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1 Differential geometry in Euclidean space

1.1 Coordinates on Euclidean space

Geometry studies objects consisting of points in a space. Giving a precise meaning to these
names requires significant efforts. So we will begin with introducing simple geometrical struc-
tures in Euclidean spaces as a starting point for developing geometry of smooth manifolds.

Definition 1.1.1 A set X is called a Euclidean space of dimension n if a one-to-one corre-
spondence

X → Rn (1.1.1)

is given.

Recall that Rn is defined as the set of all n-tuples (x1, x2, . . . , xn) of real numbers. Thus
the above definition says that to any point P ∈ X it is assigned a collection of Euclidean
coordinates

(
x1(P ), x2(P ), . . . , xn(P )

)
. It is required that

• any n-tuple of real numbers (x1, x2, . . . , xn) are coordinates of a point P ∈ X;

• two points P and Q in X coincide iff

xi(P ) = xi(Q), i = 1, 2, . . . , n.

The space Rn itself is a Euclidean space of dimension n. Also in general one can say that
points of the n-dimensional Euclidean space X are just n-tuples of real numbers (x1, . . . , xn)
thus identifying X with Rn. However, in sequel we will deal with different choices of coordi-
nates on the same space. Properties of objects in the space remaining invariant with respect
to a certain class of changes of coordinates will be called geometric. We will soon be more
specific about the main classes of changes of coordinates used in the differential geometry.

The identification (1.1.1) equips X with a natural topology defined on Rn. Namely, given
a point P0 ∈ X and a positive number ε denote

B(P0, ε) =
{
P ∈ X | |xi(P )− xi(P0)| < ε for i = 1, 2, . . . , n

}
.

The subset B(P0, ε) ⊂ X is called the ε-neighborhood of the point P0. A subset U ⊂ X is
called open if every point of U belongs to U together with its ε-neighborhood for a sufficiently
small ε > 0.

Functions on a n-dimensional Euclidean space

f : X → R (1.1.2)

are represented by functions of n real variables f(x1, x2, . . . , xn). The function (1.1.2) on the
topological space X is continuous iff f(x1, x2, . . . , xn) is a continuos function in the sense of
multivariable calculus.

Exercise 1.1.2 1) Given a continuous function f : X → R prove that the subset

U = {P ∈ X | f(P ) < 0}
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is open.

2) For any k ≥ 1 prove openness of the subset defined by a system of inequalities

f1(P ) < 0, . . . , fk(P ) < 0

with continuous functions f1, . . . , fk.

A map of Euclidean spaces
f : X → Y (1.1.3)

equipped with coordinates (x1, . . . , xn) and (y1, . . . , ym) is represented by m real valued
functions of n variables

yi = yi(x1, . . . , xn), i = 1, . . . ,m. (1.1.4)

Such a map is continuous if all the functions (1.1.4) are continuous. The map (1.1.3) is called
homeomorphism if it is one-to-one and the inverse map

f−1 : Y → X (1.1.5)
xj = xj(y1, . . . , ym), j = 1, . . . , n

is continuous. It is known that homeomorphic Euclidean spaces must have the same dimension
m = n. We will prove this statement for the smooth case.

Smooth functions and smooth maps of Euclidean spaces are defined in a similar way. A
function f : X → R on a n-dimensional Euclidean space is called Ck-smooth if all partial
derivatives

∂mf

∂xi1 . . . ∂xim

of its coordinate representation f(x1, . . . , xn) are continuous functions for m ≤ k. In a similar
way one can define Ck-smooth maps of Euclidean spaces. The function is called C∞-smooth
if it can be continuously differentiated any number of times. We will mainly deal with C∞-
smooth functions and maps. So the name ‘smooth’ will be reserved for such functions and
maps.

Let
f : X → Y

be a smooth map of Euclidean spaces of dimensions n and m respectively.

Definition 1.1.3 The map f is called diffeomorphism if it is one-to-one and the inverse
map f−1 : Y → X is smooth. If such a map exists then the Euclidean spaces X and Y are
called diffeomorphic.

Theorem 1.1.4 (Invariance of dimension.) Diffeomorphic Euclidean spaces must have equal
dimensions.

Proof: Let us first remind the chain rule for differentiating the superposition of smooth
maps
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Lemma 1.1.5 Let

f : X → Y, yj = yj(x), j = 1, . . . ,m, x = (x1, . . . , xl) (1.1.6)
g : Y → Z, zi = zi(y), i = 1, . . . , n, y = (y1, . . . , ym) (1.1.7)

be smooth maps of Euclidean spaces X, Y , Z of the dimensions l, m and n respectively. Then
the superposition g ◦ f is a smooth map

g ◦ f : X → Z, zi = zi (y(x)) , i = 1, . . . , n. (1.1.8)

Its partial derivatives can be computed from the following formula

∂zi

∂xk
=

m∑
j=1

∂zi

∂yj
∂yj

∂xk
, i = 1, . . . , n, k = 1, . . . , l. (1.1.9)

This statement is well known from the multivariable calculus.

Let us make two improvements in the notations. First, we introduce the Jacobi matrix of
a smooth map. For the map (1.1.6) the Jacobi matrix

(
∂y

∂x

)
:=



∂y1

∂x1 . . . ∂y1

∂xl

∂y2

∂x1 . . . ∂y2

∂xl

. . . . .

. . . . .

. . . . .
∂ym

∂x1 . . . ∂ym

∂xl


(1.1.10)

has m rows and l columns. Similarly the Jacobi matrix

(
∂z

∂y

)
:=



∂z1

∂y1
. . . ∂z1

∂ym

∂z2

∂y1
. . . ∂z2

∂ym

. . . . .

. . . . .

. . . . .
∂zn

∂y1
. . . ∂zn

∂ym


(1.1.11)

has n rows and m columns. The chain rule says that the Jacobi matrix of the superposition
(having n rows and l columns) is equal to the product of the Jacobi matrices (1.1.10) and
(1.1.11): (

∂z

∂x

)
=
(
∂z

∂y

)(
∂y

∂x

)
. (1.1.12)

The second improvement is often called the Einstein rule: we agree to omit the summation
sign in (1.1.9) over the twice repeated index j:

∂zi

∂xk
=
∂zi

∂yj
∂yj

∂xk
, i = 1, . . . , n, k = 1, . . . , l. (1.1.13)
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In sequel we will use this rule systematically always assuming summation over every pair of
repeated indices. Needless to say that the limits of the summation must be known in advance.
For example, in the formula (1.1.13) there is a summation over the repeated index j from
j = 1 to j = m.

After such a long digression let us return to the proof of invariance of dimension. Let
the spaces X and Y have the dimensions n and m respectively. In the coordinates the map
f : X → Y is represented by n smooth functions

yi = yi(x), i = 1, . . . ,m, x = (x1, . . . , xn).

The inverse map f−1 : Y → X is represented by m smooth functions

xj = xj(y), j = 1, . . . , n, y = (y1, . . . , ym).

The superposition
f−1 ◦ f : X → X

is the identity map f−1 ◦ f = idX . That is,

xj (y(x)) = xj , j = 1, . . . , n.

Applying the chain rule we conclude that(
∂x

∂y

)(
∂y

∂x

)
= 1n.

Here 1n is the n× n identity matrix. In a similar way we prove that(
∂y

∂x

)(
∂x

∂y

)
= 1m.

Therefore the Jacobi matrix of the inverse map f−1 is the inverse matrix for the Jacobi matrix
of f : (

∂x

∂y

)
=
(
∂y

∂x

)−1

.

As it is well known from linear algebra only square matrices can be invertible1. Therefore
m = n.

From the proof of the Theorem one can easily derive the following

Corollary 1.1.6 Let f : X → Y be a diffeomorphism of Euclidean spaces of dimension n.
Then the determinant of the Jacobi matrix

det
(
∂y

∂x

)
(1.1.14)

never vanishes.
1This can be easily derived from the following estimate for the rank of the product of two matrices:

rkAB ≤ min(rkA, rkB).
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We are now in a position to describe the main class of transformation of coordinates on a
Euclidean space. Let two systems of coordinates (x1, . . . , xn) and (y1, . . . , ym) be two systems
of coordinates in a Euclidean space. One has two one-to-one maps

X (1.1.15)
↙ ↘

Rn
x Rm

y

The superposition gives a one-to-one map of Euclidean spaces

Rn
x → Rm

y(
x1(P ), . . . , xn(P )

)
7→
(
y1(P ), . . . , ym(P )

)
(1.1.16)

for any P ∈ X.

Definition 1.1.7 The two coordinate systems (1.1.15) are called compatible if the map
(1.1.16) is a diffeomorphism.

Because of invariance of dimension one must have m = n for a pair of compatible coordi-
nate systems. The transformation(

x1(P ), . . . , xn(P )
)
7→
(
y1(P ), . . . , yn(P )

)
∀P ∈ X (1.1.17)

between two compatible systems of coordinates will be called a smooth change of coordi-
nates. The matrix

(
∂y
∂x

)
is called the Jacobi matrix of the coordinate transformation and its

determinant

Jx→y := det
(
∂y

∂x

)
(1.1.18)

the Jacobian of the transformation. According to the Corollary 1.1.6 the Jacobian of the
coordinate transformation never vanishes,

det
(
∂y

∂x

)
6= 0.

The Jacobian of the inverse transformation is obtained by inversion of the Jacobian (1.1.18)

Jy→x = J−1
x→y.

Exercise 1.1.8 Consider a linear change of coordinates

y1 = t11x
1 + t12x

2 + · · ·+ t1nx
n

y2 = t21x
1 + t22x

2 + · · ·+ t2nx
n

. . . . . . . . . . . . (1.1.19)
yn = tn1x

1 + tn2x
2 + · · ·+ tnnx

n

or, in the short notations explained above

yi = tijx
j , i = 1, . . . , n (1.1.20)
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(summation over the repeated index j from 1 to n is assumed). Prove that the transformation
(1.1.19) is a smooth change of coordinates iff the matrix

T =


t11 t12 . . . t1n

t21 t22 . . . t2n
. . . . . . . . . . . .
tn1 tn2 . . . tnn


does not degenerate,

detT 6= 0.

Observe that T coincides with the Jacobi matrix of the transformation,

∂yi

∂xj
= tij , i, j = 1, . . . , n.

In the vector notations the transformation (1.1.19) is given by multiplication of the vector of
coordinates by the matrix T :

y = Tx

x =



x1

x2

.

.

.
xn

 , y =



y1

y2

.

.

.
yn

 . (1.1.21)

The inverse transformation y → x involves the inverse matrix

x = T−1y. (1.1.22)

It is often convenient to work in local coordinates that establish a one-to-one correspon-
dence of a subset in the Euclidean space with an open domain in Rn. Changes of local
coordinates are given by smooth functions defined on open domains in Rn. Like in the global
case the Jacobian of a transformation of local coordinates must not vanish.

Example 1. Consider the two-dimensional Euclidean space with the coordinates (x, y).
The polar coordinates (r, φ) are defined by the formulae

x = r cosφ
y = r sinφ

}
. (1.1.23)

Because of 2π-periodicity of the trigonometric functions the pairs (r, φ) and (r, φ + 2π k)
correspond to the same point of the Euclidean plane for any integer k. The transformation
(r, φ) 7→ (x, y) is (smoothly) invertible on the domain obtained by deleting the ray

y = 0, x ≥ 0.
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The polar angle φ can be uniquely determined from eqs. (1.1.23) assuming that 0 < φ < 2π.
The polar radius r =

√
x2 + y2 takes positive values. Thus the local coordinates (r, φ) defined

on the above domain take their values on the open half-strip

0 < r

0 < φ < 2π.

The Jacobian

J(r,φ)→(x,y) = det


∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

 = det

 cosφ −r sinφ

sinφ r cosφ

 = r (1.1.24)

never vanishes on the punctured plane x2 + y2 > 0.

Example 2. Cylindrical coordinates (r, φ, h) in the three-dimensional Euclidean space
are defined by the transformation

x = r cosφ
y = r sinφ
z = h

 . (1.1.25)

They are local coordinates on the domain obtained by deleting from R3 the half-plane

y = 0, x ≥ 0.

The Jacobian

J(r,φ,h)→(x,y,z) = det

 cosφ −r sinφ 0
sinφ r cosφ 0

0 0 1

 = r (1.1.26)

vanishes only on the z-axis x = y = 0.

Example 3. Spherical coordinates in the three-dimensional Euclidean space are defined
by

x = r cos θ cosφ
y = r cos θ sinφ
z = r sin θ

 . (1.1.27)

They become local coordinates in the domain obtained by deleting of the half-plane

y = 0, x ≥ 0

and they take their values in
0 < r
0 < φ < 2π
−π

2 < θ < π
2 .

(1.1.28)

The Jacobian

J(r,φ,θ)→(x,y,z) = det

 cos θ cosφ −r cos θ sinφ −r sin θ cosφ
cos θ sinφ r cos θ cosφ −r sin θ sinφ

sin θ 0 r cos θ

 = r2 cos θ (1.1.29)
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vanishes only on the z-axis.

At the end of this section we will formulate a useful result that locally gives a converse
statement to the Corollary 1.1.6.

Theorem 1.1.9 Let

y1 = y1(x), . . . , yn = yn(x), x = (x1, . . . , xn) (1.1.30)

be n smooth functions defined on a small neighborhood of the point P0 = (x1
0, . . . , x

n
0 ) of a

n-dimensional Euclidean space. If the Jacobian

Jx→y = det
(
∂y

∂x

)
does not vanish at the point P0 then the functions (1.1.30) define a system of local coordinates
on some neighborhood of this point.

This is a reformulation of the inverse mapping theorem.

1.2 Linear algebra and Euclidean geometry

Every linear space X of dimension n has a natural structure of Euclidean space. A distin-
guished class of coordinates on X is obtained in the following way. Let e1, . . . , en be a system
of linearly independent vectors of X. Such a system is a basis of the linear space, i.e.,

• any vector x ∈ X can be represented as a linear combination

x = x1e1 + x2e2 + · · ·+ xnen ≡ xiei; (1.2.1)

• such a representation is unique:

xiei = yjej ⇒ xi = yi ∀i = 1, . . . , n.

The coefficients x1, . . . , xn of the linear combination (1.2.1) are called coordinates of the
vector x with respect to the basis e1, . . . , en. Clearly such a definition of coordinates agrees
with the one given in the beginning of the previous section (we can use the name ‘points’ for
the vectors of the linear space).

Example. In the standard n-dimensional linear space Rn there is a distinguished basis

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1). (1.2.2)

The coordinates of a vector x = (x1, . . . , xn) with respect to the basis (1.2.2) coincide with
the numbers x1, . . . , xn.

Exercise 1.2.1 Let x and y be two vectors of a linear space. Denote (x1, . . . , xn) and
(y1, . . . , yn) respectively the coordinates of these vectors with respect to a basis e1, . . . , en.
Prove that the coordinates of the linear combination

αx+ βy, α, β ∈ R

with respect to the same basis are

αx1 + βy1, αx2 + βy2, . . . , αxn + βyn.
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Definition 1.2.2 A map f : X → Y is called linear if

f(αx+ βy) = αf(x) + βf(y), ∀ x, y ∈ X, α, β ∈ R.

A linear map is called isomorphism of linear spaces if it is one-to-one.

Theorem 1.2.3 Two linear spaces are isomorphic iff they have the same dimension.

Proof: Necessity of the condition of the theorem can be proved as the above theorem about
invariance of dimension. As it follows from the Exercise 1.2.1, a choice of a basis in a n-
dimensional linear space establishes an isomorphism of this space with Rn with the standard
basis (1.2.2).

Another basis f1, . . . , fn defines another system of coordinates on the linear space X.
Denote y1, . . . , yn the coordinates of the same vector with respect to the new basis

x = y1f1 + · · ·+ ynfn. (1.2.3)

Lemma 1.2.4 The change of coordinates (x1, . . . , xn) → (y1, . . . , yn) is given by the linear
transformation (1.1.19) where the entries of the transition matrix T =

(
tij

)
are the coordi-

nates of the old basis with respect to the new one:

ej = tijfi, j = 1, . . . , n. (1.2.4)

Let us recall again that summation over the repeated index i from i = 1 to i = n is
assumed in the formula (1.2.4).

Proof: By definitions (1.2.1) and (1.2.3) we have

xjej = yifi.

Substituting (1.2.4) yields
xjtijfi = yifi

(now we have a double sum in the left hand side!). Because of uniqueness of the coordinates
we deduce the following system of equations

xjtij = yi.

This is exactly the transformation rule (1.1.19).

Exercise 1.2.5 Verify that the definition (1.2.4) of the transition matrix can be represented
in terms of multiplication of the row vector (f1, . . . , fn) by the matrix T :

(e1, . . . , en) = (f1, . . . , fn)T. (1.2.5)

Use this representation in order to rederive the Lemma 1.2.4 with the help of matrix algebra.

Exercise 1.2.6 Prove that any linear change of coordinates of the form (1.1.19) with an
arbitrary nondegenerate matrix T can be realized by a change of a basis in the linear space.
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Remark 1.2.7 According to our general philosophy one can say that the geometry of a lin-
ear space studies those properties that remain invariant with respect to linear changes of
coordinates (1.1.19).

The simplest class of geometrical objects in a linear space are linear subspaces. The subset
L ⊂ X is called a linear subspace if, for any pair of vectors x, y ∈ L and any pair of real
numbers α, β ∈ R the linear combination

αx+ βy

belongs to L. Thus L itself is a linear subspace with respect to the operations defined in
X. An important result from linear algebra says that any linear subspace of a n-dimensional
linear space X is finite-dimensional of the dimension less or equal to n. The following two
particular subclasses of linear subspaces appear more often in the geometrical considerations.
First, they are one-dimensional subspaces (straight lines). The vectors of these subspaces can
be represented in the form

x = λ f, λ ∈ R

for some nonzero vector f . Another subclass are hyperplanes, that is, linear subspaces of
the dimension2 n− 1. In coordinates they are conveniently represented as solutions to linear
equations

α1x
1 + · · ·+ αnx

n = 0 (1.2.6)

where α1, . . . , αn are real numbers not all of them are equal to zero.

Exercise 1.2.8 Prove that in the new coordinates defined as in Lemma 1.2.4 the hyperplane
(1.2.6) can be described by the equation

β1y
1 + · · ·+ βny

n = 0

where the rows of coefficients α = (α1, . . . , αn) and β = (β1, . . . , βn) are related by the
transformation

α = β T. (1.2.7)

At the first glance the transformation rules of coordinates (1.1.21) and the coefficients
of equations of hyperplanes (1.2.7) look similar. However these are different transformation
rules (check it)!

In order to define lengths of intervals of straight lines and also the angles between the
lines we have to equip the linear space X with an additional structure of an inner product.
Recall that this is a function

X ×X → R
(x, y) 7→ 〈x, y〉 (1.2.8)

satisfying the following properties:
2We will also use expression ‘subspace of codimension one’.
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• bilinearity

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, x〉, 〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉

for arbitrary vectors x, y, z ∈ X and arbitrary real numbers α, β ∈ R;

• symmetry
〈y, x〉 = 〈x, y〉 ∀x, y ∈ X;

• positive definiteness

〈x, x〉 ≥ 0
〈x, x〉 = 0 iff x = 0.

Recall the Cauchy–Schwarz inequality

〈x, y〉2 ≤ 〈x, x〉〈y, y〉 ∀x, y ∈ X (1.2.9)

that follows from the above definition of an inner product.

The length |x| of a vector x is defined by

|x| =
√
〈x, x〉. (1.2.10)

Two vectors x and y are called orthogonal if their inner product is equal to zero. More
generally the angle φ between two nonzero vectors x, y is defined from the equation

cosφ =
〈x, y〉
|x| |y|

, 0 ≤ φ ≤ π. (1.2.11)

Observe that such an angle exists due to the Cauchy–Schwarz inequality. In particular the
angle between two orthogonal vectors is equal to π

2 .

With the help of an inner product one can define the distance ρ(x, y) between two points
x, y ∈ X as the length of the vector y − x. In this way we obtain a structure of a metric
space on X. That means that the distance

ρ(x, y) = |x− y| (1.2.12)

satisfies the following properties:

• symmetry ρ(y, x) = ρ(x, y) ∀x, y ∈ X;

• triangle inequality
ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (1.2.13)

• positivity

ρ(x, y) ≥ 0
ρ(x, y) = 0 iff y = x. (1.2.14)

Let (X, 〈 , 〉) be an n-dimensional linear space equipped with an inner product. We
will write the coordinate representation for the above objects of Euclidean geometry. They
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become of a particular simplicity when written in an orthonormal basis e1, . . . , en. By
definition the basis is called orthonormal if the basic vectors are pairwise orthogonal and all
have length one:

〈ei, ej〉 = δij , i, j = 1, . . . , n. (1.2.15)

Here and in sequel we will use the notation δij for the Kronecker delta symbol:

δij =
{

1, i = j
0, otherwise

. (1.2.16)

Observe that the coordinates in an orthonormal basis can be expressed via inner products

xi = 〈x, ei〉, i = 1, . . . , n. (1.2.17)

Lemma 1.2.9 Let (x1, . . . , xn) and (y1, . . . , yn) be the coordinates of the vectors x and y ∈ X
with respect to an orthonormal basis. Then

〈x, y〉 = x1y1 + · · ·+ xnyn. (1.2.18)

Proof: We have

〈x, y〉 = 〈xiei, yjej〉 = xiyj〈ei, ej〉
= xiyjδij = x1y1 + · · ·+ xnyn.

