Structure of the WDW equation

Diffeomorphism invariance and emergence of probabilistic interpretation in QC

Renaud Parentani

1 LPT, Paris-Sud Orsay

SISSA, September 2011

There is a **probabilistic interpretation** of the solutions of the Schrödinger eq., but there is **no consensus** on the interpretation of the solutions of the WDW eq.

Several options have been proposed:

- "Page-Hawking" based on the norm: $|\psi(a, \phi)|^2$
- "Vilenkin" based on the current: $\mathcal{W} = \psi^* i \partial_a \psi$
- Third quantization.
- Square root approach $i \partial_x \psi = H \psi$ (Ashtekar (2008))
- Adding "dust" (Timan (2006))
There is a **probabilistic interpretation** of the solutions of the Schroedinger eq., but there is **no consensus** on the interpretation of the solutions of the WDW eq.

Several options have been proposed:

- **"Page-Hawking"** based on the **norm**: \(|\psi(a, \phi)|^2 \)
- **"Vilenkin"** based on the **current**: \(\mathcal{W} = \psi^* i \partial_a \psi \)
- Third quantization.

- Square root approach \(i \partial_X \psi = H \psi \) (Ashtekar (2008))
- Adding "dust" (Timan (2006))
There is a **probabilistic interpretation**
of the solutions of the Schroedinger eq.,
but there is **no consensus** on the **interpretation**
of the solutions of the WDW eq.

Several options have been proposed:

- "Page-Hawking" based on the **norm**: $|\psi(a, \phi)|^2$
- "Vilenkin" based on the **current**: $\mathcal{W} = \psi^* i \partial_a \psi$
- Third quantization.

Square root approach $i \partial_X \psi = H \psi$ (Ashtekar (2008))
- Adding "dust" (Timan (2006))
Plan

- **Compare** (mathem.) the *structure* of the Schr. eq. to that of the WdW eq.

- Focus on **Transition Amplitudes** and use *molecular physics techniques* as a **tool** to perform the comparison.

- Establish that
 - no **exact** proba. interp. could possibly be given:
 - **Diffeo-invar.** + **canon. quantization** → no proba. interp.
 - the **Schrod. probabilistic interpretation** is an **emergent** property of the sol. of the WDW eq.
Plan

- **Compare** (mathem.) the *structure* of the Schr. eq. to that of the WdW eq.

- Focus on **Transition Amplitudes** and use *molecular physics techniques* as a **tool** to perform the comparison.

- Establish that
 - no *exact* proba. interp. could possibly be given:
 Diffeo-invar. + **canon. quantization** \rightarrow no proba. interp.
 - the Schrod. probabilistic interpretation is an **emergent** property of the sol. of the WDW eq.
Plan

- **Compare** (mathem.) the *structure* of the Schr. eq. to that of the WdW eq.

- Focus on **Transition Amplitudes** and use **molecular physics techniques** as a **tool** to perform the comparison.

- Establish that
 - no **exact** proba. interp. could possibly be given: **Diffeo-invar. + canon. quantization** → no proba. interp.
 - the **Schrod. probabilistic interpretation** is an **emergent** property of the sol. of the WDW eq.
Why focusing on Transition Amplitudes?

- The WdW eq. also describes matter transitions, e.g. $e^+ e^-$ annihilation.
 → How to compute their amplitudes?

- Historically, Born’s statistical interpretation (1926)

 \[
 |n_0\rangle \rightarrow \sum_n c_{n,n_0} |n\rangle
 \]

 \[
 |c_{n,n_0}|^2 = \text{Proba. to find } |n\rangle \text{ at late time, (1)}
 \]
 when starting from $|n_0\rangle$.

 followed from his understanding of Transition Amplitude.

- Follow here the same logic:
 study the properties of $C_n(a)$, Trans. Amplit. in QC, then consider their interpretation.
Why focusing on Transition Amplitudes?

- The WdW eq. also describes **matter** transitions, e.g. $e^+ e^-$ annihilation.

 \rightarrow How to **compute** their amplitudes?

- Historically, **Born’s statistical interpretation** (1926)

 $$|n_0\rangle \rightarrow \sum_n c_{n,n_0} |n\rangle$$

 $$|c_{n,n_0}|^2 = \text{Proba. to find } |n\rangle \text{ at late time, \hspace{1cm} (1)}$$

 c_{n,n_0} when starting from $|n_0\rangle$.

 Followed from his understanding of **Transition Amplit.**

- Follow here the **same logic**:

 study the properties of $c_n(a)$, **Trans. Amplit. in QC**, then consider their interpretation.
Why focusing on Transition Amplitudes?

- The WdW eq. *also* describes **matter** transitions, e.g. \(e^+ e^- \) annihilation.

→ How to **compute** their amplitudes?

- Historically, **Born’s statistical interpretation (1926)**

\[
\begin{align*}
|n_0\rangle & \rightarrow \sum_n c_{n,n_0} |n\rangle \\
|c_{n,n_0}|^2 & = \text{Proba. to find } |n\rangle \text{ at late time, (1)} \\
& \text{when starting from } |n_0\rangle.
\end{align*}
\]

followed from his understanding of **Transition Amplit.**

- Follow here the same logic:

 study the properties of \(C_n(a) \), **Trans. Amplit. in QC**, then consider their interpretation.
Why focusing on Transition Amplitudes?

