx3)− x′| ≤ εα−1‖u0‖L∞(R2;R2) +
1

2
εα−2‖∇′v0‖L∞(R2;M2×2) <

δ0
2

for every x ∈ O ×
(
− 1

2 ,
1
2

)
, for ε small enough. Hence, φε(x′, εx3) ∈ A × R for every

x ∈ O ×
(
− 1

2 ,
1
2

)
, and fε(φε(x′, εx3)) = φε(x′, εx3) for every x ∈ O ×

(
− 1

2 ,
1
2

)
. This

implies (5.3.60) and (5.3.58).

To prove (5.3.39), we remark that by the smoothness of ũ and ṽ , estimates (5.3.3),

(5.3.5), (5.3.7) and (5.3.55) imply

‖fε − id‖W 1,∞(R3;R3) ≤ Cεα−1`ε. (5.3.61)
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On the other hand, we have∥∥∥ŷε − ( x′

0

)∥∥∥
W 1,2(Ω;R3)

≤ ‖ŷε − yε‖W 1,2(Ω;R3) +
∥∥∥yε − ( x′

0

)∥∥∥
W 1,2(Ω;R3)

≤ C‖fε − id‖W 1,∞(R3;R3)‖∇yε‖L2(Ω;M3×3) +
∥∥∥yε − ( x′

0

)∥∥∥
W 1,2(Ω;R3)

,

so that (5.3.39) follows by (4.3.30), (5.3.6) and (5.3.61).

We now prove convergence of the out-of-plane displacements associated to (ŷε). To show

(5.3.42) we note that

v̂ε =
1

εα−2

ˆ 1
2

− 1
2

fε3 (yε) dx3 = vε +

ˆ 1
2

− 1
2

ṽ((yε)′) dx3 + ε2

ˆ 1
2

− 1
2

ηε3(yε) dx3.

By (4.3.30), up to subsequences, we can assume

(yε)′ → x′ and ∇′(yε)′ → Id a.e. in Ω. (5.3.62)

Hence, by the dominated convergence theorem and the smoothness of ṽ we obtain

ṽ((yε)′)→ ṽ strongly in L2(Ω)

and

∇′ṽ((yε)′)→ ∇′ṽ strongly in L2(Ω;R2).

By (4.3.30), (4.3.32), (5.3.56) and (5.3.57) we conclude

v̂ε → v + ṽ = v̂ strongly in W 1,2(ω).

To prove (5.3.40) and (5.3.41) we note that

ûε = uε +

ˆ 1
2

− 1
2

ũ((yε)′) dx3 −
ˆ 1

2

− 1
2

θε
(yε3
ε

)
∇′ṽ((yε)′) dx3

+ε

ˆ 1
2

− 1
2

(ηε)′(yε) dx3. (5.3.63)

By (5.3.51), (5.3.62) and the dominated convergence theorem,

ũ((yε)′)→ ũ strongly in L2(Ω;R2),ˆ 1
2

− 1
2

θε
(yε3
ε

)
∇′ṽ((yε)′) dx3 → 0 strongly in L2(ω;R2) for α > 3,

ˆ 1
2

− 1
2

θε
(yε3
ε

)
∇′ṽ((yε)′) dx3 → v∇ṽ strongly in L2(ω;R2) for α = 3.

Hence, by (5.3.56), we have

ûε → û strongly in L2(ω;R2) for α > 3,

and

ûε → û− v∇ṽ strongly in L2(ω;R2) for α = 3.
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To complete the proof of (5.3.40) and (5.3.41), it remains to show that

1

εα−1
∇′ûε is bounded in L2(Ω;M2×2). (5.3.64)

By (5.3.63) there holds

1

εα−1
∇′ûε = ∇′uε +

ˆ 1
2

− 1
2

∇′ũ((yε)′)∇′(yε)′ dx3

−
ˆ 1

2

− 1
2

θε
(yε3
ε

)
(∇′)2ṽ((yε)′)∇′(yε)′ dx3 −

1

ε

ˆ 1
2

− 1
2

(θε)′
(yε3
ε

)
∇′ṽ((yε)′)⊗∇′yε3 dx3

+ε

ˆ 1
2

− 1
2

∇′(ηε ◦ yε) dx3.

By adding and subtracting the matrix (Rε)′ we obtain

ˆ 1
2

− 1
2

θε
(yε3
ε

)
(∇′)2ṽ((yε)′)∇′(yε)′ dx3 =

ˆ 1
2

− 1
2

θε
(yε3
ε

)
(∇′)2ṽ((yε)′)

(
∇′(yε)′ − (Rε)′

)
dx3

+

ˆ 1
2

− 1
2

θε
(yε3
ε

)
(∇′)2ṽ((yε)′)(Rε)′ dx3.

Combining (4.3.7) and (5.3.3), we deduce∥∥∥θε(yε3
ε

)
(∇′)2ṽ((yε)′)

(
∇′(yε)′ − (Rε)′

)∥∥∥
L2(Ω;M2×2)

≤ Cεα−1`ε.

On the other hand, by (4.3.6) and (5.3.51), the maps θε
(
yε3
ε

)
∇2ṽ((yε)′)(Rε)′ are bounded in L2(Ω;M2×2).

The L2 -boundedness of the quantity in (5.3.64) follows now by combining (4.3.30), (4.3.31),

(4.3.33), (5.3.5) and (5.3.57).

Step 2: Construction of the plastic strains

Arguing as in [52, Proof of Lemma 3.6], we introduce the sets

Sε := {x ∈ Ω : exp(εα−1p̃(x))P ε(x) ∈ K},

we define

p̂ε :=

 1
εα−1

(
exp(εα−1p̃)P ε − Id

)
in Sε,

pε in Ω \ Sε,

and

P̂ ε := Id+ εα−1p̂ε,

so that, by (5.3.49), the sequence (P̂ ε) satisfies (5.3.43). Since tr p̃ = 0,

det(exp(εα−1p̃)) = exp(εα−1tr p̃) = 1,

therefore

exp(εα−1p̃(x))P ε(x) ∈ SL(3) for a.e. x ∈ Ω. (5.3.65)
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By (5.3.65) we can estimate L3(Ω \ Sε). Indeed by (4.2.14) and (5.3.50) there holds

L3(Ω \ Sε) ≤ c2k
ˆ

Ω

|
(

exp(εα−1p̃(x))P ε(x)− Id|2 dx

= c2k

ˆ
Ω

|
(

exp(εα−1p̃(x)) + εα−1 exp(εα−1p̃(x))pε(x)− Id|2 dx

≤ Cε2(α−1)

ˆ
Ω

(1 + |pε(x)|2) dx ≤ Cε2(α−1). (5.3.66)

Now,

p̂ε − pε =

 1
εα−1

(
exp(εα−1p̃)− Id

)
P ε in Sε,

0 in Ω \ Sε.
(5.3.67)

By (5.3.49), (5.3.50) and (5.3.66) we deduce the following convergence properties:
‖p̂ε − pε‖L∞(Ω;M3×3) ≤ C,

p̂ε − pε → p̃ strongly in L2(Ω;M3×3),

p̂ε + pε ⇀ p̂+ p weakly in L2(Ω;M3×3),

(5.3.68)

hence in particular (5.3.44) holds true. Arguing exactly as in [52, Proof of Lemma 3.6, Step

2 and Step 4], we obtain (5.3.45) and (5.3.46).

Step 3: Convergence properties of the elastic energy

To complete the proof of the theorem it remains to prove (5.3.47). To this purpose, let wε

be the map defined as

wε :=
(P ε)−1 − Id+ εα−1pε

εα−1
= εα−1(P ε)−1(pε)2. (5.3.69)

By (4.2.13) and (5.3.49), there exists a constant C such that

εα−1‖pε‖L∞(Ω;M3×3) ≤ C

and

εα−1‖wε‖L∞(Ω;M3×3) ≤ C (5.3.70)

for every ε . Furthermore, by (5.3.50),

‖wε‖L1(Ω;M3×3) ≤ Cεα−1 for every ε.

By the two previous estimates it follows that (wε) is uniformly bounded in L2(Ω;M3×3)

and

wε ⇀ 0 weakly in L2(Ω;M3×3). (5.3.71)

Now, by (4.3.28) and the frame-indifference property (H3) of Wel (see Section 4.2) there

holds

Wel(∇εyε(P ε)−1) = Wel

(
(Id+ εα−1Gε)(Id+ εα−1(wε − pε))

)
= Wel(Id+ εα−1F ε), (5.3.72)

for a.e. x ∈ Ω, where

F ε := Gε + wε − pε + εα−1Gε(wε − pε). (5.3.73)
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We note that

‖Gε(wε − pε)‖L1(Ω;M3×3) ≤ C

by (4.3.35), (5.3.50) and (5.3.71). Moreover, by (4.3.35), (5.3.49) and (5.3.70),

εα−1‖Gε(wε − pε)‖L2(Ω;M3×3) ≤ εα−1‖Gε‖L2(Ω;M3×3)‖(wε − pε)‖L∞(Ω;M3×3) ≤ C

for every ε . Hence

εα−1Gε(wε − pε) ⇀ 0 weakly in L2(Ω;M3×3),

which in turn, by (4.3.35), (5.3.50) and (5.3.71), yields

F ε ⇀ G− p weakly in L2(Ω;M3×3). (5.3.74)

Analogously, we define

ŵε :=
(P̂ ε)−1 − Id+ εα−1p̂ε

εα−1
= εα−1(P̂ ε)−1(p̂ε)2. (5.3.75)

Then,

(P̂ ε)−1 = Id+ εα−1(ŵε − p̂ε),

by (4.2.13) and (5.3.43) we deduce

εα−1‖ŵε‖L∞(Ω;M3×3) ≤ C,

and by (5.3.44),

ŵε ⇀ 0 weakly in L2(Ω;M3×3).

We define

Ĝε := Gε + ŵε − p̂ε + εα−1Gε(ŵε − p̂ε). (5.3.76)

Arguing as before, we can prove that

Ĝε ⇀ G− p̂ weakly in L2(Ω;M3×3). (5.3.77)

We shall prove that there exists a sequence (F̂ ε) ⊂ L2(Ω;M3×3) satisfying

Wel(∇εŷε(P̂ ε)−1) = Wel(Id+ εα−1F̂ ε)

and such that

F̂ ε − Ĝε → Nα strongly in L2(Ω;M3×3), (5.3.78)

where

Nα := sym
( ∇′ũ− x3(∇′)2ṽ

0

∣∣∣d) for α > 3, (5.3.79)

and

N3 := sym
( ∇ũ− (x3 + v)(∇′)2ṽ + ∇′ṽ⊗∇′ṽ

2

0

∣∣∣ d′(x′, x3 + v)

d3(x′, x3 + v) + 1
2 |∇

′ṽ|2
)
(5.3.80)
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a.e. in Ω. To this purpose, we first observe that by (4.3.28), (5.3.76) and the frame-

indifference hypothesis (H3) (see Section 4.2) there holds

Wel(∇εŷε(P̂ ε)−1) = Wel

(
∇fε(yε)∇εyε(P̂ ε)−1

)
= Wel

(
(Rε)T

√
(∇fε(yε))T∇fε(yε)Rε(Id+ εα−1Ĝε)

)
. (5.3.81)

We set

Mε(x) :=
∇fε(x)− Id
εα−1`ε

.

By (5.3.61) there holds

‖Mε(yε)‖L∞(Ω;M3×3) ≤ C (5.3.82)

for every ε .

We claim that, to prove (5.3.78) it is enough to show that

`ε(R
ε)T sym

(
Mε(yε)

)
Rε →


sym

( ∇′ũ− x3(∇′)2ṽ

0

∣∣∣d) if α > 3

sym
( ∇′ũ− (x3 + v)(∇′)2ṽ

0

∣∣∣d(x′, x3 + v)
)

if α = 3

(5.3.83)

strongly in L2(Ω;M3×3), and

ε2`2ε(R
ε)T (Mε(yε))TMε(yε)Rε →

( ∇′ṽ ⊗∇′ṽ 0

0 |∇′ṽ|2
)

if α = 3 (5.3.84)

strongly in L2(Ω;M3×3). Indeed, a Taylor expansion around the identity yields√
(Id+ F )T (Id+ F ) = Id+ symF +

FTF

2
− (symF )2

2
+O(|F |3)

for every F ∈M3×3 . Hence,√
(∇fε(yε))T∇fε(yε) = Id+ εα−1`ε symMε(yε) +

ε2α−2`2ε
2

(Mε(yε))TMε(yε)

−ε
2α−2`2ε

2

(
symMε(yε)

)2
+O(ε3α−3`3ε).

Substituting the previous expression into (5.3.81) we obtain

Wel(∇εŷε(P̂ ε)−1) = Wel(Id+ εα−1F̂ ε) (5.3.85)

where

F̂ ε = Ĝε + `ε(R
ε)T symMε(yε)Rε +

εα−1`2ε
2

(Rε)T (Mε(yε))TMε(yε)Rε

−ε
α−1`2ε

2
(Rε)T

(
symMε(yε)

)2
Rε + εα−1`ε(R

ε)T symMε(yε)RεĜε +O(ε2α−2`3ε)

+O(ε2α−2`2ε)Ĝ
ε

Now, if α > 3, by (4.3.6) and (5.3.82) there holds

‖F̂ ε − Ĝε − `ε(Rε)T sym(Mε(yε))Rε‖L2(Ω;M3×3) ≤ Cεα−1`2ε + Cεα−1`ε‖Ĝε‖L2(Ω;M3×3)

+ Cε2α−2`3ε + Cε2α−2`2ε‖Ĝε|L2(Ω;M3×3).
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Hence, by combining (5.3.6), (5.3.9), (5.3.77) and (5.3.83) we deduce (5.3.78).

In the case α = 3, by (5.3.82) and (5.3.83) there holds

ε4`4ε

ˆ
Ω

|sym(Mε(yε))|4 dx ≤ Cε4`4ε

ˆ
Ω

|sym(Mε(yε))|2 dx ≤ Cε4`2ε.

Therefore, by (4.3.6) and (5.3.82) we have

‖F̂ ε − Ĝε − `ε(Rε)T sym(Mε(yε))Rε − ε2`2ε
2

(Rε)T (Mε(yε))TMε(yε)Rε‖L2(Ω;M3×3)

≤ Cε2`ε + Cε2`ε‖Ĝε‖L2(Ω;M3×3) + Cε4`3ε

+Cε4`2ε‖Ĝε‖L2(Ω;M3×3).

Therefore, once (5.3.83) and (5.3.84) are proved, (5.3.78) follows by (5.3.6), (5.3.8) and

(5.3.77).

We now prove (5.3.83) and (5.3.84). By straightforward computations we have

`εsym (Mε(yε)) = sym
( ∇′ũ((yε)′)− θε

(yε3
ε

)
(∇′)2ṽ((yε)′) 0

0 0

)
+

1

ε
sym

( 0
(
1− (θε)′

(yε3
ε

))
∇′ṽ((yε)′)

0 0

)
+ ε sym(∇′ηε(yε)|∂3η

ε(yε)).

Now, ε∇′ηε(yε)→ 0 strongly in L2(Ω;M3×2) by (5.3.53). Moreover, (5.3.54) yields

ε∂3η
ε(yε(x)) = d

(
(yε)′(x),

yε3(x)

ε

)
for a.e. x ∈ Ω.

Hence, by (4.3.34) and (5.3.62), there holds

ε (∇′ηε(yε)|∂3η
ε(yε))→

(0|d) if α > 3

(0|d(x′, x3 + v)) if α = 3
(5.3.86)

strongly in L2(Ω;M3×3). On the other hand, by (5.3.51), (5.3.62), and the dominated con-

vergence theorem

∇′ũ((yε)′)− θε
(yε3
ε

)
(∇′)2ṽ((yε)′)→

∇′ũ− x3(∇′)2ṽ if α > 3

∇′ũ− (x3 + v)(∇′)2ṽ if α = 3
(5.3.87)

strongly in L2(Ω;M2×2). Claim (5.3.83) follows now by combining (4.3.6), (4.3.9), (5.3.52),

(5.3.86) and (5.3.87).