Corollary 1.2.10 The square length of a vector is expressed via its coordinates in an or-
thonormal basis according to the Pythagorous theorem

|x|2 =
(
x1
)2 + · · ·+ (xn)2 , (1.2.19)

Justification of existence of orthonormal bases in an arbitrary finite-dimensional Euclidean
space (X, 〈 , 〉) is obtained from the following well known result from linear algebra.

Theorem 1.2.11 (Gram–Schmidt orthogonalization) Given an arbitrary basis e1, . . . , en
in (X, 〈 , 〉), there exists an upper triangular matrix T =

(
tij

)
, aij = 0 for i > j, and an

orthonormal basis f1, . . . , fn such that

(e1, . . . , en) = (f1, . . . , fn)T. (1.2.20)

Such an orthonormal basis is unique up to signs of the vectors f1, . . . , fn, i.e., if T ′ is another
upper triangular matrix and f ′1, . . . , f ′n another orthonormal basis satisfying

(e1, . . . , en) = (f ′1, . . . , f
′
n)T ′ (1.2.21)

then
f ′1 = ±f1, f ′2 = ±f2, . . . , f

′
n = ±fn

for some choice of the signs ±.
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From the Theorem 1.2.11 and Lemma 1.2.9 it follows

Corollary 1.2.12 Given two Euclidean spaces (X, 〈 , 〉) and (X ′, 〈 , 〉′)of the same dimen-
sion, there exists an isomorphism of linear spaces

f : X → X ′

preserving the inner products, i.e.,

〈f(x), f(y)〉′ = 〈x, y〉 ∀ x, y ∈ X.

Proof: A choice of an orthonormal basis in X gives such an isomorphism of X with the
standard Euclidean space with the inner product given by the formula (1.2.18).

1.3 Transformation groups in Euclidean geometry

Let us update the general philosophy according to which those properties of objects in X
are called geometric that remain invariant with respect to transformations f : X → X of a
certain class. We will consider only those classes of transformations that form a group with
respect to a natural superposition of maps

f : X → X, g : X → X

(f, g) 7→ f ◦ g : X → X. (1.3.1)

Recall that the superposition of maps is an associative operation:

f ◦ (g ◦ h) = (f ◦ g) ◦ h (1.3.2)

for arbitrary maps f, g, h : X → X.

The biggest of such groups consists of all bijections. The unit of this group is the identity
map idX . The inverse to a bijection f is the inverse map f−1. This group is of no interest
for differential geometry.

More interesting is the subgroup Diff (X ) of all diffeomorphisms of the Euclidean space
X to itself. Much smaller subgroups of Diff (X ) arise in various problems of linear algebra.
Let X be a linear space and f : X → X a linear map (see Definition 1.2.2). Given a basis
e1, . . . , en in X, the matrix A =

(
aji

)
of the linear map f is defined by

f(ei) = ajiej , i = 1, . . . , n. (1.3.3)

In these coordinates the map f acts as follows

f(x)i = aijx
j , i = 1, . . . , n (1.3.4)

or
x 7→ Ax. (1.3.5)

In the second equation x is the column of coordinates x1, . . . , xn.
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Lemma 1.3.1 Change of a basis

ei′ = tii′ei, i′ = 1, . . . , n (1.3.6)

yields the following transformation of the matrix of the linear map f

A′ = T−1AT (1.3.7)

Here A′ =
(
aj

′

i′

)
is defined by

f(ei′) = aj
′

i′ ej′ , i′ = 1, . . . , n. (1.3.8)

Here and in sequel we will use the following updated version of the notations. We will
use different indices i′, j′ etc. and i, j etc. for labelling the basic vectors, the coordinates
etc. of objects represented in different coordinate systems. Thus the basis e1′ , . . . , en′ will
be different from the basis e1, . . . , en; the coordinates of a vector x ∈ X with respect to the
basis e1, . . . , en are denoted x1, . . . , xn as above,

x = xiei

while the coordinates of the same vector in the basis e1′ , . . . , en′ are denoted x1′
, . . . , xn

′
,

x = xi
′
ei′ .

The indices i and i′, j and j′ will be consider independent even when repeated within the
same formula.

Proof: We have
aj

′

i′ ej′ = f(ei′) = f
(
tii′ei

)
= tii′f (ei) = tii′a

j
iej .

Substitution of (1.3.6) in the left hand side of the formula gives

aj
′

i′ t
j
j′ej = tii′a

j
iej

or, in matrix notations
TA′ = AT.

Corollary 1.3.2 The determinant of the matrix of the linear map f does not depend on the
choice of the basis in the linear space. The characteristic polynomial

PA(λ) = det (A− λ · 1) (1.3.9)

of the matrix of a linear map does not depend on the choice of a basis in the linear space. In
particular he determinant of the matrix of the linear map f does not depend on the choice of
the basis.

15



We will call PA(λ) and detA = PA(0) respectively the characteristic polynomial and the
determinant of the linear map f . Recall that the characteristic polynomial is important in
the study of eigenvalues of the linear map f . Namely, the nonzero vector x ∈ X is called an
eigenvector of the linear map f with the eigenvalue λ0 ∈ R if

f(x) = λ0x. (1.3.10)

The number λ0 is an eigenvalue of a linear map f iff it is a real root of the characteristic
polynomial

PA(λ0) = 0. (1.3.11)

A linear map f : X → X is called automorphism if it is invertible. The necessary and
sufficient condition for a linear map of a finite dimensional linear space to itself to be an
automorphism is given by nonvanishing of the determinant. All automorphisms f : X → X
of this linear space form a group. If n is the dimension of the space X then the group
of linear automorphisms is isomorphic to the general linear group GL(n) consisting of all
nondegenerate n× n matrices. Matrices with positive determinant form a subgroup

GL+(n) ⊂ GL(n) (1.3.12)

of orientation preserving automorphisms. Recall that orientation in the linear space X is a
choice of an equivalence class of bases in X. Two bases e1, . . . , en and e1′ , . . . , en′ are called
equivalent if the transition matrix T defined by (1.3.6) has positive determinant.

The special linear group
SL(n) ⊂ GL+(n) (1.3.13)

consists of all n × n matrices with determinant 1. For n = 1 the general linear group is
isomorphic to the multiplicative group R∗ of all nonzero real numbers. It is an Abelian
group. The special linear group for n = 1 consists of one element 1. The groups GL(n) and
SL(n) are not Abelian for n ≥ 2.

An extension of GL(n) is given by affine transformations

x 7→ Ax+ b. (1.3.14)

Here A ∈ GL(n) is an arbitrary nondegenerate square matrix and b is an arbitrary vector.
Any affine transformation is a superposition of a linear automorphism and a translation

x 7→ x+ b.

Exercise 1.3.3 Prove that superposition of two affine maps is again an affine map. Also
prove that the inverse to an affine map is again an affine map.

One obtains the affine group Aff (n). Translations form an Abelian subgroup in Aff (n).
This subgroup is isomorphic to Rn. The affine group itself is not Abelian even for n = 1.

Exercise 1.3.4 Consider the map

α : Aff (n)→ GL(n) (1.3.15)

associating the matrix A ∈ GL(n) with the affine transformation (1.3.14). Prove that the map
(1.3.15) is a group homomorphism. Prove that the kernel of this homomorphism coincides
with the subgroup of translations.
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From the second statement of this Exercise one derives

Corollary 1.3.5 Translations form a normal subgroup in Aff (n).

Recall that H ⊂ G is a normal subgroup in the group G if

g−1h g ∈ H ∀ h ∈ H,∀ g ∈ G.

The properties of objects in a Euclidean space invariant with respect to the action of
affine group make part of affine geometry.

Exercise 1.3.6 Prove that the class of affine transformations is invariant with respect to
affine changes of coordinates of the form (x1, . . . , xn) 7→ (x1′

, . . . , xn
′
)

xi = tii′x
i′ + ai, i = 1, . . . , n (1.3.16)

where the n× n matrix T =
(
tii′
)

does not degenerate.

More rich spectrum of transformation groups arises in the study of spaces (X, 〈 , 〉)
equipped with a Euclidean inner product.

Definition 1.3.7 An automorphism of a linear space f : X → X equipped with an inner
product is called orthogonal if it preserves the inner product

〈f(x), f(y)〉 = 〈x, y〉 ∀ x, y ∈ X. (1.3.17)

It is easy to see that superposition of two orthogonal automorphisms of X is again an
orthogonal automorphism. The inverse to an orthognal automorphism is again orthogonal.
Indeed, given two arbitrary vectors x′, y′ ∈ X one can find x = f−1(x), y = f−1(y) ∈ X such
that

x′ = f(x), y′ = f(y).

Since
〈x′, y′〉 ≡ 〈f(x), f(y)〉 = 〈x, y〉 ≡ 〈f−1(x′), f−1(y′)〉,

the automorphism f−1 is orthogonal. Needless to say that the identity is an orthogonal au-
tomorphism. One obtains the group of orthogonal automorphisms of the Euclidean space
(X, 〈 , 〉), or simply the orthogonal group of the space. The matrix realization of the orthog-
onal group is obtained from the following

Proposition 1.3.8 Let A =
(
aij

)
be the matrix of the linear map f : X → X with respect

to an orthonormal basis e1, e2, . . . , en

f(ej) = aijei, j = 1, . . . , n. (1.3.18)

The map f is orthogonal iff the matrix A is orthogonal, i.e.,

ATA = 1. (1.3.19)
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Proof: Given an orthogonal automorphism f , the image e′i = f(ei) of an orthonormal basis
is again orthonormal:

〈e′i, e′j〉 = δij , i, j = 1, . . . , n.

Thus

〈e′i, e′j〉 = 〈aki ek, aljel〉 = aki a
l
jδkl =

n∑
k=1

aki a
k
j = δij .

The last equation coincides with the orthogonality (1.3.19).

Vice versa, the square of the determinant of an orthogonal matrix A is equal to 1 since

1 = det
(
ATA

)
= (detA)2 .

So the linear map f is an automorphism. The basis

f(ei) = aki ek, i = 1, . . . , n

is orthonormal if the basis e1, . . . , en was so. Let

x = xiei, y = yjej

be two arbitrary vectors in the Euclidean space. We have

〈f(x), f(y)〉 = 〈xif(ei), yjf(yj)〉 = xiyj〈f(ei), f(ej)〉 = xiyjδij = 〈x, y〉.

Corollary 1.3.9 The orthogonal group of the space (X, 〈 , 〉) is isomorphic to the group
O(n) of orthogonal matrices.

Example 1. For n = 1 the orthogonal group consists of two elements ±1.

Example 2. For n = 2 consider the rotation by the angle ϕ about the origin. We have

f(e1) = cosϕe1 + sinϕe2

f(e2) = − sinϕe1 + cosϕe2.

This gives the matrix

A =
(

cosϕ − sinϕ
sinϕ cosϕ

)
. (1.3.20)

For the orthogonal reflection with respect to the x-axis, (x, y) 7→ (x,−y) the matrix reads

A =
(

1 0
0 −1

)
. (1.3.21)

Exercise 1.3.10 Prove that any orthogonal transformation on the plane is a rotation or a
reflection.
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Observe that the determinant of the matrix (1.3.20) is equal to +1 while the determinant
of the matrix of a reflection is equal to −1.

In general it is clear that the orthogonal transformations with determinant +1 form a
subgroup in the orthogonal group. It is denoted SO(n) ⊂ O(n) and called special orthogonal
subgroup. The transformations from the special orthogonal group are orientation preserving
orthogonal transformations. For example the group SO(2) is isomorphic to the group of
matrices of the form (1.3.20).

Example 3. For n = 3 the rotation by the angle ϕ about the z-axis has the matrix

A =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (1.3.22)

(in this example we always use coordinates (x, y, z) in an orthonormal basis). The superpo-
sition of such a rotation with the orthogonal reflection with respect to the plane (x, y) has
the matrix

A =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 −1

 . (1.3.23)

Exercise 1.3.11 Prove that any transformation in SO(3) is a rotation about an axis. Prove
that any orientation reversing orthogonal transformation in R3 can be represented by the
matrix (1.3.23) in some orthonormal basis.

Hint: prove that any transformation in SO(3) has an eigenvector with the eigenvalue 1.

Exercise 1.3.12 Prove that the cross-product of vectors

R3 × R3 → R3

(a, b) 7→ a× b (1.3.24)
a = (x1, y1, z1), b = (x2, y2, z2), a× b = (y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1)

is invariant with respect to the action of the group SO(3) but not invariant with respect to
the action of the group O(3) on coordinates of the vectors.

We will now study transformations of Euclidean space considered as a metric space (X, ρ)
equipped with the metric (1.2.12).

Definition 1.3.13 The map f : X → X ′ of a metric space (X, ρ) to a metric space (X ′, ρ′)
is called isometry if

ρ′ (f(x), f(y)) = ρ(x, y) ∀ x, y ∈ X. (1.3.25)

It is clear that superposition of two isometries of a space X to itself is again an isometry.
The identity map is an isometry.
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For example, any orthogonal automorphism X → X is an isometry. The translations
x 7→ x+ a are isometries too. Thus the transformations of the form

x 7→ Ax+ b, A ∈ O(n), b ∈ X

are isometries. Conversely,

Theorem 1.3.14 Any isometry of a Euclidean space with the metric (1.2.12) to itself is a
superposition of an orthogonal transformation and a translation.

Proof: Let us begin with considering isometries f : X → X having a fixed point at 0,

f(0) = 0.

(The general case can be easily reduced to the particular one by considering a superposition
with a suitable translation.)

Lemma 1.3.15 If an isometry f fixes the point 0 then the following identity holds true

〈f(x), f(y)〉 = 〈x, y〉 ∀ x, y ∈ X. (1.3.26)

Proof: Since ρ(x, 0) = |x| and ρ(f(x), 0) = ρ(x, 0) we obtain

|f(x)| = |x| ∀x ∈ X. (1.3.27)

This gives (1.3.26) for the particular case y = x.

Using
ρ(f(x), f(y)) = |f(x)− f(y)| = |x− y| = ρ(x, y)

we arrive at

〈f(x)−f(y), f(x)−f(y)〉 = 〈f(x), f(x)〉−2〈f(x), f(y)〉+〈f(y), f(y)〉 = 〈x, x〉−2〈x, y〉+〈y, y〉.

Applying 〈f(x), f(x)〉 = 〈x, x〉, 〈f(y), f(y)〉 = 〈y, y〉 one obtains (1.3.26).

Let us choose an orthonormal basis e1, . . . , en. Due to the Lemma the vectors

ei′ = f(ei), i = 1, . . . , n

also form an orthonormal basis. Denote g : X → X the linear orthogonal transformation
mapping the basis e1′ , . . . , en′ to e1, . . . , en. The last step in the proof of the Theorem is in
proving that the superposition

F = g ◦ f
is an identity map. Indeed, by construction

F (ei) = ei, i = 1, . . . , n.

Applying Lemma 1.3.15 to the isometry F we derive

〈F (x), ei〉 = 〈x, ei〉, i = 1, . . . , n.

Thus the coordinates of the vector F (x) with respect to the basis e1, . . . , en coincide with
the coordinates of the vector x with respect to the same basis (see (1.2.17)). Hence F = id.
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Corollary 1.3.16 In the orthogonal coordinates in a n-dimensional Euclidean space any
isometry can be written in the form

x 7→ Ax+ b, A ∈ O(n). (1.3.28)

Conversely, any transformation of the form (1.3.28) is an isometry.

Corollary 1.3.17 All isometries of a n-dimensional Euclidean space form a group.

Because of the Corollary 1.2.12 this group depends only on the dimension of the space.
It will be denoted Iso(n).

The isometry (1.3.28) will be called orientation preserving if A ∈ SO(n).

Example 1. For n = 1 any orientation preserving isometry is a translation x 7→ x + b.
An orientation reversing isometry is a reflection with respect to a point. Indeed, such an
isometry must have the form

x 7→ −x+ b.

The point x = b/2 is fixed by the transformation. After the change of coordinates

x′ = x− b

2

one obtains the reflection with respect to the origin

x′ 7→ −x′.

Example 2. For n = 2 rotations about a fixed point and translations are examples of
orientation preserving isometries. Taking the superposition of the reflection with respect to
the axis x with a translation along the same axis

(x, y) 7→ (x+ b,−y) (1.3.29)

one obtains an orientation reversing isometry (the so-called glide reflection).

Exercise 1.3.18 Prove that any isometry on the plane is a rotation, translation, or a glide
reflection.

Example 3. In the dimension n = 3 we have 1) superpositions of rotations about an
axis with translations along this axis, x

y
z

 7→
 cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

 x
y
z

+

 0
0
b

 (1.3.30)

(screw axis symmetry);

2) rotations about an axis followed by a reflection in a plane orthogonal with respect to
this axis,  x

y
z

 7→
 cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 −1

 x
y
z

 (1.3.31)
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(sometimes called improper rotations);

3) reflection in a plane followed by a translation along this plane

(x, y, z) 7→ (x+ a, y + b,−z) (1.3.32)

(glide planes symmetry).

Exercise 1.3.19 Prove that any isometry of the three-dimensional Euclidean space is a screw
axis, an improper rotation or a glide plane symmetry.

One can also consider an infinitesimal version of the definition of isometry. Namely,
starting as above from the defining identity

〈f(y)− f(x), f(y)− f(x)〉 = 〈y − x, y − x〉

let us assume that the point y is close to x,

y = x+ ∆x.

Expanding

f(x+ ∆x)− f(x) = ∆f(x) +O
(
|∆x|2

)
∆f(x) =

∂f(x)
∂xi

∆xi

we rewrite the definition of an isometry f in the form

〈∆f(x),∆f(x)〉 = 〈∆x,∆x〉+O
(
|∆x|3

)
∀x ∈ X, ∀ vectors ∆x. (1.3.33)

Considering the last equation at the leading order approximation one arrives at the following
modified version of the definition of an isometry.

Definition 1.3.20 The smooth map

f : X → X ′

x = (x1, . . . , xn) 7→ f(x) = (y1, . . . , yn)

of two Euclidean spaces (X, 〈 , 〉) and (X ′, 〈 , 〉′) is called isometry if its differential

df(x) =
∂f(x)
∂xi

dxi

satisfies
〈df(x), df(x)〉′ = 〈dx, dx〉 (1.3.34)

or, equivalently,
n∑
i=1

(
dyi(x)

)2 =
n∑
k=1

(dxk)2 (1.3.35)

or, one more formulation,
n∑
i=1

∂yi(x)
∂xj

∂yi(x)
∂xk

= δjk j, k = 1, . . . , n (1.3.36)

for all x ∈ X.
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Observe that the last version (1.3.36) is tantamount to orthogonality of the Jacobi matrix(
∂y
∂x

)
at every point of the space.

It is easy to see that the set of isometries in the sense of new definition is closed under
superpositions. The transformations of the form (1.3.28) are still isometries in the sense of
the new definition. Conversely, let us prove that the new definition of isometry gives the
same class of transformations of the form (1.3.28). For the sake of simplicity let us assume
the map f(x) to be analytic, i.e., it can be represented as the sum of a convergent power
series that necessarily coincides with its Taylor series.

Theorem 1.3.21 Let f : X → X be an isometry of the Euclidean space (X, 〈 , 〉 to itself.
Then it has the form (1.3.28).

Proof: Taking a superposition with a shift one reduces the proof to the case f(0) = 0. Since
the matrix

A0 =
(
∂yi(0)
∂xk

)
is orthogonal, the superposition of f with the orthogonal transformation

x 7→ A−1
0 x

will be an isometry x 7→ ỹ = f̃(x) satisfying

f̃(0) = 0,
∂ỹi(0)
∂xk

= δik.

It remains to prove that f̃ is the identity map.

Omitting the tildas we arrive at the following system of equations

yi(0) = 0,
∂yi(0)
∂xk

= δik,
n∑
i=1

∂yi(x)
∂xk

∂yi

∂xl
= δkl. (1.3.37)

Differentiating the last equation in x and setting x to zero one obtains a system of equations

aijk + ajik = 0, i, j, k = 1, . . . , n (1.3.38)

where

aijk =
∂2yi(0)
∂xj∂xk

.

Since the coefficients aijk are symmetric in j and k, from (1.3.38) we obtain

aijk = −ajik = akji = −aijk.