The WdW eq. _also_ describes **matter** transitions, e.g. $e^+ e^-$ annihilation.
→ How to compute their amplitudes?

Historically, **Born’s statistical interpretation (1926)**

$$|n_0\rangle \rightarrow \sum_n c_{n,n_0} |n\rangle$$

$$|c_{n,n_0}|^2 = \text{Proba. to find } |n\rangle \text{ at late time,} \quad (1)$$
when starting from $|n_0\rangle$.

followed from his understanding of **Transition Amplit.**

Follow here the **same logic**: study the properties of $C_n(a)$, **Trans. Amplit. in QC**, then consider their interpretation.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing **light** and **heavy** (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by **coupling constants** (called *Non-Adiabatic Transition Amplitudes NATA*).

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- **Use this hierarchy** to
 - **Organize** solutions of the WDW eq.
 - **Get algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

- **Long tradition**: Born ’26, Heisenberg ’35, Gottfried ’66 + ’98
 All considering the statistical interpret. of QM.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing **light** and **heavy** (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by **coupling constants** (called *Non-Adiabatic Transition Amplitudes NATA*).

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- Use this **hierarchy** to
 - **organize** solutions of the WDW eq.
 - **get algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

- **Long tradition**: Born ’26, Heisenberg ’35, Gottfried ’66 + ’98
 All considering the statistical interpret. of QM.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing **light** and **heavy** (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by **coupling constants** (called *Non-Adiabatic Transition Amplitudes* NATA).

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- Use this hierarchy to
 - organize solutions of the WDW eq.
 - get **algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

 All considering the statistical interpret. of QM.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing **light** and **heavy** (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by **coupling constants** (called *Non-Adiabatic Transition Amplitudes NATA*).

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- Use this hierarchy to
 - **organize** solutions of the WDW eq.
 - **get algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

- **Long tradition**: Born ’26, Heisenberg ’35, Gottfried ’66 + ’98
 All considering the statistical interpret. of QM.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing light and heavy (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by *coupling constants* (called *Non-Adiabatic Transition Amplitudes NATA*)

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- Use this **hierarchy** to
 - **organize** solutions of the WDW eq.
 - get **algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

All considering the statistical interpret. of QM.
Why using *molecular physics techniques*?

- Appropriate for dynamical systems containing **light** and **heavy** (i.e. fast and slow) deg. of freedom.

- **Transition amplitudes** are governed by **frequency ratios** and not by **coupling constants** (called *Non-Adiabatic Transition Amplitudes NATA*).

- Certain NATA are **exponentially suppressed** w.r.t. others, thereby introducing a **hierarchy of NATA**.

- Use this **hierarchy** to
 - **organize** solutions of the WDW eq.
 - Get **algebraic relations** between Schrod’s $c_n(t)$ and WDW’s $C_n(a)$.

 All considering the statistical interpret. of QM.
The Schroed. equation in cosmology.

- **For definiteness**, consider some matter fields governed by an hermitian H_M in an expanding **compact** RW sp-time described by $a(t)$.

- The S. eq. is
 \[i\partial_t |\psi(t)\rangle = H_M |\psi(t)\rangle. \tag{2} \]

- Because of the expansion $da/dt > 0$,
 \[H_M = H_M(a(t)) \]
 is t-dependent. **This is crucial for what follows.**
To reveal its *structure*, and/or to solve it, introduce the *instantaneous eigenstates* of $H_m(a)$:

\[
H_M(a) \left| \chi_n(a) \right> = E_n(a) \left| \chi_n(a) \right>
\]
\[
\langle \chi_n(a) | \chi_m(a) \rangle = \delta_{n,m}
\] (3)

- decompose $|\psi(t)\rangle$ in this *basis*:

\[
|\psi(t)\rangle = \sum_n c_n(t) e^{-i \int^t dt' E_n(t')} \left| \chi_n(a(t)) \right>,
\] (4)

- compute the $c_n(t)$ by injecting (4) in $i \partial_t |\psi\rangle = H_M |\psi\rangle$.
To reveal its structure, and/or to solve it, introduce the instantaneous eigenstates of $H_m(a)$:

\[H_M(a) |\chi_n(a)\rangle = E_n(a) |\chi_n(a)\rangle \\
\langle \chi_n(a)|\chi_m(a)\rangle = \delta_{n,m} \] (3)

 decompose $|\psi(t)\rangle$ in this basis:

\[|\psi(t)\rangle = \sum_n c_n(t) e^{-i \int^t dt' E_n(t')} |\chi_n(a(t))\rangle, \] (4)

 compute the $c_n(t)$ by injecting (4) in $i\partial_t|\psi\rangle = H_M |\psi\rangle$.