To prove (5.3.84), we observe that by (5.3.52), (5.3.86) and (5.3.87), if α = 3 there exists

a constant C such that

∥∥∥`εMε(yε)− 1

ε

( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)∥∥∥
L2(Ω;M3×3)

≤ C
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for every ε . Hence, by (4.3.6) there holds∥∥∥ε2`2ε(R
ε)T (Mε(yε))TMε(yε)Rε

−(Rε)T
( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)T( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)
Rε
∥∥∥
L2(Ω;M3×3)

≤ Cε2`ε‖Mε(yε)‖L∞(Ω;M3×3) + Cε
∥∥∥( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)∥∥∥
L∞(Ω;M3×3)

,

(5.3.88)

which converges to zero due to (5.3.6) and (5.3.82). On the other hand,( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)T( 0 −∇′ṽ((yε)′)

(∇′ṽ((yε)′))T 0

)
=
( ∇′ṽ((yε)′)⊗∇′ṽ((yε)′) 0

0 |∇′ṽ((yε)′)|2
)
.

Moreover, by (5.3.62) and by the dominated convergence theorem there holds( ∇′ṽ((yε)′)⊗∇′ṽ((yε)′) 0

0 |∇′ṽ((yε)′)|2
)
→
( ∇′ṽ ⊗∇′ṽ 0

0 |∇′ṽ|2
)

(5.3.89)

strongly in L2(Ω;M3×3). By combining (5.3.88) and (5.3.89), we deduce (5.3.84) and there-

fore (5.3.78).

Step 4: Limsup inequality for the elastic energy

We are now in a position to prove (5.3.47). We argue as in [52, Lemma 3.6]. We fix δ > 0

and we introduce the sets

Uε := {x ∈ Ω : εα−1(|F ε|+ |F̂ ε|) ≤ cel(δ)},

where cel(δ) is the constant in (4.2.4). By (5.3.77) and (5.3.78) it follows that

F̂ ε ⇀ F̂α := Nα +G− p̂ weakly in L2(Ω;M3×3), for α ≥ 3. (5.3.90)

By (5.3.74) and by Chebychev inequality we deduce

L3(Ω \ Uε) ≤ Cε2α−2. (5.3.91)

Since

∇εŷε(P̂ ε)−1 = ∇fε(yε)
(
∇εyε(P ε)−1

)
P ε(P̂ ε)−1,

property (4.2.6) yields

|Wel(∇εŷε(P̂ ε)−1)−Wel(∇εyε(P ε)−1)|

≤ C(1 +Wel(∇εyε(P ε)−1))(|∇fε(yε)− Id|+ |P ε(P̂ ε)−1 − Id|) (5.3.92)

a.e. in Ω. By (4.2.13) and (5.3.43) there holds

‖P ε(P̂ ε)−1 − Id‖L∞(Ω;M3×3) ≤ ck‖P ε − P̂ ε‖L∞(Ω;M3×3)

≤ ck‖(Id− exp(εα−1p̃))P ε‖L∞(Ω;M3×3) ≤ Cεα−1,
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hence, by combining (5.3.61), (5.3.91) and (5.3.92) we deduce

1

ε2α−2

∣∣∣ ˆ
Ω\Uε

Wel(∇εŷε(P̂ ε)−1)−
ˆ

Ω\Uε
Wel(∇εyε(P ε)−1)

∣∣∣
≤ Cεα−1(1 + `ε)

(
1 +

1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx
)
, (5.3.93)

which tends to zero owing to (4.3.29) and (5.3.6).

On the other hand, on the sets Uε we can use the estimate (4.2.4). Hence, by (5.3.72),

(5.3.85) and the quadratic structure of Q we obtain

1

ε2α−2

ˆ
Uε

Wel(∇εŷε(P̂ ε)−1) dx− 1

ε2α−2

ˆ
Uε
Wel(∇εyε(P ε)−1) dx

≤ δ
ˆ

Ω

(|F ε|2 + |F̂ ε|2) dx+

ˆ
Ω

Q(F̂ ε)−Q(F ε) dx

= δ

ˆ
Ω

(|F ε|2 + |F̂ ε|2) dx+
1

2

ˆ
Ω

C(F̂ ε − F ε) : (F̂ ε + F ε) dx. (5.3.94)

Now, by (5.3.74) and (5.3.90) there holds

F̂ ε + F ε ⇀ F̂α +G− p weakly in L2(Ω;M3×3). (5.3.95)

Moreover,

F̂ ε − F ε → F̂α −G+ p strongly in L2(Ω;M3×3). (5.3.96)

Indeed, by (5.3.78) and (5.3.90) it is enough to show that

Ĝε − F ε → p− p̂ strongly in L2(Ω;M3×3).

By (5.3.73) and (5.3.76) we have

Ĝε − F ε = (Id+ εα−1Gε)(ŵε − p̂ε − wε + pε).

Now, by (5.3.67), (5.3.69) and (5.3.75), ŵε − wε = 0 in Ω \ Sε , whereas in the sets Sε we

have

ŵε − wε = εα−1(P̂ ε)−1(p̂ε)2 − εα−1(P ε)−1(pε)2

= εα−1(P ε)−1
(

exp(−εα−1p̃)(p̂ε)2 − (pε)2
)

= εα−1(P ε)−1(exp(−εα−1p̃)− Id)(p̂ε)2 + εα−1(P ε)−1((p̂ε)2 − (pε)2).

Therefore, by (5.3.43), (5.3.44), (5.3.49) and (5.3.50), we deduce

‖ŵε − wε‖L2(Ω;M3×3) ≤ C(εα−1 + ‖p̂ε − pε‖L2(Ω;M3×3)) ≤ C,

‖ŵε − wε‖L1(Ω;M3×3) ≤ Cεα−1,

‖ŵε − wε‖L∞(Ω;M3×3) ≤ C(1 + ‖p̂ε − pε‖L∞(Ω;M3×3)).

Combining these estimates with (4.3.35) and (5.3.68) we obtain (5.3.96).

Consider now the case α > 3. By (5.3.93)–(5.3.96) we have

lim sup
ε→0

{ 1

ε2α−2

ˆ
Ω

Wel(∇εŷε(P̂ ε)−1) dx− 1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx
}

≤ 1

2

ˆ
Ω

C(F̂α −G+ p) : (F̂α +G− p) dx+ Cδ.

155



5.3 The quasistatic evolution problems

Since δ is arbitrary, we deduce

lim sup
ε→0

{ 1

ε2α−2

ˆ
Ω

Wel(∇εŷε(P̂ ε)−1) dx− 1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx
}

≤ 1

2

ˆ
Ω

C(F̂α −G+ p) : (F̂α +G− p) dx

=

ˆ
Ω

Q(F̂α) dx−
ˆ

Ω

Q(G− p) dx ≤
ˆ

Ω

Q(F̂α) dx−
ˆ

Ω

Q2(G′ − p′) dx. (5.3.97)

By (5.3.79) and (5.3.90), up to an approximation argument, we may assume that d is such

that

Q(F̂α) = Q2(sym∇′û− x3(∇′)2v̂ − p̂′).

This, together with (5.3.97), implies (5.3.47).

In the case α = 3 a preliminary approximation argument is needed. Let (ũk) be a

sequence in C∞c (ω ∪ γn;R2), such that

ũk → ũ+ v∇′ṽ strongly in W 1,2(ω;R2)

(such a sequence exists by Lemma 5.2.1 because ũ ∈ C∞c (ω∪ γn;R2) and ṽ ∈ C∞c (ω∪ γn)).

Let also vk ∈ C∞c (ω) be such that

vk → v strongly in L2(ω)

and set

dk(x) := d(x′, x3 − vk(x′)) for a.e. x ∈ Ω.

Since d ∈ C∞c (Ω;R3), there exists an open set O ⊂ R2 such that O ⊂ ω and dk(x′, x3) = 0

for every x ∈ (ω \ O) × R . Moreover, dk(x′, x3) = 0 for every x ∈ R3 such that |x3| >
1
2 + ‖vk‖L∞(R2) . Hence, dk ∈ C∞(R3;R3) and

supp dk ⊂ O ×
(
− 1

2 − ‖v
k‖L∞(R2),

1
2 + ‖vk‖L∞(R2)

)
.

It is easy to see that (5.3.80), (5.3.90) and (5.3.93)–(5.3.96) can still be deduced, and for

every k we can construct a sequence (ŷεk, P̂
ε
k ) that satisfies (5.3.39)–(5.3.44) with û replaced

by u+ ũk , and

lim sup
ε→0

{ 1

ε2α−2

ˆ
Ω

Wel(∇εŷεk(P̂ εk )−1) dx− 1

ε2α−2

ˆ
Ω

Wel(∇εyε(P ε)−1) dx
}

≤ 1

2

ˆ
Ω

C(F̂ k −G+ p) : (F̂ k +G− p) dx,

where

F̂ k := sym
( ∇′ũk − (x3 + v)(∇′)2ṽ + ∇′ṽ⊗∇′ṽ

2

0

∣∣∣ d′(x′, x3 + v − vk)

d3(x′, x3 + v − vk) + 1
2 |∇

′ṽ|2
)

+G− p̂.

On the other hand,

F̂ k → sym
( ∇′ũ− x3(∇′)2ṽ +∇′v ⊗∇′ṽ + ∇′ṽ⊗∇′ṽ

2

0

∣∣∣ d′

d3 + 1
2 |∇

′ṽ|2
)

+G− p̂ =: F̂
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strongly in L2(Ω;M3×3), as k → +∞ . A diagonal argument leads then to the estimate

lim sup
ε→0

1

ε2α−2

(ˆ
Ω

Wel(∇εŷε(P̂ ε)−1) dx−
ˆ

Ω

Wel(∇εyε(P ε)−1) dx
)

≤ 1

2

ˆ
Ω

C(F̂ −G+ p) : (F̂ +G− p) dx. (5.3.98)

Up to a further approximation, we may assume that d is such that

Q(F̂ ) = Q2

(
sym∇′û− x3(∇′)2v̂ +

1

2
∇′v̂ ⊗∇′v̂ − p̂′

)
,

hence (5.3.47) follows by (5.3.98).

5.4 Convergence of quasistatic evolutions

The first part of this section is devoted to the proof of Theorem 5.3.9. We first prove

the theorem for α > 3 and then we show how the proof must be modified for α = 3.

Proof of Theorem 5.3.9 in the case α > 3 . The proof is divided into five steps.

Step 0: A priori estimates on the elasto-plastic energy

Set yε(t) := φε(t, zε(t)) for every t ∈ [0, T ] . It is immediate to see that

yε(t, x) = φε(t, (x′, εx3)) H2 - a.e. on Γd. (5.4.1)

In this step we shall show that there exists a constant C such that for every t ∈ [0, T ] and

every ε there holds

1

εα−1
‖dist(∇εyε(t)(P ε)−1(t), SO(3))‖L2(Ω)+‖pε(t)‖L2(Ω;M3×3)+‖εα−1pε(t)‖L∞(Ω;M3×3) ≤ C.

(5.4.2)

To this purpose, we first remark that since t 7→ (zε(t), P ε(t)) is an ε -quasistatic evolu-

tion, then

P ε(t, x) ∈ K for a.e. x ∈ Ω, for every ε and t, (5.4.3)

hence εα−1pε(t) ∈ K − Id for every ε and t and by (4.2.13) there exists a constant C such

that

‖εα−1pε(t)‖L∞(Ω;M3×3) ≤ C for every ε and t. (5.4.4)

By the minimality condition (gs), taking z̃(x) = (x′, εx3) and P̃ (x) = Id for every

x ∈ Ω, and observing that Whard(Id) = 0 a.e. in Ω, by (4.2.12) we deduce

1

ε2α−2
Fε(t, zε(t), P ε(t)) ≤

1

ε2α−2

ˆ
Ω

Wel

(
∇φε(t, (x′, εx3))

)
dx+

1

εα−1

ˆ
Ω

D(P ε(t), Id) dx,(5.4.5)

for every t ∈ [0, T ] and for all ε . By (4.2.20) and (5.4.3), there holds

D(P ε(t), Id) = D(Id, (P ε)−1(t)) ≤ c7|(P ε)−1(t)− Id| ≤ c7cK |Id− P ε(t)|,

where the last inequality follows by (4.2.13). Hence, Holder inequality yields

1

εα−1

ˆ
Ω

D(P ε(t), Id) dx ≤ C

εα−1
‖Id− P ε(t)‖L2(Ω;M3×3). (5.4.6)
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On the other hand, by frame indifference (H3) of Wel (see Section 4.2) we obtain

Wel

(
∇φε(t, (x′, εx3))

)
= Wel

(√
(∇φε)T (t, (x′, εx3))∇φε(t, (x′, εx3)

)
for every x ∈ Ω and for all t ∈ [0, T ] . By (5.3.1), (5.3.7) and (5.3.17) there holds

∇φε(t, (x′, εx3)) = Id+ εα−1
( ∇′u0(t, x′)− x3(∇′)2v0(t, x′) 0

0 0

)
+εα−2

( 0 −∇′v0(t, x′)

(∇′v0(t, x′))T 0

)
,

for every x ∈ Ω. Since α > 3, we deduce

(∇φε)T (t, (x′, εx3))∇φε(t, (x′, εx3))

= Id+ 2εα−1sym
( ∇′u0(t, x′)− x3(∇′)2v0(t, x′) 0

0 0

)
+ o(εα−1),

and √
(∇φε)T (t, (x′, εx3))∇φε(t, (x′, εx3)) = Id+ εα−1M(t, x) + o(εα−1), (5.4.7)

where

M(t, x) = sym
( ∇′u0(t, x′)− x3(∇′)2v0(t, x′) 0

0 0

)
for every x ∈ Ω.

Therefore,

1

ε2α−2
Wel

(
∇φε(t, (x′, εx3))

)
=

1

ε2α−2
Wel

(
Id+ εα−1M(t, x) + o(εα−1)

)
for every x ∈ Ω. Now, by the smoothness of u0 and v0 , there exists a constant C such that

sup
t∈[0,T ]

‖M(t)‖L∞(Ω;M3×3) ≤ C (5.4.8)

and there exist ε such that, if ε < ε , for every t ∈ [0, T ]

|εα−1M(t) + o(εα−1)| ≤ cel(1),

where cel is the constant in (4.2.4). Therefore, by (4.2.4), (4.2.7), and (5.4.8) we have

1

ε2α−2

ˆ
Ω

Wel

(
∇φε(t, (x′, εx3))

)
dx ≤ C

(ˆ
Ω

|M(t)|2 dx+ 1
)
≤ C (5.4.9)

for every ε and for all t ∈ [0, T ] .

By combining (5.4.5), (5.4.6) and (5.4.9) we obtain

1

ε2α−2

ˆ
Ω

Wel

(
∇εyε(t)(P ε)−1(t)

)
dx+

1

ε2α−2

ˆ
Ω

Whard(P
ε(t)) dx

≤ C
(

1 +
1

εα−1
‖Id− P ε(t)‖L2(Ω;M3×3)

)
.

(5.4.10)

158



5. Quasistatic evolution models for thin plates in finite plasticity

Now, by (4.2.11) there holds

c6
ε2α−2

ˆ
Ω

|Id− P ε(t)|2 dx ≤ C
(

1 +
1

εα−1
‖Id− P ε(t)‖L2(Ω;M3×3)

)
,

which in turn, by Cauchy inequality implies

‖pε(t)‖L2(Ω;M3×3) =
1

εα−1
‖Id− P ε(t)‖L2(Ω;M3×3) ≤ C (5.4.11)

for every ε and for all t ∈ [0, T ] . On the other hand, by (5.4.10) and (5.4.11), we deduce

1

ε2α−2

ˆ
Ω

Wel

(
∇εyε(t)(P ε)−1(t)

)
dx ≤ C, (5.4.12)

for every ε and for all t ∈ [0, T ] . Estimate (5.4.2) follows now by (5.4.4), (5.4.11), (5.4.12)

and the growth condition (H4) (see Section 4.2).

Step 1: A priori estimate on the dissipation functional.

In this step we shall show that there exists a constant C , such that

1

εα−1
D(P ε; 0, t) ≤ C for every ε and for all t ∈ [0, T ]. (5.4.13)

By (eb), (5.3.29) and (5.4.10)–(5.4.12) it is enough to show that there exists a constant C

such that ∣∣∣ 1

εα−1

ˆ
Ω

Eε(t) : ∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t)) dx
∣∣∣ ≤ C (5.4.14)

for every ε and t ∈ [0, T ] . To prove (5.4.14), we first deduce some properties of the map

t 7→ Eε(t).

Let R ∈ SO(3). By (4.2.13) and (5.4.3) there holds

|∇εyε(t)−R|2 = |∇εyε(t)−RP ε(t) + εα−1Rpε(t)|2

≤ 2|∇εyε(t)(P ε)−1(t)−R|2|P ε(t)|2 + 2ε2α−2|pε(t)|2

≤ 2 c2K |∇εyε(t)(P ε)−1(t)−R|2 + 2ε2α−2|pε(t)|2.