Hence all the second derivatives at the point 0 vanish.

By induction, let us assume that all partial derivatives of the map f(x) of the orders 2,
3, . . . , m − 1 vanish at the origin. Taking partial derivatives of order (m − 1) of the last
equation in (1.3.37) one arrives at

aij1j2...jm + ajmi j2...jm = 0

aij1j2...jm =
∂myi(0)

∂xj1∂j2 . . . ∂jm
.
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As above from symmetry of partial derivatives aij1j2...jm in j1, j2, . . . , jm and antisymmetry in
i and j1 one deduce vanishing of all partial derivatives of order m. So, because of analyticity
of the map, it must be equal to identity.

1.4 Smooth curves in Euclidean space

Let (X, 〈 , 〉) be an n-dimensional Euclidean space equipped with a Euclidean inner product.
In this section we will use orthogonal coordinates x1, . . . , xn in X.

Definition 1.4.1 A smooth parametrized curve γ ∈ X is a smooth map

[a, b]→ X

[a, b] 3 t 7→ x(t) =
(
x1(t), . . . , xn(t)

)
∈ X. (1.4.1)

The vector
v(t) = ẋ(t) =

(
ẋ1(t), . . . , ẋn(t)

)
(1.4.2)

is called the velocity vector of the smooth curve at the point
(
x1(t), . . . , xn(t)

)
.

Here

ẋi(t) :=
dxi(t)
dt

, i = 1, . . . , n.

It is clear that the velocity vector is tangent to the smooth curve.

We will always assume that a < b.

Definition 1.4.2 The length s of the parametrized curve (1.4.1) is equal to the integral of
the length of the velocity vector

s =
∫ b

a
|ẋ(t)| dt. (1.4.3)

The definition can be extended to piecewise smooth curves by taking the sum of all smooth
pieces.

Example 1. A segment of a straight line between the points x0 and x1 can be written as

xi(t) = xi0 + t
(
xi1 − xi0

)
, i = 1, . . . , n, t ∈ [0, 1].

The velocity vector is constant
ẋ(t) = x1 − x0.

The length of the segment is equal to the distance between the points

s =
∫ 1

0
|x1 − x0| dt = |x1 − x0| = ρ(x0, x1).

Example 2. The circle of the radius R on the plane can be represented by the following
parametrized curve

x = R cos t
y = R sin t
t ∈ [0, 2π]

(1.4.4)
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The velocity vector
v(t) = R(− sin t, cos t)

has constant length. It is orthogonal to the radius vector of the point (x(t), y(t)). Also in
this case the length is given by the well known formula

s =
∫ 2π

0
Rdt = 2πR.

Example 3. For a graph of a smooth function on the plane

y = f(x), a ≤ x ≤ b (1.4.5)

the length is given by

s =
∫ b

a

√
1 + [f ′(x)]2 dx. (1.4.6)

It is convenient to introduce the symbol

ds2 =
(
dx1
)2 + · · ·+ (dxn)2 (1.4.7)

for the square of length element. The restriction of the quadratic differential on the curve
(1.4.1) is defined by

ds2 =
[(
ẋ1(t)

)2 + · · ·+ (ẋn(t))2
]
dt2. (1.4.8)

Thus the length of the curve is obtained by restricting the length element on the curve and
integrating it along the curve

s =
∫
γ
ds (1.4.9)

The notation (1.4.7) is convenient in computation of the length of smooth curves in
curvilinear coordinates.

Example. In the polar coordinates (1.1.23) one has

ds2 = dx2 + dy2 = (cosφdr − r sinφdφ)2 + (sinφdr + r cosφdφ)2 = dr2 + r2dφ2. (1.4.10)

In other words, the length of a smooth curve γ given in a parametric form in the polar
coordinates

r = r(t), φ = φ(t), a ≤ t ≤ b

is equal to

s =
∫
γ

√
dr2 + r2dφ2 =

∫ b

a

√
ṙ2(t) + r2(t)φ̇2(t) dt.

In a similar way in the cylindrical coordinates (1.1.25) one obtains

ds2 = dr2 + r2dφ2 + dh2. (1.4.11)

In the spherical coordinates (1.1.27) the square length element is given by the following
formula

ds2 = dr2 + r2
(
dθ2 + cos2 θ dφ2

)
. (1.4.12)
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We leave the derivation of the formulae (1.4.11), (1.4.12) as an exercise for the reader.

More generally let us derive the formula for the length element

ds2 = (dx1)2 + · · ·+ (dxn)2 (1.4.13)

in any curvilinear local coordinates

xi = xi(u), i = 1, . . . , n, u = (u1, . . . , un) ∈ D ⊂ Rn (1.4.14)

det
(
∂xi

∂uk

)
6= 0

defined by a local diffeomorphism in Rn. Define a symmetric n× n matrix with entries

gkl(u) =
n∑
i=1

∂xi

∂uk
∂xi

∂ul
, k, l = 1, . . . , n. (1.4.15)

The geometrical meaning of the functions gkl(u) is clear: they are equal to the inner products
of the vectors xuk(u) and xul(u) tangent to the axes of the curvilinear system at the point
u = (u1, . . . , un)

gkl(u) = 〈xuk(u),xul(u)〉, k, l = 1, . . . , n. (1.4.16)

Thus the matrix
G(u) = (gkl(u))1≤k, l≤n (1.4.17)

is the Gram matrix of the basis xu1(u), . . . , xun(u). Note that the basis depends on the point
u ∈ D.

Theorem 1.4.3 The Euclidean square length element (1.4.13) in the coordinates (1.4.14)
takes the form

ds2 = gkl(u)dukdul. (1.4.18)

Proof: Substituting the differentials

dxi =
∂xi

∂uk
duk

into (1.4.13) one obtains

ds2 =
n∑
i=1

(
∂xi

∂uk
duk
)(

∂xi

∂ul
dul
)

=
n∑
i=1

∂xi

∂uk
∂xi

∂ul
dukdul.

Corollary 1.4.4 The length of a smooth curve

γ : x = x(u(t)), u(t) =
(
u1(t), . . . , un(t)

)
represented in the curvilinear coordinates by smooth functions

uk = uk(t), k = 1, . . . , n, t ∈ [a, b]
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can be computed by the following formula

s =
∫
γ
ds =

∫ b

a

√
gkl(u(t))u̇k(t)u̇l(t) dt. (1.4.19)

The angle α between two smooth curves u1(t1) =
(
u1

1(t1), . . . , un1 (t1)
)

and u2(t2) =
(
u1

2(t2), . . . , un2 (t2)
)

at the intersection point u0 = u1(t01) = u2(t02) is defined from

cosα =
gkl(u0)u̇k1(t01)u̇l2(t02)√

gkl(u0)u̇k1(u0)u̇l1(u0)
√
gpq(u0)u̇p2(u0)u̇q2(u0)

. (1.4.20)

Exercise 1.4.5 Derive the following formula for the Gram matrix G = G(u) = (gkl(u))

G =
(
∂x

∂u

)T(∂x
∂u

)
. (1.4.21)

Recall that
(
∂x
∂u

)
is the Jacobi matrix of the transformation of coordinates (1.4.14).

Remark 1.4.6 Given a symmetric bilinear form g(x, y) on a n-dimensional linear space,
one can define the Gram matrix G = (gkl) of this form in a basis e1, . . . , en by

gkl = g(ek, el), k, l = 1, . . . , n. (1.4.22)

The value of the bilinear form on every pair of vectors

x = xkek, y = ylel

is given by the formula
g(x, y) = gklx

kyl. (1.4.23)

Clearly the matrix G is symmetric,
GT = G.

Conversely, given a symmetric n × n matrix G the formula (1.4.23) defines a symmetric
bilinear form. One can try to define an inner product of vectors in the linear space by

〈x, y〉 := g(x, y). (1.4.24)

Such an inner product satisfies the properties of bilinearity and symmetry. Under what condi-
tions on the matrix G the positive definiteness also holds true for the inner product (1.4.24)?
The answer is provided by the Sylvester theorem: the inner product (1.4.23), (1.4.24) is
positive definite iff all principal minors of the Gram matrix G are positive

g11 > 0, det
(
g11 g12

g21 g22

)
> 0, . . . ,detG > 0. (1.4.25)

27



Remark 1.4.7 Another natural question: given a symmetric n × n matrix of smooth func-
tions gkl(u) satisfying the Sylvester conditions (1.4.25) for any point u = (u1, . . . , un), does
there exist a transformation

xi = xi(u), i = 1, . . . , n, det
(
∂x

∂u

)
6= 0

to Euclidean coordinates, i.e., such that

gkl(u)dukdul =
n∑
i=1

(
dxi(u)

)2 ?

The answer, in general, is negative. We will see below that the obstacle to local existence of
Euclidean coordinates can be described in the framework of the theory of curvature.

Let us return to the properties of the length of curves. Our first statement is independence
of the length of a smooth curve from the parametrization.

Theorem 1.4.8 Let t = t(t̃) be a smooth function defined on the segment [ã, b̃] satisfying

t(ã) = a, t(b̃) = b

dt

dt̃
> 0. (1.4.26)

Then the lengths of the curves (1.4.1) and

[ã, b̃]→ X

[ã, b̃] 3 t̃ 7→ x
(
t(t̃)
)

=
(
x1
(
t(t̃)
)
, . . . , xn

(
t(t̃)
))

(1.4.27)

coincide.

Proof: The velocity vectors of the curves (1.4.1) and (1.4.27) are proportional at every point:

dx
(
t(t̃)
)

dt̃
=
dx(t)
dt

dt

dt̃
.

Thus ∫ b̃

ã

∣∣∣∣∣dx
(
t(t̃)
)

dt̃

∣∣∣∣∣ dt̃ =
∫ b̃

ã

∣∣∣∣dx(t)
dt

∣∣∣∣ dtdt̃ dt̃ =
∫ b

a

∣∣∣∣dx(t)
dt

∣∣∣∣ dt.

One can also define the angle between two smooth curves

x1(t1) =
(
x1

1(t1), . . . xn1 (t1)
)
, x2(t2) =

(
x1

2(t2), . . . xn2 (t2)
)

x1

(
t01
)

= x2

(
t02
)

=: x0

at the intersection point x0 as the angle α between their tangent vectors at this point

v0
1 =

dx1(t1)
dt1

∣∣∣t1=t01
, v0

2 =
dx2(t2)
dt2

∣∣∣t2=t02

cosα =
〈v0

1, v
0
2〉

|v0
1| |v0

2|
. (1.4.28)
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Exercise 1.4.9 Prove that the polar coordinate lines γr : {φ = φ0} and γφ : {r = r0} on
the plane for arbitrary r0 > 0, φ0 are orthogonal at every intersection point. In a similar way
prove that the coordinate lines in the cylindrical

γr :
φ = φ0

h = h0

}
, γφ :

h = h0

r = r0

}
, γh :

r = r0

φ = φ0

}
and spherical

γr :
φ = φ0

θ = θ0

}
, γφ :

θ = θ0

r = r0

}
, γθ :

r = r0

φ = φ0

}
coordinates in R3 are pairwise orthogonal at every intersection point.

The smooth curve (1.4.1) is called regular if the velocity vector ẋ(t) does not vanish at
any point of the curve. On a regular non self-intersecting curve it is convenient to use the
length along the curve as a parameter:

s(t) =
∫ t

a
|ẋ(t′)| dt′. (1.4.29)

The condition (1.4.26) is satisfied since

ds

dt
= |ẋ(t)| > 0.

Lemma 1.4.10 Modulus of the velocity vector v(s) = dx(s)
ds of a curve parametrized by the

length is identically equal to one: ∣∣∣∣dx(s)
ds

∣∣∣∣ = 1. (1.4.30)

Proof: Differentiating in s the equation

s =
∫ s

a

∣∣∣∣dx(s′)
ds′

∣∣∣∣ ds′
one obtains

1 =
∣∣∣∣dx(s)
ds

∣∣∣∣ .
Lemma 1.4.11 Let x(s) be a smooth curve parametrized by the length. Then the acceleration
vector d2x/ds2 is orthogonal to the velocity vector dx/ds.

Proof: Using (1.4.30) we obtain

0 =
d

ds

〈
dx

ds
,
dx

ds

〉
= 2

〈
d2x

ds2
,
dx

ds

〉
.

Hence
ẍ(s) ⊥ ẋ(s).
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Definition 1.4.12 The modulus

k(s) =
∣∣d2x(s)/ds2

∣∣ (1.4.31)

of the acceleration vector of a smooth curve parametrized by the length is called the curvature
of the curve. The vector

n(s) =
1
k(s)

d2x(s)
ds2

(1.4.32)

defined at the points with nonvanishing curvature is called the principal normal to the curve.

Example. The curvature of a straight line is equal to 0. It is easy to prove that, vice
versa, the smooth curves with identically vanishing curvature are straight lines. Indeed, if
the curvature vanishes then

d2x(s)
ds2

= 0 ⇒ x(s) = x0 + v0s

with a constant vector v0.

To compute the curvature of a circle of the radius R let us parametrize it by the length:

x(s) = R cos
s

R

y(s) = R sin
s

R

0 ≤ s ≤ 2πR. The velocity vector

v(s) =
(
− sin

s

R
, cos

s

R

)
has the modulus 1, as it should be. The acceleration vector is(

d2x

ds2
,
d2y

ds2

)
= − 1

R

(
cos

s

R
, sin

s

R

)
.

So the curvature of the circle is constant and it is equal to

k =
1
R
.

The principal normal is the unit vector

n(s) = −
(

cos
s

R
, sin

s

R

)
opposite to the radius vector of the point.

Let us consider in more details the plane case. Let

r(s) = (x(s), y(s)) , s ∈ [0, s0] (1.4.33)

be a smooth curve on the plane parametrized by the length with never vanishing curvature.

30



Exercise 1.4.13 For a point r(s0) = (x(s0), y(s0)) of the smooth curve (1.4.33) consider the
point O(s0) on the principal normal in the direction of the latter such that

ρ (r(s0), O(s0)) = R(s0), R(s0) =
1

k(s0)
.

Prove that the distance between the points of the circle with the centre at O(s0) and radius
R(s0) and the points of the curve tends to zero as O

(
|s− s0|3

)
as s→ s0.

Hint: assume, without loss of generality, that s0 = 0. Choose coordinate system in such
a way that r(0) = 0, v(0) = (1, 0), n(0) = (0, 1). Derive the following Taylor expansion for
the radius vector r(s) for s→ 0

r(s) =
(
s,

1
2
k s2

)
+O

(
s3
)
, k = k(0).

For small |s| compute the distance between points of this curve and points of the circle

x =
1
k

sin ks

y =
1
k
− 1
k

cos ks.

The radius R(s0) is called the radius of curvature of the curve at the point r(s0) while
the point O(s0) is the centre of curvature.

At every point of the curve one has an orthonormal basis

(v(s), n(s)) . (1.4.34)

The dependence of this basis on the point of the curve is described by

Theorem 1.4.14 (Frenet–Serret formulae on the plane) The co-moving frame (1.4.33) de-
pendence on s is given by the following equations

d

ds
v(s) = k(s)n(s)

(1.4.35)
d

ds
n(s) = −k(s) v(s).

Proof: Denote φ(s) the angle between the vector v(0) and φ(s). The frame (v(s), n(s)) is
obtained from (v(0), n(0)) by a rotation by the angle φ(s):

(v(s), n(s)) = (v(0), n(0))
(

cosφ(s) − sinφ(s)
sinφ(s) cosφ(s)

)
. (1.4.36)

Denote

G(s) =
(

cosφ(s) − sinφ(s)
sinφ(s) cosφ(s)

)
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the matrix of the rotation (1.4.36). We have

d

ds
(v(s), n(s)) = (v(0), n(0))

dG(s)
ds

= (v(s), n(s))G−1(s)
dG(s)
ds

. (1.4.37)

The following statement is crucial in completing the proof (it will also used in sequel).

Lemma 1.4.15 Let G(s) ∈ O(n) be an orthogonal matrix smoothly depending on the param-
eter s. Then the matrix

A(s) = G−1(s)
dG(s)
ds

(1.4.38)

is antisymmetric for any s.

Proof: Differentiating the identity G(s)GT(s) = 1 in s one obtains

dG(s)
ds

GT(s) +G(s)
dGT(s)
ds

= 0.

Multiplying this equation by G−1(s) on the left and by
(
GT(s)

)−1 on the right one obtains

G−1(s)
dG(s)
ds

+
dGT(s)
ds

(
GT(s)

)−1
= 0.

Using
dGT

ds
=
(
dG

ds

)T

,
(
GT
)−1

=
(
G−1

)T
along with the general property of the matrix transposition of a product

(AB)T = BTAT

one obtains
A(s) +AT(s) = 0.

From the Lemma and (1.4.37) we conclude that

d

ds
(v(s), n(s)) = (v(s), n(s))

(
0 −a(s)
a(s) 0

)
.

A comparison with the definition of the principal normal yields

a(s) = k(s).

This completes the proof of the Frenet–Serret formula.

The curvature of a regular smooth curve for the obvious reasons is invariant with respect
to isometries of the ambient space. The following result shows that this is a complete invariant
for the case n = 2.
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Theorem 1.4.16 Let

r1(s) = (x1(s), y1(s)) and r2(s) = (x2(s), y2(s)) , s ∈ [0, s0]

be two smooth curves on the plane parametrized by their lengths such that their curvatures
k1(s) and k2(s) coincide for any s ∈ [0, s0] and do not vanish. Then there exists an isometry
f : R2 → R2 mapping one curve onto the other.

Proof: Denote (v1(s), n1(s)) and (v2(s), n2(s)) respectively the velocity vectors and the
principal normal vectors of the two curves. Applying a suitable isometry one may assume
that

r2(0) = r1(0), v2(0) = v1(0), n2(0) = n1(0).

Let us prove that, after such a choice the curves will coincide.

Due to equality k2(s) = k1(s) =: k(s) the vector valued functions v1,2(s) and n1,2(s)
satisfy the same system of Frenet–Serret linear differential equations

d

ds
v1,2(s) = k(s)n1,2(s)

d

ds
n1,2(s) = −k(s) v1,2(s)

with the same initial data v1,2(0), n1,2(0). Due to uniqueness theorem from the theory of
ODEs one has

v2(s) = v1(s), n2(s) = n1(s) ∀ s ∈ [0, s0].

The last observation to be used says that the curve r(s) can be uniquely reconstructed from
its velocity vector v(s) and the initial point r(0) by a quadrature

r(s) = r(0) +
∫ s

0
v(s′) ds′.

Exercise 1.4.17 Prove that for any smooth nonvanishing function k(s), s ∈ [0, s0] there
exists a smooth curve r(s) parametrized by the length with the curvature k(s).

Hint: use that solutions to a system of linear differential equations with coefficients smooth
on an interval [a, b] exist on the entire interval.

In the three-dimensional case one can associate a co-moving frame (v(s), n(s), b(s)) with
a smooth curve

r(s) = (x(s), y(s), z(s))

parametrized by the length with a nonvanishing curvature k(s) by adding the vector of
binormal

b(s) = v(s)× n(s) (1.4.39)

obtained as the cross-product of the velocity vector v(s) and the principal normal vector
n(s). The dependence of this frame on the length of the curve is given by the following
Frenet–Serret formulae

d

ds
(v(s), n(s), b(s)) = (v(s), n(s), b(s))

 0 −k(s) 0
k(s) 0 −κ(s)

0 κ(s) 0

 . (1.4.40)
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Here κ(s) is another invariant of the curve called torsion. It can be defined as the coefficient
of proportionality between the vectors db/ds and n(s) taken with the opposite sign. As
above one can prove that a pair of functions (k(s) > 0, κ(s)) determines uniquely the class of
equivalence of a space curve up to isometries. We leave the proofs of all these statements as
an exercise for the reader.

Frenet–Serret frame of a space curve.

Exercise 1.4.18 Prove that the space curve with nonvanishing curvature belongs to a plane
iff the torsion is identically equal to zero.

Exercise 1.4.19 Compute the curvature and the torsion of the right-handed

x = r cos t
y = r sin t
z = h t

and the left-handed helix

x = r cos t
y = −r sin t
z = h t

(here r, h > 0). Verify that the torsion is positive in the first case but negative in the second
one.

Exercise 1.4.20 Prove that space curves with constant curvature k > 0 and torsion κ 6= 0
are helices.