Renaud Parentani
Structure of the WDW equation
This gives a $N \times N$ matricial eq.

$$
\partial_t c_n = \sum_m \langle \partial_t \chi_m | \chi_n \rangle e^{-i \int^t \! dt' (E_m - E_n)} c_m.
$$

(5)

where

$$
\langle \chi_m | \partial_t \chi_n \rangle = \frac{\langle \chi_m | \partial_t H_M | \chi_n \rangle}{E_n(a) - E_m(a)}, \quad n \neq m
$$

(6)

NB. When $da/dt = 0$, one has

$$
\partial_t c_n \equiv 0.
$$

Hence all NA transitions are induced by da/dt.
This gives a $N \times N$ matricial eq.

$$\partial_t c_n = \sum_m \langle \partial_t \chi_m | \chi_n \rangle \ e^{-i \int^t dt' (E_m - E_n)} c_m.$$ \hspace{1cm} (5)

where

$$\langle \chi_m | \partial_t \chi_n \rangle = \frac{\langle \chi_m | \partial_t H_M | \chi_n \rangle}{E_n(a) - E_m(a)} , \hspace{0.5cm} n \neq m$$ \hspace{1cm} (6)

NB. When $da/dt = 0$, one has

$$\partial_t c_n \equiv 0.$$

Hence all NA transitions are induced by da/dt.

Renaud Parentani
Structure of the WDW equation
The amplitudes $d_n(a)$ defined in the corresponding contracting universe, $da/dt \to -da/dt$, obey the same equation with $i \to -i$.

The Schrod. eq. can be written in terms of a:

$$\partial_a c_n = \sum_{m \neq n} \langle \partial_a \chi_m | \chi_n \rangle \ e^{-i \int^a da' (dt/da') (E_m - E_n)} c_m(a).$$ \hspace{1cm} (7)

The cosmic time t only appears through $t(a)$.
The amplitudes $d_n(a)$ defined in the corresponding contracting universe, $da/dt \to -da/dt$, obey the same equation with $i \to -i$.

The Schrod. eq. can be written in terms of a:

$$\partial_a c_n = \sum_{m \neq n} \langle \partial_a \chi_m | \chi_n \rangle \ e^{-i \int^a da' (dt/da') (E_m - E_n)} \ c_m(a). \quad (7)$$

The cosmic time t only appears through $t(a)$.
The amplitudes $d_n(a)$ defined in the corresponding contracting universe, $da/dt \rightarrow -da/dt$, obey the same equation with $i \rightarrow -i$.

The Schrod. eq. can be written in terms of a:

$$\partial_a c_n = \sum_{m\neq n} \langle \partial_a \chi_m | \chi_n \rangle \ e^{-i \int^a da' (dt/da')(E_m - E_n)} \ c_m(a). \quad (7)$$

The cosmic time t only appears through $t(a)$.
Starting with $c_1(t = -\infty) = 1$, the amplitude to find the system in the state n is $c_n(+\infty)$.

To first order in NA, it is

$$c_n(+\infty) \simeq \int_{-\infty}^{+\infty} dt \langle \chi_n | \partial_t \chi_1 \rangle \ e^{-i \int_{-\infty}^{t} dt' (E_1(t') - E_n(t'))}$$

When $c_n \ll 1$, can be evaluated by a saddle point approx.

The sp time t^* is complex, and hence c_n is expon. damped:

$$c_n(+\infty) \simeq C \ e^{-i \int_{-\infty}^{t^*} dt' (E_1 - E_n)}$$

NB. $C \to 1$ in the adiabatic limit, see refs.
Starting with \(c_1(t = -\infty) = 1 \), the amplitude to find the system in the state \(n \) is \(c_n(\infty) \).

To first order in NA, it is

\[
c_n(\infty) \approx \int_{-\infty}^{+\infty} dt \langle \chi_n | \partial_t \chi_1 \rangle e^{-i \int_{-\infty}^{t} dt'(E_1(t') - E_n(t'))}
\]

When \(c_n \ll 1 \), can be evaluated by a saddle point approx.

The sp time \(t^* \) is complex, and hence \(c_n \) is expon. damped:

\[
c_n(\infty) \approx C e^{-i \int_{-\infty}^{t^*} dt'(E_1 - E_n)}
\]

NB. \(C \to 1 \) in the adiabatic limit, see refs.
We now replace \([-i\partial_t + H_M] |\psi(t)\rangle = 0\) by the WDW eq.

\[
[H_G + H_M] |\psi(a)\rangle = 0
\] \(\text{(9)}\)

where

\[
H_G = \frac{-G^2 \pi_a^2 - a^2 + \Lambda a^4}{2Ga}.
\] \(\text{(10)}\)

\(\hat{\pi}_a = -i\partial_a\) is the momentum conjugated to \(a\).

With (9, 10) we have displaced the Heisenberg cut so as to include \((a, \pi_a)\) in the quantum description.

Eqs. (9, 10) follow from \(S = \int d^4x \sqrt{g}R + L_M\) when

- 3 geometries are compact, and
- matter distribution is sufficiently homogeneous.

N.B. \(H_G + H_M = 0\) is the Friedmann eq.
We now replace \([-i\partial_t + H_M] \psi(t) \rangle = 0 \) by the WDW eq.

\[
[H_G + H_M] \psi(\mathbf{a}) \rangle = 0
\]

(9)

where

\[
H_G = \frac{-G^2 \pi_a^2 - a^2 + \Lambda a^4}{2Ga}.
\]

(10)

\(\hat{\pi}_a = -i\partial_a \) is the momentum conjugated to \(a \).