Hence, the growth condition (H4) (see Section 4.2) implies

‖dist(∇εyε(t), SO(3))‖2L2(Ω;M3×3) ≤ C
( ˆ

Ω

Wel(∇εyε(t)(P ε)−1(t)) dx+ε2α−2‖pε(t)‖2L2(Ω;M3×3)

)
,

which in turn yields

‖dist(∇εyε(t), SO(3))‖2L2(Ω;M3×3) ≤ Cε
2α−2 (5.4.15)

by (5.4.2) and (5.4.12). By (5.4.1) and (5.4.15), the sequence yε(t) fulfills the hypotheses

of Theorem 4.3.1. Hence, for every t ∈ [0, T ] there exists a sequence of maps (Rε(t)) ⊂
W 1,∞(ω;M3×3) such that

Rε(t, x′) ∈ SO(3) for every x′ ∈ ω, (5.4.16)

‖∇εyε(t)−Rε(t)‖L2(Ω;M3×3) ≤ Cεα−1, (5.4.17)

‖∂iRε(t)‖L2(ω;M3×3) ≤ Cεα−2, i = 1, 2, (5.4.18)

‖Rε(t)− Id‖L2(ω;M3×3) ≤ Cεα−2, (5.4.19)
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where the constant C is independent of ε and t .

We consider the auxiliary maps

wε(t) :=
(Id+ εα−1pε(t))−1 − Id+ εα−1pε(t)

εα−1
,

the elastic strains

Gε(t) :=
(Rε(t))T∇εyε(t)− Id

εα−1
,

and the matrices

F ε(t) := Gε(t) + wε(t)− pε(t) + εα−1Gε(t)(wε(t)− pε(t)), (5.4.20)

for all t ∈ [0, T ] . Clearly we have

(P ε)−1(t) = Id+ εα−1(wε(t)− pε(t)) and ∇εyε(t) = Rε(t)(Id+ εα−1Gε(t)). (5.4.21)

Since

wε(t) = εα−1(Id+ εα−1pε(t))−1(pε(t))2 (5.4.22)

for every t ∈ [0, T ] , by (5.4.2) and (5.4.3) there holds

‖εα−1wε(t)‖L∞(Ω;M3×3) ≤ C for every t ∈ [0, T ], (5.4.23)

‖wε(t)‖L1(Ω;M3×3) ≤ Cεα−1 for every t ∈ [0, T ], (5.4.24)

and

‖wε(t)‖L2(Ω;M3×3) ≤ C for every t ∈ [0, T ]. (5.4.25)

Combining (5.4.24) and (5.4.25) we deduce

wε(t) ⇀ 0 weakly in L2(Ω;M3×3) for every t ∈ [0, T ]. (5.4.26)

On the other hand, (5.4.16) and (5.4.17) yield

‖Gε(t)‖L2(Ω;M3×3) ≤ C (5.4.27)

for every ε and for all t ∈ [0, T ] . Collecting (5.4.2), (5.4.23), (5.4.25) and (5.4.27), we obtain

‖F ε(t)‖L2(Ω;M3×3) ≤ ‖Gε(t)‖L2(Ω;M3×3) + ‖wε(t)‖L2(Ω;M3×3) + ‖pε(t)‖L2(Ω;M3×3)

+‖Gε(t)‖L2(Ω;M3×3)‖εα−1(wε(t)− pε(t))‖L∞(Ω;M3×3) ≤ C (5.4.28)

for every ε and for all t ∈ [0, T ] .

Now, by (5.4.20), (5.4.21) and the frame-indifference (H3) of Wel (see Section 4.2) we

deduce the decomposition

Eε(t) = Rε(t)Ẽε(t)(Rε(t))T (5.4.29)

for every t ∈ [0, T ] , where

Ẽε(t) :=
1

εα−1
DWel(Id+ εα−1F ε(t))(Id+ εα−1F ε(t))T .
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We argue as in [55, Proof of Theorem 3.1, Steps 2–3] and we first show that there exist two

positive constants k1, k2 , independent of ε , such that

|Ẽε(t)| ≤ k1

(Wel(Id+ εα−1F ε(t))

εα−1
+ k2|F ε(t)|

)
(5.4.30)

for every t ∈ [0, T ] and for a.e. x ∈ Ω.

Indeed, let cel2 be the constant in (4.2.9). Suppose that εα−1|F ε(t)| ≥ cel2 . We remark

that (H1) (see Section 4.2), (5.4.3) and (5.4.12) imply in particular that

det(∇εyε(t)) > 0 a.e. in Ω.

Therefore, by (4.2.5) there holds

|Ẽε(t)| ≤ c3
εα−1

(
Wel(Id+ εα−1F ε(t)) + 1

)
≤ c3

(Wel(Id+ εα−1F ε(t))

εα−1
+

1

cel2
|F ε(t)|

)
.

(5.4.31)

Consider now the case where εα−1|F ε(t)| < cel2 . Then, by (4.2.9) there holds

DWel(Id+ εα−1F ε(t)) ≤ εα−1(2RC + 1)|F ε(t)|,

which in turn implies

|Ẽε(t)| ≤ C|F ε(t)|(|Id|+ |εα−1F ε(t)|) ≤ C|F ε(t)|. (5.4.32)

Collecting (5.4.31) and (5.4.32), we obtain (5.4.30).

By (5.4.12), (5.4.28) and (5.4.30), for every measurable Λ ⊂ Ω, the following estimate

holds true:

ˆ
Λ

|Ẽε(t)| dx ≤ k1

ˆ
Λ

(Wel(Id+ εα−1F ε(t))

εα−1
+ k2|F ε(t)|

)
≤ C(|Λ| 12 + εα−1), (5.4.33)

for every ε and for all t ∈ [0, T ] . By (5.4.16) there holds also

ˆ
Λ

|Eε(t)| dx ≤ C(|Λ| 12 + εα−1), (5.4.34)

for every ε and for all t ∈ [0, T ] .

Let now γ ∈ (0, α − 2) be the positive constant in the definition of the maps θε . Let

Oε(t) be the set given by

Oε(t) := {x ∈ Ω : εα−1−γ |F ε(t, x)| ≤ cel2},

and let χε(t) : Ω→ {0, 1} be the map

χε(t, x) =

1 if x ∈ Oε(t),

0 otherwise.

By Chebychev inequality and (5.4.28) we deduce

L3(Ω \Oε(t)) ≤ Cε2(α−1−γ), (5.4.35)
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for every ε and for all t ∈ [0, T ] . By combining (5.4.33) and (5.4.35) we conclude that

‖(1− χε(t))Ẽε(t)‖L1(Ω;M3×3) ≤ Cεα−1−γ for every t ∈ [0, T ]. (5.4.36)

By (5.4.34) the previous estimate implies also

‖(1− χε(t))Eε(t)‖L1(Ω;M3×3) ≤ Cεα−1−γ for every t ∈ [0, T ]. (5.4.37)

On the other hand (4.2.9) yields the following estimate on the sets Oε(t):

|χε(t)Ẽε(t)| ≤ (2RC + 1)|F ε(t)||Id+ εα−1F ε(t)| ≤ C(1 + cel2ε
γ)|F ε(t)|,

which in turn, by (5.4.28), implies

‖χε(t)Ẽε(t)‖L2(Ω;M3×3) ≤ C (5.4.38)

for every ε and for all t ∈ [0, T ] .

By (5.3.6), (5.4.16), (5.4.37) and (5.4.38), and since Eε(t) is symmetric by Remark 5.3.5,

to prove (5.4.14) it is enough to show that there exists a constant C such that∥∥∥ 1

εα−1
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))

∥∥∥
L∞(Ω;M3×3)

≤ C`ε (5.4.39)

and ∥∥∥ 1

εα−1
sym

(
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))

)∥∥∥
L2(Ω;M3×3)

≤ C (5.4.40)

for every ε and for all t ∈ [0, T ] . By (5.3.17), there holds

1

εα−1
∇φ̇ε(t, zε(t)) =

( ∇′u̇0(t, (zε)′(t))− θε
( zε3(t)

ε

)
(∇′)2v̇0(t, (zε)′(t)) 0

0 0

)
+

1

ε

( 0 −θ̇ε
( zε3(t)

ε

)
∇′v̇0(t, (zε)′(t))

(∇′v̇0(t, (zε)′(t)))T 0

)
. (5.4.41)

Estimate (5.4.39) follows directly by (5.3.3), (5.3.5), (5.3.7), and (5.3.18). To prove (5.4.40),

we first provide an estimate for the L2 norm of the maps 1
εz
ε
3(t). To this purpose, let vε(t)

be defined as in (5.3.32). It is easy to see that

vε(t) =
1

εα−2

ˆ 1
2

− 1
2

yε3(t) dx3 and ∇′vε(t) =
1

εα−2

ˆ 1
2

− 1
2

∇′yε3(t) dx3

for every ε and for all t ∈ [0, T ] . By (5.4.1), arguing as in the proof of Theorem 4.3.1,

vε(t) = v0(t) H1 - a.e. on γd.

By (5.4.17) and (5.4.19), we have

‖∇′vε(t)‖L2(ω;R2) ≤ C

for every ε and t ∈ [0, T ] . Hence, by Poincaré inequality we deduce

‖vε(t)− v0(t)‖L2(ω) ≤ C‖∇′vε(t)−∇′v0(t)‖L2(ω;R2) ≤ C,
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5. Quasistatic evolution models for thin plates in finite plasticity

which in turn, by the smoothness of v0 , yields

‖vε(t)‖L2(ω) ≤ C for every ε and for all t ∈ [0, T ].

By (5.4.17), (5.4.19) and Poincaré-Wirtinger inequality, we deduce∥∥∥yε3(t)

ε
− x3 − εα−3vε(t)

∥∥∥
L2(Ω)

≤ C
∥∥∥∂3y

ε
3(t)

ε
− 1
∥∥∥
L2(Ω)

≤ Cεα−2 (5.4.42)

for every t ∈ [0, T ] , which implies∥∥∥yε3(t)

ε

∥∥∥
L2(Ω)

≤ C for every ε and t ∈ [0, T ]. (5.4.43)

On the other hand,

zε(t) = ϕε(t, yε(t)) a.e. in Ω, (5.4.44)

hence by (5.3.12),
zε3(t)

ε
=
yε3(t)

ε
− εα−3v0(t, (ϕε)′(t, yε(t))). (5.4.45)

Therefore (5.3.2) and (5.4.43) yield∥∥∥θε(zε3(t)

ε

)∥∥∥
L2(Ω)

≤
∥∥∥zε3(t)

ε

∥∥∥
L2(Ω)

≤ C for every ε and t ∈ [0, T ]. (5.4.46)

By Lemma 5.3.11, we deduce∥∥∥1− θ̇ε
(zε3(t)

ε

)∥∥∥
L2(Ω)

≤ 3

`ε
for every ε and t ∈ [0, T ]. (5.4.47)

Collecting (5.3.7), (5.4.41), (5.4.46) and (5.4.47), we obtain that there exists a constant C

such that ∥∥∥ 1

εα−1
sym∇φ̇ε(t, zε(t))

∥∥∥
L2(Ω;M3×3)

≤ C

for every ε and for all t ∈ [0, T ] . Therefore, to prove (5.4.40), it remains only to study the

quantity
1

εα−1
sym

(
∇φ̇ε(t, zε(t))

(
(∇φε)−1(t, zε(t))− Id

))
.

By (5.3.18),

‖(∇φε(t))−1 − Id‖L∞(Ω;M3×3) ≤ C for every ε and t ∈ [0, T ].

By (5.4.46), the first term in the right hand side of (5.4.41) is uniformly bounded in

L2(Ω;M3×3). Therefore, it remains to show that

1

ε

( 0 −θ̇ε
( zε3(t)

ε

)
∇′v̇0(t, (zε)′(t))

(∇′v̇0(t, (zε)′(t)))T 0

)(
(∇φε)−1(t, zε(t))− Id

)
(5.4.48)

is uniformly bounded in L2(Ω;M3×3).

By (5.3.5) and by the smoothness of v0 , there holds

∥∥∥1

ε

( 0 −θ̇ε
( zε3(t)

ε

)
∇′v̇0(t, (zε)′(t))

(∇′v̇0(t, (zε)′(t)))T 0

)∥∥∥
L∞(Ω;M3×3)

≤ C

ε
(5.4.49)
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for every t ∈ [0, T ] . On the other hand,

(∇φε)−1(t, zε(t)) = ∇ϕε(t, yε(t)) a.e. in Ω. (5.4.50)

Property (5.3.20) yields the estimate

‖∇ϕε3(t, yε(t))− e3‖L∞(Ω;R3) ≤ Cεα−2 (5.4.51)

for every t ∈ [0, T ] , whereas by (5.3.5), (5.3.15) and (5.3.18)

‖∇ϕεi (t, yε(t))− ei‖L2(Ω;R3) ≤ Cεα−1
∥∥∥θε(ϕε3(t, yε(t))

ε

)∥∥∥
L2(ω)

+ Cεα−2,

hence by (5.4.44) and (5.4.46) we obtain

‖∇ϕεi (t, yε(t))− ei‖L2(Ω;R3) ≤ Cεα−2. (5.4.52)

By combining (5.4.49)–(5.4.52), we deduce∥∥∥1

ε

( 0 −θ̇ε
( zε3(t)

ε

)
∇′v̇0(t, (zε)′(t))

(∇′v̇0(t, (zε)′(t)))T 0

)(
(∇φε)−1(t, zε(t))− Id

)∥∥∥
L2(Ω;M3×3)

≤ Cεα−3 (5.4.53)

for every ε and t ∈ [0, T ] , therefore the quantity in (5.4.48) is uniformly bounded in

L2(Ω;M3×3), and the proof of (5.4.40) is complete. By (5.4.36)–(5.4.40), since all esti-

mates are uniform both in ε and t , we deduce (5.4.14), which in turn yields (5.4.13).

Step 2: Reduced Stability

Owing to the a priori bounds (5.4.2) and (5.4.13), we can apply the generalized version of

Helly’s Selection Principle in Theorem 1.5.2. To show it, take Z := L2(Ω;M3×3) endowed

with the weak topology of L2 , and set

Dε(z1, z2) :=
1

εα−1

ˆ
Ω

D(Id+ εα−1z1, Id+ εα−1z2) dx

and

D∞(z1, z2) :=

ˆ
Ω

H(z2 − z1) dx

for every z1, z2 ∈ L2(Ω;M3×3). Hypotheses (A.1) and (A.2) of Theorem 1.5.2 are satisfied by

(4.2.16)–(4.2.18). Hypothesis (A.3) follows by adapting [52, Lemmas 3.4 and 3.5], whereas

condition (A.4) follows directly by (5.4.2) and (5.4.13). Hence, by Theorem 1.5.2 there holds

pε(t) ⇀ p(t) weakly in L2(Ω;M3×3) for every t ∈ [0, T ],

DHD (p; 0, t) ≤ lim inf
ε→0

1

εα−1
D(P ε; 0, t) for every t ∈ [0, T ].

(5.4.54)

Moreover, by (5.3.28), p(0) = p̊ .

Let now t ∈ [0, T ] be fixed. By (5.4.1), (5.4.17), (5.4.19) and Poincaré inequality, up to

subsequences there holds

yε(t)→
( x′

0

)
strongly in W 1,2(Ω;R3). (5.4.55)
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Arguing as in the proof of Theorem 4.3.3 and owing to (5.4.2), we deduce the existence of

a pair (u∗(t), v∗(t)) ∈W 1,2(ω;R2)×W 2,2(ω) such that (u∗(t), v∗(t), p(t)) ∈ A(u0(t), v0(t))

and a sequence εj → 0 such that

uεj (t) ⇀ u∗(t) weakly in W 1,2(ω;R2), (5.4.56)

vεj (t)→ v∗(t) strongly in W 1,2(ω). (5.4.57)

In particular, by (5.3.26) and (5.3.27) we have u∗(0) = ů and v∗(0) = v̊ . By (5.4.27) up to

extracting a further subsequence, there exists a map G∗(t) ∈ L2(Ω;M3×3) such that

Gεj (t) ⇀ G∗(t) weakly in L2(Ω;M3×3) (5.4.58)

and the 2× 2 submatrix (G∗)′(t) satisfies

(G∗)′(t, x) = G∗0(t, x′)− x3(∇′)2v∗(t, x′) for a.e. x ∈ Ω, (5.4.59)

where

symG∗0(t) = sym∇′u∗(t). (5.4.60)

We shall show that the triple (u∗(t), v∗(t), p(t)) satisfies the reduced stability condi-

tion (gs)rα . By Corollary 5.2.2, it is enough to prove the inequality for triples (û, v̂, p̂) ∈
A(u0(t), v0(t)) such that

ũ := û− u∗(t) ∈ C∞c (ω ∪ γn;R2),

ṽ := v̂ − v∗(t) ∈ C∞c (ω ∪ γn),

p̃ := p̂− p∗(t) ∈ C∞c (Ω;M3×3
D ).