Exercise 1.4.21 Let the initial point of a space curve be at the origin and the vectors of
the co-moving frame at the initial point coincide with the unit vectors of the axes x, y and z
respectively. Derive the following Taylor expansion of the curve for small values of the length

r(s) =
(
s− 1

6
k2s3,

1
2
k s2 +

1
6
k′s3,

1
6
k κ s3

)
+O

(
s4
)

where k = k(0), k′ = dk(0)
ds , κ = κ(0). Use this formula to deriving an interpretation of the

sign of torsion for a general smooth curve.
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1.5 Areas and volumes

Let Ω ⊂ Rn be a closed bounded domain in a n-dimensional Euclidean space with orthogonal
coordinates (x1, . . . , xn). Recall that the volume of the domain is defined as the value of
multiple integral

Vol(Ω) =
∫
· · ·
∫

Ω
dx1 . . . dxn (1.5.1)

provided that the integral in question exists. For the particular case n = 2 one uses the name
‘area’ for the integral (1.5.1); it will also be denoted A(Ω). For the even simpler case n = 1
the “volume” of the domain Ω = [a, b] coincides with the length of the segment.

Let us now derive the formula for the volume in curvilinear coordinates (1.4.14). Recall
that the Euclidean length element in the curvilinear coordinates takes the form

ds2 = gkl(u)dukdul

where the symmetric matrix G = (gkl(u)) defined by the formula (1.4.15).

Theorem 1.5.1 The volume of the domain

Ω = {x = x(u) |u ∈ D ⊂ Rn}

is given by the formula

Vol(Ω) =
∫
· · ·
∫
D

√
det(gkl(u)) du1 . . . dun. (1.5.2)

Proof: Doing change of variables in the multiple integral (1.5.1) one arrives at the expression

Vol(Ω) =
∫
· · ·
∫
D

∣∣∣∣det
(
∂x

∂u

)∣∣∣∣ du1 . . . dun.

Thus the proof of the Theorem will follow from

Lemma 1.5.2 The determinant of of the Gram matrix G = (gkl(u)) is equal to the square
of the Jacobian of the transformation of the coordinates (1.4.14)

det(gkl(u)) =
[
det
(
∂x

∂u

)]2

. (1.5.3)

Proof: From the Exercise 1.4.5 it follows that

det(gkl(u)) = det

[(
∂x

∂u

)T(∂x
∂u

)]
.

Replacing the determinant of the product of matrices by the product of determinants and
using that

det
(
∂x

∂u

)T

= det
(
∂x

∂u

)
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one arrives at the formula (1.5.3).

The expression
dV =

√
det(gkl(u)) du1 . . . dun (1.5.4)

is often called the volume element (the area element dA for n = 2) in the curvilinear coordi-
nates.

Example 1. In the polar coordinates on the plane the square length element is given by

ds2 = dr2 + r2dφ2.

The Gram matrix is diagonal

G =
(

1 0
0 r2

)
.

Hence the area element in the polar coordinates reads

dA = r dr dφ.

In the particular case of a circle of radius R

D = {(r, φ) | 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π}

one obtains the well known formula

A =
∫ R

0

∫ 2π

0
r dr dφ = πR2.

Example 2. The expression

ds2 = dr2 + r2(dθ2 + cos2 θ dφ2)

for the square length in the spherical coordinates yields the following formula for the volume
element

dV = r2 cos θ dr dφ dθ.

For the particular case of a ball of radius R

D =
{

(t, φ, θ) | 0 ≤ R, 0 ≤ φ ≤ 2π, − π

2
≤ θ ≤ π

2

}
one easily arrives at the formula

V =
∫ R

0

∫ 2π

0

∫ π
2

−π
2

r2 cos θ dr dφ dθ =
4
3
πR3.
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1.6 Geometry of surfaces

We will proceed with studying two-dimensional surfaces in the three-dimensional Euclidean
space. This seemingly very particular case already possesses many features stimulating de-
velopment of general notions of differential geometry.

Let (x, y, z) be a system of Euclidean coordinates in the three-dimensional Euclidean
space. A smooth parametrized surface is defined by a smooth map of a domain D on the
plane to the three dimensional Euclidean space. In coordinates it is represented by three
smooth functions of two variables

x = x(u, v)
y = y(u, v)
z = z(u, v)

 , (u, v) ∈ D ⊂ R2. (1.6.1)

The notation
r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 (1.6.2)

for the radius vector of points of the surface will also be used.

The image of the map (1.6.1) is a set of points S ⊂ R3. It will also be often called a
surface if the choice of a parametrization has been made. We will assume the surface S to
be non self-intersecting, i.e.,

r(u1, v1) 6= r(u2, v2) for (u2, v2) 6= (u1, v1).

Under this assumption one can use the parameters (u, v) as local coordinates on the surface.

Fixing v = v0 one obtains a curve r(u, v0) on the surface. In a similar way, fixing u = u0

one obtain another curve r(u0, v) on the surface. The velocity vectors of these curves

ru =
∂r(u, v)
∂u

, rv =
∂r(u, v)
∂v

(1.6.3)

are tangent to the surface.

Definition 1.6.1 The surface (1.6.1) is called regular if the vectors ru, rv are linearly inde-
pendent at every point of the surface.

Example 1. With the help of cylindrical coordinates (1.1.25) one obtains a parametric
representation r = r(φ, h) of the cylinder of radius R having Oz as the axis:

x = R cosφ
y = R sinφ
z = h

 . (1.6.4)

The tangent vectors
rφ = (−R sinφ,R cosφ, 0) , rh = (0, 0, 1)

are linearly independent at every point of the surface. The domain D ⊂ R2 can be chosen as
follows:

D = {(φ, h) ∈ R2 | 0 < φ < 2π, −∞ < h <∞}.
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The image of the domain D covers the surface of the cylinder except for the line

x = R, y = 0, −∞ < z <∞.

Example 2. One can use spherical coordinates (1.1.27) for parametrization r = r(φ, θ)
of the sphere of radius R centered at the origin:

x = R cosφ cos θ
y = R sinφ cos θ
z = R sin θ

 . (1.6.5)

The tangent vectors

rφ = R cos θ (− sinφ, cosφ, 0) , rθ = R (− cosφ sin θ,− sinφ sin θ, cos θ)

are independent outside the poles θ = ±π
2 . However, at the poles the vector rφ becomes

equal to zero. The coordinates (φ, θ) belong to the domain

D =
{

(φ, θ) ∈ R2 | 0 < φ < 2π, − π

2
< θ <

π

2

}
.

The image of the domain D covers the part of the surface of the sphere away from the arc of
the φ = 0 meridian

{x = R cos θ, y = 0, z = R sin θ}, −π
2
≤ θ ≤ π

2
.

Remark 1.6.2 We want to emphasize that the violation of the regularity property may take
place due to a bad parametrization rather than to the shape of the surface. For example, the
shape of the sphere near the poles looks as good as at any other point of it. Indeed, choosing a
different parametrization one can obtain a regular surface structure also near the poles. We
will return below to the problem of reparametrizations on two-dimensional surfaces.

Example 3. For a graph of a smooth function of two variables

z = f(x, y) (1.6.6)

one can use x and y as the parameters:

r = (x, y, f(x, y)) .

The tangent vectors of the form (1.6.3) read

rx = (1, 0, fx(x, y)) , ry = (0, 1, fy(x, y)) . (1.6.7)

These vectors are linearly independent. So the graph (1.6.6) is always a regular surface.

Exercise 1.6.3 Prove that any regular surface in R3 can be locally represented as a graph
z = f(x, y), y = g(x, z), or x = h(y, z) for some smooth functions f , g, or h.
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Hint: represent the regularity condition in the form

rk

 ∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v
∂z/∂u ∂z/∂v

 = 2. (1.6.8)

Apply the implicit function theorem to arrive at the needed representation of the surface.

It is sometimes convenient to define surfaces in R3 by a single equation

F (x, y, z) = 0 (1.6.9)

for a smooth function of three variables F . The condition of regularity in this case can be
formulated as follows.

Definition 1.6.4 The surface (1.6.9) is called regular if the gradient

gradF (x, y, z) = (Fx, Fy, Fz) (1.6.10)

never vanishes at any point of the surface.

The relation of this definition to the previous one is established by

Lemma 1.6.5 Let (x0, y0, z0) be a point of the surface (1.6.9) such that

Fz(x0, y0, z0) 6= 0.

Then there exists a unique smooth function f(x, y) defined for sufficiently small

(x− x0)2 + (y − y0)2

such that f(x0, y0) = z0 and, moreover, any solution to the equation (1.6.9) in a small
neighborhood of the point (x0, y0, z0) has the form

(x, y, z = f(x, y)) .

In other words, near the points where the third component of gradF does not vanish one
can represent the surface as a graph of a function z = f(x, y). Similarly, near point where
the first or second component of the gradient does not vanish one can represent the surface
as a graph of a function x = g(y, z) or y = h(x, z) respectively.

The proof readily follows from the Implicit Function Theorem applied to the equation
(1.6.9).

Examples. An affine hyperplane

ax+ by + cz + d = 0, a2 + b2 + c2 6= 0

is a regular surface. For c 6= 0 it is a graph of a linear function

z = z(x, y) = −1
c

(ax+ by + d).

39



Similar representations x = x(y, z) or y = y(x, z) can be used under the assumptions a 6= 0
or b 6= 0 respectively. The ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1,

the hyperboloids
x2

a2
+
y2

b2
− z2

c2
= ±1

are all regular surfaces. For the ‘minus’ sign the hyperboloid consists of two pieces each of
them can be written as a graph of a smooth function

z = ±c
√
x2

a2
+
y2

b2
+ 1.

For the ‘plus’ sign only local coordinates exist. The cone

x2

a2
+
y2

b2
− z2

c2
= 0

fails to meet the regularity condition at the origin (the latter belongs to the cone but not to
the hyperboloids!). Indeed, the gradient 2

(
x
a2 ,

y
b2
,− z

c2

)
vanishes at the origin.

The image of a plane smooth curve

(u = u(t), v = v(t)) ∈ D ⊂ R2, t ∈ [a, b] (1.6.11)

with respect to the map (1.6.1) gives a smooth curve on the surface

r(t) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) ∈ R3 (1.6.12)

Lemma 1.6.6 Let the surface (1.6.1) be regular. The space curve (1.6.12) is regular iff the
plane curve (1.6.11) is so.

Proof: The velocity vector of the space curve (1.6.12) is equal to

ṙ(t) = ru u̇(t) + rv v̇(t). (1.6.13)

Because of linear independence of the vectors ru, rv vanishing of this vector is equivalent to

u̇(t) = v̇(t) = 0.

This contradicts regularity of the plane curve (1.6.11).

The plane
T(u,v) = {α ru(u, v) + β rv(u, v) |α, β ∈ R} (1.6.14)

spanned by the tangent vectors ru(u, v), rv(u, v) is called the tangent plane to the surface
(1.6.1) at the point (u, v). According to (1.6.13) the tangent vectors of all smooth curves on
the surface passing through the point r(u, v) belong to this plane. Moreover, any vector in
the plane (1.6.14) is a tangent vector to some smooth curve on the surface.
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Example. Consider the graph of a smooth function z = f(x, y) with the natural
parametrization u = x, v = y (see above). The plane tangent to the surface at the point
(x0, y0, z0 = f(x0, y0) consists of all vectors (x−x0, y−y0, z−z0) passing through the tangency
point and represented in the form

(x− x0, y − y0, z − z0) = α (1, 0, fx(x0, y0)) + β (0, 1, fy(x0, y0)), α, β ∈ R.

Eliminating the parameters α = x− x0, β = y − y0 one obtains the equation of the tangent
plane to the graph known from the course of multivariable calculus

z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Exercise 1.6.7 Prove that the tangent plane to the regular surface defined by equation F (x, y, z) =
0 at the point (x0, y0, z0) consists of all vectors passing through the tangency point and or-
thogonal to the vector gradF (x0, y0, z0):

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

Our strategy is to describe the geometric properties of the parametrized surface (1.6.1)
in terms of certain structures to be defined on the domain of definition of the parameters
(u, v) ∈ D ⊂ R2. The first step in this direction is given by the Lemma 1.6.6: regular smooth
curves on the surface are represented by regular smooth curves of the form (u(t), v(t)) on
the plane. The velocity vectors (1.6.13) of these curves are uniquely determined by their
coordinates u̇(t), v̇(t). Let us now obtain a similar description for the length of these curves
as well as for the angle between curves on the surface.

Lemma 1.6.8 Denote

E = E(u, v) = 〈ru(u, v), ru(u, v)〉
F = F (u, v) = 〈ru(u, v), rv(u, v)〉 (1.6.15)
G = G(u, v) = 〈rv(u, v), rv(u, v)〉.

Then the length of the velocity vector of the curve (1.6.12) on the surface is given by

|ṙ(t)|2 = E (u(t), v(t)) (u̇(t))2 + 2F (u(t), v(t)) u̇(t)v̇(t) +G (u(t), v(t)) (v̇(t))2 . (1.6.16)

The angle α between two smooth curves on the surface

(u1(t1), v1(t1)) and (u2(t2), v2(t2))

at the common point

(u0, v0) =
(
u1(t01), v1(t01)

)
=
(
u2(t02), v2(t02)

)
(1.6.17)

can be defined from

cosα =
E0u̇0

1u̇
0
2 + F 0

(
u̇0

1v̇
0
2 + v̇0

1u̇
0
2

)
+G0v̇0

1v
0
2√

E0(u̇0
1)2 + 2F 0u̇0

1v̇
0
1 +G0(v̇0

1)2
√
E0(u̇0

2)2 + 2F 0u̇0
2v̇

0
2 +G0(v̇0

2)2
(1.6.18)

where
E0 = E(u0, v0), F 0 = F (u0, v0), G0 = G(u0, v0),

(u̇0
1, v̇

0
1) =

d

dt1
(u1(t1), v1(t1))t1=t01

, (u̇0
2, v̇

0
2) =

d

dt2
(u2(t2), v2(t2))t2=t02

.
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Proof: Computing the square length of the vector (1.6.13) one obtains

〈ṙ(t), ṙ(t)〉 = 〈ruu̇+ rvv̇, ruu̇+ rvv̇〉 = 〈ru, ru〉u̇2 + 2〈ru, rv〉u̇v̇ + 〈rv, rv〉v̇2.

This gives the formula (1.6.16). The formula for the angle between the curves can be proved
in a similar way.

The formulae of the Lemma can be represented in the following way. Consider the square
length element in the ambient Euclidean space

ds2 = dx2 + dy2 + dz2.

Let us restrict the quadratic form onto the tangent plane to the surface. Substituting

dx =
∂x

∂u
du+

∂x

∂v
dv

dy =
∂y

∂u
du+

∂y

∂v
dv (1.6.19)

dz =
∂z

∂u
du+

∂z

∂v
dv

the differentials of the functions x = x(u, v), y = y(u, v), z = z(u, v) one obtains

ds2 = E(u, v)du2 + 2F (u, v)du dv +G(u, v)dv2 (1.6.20)

where the coefficients E, F , G are defined by the formulae (1.6.15).

Definition 1.6.9 The quadratic form (1.6.20) is called the first fundamental form or the
induced metric of the parametrized surface (1.6.1).

The metric properties of the surface (1.6.1) can be modeled on the plain domain D
assuming that the inner products of vectors at the point (u, v) ∈ D have to be computed
with the help of the first fundamental form:

〈eu, eu〉|(u,v) = E(u, v), 〈eu, ev〉|(u,v) = F (u, v), 〈ev, ev〉|(u,v) = G(u, v). (1.6.21)

Here eu = (1, 0), ev = (0, 1) are the unit vectors of the u- and v-axes on the plane.

Exercise 1.6.10 Prove that the determinant of the Gram matrix(
E F
F G

)
(1.6.22)

of the quadratic form (1.6.21) is positive:

EG− F 2 > 0. (1.6.23)

From the above considerations one obtains a formula for computation of the length of a
curve (u(t), v(t)) on a surface in terms of the first fundamental form of the surface.
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Corollary 1.6.11 The length of the curve γ : {(u(t), v(t)), t ∈ [a, b]} on the surface (1.6.1)
is given by the formula

s =
∫
γ

√
E du2 + 2F du dv +Gdv2 (1.6.24)

=
∫ b

a

√
E(u(t), v(t))(u̇(t))2 + 2F (u(t), v(t))u̇(t)v̇(t) +G(u(t), v(t))(v̇(t))2 dt.

Example 1. The first fundamental form of the cylinder (1.6.4) of radius R in the coor-
dinates (φ, h) is given by

ds2 = R2dφ2 + dh2. (1.6.25)

For the sphere (1.6.5) in the coordinates (φ, θ) one obtains

ds2 = R2(dθ2 + cos2 θ dφ2). (1.6.26)

Example 2. The first fundamental form of the graph of a smooth function z = f(x, y)
reads

ds2 = (1 + f2
x)dx2 + 2fxfy dx dy + (1 + f2

y )dy2. (1.6.27)

Example 3. Let us compute the first fundamental form of the regular surface F (x, y, z) =
0 at the points where the last component of the gradient does not vanish:

Fz(x, y, z) 6= 0.

We will use u = x, v = y as local coordinates on the surface near such a point. On the surface
one has

dF (x, y, z) = Fx dx+ Fy dy + Fz dz = 0,

so

dz = −
(
Fx
Fz
dx+

Fy
Fz
dy

)
.

Substituting this differential into the square length formula one obtains the expression for
the first fundamental form

ds2 = dx2 + dy2 + dz2 =
(

1 +
F 2
x

F 2
z

)
dx2 + 2

FxFy
F 2
z

dx dy +

(
1 +

F 2
y

F 2
z

)
dy2,

that is,

E = 1 +
F 2
x

F 2
z

, F =
FxFy
F 2
z

, G = 1 +
F 2
y

F 2
z

.

One can also define the area of a domain on the surface.

Definition 1.6.12 The area of a domain SΩ ⊂ S,

SΩ = {r(u, v) | (u, v) ∈ Ω ⊂ D ∈ R2}

of the parametrized surface (1.6.1) is defined by

A (SΩ) =
∫∫

Ω

√
EG− F 2 du dv. (1.6.28)
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Recall that the determinant EG−F 2 of the Gram matrix (1.6.22) is always positive (see
Exercise 1.6.10 above).

Example 1. Using the formulae (1.6.27) for the coefficients of the first fundamental form
of the graph z = f(x, y) of a smooth function

E = 1 + f2
x , F = fxfy, G = 1 + f2

y

one obtains
EG− F 2 = 1 + f2

x + f2
y . (1.6.29)

Thus the definition (1.6.28) reduces to the formula for the area of the graph of a smooth
function f(x, y) defined on the domain Ω in the plain

A (SΩ) =
∫∫

Ω

√
1 + f2

x + f2
y dx dy (1.6.30)

known from the multivariable calculus.

Exercise 1.6.13 Prove that the area element on a two-dimensional surface r(u, v) can be
written in the form

dA = |ru × rv| du dv. (1.6.31)

Example 2. Consider the domain

θ0 < θ <
π

2
, 0 ≤ φ ≤ 2π (1.6.32)

around the north pole of the sphere of radius R. The domain can be considered as an analogue
of a circle from the point of view of spherical geometry (we will explain later why this set
should be called a circle). Let us first calculate the radius ρ of the circle, i.e., the length of
the segment of a meridian

θ0 ≤ θ ≤
π

2
, φ = φ0. (1.6.33)

This length has to be computed by integrating the length element

ds =
√
R2(dθ2 + cos2 θ dφ2)

along the curve (1.6.33). One arrives at the integral

ρ =
∫ π

2

θ0

Rdθ = R
(π

2
− θ0

)
.

Let us now compute the area3 of the circle. Since

E = R2, F = 0, G = R2 cos2 θ, ⇒ EG− F 2 = R4 cos2 θ

3Strictly speaking we have to remove the north pole from the domain of integration since it is not a regular
point for the chosen parametrization of the sphere by the coordinates (φ, θ). However, such a removal will not
affect the value of the double integral.
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the area of the circle is given by the integral

A =
∫ 2π

0

∫ π
2

θ0

R2 cos θ dφ dθ = 2πR2(1− sin θ0).

Using the expression for the radius ρ one can rewrite the formula for the area of the circle of
the radius ρ as follows

A = 2πR2
(

1− cos
ρ

R

)
. (1.6.34)

In particular, for θ0 = −π
2 the well known formula

A = 4πR2

for the area of the entire sphere readily follows from (1.6.34). For small radius (i.e., small
π
2 − θ0) one can expand the area A = A(ρ) in the Taylor series using

cosx = 1− x2

2
+
x4

24
+O

(
x6
)

to arrive at the approximate expression

A(ρ) = πρ2 − π

12R2
ρ4 +O

(
ρ6
)
. (1.6.35)

We see that the area of a sufficiently small circle of radius ρ on the sphere is smaller than the
area of the circle of the same radius on the Euclidean plane. We will return to the formula
(1.6.35) later in the discussion of curvature of surfaces.

Exercise 1.6.14 Prove inequality
A(ρ) ≤ πρ2

for all values of the radius 0 ≤ ρ ≤ πR.

