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1 Geometry of Manifolds

1.1 Definition of smooth manifolds

Spaces that locally look like Euclidean spaces are called manifolds. Let us give a definition
of a smooth manifold.

Definition 1.1.1 1) An atlas on a set M is a collection of

• subsets Uα ⊂M that cover all M labeled by an at most numerable set of indices I 3 α;

• for any α ∈ I a one-to-one map ϕα from Uα to an open domain in the Euclidean space
Rn is given

ϕα : Uα → ϕα(Uα) ⊂ Rn (1.1.1)

The pair (Uα, ϕα) is called a coordinate chart on M . The Euclidean coordinates in Rn

(x1
α, . . . , x

n
α) ∈ ϕα(Uα) ⊂ Rn (1.1.2)

define coordinates on the subsets Uα ⊂M , i.e.,

for P ∈ Uα
(
x1
α(P ), . . . , xnα(P )

)
= ϕα(P ).

2) For any pair of intersecting sets Uα∩Uβ 6= ∅ the domains ϕα (Uα ∩ Uβ) and ϕβ (Uα ∩ Uβ)
are open in Rn and the one-to-one map

ϕβ ◦ ϕ−1
α : ϕα (Uα ∩ Uβ)→ ϕβ (Uα ∩ Uβ) (1.1.3)

is smooth.

Since the inverse map

ϕα ◦ ϕ−1
β : ϕβ (Uα ∩ Uβ)→ ϕα (Uα ∩ Uβ)

is smooth as well, we conclude that the transition maps (1.1.3) are all diffeomorphisms.

3) A subset V ⊂M is called open if its intersections with coordinate charts

ϕα (V ∩ Uα) ⊂ Rn

are open for all α ∈ I.

This definition provides a structure of topological space on M .

A set M equipped with an atlas of coordinate charts with smooth transition maps is called
a smooth manifold of dimension n if it is a Hausdorff second countable topological space.

Recall that a topological space X is called Hausdorff if, for any pair of distinct points
P, Q ∈ X there exist disjoint open neighborhoods U 3 P , V 3 Q, U ∩ V = ∅. It is called
second countable if one can find a countable collection B of open subsets of X such that any
open U ⊂ X is a union of subsets from B.
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Figure 1: Transition maps on a smooth manifold

Counterexamples. To construct a “non-Hausdorff manifold” take two copies R± of
real line. Denote x± the standard coordinates on these lines. Identify the negative points
x− with x+ on these lines. The resulting set M is covered by two coordinate charts. The
points 0+ and 0− are distinct; their arbitrary open neighborhoods intersect. To construct a
“non-second countable manifold” one can take a disjoint union of an uncountable number of
copies of real line.

Example 1.1.2 The n-dimensional Euclidean space itself, or also any open domain in it,
are examples of smooth manifolds.

Example 1.1.3 The unit sphere Sn ⊂ Rn+1 is an example of a n-dimensional manifold
covered with two coordinate charts. The maps π± can be described as stereographic projections
of the sphere from the poles P± = (0, 0, . . . ,±1)

π+ : Sn \ P+ → Rn

π+(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
=: (x1

+, . . . , x
n
+)

(1.1.4)

π− : Sn \ P− → Rn

π−(x1, . . . , xn+1) =

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
=: (x1

−, . . . , x
n
−)

4



Fig. 9. Stereographic projections on the sphere

The transition maps defined for the points of intersection Sn \ (P+ ∪ P−) are smooth:

π+ ◦ π−1
− (x1

−, . . . , x
n
−) =

(
x1
−

|x−|2
, . . . ,

xn−
|x−|2

)
|x−|2 = (x1

−)2 + . . . (xn−)2, |x−| 6= 0.

Example 1.1.4 Points of the projective space RPn are lines passing through the origin in
Rn+1. Any line can be defined by its homogeneous coordinates

(x1, . . . , xn, xn+1) ∈ Rn+1 \ 0

considered up to multiplication by a nonzero factor

(x1, . . . , xn, xn+1) ∼ λ(x1, . . . , xn, xn+1), λ 6= 0.

Denote
Uk = {(x1, . . . , xn+1 ∈ Rn+1 |xk 6= 0} ⊂ RPn (1.1.5)

k = 1, . . . , n + 1. The subsets U1, . . . , Un+1 cover all projective space. The coordinates
(x1
k, . . . , x

n
k) on Uk are defined as follows:

ϕk(x
1, . . . , xn+1) =

(
x1

xk
, . . . ,

xn+1

xk

)
=: (x1

k, . . . , x
k−1
k , 1, xkk, . . . , x

n
k). (1.1.6)
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Let us compute the transition maps. On the intersection Uk ∩Ul one has xk 6= 0, xl 6= 0. Let
us assume that k < l. Then xl−1

k = xl

xk
6= 0 on the intersection, so

xil = xik x
l−1
k , i < k

xkl =
1

xl−1
k

xil = xi−1
k xl−1

k , k < i < l

xil = xik x
l−1
k , l ≤ i ≤ n.

This is a smooth map. It is easy to see that also the inverse map is smooth on the intersection.

Example 1.1.5 Given two manifolds M , N of the dimensions n, m respectively one obtains
a natural structure of a smooth manifold of dimension n+m on the Cartesian product M×N .
Indeed, if (Uα, ϕα)α∈I and (Vβ, ψβ)β∈J are atlases on these two manifolds then

(Uα × Vβ, ϕα × ψβ)α∈I, β∈J

ϕα × ψβ : Uα × Vβ → Rn × Rm = Rn+m

(x, y) 7→ (ϕα(x), ψβ(y)).

is an atlas on M ×N . For example, the Cartesian product of two circles S1 × S1 is the two-
dimensional torus T 2. Representing the circle as the segment [0, 2π] with identified endpoints
one arrives at a model of the torus by a square with identified sides

T 2 = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 2π, (0, y) ∼ (2π, y), (x, 0) ∼ (x, 2π)}. (1.1.7)

In a similar way the Cartesian product of n copies of circles is the n-dimensional torus Tn.

A map
f : M → N (1.1.8)

of smooth manifolds with coordinate charts (Uα, ϕα)α∈I on M and (Vβ, ψβ)β∈J on N of
dimensions n and m resp. in local coordinates can be described by m functions of n variables.
Namely, given a point P ∈ Uα ⊂ M such that f(P ) ∈ Vβ ⊂ N , in a neighborhood of this
point the map is represented by functions

ψβ ◦ f ◦ ϕ−1
α : ϕα(Uα)→ ψβ(Vβ)

(1.1.9)

y1
β = f1

β(x1
α, . . . , x

m
α ), . . . , ynβ = fnβ (x1

α, . . . , x
m
α ).

Here (y1
β, . . . , y

n
β ) are coordinates on Vβ ⊂ N , the n functions f1

β , . . . , fnβ of variables

(x1
α, . . . , x

m
α ) are defined by (1.1.9).

Definition 1.1.6 The map (1.1.8) of smooth manifolds is smooth if all its coordinate repre-
sentations (1.1.9) are smooth functions of m variables. In particular, smooth maps f : M →
R are called smooth functions on the manifold M .
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It is easy to check correctness of the definition of smooth maps on the intersections of
coordinate charts.

Example 1.1.7 The space of n × n matrices X = (xij)1≤i, j≤n can be identified with a Eu-

clidean space of dimension n2. The subset of nondegenerate matrices

GL(n) = {X = (xij) | detX 6= 0} (1.1.10)

is an open domain in Rn2
. So GL(n) is a smooth manifold of the same dimension n2. The

product map

GL(n)×GL(n)→ GL(n)

(1.1.11)

(X,Y ) 7→ XY

is a smooth map. Indeed, using matrix entries as coordinates on GL(n) we obtain a repre-
sentation of the map (1.1.11) by polynomials

(XY )ij =
n∑
k=1

xiky
k
j , i, j = 1, . . . , n. (1.1.12)

We leave as an exercise for the reader to verify that the inversion map

GL(n)→ GL(n), X 7→ X−1 (1.1.13)

is smooth.

Observing that the set of all invertible matrices is a group we arrive at the following
general definition.

Definition 1.1.8 A smooth manifold G is called Lie group if a group structure is defined on
G

G×G→ G, (g, h) 7→ gh

(1.1.14)

G→ G, g 7→ g−1

such that the maps (1.1.14) are smooth.

Thus the general linear group GL(n) is an example of a Lie group. Even simpler examples
are Euclidean spaces Rn considered as additive groups. These Lie groups are commutative.
Also tori

Tn = Rn/2π Zn

are commutative Lie groups. Observe that these are compact manifolds. The general linear
groups are not commutative for n > 1.

7



Definition 1.1.9 A smooth one-to-one map

f : M → N

of two manifolds is called diffeomorphism if the inverse map

f−1 : N →M

is smooth.Two smooth manifolds M , N are called diffeomorphic if there exists a diffeomor-
phism f : M → N .

It is easy to see that two diffeomorphic manifolds must have equal dimensions. Indeed,
the m× n and n×m Jacobi matrices(

∂ykβ
∂xiα

)
and

(
∂xiα
∂ykβ

)
, 1 ≤ k ≤ m, 1 ≤ i ≤ n

must be mutually inverse, hence m = n.

Definition 1.1.10 Let (Uα, ϕα)α∈I and (U ′β, ϕ
′
β)β∈I′ be two atlases on the same space M .

They define the same smooth structure on M if the identical map id : M → M is a diffeo-
morphism.

Exercise 1.1.11 We say that an atlas (Vβ, ψβ)β∈J on M is a refinement of another atlas
(Uα, ϕα)α∈I if for any β ∈ J there exists α(β) ∈ I such that Vβ ⊂ Uα(β) and the map
ψβ : Vβ → Rn is the restriction of the map ϕα(β) : Uα(β) → Rn onto Vβ. Prove that
any refinement of an atlas (Uα, ϕα)α∈I on a smooth manifold M defines the same smooth
structure.

1.2 Tangent space to a manifold

A curve on a manifold M is a smooth map of an interval (a, b) ∈ R to M

γ : (a, b)→M (1.2.1)

(a, b) 3 t 7→ γ(t).

In local coordinates the curve is represented by n = dimM smooth functions of one variable

t 7→
(
x1(t), . . . , xn(t)

)
= x(t).

The velocity vector
ẋ(t) =

(
ẋ1(t), . . . , ẋn(t)

)
(1.2.2)

is tangent to the curve at every point
(
x1(t), . . . , xn(t)

)
. Here and below we will use short

notations borrowed from classical mechanics

ḟ(t) =
df(t)

dt

for the t-derivative of a smooth function f(t). Moreover, the parameter t will sometimes be
called ‘time’.
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Example 1.2.1 Choosing n arbitrary real numbers a1, . . . , an one obtains a curve

xi(t) = ait, i = 1, . . . , n (1.2.3)

with a prescribed velocity vector

ẋ(t) =
(
a1, . . . , an

)
. (1.2.4)

Let P ∈ M be a point of a n-dimensional manifold M . We want to define the tangent
space TPM consisting of all tangent vectors of curves passing through P .

Definition 1.2.2 1) Two curves γ1(t) =
(
x1

1(t), . . . , xn1 (t)
)

and γ2(t) =
(
x1

2(t), . . . , xn2 (t)
)

on
M passing through P ∈M at t = 0 are called equivalent if their velocity vectors at this point
coincide (

ẋ1
1(0), . . . , ẋn1 (0)

)
=
(
ẋ1

2(0), . . . , ẋn2 (0)
)
. (1.2.5)

2) Class of equivalence of curves passing through P is called tangent vector to the manifold
at the point P .

3) The set of all tangent vectors at the point P ∈M is called the tangent space TPM to the
manifold at this point.

We will show now that the tangent space TPM at any point P of an n-dimensional
manifold M is isomorphic to the Euclidean space Rn. To this end we first prove

Lemma 1.2.3 The equivalence relation between curves passing through a given point of the
manifold does not depend on the choice of local coordinates.

Proof: After a change of local coordinates

xi
′

= xi
′
(x1, . . . , xn), i = 1, . . . , n (1.2.6)

the curve
(
x1(t), . . . , xn(t)

)
will be represented by n smooth functions

xi
′
(t) = xi

′ (
x1(t), . . . , xn(t)

)
, i′ = 1, . . . , n.

The velocity vector of this curve in new coordinates can be computed by applying the chain
rule

ẋi
′
(t) =

∂xi
′

∂xi
ẋi(t), i′ = 1, . . . , n (1.2.7)

(warning: in this formula summation in the repeated index i but not in i′. The indices i and i′

are independent.). Thus, for a given pair of two curves xi1(t) and xi2(t) with coinciding velocity
vectors ẋi1(0) = ẋi2(0), i = 1, . . . , n at the point P =

(
x1

1(0), . . . , xn1 (0)
)

=
(
x1

2(0), . . . , xn2 (0)
)

their velocity vectors in new coordinates will also coincide,

ẋi
′

1 (0) =
∂xi

′
(P )

∂xi
ẋi1(0) =

∂xi
′
(P )

∂xi
ẋi2(0) = ẋi

′
2 (0), i = 1, . . . , n.

Using this Lemma, and also in view of Example 1.2.1 one arrives at
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Corollary 1.2.4 Any system of local coordinates on a neighborhood of a point P on a n-
dimensional manifold M establishes an isomorphism

TPM ' Rn.

Proof: Indeed, in local coordinates near P any tangent vector at the point P is defined by
n numbers

(
ẋ1(0), . . . , ẋn(0)

)
that can take arbitrary values.

The transformation rule (1.2.7) can be used for an alternative definition of tangent vectors.

Definition 1.2.5 A tangent vector at the point P of an n-dimensional manifold M is a
correspondence that associates an n-tuple of real numbers (v1

α, . . . , v
n
α) with any coordinate

chart Uα ⊂ M containing P . In another coordinate chart Uβ ⊂ M containing P the same
vector is described by another n-tuple (v1

β, . . . , v
n
β ). It is required that the two n-tuples are

related by the transformation law

viβ =
∂xiβ(P )

∂xjα
vjα, i = 1, . . . , n. (1.2.8)

Using matrix notations one can rewrite the transformation rule (1.2.8) as the result of
multiplication by the Jacobi matrix v1

β
...
vnβ

 =

 ∂x1
β/∂x

1
α . . . ∂x1

β/∂x
n
α

... . . .
...

∂xnβ/∂x
1
α . . . ∂xnβ/∂x

n
α


P

 v1
α
...
vnα

 . (1.2.9)

Recall that the Jacobi matrix of the transition functions must not degenerate at the point
P ∈ Uα ∩ Uβ

det

(
∂xiβ(P )

∂xjα

)
6= 0. (1.2.10)

Example 1.2.6 For M = Rn the tangent space can be naturally identified with the space Rn
itself. Same for manifolds realized as open domains in Rn.

Given a manifold M one can construct the set of all tangent vectors

TM = {(x, v) |x ∈M, v ∈ TxM}. (1.2.11)

Exercise 1.2.7 Introduce on TM a structure of 2n-dimensional smooth manifold, where
n = dimM .

The manifold TM is called the total space of tangent bundle on M .

Exercise 1.2.8 Prove that the total space of tangent bundle to the circle M = S1 is diffeo-
morphic to the cylinder S1 × R.
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Let f : M → N be a smooth map of manifolds of dimensions n and m respectively. It
maps smooth curves x(t) passing through a point P ∈ M to smooth curves f(x(t)) passing
through the point f(P ) ∈ N .

Definition 1.2.9 The induced map of tangent spaces

f∗ : TPM → Tf(P )N (1.2.12)

is defined by

TPM 3 ẋ(0) 7→ f∗(ẋ(0)) :=
d

dt
f(x(t))t=0 ∈ Tf(P )N. (1.2.13)

Lemma 1.2.10 Let (U, (x1, . . . , xn)) be a coordinate chart near the point P ∈M and (V, (y1, . . . , ym))
be a coordinate chart near the point f(P ) ∈ N . Let the smooth map in the local coordinates
have the form

x = (x1, . . . , xn) 7→ f(x) = (y1(x), . . . , ym(x)). (1.2.14)

In these coordinates the induced map f∗ : TPM → Tf(P )N is a linear map defined by the
m× n Jacobi matrix

v = (v1, . . . , vn) 7→ f∗(v) =

(
∂yi(P )

∂xj
vj
)

(1.2.15)

or, in an equivalent matrix form v1

...
vn

 7→ f∗(v) =

 ∂y1/∂x1 . . . ∂y1/∂xn

... . . .
...

∂ym/∂x1 . . . ∂ym/∂xn


P

 v1

...
vn

 . (1.2.16)

Proof: Applying the chain rule to the computation of the velocity vector of the curve f(x(t))
one obtains

d

dt
yi(x(t)) =

∂yi

∂xj
dxj(t)

dt
, i = 1, . . . , n.

Example 1.2.11 For a smooth function

f : M → R

on a manifold M the induced map is a linear function on the tangent space at any point

f∗ : TPM → R

v = (v1, . . . , vn) 7→ f∗(v) =
∂f

∂x1
v1 + · · ·+ ∂f

∂xn
vn. (1.2.17)

This linear map coincides with the differential of the function f

f∗ = df(x)

i.e., with the principal linear part of the increment of the function in the direction of the
vector:

f(x+ t v)− f(x) = tf∗(v) +O(t2). (1.2.18)
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Also in general the induced map of linear spaces is often called the differential of the map
f : M → N

df(x) : TxM → Tf(x)N. (1.2.19)

We will now define a dual object: the so-called cotangent space T ∗PM to a n-dimensional
manifold at a given point P ∈ M . Elements of this space are called covectors; in local
coordinates they are described by values of gradients of smooth functions at this point:(

∂f(P )

∂x1
, . . . ,

∂f(P )

∂xn

)
. (1.2.20)

Similarly to Definition 1.2.2 one can give

Definition 1.2.12 Two smooth functions f , g on M are called equivalent at the point P ∈
M if their differentials coincide at the point P . A class of equivalence of smooth function at
a point P ∈ M is called a covector at this point. The set T ∗PM of all covectors at a given
point P ∈M is called the cotangent space at this point.

In local coordinates covectors can be described by n-tuples of real numbers (ω1, . . . , ωn).
However, the transformation law of covectors is different from the one for vectors: namely, if
(ωα1 , . . . , ω

α
n) and (ωβ1 , . . . , ω

β
n) are components of the same covector at a point P ∈ Uα ∩ Uβ

in two coordinate charts Uα and Uβ respectively then

ωαi =
∂xjβ(P )

∂xiα
ωβj , i = 1, . . . , n. (1.2.21)

Indeed, this formula can be easily derived by applying the chain rule to the partial derivatives
of a function f

ωαi =
∂f(P )

∂xiα
, ωβi =

∂f(P )

∂xiβ
. (1.2.22)

One can actually define covectors at a given point with n-tuples of real numbers for any
coordinate chart near this point; these n-tuples must transform according to the rule (1.2.21)
when passing from one coordinate chart to another one. Observe that the transformation
rule (1.2.22) for covectors is different from the one (1.2.8) for vectors. In order to make the
comparison more clear let us rewrite (1.2.22) in matrix form

(ωα1 , . . . , ω
α
n) =

(
ωβ1 , . . . , ω

β
n

) ∂x1
β/∂x

1
α . . . ∂x1

β/∂x
n
α

... . . .
...

∂xnβ/∂x
1
α . . . ∂xnβ/∂x

n
α


P

. (1.2.23)

That is, change of components of a vector from a chart Uα to Uβ is obtained by multiplication
by the Jacobi matrix

J =

(
∂xiβ

∂xjα

)
P

while a similar change of components of a covector is given by multiplication by
(
J−1

)T
.

Like above one can prove that the cotangent space T ∗PM on a n-dimensional manifold M
is a n-dimensional linear space. The differentials dx1

α, . . . , dxnα of local coordinate functions
x1
α, . . . , xnα define a basis in the cotangent space T ∗PM at every point P inside the chart Uα.
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Lemma 1.2.13 There is a natural duality between tangent and cotangent spaces at the same
point via the following nondegenerate pairing

T ∗PM × TPM → R (1.2.24)

(ω, v) 7→ ωiv
i = (ω1, . . . , ωn)

 v1

...
vn

 .

Proof: Let x(t) be a smooth curve such that x(0) = P , ẋ(0) = v; let f(x) be a smooth
function such that df(P ) = ω. Then

d

dt
f(x(t))t=0 =

(
∂f(x(t))

∂xi
ẋi(t)

)
t=0

= ωiv
i.

Since the left hand side of this equation does not depend on the choice of representatives of
the vector v and covector ω, the right hand side is well defined and, in particular, it does not
depend on the choice of local coordinates.

Exercise 1.2.14 Prove directly by using the transformation laws (1.2.8) and (1.2.22) that
the sum ωiv

i does not depend on the choice of a coordinate chart.

Because of Lemma 1.2.13 the cotangent space T ∗PM can be naturally identified with the
dual space to the tangent one

T ∗PM = Hom(TPM,R).

In the same way one can identify

TPM = Hom(T ∗PM,R).

Any smooth map of manifolds f : M →M defines a pullback of cotangent spaces

f∗ : T ∗f(P )N → T ∗PM. (1.2.25)

By definition the value of the pullback of a covector ω ∈ T ∗f(P )N on a vector v ∈ TPM is

equal to the value of ω on the vector f∗(v)

(f∗(ω), v) = (ω, f∗(v)). (1.2.26)

In local coordinates the pullback is written via the same Jacobi matrix by multiplication of
row-vectors

ω = (ω1, . . . ,m) 7→ f∗(ω) =

(
∂yi(P )

∂xj
ωi

)
(1.2.27)

or, equivalently

ω = (ω1, . . . , ωm) 7→ f∗(ω) = (ω1, . . . , ωm)

 ∂y1/∂x1 . . . ∂y1/∂xn

... . . .
...

∂ym/∂x1 . . . ∂ym/∂xn


P

. (1.2.28)

Like the above construction of the manifold TM of tangent vectors to M we define the
total space of cotangent bundle to M by

T ∗M = {(x, ω) |x ∈M, ω ∈ T ∗Mx}. (1.2.29)
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Exercise 1.2.15 Introduce on T ∗M a structure of 2n-dimensional smooth manifold, where
n = dimM .

1.3 Vector fields

So far all vectors and covectors were attached to a given point of a manifold. Now we consider
vector and covector fields.

Definition 1.3.1 A smooth vector field on a manifold M is a vector v(x) ∈ TxM at any
point x ∈M depending smoothly on the point x.

Smooth dependence on the point means that, in a coordinate chart the components v1(x),
. . . , vn(x) are smooth functions of local coordinates. We leave it as an exercise for the reader
to verify independence of this definition from the choice of local coordinates.

With a smooth vector field v(x) =
(
v1(x), . . . , vn(x)

)
on a manifold M one can associate

a dynamical system on M represented by a system of n = dimM autonomous ordinary
differential equations (ODEs)

ẋ1 = v1(x)
ẋ2 = v2(x)
. . . . . . . . .
ẋn = vn(x)

 (1.3.1)

Here and below we will often use the notation for the time derivative ẋ = dx
dt borrowed from

classical mechanics. In this way the dynamical system will read

ẋ = v(x).

A solution x(t) =
(
x1(t), . . . , xn(t)

)
, t ∈ (a, b) ⊂ R to the dynamical system (1.3.1) is a

collection of smooth functions x1(t), . . . , xn(t) satisfying

dxi(t)

dt
= vi

(
x1(t), . . . , xn(t)

)
, i = 1, . . . , n.

It defines an integral curve of the vector field v, i.e., a smooth map

γ : (a, b) 3 t 7→
(
x1(t), . . . , xn(t)

)
= γ(t) ∈M (1.3.2)

such that the velocity vector of the curve coincides with the values of the vector field at the
points of the curve.

Remark 1.3.2 A time-dependent system of ODEs

dx

dt
= v(t, x), x ∈M (1.3.3)

can be interpreted as a dynamical system on R×M 3 (t, x)

dt
dτ = 1

dx
dτ = v(t, x).

 (1.3.4)
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According to the theory of ordinary differential equations for any point x0 ∈ M there
exists an integral curve x(t) defined for sufficiently small |t| passing through this point:

x(t = 0) = x0.

The curve is uniquely determined by the initial condition. Another useful result is the rec-
tification theorem. It says that, near a point x0 ∈ M such that v(x0) 6= 0 there exists a
system of local coordinates (x1, . . . , xn) such that the vector field in these coordinates has
the following form

v(x) = (1, 0, . . . , 0). (1.3.5)

In these coordinates the integral curves of the vector field are obtained by translations along
the first coordinate

x(t) =
(
x1

0 + t, x2
0, . . . , x

n
0

)
.

For vector fields on compact manifolds the following important statement holds true.

Theorem 1.3.3 Any integral curve x(t) of a smooth vector field defined on a smooth compact
manifold can be extended to all values of the parameter t ∈ R.

Using the theorem about smooth dependence of solutions on the initial data one can easily
prove that the map

gt : M →M

gt(x0) = x(t) where ẋ = v(x), x(0) = x0 (1.3.6)

for every t ∈ R is a diffeomorphism. In the particular case t = 0 the diffeomorphism (1.3.6)
is the identity map.

Exercise 1.3.4 Prove that the diffeomorphisms gt generated by an arbitrary smooth vector
field on a compact manifold M form a one-parameter group, i.e.,

gs ◦ gt = gs+t ∀ s, t ∈ R (1.3.7)

g0 = id

g−1
t = g−t.

Example 1.3.5 For a linear vector field on the n-dimensional Euclidean space

v(x) = Ax (1.3.8)

defined by a constant n×n matrix A the solution to the associated system of linear differential
equations

ẋ = Ax (1.3.9)

with the initial datum
x(0) = x0

15



can be expressed via matrix exponential function

x(t) = et Ax0 (1.3.10)

et A = id +
tA

1!
+
t2A2

2!
+ . . . .

In this particular case the equations (1.3.9) from the definition of a one-parameter group of
diffeomorphisms follow from the well known property of the matrix exponential function

eA+B = eAeB if the matrices commute, BA = AB. (1.3.11)

In a more general case of a smooth vector field v(x) on a non-compact manifold M defines
a one-parameter group gt of local diffeomorphisms. That means that, for any point x0 ∈ M
there exists an open neighborhood U 3 x0 and a number ε > 0 such that the integral curve
x(t) of the vector field with the initial data x(0) = x0 exists on U for |t| < ε. The map
gt : U → U on any sufficiently small open subset U ⊂M is defined for sufficiently small |t| in
the same way as in (1.3.6). It satisfies (1.3.7) if |t| < ε, |s| < ε, |s+ t| < ε where ε is as above.

Exercise 1.3.6 Prove that the matrix et A is orthogonal if A is an antisymmetric matrix.
Derive that the linear vector field (1.3.8) is tangent to the spheres |x|2 = R2 if the matrix A
is antisymmetric.

To a vector field v(x) one can associate a differential operator on smooth functions

v : C∞(M)→ C∞(M), f 7→ v f

v f(x) = vi(x)
∂f(x)

∂xi
. (1.3.12)

Due to the formula
f(x+ t v(x))− f(x) = t v f(x) +O(t2) (1.3.13)

the operator (1.3.12) coincides with the derivative of the function f along the vector v(x).

Theorem 1.3.7 For any smooth vector field v(x) the operator (1.3.12) posseses the following
properties:

• linearity v (αf + βg) = α vf + β vg, f, g ∈ C∞(M), α, β ∈ R
(1.3.14)

• Leibnitz identity v (fg) = (vf) g + f vg.

Conversely, any operator satisfying these two properties coincides with the derivative along a
smooth vector field.

Proof: The first part of the theorem follows from an easy computation. Let us now prove the
converse statement. We will begin with the case M = Rn. Let f 7→ Af be a linear operator
on the space C∞(Rn) satisfying Leibnitz identity. Define functions

vi(x) := Axi, i = 1, . . . , n (1.3.15)

16



and consider the linear differential operator

Ã = vi(x)
∂

∂xi
.

By construction
Ãf = Af (1.3.16)

for any linear function
f(x) = aix

i + b.

Applying Leibnitz identity one proves (1.3.16) for any polynomial function f(x). Since any
smooth function can be approximated by polynomials the equallity (1.3.16) holds true for
any smooth function f .

Example 1.3.8 Given a system of local coordinates (x1, . . . , xn) on an open domain U ⊂M ,
one defines n = dimM smooth vector fields on U

∂

∂x1
, . . . ,

∂

∂xn
(1.3.17)

given by unit tangent vectors of the coordinate lines. Clearly these vector fields form a basis
in TxM at every point x ∈ U . Any vector field v(x) is represented as a linear combination of
the basic vector fields

v(x) = v1(x)
∂

∂x1
+ · · ·+ vn(x)

∂

∂xn
. (1.3.18)

The basis does depend on the choice of local coordinates.

Exercise 1.3.9 A function f ∈ C∞(M) is called first integral of a vector field v if

vf ≡ 0. (1.3.19)

Prove that any first integral takes constant values on integral curves of the vector field. Prove
that the vector field v is tangent to the level surface of any first integral of this vector field.

The identification between vector fields and first order linear differential operators allows
us to introduce an important operation of Lie bracket of two vector fields. The definition is
based on the following

Lemma 1.3.10 The commutator [A,B] := AB − BA of two first order linear differential
operators

A = vi(x)
∂

∂xi
, B = wj(x)

∂

∂xj

is again a first order linear differential operator given by the formula

[A,B] =

(
vi(x)

∂wk(x)

∂xi
− wi(x)

∂vk(x)

∂xi

)
∂

∂xk
. (1.3.20)
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Proof: For an arbitrary smooth function f = f(x) one has

AB f = vi(x)
∂

∂xi

(
wj(x)

∂f(x)

∂xj

)
= vi(x)

∂wj(x)

∂xi
∂f(x)

∂xj
+ vi(x)wj(x)

∂2f(x)

∂xi∂xj
.