By Theorem 5.3.12 there exists a sequence (ŷεj , P̂ εj ) ∈ Aεj (φεjt(t)) satisfying

ˆ
Ω

Q2(sym Ĝ′ − p̂′) dx+

ˆ
Ω

B(p̂) dx

−
ˆ

Ω

Q2(sym (G∗)′(t)− p′(t)) dx−
ˆ

Ω

B(p(t)) dx+

ˆ
Ω

HD(p̂− p(t)) dx

≥ lim sup
εj→0

{ 1

εj2α−2

ˆ
Ω

Wel(∇εj ŷεj (P̂ εj )−1) dx+
1

εj2α−2

ˆ
Ω

Whard(P̂
εj ) dx

− 1

εj2α−2

ˆ
Ω

Wel(∇εjyεj (t)(P εj )−1(t)) dx− 1

εj2α−2

ˆ
Ω

Whard(P
εj (t)) dx

+
1

εjα−1

ˆ
Ω

D(P εj (t), P̂ εj ) dx
}

where

Ĝ′(x′, x3) := Ĝ0(x′)− x3(∇′)2v̂(x′) a.e. in Ω,

and

sym Ĝ0 = sym∇′û.

Inequality (gs)rα follows now by the ε -stability (gs) of (yε(t), P ε(t)).
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By strict convexity of the quadratic form Q2 , an adaptation of [15, Theorem 3.8] yields

that, once p(t) is identified, there exist unique u(t) ∈W 1,2(ω;R2) and v(t) ∈W 2,2(ω) such

that (gs)rα holds at time t . This implies that u∗(t) = u(t), v∗(t) = v(t) for every t ∈ [0, T ]

and both (5.4.56) and (5.4.57) hold for the whole sequences uε(t) and vε(t) and for every

t ∈ [0, T ] . Moreover, by (5.4.58)–(5.4.60) we have

sym (G∗)
′
(t) = sym∇′u(t)− x3(∇′)2v(t)

and

sym (Gε)′(t) ⇀ sym∇′u(t)− x3(∇′)2v(t) weakly in L2(Ω;M3×3) for every t ∈ [0, T ].

Step 3: Convergence of the scaled stress

In this step we shall show that for every t ∈ [0, T ] there exists a subsequence εj , possibly

depending on t , such that

χεj (t)E
εj (t) ⇀ E∗(t) weakly in L2(Ω;M3×3), (5.4.61)

where

E∗(t) = C(G∗(t)− p(t)). (5.4.62)

To this purpose, for t ∈ [0, T ] fixed, let εj → 0 be such that (5.4.58) holds and let F εj (t)

be the map defined in (5.4.20). By (5.4.2), (5.4.23) and (5.4.58) we deduce

‖εα−1Gεj (t)(wεj (t)− pεj (t))‖L2(Ω;M3×3) ≤ C for every εj .

On the other hand, by (5.4.2), (5.4.25), and (5.4.58), there holds

εα−1Gεj (t)(wεj (t)− pεj (t))→ 0 strongly in L1(Ω;M3×3). (5.4.63)

Hence, we conclude that

εα−1Gεj (t)(wεj (t)− pεj (t)) ⇀ 0 weakly in L2(Ω;M3×3). (5.4.64)

Collecting (5.4.20), (5.4.26), (5.4.54), (5.4.58) and (5.4.64) we obtain

F εj (t) ⇀ G∗(t)− p(t) weakly in L2(Ω;M3×3). (5.4.65)

By (5.4.35) we deduce that χεj (t) → 1 boundedly in measure, therefore by (5.4.65) there

holds

χεj (t)F
εj (t) ⇀ G∗(t)− p(t) weakly in L2(Ω;M3×3).

Now, estimate (5.4.33) implies that the sequence (Ẽεj (t)) is uniformly bounded in L1(Ω;M3×3)

and is equiintegrable, hence by the Dunford-Pettis Theorem, up to extracting a further sub-

sequence, there exists E∗(t) ∈ L1(Ω;M3×3
sym) such that

Ẽεj (t) ⇀ E∗(t) weakly in L1(Ω;M3×3).

Using a Taylor expansion argument in Oε(t), and arguing as in [55, Proof of Theorem 3.1,

Step 3] we deduce

χεj (t)Ẽ
εj (t) ⇀ C(G∗(t)− p(t)) weakly in L2(Ω;M3×3

sym).
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By (5.4.16) and (5.4.19), the sequence (Rε(t)) converges boundedly in measure to the iden-

tity, hence the previous convergence implies in particular (5.4.61) and (5.4.62).

Step 4: Characterization of the limit stress

In this step we shall show that

E∗(t) = C2(sym∇′u(t)− x3(∇′)2v(t)− p′(t)) := E(t) for every t ∈ [0, T ]. (5.4.66)

This, in turn, will imply that all convergence properties established in the previous step hold

for the entire sequences and for every t ∈ [0, T ] .

We first remark that, choosing P̃ = P ε(t) in (gs) there holdsˆ
Ω

Wel(∇εyε(t)(P ε)−1(t)) dx ≤
ˆ

Ω

Wel(∇εỹ(P ε)−1(t)) dx, (5.4.67)

for every ỹ ∈W 1,2(Ω;R3) such that ỹ = φε(t, (x′, εx3)) H2 - a.e. on Γd .

Let η ∈W 1,∞(R3;R3)∩C∞(R3;R3) be such that η◦φε(t, (x′, εx3)) = 0 H2 - a.e. on Γd .

Then, in particular, we can consider in (5.4.67) inner variations of the form yε + λη ◦ yε ,

where λ ∈ R . By the growth hypothesis (4.2.5) and by the minimality condition (5.4.67), an

adaptation Theorem 1.3.1 shows that yε(t) satisfies the following Euler-Lagrange equation:ˆ
Ω

DWel(∇εyε(t)(P ε)−1(t))(∇εyε(t)(P ε)−1(t))T : ∇η(yε(t)) dx = 0 (5.4.68)

for every t ∈ [0, T ] and for every η ∈W 1,∞(R3;R3)∩C∞(R3;R3) such that η◦φε(t, (x′, εx3)) =

0 H2 - a.e. on Γd . Hence, ˆ
Ω

Eε(t) : ∇η(yε(t)) dx = 0 (5.4.69)

for every t ∈ [0, T ] and for every η ∈W 1,∞(R3;R3)∩C∞(R3;R3) such that η◦φε(t, (x′, εx3)) =

0 H2 - a.e. on Γd .

Now, fix t ∈ [0, T ] and let εj be the sequence selected in the previous step. Let η ∈
W 1,∞(R3;R3) ∩ C∞(R3;R3) be such that η = 0 H2 - a.e. on Γd . We consider the maps

ηεj (t) ∈W 1,∞(R3,R3) ∩ C∞(R3;R3) defined as

ηεj (t) := εjη
(
ϕ
εj
1 (t), ϕ

εj
2 (t), 1

εj
ϕ
εj
3 (t)

)
.

It is clear that ηεj (t) ◦ φεj (t, (x′, εjx3)) = 0 H2 - a.e. on Γd , hence we can use ηεj (t) as a

test function in (5.4.69) and we obtainˆ
Ω

Eεjt(t) : ∇ηεj (yεj (t)) dx = 0 (5.4.70)

for every j .

Now, set ξεj (x) =
(
ϕ
εj
1 (t, x), ϕ

εj
2 (t, x), 1

εj
ϕ
εj
3 (t, x)

)
for every x ∈ R3 . We can rewrite

(5.4.70) as ∑
i=1,2,3

εj

ˆ
Ω

Eεjt(t)ei ·
∑
k=1,2

∂kη(ξεj (yεj (t)))∂iξ
εj
k (yεj (t)) dx

+εj
∑
i=1,2

ˆ
Ω

Eεjt(t)ei · ∂3η(ξεj (yεj (t)))∂iξ
εj
3 (yεj (t)) dx

+εj

ˆ
Ω

Eεjt(t)e3 · ∂3η(ξεj (yεj (t)))∂3ξ
εj
3 (yεj (t)) dx = 0. (5.4.71)
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Since η ∈ W 1,∞(R3,R3) and Eεjt(t) is uniformly bounded in L1(Ω;M3×3) by (5.4.34),

estimate (5.3.18) yields that the term in the first row of (5.4.71) converges to zero. By

(5.3.20), the term in the second row of (5.4.71) can be bounded as follows:∣∣∣εj ∑
i=1,2

ˆ
Ω

Eεjt(t)ei · ∂3η(ξεj (yεj (t)))∂iξ
εj
3 (yεj (t)) dx

∣∣∣ ≤ Cεα−2
j ‖Eεjt(t)ei‖L1(Ω;R3)

and hence converges to zero due to (5.4.34). By (5.3.20), there holds∣∣∣εj ˆ
Ω

Eεjt(t)e3 · ∂3η(ξεj (yεj (t)))∂3ξ
εj
3 (yεj (t)) dx−

ˆ
Ω

Eεjt(t)e3 · ∂3η(ξεj (yεj (t))) dx
∣∣∣

≤ Cεjα−2‖Eεjt(t)e3‖L1(Ω;R3).

which converges to zero, owing to (5.4.34). Therefore, (5.4.71) yields

lim
εj→0

ˆ
Ω

Eεjt(t)e3 · ∂3η(ξεj (yεj (t))) dx = 0. (5.4.72)

By (5.3.6), (5.3.13) and (5.4.55) we deduce

ξ
εj
k (yεj (t))→ xk strongly in L2(Ω) for k = 1, 2.

Since α > 3, by (5.3.14) and (5.4.42) we have ξ
εj
3 (yεj (t)) → x3 strongly in L2(Ω). Hence,

by the regularity of η ,

∂3η(ξεj (yεj (t)))→ ∂3η(t, x) a.e. in Ω as εj → 0.

By the dominated convergence theorem and by combining (5.3.6), (5.4.37), (5.4.61) and

(5.4.72), we conclude that ˆ
Ω

E∗(t)e3 · ∂3η(t) dx = 0,

for every η ∈W 1,∞(R3;R3) ∩ C∞(R3;R3) such that η = 0 H2 - a.e. on Γd . Hence,

E∗(t)e3 = 0 a.e. in Ω. (5.4.73)

By combining (4.3.23), (4.3.24), (5.4.62) and (5.4.73) we deduce (5.4.66). Moreover, by

(4.3.23) there holds

symG∗(t)− p(t) = A(sym∇′u(t)− x3(∇′)2v(t)− p′(t)), for every t ∈ [0, T ]. (5.4.74)

Step 5: Reduced energy balance

To complete the proof of the theorem it remains to show that the triple (u(t), v(t), p(t))

satisfiesˆ
Ω

Q2

(
sym∇′u(t)− x3(∇′)2v(t)− p′(t)

)
dx+

ˆ
Ω

B(p(t)) dx+DH(p; 0, t)

≤
ˆ

Ω

Q2

(
sym∇′u(0)− x3(∇′)2v(0)− p′(0)

)
dx+

ˆ
Ω

B(p(0)) dx

+

ˆ t

0

ˆ
Ω

C2(sym∇′u(s)− x3(∇′)2v(s)− p′(s)) :
( ∇u̇0(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx ds.

(5.4.75)
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Once (5.4.75) is proved, the opposite inequality in (eb)rα follows by adapting [15, Theorem

4.7].

We claim that, to prove (5.4.75) it is enough to show that

1

εα−1
sym

(
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))

)
→ sym

( ∇′u̇0(t)− x3(∇′)2v̇0(t) 0

0 0

)
(5.4.76)

strongly in L2(Ω;M3×3), for all t ∈ [0, T ] . Indeed, if (5.4.76) holds, by (5.3.6), (5.4.37),

(5.4.39), (5.4.61) and (5.4.66), one has

1

εα−1

ˆ
Ω

Eε(s) : ∇φ̇ε(s, zε(s))(∇φε)−1(s, zε(s)) dx→
ˆ

Ω

E(s) : sym
( ∇′u̇0(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx,

for every s ∈ [0, t] . Hence, by (5.4.14) and the dominated convergence theorem we deduce

1

εα−1

ˆ t

0

ˆ
Ω

Eε(s) : ∇φ̇ε(s, zε(s))(∇φε)−1(s, zε(s)) dx ds

→
ˆ t

0

ˆ
Ω

E(s) : sym
( ∇u̇0(s)− x3∇2v̇0(s) 0

0 0

)
dx ds. (5.4.77)

On the other hand, by Theorem 4.3.3 there holds
ˆ

Ω

Q2

(
sym∇′u(t)− x3(∇′)2v(t)− p′(t)

)
dx+

ˆ
Ω

B(p(t)) dx

≤ lim inf
ε→0

1

ε2α−2
Fε(t, zε(t), P ε(t)).

Therefore, once (5.4.76) is proved, by (5.4.54) and (5.4.77), passing to the liminf in the ε

energy balance (eb), inequality (5.4.75) follows by (5.3.29).

To prove (5.4.76), we first study some properties of the maps zε(t). By (5.3.11) and

(5.4.44) there holds

zεi (t) = yεi (t)− εα−1u0
i (t, (ϕ

ε)′(t, yε(t))) + εα−1θε
(ϕε3(t, yε(t))

ε

)
∂iv

0(t, (ϕε)′(t, yε(t)))

for every t ∈ [0, T ] , i = 1, 2. Hence, by (5.3.3), (5.3.6) and (5.4.55) we deduce

zεi (t)→ xi strongly in L2(Ω) for every t ∈ [0, T ], i = 1, 2. (5.4.78)

Moreover, by (5.4.45) we have∥∥∥zε3(t)

ε
− x3 − εα−3v(t) + εα−3v0(t)

∥∥∥
L2(Ω)

≤
∥∥∥yε3(t)

ε
− x3 − εα−3vε(t)

∥∥∥
L2(Ω)

+εα−3‖vε(t)− v(t)‖L2(Ω) + εα−3‖v0(t)− v0(t, (ϕε)′(t, yε(t)))‖L2(Ω).

Hence, by (5.3.13), (5.3.32), (5.4.42) and (5.4.55),∥∥∥zε3(t)

ε
− x3 − εα−3v(t) + εα−3v0(t)

∥∥∥
L2(Ω)

→ 0 (5.4.79)

for every t ∈ [0, T ] . In particular, by Lemma 5.3.11,

θε
(zε3(t)

ε

)
→ x3 strongly in L2(Ω). (5.4.80)
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Arguing as in the proof of (5.4.40), we perform the decomposition

1

εα−1
sym

(
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))

)
=

1

εα−1
sym

(
∇φ̇ε(t, zε(t))

)
+

1

εα−1
sym

(
∇φ̇ε(t, zε(t))

(
(∇φε)−1(t, zε(t))− Id

))
. (5.4.81)

By (5.3.7), (5.4.41), (5.4.47), (5.4.78) and (5.4.80), we obtain

1

εα−1
sym

(
∇φ̇ε(t, zε(t))

)
→ sym

( ∇u̇0(t)− x3∇2v̇0(t) 0

0 0

)
(5.4.82)

strongly in L2(Ω;M3×3). To study the second term in the right-hand side of (5.4.81), we

remark that by (5.4.41) and (5.4.53), there holds∥∥∥ 1

εα−1
sym

(
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))− Id)

)∥∥∥
L2(Ω;M3×3)

≤ C
(

1 +
∥∥∥θε(zε3(t)

ε

)∥∥∥
L2(Ω)

)
‖(∇φε)−1(t, zε(t))− Id‖L∞(Ω;M3×3) + Cεα−3.

On the other hand, (5.3.7), (5.3.19), (5.3.20) and (5.4.50) yield

‖(∇φε)−1(t, zε(t))− Id‖L∞(Ω;M3×3) ≤ Cεα−1`ε.

Hence, by (5.3.6) and (5.4.80) we have

1

εα−1
sym

(
∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t))− Id)

)
→ 0 (5.4.83)

strongly in L2(Ω;M3×3). By combining (5.4.82) and (5.4.83) we obtain (5.4.76). This

completes the proof of the theorem.

We give only a sketch of the proof of Theorem 5.3.9 in the case α = 3, as it follows

closely that of Theorem 5.3.9 for α > 3.