The previous considerations can be applied with no serious modifications to the case of k-
dimensional surfaces in the n-dimensional Euclidean space. Their parametric representation
is given by n smooth functions of k variables

xi = xi(u1, . . . , uk), i = 1, . . . , n, (u1, . . . , un) ∈ D ⊂ Rk. (1.6.36)

We will also use the short notation

x(u) =
(
x1(u), . . . , xn(u)

)
, u = (u1, . . . , uk) (1.6.37)

for the radius vector of the points of the surface. As above we impose the topological condition
saying that locally, in a sufficiently small ball in Rn the representation (1.6.36) of points of
the surface is unique. The surface is called regular if the tangent vectors

xu1(u), . . . ,xuk(u) (1.6.38)

are linearly independent at every point of the surface, i.e., the rank of the n×k Jacobi matrix
of the functions (1.6.36) is equal to k:

rk

 ∂x1

∂u1 . . . ∂x1

∂uk

. . . . . . . . .
∂xn

∂u1 . . . ∂xn

∂uk

 = k. (1.6.39)
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Clearly the regularity implies k ≤ n; only the case k < n is of interest since for k = n the
map (1.6.36) gives just new local coordinates in Rn. The k-dimensional space spanned by
the vectors (1.6.38) is called the tangent space to the surface at the point x(u). The velocity
vector of the smooth curve

u(t) =
(
u1(t), . . . , uk(t)

)
, t ∈ [a, b] (1.6.40)

on the surface is equal to
ẋ(t) = u̇αxuα(u(t)). (1.6.41)

Here and in sequel we will use Greek indices for the coordinates on the surface. The summa-
tion over the Greek indices from 1 to k=dimension of the surface will be assumed.

The restriction of the Euclidean square length to the surface

ds2 = (dx1(u))2 + · · ·+ (dxn(u))2 = gαβ(u)duαduβ

(1.6.42)

gαβ(u) = 〈xuα(u),xuβ (u)〉 =
n∑
i=1

∂xi(u)
∂uα

∂xi(u)
∂uβ

, α, β = 1, . . . , k

is called the first fundamental form or the induced metric on the surface. Knowledge of the
induced metric allows one to calculate the lengths of curves on the surface and angles between
tangent vectors at any point of the surface. Namely, in order to compute the inner product
of two tangent vectors at the same point u = (u1, . . . , uk) of the surface

u̇α1 xuα(u) and u̇α2 xuα(u)

represented by their coordinates u̇1 = (u̇1
1, . . . , u̇

k
1) and u̇2 = (u̇1

2, . . . , u̇
k
2) in the basis (1.6.38)

of the tangent space one has to use the matrix of the first fundamental form as the Gram
matrix of the inner product:

〈u̇1, u̇2〉|u = gαβ(u)u̇α1 u̇
β
2 . (1.6.43)

In particular the length of a curve

γ : {uα = uα(t), α = 1, . . . , k, t ∈ [a, b]}

on the surface is given by the integral∫
γ
ds =

∫ b

a

√
gαβ(u(t))u̇αu̇β dt. (1.6.44)

The k-dimensional volume of a domain

SΩ : {x(u) |u ∈ Ω ⊂ D ⊂ Rk}

can be defined by a multiple integral

Vol (SΩ) =
∫
· · ·
∫

Ω

√
det gαβ(u) du1 . . . duk. (1.6.45)

Exercise 1.6.15 Prove that for k = 1 the formula (1.6.45) gives the old expression (1.4.3)
for the length of the curve x = x(u), u ∈ D = (a, b).
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So far all the definitions of lengths, angles, areas have been given for surfaces with e
given parametrization. We have now to verify independence of these definitions on the choice
of parametrization. Let us first do it for two-dimensional surfaces in the three-dimensional
Euclidean space.

Let a diffeomorphism

D′ → D

(u′, v′) 7→ (u = u(u′, v′), v = v(u′, v′)) (1.6.46)

be given. It provides the surface (1.6.1) with a new parametrization

r = r
(
u(u′, v′), v(u′, v′)

)
, (u′, v′) ∈ D′ ⊂ R2. (1.6.47)

Lemma 1.6.16 If the surface (1.6.1) is regular then the surface (1.6.47) is so, and vice
versa.

Proof: Using chain rule one obtains

ru′ =
∂u

∂u′
ru +

∂v

∂u′
rv

(1.6.48)

rv′ =
∂u

∂v′
ru +

∂v

∂v′
rv

or, in matrix form,

(ru′ , rv′) = (ru, rv)
(
∂u/∂u′ ∂u/∂v′

∂v/∂u′ ∂v/∂v′

)
. (1.6.49)

Since the Jacobi matrix

J =
(
∂u/∂u′ ∂u/∂v′

∂v/∂u′ ∂v/∂v′

)
(1.6.50)

does not degenerate, the transformation (1.6.49) maps a basis (ru, rv) in the tangent space
to the surface into another basis in the same tangent space.

Lemma 1.6.17 The coefficients of the first fundamental form

ds2 = E′(u′, v′)du′2 + 2F ′(u′, v′)du′dv′ +G′(u′, v′)dv′2 (1.6.51)

of the surface with the new parametrization are related with the coefficients of the old first
fundamental form

ds2 = E(u, v)du2 + 2F (u, v)du dv +G(u, v)dv2 (1.6.52)

by means of the following transformation rule(
E′ F ′

F ′ G′

)
= JT

(
E F
F G

)
J. (1.6.53)

Here J is the Jacobi matrix (1.6.50).
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Proof: We have

E′ = 〈ru′ , ru′〉 = 〈 ∂u
∂u′

ru +
∂v

∂u′
rv,

∂u

∂u′
ru +

∂v

∂u′
rv〉

=
(
∂u

∂u′

)2

〈ru, ru〉+ 2
∂u

∂u′
∂v

∂u′
〈ru, rv〉+

(
∂v

∂u′

)2

〈rv, rv〉

=
(
∂u

∂u′

)2

E + 2
∂u

∂u′
∂v

∂u′
F +

(
∂v

∂u′

)2

G.

In a similar way we prove that

F ′ =
∂u

∂u′
∂u

∂v′
E +

(
∂u

∂u′
∂v

∂v′
+
∂v

∂u′
∂u

∂v′

)
F +

∂v

∂u′
∂v

∂v′
G

G′ =
(
∂u

∂v′

)2

E + 2
∂u

∂v′
∂v

∂v′
F +

(
∂v

∂v′

)2

G.

These formulae coincide with (1.6.53).

Corollary 1.6.18 Consider the smooth curve

u′ = u′(t), v′ = v′(t), t ∈ [a′, b′] (1.6.54)

on the parametrized surface (1.6.47) along with its image

u(t) := u
(
u′(t), v′(t)

)
, v(t) := v

(
u′(t), v′(t)

)
, t ∈ [a, b] (1.6.55)

on the parametrized surface (1.6.2). Then the lengths of the velocity vectors of the two curves
computed with the help of the quadratic forms (1.6.51) and (1.6.52) are equal

E′(u′(t), v′(t))
(
u̇′(t)

)2 + 2F ′(u′(t), v′(t))u̇′(t)v̇′(t) +G′(u′(t), v′(t))
(
v̇′(t)

)2
(1.6.56)

= E(u(t), v(t)) (u̇(t))2 + 2F (u(t), v(t))u̇(t)v̇(t) +G(u(t), v(t)) (v̇(t))2

for any t ∈ [a, b]. In particular, the lengths of the curves (1.6.54) and (1.6.55) coincide.

Proof: For a given t ∈ [a, b] the derivatives (u̇′(t), v̇′(t)) and (u̇(t), v(t)) give coordinates of
the same velocity vector

u̇′(t) ru′(u′(t), v′(t)) + v̇′(t) rv′(u′(t), v′(t)) = u̇(t) ru(u(t), v(t)) + v̇(t) rv(u(t), v(t))

with respect to two bases in the tangent plane to the surface. Restricting the quadratic form
ds2 = dx2 + dy2 + dz2 on this vector one obtains respectively the left- and the right-hand
sides of (1.6.56).

In a similar way one can prove that the angles between tangent vectors to the curves
on the parametrized surface do not depend on the choice of parametrization. We leave the
precise formulation and the proof as an exercise for the reader.
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Corollary 1.6.19 Let the diffeomorphism (1.6.46) map the domain Ω′ ⊂ R2
(u′,v′) onto the

domain Ω ⊂ R2
(u,v). Then the areas of the domains SΩ′ and SΩ on the parametrized surfaces

(1.6.1) and (1.6.47) coincide:∫∫
Ω′

√
E′G′ − F ′2 du′dv′ =

∫∫
Ω

√
EG− F 2 du dv. (1.6.57)

Proof: From the transformation law (1.6.53) it follows that

det
(
E′ F ′

F ′ G′

)
= det

(
E F
F G

)
(det J)2 .

Recall that

det J = det
(
∂u/∂u′ ∂u/∂v′

∂v/∂u′ ∂v/∂v′

)
is the Jacobian of the coordinate transformation. So√

E′G′ − F ′2 =
√
EG− F 2 |det J | .

Thus the equality (1.6.57) follows from the theory of changes of variables in a double integral.

In the general case of a k-dimensional surface (1.6.36) in a n-dimensional Euclidean space
a change of the parametrization is given by a diffeomorphism

uα = uα(u′), u′ =
(
u1′
, . . . , uk

′
)
, det

(
∂u

∂u′

)
6= 0. (1.6.58)

Such a change induces a change of a basis in the tangent space

xuα′ =
∂uα

∂uα′ xuα . (1.6.59)

Recall that in the last formula α and α′ are independent indices; a summation in α from
α = 1 to α = k is assumed in the right-hand side of (1.6.59). The index α′ is fixed in the
both sides of the eq. (1.6.59); it takes values from α′ = 1 to α′ = k.

Similarly to the Lemma 1.6.17 one can prove

Lemma 1.6.20 The coefficients

gαβ(u) = 〈xuα(u),xuβ (u)〉 and gα′β′(u′) =
〈
xuα′ (u′),xuβ′ (u′)

〉
, u = u(u′)

of the first fundamental forms of the surface (1.6.36) with respect to two parametrizations are
related by the following transformation rule

gα′β′(u′) =
∂uα

∂uα′
∂uβ

∂uβ′ gαβ(u). (1.6.60)
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Proof: Using chain rule

xuα′ =
∂uα

∂uα′ xuα .

one has

gα′β′(u′) =
〈
xuα′ (u′),xuβ′ (u′)

〉
=
〈
∂uα

∂uα′ xuα ,
∂uβ

∂uβ′ xuβ
〉

=
∂uα

∂uα′
∂uβ

∂uβ′ 〈xuα(u),xuβ (u)〉 =
∂uα

∂uα′
∂uβ

∂uβ′ gαβ(u).

Observe that the transformation rule (1.6.60) of the Gram matrix of the metric induced
on the surface can be represented in the matrix form as follows

G′(u′) =
(
∂u

∂u′

)T

G(u)
(
∂u

∂u′

)
(1.6.61)

where
G′(u′) =

(
gα′β′(u′)

)
, G(u) = (gαβ(u)) .

Lemma 1.6.21 Under a change (1.6.58) of parametrization on the surface the coordinates
of tangent vectors transform as follows

u̇α =
∂uα

∂uα′ u̇
α′
. (1.6.62)

Proof: This nothing but the chain rule for the functions uα = uα(u′(t)).

Lemma 1.6.22 The inner product (1.6.43) of tangent vectors does not depend on the choice
of parametrization on the surface.

Proof: Using the transformation rules (1.6.62) and (1.6.60) we obtain

u̇α
′

1 u̇
β′

2 gα′β′(u′) =
∂uα

′

∂uα
u̇α1
∂uβ

′

∂uβ
u̇β2 gα′β′(u′) = u̇αu̇βgαβ(u), u = u(u′).

Summarizing, we arrive at

Theorem 1.6.23 The lengths of curves (1.6.44), angles between the curves, and volumes
(1.6.45) on a k-dimensional parametrized surface in the n-dimensional Euclidean space do
not depend on the choice of parametrization of the surface.
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1.7 Geometry in Minkowski space. Lorentz transformations

Let X be a n-dimensional linear space and

X ×X → R
(x, y) 7→ g(x, y) (1.7.1)

a bilinear form on it. Recall that from bilinearity it follows that

g(0, y) = g(y, 0) = 0 ∀ y ∈ X.

The bilinear form (1.7.1) is called nondegenerate if it satisfies the following condition:

if g(x, y) = 0 ∀ y ∈ X then x = 0. (1.7.2)

Let e1, . . . , en be a basis in the linear space X. Like above we introduce the Gram matrix
of the bilinear form (1.7.1) by

gij = g(ei, ej), i, j = 1, . . . , n. (1.7.3)

The value of the bilinear form on the vectors x = xiei and y = yjej is given by the already
familiar formula

g(x, y) = gijx
iyj . (1.7.4)

Proposition 1.7.1 The bilinear form (1.7.4) satisfies the nondegeneracy condition iff the
Gram matrix G = (gij) does not degenerate

detG 6= 0.

Proof: Let us first prove

Lemma 1.7.2 A bilinear form (x, y) 7→ g(x, y) on a n-dimensional linear space does not
degenerate iff the system of n linear equations

g(x, e1) = 0, . . . , g(x, en) = 0 (1.7.5)

has only the trivial solution x = 0.

Proof: Specializing g(x, y) = 0 at y = e1, . . . , y = en one obtains the system (1.7.5).
Conversely, since

g(x, y) = g(x, ej) yj for y = yjej

validity of the system (1.7.5) implies that g(x, y) = 0 for any y ∈ X.

We can now complete the proof of the Proposition. The system (1.7.5) can be represented
by n linear equations for the coordinates of the vector x = xiei:

0 = 〈x, ej〉 = gijx
i, j = 1, . . . , n.

According to the Lemma this system must have only trivial solution x1 = x2 = · · · = xn = 0.
This requirement is equivalent to nondegeneracy of the coefficient matrix of the system.
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Definition 1.7.3 A pseudo-Euclidean inner product on a linear space X is a symmetric
nondegenerate bilinear form

X ×X → R
(x, y) 7→ g(x, y) (1.7.6)
g(αx+ β y, z) = α g(x, z) + β g(y, z)
g(z, α x+ β y) = α g(z, x) + β g(z, y)

∀x, y, z ∈ X, ∀α, β ∈ R

g(y, x) = g(x, y) ∀x, y ∈ X
g(x, y) = 0 ∀ y ∈ X iff x = 0.

In coordinates a pseudo-Euclidean inner product is represented by the formula (1.7.4)
with an arbitrary symmetric nondegenerate matrix G = (gij).

Example 1. A diagonal matrix with ±1 on the diagonal

G =



1
1

1
. . .

−1
−1


(1.7.7)

(p times +1 and q times −1) gives a bilinear form

g(x, y) = x1y1 + · · ·+ xpyp − xp+1yp+q − · · · − xp+qyp+q. (1.7.8)

This form does not degenerate iff p + q = n. For the case p = n, q = 0 one obtains a
positive definite inner product 〈x, y〉 = g(x, y); in the case p = 0, q = n the inner product
〈x, y〉 := −g(x, y) is positive definite.

Exercise 1.7.4 Prove that the Gram matrices G = (gij) = (g(ei, ej)) and G′ = (gi′j′) =
(g(ei′ , ej′) of the bilinear form (1.7.4) with respect to two bases

ei′ = tii′ei

are related by the transformation
gi′j′ = tii′t

j
j′gij (1.7.9)

or, equivalently
G′ = TTGT. (1.7.10)

Here T =
(
tii′
)

is the transition matrix.

Using transformations of the form (1.7.9) (or, equivalently, of the form (1.7.10)) one can
reduce the matrix of the bilinear form to a suitable simple form. From the Lagrange theorem
about quadratic forms g(x, x) one readily derives the following statement.
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Theorem 1.7.5 Given a pseudo-Euclidean inner product g(x, y) on a n-dimensional linear
space X, there exists a basis in the space such that the bilinear form in this basis becomes equal
to (1.7.8) with p + q = n. The coordinates with respect to such a basis are called pseudo-
orthogonal. The numbers p and q are called the inertia indices of the symmetric bilinear
form. They do not depend on the choice of a system of pseudo-orthogonal coordinates.

A pair (X, g) consisting of a linear space X with a pseudo-Euclidean inner product g(x, y)
will be called a pseudo-Euclidean space. The pair of inertia indices (p, q) of the quadratic
form will be called the signature4 of the pseudo-Euclidean space. Recall that p+q=dimension
of the space. From the Theorem 1.7.5 it follows that all pseudo-Euclidean spaces of a given
signature (p, q) are isomorphic to the standard one with the inner product (1.7.8).

The 4-dimensional pseudo-Euclidean space of signature (1, 3) is called the Minkowski
space. It plays an important role in the geometric description of special relativity. The
points of this space are events characterized by three spatial coordinates x, y, z and the
time t in an inertial reference frame. The pseudo-orthogonal coordinates are usually denoted
(x0, x1, x2, x3) where x1 = x, x2 = y, x3 = z and the coordinate x0 has the form

x0 = c t. (1.7.11)

Here c is a constant called the speed of light (c ' 300 000 km/sec). The associated vector
space is also often called Minkowski space. It is denoted R1,3 and consists of four-vectors.
The inner product of vectors a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) in the Minkowski space
reads

g(a, b) = a0b0 − a1b1 − a2b2 − a3b3. (1.7.12)

Observe that the “square length” g(a, a) of a vector a ∈ R1,3 can be positive, negative, or
zero.

Definition 1.7.6 A vector a ∈ R1,3 is called

timelike if g(a, a) > 0
spacelike if g(a, a) < 0
null if g(a, a) = 0.

For example the unit vector (1, 0, 0, 0) of the x0-axis is timelike, the unit vectors (0, 1, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1) of the x1-, x2- and x3-axes are spacelike. The null vectors form a
cone

(a0)2 = (a1)2 + (a2)2 + (a3)2 (1.7.13)

called light cone in the special relativity.

It is convenient to also consider analogues of Minkowski space of dimensions two and
three in order to simplify the pictures.

4Also the difference p− q is often called the signature of the quadratic form. For the case of nondegenerate
quadratic forms the pair of inertia indices is determined by the difference along with the dimension of the
space.
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Fig. 2. Light cone in the three-dimensional Minkowski space with the coordinates (ct, x, y).
The vector at is timelike, the vector as is spacelike and the vector an is null.

To a smooth curve
x1 = x1(t), x2 = x2(t), x3 = x3(t) (1.7.14)

describing motion of a particle in the usual three-dimensional space one can associate the
world line

x0 = c t, x1 = x1(t), x2 = x2(t), x3 = x3(t) (1.7.15)

of the particle in the Minkowski space. In particular the world line of a particle remaining
at rest at a fixed point (x1, x2, x3) of the three-space is timelike.

The first main postulate of special relativity says that for all times t the velocity four-
vector (

ẋ0 = c, ẋ1(t), ẋ2(t), ẋ3(t)
)

of the curve (1.7.15) is timelike for the motion of massive particles; it is null for the motion
of massless particles. This implies that the absolute value of the 3-velocity must be less than
the speed of light for massive particles√

(ẋ1)2 + (ẋ2)2 + (ẋ3)2 < c (1.7.16)

while the massless particles propagate with the speed of light.

A parametrized5 smooth curve

γ : x(t) =
(
x0(t), x1(t), x2(t), x3(t)

)
, t ∈ [a, b]

5Here the parameter t can have no relationship with the physical time.
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is called timelike if the tangent vector

ẋ(t) =
(
ẋ0(t), ẋ1(t), ẋ2(t), ẋ3(t)

)
is timelike at every point. One can define an analogue of the length of such a curve by the
integral

τ =
1
c

∫ b

a

√
(ẋ0(t))2 − (ẋ1(t))2 − (ẋ2(t))2 − (ẋ3(t))2 dt. (1.7.17)

Like in the Euclidean case one can establish independence of the “length” (1.7.17) from the
parametrization. For the workd line (1.7.15) of a massive particle the quantity τ is called
proper time of the particle. In the particular case of a particle staying at a fixed point of the
three-space the world line has the form

x0 = c t, x1 = x1
0, x

2 = x2
0, x

3 = x3
0, t1 ≤ t ≤ t2.

The proper time of such a particle coincides with the time interval

τ = t2 − t1.

For a particle moving with a constant speed v = (v1, v2, v3) the interval of the proper time
τ on the world line

x0 = c t, x1 = v1t+ x1
0, x

2 = v2t+ x2
0, x

3 = v3t+ x3
0

is proportional to the interval of the laboratory time t with the coefficient
√

1− v2

c2
where

v = |v|. Indeed,

τ =
1
c

∫ t2

t1

√
c2 − v2 dt =

√
1− v2

c2
(t2 − t1).

Thus, the proper time of a moving particle runs more slowly than the proper time of a particle
at rest.

For two points x, y in the Minkowski space the square length of the vector x− y is called
the space-time interval between the events x and y. The second main postulate of special
relativity requires that changes of an inertial reference frame must keep invariant the space-
time interval. Such transformation is an analogue of isometries of Euclidean spaces discussed
above. Let us first consider such isometries in the general setting of pseudo-Euclidean spaces.