Since the second derivative ∂2f/∂xi∂xj of a smooth function f is symmetric in i, j, one has

vi(x)wj(x)
∂2f(x)

∂xi∂xj
= wi(x)vj(x)

∂2f(x)

∂xi∂xj
.

Thus

[A,B] f =

(
vi(x)

∂wj(x)

∂xi
− wi(x)

∂vj(x)

∂xi

)
∂f(x)

∂xj
.

Definition 1.3.11 The Lie bracket1 of two vector fields v and w is the vector field [v, w]
with the components

[v, w]k = vi(x)
∂wk(x)

∂xi
− wi(x)

∂vk(x)

∂xi
, k = 1, . . . , n. (1.3.21)

Independence of the above definition from the choice of local coordinates easily follows
from Theorem 1.3.7 and Lemma 1.3.10.

Example 1.3.12 The basic vector fields (1.3.17) commute pairwise[
∂

∂xi
,
∂

∂xj

]
= 0, i, j = 1, . . . , n.

Example 1.3.13 The commutator of two linear vector fields

v(x) = Ax, w(x) = Bx

on a Euclidean space Rn, where A, B ∈Mat(n,R) is again a linear vector field

[v, w](x) = −[A,B]x. (1.3.22)

Here
[A,B] = AB −BA

is the matrix commutator.

The commutator of vector fields is a bilinear antisymmetric operation

[αu+ βv,w] = α[u,w] + β[v, w], [u, αv + βw] = α[u, v] + β[u,w]

[v, u] = −[u, v] (1.3.23)

u, v, w ∈ V ect(M), α, β ∈ R.
1Also often called commutator
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Lemma 1.3.14 For any three vector fields u, v, w the Jacobi identity holds true

[[u, v], w] + [[w, u], v] + [[v, w], u] = 0. (1.3.24)

Proof: By definition the action of the double commutator on a smooth function f is equal
to

[[u, v], w]f = [u, v](wf)− w([u, v]f) = u(v(wf))− v(u(wf))− w(u(vf)) + w(v(uf)).

Adding to this expression two more terms

w(u(vf))−u(w(vf))−v(w(uf))+v(u(wf)) and v(w(uf))−w(v(uf))−u(v(wf))+u(w(vf))

obtained by cyclic permutations of u, v, w one arrives at the proof of the Jacobi identity.

Definition 1.3.15 A linear space equipped with an antisymmetric bilinear operation satisfy-
ing Jacobi identity (1.3.24) is called Lie algebra.

We obtain a structure of Lie algebra on the space of smooth vector fields V ect(M).

Exercise 1.3.16 Let M be a submanifold in a manifold N . Prove that vector fields on N
tangent to M form a Lie subalgebra in V ect(N).

Exercise 1.3.17 Prove that linear vector fields vA(x) = Ax (see (1.3.8)) form a Lie subal-
gebra in V ect(Rn). Prove that the map

vA 7→ −A

establishes an isomorphism of this Lie subalgebra with the Lie algebra of matrices with respect
to the matrix commutator [A,B] = AB −BA.

We will now show that pairwise commuting vector fields on a manifold define an action
of an abelian group.

Lemma 1.3.18 Given two vector fields v, w on a manifold M , consider two systems of
ODEs

dx

dt
= v(x),

dx

ds
= w(x). (1.3.25)

The common solution x(t, s) to these two systems with an arbitrary initial data x(0, 0) = x0 ∈
M exists for sufficiently small |t|, |s| iff the vector fields commute,

[v, w] = 0.
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Proof: By definition the common solution must satisfy

∂x(t, s)

∂t
= v (x(t, s)) ,

∂x(t, s)

∂s
= w (x(t, s)) .

Computing the mixed derivative in two different ways one obtains

∂2xk(t, s)

∂t ∂s
=

∂

∂t

∂xk(t, s)

∂s
=
∂vk(x(t, s))

∂t
=
∂vk(x(t, s))

∂xi
∂xi(t, s)

∂t
=
∂vk(x(t, s))

∂xi
wi(x(t, s))

and
∂2xk(t, s)

∂s ∂t
=

∂

∂s

∂xk(t, s)

∂t
= · · · = ∂wk(x(t, s))

∂xi
vi(x(t, s)).

Due to the symmetry of mixed derivatives in t↔ s one has

∂vk(x(t, s))

∂xi
wi(x(t, s))− ∂wk(x(t, s))

∂xi
vi(x(t, s)) = 0.

Setting t = s = 0 one concludes that

[v, w]|x0 = 0.

Since the point x0 ∈M is arbitrary it follows vanishing of the Lie bracket [v, w].

Let us prove the converse statement. First, if the initial point x0 is a stationary point for
both of the vector field, i.e., v(x0) = w(x0) = 0 then the common solution to (1.3.25) has the
form x(t, s) ≡ x0. Consider now the case where, say, the vector field w does not vanish at
x0. In that case one can do a local change of coordinates on a neighborhood of x0 such that
the vector field w becomes a shift along one of coordinates. Let us use the same notations
for the new system of coordinates, such that

w(x) =
∂

∂x1
.

Vanishing of the Lie bracket [v, w] = 0 then implies that the vector field v does not depend
on x1

v = v
(
x2, . . . , xn

)
.

For sufficiently small |t| denote x̄(t) the solution to the system dx̄/dt = v(x̄) with the initial
data x̄(0) = x0. Define vector valued function x(t, s) =

(
x1(t, s), . . . , xn(t, s)

)
by the formula

x1(t, s) = x̄1(t) + s, xi(t, s) = x̄i(t) for i ≥ 2.

The function satisfies the first equation

∂

∂t
x(t, s) =

∂

∂t
x̄(t) = v (x̄(t)) = v (x(t, s))

as the right hand side does not depend on the first coordinate. It does obviously satisfy also
the second equation

∂xi(t, s)

∂s
= δi1 = wi.

It satisfies the initial condition x(0, 0) = x0.
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Exercise 1.3.19 Let v, w be two vector fields on a manifold M . Denote

gt : M →M, hs : M →M

the one-parameter group of diffeomorphisms generated by these vector fields. Prove that the
diffeomorphisms gt and hs commute for all sufficiently small t, s ∈ R iff the vector fields
commute:

gt ◦ hs = hs ◦ gt ⇔ [v, w] = 0.

Exercise 1.3.20 Prove the following version of Lemma 1.3.18 for systems of non-autonomous
ODEs: two systems of the form

∂x

∂t
= v(t, s, x),

∂x

∂s
= w(t, s, x), x ∈M (1.3.26)

admit, for sufficiently small |t|, |s| a (unique) common solution x = x(t, s) with an arbitrary
initial data x(0, 0) = x0 ∈M iff the (t, s)-dependent vector fields v, w satisfy

∂v

∂s
− ∂w

∂t
= [v, w]. (1.3.27)

Exercise 1.3.21 For the particular case of a pair of systems of linear ODEs

∂x

∂t
= Ax,

∂x

∂s
= B x (1.3.28)

A = A(t, s), B = B(t, s) are smooth functions with values in GL(n,R)

the conditions of compatibility read

∂A

∂s
− ∂B

∂t
+ [A,B] = 0 (1.3.29)

(the so-called zero curvature equations).

Let us now consider the covector fields on smooth manifolds, i.e., a covector ω(x) ∈ T ∗xM
defined at any point x ∈M smoothly depending on the point. At the points of any coordinate
chart (U, (x1, . . . , xn)) on M one has n covectors

dx1, dx2, . . . , dxn ∈ T ∗xM, x ∈ U ⊂M (1.3.30)

defined as differentials of the coordinate functions. The values of these covectors on the basic
vectors can be easily computed from the definition of differential:(

dxi,
∂

∂xj

)
= δij . (1.3.31)

So, at every point x ∈ U the covectors dx1, dx2, . . . , dxn define a basis in T ∗xM dual to the
basis

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

in the tangent space TxM . If (ω1(x), . . . , ωn(x)) are the components of the covector ω(x) in
the coordinates (x1, . . . , xn) then the decomposition of the covector with respect to the basis
(1.3.30) reads

ω = ω1(x)dx1 + ω2(x)dx2 + · · ·+ ωn(x)dxn ≡ ωi(x)dxi. (1.3.32)

Such expressions are called differential 1-forms.
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Example 1.3.22 A 1-form on the line is an expression ω = f(x)dx. It can be integrated
over any segment of the line ∫ b

a
ω =

∫ b

a
f(x)dx. (1.3.33)

More generally for any smooth curve in the manifold M

x = x(t), a ≤ t ≤ b

1.4 Smooth functions on manifolds, partitions of unity.

One of the main structures associated with a smooth manifold M is the space C∞(M) of
smooth functions on M . This is a linear space with respect to obvious operations of sum of
functions and multiplication of functions by real constants. Moreover, it is an algebra, i.e.,
the product of functions satisfies the properties

f(gh) = (fg)h ∀ f, g, h ∈ C∞(M) (associativity)

(α f + β g)h = α fh+ β gh, ∀ f, g, h ∈ C∞(M), ∀α, β ∈ R.

Clearly this algebra is commutative
gf = fg

and has a unity f ≡ 1.

Example 1.4.1 For M = Rn the algebra C∞(Rn) coincides with the algebra of smooth func-
tions of n variables. For the case M = D ⊂ Rn of an open domain in Euclidean space the
space C∞(Rn) coincides with the algebra of smooth functions of n variables defined on D.

Example 1.4.2 The space of smooth 2π-periodic functions

f(x+ 2π) = f(x)

can be identified with functions on the circle C∞(S1). In a similar way smooth functions on
the n-dimensional torus Tn = S1 × · · · × S1 (n factors) can be realized by smooth functions
of n variables 2π-periodic in each variable

f(x1 + 2πm1, x2 + 2πm2, . . . , xn + 2πmn) = f(x1, x2, . . . , xn), m1, m2, . . . ,mn ∈ Zn.

Example 1.4.3 Smooth functions on the projective space RPn can be identified with smooth
homogeneous functions on Rn+1 \ 0

f(λx) = f(x) ∀λ 6= 0.

One can also define a structure of a topological space on the space of smooth functions.
Roughly speaking the convergence of a sequence of smooth functions in C∞(M) is defined
as the uniform convergence on compact subsets in M of the functions together with their
partial derivatives of all orders. The operations defined above give continuous maps of the
topological vector spaces

C∞(M)× C∞(M)→ C∞(M).
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We will not enter into details of these constructions here (they require to use a Riemannian
metric on M that will be defined later).

A smooth map of manifolds f : M → N induces the pullback homomorphism of algebras
of smooth functions

f∗ : C∞(N)→ C∞(M) (1.4.1)

C∞(N) 3 g 7→ g ◦ f ∈ C∞(M).

In particular for every coordinate chart (U,ϕ) on M the pullback induced by the inclusion
U ↪→M together with the ϕ−1 map induces a restriction homomorphism

C∞(M)→ C∞(ϕ(U)). (1.4.2)

Restricting a smooth function from an n-dimensional manifold M to a coordinate chart
one obtains a smooth function of n variables. An important point of the theory of smooth
manifolds is the possibility to extend to the entire manifold the functions defined locally. To
this end one has to construct a sufficiently rich list of C∞-smooth functions.

Let us give a list of useful examples of such C∞-smooth functions.

1) The function

q(x) =

{
e−

1
x2 , x > 0

0, x ≤ 0
(1.4.3)

Fig. 10. Graph of the function (1.4.3)

is C∞-smooth. All its derivatives vanish at the origin.

2) The C∞-smooth function

r(x) =

{
e
− 1

(1−x2)2 , |x| < 1
0, |x| ≥ 1

(1.4.4)
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Fig. 11. Graph of the function (1.4.4)

is positive on (−1, 1) and vanishes outside this interval. All its derivatives vanish at
x = ±1.

3) The C∞-smooth monotone function

p(x) =

∫ x
−∞ r(x) dx∫∞
−∞ r(x) dx

(1.4.5)

is equal to 0 for x ≤ −1, to 1 for x ≥ 1, and smoothly interpolates between 0 and 1 in the
interval (−1, 1).

Fig. 12. Graph of the function (1.4.5)

The function

p

(
x1 + x2 − 2x

x2 − x1

)
for arbitrary x1 < x2 is equal to 1 for x < x1, to 0 for x > x2 and smoothly interpolates
between 1 and 0 on the interval (x1, x2).
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4) For two positive numbers 0 < r < R the function

Pr,R(x) = p

(
r +R− 2|x|

R− r

)
, x = (x1, . . . , xn), |x| =

√
(x1)2 + · · ·+ (xn)2 (1.4.6)

is a C∞-smooth function of n variables satisfying

Pr,R(x) = 0, |x| ≥ R
Pr,R(x) = 1, |x| ≤ r (1.4.7)

0 < Pr,R(x) < 1, r < |x| < R.

Fig. 13. The function (1.4.7) for n = 2, r = 1, R = 2

Using the above constructions we can easily prove the possibility of extension of locally
defined smooth functions onto entire manifold.

Theorem 1.4.4 Let (U,ϕ) be a coordinate chart on a smooth manifold M . Then, for an
arbitrary smooth function f ∈ C∞(U) defined on the chart U and an arbitrary point x0 ∈ U
there exists a smooth function f̂ ∈ C∞(M) such that

• f̂ = f on some neighborhood of the point x0

• f̂ = 0 on M \ U.

Proof: There exists a positive number ε such that the open ball

Bε(x0) = {x ∈ U | |x− x0| < ε}

of the radius ε centered at x0 belongs to U . The C∞-function

f̂(x) =


f(x)P ε

2
, ε(x− x0), x ∈ Bε(x0)

0, x ∈M \Bε(x0)
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coincides with f(x) on the ball B ε
2
(x0); it is equal to zero on the complement to the ball

Bε(x0).

Many properties of smooth functions and smooth maps of manifolds can be established
with the help of a gadget called partition of unity.

Let M be a smooth manifold with an atlas of charts (Uα, ϕα)α∈I that is locally finite, i.e.,
it is such that any point x ∈M possesses an open neighborhood intersecting with only finite
number of charts. For example, on any compact manifold one can choose an atlas with a
finite number of charts.

Definition 1.4.5 A partition of unity on the manifold M with a locally finite atlas is a set
of smooth functions (pα(x))α∈I on M such that

• pα(x) = 0 for x ∈M \ Uα
• 0 ≤ pα(x) ≤ 1 ∀α ∈ I
•

∑
α∈I

pα(x) ≡ 1. (1.4.8)

Note that the sum in (1.4.8) is finite for any x ∈M .

Theorem 1.4.6 Let M be a compact manifold with an atlas (Uα, ϕα)α∈I . Then there exists
a refinement of this atlas and a partition of unity associated with this refinement.

Proof: For any point x ∈ Uα ⊂ M there exists a positive number ε such that the open ball
Bε(x) belongs to Uα. In this way one obtains a covering of M with open subsets. The open
balls of radius ρ = ε

2 still cover M . Due to compactness one can choose a finite subcovering
of M by open balls Bρk(zk), k = 1, 2, . . . ,K. Here we denote z1, . . . , zK the centres of the
balls. By construction every ball B2ρk(zk) is a subset of a chart Uα(k) for some α(k). So the
balls B2ρ1(z1), . . . , B2ρK (zK) give a refinement of the original atlas. Define functions

p̃k(x) =


Pρk,2ρk(x− zk), x ∈ B2ρk(zk)

0, x ∈M \B2ρk(zk)
(1.4.9)

and put

pk(x) =
p̃k(x)∑K
k=1 p̃k(x)

, k = 1, . . . ,K.

These functions provide us with a partition of unity associated with the atlas B2ρ1(z1), . . . ,
B2ρK (zK).

Exercise 1.4.7 Develop a similar construction replacing balls with cubes.

Remark 1.4.8 The assumption of compactness of the manifold can be relaxed. Namely, it
suffices to assume paracompactness of M . By definition the manifold M is paracompact if
for any covering of M with open subsets there exists a locally finite refinement.
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Exercise 1.4.9 Prove existence of a partition of unity for any paracompact manifold.

Let us now consider the case of an arbitrary paracompact manifold. Without loss of
generality one may assume existence of a partition of unity pα(x) associated with the atlas
(Uα, ϕα)α∈I . Every local coordinate xiα can be smoothly extended onto M by using the
construction of the Theorem 1.4.4. Define a vector field

vα(x) := viα(x)
∂

∂xiα
, x ∈ Uα,

viα(x) := Axiα, i = 1, . . . , n

vα(x) = 0 for x ∈M \ Uα.

As above one proves that the actions of the vector field and the operator A on smooth
vanishing outside Uα coincide. Put

v :=
∑
α

pα(x)vα(x)

This vector field coincides with the operator A everywhere on M .

1.5 Immersions and submersions

Using the constructions developed in the proof of Theorem 1.4.6 one can prove that any
compact manifold can be realized as a multidimensional surface in a Euclidean space of
sufficiently large dimension. Before doing this let us recall some elementary constructions
from linear algebra. Let A : V → W be a linear map of finite dimensional vector spaces.
There are two natural subspaces: the kernel of A

{x ∈ V |Ax = 0} =: KerA ⊂ V

and the image of A
ImA := A(V ) ⊂W.

Dimension of the image is called the rank of the linear map

rkA = dim ImA. (1.5.1)

Choosing bases in the spaces V and W one can represent A by a matrix. Then the rank is
equal to the number of linearly independent columns of the matrix, or, equivalently, to the
number of linearly independent rows. The dimension of the kernel can be computed by the
formula

dim KerA = dim V − rkA. (1.5.2)

The linear map is called injective if KerA = 0 and surjective if ImA = W . A necessary
condition for injectivity is the inequality dimV ≤ dimW while for surjectivity it is necessary
to have dimV ≥ dimW .

Exercise 1.5.1 Define the cokernel of the linear map as the quotient

CokerA = W/ImA.
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The index of a linear map is defined as the difference

indA = dim KerA− dim CokerA. (1.5.3)

Prove that the index does not depend on A and is given by the formula

indA = dimV − dimW.

We will now formulate the following

Definition 1.5.2 A smooth map f : M → N of two manifolds is called immersion if the
differential

f∗ : TxM → Tf(x)N (1.5.4)

is an injective linear map at any point x ∈M . An immersion is called embedding if f(x1) 6=
f(x2) for any pair of distinct points x1, x2 ∈M .

If the manifolds M and N have dimensions m and n respectively, and the smooth map f
in local coordinates is represented in the form (1.2.14), then the map f is an immersion iff
the rank of the Jacobi matrix (1.2.16) of the map is equal to m at every point x ∈ M . In
particular for m = 1 and m = 2 one reproduces the definitions of regularity of a curve or a
surface in a Euclidean space. In general one must necessarily have m ≤ n for an immersion.

The images of embeddings of smooth manifolds define submanifolds2. They generalize
the curves and surfaces in a parametric representation studied in the first half of the course.
As it follows from the Theorem 1.6.10 any compact manifold can be realized as a smooth
submanifold in the Euclidean space of a sufficiently large dimension.

Example 1.5.3 A smooth map γ : R→ Rn is a vector function

γ(t) =
(
x1(t), . . . , xn(t)

)
.

Such a map is an immersion iff the velocity vector

γ̇(t) =
(
ẋ1(t), . . . , ẋn(t)

)
6= 0.

Example 1.5.4 Consider a map of a domain D in R2 to the three-dimensional Euclidean
space. It is represented by a vector function of two variables

r : D → R3, r(u, v) = (x(u, v), y(u, v), z(u, v)) . (1.5.5)

Such a map is an immersion iff the rank of the Jacobi matrix xu xv
yu yv
zu zv


2One has to add more assumptions if the embedded manifold is non compact. Namely, one says that a

smooth map f : M → N is proper of the preimage f−1(K) of any compact subset K ⊂ N is a compact subset
in M . By definition the image f(M) of an embedding is called a submanifold in N if the map f is proper.
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equals two (here and below the subscripts stand for partial derivatives). Equivalently, consider
the vectors

ru, rv.

The above condition about the rank of the Jacobi matrix means that these two vectors are
linearly independent at every point of the surface. Clearly they are tangent to the surface,
so they span the tangent plane T(u,v)M at every point (u, v) of the two-dimensional manifold
M = r(D) (here we add an assumption that the map (1.5.5) is an embedding). Observe that
the vector

N = ru × rv 6= 0 (1.5.6)

at every point of the surface. This vector is orthogonal to the surface (i.e., it is orthogonal
to the tangent plane T(u,v)M at every point (u, v) ∈M).

In the particular case of a graph of a smooth function

z = f(x, y)

the vector function can be written in the form

r = (x, y, f(x, y)) .

So the basis of tangent vectors reads

rx = (1, 0, fx) , ry = (0, 1, fy)

and the normal vector (1.5.6) has the form

N = (−fx,−fy, 1) .

Exercise 1.5.5 Let r(u, v) be an embedding of a domain D ⊂ R2 into the three-dimensional
Euclidean space. Denote M ⊂ R3 the image of this embedding. Assume that the third
component of the normal vector (1.5.6) does not vanish at the point (u0, v0). Prove that M
locally, near the point (u0, v0), can be represented as a graph of a smooth function z = f(x, y).

Submanifolds can also be defined by systems of equations. To be more precise let us first
give the following important auxiliary definitions and statements about smooth maps.

Definition 1.5.6 1) We say that a point x ∈M is a regular point of a smooth map f if the
differential

df(x) : TxM → Tf(x)N

is surjective. In the opposite case the point x ∈M is critical for the smooth map.

2) A point y ∈ N is called a regular value if every point in the preimage f−1(y) is a
regular one. In the opposite case the point y ∈ N is called a critical value

Remark 1.5.7 In case a smooth map f : M → N is regular at every point x ∈ M they say
that f is a submersion.
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Example 1.5.8 A point x0 is critical for a smooth function f : M → R iff the differential
df vanishes at the point. In other words, all partial derivatives vanish at x = x0

∂f(x0)

∂x1
= 0, . . . ,

∂f(x0)

∂xm
= 0.

In particular the points of maximum or minimum are critical points of the function.

More generally, if the manifolds M and N have dimensions m and n respectively, and the
smooth map f in local coordinates is represented in the form (1.2.14), then the point x0 ∈M
is regular for the map f iff the rank of the Jacobi matrix (1.2.16) of the map is equal to n
at the point x0. Recall that this can happen only if m ≥ n.

Example 1.5.9 Let TM be the total space of the tangent bundle of a n-dimensional manifold
M . The points of TM are pairs (x, v) where x ∈M and v ∈ TxM . This is a smooth manifold
of dimension 2n. The map TM →M given by projection

(x, v)→ x

is a submersion.

Example 1.5.10 The map Sn → RPn assigning to a point x of the unit sphere a pair ±x
of opposite points is an immersion and submersion.

Theorem 1.5.11 Let f : M → N be a smooth map having a regular value y0 ∈ f(M). Then
the preimage

F := f−1(y0) = {x ∈M | f(x) = y0} (1.5.7)

is a smooth submanifold in M of the dimension

dimF = dimM − dimN. (1.5.8)

They also say that the submanifold F has codimension =dimN ,

codimF := dimM − dimF. (1.5.9)

Proof: At every coordinate chart (U, (x1, . . . , xn)) on M the points of the preimage F have
to be determined from a system of m equations with n unknowns

y1(x1, . . . , xn) = y1
0

. . . . . . . . . . . .
ym(x1, . . . , xn) = ym0

 . (1.5.10)

Here y1
0, . . . , ym0 are coordinates of the point y0 in a coordinate chart (V, (y1, . . . , ym)) on N .

We want to apply the implicit function theorem to this system.

At every point x ∈ F of the preimage at least one of the m × m minors of the Jacobi
matrix  ∂y1/∂x1 . . . ∂y1/∂xn

... . . .
...

∂ym/∂x1 . . . ∂ym/∂xn
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does not vanish. For every m-tuple of indices 1 ≤ j1 < j2 < · · · < jm ≤ n denote

Uj1j2...jm = {x ∈ U ∩ F | Jj1j2...jm(x) 6= 0}
(1.5.11)

Jj1j2...jm(x) = det

 ∂y1/∂xj1 . . . ∂y1/∂xjm

... . . .
...

∂ym/∂xj1 . . . ∂ym/∂xjm


x

.

Every set Uj1j2...jm is an open domain in F ; the collection of all these domains covers F . Let
us construct a coordinate chart on a neighborhood of a point x0 ∈ Uj1j2...jm . Represent the
set of indices {1, 2, . . . , n} as a disjoint union of two subsets

{1, 2, . . . , n} = {j1, j2, . . . , jm} t {k1, k2, . . . , kn−m}. (1.5.12)

According to the implicit function theorem there exists an open neighborhood of the point

x0 ∈ Uj1j2...jm(x0) ⊂ Uj1j2...jm

where the solutions to the system (1.5.10) admit a representation by smooth functions

xj1 = gj1
(
xk1 , . . . , xkn−m

)
. . . . . . . . . . . .

xjm = gjm
(
xk1 , . . . , xkn−m

)

 (1.5.13)

such that
gjs
(
xk10 , . . . , x

kn−m
0

)
= xjs0 , s = 1, . . . ,m (1.5.14)

(the coordinates of the point x0). The functions gj1 , . . . , gjm are determined by the sys-
tem (1.5.10) and the normalization condition (1.5.14) uniquely; their partial derivatives are
determined from the linear system

m∑
s=1

∂yi

∂xjs
∂gjs

∂xkt
+

∂yi

∂xkt
= 0, i = 1, . . . ,m, t = 1, . . . , n−m. (1.5.15)

The determinant of the coefficient matrix of this linear system coincides with Jj1j2...jm(x),
x ∈ Uj1j2...jm(x0) ⊂ Uj1j2...jm . So this determinant does not vanish. Therefore the variables(
xk1 , . . . , xkn−m

)
define coordinates on the chart Uj1j2...jm(x0). We leave as an exercise to

verify that the transition functions from the chart Uj1j2...jm(x0) to another one Uj′1j′2...j′m(x′0)
and back are smooth on the intersection of charts.

Example 1.5.12 The level surface of a smooth function f : M → R is a submanifold F :=
{x ∈M | f(x) = 0} ⊂M of codimension 1 iff

n∑
i=1

∣∣∣∣∂f(x)

∂x1

∣∣∣∣2 + · · ·+
∣∣∣∣∂f(x)

∂xn

∣∣∣∣2 6= 0 ∀x ∈ F. (1.5.16)
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Exercise 1.5.13 Let 0 be a regular value of a smooth function f(x, y, z) defined on a domain
B ⊂ R3. Denote

M = {(x, y, z) ∈ B | f(x, y, z) = 0}

the zero level surface of this function. According to Theorem 1.5.11 M is a two-dimensional
submanifold in R3 (i.e., a surface). Prove that the tangent plane to the surface at a point
(x0, y0, z0) ∈M is determined by the linear equation

T(x0,y0,z0)M = {(X,Y, Z) ∈ R3 | fx(x0, y0, z0)X + fy(x0, y0, z0)Y + fz(x0, y0, z0)Z = 0}.

That is, the gradient of f is orthogonal to the level surface f = 0.

Exercise 1.5.14 Prove that the special linear group

SL(n) ⊂ GL(n)

SL(n) = {X = (xij)1≤i, j≤n| detX = 1} (1.5.17)

is a smooth submanifold of dimension n2−1. Prove that the tangent space to this submanifold
at the point X = 1 (the identity matrix) can be identified with the linear space of all n × n
matrices of trace zero

T1SL(n) = {Y ∈Mat(n,R) | trY = 0}. (1.5.18)

Prove that SL(n) is a Lie group in the sense of the Definition 1.1.8.

Exercise 1.5.15 Prove that orthogonal group

O(n) ⊂ GL(n)

O(n) = {X = (xij)1≤i, j≤n|XTX = 1} (1.5.19)

is a smooth submanifold of dimension n(n−1)
2 . Prove that the tangent space to this submanifold

at the point X = 1 can be identified with the linear space of all antisymmetric matrices

T1O(n) = {Y ∈Mat(n,R) |Y T + Y = 0}. (1.5.20)

Prove that this is a Lie group in the sense of the Definition 1.1.8. Prove similar statements
for the subgroup

SO(n) = O(n) ∩ SL(n).

1.6 Sard theorem. Embeddings of compact manifolds into Euclidean spaces.
Transversality.

The following deep result is used quite often in differential topology.

Theorem 1.6.1 (Sard Theorem) The set f(C) ⊂ N of critical values of a smooth map
f : M → N of two manifolds is a subset of measure zero in N .
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By definition a subset A of a n-dimensional euclidean space Rn has measure zero if, for
any positive ε there exists an at most countable set of n-dimensional cubes covering A of the
total volume less than ε. The subset B of an n-dimensional manifold N has measure zero if,
for any chart U ⊂ N , φ : U → Rn the image φ (B ∩ U) ⊂ Rn has measure zero in Rn.

Exercise 1.6.2 Proof that the definition of a subset of measure zero does not depend on the
choice of an atlas on a smooth manifold.

In the proof of Sard theorem we will use the following statement that can be derived from
Fubini theorem.

