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THE PLAN 

1. Curved momentum space and relative locality; 

2. Alekseev-Malkin construction of effective, deformed 
particle lagrangian in 2+1 dimensions*; 

3. Comments. 
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* Based on the (partially inpublished) work done with Tomasz Trześniewski. 



SCALE AND GEOMETRY 

The assumption that the angle sum is less 

than 180 leads to a geometry quite 
different from Euclid’s. It depends on a 
constant, which is not given a priori. As a 
joke I even wished Euclidean geometry was 
not true, for then we would have an absolute 
measure of length a priori. (Gauss, 1827) 
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If there is an a priori scale, you expect nontrivial geometry. 
 

Everything is curved, unless it cannot be 



FLAT/CURVED MOMENTUM SPACE 

In the case of a standard relativistic particle we have flat spacetime and flat 
momentum space: 
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Spacetime 

Momentum space 
The phase space is a 
cotangent bundle over 
flat momentum space 

No scale 
required 



FLAT/CURVED MOMENTUM SPACE 

For deformed relativistic particle we have flat spacetime and curved momentum 
space: 
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Spacetime 

Curved momentum space 
(the curvature scale 

needed!) 

The phase space is a 
cotangent bundle over 
curved momentum space 



RELATIVE LOCALITY 

In the RL framework the no-trivial geometry of momentum space exhibits 
itself in a number of ways: 

1. The kinetic term for a particle has the form 

 

 

 

 

 

 

with the nontrivial momentum space frame field. 
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RELATIVE LOCALITY 

The mass-shell relation is defined as a square of the distance from zero to the point P, 
with coordinates pμ(P): 

 

 

 

We need metric to define the mass-shell relation ! 

 

 

 

 

If the metric is nonlinear we need the mass scale to define it. 
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MOMENTUM ADDITION 
In order to add two momenta the notion of connection (parallel transport) is needed.  

 

 

 

 

 

 

If the composition pq is nonlinear we need a mass scale to define it. 
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RELATIVE LOCALITY 

In theories with curved momentum space, locality might be relative: 

1. The translation (and/or Lorentz transformation) of a particle wordline depends on the 
momentum that the particle carries; 

2. Therefore the worldlines of the particles with different momenta transform differently; 

3. As a result, locality of events (defined by worldlines intersections) is not absolute, and 
becomes relative. 

 

It seems that relative locality is neither logically inconsistent nor does it 
contradict any observational data. 
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G. Amelino-Camelia, L. Freidel, JKG, L. Smolin The principle of relative locality. Phys.Rev. D84 084010, arXiv:1101.0931 [hep-th]; 
Relative locality: A deepening of the relativity principle. Gen.Rel.Grav. 43 2547arXiv:1106.0313 [hep-th] 



FUNDAMENTAL OR EMERGENT? 

Is the curved momentum space fundamental or emergent? 

1. If it is fundamental, what is the associated dynamics? 

2. If it is emergent, how does it arise? 

In the emergent case the master theory must provide a momentum scale. 

In 3+1D  

 

 

One can imagine the regime, in which Planck length is small, while Planck mass stays finite 
(relative to the characteristic scales of the problem) 

10
 


4 Pl Pl

lG M



IN 2+1 D THERE IS A MASS SCALE! 

In 2+1 dimensions the Newton’s constant G3 has the dimension of inverse 
mass G3=1/κ. 

This suggests that the momentum space might be curved, and I will show that 
it indeed is. 

Of course, 2+1D gravity is a toy model, and we do not have to believe that it 
tells you anything relevant for the real world. 

However, it is interesting because: 

1. This is the only example that we have; 

2. There might be real physical systems, which are effectively 2+1 dimensional. 
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GRAVITY IN 2+1 D WITH PARTICLES 

The Lagrangian of 2+1 gravity with one (massive) particle at the origin is 
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GRAVITY IN 2+1 D WITH PARTICLES 

The Lagrangian of 2+1 gravity with one (massive) particle at the origin is 
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GRAVITY IN 2+1 D WITH PARTICLES 
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GRAVITY IN 2+1 D WITH PARTICLES 

The Lagrangian of 2+1 gravity with one (massive) particle at the origin is 
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GRAVITY IN 2+1 D WITH PARTICLES 

The idea is to solve the constraint 

 

 

 

and plug the solution back to the lagrangian. (This can be done explicitly!) 
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A.Y. Alekseev and A.Z. Malkin, Commun. Math. Phys. 169, 99 (1995) [arXiv:hep-th/9312004;  C. Meusburger and B. J. Schroers, 
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SOLVING THE CONSTRAINT 
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CONTINUITY CONDITION 
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The connection must be continuous across the boundary of the disk. 

Decomposing the Poincare group elements into Lorentz and translational parts 

 

 

one finds that the Lorentz part of the continuity condition reads 
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HOLONOMY AND MOMENTUM 

Since the connection AH is gauge trivial, its holonomy along the boundary is 
given by 

 

 

Here is the group valued momentum characterizing motion of the particle.  

In terms П of the lagrangian of the particle has the form 
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THE MOMENTUM SPACE 

The momentum of П the particle is defined by the group element and thus 
the momentum space is a group manifold. In fact, the 2+1D Lorentz group, to 
which П belongs is the 2+1D Anti de Sitter space 
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NONCOMMUTATIVE POSITIONS 

By duality (Born reciprocity, Majid co-gravity) the position space is non-
commutative 
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TWO PARTICLES 

In the case of two (or many) particles the procedure is very similar: 
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TWO PARTICLES 
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In the case of two (or many) particles the procedure is very similar: 

D1 

D2 H 

П1 

П2 



TWO PARTICLES 
The deformed lagrangian has the form (no spin) 

 

 

and there is a nontrivial coupling between particles. This is this coupling that 
makes the total momentum of the system equal to the deformed composition 
of the individual particles momenta, given by  group product. 

To see this define center and the relative positions  

 

 

 

 

So that the lagrangian is invariant under rigid translations which do not change 
the particles relative position, with the associated total momentum being П. 

24
 

 1 1 1 1 1
1 1 1 2 2 2 2 1 1 2 1 1 2

   L                    x x x

   1 2 1 2

1 1
,

2 2
   x x x d x x

1
2 1

 terms,L        x d



COMMENTS 

No relative locality! In this model there is no sign of relative 
locality: the relative position of the particles is invariant under 
rigid translations. 

BTW. (for experts) this makes the construction of the vertex 
quite natural and unique (no sudoku needed!). 

This effective particle model works only in 2+1D and cannot be 
extended to higher dimensions. There is a model with (kind of) 
the κ-Poincare structure, which can be extended to higher 
dimension (talk in Rome).  
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COMMENTS: AND WHAT ABOUT 3+1D? 

There are only circumstantial evidences: 

1. Gravity in 3+1D can be defined as a constrained topological field theory, 
when the constraint is forced to vanish one has a TFT; 

2. One can couple this theory to particle(s) and even argue that such a 
system can be described by CS theory in 2+1D, like 2+1 gravity, but with 
more complicated gauge group; 
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THE MESSAGE 

1. In 2+1D we can honesty derive the deformed single- and multi-particle 
actions with momentum space being a group manifold; and momenta of the 
particle(s) represented by group elements; 

2. The total momentum of the multi-particle system is given by the group 
product of the group elements representing momenta of the particles; 

3. The multiparticle lagrangian contains the „topological interaction terms” and 
the form of these terms is such that locality turns out to be absolute 
(not relative). 

4. It is unclear if this results can be applied beyond the 2+1D setup. 
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