A map f : X → X ′ of two pseudo-Euclidean spaces (X, g) and (X ′, g′) of signatures (p, q)
and (p′, q′) respectively is called isometry if

g′(f(x)− f(y), f(x)− f(y)) = g(x− y, x− y) ∀x, y ∈ X. (1.7.18)

For example, an affine transformation

f(x) = Ax+ b (1.7.19)

will be an isometry of the pseudo-Euclidean space (X, g) to itself iff the matrix A satisfies

ATGA = G (1.7.20)
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where the Gram matrix G has the form (1.7.7). Here b is an arbitrary vector in X.

A matrix A satisfying (1.7.20) is called pseudo-orthogonal. It does not degenerate since

(detA)2 = 1.

Thus all matrices in (X, g) form a group called pseudo-orthogonal group of the signature (p, q)
and denoted O(p, q). Here (p, q) is the signature of the pseudo-Euclidean space (X, g). The
pseudo-orthogonal matrices with determinant 1 form a subgroup SO(p, q) ⊂ O(p, q).

Example. The matrices (
a b
c d

)
∈ O(1, 1)

must satisfy the system

a2 − c2 = 1
d2 − b2 = 1
ab− cd = 0.

The set of solutions consists of four families(
coshψ sinhψ
sinhψ coshψ

)
,

(
− coshψ − sinhψ
− sinhψ − coshψ

)
,

(1.7.21)(
coshψ − sinhψ
sinhψ − coshψ

)
,

(
− coshψ sinhψ
− sinhψ coshψ

)
.

Here ψ ∈ R is an arbitrary parameter. The matrices A of the first and the second families
belong to the subgroup SO(1, 1) since they have determinant detA = +1; the matrices from
the third and fourth families have determinant detA = −1. The transformations of the first
and third types preserve the direction of times since they have a > 0. The transformations
of the second and fourth types revert the direction of time.

Let us consider the transformation of the first type in the two-dimensional Minkowski
space with the pseudo-orthogonal coordinates (x0 = c t, x1 = x). The transformation defines
a change of pseudo-orthogonal coordinates

(x0, x1) = (c t, x) 7→ (x0′
, x1′

) = (c t′, x′)
(1.7.22)

c t = c t′ coshψ + x′ sinhψ
x = c t′ sinhψ + x′ coshψ

}
or, inverting,

c t′ = c t coshψ − x sinhψ
x′ = −c t sinhψ + x coshψ

}
.

The above formulae say that a particle remaining at rest at any point x′ = x′0 in the new
reference frame (x′, t′) will move in the old reference frame (x, t)

x = c t tanhψ +
x′0

coshψ
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with a constant speed
v = c tanhψ. (1.7.23)

The speed v can be interpreted as the velocity of the new reference frame with respect to the
old one Using the identity

cosh2 ψ − sinh2 ψ = 1

we find

coshψ =
1√

1− tanh2 ψ
=

1√
1− v2

c2

(1.7.24)

sinhψ =
tanhψ√

1− tanh2 ψ
=

v/c√
1− v2

c2

.

Substituting we finally arrive at the following expression for the Lorentz boost

t′ =
t− v x

c2q
1− v2

c2

x′ = x−v tq
1− v2

c2

 (1.7.25)

describing the transformation of the space-time coordinates in the frame moving along the
x-axis with the constant velocity v. If the velocity v is small with respect to the speed of
light

|v| << |c|

then the Lorentz transformation (1.7.25) becomes equal to the Galilean transformation of
Newtonian mechanics

t′ ' t
x′ ' x− v t

}
. (1.7.26)

In a way similar to the Theorem 1.3.14 one can prove

Theorem 1.7.7 1) Two isometric pseudo-Euclidean spaces must have the same signatures

(p′, q′) = (p, q).

2) Any isometry f : X → X of a pseudo-Euclidean space (X, g) to itself must have the form
(1.7.19), (1.7.20) in a system of pseudo-orthogonal coordinates.

We leave the proof of this theorem as an exercise for the reader.

Corollary 1.7.8 All isometries of a pseudo-Euclidean space (X, g) form a group Iso(X, g).

Translations
x 7→ x+ b
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form a normal subgroup in the group Iso(X, g). The quotient over the subgroup of trans-
lations is isomorphic to the group of isometries keeping a given point O ∈ X fixed. Such a
group can be realized by transformations

x 7→ Ax, A ∈ O(p, q). (1.7.27)

Here, as above, (p, q) is the signature of the pseudo-Euclidean space (X, g).

The group of isometries of the four-dimensional Minkowski space-time is called Poincaré
group. It is generated by translations, orthogonal transformations in the three-dimensional
space and Lorentz boosts. The subgroup of isometries preserving the origin is called Lorentz
group. One can identify the kinematics of special relativity with the geometry of the Minkowski
4-space invariant with respect to the action of Poincaré group.

At the end of this section we will consider geometry of spacelike surfaces in pseudo-
Euclidean spaces. A regular parametrized surface

x = x(u) ∈ X, u = (u1, . . . , uk) ∈ D ⊂ Rk (1.7.28)

in (X, g) is called spacelike if all tangent vectors

a1xu1(u) + · · ·+ akxuk(u) ∀ a1, . . . , ak ∈ R

are spacelike at every point of the surface.

Definition 1.7.9 The restriction of the quadratic differential form

−ds2 = −
[
(dx1)2 + · · ·+ (dxp)2 − (dxp+1)2 − · · · − (dxp+q)2

]
on the spacelike surface (1.7.28) is called the first fundamental form or the induced metric
of the spacelike surface

−ds2 = −
[
(dx1(u))2 + · · ·+ (dxp(u))2 − (dxp+1(u))2 − · · · − (dxp+q(u))2

]
= gαβ(u)duαduβ

(1.7.29)

gαβ(u) = −
p∑
i=1

∂xi

∂uα
∂xi

∂uβ
+

p+q∑
i=p+1

∂xi

∂uα
∂xi

∂uβ
, α, β = 1, . . . , k.

It is easy to check that the above definitions do not depend on the choice of parametriza-
tion of the surface. The induced metric defines a positive definite quadratic form on the
tangent space at every point of the surface.

Let us consider an example of a two-dimensional spacelike surface in the three-dimensional
Minkowski space. Put c = 1 and denote (t, x, y) the pseudo-orthogonal coordinates in the
Minkowski space. Consider an analogue of the sphere of radius R:

t2 − x2 − y2 = R2. (1.7.30)

From the point of view of “normal” 3-space such a “sphere” is a two-sheets hyperboloid. The
upper sheet can be represented as the graph of function

t =
√
R2 + x2 + y2.
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Choosing x and y as the parameters one finds the basic tangent vectors in the form(
x√

R2 + x2 + y2
, 1, 0

)
,

(
y√

R2 + x2 + y2
, 0, 1

)
.

The pseudo-Euclidean Gram matrix of these vectors is negative definite
x2

R2+x2+y2
− 1 x y

R2+x2+y2

x y
R2+x2+y2

y2

R2+x2+y2
− 1

 < 0.

Hence (1.7.30) is a spacelike surface.

In order to compute the induced metric on the surface let us introduce the pseudo-spherical
coordinates (r, φ, ψ) in the three-dimensional space-time

t = r coshψ
x = r cosφ sinhψ
y = r sinφ sinhψ.

Since
t2 − x2 − y2 = r2

the pseudo-spherical coordinates cover only part of the space-time, namely, the inner part

t2 − x2 − y2 > 0

of the light cone. It is easy to see that the space-time interval ds2 = dt2 − dx2 − dy2 in the
pseudo-spherical coordinates becomes takes the following form

ds2 = dr2 − r2(dψ2 + sinh2 ψ dφ2). (1.7.31)

Restricting (−ds2) to the hyperboloid r = ±R one obtains the induced metric in the coordi-
nates (φ, ψ)

R2(dψ2 + sinh2 ψ dφ2). (1.7.32)

Let us compute the radius ρ and the area A = A(ρ) of the circle domain on the hyperboloid
defined by

0 ≤ ψ ≤ ψ0, 0 ≤ φ ≤ 2π

cut from the hyperboloid by the horizontal plane t = R cosψ0. The radius ρ can be computed
as the length of the line

φ = const, 0 ≤ ψ ≤ ψ0.

This gives

ρ = R

∫ ψ0

0
dψ = Rψ0.

Since the area element for the metric (1.7.32) is equal to

dA = R2 sinhψ dφdψ,
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the area of the disk is equal to

A = R2

∫ 2π

0
dφ

∫ ψ0

0
sinhψ dψ = 2πR2(coshψ0 − 1).

Substituting
ψ0 =

ρ

R

yields the formula for the area of the circle of radius ρ on the hyperboloid (1.7.30) in the
Minkowski space

A(ρ) = 2πR2
(

cosh
ρ

R
− 1
)
. (1.7.33)

For small ρ using the Taylor expansion

coshx = 1 +
x2

2
+
x4

24
+O(x6)

one obtains
A(ρ) = πρ2 +

π

12R2
ρ4 +O(ρ6). (1.7.34)

Thus the area of the circle of a small radius ρ on the hyperboloid in the Minkowski space is
bigger than the area of the circle of the same radius on the plane.

1.8 Curvature of surfaces

The curvature of surfaces can be characterized by the curvature of certain curves on the
surface. Let us introduce the tools useful for computing these curvatures.

Let
r = r(u, v) (1.8.1)

be a regular smooth two-dimensional surface in a three-dimensional Euclidean space. Define
the unit normal vector at the point r(u, v)

n =
ru × rv
|ru × rv|

. (1.8.2)

The vector n is orthogonal to ru and rv and, hence, it is orthogonal to the tangent plane
T(u,v) to the surface.

Introduce functions

b11(u, v) = 〈ruu,n〉
b12(u, v) = 〈ruv,n〉 (1.8.3)
b22(u, v) = 〈rvv,n〉.

Definition 1.8.1 The quadratic form

b11(u, v)du2 + 2b12(u, v)du dv + b22(u, v)dv2 (1.8.4)

is called the second fundamental form of the surface (1.8.1).
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A geometric meaning of the value of the second fundamental form on tangent vectors to
the surface becomes clear from the following statement.

Lemma 1.8.2 Let (u(t), v(t)) be a smooth curve on the surface. The normal component of
the acceleration vector r̈ at a point (u = u(t), v = v(t)) is equal to the value of the second
fundamental form on the velocity vector (u̇, v̇) at this point

〈r̈,n〉 = b11(u, v)u̇2 + 2b12(u, v)u̇ v̇ + b22(u, v)v̇2. (1.8.5)

Proof: In the expression

r̈ = ruuu̇2 + 2ruvu̇v̇ + rvvv̇2 + ruü+ rvv̈

the last two terms are orthogonal to n. Hence

〈r̈,n〉 = 〈ruu,n〉u̇2 + 2〈ruv,n〉u̇v̇ + 〈rvv,n〉v̇2.

Denote ν the principal normal to the curve

r(u(t), v(t))

on the surface.

Theorem 1.8.3 The curvature of a smooth curve on the surface (1.8.1) multiplied by the
cosine of the angle between the principal normal to the curve and the normal to the surface
is equal to the ratio of values of the second and first fundamental forms on the velocity vector
of the curve

k 〈ν,n〉 =
b11(u, v)u̇2 + 2b12(u, v)u̇v̇ + b22(u, v)v̇2

g11(u, v)u̇2 + 2g12(u, v)u̇v̇ + g22(u, v)v̇2
. (1.8.6)

Proof: Recall that the principal normal to the curve is the normalized vecor of acceleration

d2r
ds2

= k ν, k > 0, |ν| = 1.

Applying the Lemma one obtains

k 〈ν,n〉 = b11(u, v)
(
du

ds

)2

+ 2b12(u, v)
du

ds

dv

ds
+ b22(u, v)

(
dv

ds

)2

.

This proves the formula (1.8.6) for the curves parametrized by length since, in that case,
the denominator in (1.8.6) is equal to 1. Since both sides of (1.8.6) do not depend on the
parametrization of the curve, the formula holds trues also for an arbitrary parametrization.

Let us consider the curve obtained by intersecting the surface by the plane passing through
the normal n. It is called the normal section. It is a plane curve; its principal normal vector
ν is collinear with n. Denote τ a unit tangent vector to the surface belonging to the normal
plane. It coincides with the velocity vector of the normal section passing through n and τ .
We obtain
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Corollary 1.8.4 The absolute value of the second fundamental form on a unit tangent vector
τ to the surface is equal to the curvature of the normal section passing through τ and n.

Let us slightly modify the definition of the curvature for the case of a plane section of an
oriented surface: it will coincide with the old one if the direction of the principal normal to
the curve coincides, ν = n, with the direction of the normal to the surface; in the opposite
case, ν = −n, the new curvature will be equal to the negative old one. With such a definition
the result of the Corollary for the curvature k = k(τ) of a plane section passing through the
unit tangent vector τ = (τ1, τ2) at a point (u, v) can be represented in the following form:

k(τ) = b11(u, v)(τ1)2 + 2b12(u, v)τ1τ2 + b22(u, v)(τ2)2 (1.8.7)

g11(u, v)(τ1)2 + 2g12(u, v)τ1τ2 + g22(u, v)(τ2)2 = 1. (1.8.8)

Example. On the sphere of radius R all normal sections are circles of the same radius
R. The curvature of these circles is equal to 1/R. With the choice of the orientation on
the surface by ordering the spherical coordinates u = φ, v = θ the curvature of any normal
section is equal to −1/R. Hence the second fundamental form of the sphere in the spherical
coordinates reads

−R(dθ2 + cos2 θ dφ2).

In order to get more clear idea about dependence of the curvature of a normal section on
the direction τ at a given point of the surface let us study the minima and maxima of the
function k(τ). This problem is tantamount to finding the maxima/minima of the function
(1.8.7) of two variables τ1, τ2 constrained by the equation (1.8.8). In order to simplify
notations let us redenote

x := τ1, y := τ2.

We will also omit writing explicitly the dependence of the coefficients of the first and second
fundamental forms on u and v.

We arrive at the following constraint maximum/minimum problem:

b11x
2 + 2b12xy + b22y

2 → max/min (1.8.9)
g11x

2 + 2g12xy + g22y
2 = 1. (1.8.10)

To resolve this problem let us consider the following auxiliary function

F = b11x
2 + 2b12xy + b22y

2 − λ
(
g11x

2 + 2g12xy + g22y
2 − 1

)
. (1.8.11)

One has to find the stationary points of F = F (x, y, λ) from the system

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

The last equation is nothing but the constraint (1.8.10). The first two, after division by 2
yield a linear homogeneous system

b11x+ b12y = λ(g11x+ g12y)
b12x+ b22y = λ(g12x+ g22y)
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or, in the matrix form,
BX = λGX (1.8.12)

where

B =
(
b11 b12

b21 b22

)
, G =

(
g11 g12

g21 g22

)
, X =

(
x
y

)
. (1.8.13)

Recall that the matrices B and G are both symmetric and, moreover, the matrix G is positive
definite.

We arrive at the theory of invariants of pairs of quadratic forms with the Gram matrices
B and G. Let us briefly explain the main points of this theory in a linear space of an arbitrary
dimension n

b(x, y) = bijx
iyj , g(x, y) = gijx

iyj .

Definition 1.8.5 A nonzero vector X satisfying the linear homogeneous system (1.8.12) is
called an eigenvector of a pair of quadratic forms with the eigenvalue λ.

Lemma 1.8.6 The eigenvalues of a pair of quadratic forms satisfy the characteristic equa-
tion

det(B − λG) = 0. (1.8.14)

Proof: The linear homogeneous system (1.8.12) has a nonzero solution iff its determinant
vanishes.

Lemma 1.8.7 The eigenvalues of a pair of quadratic forms do not depend on the choice of
the basis in the space.

Proof: Changing the basis transforms the Gram matrices of the quadratic forms to

B′ = TTB T, G′ = TTGT.

So the new characteristic equation

det(B′ − λG′) = det
[
TT(B − λG)T

]
= (detT )2 det(B − λG) (1.8.15)

is proportional to the old one.

In order to complete the theory of normal forms of a pair of bilinear forms we will use
the connection between self-adjoint operators and symmetric bilinear forms in a Euclidean
space. Recall that a linear operator

A : X → X (1.8.16)

on a Euclidean space (X, 〈 , 〉) is called self-adjoint if it satisfies

〈Ax, y〉 = 〈x,Ay〉 ∀x, y. (1.8.17)

The bilinear form
b(x, y) := 〈x,Ay〉 (1.8.18)
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is symmetric iff the operator A is self-adjoint. Given the matrix (aij) of the operator in a
basis e1, . . . , en,

Aej = aijei, j = 1, . . . , n (1.8.19)

and the Gram matrix of the inner product in the same basis

〈ei, ej〉 = gij , i, j = 1, . . . , n (1.8.20)

one can can compute the Gram matrix of the bilinear form b(x, y):

bij ≡ b(ei, ej) = gika
k
j , i, j = 1, . . . (1.8.21)

or, in the matrix form
B = GA. (1.8.22)

Inverting one reconstructs the operator A by

A = G−1B (1.8.23)

or, in the index notations
aij = gikbkj , i, j = 1, . . . , n (1.8.24)

where gij are the entries of the matrix inverse to G = (gij)

G = (gij), G−1 =
(
gij
)
. (1.8.25)

They say that the matrix of the bilinear form b(x, y) is obtained from the matrix of the
operator A by lowering the index (see (1.8.21)) while the inverse procedure (1.8.24) of recon-
structing the operator from the bilinear form is called raising of indices.

Let us return to the eigenvalues and eigenvectors of a pair of quadratic forms. They
coincide with the eigenvalues and eigenvectors of the self-adjoint linear operator A. At this
point it is crucial that the quadratic form g defining the inner product in the space is positive
definite. Under this assumption the following theorem is fundamental in the theory of self-
adjoint operators.

Theorem 1.8.8 Let
A : X → X

be a self-adjoint operator in a n-dimensional Euclidean space (X, 〈 , 〉). Then there exists an
orthonormal basis e1, . . . , en in X consisting of eigenvectors of the operator A

Aei = λiei, i = 1, . . . , n
〈ei, ej〉 = δij .

Applying this theorem to the self-adjoint operator (1.8.23) we arrive at the following

Corollary 1.8.9 Let B and G be two symmetric n×n matrices, and the matrix G is positive
definite. Then

1) the characteristic equation (1.8.14) has n real roots λ1, . . . , λn.
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2) There exists a system of coordinates in the linear space such that the quadratic forms
b and g take the following diagonal form

b(x, x) = λ1(x1)2 + · · ·+ λn(xn)2

(1.8.26)
g(x, x) = (x1)2 + · · ·+ (xn)2.

Exercise 1.8.10 Prove that
λ1λ2 . . . λn =

detB
detG

. (1.8.27)

Let us come back to the curvature of normal sections of a surface in R3. We have proved
that the characteristic equation (1.8.14) has two real roots λ1 and λ2 depending on the point
of the surface and, moreover, at a given point there exist two tangent vectors e1, e2 such that

b(e1, e1) = λ1, b(e2, e2) = λ2, b(e1, e2) = b(e2, e1) = 0 (1.8.28)

g(e1, e1) = g(e2, e2) = 1, g(e1, e2) = g(e2, e1) = 0. (1.8.29)

The second line means that the tangent vectors e1 and e2 are orthogonal as vectors in the
three-dimensional Euclidean space and, moreover, they have unit length.

Definition 1.8.11 The linear operator A = G−1B is called the shape operator of the surface.
The numbers k1 = λ1 and k2 = λ2 are called the principal curvatures of the surface at a given
point. The directions of the vectors e1 and e2 are called the principal directions at the same
point.

We will now see that the principal curvatures give the maximal and minimal values of
curvatures normal sections we were looking after.

Theorem 1.8.12 (Euler formula) Let ϕ be the angle between a unit tangent vector τ and e1.
Then the curvature k of the normal section of the surface passing through τ and the normal
n is equal to

k = k2
1 cos2 ϕ+ k2 sin2 ϕ. (1.8.30)

Proof: In the basis e1, e2 the first and the second fundamental forms become equal to

g(τ, τ) = (τ1)2 + (τ2)2

b(τ, τ) = k1(τ1)2 + k2(τ2)2

τ = τ1e1 + τ2e2.

In this basis the vector τ reads

τ = cosϕe1 + sinϕe2.

For the curvature of normal section passing through τ one obtains

k =
k1(τ1)2 + k2(τ2)2

(τ1)2 + (τ2)2
= k1 cos2 ϕ+ k2 sinh2 ϕ.
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Corollary 1.8.13 Let the principal curvatures at a given point of the surface satisfy

k2 ≤ k1.

Then the curvature k of an arbitrary normal section passing through the same point satisfies

k2 ≤ k ≤ k1.