With (9, 10) we have displaced the Heisenberg cut so as to include \((a, \pi_a) \) in the quantum description.

Eqs. (9, 10) follow from \(S = \int d^4 x \sqrt{g} R + L_M \) when

- 3 geometries are compact, and
- matter distribution is sufficiently homogeneous.

N.B. \(H_G + H_M = 0 \) is the Friedmann eq.
We now replace \([-i\partial_t + H_M]|\psi(t)\rangle = 0\) by the WDW eq.

\[
[H_G + H_M]|\Psi(a)\rangle = 0
\] (9)

where

\[
H_G = \frac{-G^2 \pi_a^2 - a^2 + \Lambda a^4}{2Ga}.
\] (10)

\(\hat{\pi}_a = -i\partial_a\) is the momentum conjugated to \(a\).

With (9, 10) we have displaced the Heisenberg cut so as to include \((a, \pi_a)\) in the quantum description.

Eqs. (9, 10) follow from \(S = \int d^4x \sqrt{g} R + L_M\) when

- 3 geometries are compact, and
- matter distribution is sufficiently homogeneous.

N.B. \(H_G + H_M = 0\) is the Friedmann eq.
The unique conserved quantity associated with the Schrod. eq. is the norm

\[N = \langle \psi(t) | \psi(t) \rangle \equiv Cst. = \sum_n |c_n(t)|^2. \] \hspace{1cm} (11)

Instead the unique one associated with the WDW eq. is the Wronskian

\[W = \langle \psi(a) \mid i \delta_a \mid \psi(a) \rangle \equiv Cst. \] \hspace{1cm} (12)

Question: Can \(W \) be written as \(W = \sum_n |C_n(a)|^2 \)?
The **unique** conserved quantity associated with the Schrod. eq. is the **norm**

\[N = \langle \psi(t) | \psi(t) \rangle \equiv Cst. = \sum_n |c_n(t)|^2. \] \hspace{1cm} (11)

Instead the **unique** one associated with the WDW eq. is the **Wronskian**

\[W = \langle \psi(a) | i \partial_a | \psi(a) \rangle \equiv Cst. \] \hspace{1cm} (12)

Question: Can \(W \) be written as \(W = \sum_n |C_n(a)|^2 \)?
The unique conserved quantity associated with the Schrod. eq. is the norm

\[N = \langle \psi(t) | \psi(t) \rangle \equiv Cst. = \sum_n |c_n(t)|^2. \quad (11) \]

Instead the unique one associated with the WDW eq. is the Wronskian

\[W = \langle \psi(a) | i \partial_a | \psi(a) \rangle \equiv Cst. \quad (12) \]

Question: Can \(W \) be written as \(W = \sum_n |C_n(a)|^2 \)?
Decompose

\[|\psi(a)\rangle = \sum_{n} C_{n}(a) \psi_{n}(a) |\chi_{n}(a)\rangle, \]

where \(|\chi_{n}(a)\rangle \) is the same as for the Schrod. eq. and \(\psi_{n}(a) \) is the WKB solution of

\[[H_{G} + E_{n}(a)] \psi_{n}(a) = 0 \]

The unit positive Wronskian WKB solution is

\[\psi_{n}(a) = \frac{e^{-i \int^{a} da \ p_{n}(a)}}{\sqrt{2p_{n}(a)}} \]

where the momentum \(p_{n}(a) > 0 \) solves \(H_{G} + E_{n}(a) = 0 \). These solutions correspond to expanding universes. Their complex conjugated describe contracting universes.
Decompose

\[|\psi(a)\rangle = \sum_n C_n(a) \psi_n(a) |\chi_n(a)\rangle, \] (13)

where \(|\chi_n(a)\rangle \) is the same as for the Schröd. eq. and \(\psi_n(a) \) is the WKB solution of

\[[H_G + E_n(a)] \psi_n(a) = 0 \] (14)

The unit positive Wronskian WKB solution is

\[\psi_n(a) = \frac{e^{-i \int^a da p_n(a)}}{\sqrt{2p_n(a)}} \] (15)

where the momentum \(p_n(a) > 0 \) solves \(H_G + E_n(a) = 0 \).

These solutions correspond to expanding universes. Their complex conjugated describe contracting universes.
inserting (13) in the WDW eq. gives a second order matricial equation which mixes

- corrections to WKB corrections with
- \(n \rightarrow n' \) matter transitions.

Moreover the conserved Wronskian \(W \) reads

\[
W = \sum_n |C_n(a)|^2 + \sum_n (C_n^* i \tilde{\partial}_a C_n) |\Psi_n(a)|^2. \tag{16}
\]

The first term is OK, the second unwanted.

Question: How to sort this out?
inserting (13) in the WDW eq. gives a second order matricial equation which mixes

- corrections to WKB corrections with
- $n \rightarrow n'$ matter transitions.

Moreover the conserved Wronskian W reads

$$W = \sum_n |C_n(a)|^2 + \sum_n (C_n^* \vec{\partial}_a C_n) |\Psi_n(a)|^2.$$ \hspace{1cm} (16)

The first term is OK, the second unwanted.