Proposition 1.6.3 Let A be a subset in Rn = R × Rn−1 such that, for any t ∈ R the
intersection At of A with the (n− 1)-dimensional hyperplane {t}×Rn−1 has measure zero in
Rn−1. Then A has measure zero in Rn.

Proof of the Sard theorem. It suffices to prove the local statement: for a given smooth
map f : U → Rn of an open subset U ⊂ Rm the measure of the subset of critical values
f(C) ⊂ Rn is zero. Let us use induction in m. For m = 0, n = 0 there is nothing to prove.
So, let us assume that both dimensions m and n are positive. Introduce subsets Cp ⊂ U as
follows

Cp = {x ∈ U | all partial derivatives of f of order ≤ p vanish at the point x}.

Clearly
Cp ⊂ C.

Moreover, one has a filtration
· · · ⊂ C2 ⊂ C1 ⊂ C (1.6.1)

The first step will be in proving

Lemma 1.6.4 The measure of f (C \ C1) ⊂ Rn is equal to zero.

Proof: Observe that, for n = 1 the filtration is trivial, C1 = C. So, let us assume n ≥ 2. Let
x0 ∈ C \ C1. Thus, at least one of the first order partial derivatives of the map

f(x) =
(
f1(x), . . . , fn(x)

)
, x =

(
x1, . . . , xm

)
(1.6.2)

is different from zero at the point x0 while the rank of the m× n Jacobi matrix(
∂fk(x0)

∂xi

)
1≤k≤n, 1≤i≤m

is less than n. Without loss of generality we may assume that

∂f1(x0)

∂x1
6= 0. (1.6.3)
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Define a map h : U → Rm by the formula

h(x) =
(
f1(x), x2, . . . , xm

)
.

Due to assumption (1.6.3) it is a local diffeomorphism of some neighborhood V (x0) onto an
open neighborhood V0 of the point h(x0). Consider the map

g = f ◦ h−1 : V0 → Rn.

The set C0 of critical points of this map coincides with h (V (x0) ∩ C). Clearly

∂g1

∂x1
= 1,

∂g1

∂xi
= 0 for i ≥ 2. (1.6.4)

Let us fix the restriction gt of the map g onto the (m− 1)-dimensional hyperplane

x1 = t

for a given constant t close to x1
0,

gt :
(
{t} × Rm−1

)
∩ V0 → Rn.

Due to (1.6.4) the Jacobi matrix of the map g has the form(
∂gk

∂xj

)
=

(
1 0

∗ ∂gkt
∂xj

)
.

So, x = (t, x2, . . . , xm) is a critical point of g iff the point {t} × (x2, . . . , xm) is a critical
point of gt. By induction the measure of the set of critical values of gt has measure zero.
Applying Proposition 1.6.3 we conclude that the set of critical values of g has measure zero.
The lemma is proved.

At the next step we deal with the complement Cp \ Cp+1 for p ≥ 1.

Lemma 1.6.5 For p ≥ 1 the measure of the set f (Cp \ Cp+1) ⊂ Rn is zero.

Proof: Let x0 ∈ Cp \ Cp+1. That is, all partial derivatives of the functions fk(x) (see eq.
(1.6.2)) of order ≤ i vanish at this point but, for some indices k, i1, . . . , ip+1 the partial
derivative

∂p+1fk(x0)

∂xi1 . . . ∂xip+1
6= 0.

Without loss of generality we may assume that i1 = 1. Denote

w(x) =
∂pfk(x)

∂xi2 . . . ∂xip+1
.

One has

w(x0) = 0,
∂w(x0)

∂x1
6= 0.
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Like in the proof of Lemma 1.6.4 let us consider the map h : U → Rm

h(x) =
(
w(x), x2, . . . , xm

)
.

It is a diffeomorphism of a neighborhood V (x0) ⊂ U of the point x0 ∈ Cp \ Cp+1 onto an
open domain V0 ⊂ Rm. Recall that, at the points in Cp the function w(x) vanishes. So, the
image h (Cp ∩ V (x0)) belongs to the hyperplane {0} × Rm−1.

Like in the proof of Lemma 1.6.4 consider the superposition

g = f ◦ h−1 : V0 → Rn.

Denote g̃ the restriction of g onto the hyperplane,

g̃ :
(
{0} × Rm−1

)
∩ V0 → Rn.

Any point of the set h(Cp ∩ V (x0) is critical for g̃. By induction the measure of image
of the set of critical points of g̃ belonging to V0 is zero. Thus, the measure of the set
g̃ ◦ h (Cp ∩ V0) = f (Cp ∩ V0) ⊂ Rn is zero. Covering Cp \ Cp+1 with a countable set of such
domains V0 we complete the proof of Lemma.

The last step in the proof of the Sard theorem is given by

Lemma 1.6.6 For sufficiently large p the measure of f(Cp) ∈ Rn is zero.

Proof: Let us cover the set Cp with a countable set of cubes of the size δ (so, the volume
of every cube equals δm). Let Im be any of such cubes. Let us prove that the measure of
f(Cp ∩ Im) is zero. For any point x ∈ Cp ∩ Im and any vector ∆x such that x+ ∆x ∈ Im we
have

f(x+ ∆x) = f(x) +R(x,∆x)

where the truncation error satisfies the estimate

‖R(x,∆x)‖ ≤ α ‖∆x‖p+1 (1.6.5)

as it readily follows from the Taylor formula. Here α is a constant depending on f and on
the cube Im. Let us divide the cube Im into rm smaller cubes of size δ/r, r ∈ Z>0. Denote
Im0 a cube containing the point x. Every point in Im0 has the form x + ∆x where the norm
of the vector ∆x satisfies inequality

‖∆x‖ ≤
√
m
δ

r
.

Using the estimate (1.6.5) we conclude that the image f(Im0 ) belongs to a cube of size c
rp+1

where
c = 2α

(√
mδ
)p+1

.

Hence the image f(Cp ∩ Im) belongs to the union of rm cubes of the total volume less or
equal than

rm
( c

rp+1

)n
= cnrm−n(p+1).
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If p is such that

p+ 1 >
m

n
than the total volume tends to zero when r → ∞. This completes the proof of the Lemma
and also of the Sard theorem.

Corollary 1.6.7 There always exists a regular value y ∈ N of a smooth map f : M → N .

A particular case of this corollary is used often:

Corollary 1.6.8 Let f : M → N be a smooth map of manifolds of dimensions m and n
respectively. If m < n then there exists a point y ∈ N that does not belong to the image
f(M).

Proof: For m < n the differential df(x) cannot be surjective at any point x ∈ M . So any
point in f(M) is a critical value. Therefore the image has measure zero and thus cannot
cover the entire N .

Another corollary from Sard theorem says that

Corollary 1.6.9 Given a point y0 ∈ N , then the set of smooth maps M → N having y0 as
a regular value is dense in the space of all smooth maps C∞(M,N).

Proof: We have to prove that, for any smooth map f : M → N there exists a deformed map
f̃ such that y0 ∈ N is a regular value for f̃ . Moreover, the deformed map f̃ can be chosen
arbitrarily close to f . Indeed, if y0 is a critical value of f then, due to Sard theorem, for an
arbitrary neighborhood U , y0 ∈ U ⊂ N there exists a point ỹ0 ∈ U being a regular value
for f . Without loss of generality one may assume that U is diffeomorphic to the standard
n-dimensional ball Bn. Denote ϕ : U → Bn the diffeomorphism. Put z0 = ϕ(y0), z̃0 = ϕ(ỹ0).
It is easy to construct a diffeomorphism h : Bn → Bn identical near the boundary ∂ Bn

moving z̃0 to z0 and, moreover, satisfying the inequality

‖h(z)− z‖ < ε = ‖z0 − z̃0‖ for any z ∈ Bn. (1.6.6)

Denote H = ϕ−1 ◦ h ◦ ϕ the corresponding diffeomorphism of U to itself. Extend H to a
diffeomorphism N → N by the identity map outside U . Then for the smooth map

f̃ = H ◦ f

the point y0 will be regular as the preimage f̃−1(y0) coincides with f−1(ỹ0). The map f̃ is
close to f because of (1.6.6).

Clearly the set of smooth maps from M to N having a given point y0 ∈ N as a regular
value is open. The Corollary says that this subset is dense in the space of all smooth maps
C∞(M,N).

They often represent this idea saying that for a generic smooth map f : M → N a given
point y0 ∈ N is a regular value.

We will now use Sard theorem in the proof of the following
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Theorem 1.6.10 (Whitney) Given a compact n-dimensional manifold M there exists an
immersion

M → R2n

and an embedding
f : M → R2n+1.

Proof: Let us first construct an embedding of M into a Euclidean space of sufficiently large
dimension N . Consider a covering of the manifold M by open balls Bρ1(z1), . . .BρK (zK)
constructed in the proof of Theorem 1.4.6. For every k = 1, . . . ,K we have constructed a
smooth function p̃k(x) on M such that

p̃k(x) ≡ 1 for x ∈ Bρk(zk)

p̃k(x) ≡ 0 for x ∈M \B2ρk(zk)

0 < p̃k(x) < 1 for x ∈ B2ρk(zk) \Bρk(zk)

(see eq. (1.4.9)). Let n be the dimension of the manifold M . Define a smooth map

fk : M → Rn+1

fk(x) =
(
x1
kp̃k(x), . . . , xnk p̃k(x), p̃k(x)

)
.

Here (x1
k, . . . , x

n
k) are the local coordinates near the point zk. This map is smooth; it vanishes

outside the ball B2ρk(zk). Restricting this map onto the ball Bρk(zk) one obtains

fk(x) = (x1
k, . . . , x

n
k , 1). (1.6.7)

Hence the map fk is an embedding when restricted onto the ball Bρk(zk).

Consider now the map

f : M → R(n+1)K

f(x) = (f1(x), . . . , fK(x)) . (1.6.8)

Due to (1.6.7) the k-th component of this map is an embedding on Bρk(zk). Hence the entire
map (1.6.8) is an immersion. Let us prove that this map is also an embedding. Indeed, if a,
b are two distinct points in Bρk(zk) then fk(a) 6= fk(b). If a ∈ Bρk(zk) and b 6∈ Bρk(zk) then
the last component of the vector fk(a) is equal to p̃k(a) = 1 and the last component of the
vector fk(b) is equal to p̃k(b) < 1. Therefore fk(a) 6= fk(b).

Let us now construct an immersion into R2n. We may assume, due to the first part of
the proof, that M is a submanifold in RN for some large N . Or goal is to reduce N . Let us
apply an orthogonal projection π` onto the hypeplane RN−1 orthogonal to a line `. Which
tangent vectors to M go to zero under the induced map dπ`? They are those tangent vectors
v ∈ TxM at some x ∈M that are parallel to ` in RN .

Call ` a bad direction of the 1st kind if there exists a pair (x, v), x ∈ M , 0 6= v ∈ TxM
such that v ‖ `. Such bad directions can be identified in the following way. Let us introduce
the manifold P(TM) as the set of classes of equivalence

P(TM) = {(x, v) ∈ TM, v 6= 0 | v ∼ λ v for some λ 6= 0} (1.6.9)
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(the so-called projectivization of the tangent bundle. (We leave as an exercise to prove that
P(TM) is a smooth manifold of dimension 2n− 1.) Consider the map

P(TM)→ RPN−1, (x, v) 7→ v. (1.6.10)

The bad directions of the first kind are those ` in the projective space RPN−1 that belong
to the image of this map. According to Corollary 1.6.8, if 2n− 1 < N − 1 then the image of
the map (1.6.10) does not cover the entire projective space RPN−1. That means that there
exists a direction ` such that none of the tangent vectors to M is parallel to it. Choosing
such ` one obtains the projection π` with never vanishing differential, i.e., an immersion. In
this way, after a finite number of steps one arrives at an immersion of M into R2n.

Let us now clarify when the projection π` is an embedding. One has to exclude the bad
directions of the 1st kind and also of the second kind to be defined as follows. The line ` is
a bad direction of the second kind if there exists a pair of distinct points x, y ∈M such that
the bisecant x y is parallel to `. Like above consider the map

M ×M \ diag→ RPN−1, (x, y) 7→ x y. (1.6.11)

Bad directions of the second kind are in the image of this map. If 2n < N − 1 then the map
(1.6.11) does not cover the entire projective space. Choosing a line ` not belonging to the
images of the maps (1.6.9), (1.6.11) one obtains an embedding into RN−1. The last time it
can be done when N = 2n + 2. Applying the projection one arrives at an embedding into
R2n+1.

Let us now introduce a generalization of the notion of regularity. Let us consider a smooth
map f : M → N and a submanifold P ⊂ N .

Definition 1.6.11 We say that the map f : M → N is transversally regular to the sub-
manifold P ⊂ N at the point y0 ∈ P if, for any x ∈ M such that f(x) = y0 the through
map

TxM
f∗−→ Ty0=f(x)N → Ty0N/Ty0P

is surjective. If the above condition holds true at any point y0 ∈ P then the map f is called
transversally regular along P .

We will often use the short form t-regular in order to save space.

For the case of P= one point P = y0 ∈ N the notion of t-regularity along P of a map
f : M → N coincides with the assumption that y0 is a regular value.

Example 1.6.12 Given a smooth function f(x) of one real variable consider the graph map

F : R→ R2, F (x) = (x, f(x)) .

Take the x-axis {y = 0} as the submanifold N ⊂ R2. The intersections F (R)∩N correspond
to zeroes of the function f(x). Transversal regularity in this case means that all zeroes are
simple

f(x0) = 0, f ′(x0) 6= 0.
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A generalization of Theorem 1.5.11 is straighforward:

Exercise 1.6.13 Prove the following generalization of the implicit function theorem: given
a smooth map f : M → N transversally regular along P ⊂ N , then the full preimage f−1(P )
is a smooth submanifold of M of codimension

codim f−1(P ) = codimP.

Clearly the set of all smooth maps f : M → N being t-regular along P ⊂ N is open in
C∞(M,N). The following statement says that it is dense in the space of all smooth maps (cf.
Corollary 1.6.9).

Theorem 1.6.14 Given a smooth map f : M → N and a submanifold P ⊂ N , then there
exists a smooth map g : M → N arbitrarily close to f and t-regular along P .

Proof: It suffices to prove the following local version of the theorem assuming that M = U
and N = V are open domains in Euclidean spaces Rm and Rn respectively and P is a
p-dimensional subspace in Rn of the form

P = {
(
y1, . . . , yp, 0, . . . , 0

)
}.

The map f is nothing but a n-component vector function of m variables

x =
(
x1, . . . , xm

)
7→
(
f1(x), . . . , fp(x), fp+1(x), . . . , fn(x)

)
.

Transversal regularity of f along P means that for the map from Rm to Rn−p

x 7→
(
fp+1(x), . . . , fn(x)

)
(1.6.12)

the point 0 is a regular value. According to Corollary 1.6.9 there exists a map

x 7→
(
gp+1(x), . . . , gn(x)

)
(1.6.13)

arbitrarily close to (1.6.12) for which 0 is a regular value. Therefore the map f̃ locally defined
by

x 7→
(
f1(x), . . . , fp(x), gp+1(x), . . . , gn(x)

)
(1.6.14)

is t-regular along P .

Let us now explain how to extend globally the deformation (1.6.14) of the map (1.6.12).
Choose a compact K ⊂ V construct a smooth function

ϕ =


0 on ∂ V

1 on K
, 0 ≤ ϕ ≤ 1.

Put
F = ϕ f̃ + (1− ϕ)f = f + ϕ(f̃ − f).

This map coincides with f̃ inside K and with f outside V . So it is regular everywhere as the
difference f̃ − f is small together with its first derivatives.
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Example 1.6.15 Let f : M → N is a smooth map transversally regular along the submani-
fold P ⊂ N such that

dimM + dimP < dimN. (1.6.15)

Then
f(M) ∩ P = ∅.

Indeed, under the assumption (1.6.15) the dimension of TxM is less than the dimension
of the quotient dimTyN/TyP = dimN − dimP , y ∈ P ⊂ N . So the through map

TxM
f∗−→ Tf(x)N → Tf(x)N/Tf(x)P

cannot be surjective.

From these arguments along with the Theorem 1.6.14 it readily follows

Corollary 1.6.16 Given a smooth map f : M → N and a submanifold P ⊂ N satisfying
the dimension condition (1.6.15). Then there exists a smooth map f̃ : M → N arbitrarily
close to f such that

f̃(M) ∩ P = ∅.

In other words, a generic smooth map from M to N is t-regular along a given submanifold
P ⊂ N .

Let us consider a particular situation of a pair of submanifolds M, N ⊂ Q in an ambient
manifold Q.

Definition 1.6.17 We say that the submanifolds M, N ⊂ Q are in general position if, at
any point x ∈M ∩N one has

TxM + TxN = TxQ. (1.6.16)

The notation M t N is often used to state that the submanifolds M and N are in general
position.

Observe that the submanifolds are in general position if the embedding map

i : M ↪→ Q

is t-regular along N or, equivalently, the embedding map

j : N ↪→ Q

is t-regular along M .

Theorem 1.6.18 If the submanifolds M, N ⊂ Q are compact then there exist deformed
submanifolds M̃ and Ñ arbitrarily close to M and N respectively such that M̃ and Ñ being
in general position.
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Proof: If the embedding map
i : M ↪→ Q

is t-regular along N then the submanifolds are in general position. Otherwise there exists
an arbitrarily small deformation ĩ of the embedding map being t-regular along N . If ĩ is
sufficiently close to i then ĩ : M ↪→ Q is also an embedding.

Corollary 1.6.19 If the submanifolds are compact and their dimensions satisfy the inequality

dimM + dimN < dimQ (1.6.17)

then there exist submanifolds M̃ and Ñ arbitrarily close to M and N respectively such that

M̃ ∩ Ñ = ∅.

Proof: The submanifolds in general position of dimensions satisfying (1.6.17) do not intersect.

Exercise 1.6.20 Given two compact submanifolds in general position M, N ⊂ Q. Prove
that the intersection M ∩N is a smooth submanifold in M and in N .

Let us consider two other illustrations of the notion of transversal regularity.

Example 1.6.21 A given smooth vector field v(x) on a manifold M can be considered as a
section of the tangent bundle, i.e., as a map

M → TM, x 7→ (x, v(x)) . (1.6.18)

Denote
Mv ⊂ TM

the image of this map. By M0 denote the zero section. Intersections Mv ∩M0 correspond to
the stationary points of the vector field

v(x0) = 0.

Transversality Mv tM0 at a point x0 means that the stationary point is nondegenerate

v(x0) = 0, det

(
∂vi(x0)

∂xj

)
6= 0. (1.6.19)

Importance of nondegenerate stationary points of a vector field v in the theory of differential
equations is due to the following fact: solutions to a system of differential equations

ẋ = v(x)

near a nondegenerate stationary point can be approximated by solutions to a linear system.
On a compact manifold M a vector field can have only finite number of stationary points
provided all of them are nondegenerate. Number of these stationary points counted with
suitably defined multiplicities is a topological invariant of the manifold (see below).
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Example 1.6.22 To a given smooth function f on a manifold M we associate a section of
the cotangent bundle defined by the differential df

M → T ∗M, x 7→ (x, df(x)) . (1.6.20)

In natural local coordinates
(
x1, . . . , xn, p1, . . . , pn

)
∈ T ∗M the map (1.6.20) reads

(
x1, . . . , xn

)
7→
(
x1, . . . , xn,

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
.

Denote Lf ⊂ T ∗M the image of the map (1.6.20). Like above denote L0 ⊂ T ∗M the zero
section of the cotangent bundle. The intersection points of Lf with the zero section L0

correspond to the critical points x0 of the function f

∂f(x0)

∂x1
= 0, . . . ,

∂f(x0)

∂xn
= 0.

Transversality means that x0 is a Morse critical point

∂f(x0)

∂x1
= 0, . . . ,

∂f(x0)

∂xn
= 0, det

(
∂2f(x0)

∂xi∂xj

)
6= 0. (1.6.21)

Thus, transversality Lf t L0 means that f is a Morse function, i.e., the one having only
Morse critical points. On a compact manifold M a Morse function can have only finite number
of critical points. Number of these critical points counted with suitably defined multiplicities
is a topological invariant of the manifold (see below).

Remark 1.6.23 One cannot apply the theorem 1.6.14 in order to prove existence of a Morse
function f̃ arbitrarily close to a given function f ∈ C∞(M). The problem is with a nontrivial
geometrical restriction valid for the image Lf of the map (1.6.20). Namely, for any smooth
function Lf ⊂ T ∗M is a Lagrangian submanifold. That means that the natural symplectic
2-form

Ω =
n∑
i=1

dpi ∧ dxi

being restricted onto Lf vanishes identically:

Ω |Lf =
n∑
i=1

d

(
∂f

∂xi

)
∧ dxi =

n∑
i, j=1

∂2f

∂xi∂xj
dxj ∧ dxi = 0

since
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
, dxj ∧ dxi = −dxi ∧ dxj .

Clearly not any n-dimensional submanifold in the total space of the cotangent bundle is
Lagrangian: for example, take the following 2-dimensional submanifold in T ∗R2 = R4 =
{(x, y, p, q) |x, y, p, q ∈ R}:

L = {(x, y, p = −y, q = x) |x, y ∈ R}.

Restricting the symplectic form Ω = dp ∧ dx+ dq ∧ dy onto L yields

Ω |L = −dy ∧ dx+ dx ∧ dy = 2dx ∧ dy 6= 0.

42



In order to prove density of Morse functions in the space C∞(M) one can use the following
construction that we will explain for the particular case M = Rn leaving the general case as
an exercise. Let x0 ∈ Rn be a critical point of a function f ∈ C∞Rn such that

det

(
∂2f(x0)

∂xi∂xj

)
= 0.

Consider the function

fa(x) = f(x)−
n∑
i=1

aix
i

depending on n parameters a1, . . . , an. Critical points of fa are solutions to the system

∂f(x)

∂x1
= a1, . . . ,

∂f(x)

∂xn
= an.

Such a critical point is a Morse one if a is a regular value of the gradient map Rn → Rn

x 7→
(
∂f(x)

∂x1
, . . . ,

∂f(x0)

∂xn

)
.

Applying Sard theorem choose a regular value a (it can be chose arbitrarily close to a = 0).
Then the deformed function fa will be a Morse function.

2 First examples of topological invariants

2.1 Orientation. Topological degree of a smooth map

Definition 2.1.1 An orientation on a smooth manifold M is an atlas (Uα, (x
1
α, . . . , x

n
α))α∈I

such that the Jacobians of all transition maps are positive

det

(
∂xα
∂xβ

)
P

> 0, ∀P ∈ Uα ∩ Uβ. (2.1.1)

Two orientations (Uα, (x
1
α, . . . , x

n
α))α∈I and (Vβ, (y

1
β, . . . , y

n
β ))β∈J are called equivalent if they

define equivalent smooth structures on M and the Jacobians det
(
∂xα
∂yβ

)
are all positive on the

intersections Uα ∩ Vβ.

If an orientation on M exists then the manifold is called orientable. In the opposite case
the manifold M is called non-orientable.

Example 2.1.2 The manifold Rn has the orientation corresponding to an ordering of the
Euclidean coordinates x1, . . . , xn. A permutation of the coordinates xσ(1), . . . , xσ(n), σ ∈ Sn
defines an equivalent orientation if σ is an even substitution and an opposite orientation if
the substitution σ is odd. More generally, given a frame of n linearly independent vectors f1,
. . . , fn in Rn one can introduce another chart on Rn considering the coordinates with respect
to the new basis. This chart will define the same orientation on Rn iff the determinant of the
transition matrix

A = (aij)1≤i, j≤n , fk =
n∑
i=1

aikei
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is positive
detA > 0.

In this case one says that the frames e1, . . . , en and f1, . . . , fn have coherent orientations.

More generally, on an oriented manifold M one can choose a class of frames in the tangent
space TxM at any point x ∈M . Namely, we say that a frame e1, . . . , em is positively oriented
if, for any chart U 3 x with local coordinates x1, . . . , xm the orientations of the frames ∂

∂x1
,

. . . , ∂
∂xm and e1, . . . , em are coherent. Clearly such a definition does not depend on the

choice of the chart. Conversely, an orientation on the manifold can be defined by choosing
an equivalence class of frames in the tangent spaces TxM at any x depending continuously
on the point x.

Example 2.1.3 Let M ⊂ Rn be the level surface M = {x ∈ Rn | f(x) = 0} of a smooth
function f : Rn → R such that

grad f(x) 6= 0 ∀x ∈M.

Choosing an atlas of coordinate charts

(Ui, (x
1
i , . . . , x

n−1
i )),

(
∂f(x)

∂xi

)
x∈Ui

6= 0

one obtains a structure of a (n− 1)-dimensional smooth manifold on M , as in the Theorem

1.5.11. Recall that one can choose (x1, . . . , x̂i, . . . , xn) as the local coordinates (x1
i , . . . , x

n−1
i ).

Let us reorder the local coordinates in such a way that the frame of n vectors

∂

∂x1
i

,
∂

∂x2
i

, . . . ,
∂

∂xn−1
i

, grad f(x) (2.1.2)

is positively oriented with respect to the standard orientation of Rn at every point x ∈ Ui. In
this way one obtains an orientation on the level surface M .

Let us prove this statement in the simple case of a two-dimensional surface M in R3

defined by one equation

M = {(x, y, z) ∈ R3 | f(x, y, z) = 0}.

Recall that 0 ∈ R is a regular value if the gradient

grad f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
M

6= 0.

The surface M is covered by three charts

Ux = {(x, y, z) ∈M | ∂f(x, y, z)

∂x
6= 0}, the coordinates (y, z)

Uy = {(x, y, z) ∈M | ∂f(x, y, z)

∂y
6= 0}, the coordinates (x, z)

Uz = {(x, y, z) ∈M | ∂f(x, y, z)

∂z
6= 0}, the coordinates (x, y).
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According to the above definition the orientation on these charts is defined by the following
order of coordinates

Ux : (y, z) if
∂f(x, y, z)

∂x
> 0 and (z, y) otherwise

Uy : (z, x) if
∂f(x, y, z)

∂y
> 0 and (x, z) otherwise

Uz : (x, y) if
∂f(x, y, z)

∂z
> 0 and (y, x) otherwise.

Let us compute, for example, the jacobian of the transition functions from Uz to Uy on the
intersection of these domains assuming that the partial derivatives are positive

fy :=
∂f

∂y
> 0, fy :=

∂f

∂z
> 0.

We have
D(z, x)

D(x, y)
= det

( ∂z
∂x

∂z
∂y

1 0

)
= −∂z

∂y
=
fy
fz

> 0.

Exercise 2.1.4 Develop a similar construction of an orientation of submanifolds M ⊂ RN
of any codimension k defined as preimages in an oriented manifold N of a point in Rk with
respect to a submersion f : N → Rk.

Let f : M → N be a smooth map of two compact oriented manifolds of the same dimension
n. We want to define an important characteristic of f called topological degree deg f that
depends only on the homotopy class of f .

Let y ∈ N be a regular value for this map. All the points x1, . . . , xK ∈M of the preimage

f−1(y) = {x1} ∪ {x2} ∪ . . . {xK} ⊂M

are regular. Let (y1, . . . , yn) be a positively oriented chart on N near the point y. Denote
(x1
i , . . . , x

n
i ) a positively oriented chart on M near the point xi. Due to the assumption of

regularity the Jacobian

det

(
∂y

∂xi

)
:= det

(
∂yp

∂xqi

)
1≤p, q≤n

does not vanish at the point xi

det

(
∂y

∂xi

)
6= 0. (2.1.3)

Denote

degxi f := sign det

(
∂y

∂xi

)
(2.1.4)

and put

deg f |y :=
∑

xi∈f−1(y)

degxi f. (2.1.5)
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Theorem 2.1.5 1) The degree of the map f : M → N of two compact connected oriented
manifolds of the same dimension does not depend on the choice of a regular value y0 ∈ N .

Such a degree is called simply the degree of the smooth map.

2) If two smooth maps f0, f1 : M → N are homotopic then their degrees coincide:

deg f0 = deg f1.

Proof: Let y0 and y1 ∈ N be two regular values of f . Choose a smooth curve γ : [0, 1]→ N ,
γ connecting these points in such a way that the map f is transversally regular along γ.
According to the statement of Exercise 1.6.13 the full preimage f−1(γ) is a one-dimensional
smooth submanifold in M . It consists of a finite number of closed curves diffeomorphic to the
circle S1 and segments (a one-dimensional connected manifold with a boundary consisting
of a pair of points) diffeomorphic to a segment on the real line. We have no interest in the
closed curves. Let us concentrate on the geometry of one of the segments γ̂ : [a, b] → M ,
f (γ̂) ⊂ γ. Denote x0 = γ̂(a), x1 = γ̂(b). Clearly the images f(x0) and f(x1) must be among
the endpoints y0, y1 of γ. Without loss of generality we may assume that f(x0) = y0. Let us
prove that, if degx1 f = degx0 f then f(x1) = y1. In the opposite case degx1 f = −degx0 f
we will prove that f(x1) = f(x0) = y0.

We can assume that the points y0 and y1 are sufficiently close to each other, that is, they
belong to the same coordinate chart. Moreover, one can choose local coordinates (y1, . . . , yn)
in such a way that the curve γ has the form

γ =
{
y1(t) = 0, . . . , yn−1(t) = 0, yn(t) = t

}
.