Definition 1.8.14 The product of principal curvatures

K = k1k2 (1.8.31)

is called the Gaussian curvature of the surface at a given point. The mean value

H =
k1 + k2

2
(1.8.32)

is called the mean curvature at the point.

From the result of Exercise 1.8.10 it follows that the Gaussian curvature is equal to the
ration of the determinants of the second and the first fundamental forms

K =
detB
detG

. (1.8.33)

Example 1. For the sphere of radius R with the standard orientation the Gaussian
curvature is equal to K = 1/R2 and the mean curvature is H = −1/R.

Example 2. Let the surface in the Euclidean space be represented as a graph of a
function

z = f(x, y).

The tangent vectors have the already familiar form

rx = (1, 0, fx), ry = (0, 1, fy).

Computing their cross-product we obtain the unit normal vector

n =
(−fx,−fy, 1)√

1 + f2
x + f2

y

. (1.8.34)

So the coefficients of the second fundamental form are equal to

b11 = 〈rxx,n〉 =
fxx√

1 + f2
x + f2

y

b12 = 〈rxy,n〉 =
fxy√

1 + f2
x + f2

y

b22 = 〈ryy,n〉 =
fyy√

1 + f2
x + f2

y

.
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Computing the determinant
detB = b11b22 − b212

and dividing by the determinant of the first fundamental form (1.6.27)

detG = 1 + f2
x + f2

y

(see (1.6.29)) one obtains

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
. (1.8.35)

One observes that, at a stationary point

fx = fy = 0

the Gaussian curvature is positive near a point of a maximum/minimum where the graph is
convex but it is negative near a saddle point where the Hessian fxxfyy − f2

xy is negative.

Let us now compute the mean curvature of the graph surface. Inverting the matrix G

G−1 =
1

detG

(
1 + f2

y −fxfy
−fxfy 1 + f2

x

)
and computing the trace of the matrix of the shape operator G−1B one obtains

H =
1
2

trG−1B =
1

(detG)3/2

[
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

]
=

1
2

[
fxx + fyy

(detG)1/2
− fx(fxfxx + fyfxy)

(detG)3/2
− fy(fxfxy + fyfyy

(detG)3/2

]
=

1
2

[
fxx + fyy

(detG)1/2
− fx(detG)x

2(detG)3/2
− fy(detG)y

2(detG)3/2

]

=
1
2

 ∂

∂x

fx√
1 + f2

x + f2
y

+
∂

∂y

fy√
1 + f2

x + f2
y

 =
1
2

div
grad f√

1 + f2
x + f2

y

.

Let us now consider the important particular case of minimal surfaces having zero mean
curvature. Clearly, the Gaussian curvature of such a surface must be negative since the
principal curvatures k1 and k2 have opposite signs.

Assuming that the minimal surface is represented as a graph of function z = f(x, y) one
obtains the following PDE for the function f = f(x, y)

div
grad f√

1 + f2
x + f2

y

= 0 (1.8.36)

or, equivalently
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy = 0. (1.8.37)

This equation describes the shape of soap films that, in the absence of external forces tend
to minimize their area. Indeed, let us consider the area of a small piece of the surface

A[f ] =
∫∫

Ω

√
1 + f2

x + f2
y dx dy (1.8.38)
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as a functional of the shape function f . Here Ω is a sufficiently small domain on the (x, y)-
plane. A necessary condition to minimize the value of the functional is that, under an
arbitrary small variation of the function f ,

f(x, y) 7→ f(x, y) + δf(x, y)

the variation of the functional must satisfy

A[f + δf ]−A[f ] = O(‖δf‖2). (1.8.39)

Here the function δf(x, y) must vanish together with its derivatives on the boundary of the
domain Ω; the definition of the norm ‖δf‖ will be clear from subsequent calculations. In
other words, the equation (1.8.39) says that f is a “stationary point” of the “function” A[f ]
on the infinite-dimensional space of functions f = f(x, y).

Let us prove that stationary point condition (1.8.39) reduces to equation (1.8.38). The
left hand side of this condition can be written in the following way

A[f + δf ]−A[f ] =
∫∫

Ω

[√
1 + (fx + δfx)2 + (fy + δfy)2 −

√
1 + f2

x + f2
y

]
dx dy.

The part of the increment linear in δf can be obtained by expanding the above expression in
Taylor series

A[f + δf ]−A[f ] =
∫∫

Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy +O(‖δf‖2).

Thus the stationarity condition (1.8.39) can be recast into the form∫∫
Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy = 0 (1.8.40)

for an arbitrary function δf(x, y) vanishing on the boundary of the domain Ω. Applying in
two different ways the Fubini theorem∫∫

Ω
dx dy =

∫
dx

∫
dy =

∫
dy

∫
dx

to the two parts of the double integral and integrating by parts one reduces the equation
(1.8.40) to ∫∫

Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy
(1.8.41)

= −
∫∫

Ω

 ∂

∂x

fx√
1 + f2

x + f2
y

+
∂

∂y

fy√
1 + f2

x + f2
y

 δf dx dy = 0.

Since δf(x, y) is an arbitrary function one obtains the equation for the stationary points of
the area functional A[f ] written in the form

H = 0

where H is the mean curvature of the surface.
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1.9 Extrinsic and intrinsic geometry of surfaces

The vectors ru, rv, n are linearly independent at any point (u, v) of the surface. Let us
consider the dependence of the frame (ru, rv,n) on the point. The derivatives of each vector
of the frame can be represented as linear combinations of the same vectors. Some of coeffi-
cients of the linear combination are already known: for example, the coefficient of n in the
decomposition of ruu is equal to b11 = b11(u, v). We also know that the derivatives nu and nv
are orthogonal to n since |n| = 1 (see Lemma 1.4.11 above). We arrive at a representation

ruu = Γ1
11ru + Γ2

11rv + b11n

ruv = Γ1
12ru + Γ2

12rv + b12n

rvv = Γ1
22ru + Γ2

22rv + b22n (1.9.1)
nu = −a1

1ru − a2
1rv

nv = −a1
2ru − a2

2rv

where the functions Γkij = Γkij(u, v), ali = ali(u, v) are defined as coefficients of the above
decomposition. One can also use the definition of the coefficients Γkij and ali of the expansion
(1.9.1) written in the form

∂jri = Γlijrl + bijn (1.9.2)

∂in = −alirl, i = 1, 2. (1.9.3)

where we adjust the notations as follows: we put u1 = u, u2 = v, redenote

∂i :=
∂

∂ui
, i = 1, 2

the partial derivatives ∂/∂u and ∂/∂v. We also use the short notation

ri = rui , i = 1, 2.

Lemma 1.9.1 The coefficients Γkij can be expressed via the entries of the first fundamental
form and its derivatives, namely,

Γkij =
1
2
gks
(
∂gsj
∂xi

+
∂gis
∂xj
− ∂gij
∂xs

)
, i, j, k = 1, 2. (1.9.4)

Proof: Differentiating the coefficients of the first fundamental form one obtains

∂gij
∂uk

=
∂

∂uk
〈ri, rj〉 = 〈rik, rj〉+ 〈ri, rjk〉

(1.9.5)
= 〈Γlikrl + bikn, rj〉+ 〈ri,Γljkrl + bjkn〉 = Γlikglj + Γljkgli.

Denote
Γij,k := gklΓlij .

Observe that
Γkij = gksΓij,s.
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The equation (1.9.5) can be rewritten as follows

∂gij
∂uk

= Γik,j + Γjk,i. (1.9.6)

Cyclic permutations of indices i, j, k yield two more equations

∂gki
∂uj

= Γkj,i + Γij,k

∂gjk
∂ui

= Γji,k + Γki,j .

Adding these two equations and subtracting (1.9.6) gives

2Γij,k =
∂gki
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

. (1.9.7)

Multiplying the last equation by gks and dividing by 2 one obtains (1.9.4), after redenoting
the indices s↔ k.

Lemma 1.9.2 The coefficients aij coincide with the matrix entries of the shape operator
(1.8.23), i.e.,

aij = gisbsj , i, j = 1, 2. (1.9.8)

Proof: A derivation of the orthogonality condition

〈ri,n〉 = 0

yields

0 = 〈rij ,n〉+ 〈ri, ∂jn〉
= 〈Γkijrk + bijn,n〉+ 〈ri,−akj rk〉 = bij − akj gki.

Thus
bij = akj gki

or, in the matrix form
B = GA

where A = (aji ). Multiplying by G−1 we complete the proof of Lemma.

We arrive at the following linear differential equations describing the dependence of the
frame (ru, rv,n) on the point of the surface

∂

∂u
(ru, rv,n) = (ru, rv,n)Mu

(1.9.9)
∂

∂v
(ru, rv,n) = (ru, rv,n)Mv
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where the matrices Mu and Mv can be read from eqs. (1.9.1)

Mu =

 Γ1
11 Γ1

12 −a1
1

Γ2
11 Γ2

12 −a2
1

b11 b12 0


(1.9.10)

Mv =

 Γ1
12 Γ1

22 −a1
2

Γ2
12 Γ2

22 −a2
2

b12 b22 0

 .

The matrices Mu = Mu(u, v) and Mv = Mv(u, v) satisfy an important compatibility
condition6.

Lemma 1.9.3 The matrix valued functions Mu and Mv satisfy

∂Mv

∂u
− ∂Mu

∂v
+ [Mu,Mv] = 0. (1.9.11)

Proof: Differentiating the first equation in (1.9.9) in v and the second one in u one must
obtain the same result

∂

∂v

∂

∂u
(ru, rv,n) =

∂

∂v
[(ru, rv,n)Mu] = (ru, rv,n)

[
∂Mu

∂v
+MvMu

]
∂

∂u

∂

∂v
(ru, rv,n) =

∂

∂u
[(ru, rv,n)Mv] = (ru, rv,n)

[
∂Mv

∂u
+MuMv

]
.

This implies (1.9.11).

The following general statement about a pair of systems of linear differential equations
satisfying the compatibility condition holds true.

Proposition 1.9.4 Let two n× n matrix valued functions Mu = Mu(u, v), Mv = Mv(u, v),
(u, v) ∈ D ⊂ R2 satisfy the compatibility condition (1.9.11). Then for a given point (u0, v0) ∈
D and arbitrary initial data x0 = (x0

1, . . . , x
0
n) there exists a unique vector function x(u, v) =

(x1(u, v), . . . , xn(u, v)) satisfying a pair of systems of linear differential equations

∂x
∂u

= xMu

∂x
∂v

= xMv

such that x(u0, v0) = x0. Conversely, if such existence holds true then the coefficient matrices
Mu, Mv satisfy the compatibility condition (1.9.11).

6The eq. (1.9.11) is also called zero curvature condition. We will not use this terminology here to avoid
confusion with many other appearances of the word ‘curvature’.
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Proof: Let y = y(u) be the solution to the system

∂y
∂u

= yMu(u, v0)

specified by the initial data
y(u0) = x0.

Denote x = x(u, v) the solution to the system

∂x
∂v

= xMv(u, v) (1.9.12)

with the initial data depending on u as on a parameter

x(u, v0) = y(u).

Since the initial data y(u) depends smoothly on u the solution x(u, v) is a smooth function
of two variables. Let us prove that the function x(u, v) also satisfies the first system. Indeed,

∂

∂v

(
∂x
∂u
− xMu

)
=

∂

∂v

∂x
∂u
− ∂x
∂v

Mu − x
∂Mu

∂v
=

∂

∂u

∂x
∂v
− xMvMu − x

∂Mu

∂v

=
∂x
∂u

Mv + x
∂Mv

∂u
− xMvMu − x

∂Mu

∂v
=
(
∂x
∂u
− xMu

)
Mv.

Thus the vector function
x̃ =

∂x
∂u
− xMu

satisfy the same linear homogeneous system (1.9.12). At v = v0 one obtains the trivial initial
data

x̃(u, v0) =
∂y
∂u
− yMu(u, v0) = 0.

Due to uniqueness of solutions to (1.9.12) one must have x̃(u, v) ≡ 0. Therefore the function
x(u, v) satisfies the two linear systems and, by construction it also satisfies the initial condition
x(u0, v0) = x0. The proof of the converse statement repeats the proof of the Lemma 1.9.3.

We are now in a position to prove the first main result of this section.

Theorem 1.9.5 If two surfaces r = r(u, v) and r = r′(u, v), (u, v) ∈ D ⊂ R2 have the same
first and second fundamental forms

g′ij(u, v) = gij(u, v), b′ij(u, v) = bij(u, v), i, j = 1, 2 (1.9.13)

then there exists an isometry of the ambient Euclidean space R3 → R3 transforming one
surface to another

Ar(u, v) + b = r′(u, v) ∀ (u, v) ∈ D, ATA = 1. (1.9.14)
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Proof: Let us fix a point (u0, v0). One has two bases (ru(u0, v0), rv(u0, v0),n(u0, v0)) and
(r′u(u0, v0), r′v(u0, v0),n′(u0, v0)) for the two surfaces. By assumption the Gram matrices of
these two bases coincide 〈ru(u0, v0), ru(u0, v0)〉 〈ru(u0, v0), rv(u0, v0)〉 〈ru(u0, v0),n(u0, v0)〉

〈rv(u0, v0), ru(u0, v0)〉 〈rv(u0, v0), rv(u0, v0)〉 〈rv(u0, v0),n(u0, v0)〉
〈n(u0, v0), ru(u0, v0)〉 〈n(u0, v0), rv(u0, v0)〉 〈n(u0, v0),n(u0, v0)〉


=

 〈r′u(u0, v0), r′u(u0, v0)〉 〈r′u(u0, v0), r′v(u0, v0)〉 〈r′u(u0, v0),n′(u0, v0)〉
〈r′v(u0, v0), r′u(u0, v0)〉 〈r′v(u0, v0), r′v(u0, v0)〉 〈r′v(u0, v0),n′(u0, v0)〉
〈n′(u0, v0), r′u(u0, v0)〉 〈n′(u0, v0), r′v(u0, v0)〉 〈n′(u0, v0),n′(u0, v0)〉


=

 g11(u0, v0) g12(u0, v0) 0
g21(u0, v0) g22(u0, v0) 0

0 0 1

 .

Hence there exists an isometry r 7→ Ar+b shifting the point r(u0, v0) to r′(u0, v0) and moving
the first basis to the second one. Let us prove that, after such an isometry the surfaces will
coincide. Indeed, the two bases as functions of u, v satisfy a compatible pair of linear systems
of the form (1.9.9). Due to the assumptions of the Theorem and because of the lemmata
1.9.1 and 1.9.2 the coefficients of these linear systems coincide. Since the initial conditions
are the same we conclude that

r′u(u, v) = Aru(u, v), r′v(u, v) = Arv(u, v), n′(u, v) = An(u, v)

for all (u, v). Since r′(u0, v0) = Ar(u0, v0) + b we arrive at (1.9.14).

The two fundamental forms of a surface in a three-dimensional Euclidean space satisfy a
complicated system of constraints following from (1.9.11). They have the form(

∂Γtij
∂uk

−
∂Γtik
∂uj

+ ΓsijΓ
t
ks − ΓsikΓ

t
js

)
gtl = bijbkl − bikbjl, i, j, k, l = 1, 2 (1.9.15)

and
∂bij
∂uk
− ∂bik
∂uj

= Γsikbsj − Γsijbsk, i, j, k = 1, 2. (1.9.16)

The first eq. (1.9.15) is called Gauss equations while (1.9.16) is called Peterson–Mainardi–
Codazzi7 equations. Let us give an alternative derivation of these equations without using
matrix form of the compatibility condition. A differentiation of (1.9.2) in uk gives

∂k∂jri = ∂kΓlijrl + Γlij∂krl + ∂kbijn + bij∂kn

= ∂kΓlijrl + Γlij (Γsklrs + bkln) + ∂kbijn− bijalkrl.

In the double sum ΓlijΓ
s
klrs we can exchange the notations for the summation indices l↔ s:

ΓlijΓ
s
klrs = ΓsijΓ

l
ksrl.

In this way we arrive at

∂k∂jri =
(
∂kΓlij + ΓsijΓ

l
ks − bijalk

)
rl +

(
Γlijblk + ∂kbij

)
n.

7In the chronological order.
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Due to equality of mixed derivatives the last expression must be symmetric in k and j.
Writing such a symmetry explicitely and collecting the coefficients of the basic vectors rl and
n we obtain

∂kΓlij − ∂jΓlik + ΓsijΓ
l
ks − ΓsikΓ

l
js = bija

l
k − bikaj = gls(bijbks − bikbjs) (1.9.17)

and (1.9.16). Now we redenote l → t in (1.9.17), multiply both sides by glt and perform
summation in t. Due to the identity gltgts = δsl we arrive at (1.9.15).

The following Bonnet theorem says that system of Gauss and Codazzi equations suffices
for local reconstruction of the surface.

Theorem 1.9.6 Let the symmetric matrix valued function bij(u, v) and a symmetric posi-
tive definite matrix valued function gij(u) satisfy the Gauss and Peterson–Mainardi–Codazzi
equations (1.9.15), (1.9.16) where the functions Γkij = Γkij(u, v) are defined by eqs. (1.9.4).
Then there exists a sufficiently small piece of a surface in the three-dimensional Euclidean
space with the given first and second fundamental forms gij and bij.

The proof of this Theorem uses the same scheme we used in the proof of the Proposition
1.9.4. It will not be given here.

Corollary 1.9.7

K = (g11g22 − g2
12)−1g2t

(
∂Γt11

∂u2
− ∂Γt12

∂u1
+ Γs11Γt2s − Γs12Γt1s

)
. (1.9.18)

Proof: Specializing the values of indices

i = j = 1, k = l = 2

one obtains in the right hand side of (1.9.15)

b11b22 − b212 = K (g11g22 − g2
12).

This proves (1.9.18).

The formula (1.9.18) can be represented in the following way. For any vector field tangent
to the surface

z = a(u, v)ru + b(u, v)rv

define the covariant derivatives ∇uz and ∇vz by

∇uz = pr
∂z
∂u
, ∇vz = pr

∂z
∂v
. (1.9.19)

Here pr is the projection of a vector onto the tangent plane to the surface at the point (u, v)

pr x = x− 〈x,n〉n. (1.9.20)
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Exercise 1.9.8 Prove that

∇uiruj = Γkijruk , i, j = 1, 2. (1.9.21)

Thus, the covariant derivatives ∇uz, ∇vz of any tangent vector field

z = ai(u, v)ri

can be computed, in the same basis ru, rv via the coefficients ai(u, v) and their derivatives
and the coefficients of the first fundamental form and their derivatives.

Exercise 1.9.9 Prove that the formula (1.9.18) can be written in the form

K =
〈(∇v∇u −∇u∇v)ru, rv〉

detG
. (1.9.22)

Corollary 1.9.10 (Gauss’ Theorema Egregium) The Gaussian curvature of a surface can
be determined by measurements of lengths of curves and angles between curves on the surface.

Another reformulation of Theorema Egregium can be done as follows. A map

(u, v) 7→ (u′(u, v), v′(u, v)) (1.9.23)

of a surface r(u, v) to another surface r′(u′, v′) is called isometry if it maps the induced
metric of the first surface to the induced metric of the second one (cf. the infinitesimal
version (1.3.35) of the definition of isometries of Euclidean spaces).

Definition 1.9.11 A geometric characteristic of a two-dimensional surfaces in the three-
dimensional Euclidean space is called extrinsic if it is invariant with respect to isometries
of the space. The characteristic is called intrinsic if it remains invariant with respect to
isometries of the surfaces.

For example, the Gaussian and mean curvatures of the surface are extrinsic invariants of
the surface. According to Gauss’ theorem the Gaussian curvature is an intrinsic invariant.
Clearly any intrinsic characteristic of surfaces is also extrinsic, but not vice versa.

Example 1. Consider the cylinder of radius R,

r = (R cosφ,R sinφ, h).

The induced metric on the cylinder written in the cylindrical coordinates (φ, h) has the form

ds2 = R2dφ2 + dh2.

The map
(φ, h) 7→ (u = Rφ, v = h) (1.9.24)

establishes an isometry of the cylinder with the Euclidean plane with the standard metric

ds2 = du2 + dv2.
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The curvatures of the normal sections of the cylinder by the planes z = 0 and y = 0 are
equal to − 1

R and 0 respectively. It is easy to see that these are the principal curvatures of
the surface. So

K = 0, H = − 1
2R

.

Thus the isometry (1.9.24) does not preserve the mean curvature.

Observe that curves in Euclidean spaces do not have intrinsic invariants. Indeed, intro-
ducing the length parameter on a regular curve one establishes a local isometry of the curve
with the straight line.

According to Theorema Egregium vanishing of Gaussian curvature of the metric is a
necessary condition for existence of an isometry of the surface with the Euclidean plane. The
proof of sufficiency of this condition is outlined in the Exercise 1.10.12 below.

