

Interacting Galaxies and Binary Quasars: A Cosmic Rendezvous Trieste, Italy: 2012 April 4

The Role of Galaxy Mergers and AGN Among High Redshift (U)LIRGs

Jeyhan S. Kartaltepe Hubble Fellow – NOAO

D. Sanders, M. Dickinson, and the COSMOS, GOODS-Herschel, & CANDELS Collaborations

Interacting Galaxies

Hubble Space Telescope • ACS/WFC • WFPC2

Properties of Local (U)LIRGs

- ULIRGs: IRAS 1 Jy Sample, med(z) = 0.145 (Veilleux, Kim, & Sanders 2002)
 - > 99% are major mergers of gas rich spirals
- LIRGs: RBGS, med(z) =0.0082 (Sanders et al 2003, Ishida 2004)
 - log(L_{IR}) > 11.5
 - strongly interacting major mergers (65%)
 - doubles (18%)
 - minor interactions (18%)
 - log(L_{IR}) < 11.5
 - strongly interacting major mergers (36%)
 - doubles (23%),
 - minor interactions (15%)
 - high luminosity end of normal starforming disks (26%)

Fraction of mergers increases systematically with L_{IR}!

Properties of Local (U)LIRGs

- Fraction of (U)LIRGs with an AGN increases with L_{IR}
 - Veilleux et al. 1995, 1999; Tran et al. 2001; Yuan et al. 2010
- < 20% for L_{IR} < 10¹¹ L_{\odot}
- > 50% for L_{IR} > 10^{12.3} L_{\odot}
- Large fraction of composites
 - Mix of SF, AGN, shocks
 - Difficult to disentangle

The Merger Scenario

- Mergers among **ULI**ŘGs are ubiquitous
- High AGN fraction ightarrowamong ULIRGs
- Leads to the merger ightarrowscenario (Sanders et al. 1988)
 - Evolutionary connection: Gasrich mergers \rightarrow LIRG \rightarrow ULIRG \rightarrow **0**50
 - Eventually form "red and dead" elliptical

(c) Interaction/"Merger'

now within one halo, galaxies interact & lose angular momentum SFR starts to increase stellar winds dominate feedback rarely excite QSOs (only special orbits)

(b) "Small Group"

- secular growth builds bars & pseudobulges - "Seyfert" fueling (AGN with M_B>-23) - cannot redden to the red sequence

- galaxies coalesce: violent relaxation in core starburst & buried (X-ray) AGN

but, total stellar mass formed is small

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly - characteristically blue/young spheroid

(g) Decay/K+A

- star formation terminated - large BH/spheroid - efficient feedback - halo grows to "large group" scales: mergers become inefficient - growth by "dry" mergers

- gas inflows to center:

1000

100 = 10

0.1

а

12 Ŷ 11

9

-2

-1

Loso 10

log₁₀[

[M_© yr⁻¹]

SFR

- starburst dominates luminosity/feedback,

e f

0

Time (Relative to Merger) [Gyr]

Hopkins et al. 2008

(d) Coalescence/(U)LIRG (e) "Blowout"

High Redshift (U)LIRGs

- LIRGs dominate IR energy density (and cosmic star formation rate) at z > 0.7
 - Le Floc'h et al. 2005
- ULIRGs as important or dominate by z~2
 - Caputi et al. 2007; Magnelli et al. 2009, 2011; Bethermin et al. 2011; Murphy et al. 2011
- Important role at the peak of galaxy assembly

The Role of Cold Flows

- Some theoretical simulations suggest that the high SFRs of (U)LIRGs can be sustained at high redshift (z~2) by 'cold flows' (e.g., Dekel et al. 2009, Davé et al. 2009)
 - Accretion of cold gas along filaments
 - Minor mergers
- Observationally supported by apparent *lack* of mergers among high redshift (U)LIRGs (e.g., Genzel et al. 2006; Forster-Schreiber et al. 2009)
 - Mix of results at high redshift so far
 - High redshift mergers are hard to see
 - Cold flows have yet to be observed!

Previous High Redshift (z~2) Studies

• 24 μ m / color selected samples

- e.g., Dasyra et al. 2008; Melbourne et al. 2009; Bussmann et al. 2009, 2011; Zamojski et al. 2010
- Wide range of results
- Submillimeter Galaxies (SMGs)
 - Morphology (e.g., Conselice et al. 2003; Swinbank et al. 2010)
 - Kinematics (e.g., Tacconi et al. 2008)
 - Tend to find high fractions of mergers

IFU Kinematics of massive star forming galaxies (SMGs/BzKs, etc.)