Every component of the preimage of γ is determined by a system of equations

y1(x) = 0, . . . , yn−1(x) = 0

where the map f in the local coordinates is given by n functions of n variables

x =
(
x1, . . . , xn

)
7→ f(x) =

(
y1(x), . . . , yn(x)

)
.

The velocity vector of the curve γ̂ satisfies a system of (n− 1) linear homogeneous equations

∂yp

∂xq
dxq

ds
= 0, p = 1, . . . , n− 1.

So a parameterization x = x(s) on such a component can be chosen in such a way that

dxi

ds
= M i, i = 1, . . . , n

where M i = (−1)n+i× the i-th minor of the matrix ∂y1

∂x1
. . . ∂y1

∂xn

. . . . . . . . .
∂yn−1

∂x1
. . . ∂yn−1

∂xn
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obtained by deleting of the i-th column. Transversal regularity of f along γ means exactly
that this vector never vanishes at the points of f−1(γ). The map f of a component to γ can
be described by a function t = t(s) defined by

t(s) = yn
(
x1(s), . . . , xn(s)

)
. (2.1.6)

Expanding the determinant of the Jacobi matrix with respect to the last row one easily
deduces that

dt

ds
=
∂yn

∂x1
M1 + · · ·+ ∂yn

∂xn
Mn = det

(
∂yp

∂xq

)
1≤p, q≤n

.

So, the function t(s) is monotone at the points of γ̂ where the Jacobian

Jac(s) := det

(
∂yp

∂xq

)
x=γ̂(s)

does not vanish. If the Jacobian Jac(s) changes sign at some s = s0 then the function t(s)
has local maximum or minimum.

Let γ̂ be one of segments in the full preimage. Consider the Jacobian Jac(s) as a function
on the curve γ̂ = γ̂(s), s ∈ [a, b]. By assumption of regularity of the endpoints Jac(s) does
not vanish at x0 = γ̂(a) and x1 = γ̂(b). If degx0 f = degx1 f then the number of sign changes
of the Jacobian is even. So the function t(s) is monotone increasing or monotone decreasing
both near s = a and near s = b. This can happen only if f (γ̂(a)) and f (γ̂(b)) are two
different endpoints of the curve γ. In the opposite case degx0 f = −degx1 f the number of
sign changes of the Jacobian is odd, so the function t(s) is monotone increasing/decreasing
near s = a but it is monotone decreasing/increasing near s = b. Thus the points γ̂(a) and
γ̂(b) go to the same endpoint of γ.

We have proved that connected components of the full preimagef−1(γ) can be subdivided
into two types

f−1(γ) =

(
∪
i∈I

γ̂even
i

)⋃(
∪
j∈J

γ̂odd
j

)
.

For the segments γ̂even
i of the first type the signs of the Jacobian at the endpoints coincide and,

moreover, the images of the two endpoints of the segment go to two different endpoints y0 or
y1 of γ. For the segments γ̂odd

j of the second type the signs of the Jacobian at the endpoints
are opposite; the images of the two endpoints of the segment go to the same endpoint of γ.

For any segment γ̂even
i : [ai, bi]→M of the first type, i ∈ I denote

σi = degγeveni (ai) f.

Observe that
σi = degγeveni (bi) f. (2.1.7)

From above considerations it follows that

deg f |y0 =
∑
i∈I

σi = deg f |y1 .

In order to prove invariance with respect to homotopies one has to choose a regular value
y0 ∈ N for the smooth homotopy map F : M × [0, 1]→ N . In particular y0 is a regular value
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for both f0 = F |M×{0} and f1 = F |M×{1}. The preimage

F−1(y0) =

(
∪
i∈I

γeven
i

)⋃(
∪
j∈J

γodd
j

)⋃(
∪
k∈K

γ◦k

)
.

is a collection of smooth closed curves γ◦k or segments γeven
i or γodd

j with end-points in the

boundary of the cylinder M × [0, 1]. Denote γ = γ(s) =
(
x1(s), . . . , xn(s), t(s)

)
one of

segments in the preimage. The parameter s ∈ [a, b] for some a, b can be chosen in such a way
that

dxi

ds
= Mi, i = 1, . . . , n,

dt

ds
= Jac = det

(
∂yp(x, t)

∂xq

)
where

M i = (−1)n+i+1 × the i-th minor of the Jacobi matrix

 ∂y1(x,t)
∂x1

. . . ∂y1(x,t)
∂xn

∂y1(x,t)
∂t

. . . . . . . . . . . .
∂yn(x,t)
∂x1

. . . ∂yn(x,t)
∂xn

∂yn(x,t)
∂t


of the map F (x, t) =

(
y1(x, t), . . . , yn(x, t)

)
obtained by deleting the i-th column.

We are interested only in the components γ of F−1(y0) that are segments. Such a component
is called even if the number of sign changes of the Jacobian Jac is even; otherwise it is called
odd. Like above it is easy to see that an even component starts at one of the pieces M ×{0}
or M × {1} of the boundary of the cilinder and, moreover, the degrees at the end points
x0 ∈M × {0}, x1 ∈M × {1} coincide

degx0 f0 = signJac(t = 0) = signJac(t = 1) = degx1 f1.

The endpoints of an odd component of F−1(y0) belong to the same piece of the boundary of
the cilinder, i.e., either to M×{0} or to M×{1}. The degree of the map f0 or f1 respectively
at these endpoints are opposite. Therefore

deg f0|y0 = deg f1|y0 .

Exercise 2.1.6 Prove that any polynomial of odd degree with real coefficients has a real root.

Remark 2.1.7 For a smooth map f : M → N of compact not necessarily oriented manifolds
of the same dimension one can define in a similar way the number deg f modulo 2 by just
counting the parity of the number of points in the preimage of a regular value y ∈ M . Like
above, it is easy to prove that deg f mod 2 does not depend on the choice of a regular value.

Exercise 2.1.8 Consider a smooth map f : S1 → S1 of the circle represented as S1 = {x ∈
R}/(x ∼ x+ 2π). Derive the following formula for the degree of such a map

deg f =
1

2π

∫ 2π

0
f ′(x) dx. (2.1.8)

Prove that any such map is homotopic to

x 7→ k x, k = deg f.
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Remark 2.1.9 More generally, for a smooth map f : M → N of compact oriented n-
dimensional manifolds the following formula holds true∫

M
f∗Ω = deg f

∫
N

Ω (2.1.9)

where Ω is an arbitrary n-form on N . A proof of this formula will be given in Section 3.4
below.

Example 2.1.10 Let f(z) = zn+a1z
n−1 + · · ·+an be a polynomial with complex coefficients.

It defines a smooth map of the Riemann sphere

S2 = C ∪ {∞}

to itself. By definition f(∞) =∞. Let us compute the degree of this map.

First, in the real coordinates

z = x+ iy, w = u+ iv

the map
w = f(z) (2.1.10)

satisfies

det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= |f ′(z)|2 > 0 (2.1.11)

if the derivative f ′(z) does not vanish at the point z. (The same is true for any holomorphic
map of complex manifolds of the same dimension.) Hence the critical points of the map
(2.1.10) are at the roots of the derivative. Because of positivity of the Jacobians (2.1.11)
we conclude that the degree of a holomorphic map is equal to the number of points in the
preimage of a regular value. For the example of a polynomal

f0(z) = zn

the number of points in the preimage of the value w = 1 is equal to n. Indeed, these are the
roots z0, z1, . . . , zn−1 of the equation

zn = 1, zk = e
2πik
n , k = 0, 1, . . . , n− 1.

Any other polynomial is homotopic to f0(z). The homotopy is given by the formula

F (z, t) = zn + t(a1z
n−1 + · · ·+ an).

Because of invariance of degree of the map with respect to homotopies we derive the Main
Theorem of algebra of polynomals: every polynomial with complex coefficients has n complex
roots. If the value w0 is not regular then the equation f(z) = w0 may have multiple roots. In
this case one must count the roots with their multiplicities.
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2.2 Intersection index

Let P, Q ⊂ M be two compact oriented submanifolds in an oriented manifold M satisfying
the condition

dimP + dimQ = dimM (2.2.1)

for their dimensions. To any such pair of submanifolds we will assign an integer number
P ◦Q called intersection index of the submanifolds. Let us first assume that the submanifolds
intersect transversally. Then the submanifolds intersect in a finite number of points. The
intersection index P ◦Q is the algebraic number of intersection points with signs defined in
the following way. Let y ∈ P ∩Q. The transversality together with (2.2.1) implies that

TyM = TyP ⊕ TyQ.

Denote τP and τQ two frames in the tangent spaces TyP and TyQ respectively oriented
accordingly to the orientation of these submanifolds. Also choose a positively oriented frame
τM in TyM . Define

signy := sign det (τP ⊕ τQ → τM ) . (2.2.2)

Definition 2.2.1 The number
P ◦Q =

∑
y∈P∩Q

sign y (2.2.3)

is called the intersection index of the submanifolds P and Q.

Observe that the intersection index depends on the order:

Q ◦ P = (−1)dimP ·dimQP ◦Q. (2.2.4)

Indeed, the sign of the permutation

(1, . . . , p, p+ 1, . . . , n) 7→ (p+ 1, . . . , n, 1, . . . , p)

is equal to (−1)p q, q = n− p.

Remark 2.2.2 For any point y ∈ P one can introduce a natural orientation on the quotient
space TyM/TyP in the following way. Let τP be a positively oriented frame in TyP ⊂ TyM .
Complement τP with a system of dimM − dimP linearly independent vectors τ⊥P in TyM
such that

(
τP , τ

⊥
P

)
is a positively oriented frame in TyM . Projecting τ⊥P onto the quotient

space defines the needed orientation on TyM/TyP .

Observe that the sign (2.2.2) assigned to an intersection point y ∈ P ∩Q of transversally
intersecting manifolds of complementary dimensions can be defined in the following equivalent
way. Let i : Q ↪→M be the embedding map. Consider the linear map

A : TyQ
i∗→ TyM → TyM/TyP.

Due to t-regularity and the dimension condition it has the rank dimM−dimP = dimQ. The
sign of the determinant of the matrix of this map computed in the properly oriented bases of
vectors in TyQ and TyM/TyP coincides with the sign sign y defined in (2.2.2).
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Let us prove that the intersection index does not depend on deformations of the subman-
ifolds. It suffices to prove independence from deformations of Q. The precise statement is
given by

Theorem 2.2.3 Let i0 : Q ↪→ M , i1 : Q ↪→ M be two homotopic embeddings of a compact
oriented manifold Q into M . Denote Q0 = i0(Q) ⊂ M , Q1 = i1(Q) ⊂ M their images.
Assume they intersect P ⊂ M transversally and, moreover, that the dimension condition
(2.2.1) holds true. Then

P ◦Q1 = P ◦Q2. (2.2.5)

Proof: Denote F : Q × I → M the homotopy between the embeddings i0 = F |Q×{0} and
i1 = F |Q×{1}. Without loss of generality we may assume that the map F is t-regular along
the submanifold P ∈M . Thus the full preimage F−1(P ) is a one-dimensional submanifold in
Q. Its boundary must belong to the boundary of the cylinder Q×I. Let γ(s) = (x(s), t(s)) ⊂
F−1(P ), s ∈ [a, b], be a connected component in the preimage that is homeomorphic to a
segment connecting two points x0 = γ(a) and x1 = γ(b) on the boundary of the cylinder.

Let us begin with considering the case x0 ∈ Q× {0}, x1 ∈ Q× {1}. Denote

y0 = F (x0) = i0(x0) ∈ P ∩Q0, y1 = F (x1) = i1(x1) ∈ P ∩Q1.

At these points the rank of the linear maps

Ak : TxkQ
ik∗→ TykM → TykM/TykP, k = 0, 1

is equal to dimM−dimP = dimQ due to t-regularity of i0 and i1. The sign of the determinant
of these maps coincides with the signs at the intersection points y0 ∈ P ∩Q0 and y1 ∈ P ∩Q1

respectively
sign detA0 = signy0, sign detA1 = signy1

(cf. an alternative definition of these signs given in Remark 2.2.2).

Denote Ft : Q→M the restriction

Ft = F |Q×{t}.

For s ∈ [a, b] consider the linear map

A(s) : Tγ(s)Q
Ft∗→ Ty(s)M → Ty(s)M/Ty(s)P, t = t(s), y(s) = F (γ(s)).

We have A(a) = A0, A(b) = A1. Like in the proof of Theorem 2.1.5 we can choose the
parameterization of the curve γ(s) in such a way that

dt

ds
= detA(s).

Thus, in the case under consideration t(a) = 0, t(b) = 1, so the number of changes of the sign
must be even (like above without loss of generality we may assume that all zeroes of dt

ds are
simple). Hence, in this case, sign detA0 = sign detA1. Such a component γ in the preimage
F−1(P ) will be called even.
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In a similar way assuming that the end points γ(a) and γ(b) both belong to Q × {0} or
to Q × {1} we prove that the number of changes of sign of dt/ds = detA(s) is odd. So the
signs signy0 and signy1 at the intersection points y0 ∈ P ∩Q0 and y1 ∈ P ∩Q1 are opposite.
Such a component γ in the preimage F−1(P ) will be called odd.

From the above considerations it follows that, computing the intersection indices P ◦Q0

and P ◦Q1 it suffices to take into consideration only those points in the intersection P ∩Q0

and P ∩ Q1 that are images of endpoints of even components of F−1(P ). The algebraic
numbers of these intersection points coincide. Hence P ◦Q0 = P ◦Q1.

Remark 2.2.4 If the submanifolds P, Q ⊂ M are not oriented then the intersection index
P ◦ Q is defined modulo 2 (cf. Remark 2.1.7 above). The homotopy invariance of P ◦ Q
mod 2 can be proved in a similar way.

The arguments similar to those used in the proof of the Theorem can be applied to the
following slightly more general situation.

Exercise 2.2.5 Let
F : W →M

be a smooth map of an oriented compact manifold of dimension (q + 1) with an oriented
boundary ∂W = Q1∪ (−Q0) into an oriented manifold M . Assume that the restrictions F |Q0

and F |Q1 are embeddings of these q-dimensional manifolds and, moreover, their images inter-
sect transversally a compact oriented submanifold P ⊂ M of the complementary dimension
dimP = dimM − q. Prove that P ◦ F (Q0) = P ◦ F (Q1).

We are now in a position to define the intersection index for any pair of compact oriented
submanifolds P, Q ⊂M of complementary dimensions dimP+dimQ = dimM in an oriented
manifold M . According to Theorem 1.6.18 there exist small deformations of P and Q such
that the deformed submanifolds P̃ and Q̃ intersect transversally. Define

P ◦Q := P̃ ◦ Q̃.

The deformed embeddings P̃ , Q̃ are homotopic3 to the original embeddings P , Q. So, due
to the Theorem, this definition does not depend on the choice of deformations.

Let us derive few useful corollaries from the Theorem.

Corollary 2.2.6 Let P , Q be two oriented compact submanifolds of complementary dimen-
sions in Rn. Then P ◦Q = 0.

Proof: Shifting Q along a sufficiently long vector one obtains another submanifold Q′ that
does not intersect P . The new embedding is homotopic to the old one. Hence P ◦ Q =
P ◦Q′ = 0.

As an application of the above considerations we will prove that a compact submanifold
of codimension one in Euclidean space is necessarily orientable.

3This will be proved in Section 4.4 below.
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Lemma 2.2.7 Let M ⊂ Rn be a compact (n − 1)-dimensional submanifold. Then the com-
plement Rn \M is disconnected.

Proof: Choose an arbitrary point x0 ∈ M . Denote n the unit vector orthogonal to Tx0M .
For sufficiently small ε > 0 the points x± = x0 ± εn do not belong to M . If Rn \M is
connected then there exists a curve γ : [−1, 1]→ Rn \M such that γ(±1) = x±. Adding the
segment [x−, x+] one obtains a closed curve γ̂ in Rn intersecting the submanifold M in one
point x0. Hence M ◦ γ̂ = ±1 (in the nonoriented case the intersection index modulo 2 is well
defined). This contradicts Corollary 2.2.6.

Corollary 2.2.8 A connected compact submanifold of codimension 1 in Euclidean space is
orientable.

Proof: At any point x ∈M of the submanifold choose a normal vector n(x) of a sufficiently
small length ε > 0 “looking” towards one of the two components of the complement (we leave
as an easy exercise to the reader to prove that, for a connected submanifold the complement
cannot consist of more than two components). By definition a frame of tangent vectors e1,
. . . , en−1 at x is positively oriented in TxM if the frame e1, . . . , en−1, n(x) is positively
oriented in Rn.

2.3 Index of a vector field on a manifold

Let v(x) be a smooth vector field on a compact oriented manifold M . Assume that all
stationary points of the vector field are nondegenerate. That means that the graph Mv =
{(x, v(x)) |x ∈M} ⊂ TM is t-regular along the zero section M0 = {x, 0} ⊂ TM (see Example
1.6.21 above). Observe that dimM0 + dimMv = dimTM . Define

indv := M0 ◦Mv. (2.3.1)

This definition can be extended to an arbitrary smooth vector field as any vector field can
be slightly deformed to obtain another one with all nondegenerate stationary points.

Proposition 2.3.1 The index (2.3.1) does not depend on the choice of a vector field.

Proof: The submanifolds Mv and M0 can be considered as two embeddings of M into TM .
They are homotopic. Indeed, the homotopy is obtained by rescaling v 7→ t v, t ∈ [0, 1].
Therefore for any two vector fields v1 and v2 the embeddings Mv1 and Mv2 are homotopic.
Hence indv1 = indv2.

An alternative definition of index of a vector field can be given by the following construc-
tion. Let x0 be a nondegenerate stationary point of a vector field v(x) on an n-dimensional
oriented manifold M . We know that, for a sufficiently small ε > 0 the vector field does not
vanish at the points of the sphere Sn−1

ε (x0) = {x | |x − x0| = ε} ⊂ M of radius ε with the
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center at the point x0. Define a map4

gv : Sn−1
ε (x0)→ Sn−1 ⊂ Tx0M

Sn−1
ε (x0) 3 x 7→ v(x)

|v(x)|
. (2.3.2)

Define the index of the stationary point indx0 as the degree of this map

indx0 := deg gv. (2.3.3)

Proposition 2.3.2 The total index index ind v of a vector field v with nondegenerate sta-
tionary points is equal to the sum of indices of stationary points

ind v =
∑
v(x)=0

indx. (2.3.4)

Proof: Without loss of generality we can assume that x0 = 0 in the chosen local coordinates.
Denote

A =

(
∂vi(x)

∂xj

)
x=x0

.

Introduce linear vector field
vA(x) = Ax.

Let us prove that the vector fields v(x) and vA(x) are homotopic in the class of vector fields
with isolated stationary point at the origin. Indeed, consider the Taylor expansion of the
vector valued function v(x)

v(x) = Ax+O
(
|x|2
)
.

The homotopy vt(x) is defined by the following formula

vt(x) =
v(t x)

t
= Ax+O(t), v1(x) = v(x), v0(x) = vA(x).

Due to homotopy invariance of degree it remains to compute the degree of the map (4.11.36)
for v = vA. The linear map x 7→ Ax is one-to-one on the sphere |x| = ε. Moreover, all points
of the sphere are regular points. Hence the degree is equal to ± = sign detA.

Exercise 2.3.3 Let v(x) be a vector field on an oriented manifold M with isolated, but not
necessarily nondegenerate stationary points. In this case one can define the index of every
stationary point as the degree of the spherical map (4.11.36). Prove that the sum of indices
of all stationary points coincide with the Euler characteristic of M .

Exercise 2.3.4 Prove that the index of a nonzero vector field v(t) = (P (t), Q(t)) defined on
a closed curve γ(t), 0 ≤ t ≤ 2π on the plane with an isolated stationary point inside the curve
is given by the formula

1

2π

∫ 2π

0

P Q̇−QṖ
P 2 +Q2

dt. (2.3.5)

4In these formulae the lengths of vectors are computed in local coordinates, i.e., |x − x0| =√
(x1 − x10)2 + · · ·+ (xn − xn0 )2, |v| =

√
(v1)2 + · · ·+ (vn)2.
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Exercise 2.3.5 Prove that the index of a vector field v(s, t) (P (s, t), Q(s, t), R(s, t)) defined
on a closed surface Σ = r(s, t) in R3 with an isolated stationary point inside is given by the
formula

1

4π

∫
Σ

∣∣∣∣∣∣
P Q R
Ps Qs Rs
Pt Qt Rt

∣∣∣∣∣∣ ds dt

(P 2 +Q2 +R2)3/2
. (2.3.6)

The result of Proposition 2.3.1 justifies the following

Definition 2.3.6 Euler characteristic χ(M) of a compact oriented manifold M is defined as
the index of an arbitrary smooth vector field on M .

2.4 Morse index

Let f be a Morse function on a compact oriented n-dimensional manifold M (see above
Example 1.6.22). Recall that means that the graph of the differential

Lf = {(x, df(x)} ⊂ T ∗M

intersects transversally the zero section L0 = {(x, 0)}. Define the index of the Morse function
by

indf := L0 ◦ Lf . (2.4.1)

We will now spell out this definition as the sum of Morse indices of critical points of f . Let
us first recall the following statement from linear algebra.

Proposition 2.4.1 For any symmetric matrix A there exists a nondegenerate matrix M
such that

MTAM = diag (1, 1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

), p+ q + r = n (2.4.2)

were MT is the transposed matrix. The numbers p and q do not depend on the choice of the
reducing matrix M . They are called respectively positive and negative inertia indices of the
symmetric matrix A.

Let x0 be a Morse critical point of a function f . Consider the matrix A = (Aij) of the
second derivatives at the critical point

Aij =
∂2f(x0)

∂xi∂xj
, i, j = 1, . . . , n. (2.4.3)

This is a symmetric nondegenerate matrix.

Definition 2.4.2 The negative inertia index of the symmetric matrix (2.4.3) is called the
index of the Morse critical point. It will be denoted indx0.

Lemma 2.4.3 Index of a Morse critical point does not depend on the choice of local coordi-
nates,
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Proof: In another coordinate system (y1, . . . , yn), yk = yk(x1, . . . , xn) the second derivatives
of the function can be computed by the following rule

∂2f

∂xi∂xj
=

∂2f

∂yk∂yl
∂yk

∂xi
∂yl

∂xj
+

∂f

∂yk
∂2yk

∂xi∂xj
.

At the critical point the second term vanishes. So, the matrices Ay and Ax of second deriva-
tives of f at the critical point in the coordinates yk and xi respectively are related by the
equation

Ax = JTAy J, J =

(
∂yk(x0)

∂xi

)
.

The inertia indices do not change under such transformations.

Remark 2.4.4 The above considerations show that the second differential of the function f
at a critical point x0

d2f(x0) =
∂2f(x0)

∂xi∂xj
dxidxj (2.4.4)

is a well defined quadratic form on the tangent space Tx0M . For a Morse critical point
the negative inertia index is the maximal dimension of a subspace V ⊂ Tx0M such that the
restriction

d2f(x0)|V
is a negative definite quadratic form.

Proposition 2.4.5 The index of a Morse function f on a compact oriented manifold M is
equal to

ind f =
∑

df(x)=0

(−1)indx. (2.4.5)

Proof: At a Morse critical point x0 the signs of det
(
∂2f(x0)
∂xi∂xj

)
and (−1)indx0 coincide. So the

statement of the Proposition follows from the definition of the intersection index

L0 ◦ Lf =
∑

df(x)=0

sign det

(
∂2f(x)

∂xi∂xj

)
.

2.5 Lefschetz number. Brouwer theorem

3 Tensors on a manifold. Integration of differential forms.
Cohomology

3.1 Tensors on manifolds

Definition 3.1.1 A tensor of type (p, q) at a point P of a manifold M is described by a table
of np+q real numbers

A
i1...ip
j1...jq

, i1, . . . , ip, j1, . . . , jq = 1, . . . , n
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called components of the tensor in a given coordinate chart (U, (x1, . . . , xn)) containing the
point P . In another coordinate chart (U ′, (x1′ , . . . , xn

′
)) containing P the tensor is described

by another table of components

A
i′1...i

′
p

j′1...j
′
q

related with the old one by the following transformation law

A
i′1...i

′
p

j′1...j
′
q

=
∂xi

′
1

∂xi1
. . .

∂xi
′
p

∂xip
∂xj1

∂xj
′
1
. . .

∂xjq

∂xj
′
q
A
i1...ip
j1...jq

. (3.1.1)

In this equation all partial derivatives have to be evaluated at the point P .

Example 0. A tensor of type (0, 0) is described by a real number depending on the point
P but independent from the choice of a coordinate system. Thus, it is just a smooth function
on M .

Example 1. For (p, q) = (1, 0) the transformation law (3.1.1) specializes to

Ai
′

=
∂xi

′

∂xi

∣∣∣
P
Ai.

So the (1, 0) tensors are just vectors at the point P .

Example 2. Tensors of type (0, 1) can be identified with covectors at the point P since
the transformation law (3.1.1) specializes to

Aj′ =
∂xj

∂xj′

∣∣∣
P
Aj .

Given two tensors A = (A
i1...ip
j1...jq

) and B = (B
i1...ip
j1...jq

) of the same type (p, q) at the point P ,
their linear combination αA+ β B

αA
i1...ip
j1...jq

+ βB
i1...ip
j1...jq

(3.1.2)

is again a tensor of the same type. One obtains a linear space T pq (P ) of tensors of a given
type (p, q) at a given point P ∈ M . Clearly the dimension of this space is equal to np+q

where n = dimM .

The operators of permutation of two upper or two lower indices act on this linear space
if p ≥ 2 or q ≥ 2. Choosing a pair ik, il of two upper indices, 1 ≤ k < l ≤ p define the
permutation operator Πkl acting as follows(

ΠklA
)i1...ik...il...ip
j1...jq

= A
i1...il...ik...ip
j1...jq

. (3.1.3)

In a similar way one can define the operator Πkl of permutation of two lower indices 1 ≤ k <
l ≤ q.

Lemma 3.1.2 The operators Πkl and Πkl are well defined linear operators acting on the
space T pq (P ).
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There are also important tensor operations that change the type of tensors. The first
one is an operation of tensor product of two tensors A = (A

i1...ip
j1...jq

) and B = (Bi1...ir
j1...js

) of the

types (p, q) and (r, s) respectively. It produces a tensor A⊗B of type (p+ r, q + s) with the
components

(A⊗B)
i1...ipk1...kr
j1...jql1...ls

= A
i1...ip
j1...jq

Bk1...kr
l1...ls

. (3.1.4)

This operation is linear with respect to every factor:

(αA+ βB)⊗ C = αA⊗ C + β B ⊗ C, A⊗ (αB + βC) = αA⊗B + β A⊗ C. (3.1.5)

Remark 3.1.3 Let us remind the operation of tensor product of linear spaces known from
linear algebra. By definition the tensor product of spaces X and Y of linear spaces of dimen-
sions n and m respectively is a linear space X ⊗ Y of dimension nm. The vectors of this
space are finite sums ∑

i

λi xi ⊗ yi, xi ∈ X, yi ∈ Y, λi ∈ R (3.1.6)

considered modulo the following equivalence relations

(αx1 + βx2)⊗ y ∼ αx1 ⊗ y + β x2 ⊗ y, x⊗ (αy1 + βy2) ∼ αx⊗ y1 + β x⊗ y2 (3.1.7)

α, β ∈ R.

If e1, . . . , en is a basis in X and f1, . . . , fm is a basis in Y then the vectors ei⊗fj make a basis
in X ⊗ Y . The decomposition of the tensor product of vectors x = xiei ∈ X, y = yjfj ∈ Y
with respect to this basis reads

x⊗ y = xiyj ei ⊗ fj . (3.1.8)

A generic vector in X ⊗ Y can be written as

z = zijei ⊗ fj (3.1.9)

where the entries of the n×m matrix zij can be considered as the coordinates of this vector.

The space T pq (P ) of tensors of type (p, q) can be identified with the tensor product of p
copies of the tangent space TPM and q copies of cotangent space T ∗PM . A choice of local
coordinates (x1, . . . , xn) on M provides one with a basis

∂

∂x1
, . . . ,

∂

∂xn

in the tangent space and a basis
dx1, . . . , dxn

in the cotangent space. In this way one obtains a basis in the tensor product T pq (P )

∂

∂xi1
⊗ · · · ⊗ ∂

∂xip
⊗ dxj1 ⊗ · · · ⊗ dxjq . (3.1.10)

A decomposition of a tensor A = (A
i1...ip
j1...jq

) with respect to this basis reads

A = A
i1...ip
j1...jq

∂

∂xi1
⊗ · · · ⊗ ∂

∂xip
⊗ dxj1 ⊗ · · · ⊗ dxjq . (3.1.11)
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Another important operation is contraction of tensors. It depends on the choice of one
upper and one lower index. Applying this operation to a tensor of type (p, q), p ≥ 1 and
q ≥ 1 one obtains a tensor of type (p− 1, q − 1). If the chosen upper index is ik and chosen
lower index is jl then the contraction Ck

l with respect to these two indices applied to a tensor

A
i1...ip
j1...jq

produces a tensor with the components(
Ck
l A
)i1...ip−1

j1...jq−1

= A
i1...ik−1 s ik...ip−1

j1...jl−1 s jl...jq−1
. (3.1.12)

Lemma 3.1.4 For any 1 ≤ k ≤ p, 1 ≤ l ≤ q the contraction Ck
l is a well defined linear

operator
Ck
l : T pq (P )→ T p−1

q−1 (P ). (3.1.13)

Example 1. A combination of tensor product of a vector v = (vi) and a (1, 1)-tensor
A = (aij)

(A, v) 7→ aijv
k

with contraction with respect to the indices k and j produces a vector

Av = (aijv
j).