Question: How to sort this out?
inserting (13) in the WDW eq. gives a **second** order matricial equation which mixes

- corrections to WKB corrections with
- \(n \rightarrow n' \) matter transitions.

Moreover the conserved Wronskian \(W \) reads

\[
W = \sum_n |C_n(a)|^2 + \sum_n (C_n^* \rightarrow \partial_a C_n) |\psi_n(a)|^2.
\]

(16)

The first term is OK, the second unwanted.

Question: How to sort this out?
The "correct" decomposition

\[|\psi(a)\rangle = \sum_n [C_n(a) \psi_n(a) + D_n(a) \psi^*_n(a)] |\chi_n(a)\rangle, \quad (17) \]

introduces \(2N\) arbitrary functions \(C_n(a), D_n(a)\).

Eq. (17) gives an **under-constrained** system.

Exploit this and impose

\[\langle \chi_n | \overrightarrow{i\partial}_a |\psi\rangle = p_n [C_n \psi_n - D_n \psi^*_n]. \quad (18) \]

Now the \(C_n \ (D_n)\) **instantaneously** weigh expanding (contracting) solutions.

Insert (17) in the WdW eq. *and* use (18) to get
The 'correct' decomposition

\[|\psi(a)\rangle = \sum_n \left[C_n(a) \psi_n(a) + D_n(a) \psi^*_n(a) \right] |\chi_n(a)\rangle, \quad (17) \]

introduces \(2N\) arbitrary functions \(C_n(a), D_n(a)\).

Eq. (17) gives an under-constrained system.

Exploit this and impose

\[\langle \chi_n| \vec{i} \partial_a |\psi\rangle = p_n \left[C_n \psi_n - D_n \psi^*_n \right]. \quad (18) \]

Now the \(C_n\) (\(D_n\)) instantaneously weigh expanding (contracting) solutions.

Insert (17) in the WdW eq. and use (18) to get
The "correct" decomposition

\[|\psi(a)\rangle = \sum_n [C_n(a) \psi_n(a) + D_n(a) \psi_n^*(a)] |\chi_n(a)\rangle , \]

Eq. (17) gives an under-constrained system.

Exploit this and impose

\[\langle \chi_n | i \vec{\partial}_a | \psi \rangle = \rho_n [C_n \psi_n - D_n \psi_n^*] . \]

Now the \(C_n \) (\(D_n \)) instantaneously weigh expanding (contracting) solutions.

Insert (17) in the WdW eq. and use (18) to get
The "correct" decomposition

\[|\psi(a)\rangle = \sum_n \left[C_n(a) \psi_n(a) + D_n(a) \psi_n^*(a) \right] |\chi_n(a)\rangle, \quad (17) \]

Introduces \(2N\) arbitrary functions \(C_n(a), D_n(a)\).

Eq. (17) gives an under-constrained system.

Exploit this and impose

\[\langle \chi_n | i \vec{\partial}_a | \psi \rangle = \rho_n \left[C_n \psi_n - D_n \psi_n^* \right]. \quad (18) \]

Now the \(C_n (D_n)\) instantaneously weigh expanding (contracting) solutions.

Insert (17) in the WdW eq. and use (18) to get
Structure of the WDW equation, 1

\[\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} e^{-i \int^a (p_n - p_m) da} C_m \]
\[+ \sum_m \tilde{N}_{nm} e^{-i \int^a (p_n + p_m) da} D_m. \] (19)

+ the same eq. with \(C_n \rightarrow D_n \) and \(i \rightarrow -i \)

where

\[\tilde{M}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_n + p_m}{2\sqrt{p_n p_m}} \] (20)

\[\tilde{N}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_n - p_m}{2\sqrt{p_n p_m}} + \delta_{nm} \frac{\partial_a p_n}{2p_n} \] (21)

- Eqs. (19,20,21) are **exact**

- Eq.(19) is the **WDW eq.**
Structure of the WDW equation, 1

\[\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} e^{-i \int^a (p_n - p_m) da} C_m \]
\[+ \sum_m \tilde{N}_{nm} e^{-i \int^a (p_n + p_m) da} D_m. \quad (19) \]

+ the same eq. with \(C_n \rightarrow D_n \) and \(i \rightarrow -i \)

where

\[\tilde{M}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_{n} + p_{m}}{2 \sqrt{p_{n} p_{m}}} \quad (20) \]
\[\tilde{N}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_{n} - p_{m}}{2 \sqrt{p_{n} p_{m}}} + \delta_{nm} \frac{\partial_a p_n}{2 p_n} \quad (21) \]

Eqs. (19, 20, 21) are **exact**

Eq.(19) is the WDW eq.
$$\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} e^{-i \int^a (p_n - p_m) da} C_m$$

$$+ \sum_m \tilde{N}_{nm} e^{-i \int^a (p_n + p_m) da} D_m. \quad (19)$$

+ the same eq. with $C_n \rightarrow D_n$ and $i \rightarrow -i$

where

$$\tilde{M}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_n + p_m}{2\sqrt{p_n p_m}} \quad (20)$$

$$\tilde{N}_{nm} = \langle \partial_a \psi_m | \psi_n \rangle \frac{p_n - p_m}{2\sqrt{p_n p_m}} + \delta_{nm} \frac{\partial_a p_n}{2p_n} \quad (21)$$

Eqs. (19,20,21) are **exact**

Eq.(19) is the **WDW eq.**
Moreover, as an identity, one has

\[\mathcal{W} = \langle \psi(a) | i \partial_a \psi(a) \rangle \]

\[= \sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv \text{Const.} \] \hspace{1cm} (22)

for any Hermitian matter hamiltonian \(H_M \), and any state.

