

# Constraints on Chiral Gravity through CMB polarisation

Agnès Ferté

Work with Julien Grain, Radek Stompor, Julien Peloton

http://arxiv.org/abs/1404.6660

1. CMB Polarisation Probe of the primordial universe

2. Detectability of Parity Violation Detectability of Barbero-Immirzi parameter **CMB** Polarised Anisotropies



# MODEL

**Primordial Universe** 

Parameter and constraints



Cosmological observables with uncertainties

**CMB** Polarisation

**OBSERVATION** 

### Instrumental effects: two fiducial experiments

#### Small scale survey

Observed sky fraction = 1% Beam = 8 arcmin Noise = 5.75 uK-arcmin



#### Large scale survey

Observed sky fraction = 71% Beam = 8 arcmin Noise = 2.2 uK-arcmin



Uncertainties: mode counting expression of sampling variance

Cosmic (inherent) variance including instrumental effects.

Use of an **analytic formula**. Exemple for the B modes power spectrum:

$$Var(C_{\ell}^{BB}) = \frac{2}{(2\ell+1)f_{sky}}(C_{\ell}^{BB} + \frac{N_{\ell}^{BB}}{B_{\ell}^{2}})^{2}$$

#### But neglect crucial statistical issues.

### B-modes estimation on a partial sky: the E-to-B leakage



Mode counting variance



# MODEL



## Example: constraining energy level of inflation

## MODEL

Tensor-to-scalar ratio r

Parameter and constrains



Cosmological observables with uncertainties

**CMB B-modes** 



#### Results: forecasts for tensor-to-scalar ratio detection



From Ferté, Peloton et al., in prep. for PRD

# 1. CMB Polarisation Probe of the primordial universe

2. Detectability of Parity Violation Detectability of Barbero-Immirzi parameter

## MODEL



#### Cosmological observables with uncertainties

**TB** and **EB** correlations

## **OBSERVATION**

#### Parity violation CMB TB and EB correlations

In parity invariant universe:

$$P^{T}(k) \longrightarrow C_{\ell}^{BB} \propto r$$

$$C_{\ell}^{TB/EB} = 0$$

If parity breaking during inflation:

$$P_{right}^{T}(k) + P_{left}^{T}(k) \longrightarrow C_{\ell}^{BB} \propto r_{+}$$

$$P_{right}^{T}(k) - P_{left}^{T}(k) \longrightarrow C_{\ell}^{TB}, C_{\ell}^{EB} \propto r_{-}$$

Parity violation level: 
$$\delta = \frac{r_-}{r_+}$$

Lue et al, PRL 1999 Alexander, Yunes, Phys Rep 2009 Caprini, Sorbo, arxiv:1407.2809 Contaldi et al, PRL 2008

#### TB and EB power spectra



#### Mode counting and pure uncertainties



Forecasts: impossible to detect with small experiment

For 100% parity breaking and r = 0.2: SNR = 1.2 using mode counting.

If EB and TB correlations = 0, no constraints on parity breaking.

Forecasts: range of model detectable with satellite experiment



Forecasts: range of model detectable with satellite experiment

With the pure estimation of B-modes:

|                  | $\delta = 1$ | $\delta=0.5$ |
|------------------|--------------|--------------|
| $r_{(+)} = 0.2$  | 5.46         | 2.5          |
| $r_{(+)} = 0.1$  | 3.67         | 1.51         |
| $r_{(+)} = 0.05$ | 2.35         | 1.11         |

Instrumental effects can cause EB and TB correlations

Miscalibration angle of 0.1 degree: SNR = 5 for  $r_{+} = r_{-} = 0.2$ ; SNR = 2.96 for  $r_{+} = r_{-} = 0.1$ .

 $\begin{array}{ll} \mbox{Miscalibration angle of 1 degree:} & \mbox{SNR} = 2.23 \mbox{ for } r_+ = r_- = 0.2; \\ & \mbox{SNR} = 1.58 \mbox{ for } r_+ = r_- = 0.1. \end{array}$ 

EB and TB correlations have to be very well modeled.

Achievable Constraints on the Barbero-Immirzi Parameter

$$\delta = \frac{2i\gamma}{(1-\gamma^2)}$$

$$|\gamma| = 1$$
: r = 0.05, SNR = 2.3  
r = 0.2, SNR = 5.4

$$0.26 \le |\gamma| \le 3.75$$
: r = 0.2, SNR  $\ge 2.5$ 

EB, TB consistent with zero:  $0.66 \le |\gamma| \le 1.5$  excluded at  $3\sigma$  for  $r_{+} = 0.05$  $0.2 \le |\gamma| \le 4.9$  excluded at  $3\sigma$  for  $r_{+} = 0.2$ 

> Contaldi et al, PRL 2008 Magueijo, Benincasa, PRL 2011 Bethke, Magueijo, PRD 2011 Bethke, Magueijo, CQG 2012

## To take away

- The **CMB polarisation** is a powerful observable of physics of the primordial universe.
- Range of values for Barbero-Immirzi parameter achievable with **a future satellite** experiment.
- For this purpose, the CMB polarisation has to be known very well modeled and the instrument fully understood.