One obtains a realization of (1, 1)-tensors as linear operators on the tangent space

A : TPM → TPM, v 7→ Av. (3.1.14)

The same (1, 1)-tensor A can also be identified with linear operation on the cotangent space

ω 7→ (aijωi) =: A∗ω. (3.1.15)

This is the adjoint linear operator to (3.1.14). Both realizations can be easily obtained from
the natural isomorphisms of the space of (1, 1)-tensors T 1

1 (P ) ' TP ⊗ T ∗P with

TP ⊗ T ∗P ' Hom(TP , TP ) ' Hom(T ∗P , T
∗
P ). (3.1.16)

Example 2. A (0, 2)-tensor B = (bij) can be realized as a bilinear form on the tangent
space by means of the operations of tensor product and double contraction

(B, v, w) 7→ bijv
kwl 7→ bijv

iwj =: b(x, y). (3.1.17)

Cf. also the isomorphism

T 0
2 (P ) ' T ∗P ⊗ T ∗P ' Hom(TP ⊗ TP ,R). (3.1.18)

The same tensors can also be realized by the operator of lowering the indices

B : TP → T ∗P , vi 7→ bijv
j (3.1.19)

that can also be understood in view of the natural isomorphism

T 0
2 (P ) ' T ∗P ⊗ T ∗P ' Hom(TP , T

∗
P ). (3.1.20)
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In particular the tensor bij is nondegenerate if the operator (3.1.19) is an isomorphism.

Example 3. In a similar way any tensor A = (ai1...ik) of type (0, k) can be realized as a
k-linear form on the tangent space

A(x1, . . . , xn) = ai1...ikx
i1
1 . . . x

ik
k

(3.1.21)

A(αx1 + βy1, x2, . . . , xk) = αA(x1, x2, . . . , xk) + βA(y1, x2, . . . , xk)

. . . . . . . . . . . .

A(x1, . . . , xk−1, αxk + βyk) = αA(x1, . . . , xk−1, xk) + βA(x1, . . . , xk−1, yk).

The k-linear form is symmetric/antisymmetric

A(x1, . . . , xj , . . . , xi, . . . , xk) = ±A(x1, . . . , xi, . . . , xj , . . . , xk) ∀ 1 ≤ i < j ≤ k (3.1.22)

iff the tensor ai1...ik is invariant/antiinvariant with respect to the operators Πij of permutation
of indices. Recall that, according to the Lemma 3.1.2 the property of symmetry/antisymmetry
of a tensor does not depend on the choice of local coordinates.

Remark 3.1.5 The permutation group Sk of k symbols acts on the space of (0, k)-tensors by
permuting the indices. A permutation

σ =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
∈ Sk (3.1.23)

acts as follows
ai1i2...ik 7→ aiσ(1)iσ(2)...iσ(k) . (3.1.24)

Symmetric tensors remain invariant with respect to this action; antisymmetric tensors trans-
form according to the following rule

aiσ(1)iσ(2)...iσ(k) = signσ ai1i2...ik (3.1.25)

where signσ = ±1 is the sign of the permutation. To any (0, k)-tensor one can apply the
operator of symmetrization Sym and alternation Alt producing symmetric/antisymmetric
tensors respectively:

Sym ai1...ik =
1

k!

∑
σ∈Sk

aiσ(1)iσ(2)...iσ(k) (3.1.26)

Alt ai1...ik =
1

k!

∑
σ∈Sk

signσ aiσ(1)iσ(2)...iσ(k) . (3.1.27)

Similarly to vector fields and differential forms one can consider tensor fields. A tensor
field of type (p, q) is described by a collection of functions a

i1...ip
j1...jq

(x) smoothly depending
on the point x. The functions depend on the choice of local coordinates; a change of local
coordinates (x1, . . . , xn) 7→ (x1′ , . . . , xn

′
) yields a transformation of these functions

a
i1...ip
j1...jq

(x) 7→ a
i′1...i

′
p

j′1...j
′
q
(x′)
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according to the tensor law (3.1.1). The decompostion (3.1.11) of a tensor with respect to the
natural basis associated with the coordinate chart does not change the form under changes
of local coordinates

A
i1...ip
j1...jq

(x)
∂

∂xi1
⊗· · ·⊗ ∂

∂xip
⊗dxj1⊗· · ·⊗dxjq = A

i′1...i
′
p

j′1...j
′
q
(x′)

∂

∂xi
′
1
⊗· · ·⊗ ∂

∂xi
′
p
⊗dxj′1⊗· · ·⊗dxj′q .

(3.1.28)

3.2 Vector bundles

Informally speaking a vector bundle of rank k over a manifold B is a family of k-dimensional
vector spaces called fibers parameterized by points of B called the base of the vector bundle.
Let us proceed to the precise definition.

Definition 3.2.1 A rank k vector bundle over an n-dimensional manifold B consists of

1) a (n+ k)-dimensional manifold E called the total space of the vector bundle;

2) a smooth submersion
π : E → B (3.2.1)

called projection;

3) a collection of open domains (Uα)α∈I covering the base B and diffeomorphisms

Φα : π−1 (Uα)→ Uα × Rk (3.2.2)

called local trivialization of E over Uα such that the diagrams

π−1 (Uα)
Φα→ Uα × Rk

π

y ypr1

Uα
id→ Uα

(3.2.3)

are all commutative. Observe that the full preimage of any point P ∈ B is isomorphic to Rk

FP := π−1(P ) ' Rk.

It is called the fiber over the point P .

4) On the intersection π−1(Uα ∩ Uβ) one has transition functions of the form

Φβ ◦ Φ−1
α : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk

(3.2.4)

(P ; ξα) 7→ (P ; ξβ = Tβα(P ) ξα)

where P ∈ Uα ∩ Uβ, ξα ∈ Rk,

Tβα : Uα ∩ Uβ → GL(k,R) (3.2.5)

is a smooth map.
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Remark 3.2.2 The collection of smooth matrix valued functions Tαβ defined on intersections
of domains Uα ∩ Uβ, α, β ∈ I clearly satisfies the following properties

Tαα = idRk

Tβα = T−1
αβ

TαβTβγTγα = idRk on triple intersection of Uα, Uβ, and Uγ . (3.2.6)

Such functions completely determine the structure of the fiber bundle.

Definition 3.2.3 A morphism of vector bundles π1 : E1 → B1 to π2 : E2 → B2 is a pair of
smooth maps f : B1 → B2 and F : E1 → E2 such that the diagram

E1
F→ E2

π1

y yπ2
B1

f→ B2

is commutative.

3.3 Integration of differential forms. Cohomology

In this section we will consider the particular case of antisymmetric tensors and tensor fields
of type (0, k). The space of antisymmetric (0, k)-tensors at the point P ∈M will be denoted
ΛkT ∗PM ⊂ T ∗P ⊗ · · · ⊗ T ∗P (k copies of the cotangent space T ∗PM).

Lemma 3.3.1 Denote n the dimension of the manifold M . Then the dimension of the space
Λk = ΛkT ∗PM of (0, k)-antisymmetric tensors is equal to

dim Λk =


(
n
k

)
, k ≤ n

0, k > n

(3.3.1)

Proof: Due to antisymmetry the component ωi1i2...ik of the tensor ω ∈ Λk having a pair of
equal indices is equal to zero. If k > n then there is at least one pair of equal indices among
i1, i2, . . . , ik. Hence ω = 0. For k ≤ n the independent coordinates in the space Λk are

ωi1i2...ik , 1 ≤ i1 < i2 < · · · < ik ≤ n. (3.3.2)

The number of these components is equal to the binomial coefficient(
n
k

)
=

n!

k!(n− k)!
.
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Combining the operation of tensor products with the alternation one obtains the operation
of exterior product (or wedge product)

Λk × Λl → Λk+l (3.3.3)

(α, β) 7→ α ∧ β := Alt(α⊗ β).

An explicit expression for the components of α ∧ β is given by the following formula

(α ∧ β)j1...jk+l =
1

k! l!

∑
σ∈Sk+l

signσ αjσ1 ...jσkβjσk+1
...jσk+l

. (3.3.4)

Taking the wedge products of basic 1-forms

dxi1 ∧ · · · ∧ dxik =
∑
σ∈Sk

signσ dxiσ(1) ⊗ · · · ⊗ dxiσ(k) (3.3.5)

one obtains a basis in Λk. A decomposition of an antisymmetric tensor ω = (ωi1...ik) with
respect to this basis is written as a differential k-form

ω =
∑

i1<i2<···<ik

ωi1i2...ikdx
i1 ∧ · · · ∧ dxik . (3.3.6)

Such a form was defined so far at one point of the manifold. Considering the corresponding
tensor fields one obtains differential forms ω(x) defined on the manifold M or on some part
of it.

The exterior product is a bilinear associative operation satisfying the following graded
commutativity property

β ∧ α = (−1)k lα ∧ β, α ∈ Λk, β ∈ Λl. (3.3.7)

The total space of antisymmetric tensors at a given point

ΛT ∗PM = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λn (3.3.8)

acquires a structure of exterior algebra. The dimension of this space is equal to 2n. Using
the representation of antisymmetric tensors by differential forms (3.3.6) one can reformulate
the definition of the wedge product in the following simple way:

dxi ∧ dxi = 0

dxj ∧ dxi = −dxi ∧ dxj , i 6= j

along with the bilinearity and associativity.

Example 3.3.2 The wedge product of two one-forms α = α1dx
1 + α2dx

2 + α3dx
3 and β =

β1dx
1 + β2dx

2 + β3dx
3 on a three-dimensional manifold is equal to

α ∧ β = (α1dx
1 + α2dx

2 + α3dx
3) ∧ (β1dx

1 + β2dx
2 + β3dx

3)

= α1β2dx
1 ∧ dx2 + α2β1dx

2 ∧ dx1 + α1β3dx
1 ∧ dx3 + α3β1dx

3 ∧ dx1 + α2β3dx
2 ∧ dx3 + α3β2dx

3 ∧ dx2

= (α2β3 − α3β2)dx2 ∧ dx3 + (α3β1 − α1β3)dx3 ∧ dx1 + (α1β2 − α2β1)dx1 ∧ dx2.
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Exercise 3.3.3 Prove that the product of three one-forms α = α1dx
1 + α2dx

2 + α3dx
3,

β = β1dx
1 + β2dx

2 + β3dx
3 and γ = γ1dx

1 + γ2dx
2 + γ3dx

3 in the three-dimensional space is
given by

α ∧ β ∧ γ = det

 α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 dx1 ∧ dx2 ∧ dx3. (3.3.9)

Let us concentrate our attention on the particular case of n-forms on a n-dimensional
smooth manifold M . In a coordinate chart (U, (x1, . . . , xn)) such a form is defined by just
one smooth function ω12...n(x)

ω = ω12...n(x)dx1 ∧ dx2 ∧ · · · ∧ dxn. (3.3.10)

This function depends, however, on the choice of the chart. In this particular case the general
tensor law (3.1.1) takes a particularly simple form.

Lemma 3.3.4 Under a change of the local coordinates (x1, . . . , xn) → (x1′ , . . . , xn
′
) the co-

efficient of a n-form transforms as follows

ω1′2′...n′(x
′) = det

(
∂x

∂x′

)
ω12...n(x). (3.3.11)

Proof: The tensor law (3.1.1) in the particular case of (0, n)-tensors takes the following form

ω1′2′...n′ =
∂xi1

∂x1′
∂xi2

∂x2′
. . .

∂xin

∂xn′
ωi1i2...in .

In the sum over repeated indices in the right hand side of this equation only the terms with
all pairwise distinct indices will survive. In this case

ωi1i2...in = signσ ω12...n, σ =

(
1 2 . . . n
i1 i2 . . . in

)
∈ Sn.

Since ∑
σ∈Sn

signσ
∂xi1

∂x1′
∂xi2

∂x2′
. . .

∂xin

∂xn′
= det

(
∂x

∂x′

)
the formula (3.3.11) readily follows.

We will use the transformation formula (3.3.11) for introducing the important operation
of integral of differential forms.

Let D ⊂M be an open domain in a n-dimensional manifold such that D̄ is compact. We
want to integrate a differential n-form over this subset. This can be done under an additional
assumption for the manifold that we are going to explain now.

Let us consider first the particular case D̄ ⊂ U . Here (U, (x1, . . . , xn)) is a coordinate
chart. Consider the multiple integral

IU (ω,D) =

∫
· · ·
∫
x(D)

ω1...n(x) dx1 . . . dxn. (3.3.12)
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Lemma 3.3.5 If (U ′, (x1′ , . . . , xn
′
)) is another chart containing D̄ then the integrals IU (ω,D)

and IU ′(ω,D) are equal up to a sign

IU ′(ω,D) = ±IU (ω,D), ± = sign det

(
∂x

∂x′

)
. (3.3.13)

Proof: Doing a change of integration variables in the multiple integral (3.3.12) one obtains∫
· · ·
∫
x(D)

ω1...n(x) dx1 . . . dxn =

∫
· · ·
∫
x′(D)

ω1...n(x(x′))

∣∣∣∣det

(
∂x

∂x′

)∣∣∣∣ dx1′ . . . dxn
′

= sign det

(
∂x

∂x′

) ∫
· · ·
∫
x′(D)

ω1...n(x(x′)) det

(
∂x

∂x′

)
dx1′ . . . dxn

′

= sign det

(
∂x

∂x′

) ∫
· · ·
∫
x′(D)

ω1′...n′(x
′) dx1′ . . . dxn

′
.

where we have used the transformation law (3.3.11) in the derivation of the last equality.

We are now ready to define integration of differential n-forms over domains in n-dimensional
oriented manifolds. Let us first consider the case of a domain contained inside D̄ ⊂ U . In
this case define ∫

D
ω :=

∫
· · ·
∫
x(D)

ω1...n(x) dx1 . . . dxn. (3.3.14)

According to the Lemma 3.3.5 such an integral does not change if choosing another chart
covering D from the same atlas. In the general case use a partition of unity pα(x) associated
with the atlas and put ∫

D
ω =

∑
α

∫
D∩Uα

pα(x)ω. (3.3.15)

The last step in the justification of such a definition is in

Lemma 3.3.6 The integral (3.3.15) does not depend from the choice of a partition of unity.

Proof: Let qβ(x) be another partition of unity associated with an atlas Vβ. Then the products

rαβ(x) = pα(x)qβ(x)

is a partition of unity associated with the atlas Uα∩Vβ. The integral defined by this partition
is equal to

I =
∑
α, β

∫
Uα∩Vβ

pα(x)qβ(x)ω.

Performing first summation in β one obtains

I =
∑
α

∫
Uα

pα(x)ω
∑
β

qβ(x) =
∑
α

∫
Uα

pα(x)ω.
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Changing the order of summation results in

I =
∑
β

∫
Vβ

qβ(x)ω
∑
α

pα(x) =
∑
β

∫
Vβ

qβ(x)ω.

So the two definitions of the integral yield the same result.

Remark 3.3.7 An important particular case is the integral of a n-form over an oriented n-
dimensional manifold M . Such an integral always exists if the manifold is compact. Observe
that a change of orientation on M to the opposite one changes the sign of the integral.

Let us now explain the operation of pullback of differential forms. Let

f : N →M

be a smooth map. Given a k-form

ω =
∑

i1<···<ik

ωi1...ik(y)dyi1 ∧ · · · ∧ dyik

on M one obtains a k-form f∗ω on N :

f∗ω =
∑

i1<···<ik

ωi1...ik(y(x))dyi1(x) ∧ · · · ∧ dyik(x)

where the map f in local coordinates is given by

x = (x1, . . . , xn) 7→ (y1(x), . . . , ym(x)).

In the rhs there is the exterior product of k one-forms

dyi(x) =
∂yi

∂xj
dxj .

If the manifold N has dimension k and is oriented then one can consider the integral of the
pullback ∫

N
f∗ω. (3.3.16)

In particular one can integrate a k-form ω over a k-dimensional oriented submanifold

i : N ↪→M, dimN = k,

∫
N
ω :=

∫
N
i∗ω. (3.3.17)

Example 1. The integral of a 1-form in R3

ω = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

over a smooth curve

γ : {(x = x(t), y = y(t), z = z(t)) | a ≤ t ≤ b}
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is equal to∫
γ
ω =

∫ b

a
[P (x(t), y(t), z(t))ẋ(t) +Q(x(t), y(t), z(t))ẏ(t) +R(x(t), y(t), z(t))ż(t)] dt

=

∫
γ
〈X,v〉 ds

where the vector field X is defined by

X = (P,Q,R)

and v is the unit tangent vector to the oriented curve.

Example 2. The integral of a 2-form in R3

ω = P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy

over a domain D ⊂ R2
(u,v) on a parametrized two-dimensional surface

r = r(u, v) = (x(u, v), y(u, v), z(u, v))

is equal to ∫∫
D
〈X,n〉 dA (3.3.18)

where the vector field X is composed from the coefficients5 of the 2-form

X = (P,Q,R),

n =
ru × rv
|ru × rv|

is the unit normal vector to the surface and

dA = |ru × rv| du dv

is the area element on the surface (see Exercise ?? above).

Remark 3.3.8 One can also integrate 0-forms, i.e., just functions f ∈ Ω0(M) = C∞(M)
over zero-dimensional submanifold. By definition an oriented zero-dimensional submanifold
is just a collection of points P1, P2, . . . in M with signs ± assigned. The integral is defined
as the algebraic sum of values

±f(P1)± f(P2)± . . . .

Let us now proceed with the differential calculus of differential forms. We will now define
an operator calle exterior differential (or also simply differential)

d : Ωk(M)→ Ωk+1(M) (3.3.19)

5Here and below the Hodge duality has been used for a correspondence between vector fields and two-forms
in R3. This duality will be explained below.
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for any k ≥ 0. For k = 0 the operator (3.3.19) coincides with the differential of a function

df =
∂f(x)

∂xi
dxi ∈ Ω1(M). (3.3.20)

For k = n the differential is trivial since Ωn+1(M) = 0. For any 0 < k < n the differential of
a k-form

ω =
∑

i1<···<ik

ωi1...ik(x)dyi1 ∧ · · · ∧ dxik

can be defined in two equivalent ways. First, as an antisymmetric (k + 1)-tensor

(dω)j1...jk+1
=

k+1∑
m=1

(−1)m+1
∂ωj1...ĵm...jk+1

(x)

∂xjm
(3.3.21)

The hat over the m-th index means that this index jm has to be omitted. An alternative
form is

dω =
∑

j1<···<jk

∂ωj1...jk(x)

∂xi
dxi ∧ dxj1 ∧ · · · ∧ dxjk . (3.3.22)

Theorem 3.3.9 The exterior differential is a well defined linear operator d : Ωk(M) →
Ωk+1(M) satisfying

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, α ∈ Ωp(M) (3.3.23)

and
d2 = 0 where d2 : Ωk(M)→ Ωk+1(M)→ Ωk+2(M). (3.3.24)

Example 3.3.10 For a 1-form ω = P dx + Qdy + Rdz in a three-dimensional Euclidean
space one has

dω =

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy. (3.3.25)

This operation is related to the curl of a vector field X = (P,Q,R)

curl X = det

 i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

 . (3.3.26)

Example 3.3.11 For a two-form ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy in R3 one has

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz. (3.3.27)

This operation is related to the divergence of the vector field X = (P,Q,R)

div X =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
. (3.3.28)
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Thus, the exterior differential generalizes the operations of gradient, curl and divergence
known from multivariable calculus.

For differential of functions one has the following important property usually referred to
as invariance of the differential

df(y(x)) =

(
∂f

∂yj
dyj
)
y=y(x)

=
∂f

∂yj
dyj(x)

=
∂f

∂xi
dxi.

In the second term of the first line it is understood that

dyj(x) =
∂yj

∂xi
dxi

is the differential of the functions yj = yj(x1, . . . , xn). A generalization of this property is
formulated in the following

Exercise 3.3.12 Prove that the exterior differential commutes with the operation of pullbacks
of differential forms: if

f : M → N

is a smooth map and ω a differential form on N then

f∗dω = d f∗ω. (3.3.29)

In order to formulate the main result of calculus of differential forms we need to define
manifolds with a boundary.

Definition 3.3.13 A subset M ⊂ M̂ in an n-dimensional manifold M̂ is called a manifold
with boundary if, for any coordinate chart (U, (x1, . . . , xn)) on M̂ the intersection M ∩U has
one of the following two types:

or M ∩ U = U

or M ∩ U = {x ∈ U | fU (x) ≤ 0}, dfU (x) 6= 0 ∀x ∈ U such that fU (x) = 0.

Here fU : U → R is a smooth function. It is required that on the intersection of charts U , V
of the second type the domains {fU (x) ≤ 0} and {fV (x) ≤ 0} coincide.

The subset ∂M ⊂M defined by

∂M ∩ U = {x ∈ U | fU (x) = 0}

is called the boundary of M . This is a smooth submanifold in M̂ of dimension (n− 1) (see
Theorem 1.5.11 and Example 1.5.12).

Smooth functions on M are defined as restrictions onto M of smooth functions on some
neighborhood of M in M̂ .
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Example 3.3.14 The cylinder
M × [0, 1] ⊂M × R (3.3.30)

is a (n + 1)-dimensional manifold with a boundary consisting of two copies of the manifold
M :

∂ (M × [0, 1]) = (M × 0) ∪ (M × 1).

The function f = f(x, t), x ∈M , t ∈ R specifying the first piece of the boundary is f(x, t) =
−t. For the second piece one can take f(x, t) = t− 1.

Remark 3.3.15 A compact manifolds without boundary are often called closed manifolds.

Definition 3.3.16 Let (M,∂M) be a manifold with boundary in a n-dimensional oriented
manifold M̂ . The induced orientation on the boundary is defined as follows (cf. Exercise
2.1.3 above). If at some point x0 ∈ ∂M ∩ U the i-th derivative of the function fU (x) does

not vanish then the (n − 1) variables (x1, . . . x̂i, . . . xn) can be used as local coordinates on
this part of the boundary specified in the chart (U, (x1, . . . , xn)) by equation fU (x) = 0. By
definition the order of these coordinates coincides with the orientation on ∂M if

(−1)n−i
∂fU (x0)

∂xi
< 0.

in the opposite case one has to change the orientation to the opposite one.

Example 1. The boundary of the cylinder M× [0, 1] for an oriented manifold M consists
of one copy M ×{1} of M taken with the same orientation and another copy M ×{0} of the
manifold M taken with the opposite orientation:

∂ (M × [0, 1]) = (M × 1) ∪ (−M × 0). (3.3.31)

In the particular case M = [0, 1] the boundary of M consists of two points

∂[0, 1] = {1} ∪ (−{0}). (3.3.32)

Example 2. In the integral calculus of differential forms we will also consider manifolds
with piecewise smooth boundaries. They become manifolds with boundary after deleting
some subsets of codimension ≥ 2. Such subsets do not contribute into integrals. For example,
the boundary of the n-dimensional unit cube

In = {(x1, . . . , xn) ∈ Rn| 0 ≤ xi ≤ 1, i = 1, . . . , n} (3.3.33)

obtained by taking Cartesian product of n copies of the unit interval consists of 2n unit cubes

∂In =

n⋃
i=1

(−1)n−iIn−1
i,1 ∪ (−1)n−i+1In−1

i,0 (3.3.34)

where

In−1
i,1 = {(x1, . . . , xi−1, xi = 1, xi+1, . . . , xn)} ⊂ In

(3.3.35)

In−1
i,0 = {(x1, . . . , xi−1, xi = 0, xi+1, . . . , xn)} ⊂ In.

For n = 1 one again obtains (3.3.32).

We are now ready to formulate the main result of this section
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Theorem 3.3.17 (Stokes’ formula) For any compact smooth n-dimensional oriented mani-
fold M with a piecewise smooth boundary ∂M and any differential (n− 1)-form ω on M the
following formula holds true ∫

∂M
ω =

∫
M
dω. (3.3.36)

Before proving the theorem let us consider the case n = 1, M = [0, 1], ω = f(x) a smooth
function. Then the left hand side of (3.3.36) is equal to∫

∂M
ω = f(1)− f(0)

since ∂[0, 1] = {1} ∪ (−{0}) (see Remark 3.3.8). In the right hand side, applying the Funda-
mental Theorem of calculus, we have∫ 1

0
f ′(t) dt = f(1)− f(0).

This proves the Stokes’ formula for this particular case.

Proof: Let us begin with the proof of the Stokes’ formula for the case M = In (n-dimensional
cube).

In order to avoid complicated notations we will perform calculations only for the case
n = 2. The one-form ω reads

ω = ω1(x, y)dx+ ω2(x, y)dy.

The oriented boundary of the square I2 is the union of four segments

∂I2 = {(1, y)} ∪ (−{(x, 1)}) ∪ (−{(0, y)}) ∪ {(x, 0)}, 0 ≤ x, y ≤ 1.

(see (3.3.34)). So∫
∂I2

ω =

∫ 1

0
ω2(1, y) dy −

∫ 1

0
ω1(x, 1) dx−

∫ 1

0
ω2(0, y) dy +

∫ 1

0
ω1(x, 0) dx.

In the right hand side of the Stokes’ formula we have a double integral∫
I2
dω =

∫∫
0≤x, y≤1

(
∂ω2

∂x
− ∂ω1

∂y

)
dx dy.

We will apply the Fubini theorem in two different ways to the two parts of the double integral∫∫
0≤x, y≤1

(
∂ω2

∂x
− ∂ω1

∂y

)
dx dy =

∫ 1

0
dy

∫ 1

0

∂ω2(x, y)

∂x
dx−

∫ 1

0
dx

∫ 1

0

∂ω1(x, y)

∂y
dy.

Both double integrals can be easily reduced to single integrals∫ 1

0
dy

∫ 1

0

∂ω2(x, y)

∂x
dx =

∫ 1

0
[ω2(1, y)− ω2(0, y)] dy∫ 1

0
dx

∫ 1

0

∂ω1(x, y)

∂y
dy =

∫ 1

0
[ω1(x, 1)− ω1(x, 0)] dx.
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Taking the difference of these two integrals one arrives at the proof of the Stokes’ formula for
the square.

In the general case one can construct an oriented atlas Uα on the compact manifold
(M,∂M) consisting of open cubes (0, 1)n or half-cubes (0, 1)n−1 × (0, 1]. Let pα(x) be a
partition of unity associated with such an atlas. Then∫

M
dω =

∑
α

∫
Uα

pα(x) dω =
∑
α

∫
Uα

d(pα(x)ω)−
∑
α

∫
Uα

dpα(x) ∧ ω.

The last integral vanishes since ∑
α

dpα(x) = d
∑
α

pα(x) = 1

since ∑
α

pα(x) ≡ 1.

Now we reduce the general proof to the local case∫
∂Uα

pα(x)ω =

∫
Uα

d(pα(x)ω).

The differential form pα(x)ω vanishes on the boundary of the cubes of the first type. For the
half-cubes the last equality follows from the already proven Stokes’ theorem for cube.

Definition 3.3.18 A differential k-form ω is called closed if dω = 0. It is called exact if
ω = dα for some (k − 1)-form α.

From the Stokes’ formula one derives an important corollary

Corollary 3.3.19 1) The integral of a closed differential form over the boundary ∂M of a
manifold M is equal to zero: ∫

∂M
ω = 0 if dω = 0. (3.3.37)

2) The integral of an exact differential form over a closed manifold is equal to zero:∫
M
dα = 0 if ∂M = ∅. (3.3.38)

Since the square of the exterior differential is equal to zero (see the Theorem 3.3.9 above),
any exact differential form is always closed. The converse statement is false. Let us construct
a counterexample. Let M = R2 \ {0},

ω =
x dy − y dx
x2 + y2

.

One has

dω =
∂

∂x

x

x2 + y2
+

∂

∂y

y

x2 + y2
= 0.
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To prove that this form is not exact let us consider the integral of this 1-form on the unit
circle S1

x = cos t
y = sin t

}
0 ≤ t ≤ 2π. The pullback of the 1-form onto the circle is equal to

cos t d sin t− sin t d cos t

sin2 t+ cos2 t
= dt.

So ∫
S1

ω =

∫ 2π

0
dt = 2π 6= 0.

This contradicts the assumption of exactness of ω.

Definition 3.3.20 Two closed differential forms ω1, ω2 on a manifold M are called equiv-
alent if their difference is an exact form

ω2 − ω1 = dα.

The linear space of classes of equivalence of closed k-forms on M is called the k-th De Rham
cohomology space of M

Hk(M) := Ker dk/Im dk−1, 0 ≤ k ≤ n = dimM (3.3.39)

dk = d : Ωk(M)→ Ωk+1(M).

It is understood that Im dk−1 is equal to zero for k = 0; for k = n = dimM the kernel Ker dn
coincides with the entire space Ωn(M) of differential n-forms on M .

Example 3.3.21 The cohomology of a point are equal to

Hk(pt) =

{
R, k = 0
0, k > 0.

(3.3.40)

Example 3.3.22 Let M be a closed connected manifold. Then

H0(M) = R. (3.3.41)

Indeed, a zero-form on M is just a function f ∈ C∞(M). Such a zero-form is closed, df = 0
iff the function f(x) is locally constant. Since the manifold is connect the function must
identically constant everywhere. This gives an isomorphism

H0(M) = Ker d0 → R.