Let’s describe the consequences of Eq. 19 and 22.
Moreover, as an identity, one has

\[W = \langle \Psi(a) | i \partial_a | \Psi(a) \rangle \]

\[= \sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv \text{Const.} \quad (22) \]

for any Hermitian matter Hamiltonian \(H_M \), and any state.

Let’s describe the consequences of Eq. 19 and 22.
Theorem 1

When, for a given matter Hamiltonian H_M, the Schrod. eq. gives a $N \times N$ first order matricial eq. the WDW eq. gives a $2N \times 2N$ first order matricial eq.

NB. A similar doubling is also found in non-relativistic molecular/atomic physics.

It is a general conseq. of QM, when moving the H-cut.
Theorem 1

- When, for a **given** matter Hamiltonian H_M, the Schrod. eq. gives a $N \times N$ first order matricial eq. the WDW eq. gives a $2N \times 2N$ first order matricial eq.

- **NB.** A similar **doubling** is also found in non-relativistic molecular/atomic physics.

It is a general conseq. of QM, when moving the H-cut.
Neglecting only the $C_n \rightarrow D_n$ transitions, one gets

$$\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} e^{-i \int^a (p_n - p_m) da} C_m \quad (23)$$

and

$$\sum_n |C_n(a)|^2 \equiv \text{Cst.}$$

+ the same eq. with $C_n \rightarrow D_n$ and $i \rightarrow -i$.

WDW eq. thus gives two separate (and unitary) eqs: one for the expanding sector, one for the contracting.

Eq. (23) is not the Schrod. equation. There is no background sp-time, no cosmic time (yet)
Neglecting only the $C_n \rightarrow D_n$ transitions, one gets

$$\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} \ e^{-i \int^a (p_n - p_m) da} C_m$$

(23)

and

$$\sum_n |C_n(a)|^2 \equiv \text{Cst.}$$

+ the same eq. with $C_n \rightarrow D_n$ and $i \rightarrow -i$.

WDW eq. thus gives two separate (and unitary) eqs: one for the expanding sector, one for the contracting.

Eq. (23) is not the Schrod. equation. There is no background sp-time, no cosmic time (yet)
Neglecting only the $C_n \rightarrow D_n$ transitions, one gets

$$\partial_a C_n = \sum_{m \neq n} \tilde{M}_{nm} e^{-i \int^a (p_n - p_m) da} C_m$$

(23)

and

$$\sum_n |C_n(a)|^2 \equiv Cst.$$

+ the same eq. with $C_n \rightarrow D_n$ and $i \rightarrow -i$.

WDW eq. thus gives two separate (and unitary) eqs: one for the expanding sector, one for the contracting.

Eq. (23) is not the Schrod. equation. There is no background sp-time, no cosmic time (yet).
Theorem 3. The recovery of cosmic time

Neglecting the $C_n \to D_n$ transitions, and to first order in $E_n - E_\bar{n}$ around the mean matter state \bar{n},

$$C_n(a) \equiv c_n(\bar{t}(a)),$$

(24)

where

$$\bar{t}(a) = \int^a da' \partial_E p(a') |_{E = E_\bar{n}},$$

(25)

is the HJ time to reach a when matter is in the \bar{n} state.

The identity (24) is Heisenberg-’35 result. It follows from

$$\tilde{M}_{nm} \equiv M^S_{mn}$$

$$e^{-i \int^a da' (\rho_n - \rho_m)} \equiv e^{-i \int^t dt' (E_n - E_m)}$$

Renaud Parentani Structure of the WDW equation
Theorem 3. The recovery of cosmic time

Neglecting the $C_n \rightarrow D_n$ transitions, and to first order in $E_n - \bar{E}_n$ around the mean matter state \bar{n},

\[
C_n(a) \equiv c_n(\bar{t}(a)), \tag{24}
\]

where

\[
\bar{t}(a) = \int_a^a da' \partial_{Ep}(a')|_{E=E_n}, \tag{25}
\]

is the HJ time to reach a when matter is in the \bar{n} state.