Proof of Theorem 5.3.9 in the case α = 3 . Steps 0–3

Steps 0–3 follow as a straightforward adaptation of the corresponding steps in the case

α > 3, where now (5.4.7) holds with

M(t, x) := sym
( ∇′u0(t, x′)− x3(∇′)2v0(t, x′) 0

0 0

)
+

1

2

( ∇′v0(t, x′)⊗∇′v0(t, x′) 0

0 |∇′v0(t, x′)|2
)

for every x ∈ Ω and for all t ∈ [0, T ] . The only relevant difference is that we can not

conclude that u(t) and v(t) are uniquely determined once p(t) is identified. Hence, now all

convergence properties hold on t -dependent subsequences. In particular the counterparts of

(5.4.1)–(5.4.65) still hold for α = 3.

Step 4: Characterization of the limit stress

Arguing exactly as in Step 4 of the proof of Theorem 5.3.9 for α > 3, we obtain
ˆ

Ω

E(t, x)e3 · ∂3η(t, (x′, x3 + v(t, x′)− v0(t, x′))) dx = 0 (5.4.84)

170



5. Quasistatic evolution models for thin plates in finite plasticity

for every η ∈W 1,∞(R3;R3)∩C∞(R3;R3) such that η = 0 H2 - a.e. on Γd . Consider now

a sequence (wk) ⊂ C∞c (ω) that converges to v(t) − v0(t) strongly in L2(ω). Taking as

test functions in (5.4.84) the maps ηk(x) := η(x′, x3 − wk(x′)), where η ∈ W 1,∞(R3,R3) ∩
C∞(R3;R3) and η = 0 H2 - a.e. on Γd , we have

ˆ
Ω

E(t, x)e3 · ∂3η(t, (x′, x3 + v(t, x′)− v0(t, x′)− wk(x′))) dx = 0 for every k.

Passing to the limit as k → +∞ in the previous equation, by the dominated convergence

theorem we deduce ˆ
Ω

E(t)e3 · ∂3η dx = 0

for every η ∈W 1,∞(R3,R3)∩C∞(R3;R3) such that η = 0 H2 - a.e. on Γd , which implies

E(t)e3 = 0 a.e. in Ω. Hence, (4.3.23) and (4.3.24) yield

E(t) = C2(e3(t)),

and

symG(t)− p(t) = A(sym∇′u(t) + 1
2∇
′v(t)⊗∇′v(t)− x3(∇′)2v(t)− p′(t)). (5.4.85)

Step 5: Reduced energy balance

Arguing as in Step 5 of the case α > 3, to prove (eb)r3 it is enough to show that

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx+DHD (p; 0, t)

≤
ˆ

Ω

Q2(e3(0)) dx+

ˆ
Ω

B(p(0)) dx

+

ˆ t

0

ˆ
Ω

C2(e3(s)) :
( ∇u̇0(s) +∇′v(s)⊗∇′v̇0(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx ds,

(5.4.86)

where t 7→ e3(t) is the map defined in (5.3.24). Indeed, once (5.4.86) is proved, (eb)r3

follows by adapting [15, Theorem 4.7] according to Remark 5.3.7 (see Lemma 5.6.4). To

prove (5.4.86), we argue as in [6, Lemma 5.1] and we set

Θε(t) :=
1

ε2

ˆ
Ω

Eε(t) : ∇φ̇ε(t, zε(t))(∇φε)−1(t, zε(t)) dx,

Θ(t) := lim sup
ε→0

Θε(t)

for every t ∈ [0, T ] . By (5.4.14) (which is still true for α = 3), Θ(t) ∈ L1([0, T ]) and by

Fatou Lemma there holds

lim sup
ε→0

ˆ t

0

Θε(s) ds ≤
ˆ t

0

Θ(s) ds. (5.4.87)

Now, by Theorem 4.3.3 we know that

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx ≤ lim inf
ε→0

1

ε2α−2
Fε(t, zε(t), P ε(t)).
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By (eb), (5.3.29), (5.4.54) and (5.4.87) we deduce

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx+DHD (p; 0, t) ≤
ˆ

Ω

Q2(e3(0)) dx+

ˆ
Ω

B(p(0)) dx+

ˆ t

0

Θ(s) ds.

Hence, to prove (5.4.86) it is enough to show that

Θ(t) =

ˆ
Ω

E(t) :
( ∇u̇0(t) +∇′v(t)⊗∇′v̇0(t)− x3(∇′)2v̇0(t) 0

0 0

)
dx (5.4.88)

for a.e. t ∈ [0, T ] .

To this purpose, fix t ∈ [0, T ] and let εjt → 0 be such that

Θ(t) = lim
εjt→0

Θεjt(t).

Up to extracting a further subsequence, we may assume that εjt is the same subsequence

we selected in the previous steps. We claim that

1

ε2
jt

sym
(
∇ ˙φεjt(t, zεjt(t))(∇φεjt)−1(t, zεjt(t))

)
→ sym

( ∇′u̇0(t) +∇′v̇0(t)⊗∇′v0(t)− (x3 + v(t)− v0(t))(∇′)2v̇0(t) 0

0 d
dt
|∇′v0(t)|2

2

)
(5.4.89)

strongly in L2(Ω;M3×3). To prove the claim, we perform the decomposition (5.4.81). Now,

arguing as in the proof of (5.4.82), and using (5.4.79) (which still holds for α = 3) and

Lemma 5.3.11 we obtain

1

ε2
jt

sym(∇ ˙φεjt(t, zεjt(t)))→ sym
( ∇′u̇0(t)− (x3 + v(t)− v0(t))(∇′)2v̇0(t) 0

0 0

)
(5.4.90)

strongly in L2(Ω;M3×3). To study the second term in the right-hand side of (5.4.81), we

remark that by (5.3.7), (5.3.19), (5.3.20) and (5.4.50), one has∥∥∥(∇φεjt)−1(t, zεjt(t))− Id
∥∥∥
L∞(Ω;M3×3)

≤ Cε2
jt`εjt .

By (5.4.46), there holds∥∥∥( ∇′u̇0(t, (zεjt)′(t))− θεjt
( zεjt3 (t)

εjt

)
(∇′)2v̇0(t, (zεjt)′(t)) 0

0 0

)(
(∇φεjt)−1(t, zεjt(t))− Id

)∥∥∥
L2(Ω;M3×3)

≤ Cε2
jt`εjt , (5.4.91)

which tends to zero due to (5.3.6).

By (5.4.41), it remains only to study the asymptotic behaviour of

1

εjt

( 0 −θ̇εjt
( zεjt3 (t)

εjt

)
∇′v̇0(t, (zεjt)′(t))

(∇′v̇0(t, (zεjt)′(t)))T 0

)(
(∇φεjt)−1(t, zεjt(t))− Id

)
.

By (5.4.50), this is the same as studying the quantity

1

εjt

( 0 −θ̇εjt
( zεjt3 (t)

εjt

)
∇′v̇0(t, (zεjt)′(t))

(∇′v̇0(t, (zεjt)′(t)))T 0

)(
∇ϕεjt(t, yεjt(t))− Id

)
.
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We claim that

1

εjt

(
∇ϕεjt(t, yεjt(t))− Id

)
→
( 0 ∇′v0(t)

−(∇′v0(t))T 0

)
(5.4.92)

strongly in L2(Ω;M3×3). Indeed, by (5.3.15) and (5.3.18) and the smoothness of u0 and

v0 , ∥∥∥ 1

εjt

(
∇(ϕεjt)′(t, yεjt(t))−

( 1 0 0

0 1 0

))
− (0|∇′v0(t))

∥∥∥
L2(Ω;M2×3)

≤ Cεjt
∥∥∥θεjt(ϕεjt3 (t, yεjt(t))

εjt

)∥∥∥
L2(Ω)

+
∥∥∥θ̇εjt(ϕεjt3 (t, yεjt(t))

εjt

)
∇′v0(t, (ϕε)′(t, yεjt(t)))⊗ (∇ϕεjt3 (t, yεjt(t))− e3)

∥∥∥
L2(Ω;M2×3)

+
∥∥∥θ̇εjt(ϕεjt3 (t, yεjt(t))

εjt

)
∇′v0(t, (ϕε)′(t, yεjt(t)))−∇′v0(t)

∥∥∥
L2(Ω;R2)

+ Cεj .

By (5.3.2), (5.3.12), and (5.4.43)(which can be proved arguing exactly as in Step 1 of the

case α > 3), we deduce∥∥∥θεjt(ϕεjt3 (t, yεjt(t))

εjt

)∥∥∥
L2(Ω)

≤
∥∥∥ϕεjt3 (t, yεjt(t))

εjt

∥∥∥
L2(Ω)

≤ C
(∥∥∥yεjt3 (t)

εjt

∥∥∥
L2(Ω)

+‖v0‖L∞(ω;R2)

)
≤ C.

(5.4.93)

On the other hand, by (5.3.5) and (5.3.20)∥∥∥θ̇εjt(ϕεjt3 (t, yεjt(t))

εjt

)
∇′v0(t, (ϕε)′(t, yεjt(t)))⊗ (∇ϕεjt3 (t, yεjt(t))− e3)

∥∥∥
L2(Ω;M2×3)

≤ C‖∇ϕεjt3 (t, yεjt(t))− e3‖L∞(Ω;R3) ≤ Cεjt.

Finally, by (5.4.93) and Lemma 5.3.11∥∥∥θ̇εjt(ϕεjt3 (t, yεjt(t))

εjt

)
∇′v0(t, (ϕε)′(t, yεjt(t)))−∇′v0(t)

∥∥∥
L2(Ω;R2)

≤ C
∥∥∥θ̇εjt(ϕεjt3 (t, yεjt(t))

εjt

)
− 1
∥∥∥
L2(Ω)

+ ‖∇′v0(t, (ϕε)′(t, yεjt(t)))−∇′v0(t)‖L2(ω;R2)

≤ C

`εjt
+ ‖∇′v0(t, (ϕε)′(t, yεjt(t)))−∇′v0(t)‖L2(ω;R2)

which converges to zero owing to (5.3.6), (5.3.13), (5.3.14), (5.4.55) (which can be proved

arguing exactly as in Step 2 of the case α > 3) and the dominated convergence theorem.

By collecting the previous remarks, we obtain∥∥∥ 1

εjt

(
∇(ϕεjt)′(t, yεjt(t))−

( 1 0 0

0 1 0

))
− (0|∇′v0(t))

∥∥∥
L2(Ω;M3×3)

→ 0.

On the other hand, by (5.3.16) there holds∥∥∥∇ϕεjt3 (t, yεjt(t))− e3

εjt
+
( ∇′v0

0

)∥∥∥
L2(Ω;R3)

≤ C
∥∥∥∇(ϕεjt)′(t)−

( 1 0 0

0 1 0

)∥∥∥
L∞(Ω;M2×3)

+‖∇′v0(t, (ϕεjt)′(t, yεjt(t)))−∇′v0(t)‖L2(Ω;R2)

which tends to zero owing to (5.3.6), (5.3.13), (5.3.14), (5.3.19), (5.4.55) and the dominated

convergence theorem. Therefore, the proof of claim (5.4.92) is completed.
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Now, by (5.4.55), (5.4.92) and the dominated convergence theorem we conclude that

1

εjt

( 0 −θ̇εjt
( zεjt3 (t)

εjt

)
∇′v̇0(t, (zεjt)′(t))

(∇′v̇0(t, (zεjt)′(t)))T 0

)(
∇ϕεjt(t, yεjt(t))− Id

)
→
( ∇′v̇0(t)⊗∇′v0(t) 0

0 d
dt
|∇′v0(t)|2

2

)
(5.4.94)

strongly in L2(Ω;M3×3). By combining (5.4.90), (5.4.91) and (5.4.94) we deduce (5.4.89).

Now, by (4.3.25), (5.3.6), (5.4.37), (5.4.39), (5.4.61) (which still hold true for α = 3), (5.4.85)

and (5.4.89) we obtain

Θ(t) =

ˆ
Ω

E(t) :
( ∇′u̇0(t) +∇′v̇0(t)⊗∇′v0(t)− (x3 + v(t)− v0(t))(∇′)2v̇0(t) 0

0 0

)
dx.

(5.4.95)

On the other hand,

sym(∇′v̇0(t)⊗∇′v0(t)− (v(t)− v0(t))(∇′)2v̇0(t))

= −sym∇′
(
(v(t)− v0(t))∇′v̇0(t)

)
+ sym

(
∇′v(t)⊗∇′v̇0(t)

)
and ˆ

Ω

C2E(t) : ∇′
(
(v(t)− v0(t))∇′v̇0(t)

)
dx = 0 (5.4.96)

by Remark 5.3.8. By combining (5.4.95) and (5.4.96), the proof of (5.4.88) and of the

theorem is complete.

To conclude this section we show some corollaries of Theorem 5.3.9. We first prove that

under the hypotheses of the theorem we can deduce convergence of the elastic energies and

of the hardening functionals. More precisely, the following result holds true.

Corollary 5.4.1. Under the assumptions of Theorem 5.3.9, for α > 3 for every t ∈ [0, T ] ,

setting yε(t) := φε(t, zε(t)) there holds

lim
ε→0

1

ε2α−2

ˆ
Ω

Wel(∇εyε(t)(P ε)−1(t)) dx =

ˆ
Ω

Q2(sym∇′u(t)− x3(∇′)2v(t)− p′(t)) dx,

and

lim
ε→0

1

ε2α−2

ˆ
Ω

Whard(P
ε(t)) dx =

ˆ
Ω

B(p(t)) dx. (5.4.97)

The analogous result holds true for α = 3 on the t-dependent subsequence εjt → 0 selected

in Theorem 5.3.9.

Proof. The result follows by combining the liminf inequalities (4.3.43) and (4.3.44) in The-

orem 4.3.3, the ε -energy balance (eb) and the reduced energy balance (eb)rα .

In particular, we can deduce strong convergence of the sequence of scaled plastic strains

by the convergence of the energies.

Corollary 5.4.2. Under the hypotheses of Theorem 5.3.9, for α > 3 there holds

pε(t)→ p(t) strongly in L2(Ω;M3×3) (5.4.98)

for every t ∈ [0, T ] . The analogous result holds true for α = 3 on the t-dependent

subsequence εjt → 0 selected in Theorem 5.3.9.
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5. Quasistatic evolution models for thin plates in finite plasticity

Proof. We prove the corollary for α > 3. The case α = 3 follows by simple adaptations.

Fix δ > 0 and let ch(δ) be the constant in (4.2.12). By (4.2.12) there holds

Whard(Id+ F ) ≥ B(F )− Cδ|F |2 for every F ∈M3×3, |F | < ch(δ). (5.4.99)

Fix t ∈ [0, T ] and for every ε consider the set

Sε(t) :=
{
x ∈ Ω : |pε(t, x)| < ch(δ)

ε

}
.

Denoting by µε(t) the characteristic function of the set Sε(t), by (5.3.30) and Chebychev

inequality,

µε(t)→ 1 boundedly in measure as ε→ 0. (5.4.100)

and thus

µε(t)p
ε(t) ⇀ p(t) weakly in L2(Ω;M3×3). (5.4.101)

We remark that in the set Sε(t) we have εα−1|pε(t)| < εα−2ch(δ). Hence, by (5.4.99) for ε

small enough there holds

1

ε2α−2
Whard(P

ε(t)) ≥ 1

ε2α−2
µε(t)Whard(P

ε(t)) ≥ µε(t)
(
B(pε(t))− Cδ|pε(t)|2

)
.

In particular, by (5.3.30), (5.4.97) and the lower semicontinuity of B with respect to weak

L2 convergence, we have

ˆ
Ω

B(p(t)) dx = lim
ε→0

1

ε2α−2

ˆ
Ω

Whard(P
ε(t)) dx ≥ lim sup

ε→0

1

ε2α−2

ˆ
Ω

µε(t)Whard(P
ε(t)) dx

≥ lim sup
ε→0

ˆ
Ω

µε(t)B(pε(t)) dx− Cδ ≥ lim inf
ε→0

ˆ
Ω

µε(t)B(pε(t)) dx− Cδ ≥
ˆ

Ω

B(p(t)) dx− Cδ.