In a more general case H0(M) = RN where N is the number of connected components of a
closed manifold M .
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Example 3.3.23 Let us compute the cohomologies of the circle S1. Since S1 is connect
the zero-dimensional cohomology is isomorphic to R (see the previous example). For k ≥ 2
the cohomology Hk(S1) is trivial. It remains to compute H1(S1). Let φ be the 2π-periodic
coordinate on the circle. Every 1-form on S1 can be written in the form

ω = f(φ)dφ, f(φ+ 2π) = f(φ).

Consider a linear map

h : Ω1(S1)→ R

ω 7→ h(ω) =
1

2π

∫
S1

ω =
1

2π

∫ 2π

0
f(φ) dφ. (3.3.42)

Let us prove that the 1-form ω is exact iff h(ω) = 0. Indeed, if ω = dg, g = g(φ) a 2π-periodic
function, then

h(ω) =
1

2π

∫ 2π

0
g′(φ) dφ =

1

2π
[g(2π)− g(0)] = 0.

Conversely, let

f(φ) =
a0

2
+

∞∑
n=1

(an cosnφ+ bn sinnφ)

be the Fourier expansion of the 2π-periodic function f(φ). We have

h(ω) =
a0

2
.

So, if h(ω) = 0 then one can find a periodic primitive for the function f(φ)

f(φ) = g′(φ), g(φ) =

∞∑
n=1

1

n
(an sinnφ− bn cosnφ).

Thus ω = dg.

3.4 Homotopy invariance of cohomologies. Degree of a smooth map and
integrals of differential forms

We begin with the following simple statement.

Exercise 3.4.1 Let f : M → N be a smooth map. Prove that the pullback

f∗ : Ωk(N)→ Ωk(M)

induces a homomorphism of cohomologies that will be denoted by the same symbol

f∗ : Hk(N)→ Hk(M) (3.4.1)

for all k = 0, 1, . . .
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Hint: use the result of Exercise 3.3.12.

A very important property of the induced homomorphism (3.4.1) is its invariance with
respect to homotopies. Roughly speaking a homotopy is a deformation of a map f : M → N ,
i.e., a family of maps depending on a parameter. More precisely,

Definition 3.4.2 Two maps
f0, f1 : M → N

are said to be homotopic if there exists a map of a cylinder M× [0, 1] = {(x, t) |x ∈M, 0 ≤
t ≤ 1}

F : M × [0, 1]→ N (3.4.2)

(x, t) 7→ F (x, t)

such that
F (x, 0) = f0(x), F (x, 1) = f1(x). (3.4.3)

The map F itself is called a homotopy between f0 and f1.

We will use notation
f0 ∼ f1

for two homotopic maps.

Remark 3.4.3 Recall that, by default all maps are assumed to be smooth. However, some-
times it is more convenient to work with piecewise smooth homotopies. It is not difficult to
prove that they can be approximated by smooth homotopies.

Example 3.4.4 Let f1 : Rn → Rn be the identity map and f0 : Rn → Rn the constant map
f0(x) ≡ 0. Let us prove that these two maps are homotopic. The needed homotopy F (x, t)
can be constructed as follows

F (x, t) = x t. (3.4.4)

Theorem 3.4.5 Let f0 ∼ f1 : M → N be two homotopic maps. Then the induced homo-
morphisms of cohomologies coincide

f∗0 = f∗1 : Hk(N)→ Hk(M) (3.4.5)

for all k = 0, 1, . . .

Proof: Let us first define a linear map

D : Ωk(M × [0, 1])→ Ωk−1(M) (3.4.6)

for any k ≥ 0 (for k = 0 we put D = 0) and an arbitrary manifold M . Let n be the
dimension of the manifold M ; choosing a chart (U, (x1, . . . , xn)) one obtains local coordinates
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(x1, . . . , xn, t) on M × [0, 1]. In these charts any k-form ω ∈ Ωk(M × [0, 1]) naturally splits
into two parts ω = α+ β,

ω =
∑

1≤i1<···<ik≤n
αi1...ik(x, t) dxi1 ∧ . . . dxik +

∑
1≤i1<···<ik−1≤n

βi1...ik−1
(x, t) dxi1 ∧ . . . dxik−1 ∧dt.

Put

Dω :=
∑

1≤i1<···<ik−1≤n

(∫ 1

0
βi1...ik−1

(x, t) dt

)
dxi1 ∧ · · · ∧ dxik−1 (3.4.7)

Lemma 3.4.6 For any k-form ω ∈ Ωk(M × [0, 1]) the following identity holds true

dDω −Ddω = (−1)k+1 (ω|t=1 − ω|t=0) . (3.4.8)

Proof: Let us do the calculations for the particular case k = 1; the proof in the general case
is similar. For

ω = αi(x, t)dx
i + β(x, t) dt

we have

Dω =

∫ 1

0
β(x, t) dt.

So

dDω =

(∫ 1

0

∂β(x, t)

∂xi
dt

)
dxi.

Computation of the differential dω yields

dω =
∑
i<j

(
∂αj(x, t)

∂xi
− ∂αi(x, t)

∂xj

)
dxi ∧ dxj +

(
∂β(x, t)

∂xi
− ∂αi(x, t)

∂t

)
dxi ∧ dt.

Applying to this 2-form the operator D one obtains

Ddω =

[∫ 1

0

(
∂β(x, t)

∂xi
− ∂αi(x, t)

∂t

)
dt

]
dxi

=

(∫ 1

0

∂β(x, t)

∂xi
dt

)
dxi −

[
αi(x, 1)dxi − αi(x, 0)dxi

]
.

Thus
dDω −Ddω =

[
αi(x, 1)dxi − αi(x, 0)dxi

]
= ω|t=1 − ω|t=0

since
dt|t=1 = dt|t=0 = 0.

We are now in a position for completing the proof of the Theorem. Let ω be a closed
k-form on N . We have to prove that the difference

f∗1ω − f∗0ω
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is an exact form. Indeed, put
ρ := (−1)k+1DF ∗ω.

According to the Lemma applied to the k-form F ∗ω on M × [0, 1] one has an identity

f∗1ω − f∗0ω = (−1)k+1 [dDF ∗ω −DdF ∗ω]

Since the differential commutes with pullbacks one has

dF ∗ω = F ∗dω = 0

due to closedness of the form ω. Hence

f∗1ω − f∗0ω = dρ.

Definition 3.4.7 Two manifolds M , N are called homotopicaly equivalent if there exist two
maps

f : M → N, g : N →M

such that the superpositions f ◦ g and g ◦ f are homotopic to the identity maps

g ◦ f ∼ idM : M →M

f ◦ g ∼ idN : N → N.

We will use notation
M ∼ N

for homotopicaly equivalent manifolds.

Two diffeomorphic manifolds are homotopicaly equivalent, but not vice versa, as it follows
from

Example 3.4.8 The Euclidean space Rn is homotopically equivalent to a point. Indeed, the
map

f : pt→ Rn

is an embedding, while
g : Rn → pt

is the constant map g(x) ≡ pt.

The homotopy between the superposition g ◦ f and idpt is trivial; in order to construct a
homotopy between f0 := f ◦ g : Rn → pt ∈ Rn and f1 := idRn one can use the map

F (x, t) = x t.

(cf. (3.4.4) above).

In a similar way one can prove that any star shaped domain D ⊂ Rn in the Euclidean
space is homotopicaly equivalent to a point. By definition a domain is called star shaped if
there exists a point P0 ∈ D that can be connected to any other point P ∈ D by a segment of
a straight line belonging to D.

From the Theorem 3.4.5 it immediately follows
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Theorem 3.4.9 Homotopicaly equivalent manifolds have isomorphic cohomologies

Hk(M) ' Hk(N) ∀ k ≥ 0 if M ∼ N. (3.4.9)

Proof: Let
f : M → N and g : N →M

be maps establishing the homotopy equivalence. Since

g ◦ f ∼ idM

we have, due to the Theorem 3.4.5

f∗g∗ = (g ◦ f)∗ : Hk(M)→ Hk(M)

is the identity isomorphism for any k ≥ 0. In a similar way, from

f ◦ g ∼ idN

it follows
g∗f∗ = (f ◦ g)∗ = id : Hk(N)→ Hk(N).

So the two induced homorphisms f∗ and g∗ are mutually inverse. Hence they are isomor-
phisms.

Corollary 3.4.10 (Lemma Poincaré) Every closed k form on Euclidean space is exact, if
k > 0.

Let f : M → N be a smooth map of compact oriented manifolds of the same dimension
n. Let Ω be any n-form on the manifold N . For example, one can take the volume form
(4.1.17) assuming a Riemannian metric has been chosen on N . Then the following formula
holds true

Theorem 3.4.11 ∫
M
f∗Ω = deg f ·

∫
N

Ω. (3.4.10)

Proof: For the particular case of a diffeomorphism the degree is equal to ±1. In this case
the formula (3.4.10) readily follows from the theorem about changes of variables in a multiple
integral. In the general case let y ∈ N be a regular value of the map. Denote x1, . . . , xK the
points in the preimage f−1(K). There exists a ball By ⊂ N centered at y such that

f−1(By) = Bx1 ∪ · · · ∪BxK ⊂M

and the map f restricted onto every ball Bxi is a diffeomorphism f : Bxi → By. Applying
the formula of changing variables in a multiple integral one obtains∫

Bxi

f∗Ω = degi ·
∫
By

Ω, i = 1, . . . ,K.
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Here degi is the sign (2.1.4) of the Jacobian det
(
∂y
∂xi

)
at the point xi. Hence∫

f−1(By)
f∗Ω = deg f ·

∫
By

Ω

for any regular value y ∈ N . The set of critical values has measure zero, they do not contribute
to the integral over N . Moreover, the pullback f∗Ω vanishes at the critical points in M where,
by definition, the Jacobian of the map f is equal to zero. Therefore the of critical points does
not contribute to the integral over M . This completes the proof of the formula.

4 Riemannian Manifolds

4.1 Riemannian metrics

Definition 4.1.1 A Riemannian metric on a manifold is a symmetric bilinear form

v, w ∈ TxM 7→ 〈v, w〉 ∈ R (4.1.1)

〈a1v1 + a2v2, w〉 = a1〈v1, w〉+ a2〈v2, w〉, 〈v, a1w1 + a2w2〉 = a1〈v, w1〉+ a2〈v, w2〉
〈w, v〉 = 〈v, w〉

defined at every point x ∈M smoothly depending on x such that

〈v, v〉 > 0 for any v 6= 0. (4.1.2)

Recall that the property (4.1.2) is usually referred to as positive definiteness of the sym-
metric bilinear form.

Denote n the dimension of the manifold M . In a chart one can associate the Gram matrix
to the bilinear form

gij(x) =

〈
∂

∂xi
,
∂

∂xj

〉
. (4.1.3)

It is a symmetric matrix of smooth functions. The condition of positive definiteness is equiv-
alent to positivity of the principal minors of the matrix

g11 > 0, det

(
g11 g12

g21 g22

)
> 0, . . . , det (gij)1≤i, j≤n > 0 (4.1.4)

(the Sylvester criterion). Such a matrix determines the bilinear form according to the fol-
lowing formula

〈v, w〉 = gij(x)viwj where v = vi(x)
∂

∂xi
, w = wj(x)

∂

∂xj
∈ TxM. (4.1.5)

The result does not depend on the choice of local coordinates if, on the intersection of coor-
dinate charts

(
U, (x1, . . . , xn)

)
and

(
V, (y1, . . . , yn)

)
the corresponding Gram matrices

gij(x) =

〈
∂

∂xi
,
∂

∂xj

〉
and gkl(y) =

〈
∂

∂yk
,
∂

∂yl

〉
, y = y(x)
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are related by the transformation law

gij(x) = gkl(y)
∂yk

∂xi
∂yl

∂xj
. (4.1.6)

This is nothing that the transformation law of a (0, 2)-tensor. So, one can reformulate the
above definition in the following way.

Definition 4.1.2 A Riemannian metric on a manifold is a symmetric (0, 2)-tensor gij(x)
satisfying the Sylvester positivity conditions (4.1.4). A manifold equipped with a Riemannian
metric is called Riemannian manifold.

Length of a curve
γ : {xi = xi(t) | a ≤ t ≤ b}

on a Riemannian manifold can be defined in a way familiar from geometry in Euclidean space
or on a surface

s[γ] :=

∫ b

a

√
gij(x(t))ẋi(t)ẋj(t) dt. (4.1.7)

Lemma 4.1.3 The length does not change under monotone reparametrizations of the curve.

Proof: Let t = t(t′) be a monotone change of parameter, t(a′) = a, t(b′) = b. To be more
specific let us consider the monotone decreasing case

dt

dt′
< 0, a′ > b′.

Then∫ b

a

√
gij(x(t))

dxi(t)

dt

dxj(t)

dt
dt =

∫ b′

a′

√
gij(x(t(t′)))

dxi(t(t′))

dt′
dxj(t(t′))

dt′

(
dt′

dt

)2 dt

dt′
dt′

=

∫ b′

a′

√
gij(x(t(t′)))

dxi(t(t′))

dt′
dxj(t(t′))

dt′

∣∣∣∣dt′dt
∣∣∣∣ dtdt′dt′ = −

∫ b′

a′

√
gij(x(t(t′)))

dxi(t(t′))

dt′
dxj(t(t′))

dt′
dt′

=

∫ a′

b′

√
gij(x(t(t′)))

dxi(t(t′))

dt′
dxj(t(t′))

dt′
dt′.

It is convenient to introduce the square length element

ds2 = gij(x)dxidxj . (4.1.8)

The formula for the length of the curve can be written as follows

s[γ] =

∫
γ
ds (4.1.9)

where the restriction of the square length element onto the curve is defined by the usual
procedure

ds2|γ = gij(x(t))ẋi(t)ẋj(t) dt2.
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Example 4.1.4 Euclidean metric in Rn. In the Cartesian coordinates x1, . . . , xn the metric
reads

ds2 =
(
dx1
)2

+ · · ·+ (dxn)2 .

The length of the curve is given by the well known formula

s[γ] =

∫ b

a

√
(ẋ1)2 + · · ·+ (ẋn)2 dt.

One can choose another coordinate system and rewrite the metric. E.g., let us consider polar
coordinates r, φ on the Euclidean case with Cartesian coordinates x, y, so that

x = r cosφ

y = r sinφ.

We have

dx = cosφdr − r sinφdφ

dy = sinφdr + r cosφdφ

so

ds2 = dx2 + dy2 = (cosφdr − r sinφdφ)2 + (sinφdr + r cosφdφ)2 = dr2 + r2dφ2.

Thus, the length of the curve γ: r = r(φ), α ≤ φ ≤ β equals

s[γ] =

∫ β

α

√(
dr

dφ

)2

+ r2(φ) dφ.

Relaxing the positive definiteness condition to simply non-degeneratness one arrives at
the definition of a pseudo-Riemannian metric.

Definition 4.1.5 A pseudo-Riemannian metric on a manifold is a symmetric (0, 2)-tensor
gij(x) satisfying the condition

det (gij)1≤i, j≤n 6= 0. (4.1.10)

A manifold equipped with a pseudo-Riemannian metric is called pseudo-Riemannian mani-
fold.

Example 4.1.6 Given a pair of positive integers p, q satisfying p+q = n, the n-dimensional
pseudo-Euclidean space Rp,q = {(x1, . . . , xn) |xi ∈ R, i = 1, . . . , n} is a pseudo-Riemannian
manifold with the metric

ds2 =
(
dx1
)2

+ · · ·+ (dxp)2 −
(
dxp+1

)2 − · · · − (dxn)2 . (4.1.11)

One can also define volumes of compact domains with a piecewise smooth boundary in a
Riemannian manifold D ⊂M . By definition

V ol(D) :=

∫
x(D)

dV (4.1.12)

dV =
√
g(x) dx1 . . . dxn, g(x) := det(gij(x))
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if the domain D is covered by one coordinate chart. Here we denote x(D) the coordinate
representation of the domain.

A change of coordinates (x1, . . . , xn)→ (x1′ , . . . , xn
′
) yields

gi′j′ =
∂xi

∂xi′
∂xj

∂xj′
gij

or, in the matrix form
G′ = ATGA (4.1.13)

where G and G′ are the matrices of the metric with respect to the two coordinate systems

G = (gij) , G′ =
(
gi′j′

)
and

A =

(
∂xi

∂xi′

)
is the Jacobi matrix. Thus

detG′ = (detA)2 detG

that is,

g′ =

[
det

(
∂x

∂x′

)]2

g, g′ = detG′, g = detG. (4.1.14)

Therefore the definition (4.1.12) of the volume does not depend on the choice of coordinates:∫
x′(D)

√
g′dx1′ . . . dxn

′
=

∫
x′(D)

√
g

∣∣∣∣det

(
∂x

∂x′

)∣∣∣∣ dx1′ . . . dxn
′

=

∫
x(D)

√
g dx1 . . . dxn

due to the formula of changing variables in the multiple integral.

One can pass from local to the global definition of the volume by using a partition of
unity pα(x) associated with a given atlas

(
Uα, (x

1
α, . . . , x

n
α)
)
α∈I

V ol(D) =
∑
α∈I

∫
xα(D∩Uα)

pα(x)
√
gα dx

1
α . . . dx

n
α (4.1.15)

where gα is the determinant of the metric tensor in the coordinates (x1
α, . . . , x

n
α). In particular

if the manifold itself is compact then the volume

V ol(M) =

∫
M
dV > 0 (4.1.16)

is defined.

Let M be an oriented Riemannian manifold of dimension n. Then one can construct a
volume form Ω ∈ Ωn(M)

Ω =
√
g(x) dx1 ∧ · · · ∧ dxn. (4.1.17)

This formula is invariant with respect to orientation preserving changes of coordinates. Hence
the n-form Ω is defined globally on an oriented manifold.

For the dimension reason any n-form on an n-dimensional manifold M is closed.
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Theorem 4.1.7 For a compact orientable manifold M the n-form Ω is not exact.

Proof: The integral ∫
M

Ω = V ol(M) > 0.

So assumption of exactness of Ω contradicts to the second part of the Corollary 3.3.19.

Corollary 4.1.8 For a compact orientable n-dimensional manifold M the n-th cohomology
is non-trivial

Hn(M) 6= 0.

Actually, one can prove a stronger result that Hn(M) = R for a closed connected ori-
entable n-dimensional manifold, but the proof requires some techniques not explained in this
course.

Let us now prove an existence theorem.

Theorem 4.1.9 A Riemannian metric exists on any paracompact manifold M .

Proof: Let (Uα, (x
1
α, . . . , x

n
α))α∈I be an atlas on M equipped with a partition of unity pα(x).

Let us define a metric in every chart by

gαij = δij .

Denote 〈 , 〉α the inner product of tangent vectors at the points of the chart. Define the inner
product of two vectors v, w ∈ TxM at any point x ∈M by

〈v, w〉 =
∑
α∈I

pα(x)〈v, w〉α. (4.1.18)

Such an inner product is bilinear; it depends smoothly from the point x ∈ M . It is positive
definite since positive definite inner products on Rn form a convex cone in the space of
symmetric matrices:

Lemma 4.1.10 Given two positive definite symmetric n × n matrices gij and hij, their
arbitrary linear combination

λ gij + µhij , λ ≥ 0, µ ≥ 0, λ2 + µ2 > 0

with nonnegative coefficients is again a positive definite matrix.

Proof: For an arbitrary vector v ∈ Rn the linear combination

λ g(v, v) + µh(v, v)

g(v, v) := gijv
ivj , h(v, v) = hijv

ivj

with nonnegative coefficients vanishes iff λ g(v, v) = µh(v, v) = 0. Hence v = 0,

Let M ⊂ RN be a submanifold in the Euclidean space. One can define the induced metric
on M in the following way. Let v, w ∈ TxM be two tangent vectors. Considering them as
vectors in RN we compute their inner product 〈v, w〉RN and put

〈v, w〉M := 〈v, w〉RN . (4.1.19)
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Example 4.1.11 The induced metric on a smooth curve

x(t) =
(
x1(t), . . . , xn(t)

)
in a Riemannian manifold has the form

ds2 = g(t)dt2 where g(t) = |ẋ(t)|2 = gij(x(t))ẋi(t)ẋj(t).

Observe that g(t) > 0 for any t since ẋ(t) 6= 0.

Example 4.1.12 For a two-dimensional surface in R3

r = r(u, v) = (x(u, v), y(u, v), z(u, v)) , N := ru × rv 6= 0 (4.1.20)

the induced metric is often written as follows

ds2 = E du2 + 2F du dv +Gdv2 (4.1.21)

E = E(u, v) = 〈ru, ru〉, F = F (u, v) = 〈ru, rv〉, G = G(u, v) = 〈rv, rv〉.

It is also called the first fundamental form of the surface. In this case the volume of a domain
defined by the formula (4.1.15) coincides with the area of this domain.

Exercise 4.1.13 Prove that the area of a domain D on the surface (4.1.20) is given by the
following integral

Area(D) =

∫∫
D
|N| du dv (4.1.22)

where N = ru × rv is the vector normal to the surface.

Exercise 4.1.14 Consider the particular case of the sphere of radius R. Representing it in
the spherical coordinates

x = R cosφ sin θ

y = R sinφ sin θ

z = R cos θ

one obtains the induced metric in the form

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
. (4.1.23)

The Gram matrix of the metric becomes degenerate at the poles θ = 0 or θ = π since the
coordinate system becomes singular at these points

rθ × rφ = 0 at the poles.

Exercise 4.1.15 Compute the induced metric on the surface represented as a graph of a
smooth function z = f(x, y). Prove that the area of a domain D on such a surface is given
by the familiar formula

Area(D) =

∫∫
D

√
1 + f2

x + f2
y dx dy.
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In certain cases the construction of induced metrics is applicable also to submanifolds in
pseudo-Riemannian manifolds.

Example 4.1.16 In the three-dimensional pseudo-Euclidean space R1,2 with the coordinates
(x, u, z) and the metric

ds2 = −dx2 − dy2 + dz2 (4.1.24)

consider the surface defined by equation

z2 − x2 − y2 = R2. (4.1.25)

It is often called pseudosphere due to the similarity with the equation of sphere in Euclidean
space

〈r, r〉 = R2, r = (x, y, z) ∈ R1,2.

Clearly this surface is a hyperboloid of two sheets (see Fig. 2). One can introduce global

Figure 2: Pseudosphere

pseudospherical coordinates on the upper sheet

x = R cosφ sinh θ

y = R sinφ sinh θ

z = R cosh θ.

In these coordinates the induced metric becomes equal to

ds2 = −R2
(
dθ2 + sinh2 θ dφ2

)
. (4.1.26)

Such a metric is negative definite; changing the overall sign one arrives at a Riemannian
metric on the two-dimensional surface. We will call it the metric of pseudosphere. As it will
become clear below, this metric is of a fundamental importance for the hyperbolic geometry.
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More generally one can construct in a similar way the induced metric on any submanifold
in a Riemannian manifold. Namely, given an embedding f : M → N to a Riemannian
manifold N equipped with a metric 〈 , 〉N , define a metric on the manifold M by

〈v, w〉M := 〈f∗v, f∗w〉N . (4.1.27)

Exercise 4.1.17 Given a smooth curve

γ : t 7→
(
x1(t), . . . , xm(t)

)
, a ≤ t ≤ b

on the manifold M consider its image f(γ) on N with respect to an embedding f : M → N .
Prove that the length of the curve γ with respect to the induced metric 〈 , 〉M coincides with
the length of the image f(γ) with respect to the metric 〈 , 〉N .

4.2 Tensors on a Riemannian manifold

There are some important additions to tensor algebra on Riemannian manifolds. The metric
at the point x ∈M defines an isomorphism

g : TxM → T ∗xM (4.2.1)

vi 7→ gij(x)vj .

The explicit formula justifies the name lowering of indices for this isomorphism. The inverse
isomorphism is often called raising of indices

g−1 : T ∗xM → TxM (4.2.2)

ωi 7→ gij(x)ωj .

Here gij(x) are entries of the inverse matrix(
gij(x)

)
= (gij(x))−1 . (4.2.3)

Exercise 4.2.1 Prove that the inverse matrix (4.2.3) is a (2, 0)-tensor on the manifold M .
Prove that the inner product on the cotangent spaces defined by

〈α, β〉∗ = gij(x)αiβj , α, β ∈ T ∗xM (4.2.4)

is positive definite.

In a similar way one can construct isomorphisms between the spaces of tensors

T kl ' Tk+l ' T k+l (4.2.5)

at any point of the Riemannian manifold.

Finally, since the operations of lowering and raising indices do not require positivity but
only nondegenerateness of the Gram matrix (gij(x)). So, they can be defined also on a
pseudo-Riemannian manifold.
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There is also a useful operator

∗ : Ωk(M)→ Ωn−k(M) (4.2.6)

on an oriented Riemannian n-dimensional manifold called Hodge duality. The construction
uses the volume form (4.1.17). Let us first observe that the components of the antisymmetric
tensor Ω can be written as follows

Ωi1...in =
√
g εi1...in (4.2.7)

where

εi1i2...in =


sign

(
1 2 . . . n
i1 i2 . . . in

)
, all indices i1, i2, . . . , in are distinct

0, otherwise

(4.2.8)

To apply this operator to a k-form ω = ωi1...ik one first has to raise all indices

ωi1...ik 7→ ωi1...ik = gi1s1 . . . gikskωs1...sk .

At the second step apply contraction with the tensor (4.2.7)

(∗ω)j1...jl =
1

k!

√
g εi1...ikj1...jlω

i1...ik , k + l = n. (4.2.9)

Exercise 4.2.2 Prove that the square of the Hodge operator is equal to ±id

∗2 = (−1)k(n−k)id : Ωk → Ωk. (4.2.10)

Essentially the Hodge duality appears already in the calculations with differential forms
in the three-dimensional Euclidean space where

∗ dx = dy ∧ dz, ∗ dy = dz ∧ dx, ∗ dz = dx ∧ dy
∗ 1 = dx ∧ dy ∧ dz.
∗2 = id.

We finish this section with an application of Riemannian geometry to the theory of alge-
braic equations. Consider an algebraic equation with real coefficients

P (x) := xn + a1x
n−1 + · · ·+ an = 0, a1, . . . , an ∈ R.

Under what conditions all roots of this equation are real? To this end let us consider the
space Pn of all degree n monic polynomials with all real roots. It can be considered as the
n-dimensional Euclidean space using the roots as the Cartesian coordinates

P (x) =

n∏
i=1

(x− xi), x1, . . . , xn ∈ R.
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Denote An another n-dimensional space with coefficients a1, . . . , an as the coordinates (in
these considerations all coordinates will be labelled by lower indices for the sake of simplicity
of explicit expressions). Viète’s formulae

ai = (−1)iσi (x1, . . . , xn) , i = 1, . . . n

where σ1 = σ1 (x1, . . . , xn), . . . , σn = σn (x1, . . . , xn) are elementary symmetric functions

σ1 = x1 + · · ·+ xn, σ2 = x1x2 + x1x3 + · · ·+ xn−1xn, . . . , σn = x1 . . . xn (4.2.11)

define a smooth map Pn
σ−→ An.

Exercise 4.2.3 Prove the following formula for the Jacobian of the Viète map

det

(
∂ai
∂xj

)
= (−1)

n(n+1)
2

∏
i<j

(xi − xj). (4.2.12)

So, the Viète map is a local diffeomorphism on a sufficiently small neighborhood of any
polynomial with pairwise distinct roots.

Our goal is to describe the image of this map. To this end let us introduce Euclidean
metric on Pn and take the inverse matrix defining an inner product on the cotangent bundle
to Pn

〈dxi, dxj〉 = δij .

The Viète map σ induces a metric on the cotangent spaces to An. Namely, by definition

gij(a) := 〈dai, daj〉 =
n∑
k=1

∂ai
∂xk

∂aj
∂xk

, i, j = 1, . . . , n. (4.2.13)

Observe that gij(a) is a symmetric polynomial in the roots x1, . . . , xn. Thus, according to the
main theorem of the theory of symmetric polynomials it can be represented as a polynomial
in a1, . . . , an. For example,

〈da1, da1〉 = n.

Computing other elements of the matrix
(
gij
)

for n = 2 one obtains (recall that in the
concrete examples we write all indices of coordinates as lower)

(
gij
)

=

(
2 a1

a1 a2
1 − 2a2

)
and for n = 3 (

gij
)

=

 3 2a1 a2

2a1 2(a2
1 − a2) a1a2 − 3a3

a2 a1a2 − 3a3 a2
2 − 2a1a3

 . (4.2.14)

Theorem 4.2.4 The polynomial P (x) = xn + a1x
n−1 + · · ·+ an with real coefficients has all

roots real and pairwise distinct iff the Gram matrix (4.2.13) is positive definite.
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Applying the Sylvester criterion (4.1.4) one obtains, for n = 2, the well known inequality

a2
1 − 4a2 > 0.

For n = 3 the Sylvester criterion yields two inequalities

a2
1 − 3a2 > 0, a2

1a
2
2 − 4a3

2 − 4a3
1a3 + 18a1a2a3 − 27a2

3 > 0

that ensure that a cubic polynomial x3 + a1x
2 + a2x+ a3 has all real and distinct roots.

There is another trick from the theory of symmetric functions that helps to derive ex-
pressions for the metric. To this end we choose another system of coordinates on the space
of polynomials. Instead of elementary symmetric functions we will use Newton polynomials

sk(x1, . . . , xn) = xk1 + · · ·+ xkn, k = 1, 2, . . . .