The identity (24) is Heisenberg-’35 result. It follows from

- $\tilde{M}_{nm} \equiv M^S_{mn}$
- $e^{-i \int^a da' (p_n - p_m)} \equiv e^{-i \int^t dt' (E_n - E_m)}$
For the Schrod. eq., \(c_n \) is given by the overlap

\[
c_n(t) = \langle \chi_n(t) | e^{i \int^t dt' E_n} | \psi(t) \rangle.
\]

(26)

Instead, for the WDW eq., \(C_n \) is given by

\[
C_n(a) = \langle \chi_n(a) | \psi_n(a)^* \overset{\leftrightarrow}{i \partial_a} | \psi(a) \rangle
\]

(27)

This is the Vilenkin current, and NOT the Page-Hawking overlap \(\langle \chi_n(a) | \psi(a) \rangle \).
For the Schrod. eq., c_n is given by the overlap
\[c_n(t) = \langle \chi_n(t) | e^{+i \int^t dt' E_n} | \psi(t) \rangle. \] (26)

Instead, for the WDW eq., C_n is given by
\[C_n(a) = \langle \chi_n(a) | \Psi_n(a)^* \overset{\leftrightarrow}{i\partial_a} | \Psi(a) \rangle \] (27)

This is the Vilenkin current, and NOT the Page-Hawking overlap $\langle \chi_n(a) | \Psi(a) \rangle$.
Theorem 4. The $\mathcal{C}_n \rightarrow \mathcal{D}_m$ NATTransitions.

- Far from turning points (big bounce), the transitions $\mathcal{C}_n \rightarrow \mathcal{D}_m$ are exponentially suppressed w.r.t. to the $\mathcal{C}_n \rightarrow \mathcal{C}_m$.

- Because, typically

\[
\begin{align*}
\mathcal{C}_n \rightarrow \mathcal{C}_m & \sim e^{-(p_n - p_m) \text{Im}\Delta a^s_C} \\
\mathcal{C}_n \rightarrow \mathcal{D}_m & \sim e^{-(p_n + p_m) \text{Im}\Delta a^s_D}
\end{align*}
\]

(28)

$p_n + p_m$ scales with the total matter energy.

- The Lesson:
 The WDW eq. predicts a hierarchy of NAT, and governs it.
Theorem 4. The $\mathcal{C}_n \rightarrow \mathcal{D}_m$ NATTransitions.

- Far from turning points (big bounce), the transitions $\mathcal{C}_n \rightarrow \mathcal{D}_m$ are exponentially suppressed w.r.t. to the $\mathcal{C}_n \rightarrow \mathcal{C}_m$.

- Because, typically

\[
\mathcal{C}_n \rightarrow \mathcal{C}_m \sim e^{-(p_n - p_m) \Im \Delta a_{\mathcal{C}}^{sp}} \\
\mathcal{C}_n \rightarrow \mathcal{D}_m \sim e^{-(p_n + p_m) \Im \Delta a_{\mathcal{D}}^{sp}}
\]

(28)

$p_n + p_m$ scales with the total matter energy.

- The Lesson:
 The WDW eq. predicts a hierarchy of NAT, and governs it.
Theorem 4. The $C_n \rightarrow D_m$ NATTransitions.

- Far from turning points (big bounce), the transitions $C_n \rightarrow D_m$ are exponentially suppressed w.r.t. to the $C_n \rightarrow C_m$.

- Because, typically

\[
C_n \rightarrow C_m \sim e^{-(p_n - p_m) \text{Im} \Delta a^{sp}_C} \\
C_n \rightarrow D_m \sim e^{-(p_n + p_m) \text{Im} \Delta a^{sp}_D}
\]

(28)

$p_n + p_m$ scales with the total matter energy.

- The Lesson:
The WDW eq. predicts a hierarchy of NAT, and governs it.
Consider a molecule of mass M and CM R

$$H_{\text{atom}} = \frac{\mathbf{p}^2}{2M} + V(R) + H_e(R),$$

where $H_e(R)$ governs the electronic deg. of freedom.

There are two levels of quantization:

The LZ way: treat R classically as a given function of time $R(t)$. The residual elect. d.o.f. then obey the t-dep. Schrod. eq.

$$i\partial_t |\psi_e\rangle = \hat{H}_e(R(t))|\psi_e\rangle$$

The WdW way: treat both R and el. d.o.f on the same footing. Then, at fixed total energy E, one has

$$\left[-\frac{\partial^2}{2M} + V(R) + H_{el}(R)\right] |\psi_E(R)\rangle = E |\psi_E(R)\rangle$$
Consider a molecule of mass M and CM R

$$H_{\text{atom}} = \frac{p^2}{2M} + V(R) + H_e(R),$$

where $H_e(R)$ governs the electronic deg. of freedom.

There are two levels of quantization:

The LZ way: treat R classically as a given function of time $R(t)$. The residual elect. d.o.f. then obey the t-dep. Schrod. eq.

$$i\partial_t |\psi_e\rangle = \hat{H}_e(R(t)) |\psi_e\rangle$$

The WdW way: treat both R and el. d.o.f on the same footing. Then, at fixed total energy E, one has

$$\left[-\frac{\partial^2}{2M} + V(R) + H_{el}(R)\right] |\Psi_E(R)\rangle = E |\Psi_E(R)\rangle$$
Decomposing $|\Psi_{E}(R)\rangle = \sum_{n}(C_{n}\psi_{n} + D_{n}\psi_{n}^{*})|\chi_{n}(R)\rangle$

- neglecting $C_{n} \rightarrow D_{m}$ and to first order in $E_{n}^{e} - E_{m}^{e}$, one gets

$$C_{n}(R) \equiv c_{n}(\bar{t}(R)),$$

where c_{n} are the Landau-Z tr. amplitudes.