Since δ is arbitrary, we obtain

lim
ε→0

ˆ
Ω

µε(t)B(pε(t)) dx =

ˆ
Ω

B(p(t)) dx (5.4.102)

and by (5.4.97)

lim
ε→0

1

ε2α−2

ˆ
Ω

(1− µε(t))Whard(P
ε(t)) dx = 0. (5.4.103)

By (4.2.11) and (5.4.103) we deduce

lim
ε→0

ˆ
Ω

(1− µε(t))|pε(t)|2 dx ≤
2

c6
lim
ε→0

1

ε2α−2

ˆ
Ω

(1− µε(t))Whard(P
ε(t)) dx = 0. (5.4.104)

Hence, by (4.2.15) there holds

ˆ
Ω

|pε(t)− p(t)|2 dx =

ˆ
Ω

µε(t)|pε(t)− p(t)|2 dx+

ˆ
Ω

(1− µε(t))|pε(t)− p(t)|2 dx

≤ 2

c6

ˆ
Ω

µε(t)B(pε(t)− p(t)) dx+ 2

ˆ
Ω

(1− µε(t))(|pε(t)|2 + |p(t)|2) dx.

(5.4.105)
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Recalling the quadratic structure of B , the first term in the second row of (5.4.105) can be

decomposed as

2

c6

ˆ
Ω

µε(t)B(pε(t)− p(t)) dx =
2

c6

ˆ
Ω

µε(t)B(pε(t)) dx+
2

c6

ˆ
Ω

µε(t)B(p(t)) dx

− 4

c6

ˆ
Ω

µε(t)Bpε(t) : p(t) dx

and tends to zero due to (5.4.100)–(5.4.102). On the other hand, by (5.4.100) and (5.4.104)

ˆ
Ω

(1− µε(t))(|pε(t)|2 + |p(t)|2) dx→ 0.

By combining the previous results, we deduce (5.4.98).

Convergence of the energy implies also strong convergence of the in-plane displacements.

More precisely, the following result holds true.

Corollary 5.4.3. Under the assumptions of Theorem 5.3.9, for α > 3 , for every t ∈ [0, T ]

there holds

uε(t)→ u(t) strongly in W 1,2(ω;R2). (5.4.106)

The same result holds true for α = 3 , on the t-dependent subsequence εjt → 0 selected in

Theorem 5.3.9.

Proof. We prove the corollary for α > 3. The case where α = 3 follows by simple adapta-

tions. Fix t ∈ [0, T ] and let F ε(t) be the map defined in (5.4.20). Fix δ > 0 and consider

the set

Uε(t) :=
{
x ∈ Ω : |F ε(t, x)| < cel(δ)

ε

}
,

where cel(δ) is the constant in (4.2.4). In particular, in the set Uε(t) there holds εα−1|F ε(t)| ≤
εα−2cel(δ). Hence, denoting by µε(t) the characteristic function of Uε(t), by (H3) (see Sec-

tion 4.2), (4.2.4) and (5.4.21), we have

1

ε2α−2
Wel(∇εyε(t)(P ε)−1(t)) =

1

ε2α−2
Wel(Id+ εα−1F ε(t)) ≥ µε(t)Q(F ε(t))− µε(t)Cδ|F ε(t)|2.

By Chebychev inequality and (5.4.28),

µε(t)→ 1 boundedly in measure, (5.4.107)

whereas by (5.4.65) and (5.4.74),

µε(t)symF ε(t) ⇀ A(sym∇′u(t)− x3(∇′)2v(t)− p′(t)) weakly in L2(Ω;M3×3). (5.4.108)

Arguing as in the proof of (5.4.102) we obtain

lim
ε→0

ˆ
Ω

µε(t)Q(F ε(t)) dx =

ˆ
Ω

Q2(sym∇′u(t)− x3(∇′)2v(t)− p′(t)) dx(5.4.109)

and

lim
ε→0

ˆ
Ω

(1− µε(t))Wel(Id+ εα−1F ε(t)) dx = 0.
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By (H4) (see Section 4.2), this implies that

lim
ε→0

ˆ
Ω

(1− µε(t))dist2(Id+ εα−1F ε(t), SO(3)) dx→ 0. (5.4.110)

On the other hand, (4.2.7) and (4.3.25) yield
ˆ

Ω

∣∣µε(t)symF ε(t)− A
(
∇′u(t)− x3(∇′)2v(t)− p′(t)

)∣∣2 dx
≤ 1

rC

ˆ
Ω

Q
(
µε(t)symF ε(t)− A

(
∇′u(t)− x3(∇′)2v(t)− p′(t)

))
dx

=
1

rC

ˆ
Ω

Q(µε(t)F
ε(t)) dx+

1

rC

ˆ
Ω

Q2(∇′u(t)− x3(∇′)2v(t)− p′(t)) dx

− 2

rC

ˆ
Ω

µε(t)C2F
ε(t) : (∇′u(t)− x3(∇′)2v(t)− p′(t)) dx.

Hence, by (5.4.108) and (5.4.109)

µε(t)symF ε(t)→ A(∇′u(t)− x3(∇′)2v(t)− p′(t)) strongly in L2(Ω;M3×3). (5.4.111)

Moreover,

1

εα−1
µε(t)dist(Id+ εα−1F ε(t), SO(3))

= µε(t)|symF ε(t)|+ µε(t)O(εα−1|F ε(t)|2)→ |A(∇′u(t)− x3(∇′)2v(t)− p′(t))|

(5.4.112)

strongly in L2(Ω). By combining (5.4.110) and (5.4.112) we deduce

1

εα−1
dist(Id+ εα−1F ε(t), SO(3))→ |A(∇′u(t)− x3(∇′)2v(t)− p′(t))|

strongly in L2(Ω). In particular, the sequence 1
ε2α−2 dist2(Id + εα−1F ε(t), SO(3)) is equi-

integrable.

Now, recalling that by (5.4.20) there holds

Id+ εα−1F ε(t) = (Id+ εα−1Gε(t))(Id+ εα−1pε(t))−1,

by (4.2.13) and (5.4.3) for every R ∈ SO(3) we deduce

1

ε2α−2
|Id+ εα−1Gε(t)−R|2 =

1

ε2α−2
|(Id+ εα−1F ε(t))(Id+ εα−1pε(t))−R|2

≤ 2

ε2α−2
|Id+ εα−1F ε(t)−R|2 + 2|pε(t)|2,

which in turn implies

1

ε2α−2
dist2(Id+ εα−1Gε(t), SO(3)) ≤ 2

ε2α−2
dist2(Id+ εα−1F ε(t), SO(3)) + |pε(t)|2.

Hence, by (5.4.98) 1
ε2α−2 dist2(Id+ εα−1Gε(t), SO(3)) is equi-integrable. Arguing as in [34,

Section 7.2, Proof of Theorem 2] we obtain the equi-integrability of |Gε(t)|2 .

We claim that also |F ε(t)|2 is equi-integrable. Indeed, by (5.4.20), there holds

|F ε(t)|2 ≤ C(|Gε(t)|2 + |wε(t)|2 + |pε(t)|2 + ε2α−2|Gε(t)wε(t)|2 + ε2α−2|Gε(t)pε(t)|2).
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Now, by (5.4.2), (5.4.3) and (5.4.22), we have

|wε(t)|2 ≤ c2Kε2α−2|pε(t)|4 ≤ C|pε(t)|2.

Hence, by (5.4.98) the maps |wε(t)|2 are equi-integrable. Moreover, by (5.4.2) there holds

ε2α−2|Gε(t)pε(t)|2 ≤ C|Gε(t)|2

and by (5.4.23)

ε2α−2|Gε(t)wε(t)|2 ≤ C|Gε(t)|2.

Therefore, the equi-integrability of |F ε(t)|2 follows from the equi-integrability of |Gε(t)|2 .

By (5.4.111), this implies that

symF ε(t)→ A(∇′u(t)− x3(∇′)2v(t)− p′(t))

strongly in L2(Ω;M3×3). On the other hand, by (5.4.24) and (5.4.63),

wε(t)− εα−1Gε(t)(pε(t)− wε(t))→ 0

strongly in L1(Ω;M3×3). Therefore, by (5.4.20) and (5.4.98) we obtain

symGε(t)→ A(∇′u(t)− x3(∇′)2v(t)− p′(t)) + p(t) strongly in L1(Ω;M3×3).

By the equi-integrability of |Gε(t)|2 , it follows that

symGε(t)→ A(∇′u(t)− x3(∇′)2v(t)− p′(t)) + p(t) strongly in L2(Ω;M3×3).

The conclusion follows then arguing as in [34, Section 7.2, Proof of Theorem 2].

5.5 Convergence of approximate minimizers

Theorems 5.3.9 is actually only a convergence result. Indeed, under our assumptions

the existence of an ε -quasistatic evolution according to Definition 5.3.3 is not guaranteed.

Howewer, following the same approach as in [52, Theorem 2.3], we can extend our con-

vergence result to sequences of approximate discrete-time ε -quasistatic evolutions. More

precisely, setting

Aε := {(z, P ) ∈W 1,2(Ω;R3)× L2(Ω;SL(3)) :

z = (x′, εx3) H2 - a.e. on Γd and P (x) ∈ K a.e. in Ω},

we give the following definition.

Definition 5.5.1. Given a sequence of time-partitions

{0 = t0ε < t1ε < · · · tN
ε

ε = T},

with time-steps

τε := max
i=1,···Nε

(tiε − ti−1
ε )→ 0 as ε→ 0, (5.5.1)
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and a sequence of positive parameters δε → 0, we call {(ziε, P iε)} a sequence of approximate

minimizers if, for every ε > 0, (z0
ε , P

0
ε ) ∈ Aε , and (ziε, P

i
ε) ∈ Aε satisfies

Fε(tiε, ziε, P iε) + εα−1

ˆ
Ω

D(P i−1
ε , P iε) dx

≤ ε2α−2δε(t
i
ε − ti−1

ε ) + inf
(z,P )∈Aε

{
Fε(tiε, z, P ) + εα−1

ˆ
Ω

D(P i−1
ε , P ) dx

}
(5.5.2)

for every i = 1, · · · , Nε .

Our final result is to show that every sequence of approximate minimizers converges, as

ε→ 0, to a reduced quasistatic evolution.

Theorem 5.5.2. Let α ≥ 3 . Assume that t 7→ u0(t) belongs to C1([0, T ];W 1,∞(R2;R2) ∩
C1(R2;R2)) and t 7→ v0(t) belongs to C1([0, T ];W 2,∞(R2) ∩ C2(R2)) , respectively. For

every t ∈ [0, T ] , let φε(t) be defined as in (5.3.10) and let (̊u, v̊, p̊) ∈ A(u0(0), v0(0)) be such

that
ˆ

Ω

Q2(sym∇′ů− x3(∇′)2v̊ + Lα
2 ∇

′̊v ⊗∇′̊v − p̊′) dx+

ˆ
Ω

B(p̊) dx

≤
ˆ
ω

Q2(sym∇′û− x3(∇′)2v̂ + Lα
2 ∇

′v̂ ⊗∇′v̂ − p̂′) dx′ +
ˆ

Ω

B(p̂) dx+

ˆ
Ω

HD(p̂− p̊) dx,

(5.5.3)

for every (û, v̂, p̂) ∈ A(u0(0), v0(0)) . Given a sequence of time-partitions

{0 = t0ε < t1ε < · · · tN
ε

ε = T},

with time-steps

τε := max
i=1,···Nε

(tiε − ti−1
ε )→ 0 as ε→ 0,

and a sequence of positive parameters δε → 0 , assume there exists a sequence of pairs

(yε0, P
ε
0 ) ∈ Aε(φε(0)) such that

I(yε0, P
ε
0 ) ≤ I(ŷ, P̂ ) + εα−1

ˆ
Ω

D(P ε0 , P̂ ) dx+ δετε, (5.5.4)

for every (ŷ, P̂ ) ∈ Aε(φε(0)) , and

uε0 :=
1

εα−1

ˆ 1
2

− 1
2

(
(yε0)′ − x′

)
dx3 → ů strongly in W 1,2(ω;R2), (5.5.5)

vε0 :=
1

εα−2

ˆ 1
2

− 1
2

(yε0)3 dx3 → v̊ strongly in W 1,2(ω), (5.5.6)

pε0 :=
P ε0 − Id
εα−1

→ p̊ strongly in L2(Ω;M3×3
D ), (5.5.7)

lim
ε→0

1

ε2α−2
I(yε0, P

ε
0 ) =

ˆ
Ω

Q2(sym∇′ů− x3(∇′)2v̊ + Lα
2 ∇

′̊v ⊗∇′̊v − p̊′) dx

+

ˆ
Ω

B(p̊) dx. (5.5.8)
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Let (ziε, P
i
ε) be a sequence of approximate minimizers and let (zε(t), P

ε
(t)) be the corre-

sponding right-continuous, piecewise constant interpolants on the time partitions. Let φ
ε
(t)

be the associated interpolant of t 7→ φε(t) . Then, for every t ∈ [0, T ]

pε(t) :=
P
ε
(t)− Id
εα−1

⇀ p(t) weakly in L2(Ω;M3×3).

Moreover, for α > 3 , for every t ∈ [0, T ] the following convergence properties hold true:

uε(t) :=
1

εα−1

ˆ 1
2

− 1
2

(
(φ
ε
)′(t, zε(t))− x′

)
dx3 ⇀ u(t) weakly in W 1,2(ω;R2),

vε(t) :=
1

εα−2

ˆ 1
2

− 1
2

φ
ε

3(t, zε(t)) dx3 → v(t) strongly in W 1,2(ω),

where t 7→ (u(t), v(t), p(t)) is a reduced quasistatic evolution.

For α = 3 , up to extracting a t-dependent subsequence εjt → 0 , there holds

uεjt(t) :=
1

εα−1
jt

ˆ 1
2

− 1
2

(
(φ
εjt

)′(t, zεjt(t))− x′
)
dx3 ⇀ u(t) weakly in W 1,2(ω;R2),

vεjt(t) :=
1

εα−2
jt

ˆ 1
2

− 1
2

φ
εjt
3 (t, zεjt(t)) dx3 → v(t) strongly in W 1,2(ω),

where t 7→ (u(t), v(t), p(t)) is a reduced quasistatic evolution.

Remark 5.5.3. The set of admissible data (̊u, v̊, p̊) for Theorem 5.5.2 is nonempty.

Indeed, for every ε > 0 let (yε0, P
ε
0 ) ∈ Aε(φε(0)) be such that

I(yε0, P
ε
0 ) + εα−1

ˆ
Ω

D(Id, P ε0 ) dx ≤ inf
(ŷ,P̂ )∈Aε(φε(0))

{
I(ŷ, P̂ ) + εα−1

ˆ
Ω

D(Id, P̂ ) dx
}

+ δετε.

By (4.2.18) there holds

D(Id, P̂ ) ≤ D(Id, P ε0 ) +D(P ε0 , P̂ ),

hence (yε0, P
ε
0 ) fulfills (5.5.4). By the regularity of ∂ω , the set γd coincides H1 - a.e. with

its closure in the relative topology of ∂ω , which in turn is a closed (nontrivial) interval in

∂ω . Hence, by Theorem 4.5.1, choosing pε,0 = p0 = 0 for every ε > 0, and sε = δετε , we

infer the existence of a triple (̊u, v̊, p̊) ∈ A(u0(0), v0(0)) such that (5.5.3) is satisfied and

(5.5.5)–(5.5.8) hold true.

Proof of Theorem 5.5.2. The proof follows along the general lines of the proof of Theorem

5.3.9. We sketch the main steps in the case α > 3. The case α = 3 follows by straightforward

adaptations.

Quasi-stability condition

By (4.2.18) the piecewise constant interpolants fullfill

Fε(t, zε(t), P
ε
(t)) ≤ Fε(t, ẑ, P̂ ) + εα−1

ˆ
Ω

D(P
ε
(t), P̂ ) dx+ δετεε

2α−2 (5.5.9)

for every (ẑ, P̂ ) ∈ Aε . The previous inequality will play the role of the ε -stability condition

(gs).
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Discrete energy inequality

To adapt the proof of Theorem 5.3.9 we shall need an analogue of condition (eb). To this

purpose, we notice that, by (5.5.2) the following discrete energy inequality holds true

Fε(tiε, ziε, P iε) + εα−1

ˆ
Ω

D(P i−1
ε , P iε) dx ≤ ε2α−2δε(t

i
ε − ti−1

ε ) + Fε(tiε, zi−1
ε , P i−1

ε )

= ε2α−2δε(t
i
ε − ti−1

ε ) + Fε(ti−1
ε , zi−1

ε , P i−1
ε ) +

ˆ tiε

ti−1
ε

∂sFε(s, zi−1
ε , P i−1

ε ) ds

= ε2α−2δε(t
i
ε − ti−1

ε ) + Fε(ti−1
ε , zi−1

ε , P i−1
ε )

+ε2α−2

ˆ tiε

ti−1
ε

ˆ
Ω

DWel

(
∇φε(s, zi−1

ε )∇εzi−1
ε (P i−1

ε )−1
)

: ∇φ̇ε(s, zi−1
ε )∇εzi−1

ε (P i−1
ε )−1 dx ds

= ε2α−2δε(t
i
ε − ti−1

ε ) + Fε(ti−1
ε , zi−1

ε , P i−1
ε )

+εα−1

ˆ tiε

ti−1
ε

ˆ
Ω

Ei−1
ε (s) : ∇φ̇ε(s, zi−1

ε )(∇φε)−1(s, zi−1
ε ) dx ds,

where

Ei−1
ε (s) :=

1

εα−1
DWel

(
∇φε(s, zi−1

ε )∇εzi−1
ε (P i−1

ε )−1
)(
∇φε(s, zi−1

ε )∇εzi−1
ε (P i−1

ε )−1
)T

for every s ∈ [ti−1
ε , tiε] .