They can be easily expressed via the coefficients of the polynomial due to the following simple
identity

log
(

1 +
a1

x
+
a2

x2
+ · · ·+ an

xn

)
=

n∑
i=1

log
(

1− xi
x

)
= −

∞∑
k=1

sk
k

1

xk
. (4.2.15)

For the example n = 3 one has

s1 = −a1, s2 = −2a2 + a2
1, s3 = −3a3 + 3a1a2 − a3

1

s4 = a4
1 − 4a2

1a2 + 2a2
2 + 4a1a3

etc. In this way one obtains a triangular change of coordinates

(a1, . . . , an) 7→ (s1, . . . , sn) , sk = −k ak + s̃k (a1, . . . , ak−1) , k = 1, . . . , n.

The inverse transform can easily be derived from the identity

e−
∑n
k=1 sk

xk

k = 1 +
a1

x
+
a2

x2
+ · · ·+ an

xn
+O

(
1

xn+1

)
(cf. (4.2.15)). For the example n = 3 one has

a1 = −s1, a2 =
1

2

(
s2

1 − s2

)
, a3 =

1

6

(
−s3

1 + 3s1s2 − 2s3

)
.

Let us now compute the metric (4.2.13) in the coordinates s1, . . . , sn. We have

〈dsk, dsl〉 =
n∑
i=1

∂sk
∂xi

∂sl
∂xi

= k l sk+l−2 (4.2.16)

where we put
s0 = n.

Since positive definiteness of the metric does not depend on the choice of coordinates we
arrive at the following
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Corollary 4.2.5 (Sturm theorem). All the roots of the polynomial xn + a1x
n−1 + · · · + an

are pairwise distinct and real iff the symmetric matrix

(
gkl
)

=



n 2s1 3s2 . . . n sn−1

2s1 4s2 6s3 . . . 2n sn
3s2 6s3 9s4 . . . 3n sn+1

. .

. .
n sn−1 . . . . . n2s2n−2

 (4.2.17)

is positive definite. In this matrix the polynomials sk = sk(a1, . . . , an), k = 1, . . . , 2n− 2 are
defined from the eq. (4.2.15).

The above differential-geometric derivation of the Sturm theorem is due to Sylvester. For
n = 3 one obtains the matrix (4.2.17) reads 3 −2a1 3(a2

1 − 2a2)
−2a1 4(a2

1 − 2a2) 6(−a3
1 + 3a1a2 − 3a3)

3(a2
1 − 2a2) 6(−a3

1 + 3a1a2 − 3a3) 9(a4
1 − 4a2

1a2 + 2a2
2 + 4a1a3)

 . (4.2.18)

Needless to say that the conditions of positive definiteness of the matrices (4.2.14) and (4.2.18)
coincide.

Exercise 4.2.6 Prove that all the roots of the polynomial xn+a1x
n−1 + · · ·+an are pairwise

distinct and exactly m of them are real iff the matrix (4.2.17) defines a pseudo-Riemannian
metric of signature (m + k, k) (k negative squares), where the number k is defined by the
equation m+ 2k = n.

4.3 Riemannian manifolds as metric spaces

On a connected Riemannian manifold one can define distance between two points

ρ(x, y) = inf{lengths of piecewise smooth curves connecting x and y} (4.3.1)

Before proving that the distance function defines on M a structure of a metric space we
prove the following

Lemma 4.3.1 For a coordinate chart U ⊂M consider a function

λ(x, v) =
√
gij(x)vivj , x ∈ U, v ∈ Rn. (4.3.2)

Denote

‖v‖ =

√
(v1)2 + · · ·+ (vn)2

the Euclidean norm of the vector v. Let Bn ⊂ U be an n-dimensional ball. Then there exists
a positive constant k such that the following inequalities hold true

1

k
‖v‖ ≤ λ(x, v) ≤ k ‖v‖ for any (x, v) ∈ B̄n × Rn. (4.3.3)
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Proof: Denote Sn−1 the unit sphere in the Euclidean space, Sn−1 = {v ∈ Rn | ‖v‖ = 1}. The
restriction of the function λ(x, v) onto the compact B̄n×Sn−1 attains its minimum λmin and
maximum λmax at some points (x1, v1) and (x2, v2) in B̄n × Sn−1 respectively. Clearly λmin

is a positive number. The choice

k = max
(
λ−1

min, λmax

)
implies inequalities

1

k
≤ λ(x, v) ≤ k for any x ∈ B̄n, ‖v‖ = 1.

Normalizing an arbitrary vector v = ‖v‖ · ṽ, ‖ṽ‖ = 1 one completes the proof of Lemma.

Theorem 4.3.2 The distance function (4.3.1) satisfies the following properties

ρ(y, x) = ρ(x, y)

ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (4.3.4)

ρ(x, y) ≥ 0, ρ(x, y) = 0 iff y = x.

Proof: The first two properties of the distance function are obvious from the definition
and from the invariance of the length under a reparameterization t 7→ −t. Let us prove
that ρ(x0, y0) > 0 for any x0 6= y0. Let U be a coordinate chart containing x0. Choose a
sufficiently small positive number r such that the ball

B̄n
r (x0) := {x ∈ U | ‖x− x0‖ ≤ r}

entirely belongs to U . Without loss of generality we may assume that y0 6∈ Bn
r (x0). According

to Lemma 4.3.1 one has inequality√
gij(x)vivj ≥ 1

k
‖v‖ ∀x ∈ B̄n

r (x0), ∀ v ∈ Rn

for a suitable positive constant k. Now, let γ be any piecewise smooth curve connecting
x0 = γ(0) and y0. We will derive the lower bound for its length

s[γ] ≥ r

k
.

It suffices to prove such an inequality for the part of the curve belonging to the ball

γ′ = γ ∩ B̄n
r (x0).

Reducing, if necessary, the radius r we can assume that γ′ is a connected piecewise smooth
curve having it end point x1 = γ(t1) on the boundary of the ball,

‖x1 − x0‖ = r.

We have

s[γ′] =

∫ t1

0

√
gij(x(t))ẋiẋj dt ≥ 1

k

∫ t1

0

√
(ẋ1)2 + · · ·+ (ẋn)2 dt.
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The integral in the rhs is the Euclidean length of the curve γ′. As it is well known from
Euclidean geometry its length is greater or equal than the Euclidean distance between the
points γ(0) and γ(t1). The latter is equal to r. So s[γ′] ≥ r/k.

Let us consider some particular metrics. We have derived above three important examples
of two-dimensional Riemannian metrics:

ds2 = dθ2 + θ2dφ2 Euclidean plane

ds2 = dθ2 + sin2 θ dφ2 sphere of radius 1

ds2 = dθ2 + sinh2 θ dφ2 pseudosphere of radius 1

(for the Euclidean plane we have redenoted the radial coordinate r 7→ θ). Observe that for
small θ the above three metrics are approximately equal due to the wellknown formulae

sin θ ' θ, sinh θ ' θ.

In order to better understand the difference between these three metrics let us consider the
disks of a given radius on these three Riemannian manifolds. By definition the disk Dr of
radius r with the centre at a point x is defined as follows

Dr = {y | ρ(x, y) ≤ r}.

Let us choose the point θ = 0 as the centre of the disk. On the Euclidean plane the disk is
given by

Dr = {(θ, φ) | 0 ≤ θ ≤ r, 0 ≤ φ ≤ 2π}. (4.3.5)

Let us prove that the disk on the unit sphere has the same form.

Lemma 4.3.3 The distance from the north pole θ = 0 of the unit sphere to the point (θ0, φ0)
for any θ0 ≤ π, 0 ≤ φ0 < 2π is equal to θ0.

Proof: We have to prove that the length of any piecewise smooth curve from the north pole
to (θ0, φ0) is greater or equal than θ0. Without loss of generality we may assume that the
curve is written in the form

φ = φ(θ), 0 ≤ θ ≤ θ0.

The length of such a curve is equal to

∫ θ0

0

√
1 + sin2 θ

(
dφ

dθ

)2

dθ ≥
∫ θ0

0
dθ = θ0.

A similar argument works also for the pseudosphere. So, for all three examples of the
metrics the disks have are defined by the same inequality (4.3.5). Let us now compare the
areas of these disks. For Euclidean space we have, of course,

AreaEucl (Dr) = π r2.
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For the unit sphere

Areasph (Dr) =

∫ r

0
dθ

∫ 2π

0
sin θ dφ = 2π(1− cos r)

while for the pseudosphere

Areapseudosph (Dr) =

∫ r

0
dθ

∫ 2π

0
sinh θ dφ = 2π(cosh r − 1).

Using the wellknown asymptotic formulae

cos r = 1− r2

2
+
r4

24
+O

(
r6
)
, cosh r = 1 +

r2

2
+
r4

24
+O

(
r6
)

we derive that, for sufficiently small radius

Areasph (Dr) = π r2 − π r4

12
+O

(
r6
)
, Areapseudosph (Dr) = π r2 +

π r4

12
+O

(
r6
)
. (4.3.6)

The coefficient of r4 can be used to measure the deviation from the Euclidean formula. This
is the starting point for definition of curvature of a Riemannian metric that will be introduced
below.

In order to better understand the properties of this distance one has to study the curves
minimizing the length functional

s[γ] =

∫
γ
|ẋ| dt =

∫
γ

√
gij(x)ẋiẋj dt. (4.3.7)

Since the length functional (4.9.4) is invariant with respect to monotone changes of the
parameter it suffices to minimize the functional on the subspace of curves parameterized by
the arc length.

Lemma 4.3.4 The stationary points of the functional (4.9.4) on the subspace of curves with
the arc length parameterization are determined by the following system of differential equa-
tions

ẍk + Γkij(x)ẋiẋj = 0, k = 1, . . . , n (4.3.8)

where

Γkij =
1

2
gks
(
∂gsj
∂xi

+
∂gis
∂xj
− ∂gij
∂xs

)
. (4.3.9)

Proof: One has to derive the Euler–Lagrange equations

∂`

∂xm
− d

dt

∂`

∂ẋm
= 0, m = 1, . . . , n (4.3.10)

for the Lagrangian

`(x, ẋ) =
√
gij(x)ẋiẋj . (4.3.11)

We have

∂`

∂xm
− d

dt

∂`

∂ẋm
=

1√
gij(x)ẋiẋj

[
1

2

∂gij
∂xm

ẋiẋj − d

dt

(
gmiẋ

i
)]
− gmiẋi

d

dt

1√
gij(x)ẋiẋj

.
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The last term in the rhs vanishes since

gij(x(t))ẋiẋj ≡ 1

on the curves parameterized by arc length. The expression in the square brackets yields

1

2

∂gij
∂xm

ẋiẋj − d

dt

(
gmiẋ

i
)

=
1

2

∂gij
∂xm

ẋiẋj − ∂gmi
∂xj

ẋiẋj − gmiẍi.

Since ẋiẋj is symmetric in i, j the second double sum can be written as follows

∂gmi
∂xj

ẋiẋj =
1

2

(
∂gmi
∂xj

+
∂gmj
∂xi

)
ẋiẋj .

So, the m-th equation for the critical points of the functional after changing the sign becomes

gmiẍ
i +

1

2

(
∂gmi
∂xj

+
∂gmj
∂xi

− ∂gij
∂xm

)
ẋiẋj = 0, m = 1, . . . , n.

Multiplying the last equation by the entries gkm of the inverse matrix and taking the sum in
m one completes the proof of the Lemma.

Definition 4.3.5 The solutions x = x(t) of the Euler–Lagrange equations (4.3.8) are called
geodesics.

Example 4.3.6 In the Euclidean space

gij = δij ,

so
Γkij ≡ 0.

The geodesics are straight lines
x(t) = v0t+ x0.

Applying to the system (4.3.8) the existence and uniqueness theorem of solutions to ODEs
one arrives at

Theorem 4.3.7 Given a point x0 ∈M on a Riemannian manifold M and a tangent vector
v0 ∈ Tx0M , there exists a positive number ε > 0 and a geodesic γ(t) defined for |t| < ε such
that γ(0) = x0 and γ̇(0) = v0.

Exercise 4.3.8 Prove that the parameter on any geodesic is proportional to the arc length,
i. e., given a solution

(
x1(t), . . . , xn(t)

)
to the system (4.3.8), prove that

|ẋ|2 = gij (x(t)) ẋiẋj = const.
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Alternatively one can consider the action functional

S[γ] =

∫
γ

1

2
|ẋ|2dt =

∫
γ

1

2
gij(x)ẋiẋj dt (4.3.12)

that can be considered as an analogue of the kinetic energy for the free motion on the manifold
of a point particle of mass 1. Deriving the Euler–Lagrange equations for the new Lagrangian

L(x, ẋ) =
1

2
gij(x)ẋiẋj (4.3.13)

one obtains the same equations of motion (4.3.8).

Exercise 4.3.9 Derive the statement of Exercise 4.3.8 using the property of conservation of
energy on solutions to Euler–Lagrange equations with a Lagrangian L = L(x, ẋ) that does not
depend explicitly on time

∂L(x, ẋ)

∂xm
− d

dt

∂L(x, ẋ)

∂ẋm
= 0, m = 1, . . . , n ⇒ d

dt
E(x, ẋ) = 0

where

E(x, ẋ) = ẋi
∂L(x, ẋ)

∂ẋi
− L(x, ẋ). (4.3.14)

Example 4.3.10 The geodesics on the sphere

|x|2 = R2

in the Euclidean space are arcs of the so-called great circles obtained as sections of the sphere
by hyperplanes passing through the origin. From this example it is clear that, in general the
geodesics minimize the length only locally.

4.4 Approximation theorems

Any smooth manifold is a topological manifold. The definition of a topological manifold is
similar to that of a smooth manifold with just one modification: the transition functions
between charts are homeomorphisms. Moreover, any smooth map f : M → N of smooth
manifolds is continuous. In particular, any diffeomorphism between smooth manifolds is also
a homeomorphism (but not vice versa!). One of the most striking examples (S.Donaldson) is
an infinite set of smooth manifolds homeomorphic but not diffeomorphic to R4. There is still
an open problem of classification, up to a diffeomorphism, of smooth manifolds homeomorphic
to the 4-dimensional sphere.

Approximation theorems give a justification of working in the theory of smooth manifolds
with only smooth maps, smooth homotopies etc. For simplicity we will formulate few simple
statements of this kind for approximation of smooth functions and smooth maps of compact
connected manifolds. It will also be convenient to assume that the manifolds carry a Rie-
mannian structure. Indeed, denote C(M,N) the space of continuous maps between compact
connected Riemannian manifolds M and N . One can equip this infinite dimensional space
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with a structure of a metric space defining the distance between two functions f, g ∈ C(M,N)
by

ρ(f, g) := max
x∈M

ρ (f(x), g(x)) . (4.4.1)

In the right hand side of this formula we use the distance function on the Riemannian manifold
N defined in the previous section. It is easy to prove that the distance function (4.4.1) satisfies
all axioms of a metric space.

Our first statement says that C∞(M,N) ⊂ C(M,N) is a dense subset. More precisely,
the following statement holds true.

Theorem 4.4.1 Let M , N be compact connected Riemannian manifolds. Then for any
f ∈ C(M,N) and an arbitrary ε > 0 there exists g ∈ C∞(M,N) such that

ρ(f, g) < ε.

Proof: is based on the following

Lemma 4.4.2 Let U ⊂ Rn be an arbitrary bounded open domain and f a continuous function
f : U → R. Then for an arbitrary ε > 0 and an arbitrary open V such that V̄ ⊂ U there
exists a function g : U → R smooth on V such that

g|U\V = f |U\V
and

max
x∈V̄
|f(x)− g(x)| ≤ ε.

Moreover, g is smooth also at all the points of smoothness of f .

Recall that two continuous maps f0, f1 : M → N are homotopic if there exists a contin-
uous map

F : M × [0, 1]→ N

such that
F |M×{0} = f0, F |M×{1} = f1.

Theorem 4.4.3 Let M , N be compact connected Riemannian manifolds. Then there exists
ε > 0 such that, any two continuous maps f0, f1 : M → N satisfying

ρ(f, g) < ε

are homotopic.

From these two theorems the following statement readily follows.

Corollary 4.4.4 Let f : M → N be a continuous map of compact connected Riemannian
manifolds. Then there exists a smooth map g : M → N homotopic to f .

Finally, the following statement says that, working with smooth maps it suffices to deal
with smooth homotopies only.

Theorem 4.4.5 Given two homotopic smooth maps f0 ∼ f1 : M → N of compact connected
Riemannian manifolds, then there exists a smooth homotopy F : M × [0, 1] → N between
them.
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4.5 Isometries of Riemannian manifolds

Let (M, 〈 , 〉M ), (N, 〈 , 〉N ) be two Riemannian manifolds.

Definition 4.5.1 A diffeomorphism f : M → N is called isometry if

〈f∗v, f∗w〉N = 〈v, w〉M ∀ v, w ∈ TxM, ∀x ∈M. (4.5.1)

A local version of this definition gives local isometries. In this case f is a local diffeomor-
phism.

Exercise 4.5.2 Let M , N be two Riemannian manifolds. Denote ρM , ρN the corresponding
distance functions. Let f : M → N be an isometry. Prove that, for any two points x, y ∈M

ρM (x, y) = ρN (f(x), f(y)) .

One of the main problems of Riemannian geometry is to classify Riemannian manifolds
up to an isometry.

Example 4.5.3 For n = 1 a Riemannian metric has the form

ds2 = g(t)dt2, g(t) > 0.

Introducing the arc length parameter

s(t) =

∫ t

0

√
g(t) dt

reduces the metric to the Euclidean form

ds2 = g(t)dt2 = (ds(t))2.

So, any one-dimensional Riemannian manifold is locally isometric to the one-dimensional
Euclidean space.

For n > 1 in general there is no local isometry between a Riemannian manifold (M,ds2)
and Euclidean space. Below we define the obstacle for existence of such a local isometry. It
will be defined in terms of the curvature of the Riemannian manifold.

Another important geometrical object come from the study of isometries of a Riemannian
manifold (M,ds2) to itself.

Exercise 4.5.4 Prove that the set of all isometries of a Riemannian manifold to itself is a
group.

In this way we obtain the group of isometries of the Riemannian manifolds.
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Example 4.5.5 For M = Rn with the Euclidean metric ds2 =
(
dx1
)2

+ · · · + (dxn)2 any
map M →M of the form

x 7→ Ax+ b, A ∈ O(n), b ∈ Rn (4.5.2)

is an isometry. Clearly such maps form a subgroup in the group of all isometries. Later we
will show that this group coincides with the group of all isometries Rn to itself.

Example 4.5.6 For the standard sphere {x2 + y2 + z2 = R2} = S2 ⊂ R3 equipped with the
induced metric the transformations x

y
z

 7→ A

 x
y
z

 , A ∈ O(3)

are isometries. We obtain a three-dimensional group of isometries of the sphere S2. Also in
this case, as it will be shown below, the full group of isometries coincides with O(3).

Similar considerations can be applied to the standard sphere Sn−1 ⊂ Rn. The orthogonal
group O(n) acts by isometries on the sphere of an arbitrary radius.

Let us now show that the pseudosphere also possesses a three-dimensional group of isome-
tries.

Let us first observe that the definition (4.5.1) of isometries makes sense also for pseudo-
Riemannian manifolds.

Exercise 4.5.7 1) Prove that the linear map x
y
z

 7→ A

 x
y
z

 , A ∈Mat(3,R)

is an isometry of the three-dimensional Minkowski space R2,1 with the metric ds2 = −dx2 −
dy2 + dz2 iff the matrix A = (aij) satisfies

ATGA = G, G =

 −1 0 0
0 −1 0
0 0 1

 . (4.5.3)

2) Prove that matrices satisfying (4.5.3) form a three-dimensional Lie group.

3) Prove that the a33 entry of such a matrix A never vanishes.

Denote O(2, 1) the group of transformations (4.5.3). It is often called Lorentz group. Ob-
serve that transformations of this group leave invariant the pseudosphere x2 +y2− z2 = −R2

of any radius R. By O+(2, 1) ⊂ O(2, 1) denote the subgroup consisting of transformations
satisfying a33 > 0. Such a subgroup acts on the upper sheet z > 0 of the pseudosphere.
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Exercise 4.5.8 Prove that the transformation of the form x
y
z

 7→ A

 x
y
z

 , A ∈ O+(2, 1)

defines an isometry of the pseudosphere as a Riemannian manifold with the metric

ds2 = R2(dθ2 + sinh2 θ dφ2). (4.5.4)

Also in this case it will be shown that the group of isometries of the Riemannian manifold
(4.5.4) coincides with O+(2, 1).

4.6 Affine connections

In this section M is an arbitrary smooth manifold of dimension n. Let us first recall the
definition of the derivative ∂Xf of a smooth function f ∈ C∞(M) along a vector field X =
Xi(x) ∂

∂xi

∂Xf := Xi(x)
∂f(x)

∂xi
. (4.6.1)

Consider the integral curves x(t) of the vector field X, i.e., solutions to the dynamical system

ẋi = Xi(x), i = 1, . . . , n.

Then the derivative (4.6.1) measures how fast the function f changes along the integral curves

d

dt
f(x(t)) = ∂Xf(x)|x=x(t). (4.6.2)

In particular, the functions satisfying ∂Xf = 0 take constant values along the integral curves.
They are called first integrals of the dynamical system.

We want now to define the derivative of one vector field along another one. This requires
an introduction of an additional structure on the manifold.

Definition 4.6.1 An affine connection on M is an operation that assigns to any pair of
smooth vector fields X, Y ∈ V ect(M) a new smooth vector field ∇XY ∈ V ect(M) called
covariant derivative of Y along X. The operation must depend linearly on X and Y , i.e.,

∇a1X1+a2X2Y = a1∇X1Y +a2∇X2Y, ∇X (a1Y1 + a2Y2) = a1∇XY1 +a2∇XY2 ∀ a1, a2 ∈ R

and also satisfy the following properties

∇f XY = f ∇XY (4.6.3)

∇X (f Y ) = f ∇XY + ∂Xf · Y (4.6.4)

for any f ∈ C∞(M).
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In a system of local coordinates
(
x1, . . . , xn

)
define a collection of smooth functions Γkij(x)

called Christoffel coefficients of the affine connection by taking covariant derivatives of one
basic field along another one

∇ ∂

∂xi

∂

∂xj
|x∈M = Γkij(x)

∂

∂xk
. (4.6.5)

These coefficients locally completely determine the affine connection due to

Lemma 4.6.2 For arbitrary smooth vector fields

X = Xi ∂

∂xi
, Y = Y j ∂

∂xj

the following formula takes place

∇XY = Xi

(
∂Y k

∂xi
+ ΓkijY

j

)
∂

∂xk
. (4.6.6)

Proof: Because of (4.6.3)
∇X = Xi∇ ∂

∂xi
.

Because of (4.6.4)

∇ ∂

∂xi
Y = ∇ ∂

∂xi

(
Y j ∂

∂xj

)
= Y j∇ ∂

∂xi

∂

∂xj
+
∂Y j

∂xi
· ∂

∂xj
= Y jΓkij

∂

∂xk
+
∂Y k

∂xi
· ∂

∂xk

(in the last term we have changed the notation for the summation index from j to k). From
the above two equations one easily derives formula (4.6.6).

Notation: we will denote ∇iXj the coordinates of the vector field ∇∂/∂xiX with respect

to the basis ∂
∂x1

, . . . , ∂
∂xn

∇ ∂

∂xi
X =: ∇iXj ∂

∂xj
. (4.6.7)

Explicitly

∇iXj =
∂Xj

∂xi
+ ΓjikX

k. (4.6.8)

In these notations the formula (4.6.6) reads

∇XY = Xi∇iY j ∂

∂xj
. (4.6.9)

Lemma 4.6.3 For any vector field Y the functions ∇iY j are components of a (1, 1)-tensor.

Proof: The corresponding linear operator on tangent spaces reads

X 7→ ∇XY.
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Corollary 4.6.4 Let y =
(
y1, . . . , yn

)
be another system of coordinates on a neighborhood

of a given point x =
(
x1, . . . , xn

)
, y = y(x). Denote Γkij(x) the Christoffel coefficients of

an affine connection in the coordinates x and Γrpq(y) the Christoffel coefficients of the same
affine connection in the coordinates y. Then the following transformation law holds true

Γrpq(y) =
∂yr

∂xk
∂xi

∂yp
∂xj

∂yq
Γkij(x) +

∂yr

∂xk
∂2xk

∂yp∂yq
. (4.6.10)

Proof: We have
∂

∂yp
=
∂xi

∂yp
∂

∂xi
,

∂

∂yq
=
∂xj

∂yq
∂

∂xj
.

So

Γrpq(y)
∂

∂yr
= ∇ ∂

∂yp

∂

∂yq
=
∂xi

∂yp
∇ ∂

∂xi

(
∂xj

∂yq
∂

∂xj

)
=
∂xi

∂yp
∂xj

∂yq
∇ ∂

∂xi

∂

∂xj
+
∂xi

∂yp
∂

∂xi

(
∂xj

∂yq

)
∂

∂xj
.

In the last term we can use the chain rule

∂xi

∂yp
∂

∂xi

(
∂xj

∂yq

)
=

∂2xj

∂yp∂yq
.

We arrive at the equation

Γrpq(y)
∂

∂yr
=
∂xi

∂yp
∂xj

∂yq
Γkij(x)

∂

∂xk
+

∂2xj

∂yp∂yq
∂

∂xj
.

The last step is to change the notation j 7→ k for the summation index in the last term and
to use

∂

∂yr
=
∂xk

∂yr
∂

∂xk
.

Remark 4.6.5 An alternative definition of affine connection can be formulated as follows:
an affine connection is a collection of smooth functions Γkij(x) assigned to any chart (x1, . . . , xn)
such that, on the intersection of charts the transformation law (4.6.10) holds true.

Example 4.6.6 M = Rn. The Euclidean connection is defined by trivial Christoffel coeffi-
cients in the Euclidean coordinates

Γkij = 0, i, j, k = 1, . . . , n.

Observe that the Christoffel coefficients of the Euclidean connection vanish also in any system
of affine coordinates on Rn. In a system of curvilinear coordinates y = y(x) the Christoffel
coefficients in general do not vanish:

Γrpq(y) =
∂yr

∂xk
∂xk

∂yp∂yq
.
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Exercise 4.6.7 1) Given an affine connection Γkij, prove that

T kij := Γkij − Γkji (4.6.11)

is a (1, 2)-tensor. It is called the torsion tensor of the connection.

2) Prove that the value of the torsion tensor on any pair of smooth vector fields X, Y is
given by the formula

T (X,Y ) := XiY jT kij
∂

∂xk
= ∇XY −∇YX − [X,Y ]. (4.6.12)

Here

[X,Y ] =

(
Xs∂Y

k

∂xs
− Y s∂X

k

∂xs

)
∂

∂xk

is the commutator of vector fields.

3) Prove that the torsion of the Euclidean connection identically vanishes.

Definition 4.6.8 An affine connection with vanishing torsion is called symmetric.

For a symmetric connection the Christoffel coefficients Γkij are symmetric in i and j. Such
a symmetry does not depend on the choice of a coordinate system.

Given an affine connection on a manifold M and a vector field X one can define a differ-
ential operator

∇X : T pq (M)→ T pq (M) (4.6.13)

T
i1...ip
j1...jq

7→ ∇XT
i1...ip
j1...jq

= Xk∇kT
i1...ip
j1...jq

on tensors of the type (p, q), i.e., on sections of the vector bundle

TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
p times

⊗T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
q times

.

Here T ∈ T pq (M) is defined by its components

T = T
i1...ip
j1...jq

(x)
∂

∂xi1
⊗ · · · ⊗ ∂

∂xip
⊗ dxj1 ⊗ · · · ⊗ dxjq

in a given coordinate system. The general formula for the operators (4.6.13) can be derived
from the following requirements:

• for p = q = 0 ∇mf =
∂f

∂xm

• for p = 1, q = 0 ∇iXj is given by the formula(4.6.8)

• Leibnitz rule ∇(T ⊗ S) = ∇T ⊗ S + T ⊗∇S.

One has to also take into account that, due to linearity the covariant derivative commutes
with contractions.
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Theorem 4.6.9 The above conditions uniquely determine the operation (4.6.13) on a man-
ifold equipped with an affine connection. Namely, components of the covariant derivative of
a (p, q)-tensor T

i1...ip
j1...jq

is a (p, q + 1)-tensor ∇kT
i1...ip
j1...jq

given by the formula

∇kT
i1...ip
j1...jq

=
∂T

i1...ip
j1...jq

∂xk
+ Γi1ksT

s i2...ip
j1...jq

+ · · ·+ Γ
ip
ksT

i1...ip−1 s
j1...jq

− Γsk j1T
i1...ip
s j2...jq

− · · · − Γsk jqT
i1...ip
j1...jq−1 s

.

(4.6.14)

Proof: Let us first derive that, for a (0, 1)-tensor ω = (ωi) (a 1-form) the covariant derivative
is a (0, 2)-tensor given by

∇iωj =
∂ωj
∂xi
− Γkijωk. (4.6.15)

Indeed, for any vector field X = Xi ∂
∂xi

the contraction ωiX
i is a smooth function on M .

Therefore

∇k
(
ωiX

i
)

=
∂

∂xk
(
ωiX

i
)

=
∂ωi
∂xk

Xi + ωi
∂Xi

∂xk
.