Example 2. Let us consider the induced metric

ds2 = R2(dψ2 + sinh2 ψ dφ2) (1.9.25)

on the “pseudo-sphere”
t2 − x2 − y2 = R2

in the three-dimensional Minkowski space. Denote

u1 = φ, u2 = ψ.

An easy calculation gives

Γ2
11 = −1

2
sinh 2ψ, Γ1

12 = Γ1
21 = cothψ,

other Christoffel coefficients vanish. Hence

g2t

(
∂Γt11

∂u2
− ∂Γt12

∂u1
+ Γs11Γt2s − Γs12Γt1s

)
= g22

(
∂Γ2

11

∂u2
− Γ1

12Γ2
11

)
= −R2 sinh2 ψ.

Dividing by detG = R4 sinh2 ψ one obtains the Gaussian curvature of the metric (1.9.25)

K = − 1
R2

. (1.9.26)

We see that the “pseudo-sphere” in the Minkowski space is an analogue of the sphere in
the Euclidean space: the Gaussian curvature of this surface is constant, but the constant is
negative. In particular it follows that the pseudo-sphere is not isometric to the Euclidean
plane.

In differential geometry an important object is the isometry group of a given space with
a metric. For Euclidean spaces this group has been studied in Section 1.3. It is isomorphic
to the group of affine transformations x 7→ Ax+ b with an orthogonal matrix A.

In the three-dimensional Euclidean space the transformations of orthogonal group O(3)
leave invariant the sphere of a radius R with the center at the origin. Clearly this action
defines an isometry of the sphere to itself. The subgroup SO(3) ⊂ O(3) also acts on the
sphere and , hence it defines a subgroup of isometries of the sphere.
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Exercise 1.9.12 Prove that the Lorentz group SO↑(1, 2) acts by isometries on the pseudo-
sphere.

There is another important notion of isometric deformations. One says that the surface
r1(u, v) is obtained from the surface r0(u, v) by an isometric deformation if there exists a
family of surfaces

r = r(u, v; t), t ∈ [0, 1]
r(u, v; 0) = r0(u, v), r(u, v; 1) = r1(u, v)

depending on the parameter t such that the first fundamental form of the surfaces of the
family does not depend on t.

Example 3. Consider the following family of surfaces depending on the parameter t

x(u, v; t) = cos t sinh v sinu+ sin t cosh v cosu
y(u, v; t) = − cos t sinh v cosu+ sin t cosh v sinu (1.9.27)
z(u, v; t) = u cos t+ v sin t.

For t = 0 the surface becomes the left-handed helicoid (see Exercise 1.10.9 below), for t = π
2

it becomes catenoid (see Exercise 1.10.7 below) and for t = π it becomes a right-handed
helicoid. An easy computation yields that the first fundamental form of the family of surfaces
depending on the parameter t does not depend on t:

ds2 = cosh2 v (du2 + dv2). (1.9.28)

So, all the surfaces (1.9.27) are isometric for all values of the parameter t. However the
second fundamental form of these surfaces does depend on the parameter t (see Exercise
1.10.10 below) and, hence they cannot be obtained one from another by an isometry of R3

for different values of the parameter. Animation of the isometric deformation of a catenoid
to helicoids can be found in

1.10 Exercises to Chapter 1

Exercise 1.10.1 Prove that the rank of the Jacobi matrix of a smooth map f : X → Y of
Euclidean spaces at a given point P ∈ X does not depend on the choice of (local) coordinates.

Exercise 1.10.2 Prove that the area of a closed non-selfintersecting curve

x = x(α)
y = y(α)

(x(0), y(0)) = (x(2π), y(2π)).

where x(α), y(α) are smooth 2π-periodic functions can be computed by the following integral

A =
∫ 2π

0
x(α) dy(α).

77



Exercise 1.10.3 Derive the following formula for the curvature of an arbitrary regular smooth
curve (x(t), y(t)) on the plane

k(t) =
|ẋÿ − ẏẍ|
(ẋ2 + ẏ2)3/2

. (1.10.1)

In the particular case of graph of a smooth function (1.4.5) prove that

k =
|f ′′|(

1 + f ′2
)3/2 . (1.10.2)

Exercise 1.10.4 A closed smooth curve γ : (x = x(s), y = y(s)) on the plane with never
vanishing curvature is called an oval if it has at most two intersection points with any straight
line. Denote k = k(s) the curvature of this curve as function of the length.

1) Prove that for such a curve∮
γ

dk

ds
ds =

∮
γ
x(s)

dk

ds
ds =

∮
γ
y(s)

dk

ds
ds = 0. (1.10.3)

Hint: use Frenet–Serret formulae written in the form

d2x(s)
ds2

= −k(s)
dy

ds
d2y(s)
ds2

= k(s)
dx

ds
.

A point of the curve is called vertex if dk(s)
ds = 0 at this point.

2) Prove that there are at least four vertices on any oval.

Hint: assuming the curvature not to be constant denote Pmin and Pmax the points of the
curve where the curvature attains its maximum and minimum values. Consider the line

ax+ by + c = 0

passing through these two points. Assuming the curvature has no other maxima/minima on
the curve prove that the integral∮

γ
(ax(s) + by(s) + c)

dk(s)
ds

ds

cannot be equal to zero. This contradicts to (1.10.3).

3) Find vertices on an ellipse.

Exercise 1.10.5 Denote
α(s) =

∫ s

0
k(s) ds. (1.10.4)

Prove that the plane curve

r(s) =
∫ s

0
(cosα(s), sinα(s)) ds

has the curvature k(s) as a function of the length parameter s.
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Exercise 1.10.6 Prove that the angle α defined in (1.10.4) can be used in order to parametrize
a closed smooth non-selfintersecting curve

x = x(α)
y = y(α)

(x(0), y(0)) = (x(2π), y(2π)).

with never vanishing curvature.

Denote k = k(α) the curvature of this curve. It is a smooth 2π-periodic function. Consider
the Fourier expansion of the function 1/k(α)

1
k(α)

=
a0

2
+
∞∑
m=1

(am cosmα+ bm sinmα) (1.10.5)

where, as it follows from the general theory of Fourier series

am =
1
π

∫ 2π

0

cosmα
k(α)

dα, bm =
1
π

∫ 2π

0

sinmα
k(α)

dα.

1) Prove that the length L of the closed curve is given by

L = π a0.

2) Prove that a1 = b1 = 0.

Hint: use the result of Exercise 1.10.5.

3) Prove that the area A of the domain bounded by the curve is equal to

A =
πa2

0

4
− π

2

∞∑
m=2

a2
m + b2m
m2 − 1

.

Hint: use the results of Exercises 1.10.2 and 1.10.5.

4) Derive the isoperimetric inequality

4π A ≤ L2. (1.10.6)

Prove that the equality takes place iff the curve is a circle.

Exercise 1.10.7 Derive the following formulae for the curvature and torsion of a parametrized
space curve r = r(t)

k =
|ṙ× r̈|
|ṙ|3

(1.10.7)

κ =
〈ṙ× r̈,

...r 〉
|ṙ× r̈|2

.
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Exercise 1.10.8 Prove that the graph

z = log
cosx
cos y

, −π
2
< x, y <

π

2

is a minimal surface ( Scherk surface).

Fig. 4. Scherk minimal surface

Exercise 1.10.9 Compute the first and the second fundamental forms of the helicoid

r = (u cos v, u sin v, a v). (1.10.8)

Here a is a constant. Prove that the mean curvature H is identically equal to zero.

80



Fig. 5. Helicoid is a minimal surface

Exercise 1.10.10 Prove that the second fundamental form of the family of surfaces (1.9.27)
is equal to

sin t (dv2 − du2) + 2 cos t du dv.

Prove that the principal curvatures of any surface of the family are

k1,2 = ± 1
cosh2 v

.

Exercise 1.10.11 A surface of revolution is obtained by rotation of the curve

x = ρ(z)

around the axis Oz.

1) Find a parametric representation of the surface.

2) Compute the first and the second fundamental forms of the surface.

3) Prove that the Gaussian and mean curvatures of the surface are equal to

K = − ρ′′

ρ (1 + ρ′2)2
, H =

1
2
ρ ρ′′ − (1 + ρ′2)
ρ (1 + ρ′2)3/2

. (1.10.9)
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4) Prove that the surface of revolution with vanishing mean curvature is a catenoid, i.e.,
a surface obtained by rotation of the “catenary curve”

x =
1
a

cosh(az + b)

around the axis z.

Fig. 6. Catenoid is the only one minimal surface of revolution

5) Prove that a surface of revolution with vanishing Gaussian curvature must be a cylinder
ρ(z) = const.

6) Prove that the surfaces of revolution with constant Gaussian curvature K 6= 0 can be
determined by an elliptic quadrature∫ √

K(ρ2 − c)√
1−K(ρ2 − c)

dρ = z − z0. (1.10.10)

Here c, z0 are integration constants.

7) For constant negative Gaussian curvature K = −1/R2 derive the following Beltrami
surface obtained by rotation of the curve

|z − z0| = R
[
log(R2 +R

√
R2 − x2)− logRx

]
−
√
R2 − x2, 0 < x ≤ R (1.10.11)

around the axis Oz.

Hint: choose the particular value c = R2 of the integration constant in (1.10.10).
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Fig. 7. Beltrami surface of revolution of constant negative curvature

Observe that the Beltrami surface has a singularity on the circle

x2 + y2 = R2, z = z0.

Exercise 1.10.12 Let the Gaussian curvature of the metric ds2 = gijdu
idvi identically van-

ish.

1) Prove that the system of equations

∂2f

∂ui∂uj
= Γkij

∂f

∂uk
, i, j = 1, 2 (1.10.12)

for the function f = f(u, v) has a unique solution with arbitrary initial data at a given point
(u0, v0)

f(u0, v0) = f0,
∂f(u0, v0)

∂ui
= f0

i , i = 1, 2.

Hint: rewrite (1.10.12) as a first order system for the vector valued function (f, fu, fv). Check
that vanishing of the Gaussian curvature provides validity of the compatibility conditions for
this system.

2) Choose two solutions f1(u, v), f2(u, v) to the system (1.10.12) with the initial data
f1(u0, v0) = f2(u0, v0) = 0, and the initial values of the derivatives are chosen in such a way
that

gij(u0, v0)fpi (u0, v0)f qj (u0, v0) = δpq, p, q = 1, 2. (1.10.13)

Prove that these functions can be locally chosen as a new system of coordinates on the surface

ũ = f1(u, v), ṽ = f2(u, v).

Prove that in these coordinates the metric takes the Euclidean form

ds2 = dũ2 + dṽ2.

Exercise 1.10.13 Let the induced metric on the surface have a diagonal form

ds2 = h2
1(du1)2 + h2

2(du2)2, hi = hi(u1, u2), i = 1, 2. (1.10.14)
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Prove that the Gauss formula (1.9.18) reduces to

K = − 1
h1h2

[(
h1,2

h2

)
2

+
(
h2,1

h1

)
1

]
. (1.10.15)

Here
h1,2 =

∂h1

∂u2
, h2,1 =

∂h2

∂u1
,

the subscripts ( )1 and ( )2 denote partial derivatives in u1 and u2 respectively.

Exercise 1.10.14 A curve on the surface is called a curvature line if its velocity vector is
an eigenvector of the shape operator A = G−1B:(

b11 b12

b12 b22

)(
u̇
v̇

)
= k

(
g11 g12

g12 g22

)(
u̇
v̇

)
, k = k1 or k = k2. (1.10.16)

Let the principal curvatures k1, k2 of a surface be distinct at a point (u0, v0).

1) Prove that there exist two families of curvature lines near the point (u0, v0) that can be
determined from the differential equation

a2
1 du

2 + (a2
2 − a1

1)du dv − a1
2 dv

2 = 0 (1.10.17)

or, equivalently, under assumption a2
1 6= 0,

2a2
1 du+

[
a2

2 − a1
1 ± (k1 − k2)

]
dv = 0. (1.10.18)

Here aij = aij(u, v) are the matrix entries of the shape operator A.

2) Let
f+(u, v) = C+, f−(u, v) = C−

be first integrals of eqs. (1.10.40) with gradients non-vanishing at the point (u0, v0). Prove
that the functions

ũ = f+(u, v)
ṽ = f−(u, v)

are independent coordinates on the surface near the point (u0, v0). Prove that, in these coor-
dinates both the first and the second fundamental forms of the surface become diagonal.

Exercise 1.10.15 A curve on a surface of negative Gaussian curvature is called asymptotic
if its velocity vector (u̇1, u̇2) is a null-vector of the second fundamental form

bij u̇
iu̇j = 0 (1.10.19)

at every point.

1) Prove that there are two asymptotic curves passing through any point of a surface of
negative curvature.
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2) Let the Gaussian curvature of the surface be equal to K = −1. Prove that one can use
the length parameters p, q on the asymptotic lines as local coordinates on the surface. Prove
that, in these coordinates the metric becomes equal to

ds2 = dp2 + 2 cosϕdp dq + dq2 (1.10.20)

where ϕ = ϕ(p, q) is the angle between the asymptotic lines while the second fundamental
form reduces to

2 sinϕdp dq. (1.10.21)

3) Compute the Christoffel coefficients of the metric (1.10.42)

Γ1
11 = ϕp cotϕ, Γ2

11 = − ϕp
sinϕ

Γ1
12 = Γ2

12 = 0

Γ1
22 = − ϕq

sinϕ
, Γ2

22 = ϕq cotϕ.

Prove that the Gauss equations for the first and second fundamental forms (1.10.42), (1.10.43)
reduce to the Sine-Gordon equation

ϕpq = sinϕ. (1.10.22)

Exercise 1.10.16 Coordinates (u, v) on a surface are called isothermal if the induced metric
is proportional to the metric of Euclidean plane:

ds2 = e2ϕ(du2 + dv2), ϕ = ϕ(u, v). (1.10.23)

1) Introducing complex coordinates

z = u+ iv, z̄ = u− iv

rewrite the metric (1.10.23) in the complex form

ds2 = e2ϕdz dz̄.

2) Consider changes of coordinates

(u, v) 7→ (u′, v′)

defined by holomorphic functions

z = u+ iv 7→ z′ = u′ + iv′ = f(z),
∂f

∂z̄
= 0. (1.10.24)

Prove that the new coordinates (u′, v′) are also isothermal,

ds2 = e2ϕ′
(du′2 + dv′

2)

and

ϕ = ϕ′ + log
∣∣∣∣dfdz
∣∣∣∣ ≡ ϕ′ + 1

2

(
log

df

dz
+ log

df

dz

)
. (1.10.25)
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3) Prove that a surface equipped with a system of isothermal coordinates has a constant
curvature K iff the function ϕ satisfies the Liouville equation

∆ϕ = −K e2ϕ. (1.10.26)

Here
∆ϕ = ϕuu + ϕvv

is the Laplace operator.

4) Recast the Liouville equation into the following form

∂2ϕ

∂z∂z̄
= −K

4
e2ϕ. (1.10.27)

Here we use the standard notations for the complex derivatives

∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Derive directly from (1.10.27) that the Liouville equation is invariant under transformations
(1.10.24), (1.10.25).

5) For the surfaces of zero Gaussian curvature prove that the metric can be reduced to the
Euclidean form by transformations of the form (1.10.24), (1.10.25)

Hint: use the representation ϕ = 1
2(g(z) + g(z)) of any harmonic function ∆ϕ = 0 in

terms of an analytic function g(z).

6) Derive the following formulae for the v-independent solutions to the Liouville equation,
ϕ = ϕ(u)

e2ϕ =
a2R2

cosh2(au+ b)
, K =

1
R2

> 0 (1.10.28)

e2ϕ =
a2R2

sinh2(au+ b)
, K = − 1

R2
< 0 (1.10.29)

where a 6= 0, b are integration constants. Reduce the metrics (1.10.28), (1.10.29) to the form

ds2 =
4R2

(1 + |w|2)2
dw dw̄, K > 0 (1.10.30)

ds2 =
4R2

(1− |w|2)2
dw dw̄, K > 0 (1.10.31)

by the substitution w = eaz+b. Derive the following family of solutions to Liouville equation

ϕ(u, v) = log
2R|f ′(z)|

1± |f(z)|2
, K = ± 1

R2
(1.10.32)

where f(z) is an arbitrary holomorphic function of z = u+ iv.

The subsequent arguments can be used to prove that the formulae (1.10.32) give the
general solution to the Liouville equation.
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7) Let ϕ be a solution to the Liouville equation. Prove that

ω := ϕzz − ϕ2
z (1.10.33)

is a holomorphic function of z
∂ω

∂z̄
= 0.

8) Prove that, under holomorphic changes of coordinates (1.10.24) the function ω(z) 7→
ω′(z′) = ϕ′z′z′ − (ϕ′z′)2 that can be computed from the following transformation law

ω′(z′) = f−2
z

[
ω(z)− 1

2

(
fzzz
fz
− 3

2
f2
zz

f2
z

)]
. (1.10.34)

9) Prove that the solutions to the Schwarzian equation

fzzz
fz
− 3

2
f2
zz

f2
z

= 2ω(z) (1.10.35)

can be represented by a ratio

f =
ψ1

ψ2

of two linearly independent solutions to the following second order linear differential equation

d2ψ

dz2
+ ω(z)ψ = 0. (1.10.36)

The above arguments show that any metric of constant Gaussian curvature in isothermal
coordinates can be reduced to one with vanishing ω′(z′) = ϕ′z′z′ − (ϕ′z′)2 = 0. In sequel we
will omit the primes.

10) Let ϕ be a solution to the Liouville equation satisfying ϕzz − ϕ2
z = 0. Prove that the

real valued function e−ϕ satisfies

∂2

∂z2
e−ϕ =

∂2

∂z̄2
e−ϕ = 0

and, hence, the metric must have the form

ds2 = e2ϕdz dz̄ =
dz dz̄

(azz̄ + b z̄ + b̄ z + c)2
. (1.10.37)

Here a and c are real constants, b is a complex constant. Compute the curvature of this
metric and prove that

K = 4(ac− |b|2).

11) Doing a fractional-linear transformation

w =
α z′ + β

γ z′ + δ
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reduce the metric to one of the following canonical forms

ds2 =
4R2dw dw̄

(1 + |w|2)2
, K =

1
R2

> 0

ds2 = dw dw̄, K = 0

ds2 =
4R2dw dw̄

(1− |w|2)2
, K = − 1

R2
< 0.

Exercise 1.10.17 A curve on the surface is called a curvature line if its velocity vector is
an eigenvector of the shape operator A = G−1B:(

b11 b12

b12 b22

)(
u̇
v̇

)
= k

(
g11 g12

g12 g22

)(
u̇
v̇

)
, k = k1 or k = k2. (1.10.38)

Let the principal curvatures k1, k2 of a surface be distinct at a point (u0, v0).

1) Prove that there exist two families of curvature lines near the point (u0, v0) that can be
determined from the differential equation

a2
1 du

2 + (a2
2 − a1

1)du dv − a1
2 dv

2 = 0 (1.10.39)

or, equivalently, under assumption a2
1 6= 0,

2a2
1 du+

[
a2

2 − a1
1 ± (k1 − k2)

]
dv = 0. (1.10.40)

Here aij = aij(u, v) are the matrix entries of the shape operator A.

2) Let
f+(u, v) = C+, f−(u, v) = C−

be first integrals of eqs. (1.10.40) with gradients non-vanishing at the point (u0, v0). Prove
that the functions

ũ = f+(u, v)
ṽ = f−(u, v)

are independent coordinates on the surface near the point (u0, v0). Prove that, in these coor-
dinates both the first and the second fundamental forms of the surface become diagonal.

Exercise 1.10.18 A curve on a surface of negative Gaussian curvature is called asymptotic
if its velocity vector (u̇1, u̇2) is a null-vector of the second fundamental form

bij u̇
iu̇j = 0 (1.10.41)

at every point.

1) Prove that there are two asymptotic curves passing through any point of a surface of
negative curvature.

2) Let the Gaussian curvature of the surface be equal to K = −1. Prove that one can use
the length parameters p, q on the asymptotic lines as local coordinates on the surface. Prove
that, in these coordinates the metric becomes equal to

ds2 = dp2 + 2 cosϕdp dq + dq2 (1.10.42)
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where ϕ = ϕ(p, q) is the angle between the asymptotic lines while the second fundamental
form reduces to

2 sinϕdp dq. (1.10.43)

3) Compute the Christoffel coefficients of the metric (1.10.42)

Γ1
11 = ϕp cotϕ, Γ2

11 = − ϕp
sinϕ

Γ1
12 = Γ2

12 = 0

Γ1
22 = − ϕq

sinϕ
, Γ2

22 = ϕq cotϕ.

Prove that the Gauss equations for the first and second fundamental forms (1.10.42), (1.10.43)
reduce to the Sine-Gordon equation

ϕpq = sinϕ. (1.10.44)
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