By iterating the discrete energy inequality, recalling that P
ε
(t) is locally constant, we

obtain

Fε(t, zε(t), P
ε
(t)) + εα−1D(P

ε
; 0, t)

≤ ε2α−2δεT + Fε(0, zε0, P ε0 ) + εα−1

ˆ t

0

ˆ
Ω

E
ε
(s) : ∇φ̇ε(s, zε(s))(∇φε)−1(s, zε(s)) dx ds,

(5.5.10)

where zε0 := ϕε(0, yε0) and

E
ε
(s) :=

1

εα−1
DWel

(
∇φε(s, zε(s))∇εzε(s)(P

ε
)−1(s)

)(
∇φε(s, zε(s))∇εzε(s)(P

ε
)−1(s)

)T
for every s ∈ [0, t] .

Proof of the reduced stability condition and energy balance

The reduced stability condition can be deduced as in Step 2 of the proof of Theorem 5.3.9.

Moreover, arguing as in the proof of Theorem 5.3.9 one can show that E
ε
(t) converges in

the sense of (5.4.37) and (5.4.61) to a limit stress E(t) such that

E(t) = C(G(t)− p(t)).

The crucial step to deduce the reduced energy balance is to show that E(t)e3 = 0 a.e. in

Ω, that is,

E(t) = C2(G′(t)− p′(t)). (5.5.11)

The main difference with respect to Theorem 5.3.9 is that in this case we can not deduce

this condition starting from the three-dimensional Euler-Lagrange equations because (5.5.10)

does not imply (5.4.68).
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5.5 Convergence of approximate minimizers

To cope with this problem, set yε(t) = φ
ε
(t, zε(t)) for every t ∈ [0, T ] . Let η ∈

W 1,∞(R3;R3) ∩ C∞(R3;R3) be such that η = 0 H2 - a.e. on Γd . We argue as in the

proof of Theorem 1.3.1 and we consider variations of the form

ŷ = yε(t) + τεε
α−1ηε ◦ yε,

where ηε is the test function considered in Step 4 of the proof of Theorem 5.3.9. By (5.5.9),

taking P̂ = P
ε
(t), we deduce

−δε ≤
1

εα−1

ˆ
Ω

Wel

((
Id+ τεε

α−1∇ηε(yε(t))
)
∇εyε(t)(P

ε
)−1(t)

)
−Wel(∇εyε(t)(P

ε
)−1(t))

τεεα−1
dx

=
1

εα−1

ˆ
Ω

ˆ 1

0

d

ds

Wel

((
Id+ sτεε

α−1∇ηε(yε(t))
)
∇εyε(t)(P

ε
)−1(t)

)
τεεα−1

ds dx

=

ˆ
Ω

Φε(t) : ∇ηε(yε(t)) dx,

where

Φε(t) :=
1

εα−1

ˆ 1

0

DWel

((
Id+ sτεε

α−1∇ηε(yε(t))
)
∇εyε(t)(P

ε
)−1(t)

)
(∇εyε(t)(P

ε
)−1(t))T ds.

Since P
ε
(t) ∈ L2(Ω;SL(3)), det P

ε
(t) = 1 a.e. in Ω. Moreover, by (H1) (see Section

4.2) and (5.5.9) we deduce that det ∇εyε(t) > 0 a.e. in Ω. On the other hand, since

‖∇ηε‖L∞(Ω;M3×3) ≤ C for every ε (see Step 4 of the proof of Theorem 5.3.9 and (5.3.18)),

by (5.5.1),

det (Id+ sτεε
α−1∇ηε(yε(t))) > 0 for every s ∈ [0, 1],

for ε small enough. Hence, by combining (4.2.5) and (4.2.6) we deduce that Φε(t) is well

defined for ε small enough. Moreover, there holds

lim inf
ε→0

{ˆ
Ω

Φε(t) : ∇ηε(yε(t)) dx
}
≥ 0. (5.5.12)

We claim that

lim
ε→0

ˆ
Ω

Φε(t) : ∇ηε(yε(t)) dx =

ˆ
Ω

E(t)e3 : ∂3η dx. (5.5.13)

We note that, once (5.5.13) is proved, from (5.5.12) it follows thatˆ
Ω

E(t)e3 : ∂3η dx ≥ 0

for every η ∈ W 1,∞(R3;R3) ∩ C∞(R3;R3) such that η = 0 H2 - a.e. on Γd , hence the

proof of (5.5.11) is complete.

To prove (5.5.13), it is enough to consider the sets

Oε(t) := {x : εα−1−γ |F ε(t)| < 1},

where the maps F
ε
(t) are the piecewise constant interpolants of the maps F ε(t) defined in

(5.4.20). Arguing as in the proof of (5.4.36) and (5.4.61), one can show that, denoting by

χε(t) the characteristic function of the set Oε(t), there holds

||(1− χε(t))Φε(t)||L1(Ω;M3×3) ≤ Cεα−1−γ
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and

χε(t)Φ
ε(t) ⇀ E(t) weakly in L2(Ω;M3×3).

Claim (5.5.13) follows now arguing as in Step 4 of the proof of Theorem 5.3.9.

5.6 Appendix

This section is devoted to the proof of the existence of a reduced quasistatic evolution

for the boundary data t 7→ u0(t) and t 7→ v0(t) (according to Definition 5.3.6) in the case

α = 3. We first prove two lemmas that will be useful in the proof of the existence result.

Lemma 5.6.1. Let p0 ∈ L2(Ω;M3×3
D ) , u0 ∈ C1(ω;R2) and v0 ∈ C2(ω) . Then, there exists

a triple (u, v, p) ∈ A(u0, v0) that solves

min
(ũ,ṽ,p̃)∈A(u0,v0)

{ˆ
Ω

Q2

(
sym∇′ũ+ 1

2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − p̃′

)
dx+

ˆ
Ω

B(p̃) dx

+

ˆ
Ω

HD(p̃− p0) dx
}
. (5.6.1)

Proof. Let (un, vn, pn) ⊂ A(u0, v0) be a minimizing sequence for (5.6.1). Then, there exists

a constant C such that

‖B(pn)‖L1(Ω) ≤ C for every n ∈ N.

Since B is strictly positive definite, we deduce

‖pn‖L2(Ω;M3×3
D ) ≤ C for every n ∈ N. (5.6.2)

Hence, there exists a map p ∈ L2(Ω;M3×3
D ) such that, up to subsequences

pn ⇀ p weakly in L2(Ω;M3×3
D ). (5.6.3)

By (4.2.7) and (5.6.2) there holds

‖sym∇′un + 1
2∇
′vn ⊗∇′vn‖L2(Ω;M2×2) + ‖(∇′)2vn‖L2(Ω;M2×2) ≤ C for every n ∈ N.

Therefore, Poincarè inequality yields

‖vn − v0‖L2(Ω) ≤ C‖∇′vn −∇′v0‖L2(Ω;R2) ≤ C‖(∇′)2vn − (∇′)2v0‖L2(Ω;M2×2),

which in turn implies that the sequence (vn) is uniformly bounded in W 2,2(Ω). Thus, there

exists v ∈W 2,2(Ω) such that, up to subsequences

vn ⇀ v weakly in W 2,2(Ω). (5.6.4)

On the other hand, Proposition 1.1.1 implies

‖un − u0‖W 1,2(Ω;R2) ≤ C‖sym (∇′un −∇′u0)‖L2(Ω;M2×2)

≤ C‖sym∇′un + 1
2∇
′vn ⊗∇′vn‖L2(Ω;M2×2) + C‖u0‖W 1,2(Ω;R2)

+ C‖vn‖W 2,2(Ω) ≤ C.
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Hence, (un) is uniformly bounded in W 1,2(Ω;R2) and there exists u ∈ W 1,2(Ω;R2) such

that, up to subsequences

un ⇀ u weakly in W 1,2(Ω;R2). (5.6.5)

It is easy to see that (u, v, p) ∈ A(u0, v0). Moreover, by combining (5.6.3)–(5.6.5) and by

the lower semicontinuity of Q2 , B and HD with respect to weak L2 convergence, it follows

that the triple (u, v, p) is a solution to (5.6.1).

Lemma 5.6.2. Let p0 ∈ L2(Ω;M3×3
D ) , u0 ∈ C1(ω;R2) and v0 ∈ C2(ω) . Let (u, v, p) ∈

A(u0, v0) be a solution to the minimum problem (5.6.1). Thenˆ
Ω

Q2

(
sym∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v − p′

)
dx+

ˆ
Ω

B(p) dx

≤
ˆ

Ω

Q2

(
sym∇′ũ+ 1

2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − p̃′

)
dx+

ˆ
Ω

B(p̃) dx+

ˆ
Ω

HD(p̃− p) dx

for every (ũ, ṽ, p̃) ∈ A(u0, v0) .

Proof. The thesis follows by (5.6.1), once we notice that by (4.2.18) there holds

HD(p̃− p0) ≤ HD(p̃− p) +HD(p− p0)

for every p̃ ∈ L2(Ω;M3×3
D ).

We are now in a position to prove the main result of the section.

Theorem 5.6.3. Let α = 3 . Assume that t 7→ u0(t) belongs to C1([0, T ];W 1,∞(R2;R2) ∩
C1(R2;R2)) and t 7→ v0(t) belongs to C1([0, T ];W 2,∞(R2) ∩ C2(R2)) . Let (ū, v̄, p̄) ∈
A(u0(0), v0(0)) be such thatˆ

Ω

Q2

(
sym∇′ū+ 1

2∇
′v̄ ⊗∇′v̄ − x3(∇′)2v̄ − p̄′

)
dx+

ˆ
Ω

B(p̄) dx

≤
ˆ

Ω

Q2

(
sym∇′ũ+ 1

2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − p̃′

)
dx+

ˆ
Ω

B(p̃) dx+

ˆ
Ω

HD(p̃− p̄) dx

for every (ũ, ṽ, p̃) ∈ A(u0(0), v0(0)) . Then, there exists a reduced quasistatic evolution

t 7→ (u(t), v(t), p(t)) for the boundary data (u0(t), v0(t)) (according to Definition 5.3.6)

such that

u(0) = ū, v(0) = v̄ and p(0) = p̄.

Proof. Let us consider a sequence of subdivisions (tik)0≤i≤k of the interval [0, T ] , with

0 = t0k < t1k < · · · < tk−1
k < tkk = T

and such that

lim
k→+∞

max
1≤i≤k

(tik − ti−1
k ) = 0.

Set (u0)ik := u0(tik) and (v0)ik := v0(tik), for 0 ≤ i ≤ k and for every k and let (uik, v
i
k, p

i
k),

i = 1, · · · k , be defined inductively as solutions to the minimum problem

min
(u,v,p)∈A((u0)ik,(v

0)ik)

{ˆ
Ω

Q2

(
sym∇′u+ 1

2∇
′v ⊗∇′v − x3(∇′)2v − p′

)
dx+

ˆ
Ω

B(p) dx

+

ˆ
Ω

HD(p− pi−1
k ) dx

}
, (5.6.6)
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with (u0
k, v

0
k, p

0
k) = (ū, v̄, p̄). For i = 1, · · · k we set

eik := sym∇′uik + 1
2∇
′vik ⊗∇′vik − x3(∇′)2vik − (pik)′

and for every t ∈ [0, T ] we consider the piecewise constant interpolants

uk(t) = uik, vk(t) = vik, pk(t) = pik, u0
k(t) = (u0)ik

v0
k(t) = (v0)ik and ek(t) = eik,

where i is the larger integer such that tik ≤ t . By definition, (uk(t), vk(t), pk(t)) ∈ A(u0
k(t), v0

k(t))

for every t ∈ [0, T ] . Moreover, by Lemma 5.6.2 for every t ∈ [0, T ] there holds
ˆ

Ω

Q2(ek(t)) dx+

ˆ
Ω

B(pk(t)) dx

≤
ˆ

Ω

Q2

(
sym∇′ũ+ 1

2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − p̃′

)
dx+

ˆ
Ω

B(p̃) dx+

ˆ
Ω

HD(p̃− pk(t)) dx

(5.6.7)

for every (ũ, ṽ, p̃) ∈ A(u0
k(t), v0

k(t)).

We split the construction of the reduced quasistatic evolution into three steps.

Step 1: A priori estimates

In this step we shall prove that there exists a constant C such that

‖uk(t)‖W 1,2(Ω;R2)+‖vk(t)‖W 2,2(Ω)+‖pk(t)‖L2(Ω:M3×3
D ) ≤ C for every k and for all t ∈ [0, T ].

(5.6.8)

Indeed, by the minimality condition (5.6.6), there holds
ˆ

Ω

Q2(ek(t)) dx+

ˆ
Ω

B(pk(t)) dx

≤
ˆ

Ω

Q2

(
sym∇′u0

k(t) + 1
2∇
′v0
k(t)⊗∇′v0

k(t)− x3(∇′)2v0
k(t)− p̄′

)
dx+

ˆ
Ω

B(p̄) dx

+

ˆ
Ω

HD(p̄− pk(t)) dx

for every t ∈ [0, T ] . Since B is strictly positive definite, by (4.2.16) we deduce

‖pk(t)‖2
L2(Ω;M3×3

D )
≤ C(1 + ‖pk(t)‖L1(Ω;M3×3

D )).

Hence, by Holder and Cauchy inequalities,

‖pk(t)‖L2(Ω;M3×3
D ) ≤ C for every k and t ∈ [0, T ].

Estimate (5.6.8) follows now by (4.2.7), and arguing as in the proof of Lemma 5.6.1.

Step 2: Discrete energy inequality

In this step we shall show that there exists a sequence δk → 0+ such that

ˆ
Ω

Q2(ek(t)) dx+

ˆ
Ω

B(pk(t)) dx+

i∑
r=1

ˆ
Ω

HD(prk − pr−1
k ) dx ≤

ˆ
Ω

Q2(ek(0)) dx+

ˆ
Ω

B(pk(0)) dx

+

ˆ tik

0

ˆ
Ω

C2ek(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′vk(s)⊗∇′v̇0(s) 0

0 0

)
dx+ Cδk. (5.6.9)
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To prove inequality (5.6.9), we fix r such that 1 ≤ r ≤ i , and we consider the maps

ũ = ur−1
k − (u0)r−1

k + (u0)rk , and ṽ = vr−1
k − (v0)r−1

k + (v0)rk . It is immediate to see that

(ũ, ṽ, pr−1
k ) ∈ A((u0)rk, (v

0)rk). Hence, the minimality condition (5.6.7) yields

ˆ
Ω

Q2(erk) dx+

ˆ
Ω

B(prk) dx+

ˆ
Ω

H(prk − pr−1
k ) dx

≤
ˆ

Ω

Q2

(
sym∇′ũ+ 1

2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − (pr−1

k )′
)
dx+

ˆ
Ω

B(pr−1
k ) dx

≤
ˆ

Ω

Q2(er−1
k ) dx+

ˆ
Ω

B(pr−1
k ) dx

+2

ˆ
Ω

Q2

(
sym∇′((u0)rk − (u0)r−1

k )− x3(∇′)2((v0)rk − (v0)r−1
k )

)
dx

+2

ˆ
Ω

Q2

(
∇′((v0)rk − (v0)r−1

k )⊗
(
∇′vr−1

k + 1
2∇
′((v0)rk − (v0)r−1

k )
))

dx

+

ˆ
Ω

C2er−1
k :

(
sym∇′((u0)rk − (u0)r−1

k )− x3(∇′)2((v0)rk − (v0)r−1
k )

)
dx

+

ˆ
Ω

C2er−1
k : ∇′((v0)rk − (v0)r−1

k )⊗
(
∇′vr−1

k + 1
2∇
′((v0)rk − (v0)r−1

k )
)
dx.