- e.g., Genzel et al. 2008; Forster-Schreiber et al. 2009
- Mixed results 1/3 mergers, 1/3 rotation dominated, 1/3 dispersion dominated

COSMOS 70 µm Sample

COSMOS 70 µm Sample

Identified AGN using several techniques

- X-ray luminosity
- Radio power
- SED shape (i.e., Power-law)
- IRAC colors
- Infrared to optical ratio (e.g., Fiore et al. 2008, Dey et al. 2008)
- [Spectroscopic diagnostics]
- Classified morphology
 - Used ACS images
 - Spirals, ellipticals, mergers (minor and major), QSOs, & unknown

AGN Fraction

AGN Fraction increases systematically with L_{IR} (as it does locally)!

Merger Fraction

- Fraction of spirals drops
- Major mergers increase to ~40%
- Unknowns make up additional ~20%
- Minor mergers have an effect only at log (L_{IR})<11.5
- Significant contribution from 'QSO' class at high L_{IR}
- Consistent with previous studies over corresponding z and L_{IR} ranges

GOODS-Herschel

- *Herschel* coverage of both GOODS fields (PI: D. Elbaz)
 - Deepest *Herschel* data taken!
 - Full GOODS-N field: 1.6 mJy (@ 100 μm)
 - Central part of GOODS-S: 0.6 mJy (@ 100 μm)
- Small area coverage but very deep
- Well suited for identifying high redshift (z > 1) sources
- 100-500 µm coverage is closer to the peak of emission
 - Better for constraining L_{IR} and T_{dust}

GOODS-S

CANDELS

- Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (PIs: S. Faber & H. Ferguson)
- Multi-cycle HST Treasury Program
- WFC3 NIR imaging of portions of 5 deep fields
 GOODS-N, GOODS-S, UDS, COSMOS, EGS

GOODS-Herschel & CANDELS

- A match made in heaven!
- Rest-frame optical imaging for z~2 galaxies
- Ideal for probing structure of z~2 ULIRGs

GOODS-Herschel ULIRG Sample

Focus on all ULIRGs with z = 1.5 - 3.0 in GOODS-S

- 52 ULIRGs with CANDELS imaging
 - First complete, FIR selected sample of ULIRGs at z~2!
- Additional 70 LIRGs over this z range

Comparison Sample

- Selected 260 comparison galaxies (5 for each ULIRG)
 - Not Herschel detected \rightarrow less luminous z~2 population
- Matched to redshift and H band magnitude
- Randomized and classified ULIRGs + comparison
 - Visual classification scheme
 - Classified by me + 3-5 other classifiers
 - Analyzed agreement
 - Eventually compare to quantitative merger selections

Power of HST/WFC₃

• At high-z band shifting becomes important!

Rest-frame UV versus Rest-frame optical

ACS I band

WFC₃ H band

Visual Classification Scheme

Disk	Spheroid	Irregular
		Main Morphological Class
Interaction	Merger	
1		Interaction Class

Comparison with z ~ 1

COSMOS 70 μm

- 277 sources 0.8 < z < 1.2
- Relatively shallow, but large area coverage
- log(L_{IR}) = 11.3 12.9

GOODS-Hersche

- North+South
- 100/160 µm
- Smaller area, significantly deeper
- 293 sources w/ 0.8 < z < 1.2
- $Log(L_{IR}) = 10.6 12.4$
- Classified using ACS imaging and same scheme

z~2 ULIRGs

SFR Enhancement

- Median(SSFR[(U)LIRGs)] / SSFR['main sequence'])
- For (U)LIRG non interacting disks: 2.4
- Spheroid only: 1.4
- Irregular only: 1.3
- Mergers and Interactions: 3.8
- \rightarrow SSFR significantly enhanced in mergers and interactions

AGN Fraction

- 20 (38%) are X-ray detected AGN (4 Ms CDFS data)
- 15 (29%) are Power-law AGN
- 23 unique AGN (44%)

Summary

- Morphology and AGN content correlated with L_{IR} at all z
 Difficult with ACS images beyond z~1
- Morphologies of z~2 ULIRGs span a wide range
 - 'Disks' make up a significant fraction (many irregular)
 - 40% non-interacting, 60% total
 - ~45% are clear mergers or interactions
 - Additional ~25% are irregular (minor mergers?)
 - Comparable to fractions at z~1, slightly lower
 - More likely to be interacting pairs than advanced mergers
- SFR of z~2 ULIRGs significantly enhanced (factor of ~3.8)
- 44% of z~2 ULIRGs have an AGN (through X-rays or PL slope)

Future Directions

The results presented were small numbers!

- Need rest of CANDELS fields + expanded Herschel coverage for firm conclusions/statistics
- Herschel+CANDELS PI: M. Dickinson (OT2)
- Coming soon!
- NIR spectroscopic follow-up
 - Starburst-AGN emission line diagnostics
 - What is the role/contribution of the AGN?
 - Large international Subaru FMOS program of COSMOS