Hence the $|C_{n}|^{2}$ give transition probabilities.

- The $C_{n}(R)$ are given by $C_{n} \equiv \langle \chi_{n}|\psi_{n}^{*} i\partial_{R}^{\rightarrow} |\psi_{E}\rangle$, i.e. by the "Vilenkin" current.

- Taking into account the NAT $C_{n} \rightarrow D_{m}$, one gets, as an identity,

$$\sum_{n} |C_{n}(R)|^{2} - |D_{n}(R)|^{2} \equiv \text{Const.}$$

This is a re-expression of unitarity.

- The H-Page norm $|\langle \chi_{n}|\psi_{E}\rangle|^{2} = |C_{n}\psi_{n}(R) + D_{n}\psi_{n}^{*}(R)|^{2}$ is

 - highly interferent, and
 - answers another question.
Conclusions. 1

- The WDW eq. determines the NATA. There is NO ambiguity in **computing** these amplitudes.

- It predicts that there is a **hierarchy** of NA-regimes.
Conclusions. 2. The S. regime, the mildest one.

- The first regime, the mildest one, is obtained by
 - neglecting $C_n \rightarrow D_m$ NAT,
 - the first order in $E_n - E_{\bar{n}}$, but nothing else.

- In this regime

 $$C_n(a) \equiv c_n(\bar{t}(a)).$$

Therefore $|C_n(a)|^2$ is the proba. to find the state n in an expand. universe at a (in fact around a).
Conclusions. 2. The S. regime, the mildest one, 2.

- Unitarity,

\[\sum_n |C_n(a)|^2 \equiv Cst. \]

relies on the conserved current \(W \).

- NO problem of interpretation, NO problem of time.
Conclusions. 2. The S. regime, the mildest one, 2.

- **Unitarity,**

\[\sum_{n} |C_n(a)|^2 \equiv Cst. \]

relies on the conserved current \(W \).

- **NO problem of interpretation, NO problem of time.**
Neglecting only $C_n \rightarrow D_m$, the WDW gives two separate 1st order eqs. in $i\partial_a$.

Unitarity, i.e. $\sum_n |C_n(a)|^2 \equiv Cst.$ is obtained, as in the Schrod. regime, from the conservation of W, even though there is no cosmic time because no backd sp-time common to all matter states.

Lesson:
The recovery of cosmic time requires more condition than the recovery of unitarity.
Neglecting **only** \(C_n \to D_m \), the WDW gives **two separate 1st order eqs. in** \(i\partial_a \).

Unitarity, i.e. \(\sum_n |C_n(a)|^2 \equiv C_{st} \) is obtained, as in the Schrod. regime, from the conservation of \(W \), even though there is **no cosmic time** because **no backd sp-time common** to all matter states.

Lesson: The **recovery of cosmic time** requires more condition than the **recovery of unitarity**.
Conclusions. 3. The second intermediate regime.

Neglecting only $C_n \rightarrow D_m$, the WDW gives two separate 1st order eqs. in $i\partial_a$.

Unitarity, i.e. $\sum_n |C_n(a)|^2 \equiv Cst.$ is obtained, as in the Schrod. regime, from the conservation of W, even though there is no cosmic time because no backd sp-time common to all matter states.

Lesson:
The **recovery of cosmic time** requires more condition than the **recovery of unitarity**.
Conclusions. 4. The least Adiabatic regime.

- Taking into account $C_n \rightarrow D_m$ NAT, one faces the identity

$$\sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv \text{Cst.}$$

- How to interpret this equation?

- **Proposal:** as we just did it for cosmic time: the recovery of unitarity requires some conditions.

- Hence we conclude/conjecture:

 The *statistical interpretation* of the NATA $C_n(a)$ is *not* as a *fundamental property*, but should be conceived as an *emergent property* of QC.

Taking into account $C_n \rightarrow D_m$ NAT, one faces the identity

$$\sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv Cst.$$

How to interpret this equation?

Proposal: as we just did it for cosmic time: the recovery of unitarity requires some conditions.

Hence we conclude/conjecture:

The statistical interpretation of the NATA $C_n(a)$ is not as a fundamental property, but should be conceived as an emergent property of QC.

Conclusions. 4. The least Adiabatic regime.

Taking into account $C_n \rightarrow D_m \text{ NAT}$, one faces the identity

$$\sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv \text{Cst.}$$

How to interpret this equation?

Proposal: as we just did it for cosmic time: the recovery of unitarity requires some conditions.

Hence we conclude/conjecture:

The statistical interpretation of the NATA $C_n(a)$ is not as a fundamental property, but should be conceived as an emergent property of QC.

Conclusions. 4. The least Adiabatic regime.

- Taking into account \(C_n \rightarrow D_m \) NAT, one faces the identity

\[
\sum_n |C_n(a)|^2 - |D_n(a)|^2 \equiv Cst.
\]

- How to interprete this equation?

Proposal: as we just did it for cosmic time: the recovery of unitarity requires some conditions.

Hence we conclude/conjecture:

The statistical interpretation of the NATA \(C_n(a) \) is not as a fundamental property, but should be conceived as an emergent property of QC.