Now,

ˆ
Ω

C2er−1
k :

(
sym∇′((u0)rk − (u0)r−1

k )− x3(∇′)2((v0)rk − (v0)r−1
k )

)
dx

=

ˆ trk

tr−1
k

ˆ
Ω

C2er−1
k : (sym∇′u̇0(s)− x3(∇′)2v̇0(s)) dx ds

and by (5.6.8)

ˆ
Ω

C2er−1
k : ∇′((v0)rk − (v0)r−1

k )⊗
(
∇′vr−1

k + 1
2∇
′((v0)rk − (v0)r−1

k )
)
dx

=

ˆ trk

tr−1
k

ˆ
Ω

C2er−1
k : ∇′v̇0(s)⊗ (∇′vr−1

k + 1
2∇
′((v0)rk − (v0)r−1

k )) dx ds

≤
ˆ trk

tr−1
k

ˆ
Ω

C2er−1
k : ∇′v̇0(s)⊗∇′vr−1

k dx ds

+C‖∇′v̇0‖L∞(ω;R2)

(
sup
t∈[0,T ]

‖ek(t)‖L2(Ω;M3×3)

)ˆ trk

tr−1
k

‖∇′((v0)rk − (v0)r−1
k ))‖L2(ω;R2) ds

≤
ˆ trk

tr−1
k

ˆ
Ω

C2er−1
k : ∇′v̇0(s)⊗∇′vr−1

k dx ds+ C(trk − tr−1
k )2.

On the other hand, by (4.2.7) and Holder inequality

ˆ
Ω

Q2

(
sym∇′((u0)rk − (u0)r−1

k )− x3(∇′)2((v0)rk − (v0)r−1
k )

)
dx

≤ C(trk − tr−1
k )

ˆ trk

tr−1
k

‖sym∇′u̇0(s)− x3(∇′)2v̇0(s)‖2L2(Ω;M2×2) ds

≤ C(trk − tr−1
k )2
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and ˆ
Ω

Q2

(
∇′((v0)rk − (v0)r−1

k )⊗
(
∇′(vr−1

k ) + 1
2∇
′((v0)rk − (v0)r−1

k )
))

dx

≤ C(trk − tr−1
k )

ˆ trk

tr−1
k

ˆ
Ω

|∇′v̇0(s)⊗ 1
2∇
′((v0)rk − (v0)r−1

k )|2 dx ds

≤ C(trk − tr−1
k )2,

where the last inequality follows by (5.6.8). By combining the previous estimates and by

setting

δk := max
1≤i≤k

(trk − tr−1
k ),

we deduceˆ
Ω

Q2(erk) dx+

ˆ
Ω

B(prk) dx+

ˆ
Ω

H(prk − pr−1
k ) dx

≤
ˆ

Ω

Q2(er−1
k ) dx+

ˆ
Ω

B(pr−1
k ) dx

+

ˆ trk

tr−1
k

ˆ
Ω

C2er−1
k :

(
sym∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v̇0(s)⊗∇′vr−1

k

)
dx ds+ Cδk(trk − tr−1

k ).

By iterating the previous inequality we obtain (5.6.9).

Step 3: Reduced global stability

The discrete energy inequality proved in Step 2 and the a priori estimates deduced in Step 1

imply, in particular, by (4.2.16) that∑
0≤trk≤t

‖prk − pr−1
k ‖L1(Ω;M3×3

D ) ≤ C for every t ∈ [0, T ],

which in turn, since pk(t) is piecewise constant, is equivalent to

V(pk; 0, t) ≤ C

for every k and t ∈ [0, T ] (where V is the map defined in (1.5.1)). Therefore, by Theorem

1.5.1 there exists a map t 7→ p(t) which has bounded variation from [0, T ] into L2(Ω;M3×3
D ),

such that

pk(t) ⇀ p(t) weakly in L2(Ω;M3×3
D )

for every t ∈ [0, T ] . By (5.6.8) for every t ∈ [0, T ] there exists a t -dependent subsequence

kj → 0 such that

ukj (t) ⇀ u(t) weakly in W 1,2(Ω;R2) and vkj (t) ⇀ v(t) weakly in W 2,2(Ω). (5.6.10)

By the continuity of the trace operator, (u(t), v(t), p(t)) ∈ A(u0(t), v0(t)).

In this step we shall prove that (u(t), v(t), p(t)) fulfills (gs)r3 for every t ∈ [0, T ] . Indeed,

fix t ∈ [0, T ] and (ũ, ṽ, p̃) ∈ A(u0(t), v0(t)). We claim that

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx ≤
ˆ

Ω

Q2(ẽ) dx+

ˆ
Ω

B(p̃) dx+

ˆ
Ω

HD(p̃− p(t)) dx,

(5.6.11)
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where e3(t) is the map defined in (5.3.24) and

ẽ := sym∇′ũ+ 1
2∇
′ṽ ⊗∇′ṽ − x3(∇′)2ṽ − p̃′.

Define the maps

ûk(t) := uk(t) + ũ− u(t), v̂k(t) := vk(t) + ṽ − v(t), and p̂k(t) := pk(t) + p̃− p(t).

With these definitions (ûk(t), v̂k(t), p̂k(t)) ∈ A(u0
k(t), v0

k(t)). Moreover,

ûk(t) ⇀ ũ, v̂k(t) ⇀ ṽ and p̂k(t) ⇀ p(t)

weakly in W 1,2(ω;R2), W 2,2(ω) and L2(Ω;M3×3
D ), respectively. By (5.6.7), there holds

ˆ
Ω

Q(ek(t)) dx+

ˆ
Ω

B(pk(t)) dx ≤
ˆ

Ω

Q(êk(t)) dx+

ˆ
Ω

B(p̂k(t)) dx+

ˆ
Ω

HD(p̂k(t)− pk(t)) dx,

where

êk(t) := sym∇′ûk(t) + 1
2∇
′v̂k(t)⊗∇′v̂k(t)− x3(∇′)2v̂k(t),

which in turn implies

ˆ
Ω

Q(ek(t)) dx−
ˆ

Ω

Q(êk(t)) dx+

ˆ
Ω

B(pk(t)) dx−
ˆ

Ω

B(p̂k(t)) dx ≤
ˆ

Ω

HD(p̃− p(t)) dx.

(5.6.12)

On the other hand,

ˆ
Ω

B(pk(t)) dx−
ˆ

Ω

B(p̂k(t)) dx = 1
2

ˆ
Ω

B(pk(t) + p̂k(t)) : (p(t)− p̃) dx

and
ˆ

Ω

Q2(ek(t)) dx−
ˆ

Ω

Q2(êk(t)) dx

= 1
2

ˆ
Ω

C2(ek(t)) + êk(t))) :
(

sym∇′(u(t)− ũ)− x3(∇′)2(v(t)− ṽ)− (p′(t)− p̃′)
)
dx

+ 1
2

ˆ
Ω

C2(ek(t)) + êk(t))) : (∇′)(v(t)− ṽ)⊗
(
∇′vk(t) + 1

2∇
′(ṽ − v(t))

)
dx.

Therefore, there holds

lim
k→+∞

( ˆ
Ω

B(pk(t)) dx−
ˆ

Ω

B(p̂k(t)) dx
)

=

ˆ
Ω

B(p(t)) dx−
ˆ

Ω

B(p̃) dx

and

lim
k→+∞

(ˆ
Ω

Q2(ek(t)) dx−
ˆ

Ω

Q2(êk(t)) dx
)

=

ˆ
Ω

Q2(e3(t)) dx−
ˆ

Ω

Q2(ẽ) dx,

By (5.6.12) we obtain (5.6.11) and hence (gs)r3 .

Step 4: Reduced energy balance

To complete the proof of the lemma it remains to prove that (u(t), v(t), p(t)) satisfies (eb)r3 .
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Fix t ∈ [0, T ] . Since pk(t) is piecewise constant in [tr−1
k , trk[ there holds

DHD (pk; 0, t) ≤
∑

0≤trk≤t

HD(prk − pr−1
k ).

Hence, by lower semicontinuity, we deduce

DHD (p; 0, t) ≤ lim inf
k→+∞

DHD (pk; 0, t) ≤ lim inf
k→+∞

∑
0≤trk≤t

HD(prk − pr−1
k ).

By (5.6.8), (5.6.10) and the dominated convergence theorem, passing to the limit in the

discrete energy inequality, we obtain

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx ≤
ˆ

Ω

Q2(e3(0)) dx+

ˆ
Ω

B(p(0)) dx

+

ˆ t

0

ˆ
Ω

C2e3(s) :
(

sym∇′u̇0(s) +∇′v(s)⊗∇′v̇0(s)− x3(∇′)2v̇0(s)
)
dx ds.

(5.6.13)

The converse inequality in (eb)r3 follows by Lemma 5.6.4 below.

As in [47, Theorem 4.4] and [15, Theorem 4.7], the reduced global stability (gs)rα and

the energy inequality (5.6.13) imply the reduced energy balance (eb)rα .

Lemma 5.6.4. Let α = 3 . Assume that t 7→ u0(t) belongs to C1([0, T ];W 1,∞(R2;R2) ∩
C1(R2;R2)) , t 7→ v0(t) belongs to C1([0, T ];W 2,∞(R2)∩C2(R2)) , and t 7→ (u(t), v(t), p(t))

satisfies (gs)r3 . Then, for every t ∈ [0, T ] there holds

ˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx+DHD (p; 0, t) ≥
ˆ

Ω

Q2(e3(0)) dx+

ˆ
Ω

B(p(0)) dx

+

ˆ t

0

ˆ
Ω

C2e3(s) :
( ∇′u̇0(s) +∇′v(s)⊗∇′v0(s)− x3(∇′)2v̇0(s) 0

0 0

)
dx ds,

where e3(t) is the map defined in (5.3.24).

Proof. Fix t ∈ [0, T ] and let (sik)0≤i≤k be a sequence of subdivisions of [0, T ] such that

0 = s0
k < s1

k · · · < skk = T

and

lim
k→+∞

max
1≤i≤k

(sik − si−1
k ) = 0.

Set ui := u(sik)−u0(sik)+u0(si−1
k ) and vi := v(sik)−v0(sik)+v0(si−1

k ), and let e3(t) be the

map defined in (5.3.24). As (ui, vi, p(sik)) ∈ A(u0(sik), v0(sik)), the reduced global stability

condition (gs)r3 yields

ˆ
Ω

Q2(e3(si−1
k )) dx+

ˆ
Ω

B(p(si−1
k )) dx ≤

ˆ
Ω

Q2(sym∇′ui + 1
2∇
′vi ⊗∇′vi − x3(∇′)2vi − p′(sik)) dx

+

ˆ
Ω

B(p(sik)) dx+

ˆ
Ω

HD(p(sik)− p(si−1
k )) dx.
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By substituting the definition of the maps ui and vi in the previous expression we deduceˆ
Ω

Q2(e3(si−1
k )) dx+

ˆ
Ω

B(p(si−1
k )) dx

≤
ˆ

Ω

Q2(e3(sik)) dx+

ˆ
Ω

B(p(sik)) dx+

ˆ
Ω

HD(p(sik)− p(si−1
k )) dx

+2

ˆ
Ω

Q2

(
sym∇′(u0(si−1

k )− u0(sik))− x3(∇′)2(v0(si−1
k )− v0(sik))

)
dx

+2

ˆ
Ω

Q2

(
∇′(v0(si−1

k )− v0(sik))⊗
(
∇′v(sik) + 1

2∇
′(v0(si−1

k )− v0(sik))
))

dx

+

ˆ
Ω

C2e3(sik) : (sym∇′(u0(si−1
k )− u0(sik))− x3(∇′)2(v0(si−1

k )− v0(sik)) dx

+

ˆ
Ω

C2e3(sik) : ∇′(v0(si−1
k )− v0(sik))⊗

(
∇′v(sik) + 1

2∇
′(v0(si−1

k )− v0(sik))
)
dx.

(5.6.14)

Consider now the piecewise constant interpolants

ūk(t) = u(sik), v̄k(t) = v(sik), p̄k(t) = p(sik), and ēk(t) = e3(sik),

where i is the smaller integer such that t ≤ sik . Arguing as in Step 2 of the proof of Theorem

5.6.3 one can show that there exists a sequence δk → 0+ such that

2

ˆ
Ω

Q2

(
sym∇′(u0(si−1

k )− u0(sik))− x3(∇′)2(v0(si−1
k )− v0(sik))

)
dx

+2

ˆ
Ω

Q2

(
∇′(v0(si−1

k )− v0(sik))⊗
(
∇′v(sik) + 1

2∇
′(v0(si−1

k )− v0(sik))
))

dx

+ 1
2

ˆ
Ω

C2e3(sik) : ∇′(v0(si−1
k )− v0(sik))⊗∇′(v0(si−1

k )− v0(sik))
)
dx

≤ Cδk(sik − si−1
k ).

Hence, by iterating (5.6.14) we obtainˆ
Ω

Q2(e3(0)) dx+

ˆ
Ω

B(p(0)) dx

≤
ˆ

Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx+DHD (p; 0, t) + Cδk

−
ˆ t

0

ˆ
Ω

C2ēk(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v̄k(s)⊗∇′v̇0(s) 0

0 0

)
dx ds,

which in turn impliesˆ
Ω

Q2(e3(t)) dx+

ˆ
Ω

B(p(t)) dx+DHD (p; 0, t)−
ˆ

Ω

Q2(e3(0)) dx−
ˆ

Ω

B(p(0)) dx

≥ lim sup
k→+∞

ˆ t

0

ˆ
Ω

C2ēk(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v̄k(s)⊗∇′v̇0(s) 0

0 0

)
dx ds.

To conclude the proof of the lemma it remains to check that

lim sup
k→+∞

ˆ t

0

ˆ
Ω

C2ēk(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v̄k(s)⊗∇′v̇0(s) 0

0 0

)
dx ds

≥
ˆ t

0

ˆ
Ω

C2e3(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v(s)⊗∇′v̇0(s) 0

0 0

)
dx ds. (5.6.15)
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To this purpose we argue as in [6, Lemma 5.7]. For every s ∈ [0, T ] we define

Θ(s) :=

ˆ
Ω

C2e3(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v(s)⊗∇′v̇0(s) 0

0 0

)
dx.

By [16, Lemma 4.12], setting

aik := (sik − si−1
k )

(
sym∇′u̇0(sik)− x3(∇′)2v̇0(sik)

)
−
ˆ sik

si−1
k

(
sym∇′u̇0(s)− x3(∇′)2v̇0(s)

)
ds,

bik := (sik − si−1
k )∇′v̇0(sik)−

ˆ sik

si−1
k

∇′v̇0(s) ds,

cik := (sik − si−1
k )Θ(sik)−

ˆ sik

si−1
k

Θ(s) ds,

we may assume that our sequence of partitions (sik)0≤i≤k satisfies

lim
k→+∞

k∑
i=1

(‖aik‖L2(ω;M2×2) + ‖bik‖L4(ω;R2) + |cik|) = 0. (5.6.16)

By (gs)r3 , arguing as in Step 1 of the proof of Theorem 5.6.3 we deduce that there exists a

constant C such that

sup
s∈[0,T ]

‖e3(s)‖L2(Ω;M3×3) + sup
s∈[0,T ]

‖∇′v(s)‖L4(ω;R2) ≤ C.

Hence, by (5.6.16) there holds

lim
k→+∞

k∑
i=1

∣∣∣ˆ
Ω

C2e3(sik) : (aik +∇′v(sik)⊗ bik) dx
∣∣∣

≤ lim
k→+∞

C
(

sup
s∈[0,T ]

‖e3(s)‖L2(Ω;M3×3)

) k∑
i=1

(
‖aik‖L2(ω;M2×2) + sup

s∈[0,T ]

‖∇′v(s)‖L4(ω;R2)‖bik‖L4(ω;R2)

)
= 0.

Therefore,

lim sup
k→+∞

ˆ t

0

ˆ
Ω

C2ēk(s) :
( ∇′u̇0(s)− x3(∇′)2v̇0(s) +∇′v̄k(s)⊗∇′v̇0(s) 0

0 0

)
dx ds

= lim sup
k→+∞

k∑
i=1

(sik − si−1
k )Θ(sik) = lim sup

k→+∞

k∑
i=1

ˆ sik

si−1
k

Θ(s) ds =

ˆ t

0

Θ(s) ds.

This concludes the proof of (5.6.15) and of the lemma.
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