On another side, using the Leibnitz rule for the covariant derivative we obtain

∇k
(
ωiX

i
)

= ∇kωiXi + ωi∇kXi = ∇kωiXi + ωi

(
∂Xi

∂xk
+ ΓiksX

s

)
.

A comparison of the two expressions yields

∇kωiXi =

(
∂ωi
∂xk
− Γskiωs

)
Xi

(we have interchanged the notations for the summation indices i↔ s in one of the terms of
the formula). Since X is an arbitrary vector field, the formula (4.6.15) is proved.

Let us now proceed to tensors of higher rank. The idea of the proof will be explained for
tensors of the type (1, 1). Let us first consider the case where the tensor T ij is equal to the
tensor product of a (1, 0)-tensor X and a (0, 1)-tensor ω,

T ij = Xiωj . (4.6.16)

Then, using Leibnitz rule one obtains

∇kT ij = ∇kXi ωj +Xi∇kωj =

(
∂Xi

∂xk
+ ΓiksX

s

)
ωj +Xi

(
∂ωj
∂xk
− Γskjωs

)
=

∂

∂xk
(
Xiωj

)
+ ΓiksX

sωj − ΓskjX
iωs =

∂T ij
∂xk

+ ΓiksT
s
j − ΓskjT

i
s .

So, for factorizable (1, 1)-tensors (4.6.16) the formula (4.6.14) is proved. Since any (1, 1)-
tensor can be represented as a linear combination of factorizable tensors, the formula is proved
also for an arbitrary (1, 1)-tensor. The derivation of the formula (4.6.14) in the general case
is completely similar and it will be omitted.

The particular formula for covariant derivatives of a (0, 2)-tensor gij will be often used in
sequel

∇mgij =
∂gij
∂xm

− Γkmigmj − Γkmjgik. (4.6.17)
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Exercise 4.6.10 Consider a (1, 1)-tensor T with components T ij = δij. Prove that

∇T = 0

for an arbitrary affine connection.

4.7 Parallel transport. Curvature of an affine connection

Let γ(t) =
(
x1(t), . . . , xn(t)

)
be a smooth curve on a manifold equipped with an affine

connection.

Definition 4.7.1 The velocity of a vector field X ∈ V ect(M) along the curve γ is the vector
field ∇γ̇X.

Here
γ̇ =

(
ẋ1(t), . . . , ẋn(t)

)
is the velocity vector of the curve. Explicitly,

∇γ̇X = ẋi∇iXk ∂

∂xk

So, the components of the vector field ∇γ̇X at the points of the curve are equal to

ẋi
(
∂Xk (x(t))

∂xi
+ ΓkijX

j (x(t))

)
=
dXk (x(t))

dt
+ ẋiΓkijX

j (x(t)) .

Observe that the rhs depends only on the values of the vector field at the points of the curve
γ. Such an observations motivates the following

Definition 4.7.2 A vector field X = X(t) on the curve γ is called parallel along γ if

∇γ̇X = 0.

From the above calculation we derive a system of n linear ODEs for a parallel vector field
X(t)

dXk

dt
+ ẋi(t)Γkij(x(t))Xj = 0, k = 1, . . . , n. (4.7.1)

Theorem 4.7.3 Given a smooth curve γ : [0, 1] → M , γ(0) = x0, γ1 = x1, and a vector
X0 ∈ Tx0M , then there exists a unique parallel along γ vector field X(t) on the curve,
0 ≤ t ≤ 1.

Proof: Solving the system of linear differential equations (4.7.1) with the initial data X(0) =
X0 we obtain a unique solution X(t) defined on the entire domain of smoothness of coefficients
of the linear system.

Definition 4.7.4 For a given vector X0 ∈ Tx0M and a given smooth curve γ : [0, 1] → M
starting at x0 and ending at x1 the value X1 := X(1) ∈ Tx1M of the parallel along γ vector
field X(t) is called the parallel transport of X0 along γ.
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Exercise 4.7.5 Prove that parallel transport of vectors along a curve γ from x0 = γ(0) to
x1 = γ(1) defines a linear map of tangent spaces

Tx0M → Tx1M.

Moreover, prove that this linear map is an isomorphism.

Example 4.7.6 In Euclidean space Rn with the Euclidean connection the vector field X(t) =(
X1(t), . . . , Xn(t)

)
is parallel along γ iff Xk(t) ≡ Xk

0 , k = 1, . . . , n.

So, the result of parallel transport in Euclidean space does not depend on the choice of
the curve. We will use this observation in order to develop the theory of curvature of an
affine connection. Intuitively, curvature measures the dependence of the parallel transport
from the curve. An analytic approach to the curvature is based on the following statement.

Theorem-Definition 4.7.7 Let M be a manifold equipped with an affine connection. Then
there exists a (1, 3)-tensor Rkijl called curvature tensor of the connection such that, for an

arbitrary vector field X = Xi ∂
∂xi

the following formula holds true

∇i∇jXk −∇j∇iXk = −RkijlX l − T sij∇sXk (4.7.2)

Here T sij = Γsij − Γsji are components of the torsion tensor.

Proof: We know that ∇jXk is a (1, 1)-tensor. Applying the formula (4.6.14) we obtain

∇i
(
∇jXk

)
=

∂

∂xi

(
∇jXk

)
+ Γkis∇jXs − Γsij∇sXk

=
∂

∂xi

(
∂Xk

∂xj
+ ΓkjlX

l

)
+ Γkis

(
∂Xs

∂xj
+ ΓsjlX

l

)
− Γsij∇sXk

=
∂2Xk

∂xi∂xj
+
∂Γkjl
∂xi

X l + Γkjl
∂X l

∂xi
+ Γkis

∂Xs

∂xj
+ ΓkisΓ

s
jlX

l − Γsij∇sXk.

Similarly,

∇j
(
∇iXk

)
=

∂2Xk

∂xj∂xi
+
∂Γkil
∂xj

X l + Γkil
∂X l

∂xj
+ Γkjs

∂Xs

∂xi
+ ΓkjsΓ

s
ilX

l − Γsji∇sXk.

Subtracting we obtain

∇i∇jXk −∇j∇iXk = −RkijlX l − T sij∇sXk

where

Rkijl =
∂Γkil
∂xj
−
∂Γkjl
∂xi

+ ΓkjsΓ
s
il − ΓkisΓ

s
jl. (4.7.3)

Since the lhs ∇i∇jXk − ∇j∇iXk is a (1, 2)-tensor and also T sij∇sXk is a (1, 2)-tensor we

derive that RkijlX
l is a (1, 2)-tensor for any vector field X. It depends linearly on X. Since

the space of linear maps from TxM to TxM ⊗T ∗xM ⊗T ∗xM (i.e., to the space of (1, 2)-tensors
at the point x ∈ M) is isomorphic to the space TxM ⊗ T ∗xM ⊗ T ∗xM ⊗ T ∗xM , we conclude
that Rkijl is a (1, 3)-tensor.

The formula (4.7.3) derived in the proof of the Theorem gives an explicit expression for
the curvature tensor in terms of Christoffel coefficients and their derivatives.
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Exercise 4.7.8 For a 1-form ω = ωkdx
k prove the following formula

∇i∇jωk −∇j∇iωk = Rlijkωl − T sij∇sωk. (4.7.4)

For a Euclidean connection all Christoffel coefficients vanish in the affine coordinates. We
will now prove the converse statement.

Definition 4.7.9 An affine connection on a manifold M is called locally Euclidean if, for
any point x0 ∈ M there exists a neighborhood Ux0 and a system of coordinates

(
y1, . . . , yn

)
on it such that in these coordinates all Christoffel coefficients vanish.

Theorem 4.7.10 An affine connection on M is locally Euclidean iff its torsion and curvature
tensors identically vanish.

Proof: It has already been explained that the conditions T kij = 0 and Rkijl = 0 are necessary
for existence of a system of locally Euclidean coordinates. Let us prove that these conditions
are also sufficient. Denote Γkij(x) the Christoffel coefficients of the connection in a coordinate

system
(
x1, . . . , xn

)
. We are looking for new coordinates ys = ys(x) such that, in new

coordinates all Christoffel coefficients Γrpq(y) vanish. Using the transformation law (4.6.10)

Γkij(x) =
∂xk

∂yr
∂yp

∂xi
∂yq

∂xj
Γrpq(y) +

∂xk

∂yr
∂2yr

∂xi∂xj

we arrive at equations for the functions y(x):

Γkij(x) =
∂xk

∂yr
∂2yr

∂xi∂xj
.

Multiplying by the inverse Jacobi matrix ∂ys

∂xk
rewrite the system of equations in the form

∂2ys

∂xi∂xj
= Γkij(x)

∂ys

∂xk
. (4.7.5)

Our goal is to find n independent functions ys(x), s = 1, . . . , n satisfying equations (4.7.5)
for all i, j = 1, . . . , n.

Let us fix a particular value of the index s. We will rewrite a system (4.7.5) as a first
order system. To this end denote

f = ys, Fj =
∂ys

∂xj
, j = 1, . . . , n.

The system (4.7.5) for a given s takes the form

∂f

∂xi
= Fi

(4.7.6)

∂Fj
∂xi

= ΓkijFk.
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We are looking for a solution to this system satisfying the following initial data at a given
point x0 =

(
x1

0, . . . , x
n
0

)
∈M

f(x0) = 0, Fj(x0) = δsj , j = 1, . . . , n.

The problem is that the system (4.7.6) is overdetermined, i.e., there are n equations for one
vector-valued function

X =



f
F1

.

.

.
Fn

 (4.7.7)

Our main goal is to establish a criterion for existence of a common solution for equations
(4.7.6) with arbitrary initial data.

Let us rewrite the system (4.7.6) in matrix notations

∂X

∂xi
= MiX, i = 1, . . . , n (4.7.8)

where the (n+ 1)× (n+ 1) matrices Mi have the form

Mi =



0 0 . . . 1 . . . 0
0 Γ1

i 1 . . . . . . . . . Γni 1
0 Γ1

i 2 . . . . . . . . . Γni 2
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 Γ1

i n . . . . . . . . . Γni n


(4.7.9)

(the only non-zero element in the first row is at the (i+ 1)-th position).

Lemma 4.7.11 Let the coefficient matrices of the system (4.7.8) be smooth functions on a
cube

Inx0 = {|xi − xi0| < a, i = 1, . . . , n}

for some positive a. A common solution X = X(x), x ∈ Inx0 to the equations of the system
with an arbitrary initial data

X(x0) = X0

exists iff the matrices Mi satisfy the following system of equations

∂Mi

∂xj
− ∂Mj

∂xi
+ [Mi,Mj ] = 0, i, j = 1, . . . , n. (4.7.10)

Here
[Mi,Mj ] = MiMj −MjMi

is matrix commutator.
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Needless to say that the solution, if exists, is unique.

Proof: The common solution X(x), if exists, must satisfy the identities

∂2X

∂xj∂xi
=

∂2X

∂xi∂xj
(4.7.11)

for any pair of indices i, j. From (4.7.8) it follows

∂2X

∂xj∂xi
=

∂

∂xj
(MiX) =

∂Mi

∂xj
X +Mi

∂X

∂xj
=

(
∂Mi

∂xj
+MiMj

)
X.

Therefore the required symmetry (4.7.11) implies(
∂Mi

∂xj
− ∂Mj

∂xi
+ [Mi,Mj ]

)
X = 0.

This equation must hold true for an arbitrary vector X, as the initial data X(x0) is an
arbitrary vector. Thus we have proved necessity of the conditions (4.7.10) for existence of a
common solution to the system (4.7.8).

In order to prove sufficiency of the conditions (4.7.10) let us first consider the case of a
system of two overdetermined linear equations

∂X

∂u
= MuX,

∂X

∂v
= MvX (4.7.12)

for one vector-valued function X = X(u, v). The coefficient matrices Mu = Mu(u, v), Mv =
Mv(u, v) are smooth functions of variables u, v satisfying

∂Mu

∂v
− ∂Mv

∂u
+ [Mu,Mv] = 0.

We want to construct a solution satisfying given initial data

X(u0, v0) = X0.

Let us first construct a solution Y = Y (u) to the following Cauchy problem

∂Y

∂u
= Mu(u, v0)Y, Y (u0) = X0.

Such a solution exists and is unique. Next, consider another Cauchy problem depending on
u as on a parameter

∂X

∂v
= Mv(u, v)X, X(u, v0) = Y (u).

Such a solution X = X(u, v) also exists and is unique for all u. Moreover it depends smoothly
on the parameter u. Let us prove that X also satisfies the first equation of the system (4.7.12).
Denote

X̃ =
∂X

∂u
−MuX.
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Let us prove that X̃ satisfies the second equation of (4.7.12). Indeed,

∂X̃

∂v
−MvX̃ =

∂2X

∂u∂v
− ∂Mu

∂v
X −Mu

∂X

∂v
−Mv

(
∂X

∂u
−MuX

)
=

∂2X

∂u∂v
−
(
∂Mv

∂u
−MuMv +MvMu

)
X −MuMvX −Mv

∂X

∂u
+MvMuX

=
∂2X

∂u∂v
− ∂Mv

∂u
X −Mv

∂X

∂u
=

∂

∂u

(
∂X

∂v
−MvX

)
= 0.

For v = v0 one has

X̃(u, v0) =
∂

∂u
X(u, v0)−Mu(u, v0)X(u, v0) =

∂

∂u
Y (u)−Mu(u, v0)Y (u) = 0.

Hence X̃ ≡ 0. The Lemma is proved for n = 2. For n > 2 the proof can be easily completed
by induction.

In order to finish the proof of the Theorem it remains to check the compatibility conditions
of the equations (4.7.10) for the matrices (4.7.9)

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

∂2Fk
∂xi∂xj

=
∂2Fk
∂xj∂xi

.

It is easy to see that these conditions are equivalent to vanishing of the torsion and the
curvature of the affine connection; we leave this calculation as an exercise for the reader.

Remark 4.7.12 The linear differential equations (4.7.6) can be rewritten in the form

MiX = 0, i = 1, . . . , n (4.7.13)

where

Mi =
∂

∂xi
−Mi (4.7.14)

is a linear differential operator with matrix coefficients. The compatibility conditions (4.7.10)
is nothing but the commutativity of the operators

[Mi,Mj ] = 0 ⇔ ∂Mi

∂xj
− ∂Mj

∂xi
+ [Mi,Mj ] = 0 (4.7.15)

as it follows from the following statement.

Exercise 4.7.13 Given a smooth function f = f(x) of one variable x, prove that the com-
mutator of the operator d

dx and of the operator of multiplication by the function f is the
operator of multiplication by the derivative f ′:[

d

dx
, f

]
= f ′. (4.7.16)
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We recommend to the reader to prove again the Lemma 4.7.11 using the operator nota-
tions.

We will now outline an alternative approach to the definition of the curvature tensor.

Exercise 4.7.14 Given two smooth vector fields X, Y on M , consider a linear operator

R(X,Y ) : V ect(M)→ V ect(M)

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. (4.7.17)

1) Prove that for an arbitrary vector field Z and arbitrary smooth function f one has

R(f X, Y )Z = R(X, f Y )Z = R(X,Y )(f Z) = f R(X,Y )Z. (4.7.18)

2) Derive from this property that, for any point x ∈M the value of the vector field R(X,Y )Z
at x depends only on the values of the vector fields X, Y , Z at the same point.

3) For a vectors X = Xi ∂
∂xi

, Y = Y j ∂
∂xj

, Z = Zk ∂
∂xk

prove that

R(X,Y )Z = −RlijkXiY jZk
∂

∂xl
. (4.7.19)

Let us now explain in what sense the curvature tensor “measures” the dependence of the
parallel transport from the curve.

First, we extend the notion of parallel transport to piecewise smooth curves. It is easy:
if 0 < t1 < t2 < · · · < tm < 1 are the points of discontinuity of the derivative γ̇ of the curve
γ : [0, 1]→ M from x0 = γ(0) to x1 = γ(1) then we first perform a parallel transport of the
initial vector X0 ∈ Tx0M from x0 to γ(t1), then the resulting vector from γ(t1) to γ(t2) etc.

Given a point x0 ∈M , choose a pair of indices i < j and consider a small rectangle

xi0 ≤ xi ≤ xi0 + ∆1, xj0 ≤ x
j ≤ x0 + ∆2, xk = xk0 for k 6= i, j (4.7.20)

where
∆1 ∼ ε, ∆2 ∼ ε

for a sufficiently small positive ε. Denote x1, x2, y0 the remaining vertices of the rectangle

x1 =
(
x1

0, . . . , xi0 + ∆1, . . . , xj0, . . . , xn0 )

x2 =
(
x1

0, . . . , xi0, . . . , xj0 + ∆2, . . . , xn0 )

y0 =
(
x1

0, . . . , xi0 + ∆1, . . . , xj0 + ∆2, . . . , xn0 )

(4.7.21)

Let γ1 be the part of the boundary of the rectangle from x0 to y0 passing via x1. In a similar
way γ2 is another part of the boundary going from x0 to y0 via x2. Let us compare the results
Y0,1 and Y0,2 of parallel transport of an arbitrary vector X0 ∈ Tx0M to the vertex y0 of the
rectangle along its boundary in two possible ways. The result of such comparison is given by

Theorem 4.7.15 The difference between the results Y0,1 and Y0,2 of two parallel transports
of a vector X0 ∈ Tx0M from x0 to y0 along the curves γ1 and γ2 respectively admits the
following expansion at ε→ 0

Y k
0,2 − Y k

0,1 = Rkijs(x0)Xs
0∆1∆2 +O

(
ε3
)
. (4.7.22)
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Proof: Let us first compute the result of parallel transport along γ1 from x0 to x1 (i.e., along
the xi-axis). To this end we have to find the solution X(t) to the Cauchy problem

∂Xk

∂xi
+ ΓkisX

s = 0, X(0) = X0. (4.7.23)

Expanding the solution in Taylor series for small t = xi − xi0

X(t) = X0 +
∂X(0)

∂xi
t+

1

2

∂2X(0)

∂xi2
t2 +O

(
t3
)

and using equations (4.7.23) we obtain

Xk
1 := Xk (t = ∆1) = Xk

0−Γkis(x0)Xs
0 ∆1+

1

2

(
−∂Γkis(x0)

∂xi
+ Γkir(x0)Γris(x0)

)
Xs

0∆2
1+O

(
∆3

1

)
.

In a similar way, the parallel transport Y0,1 of the vector X1 from x1 to y0 along the xj-axis
reads

Y k
0,1 = Xk

1 − Γkjs(x1)Xs
1 ∆2 +

1

2

(
−
∂Γkjs(x1)

∂xi
+ Γkjr(x1)Γrjs(x1)

)
Xs

1∆2
2 +O

(
∆3

2

)
= Xk

0 − Γkis(x0)Xs
0 ∆1 −

(
Γkjs(x0) +

∂Γkjs(x0)

∂xi
∆1

)(
Xs

0 − Γsil(x0)X l
0 ∆1

)
∆2

+
1

2

(
−∂Γkis(x0)

∂xi
+ Γkir(x0)Γris(x0)

)
Xs

0∆2
1 +

1

2

(
−
∂Γkjs(x0)

∂xi
+ Γkjr(x0)Γrjs(x0)

)
Xs

0∆2
2 +O

(
ε3
)

= Xk
0 − Γkis(x0)Xs

0 ∆1 − Γkjs(x0)Xs
0 ∆2 +

(
−
∂Γkjs(x0)

∂xi
+ Γkjl(x0)Γlis(x0)

)
Xs

0∆1∆2

+
1

2

(
−∂Γkis(x0)

∂xi
+ Γkir(x0)Γris(x0)

)
Xs

0∆2
1 +

1

2

(
−
∂Γkjs(x0)

∂xi
+ Γkjr(x0)Γrjs(x0)

)
Xs

0∆2
2 +O

(
ε3
)
.

A similar computation yields the followng expression for the vector Y0,2 obtained from X0

via parallel transport along γ2 from x0 to y0

Y k
0,2 = Xk

0 − Γkjs(x0)Xs
0 ∆1 − Γkis(x0)Xs

0 ∆2 +

(
−
∂Γkjs(x0)

∂xj
+ Γkil(x0)Γljs(x0)

)
Xs

0∆1∆2

+
1

2

(
−
∂Γkjs(x0)

∂xj
+ Γkjr(x0)Γrjs(x0)

)
Xs

0∆2
1 +

1

2

(
−∂Γkis(x0)

∂xj
+ Γkir(x0)Γris(x0)

)
Xs

0∆2
2 +O

(
ε3
)
.

Subtracting one obtains the needed formula.

4.8 The Levi-Civita connection and curvature of Riemannian manifolds

In this section we will construct a particular affine connection on a Riemannian manifold.
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Theorem-Definition 4.8.1 An affine connection on a Riemannian manifold
(
M,ds2

)
is

called compatible with the metric if it satisfies one of the following equivalent properties.

1) The covariant derivatives of the metric tensor vanish

∇kgij = 0, i, j, k = 1, . . . , n. (4.8.1)

2) For arbitrary vector fields X, Y , Z ∈ V ect(M)

∇Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 . (4.8.2)

3) Parallel transport along any curve γ : [0, 1] → M is an orthogonal transformation
Tx0M → Tx1M , x0 = γ(0), x1 = γ(1), that is, for any pair of vectors X0, Y0 ∈ Tx0M their
parallel transports X1, Y1 ∈ Tx1M satisfy

〈X1, Y1〉 = 〈X0, Y0〉 . (4.8.3)

Observe that the covariant derivative in the lhs of eq. (4.8.2) coincides with the partial
one

∇Z 〈X,Y 〉 = ∂Z 〈X,Y 〉 .

Proof: 1) ⇒ 2). It suffices to check validity of (4.8.2) for X = ∂
∂xi

, Y = ∂
∂xj

, Z = ∂
∂xk

. In
this case eq. (4.8.2) becomes

∇ ∂

∂xk

〈
∂

∂xi
,
∂

∂xj

〉
≡ ∂

∂xk
gij =

〈
Γski

∂

∂xs
,
∂

∂xj

〉
+

〈
∂

∂xi
,Γskj

∂

∂xs

〉
≡ Γskigsj + Γskjgis.

On another side, using formula (4.6.17) for the covariant derivatives of a (0, 2)-tensor we find
that

∇kgij = 0 ⇔ ∂gij
∂xk

= Γskigsj + Γskjgis. (4.8.4)

This proves (4.8.2).

2) ⇒ 3). Let the vector fields X(t), Y (t) be parallel alone the curve γ, i.e., ∇γ̇X(t) = 0,
∇γ̇Y (t) = 0. Using (4.8.2) we obtain

d

dt
〈X(t), Y (t)〉 ≡ ∇γ̇ 〈X(t), Y (t)〉 = 〈∇γ̇X(t), Y (t)〉+ 〈X(t),∇γ̇Y (t)〉 = 0.

Hence
〈X(0), Y (0)〉 = 〈X(1), Y (1)〉 ,

q.e.d.

3) ⇒ 1). Choosing, as above, vector fields X(t), Y (t) parallel along γ one must have

0 =
d

dt

(
gij(x(t))Xi(t)Y j(t)

)
= ẋk

∂gij
∂xk

XiY j + gijẊ
iY j + gijX

iẎ j .

Using equations of parallel transport

Ẋi + ẋkΓiksX
s = 0, Ẏ j + ẋkΓjksY

s = 0
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recast the above expression into the form

0 =
d

dt

(
gij(x(t))Xi(t)Y j(t)

)
= ẋk

(
∂gij
∂xk

− Γskigsj − Γskjgis

)
XiY j = 0.

Since X and Y are arbitrary vectors and also the velocity vector γ̇ can be arbitrary we
conclude that the expression in the parenthesis is equal to zero.

Definition 4.8.2 An affine connection on Riemannian manifold is called Levi-Civita con-
nection if it is symmetric and compatible with the metric.

Theorem 4.8.3 On an arbitrary Riemannian manifold there exists a unique Levi-Civita
connection.

Proof: Let us derive expressions for the Christoffel coefficients of the Levi-Civita connection
using eqs. (4.8.4) along with the symmetry condition Γkji = Γkij . Adding to (4.8.4) equations
obtained by cyclic permutations of indices i, j, k arrive at a system

∂gij
∂xk

= Γskigsj + Γskjgis

∂gki
∂xj

= Γsjkgsi + Γsjigks

∂gjk
∂xi

= Γsijgsk + Γsikgjs.

Adding the second and the third equations and subtracting the first one we obtain

2Γsijgsk =
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

.

Multiplying by the inverse matrix gkl and taking summation over k we come at the needed
formula

Γkij =
1

2
gks
(
∂gsj
∂xi

+
∂gis
∂xj
− ∂gij
∂xs

)
. (4.8.5)

In this way we have proved uniqueness of the Levi-Civita connection. In order to prove
existence it remains to check that the Christoffel coefficients defined for any coordinate system
by the formulae (4.8.5) satisfy the transformation law (4.6.10). We leave this computation
as an exercise for the reader.

The formulae (4.8.5) for the Levi-Civita connection are called Christoffel formulae.

Example 4.8.4 The Levi-Civita connection on the Euclidean space equipped with the Eu-
clidean metric coincides with the Euclidean connection.

Exercise 4.8.5 Prove the following identities for contractions of Christoffel coefficients of
the Levi-Civita connection

Γkik =
∂

∂xi
log
√
g (4.8.6)

gijΓkij = − 1
√
g

∂

∂xs

(√
g gsk

)
. (4.8.7)

In these formulae
g = det (gij) .
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Exercise 4.8.6 Prove that the covariant divergence ∇iXi of a vector field Xi with respect
to the Levi-Civita connection can be written in the following form

∇iXi =
1
√
g

∂

∂xi
(√
g Xi

)
. (4.8.8)

Exercise 4.8.7 For a vector field Xi consider the 1-form

ω = Xidx
i, Xi = gijX

j .

Prove that the Hodge-dual (n− 1)-form ∗ω (see definition in (4.2.9)) reads

∗ω =
n∑
i=1

Xi√g dx1 ∧ . . . ˆdxi · · · ∧ dxn. (4.8.9)

Here a hat over dxi means that this factor is omitted from the product.

Exercise 4.8.8 Let Xi be a vector field on a compact n-dimensional oriented Riemannian
manifold M with a boundary ∂M equipped with the induced orientation. Prove that∫

∂M

n∑
i=1

Xi√g dx1 ∧ . . . ˆdxi · · · ∧ dxn =

∫
M
∇iXi√g dx1 ∧ · · · ∧ dxn. (4.8.10)

Remark 4.8.9 On a Riemannian oriented manifold one can consider the Laplace–Beltrami
operator ∆ : C∞(M)→ C∞(M) as follows

∆f = ∗ d ∗ df (4.8.11)

From the above exercises it follows that

∆f = ∇i
(
gik

∂f

∂xk

)
=

1
√
g

∂

∂xi

(
√
g gik

∂f

∂xk

)
. (4.8.12)

Definition 4.8.10 The curvature tensor Rlijk of the Levi-Civita connection of a Riemannian
manifold is called the Riemann curvature of the Riemannian manifold.

Theorem 4.8.11 A Riemannian manifold is locally isometric to Euclidean space iff it has
zero curvature

Rlijk = 0, i, j, k, l = 1, . . . , n. (4.8.13)

Proof: For Euclidean space Γkij = 0 ⇒ Rlijk = 0. Conversely, due to Theorem 4.7.10 on
a manifold with a symmetric connection with vanishing curvature there exists a system of
local coordinates

(
y1, . . . , yn

)
such that Γrpq(y) = 0. In these coordinates the Gram matrix

gpq is constant. Doing if necessary a linear transformation of the coordinates y one reduces
the Gram matrix to the standard form gpq = δpq.

Remark 4.8.12 The definition of Levi-Civita connection as well as the proofs of Theorems
4.8.3 and 4.8.11 remain valid also for pseudo-Riemannian manifolds.
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One may ask how many independent equations (4.8.13) one has to analyze in order to
check if a given Riemannian manifold is locally isometric to Euclidean space. The naive
answer n4 does not work as there are some universal relations between various components of
the Riemann curvature tensor. For example, due to the definition the tensor is antisymmetric
in i, j

Rljik = −Rlijk. (4.8.14)

In order to analyze other symmetries of the Riemann curvature tensor it is convenient to
lower the index l, i.e., to work with the (0, 4)-tensor with components

Rijkl = glsR
s
ijk. (4.8.15)

Theorem 4.8.13 The Riemann curvature tensor of a Riemannian manifold satisfies the
following constraints

Rjikl = −Rijkl (4.8.16)

Rijkl +Rkijl +Rjkil = 0 (4.8.17)

Rijlk = −Rijkl (4.8.18)

Rklij = Rijkl. (4.8.19)

Proof: The first equation readily follows from (4.8.14). The identity (4.8.17) follows from
the symmetry of the connection

∇i∇j
∂

∂xk
−∇j∇i

∂

∂xk
+∇k∇i

∂

∂xj
−∇i∇k

∂

∂xj
+∇j∇k

∂

∂xi
−∇k∇j

∂

∂xi

= ∇i
(
∇j

∂

∂xk
−∇k

∂

∂xj

)
+∇j

(
∇k

∂

∂xi
−∇i

∂

∂xk

)
+∇k

(
∇i

∂

∂xj
−∇j

∂

∂xi

)
= 0.

Proof of antisymmetry (4.8.18) follows from compatibility of the connection with the metric.
Namely, for arbitrary vector fields Y , Z using (4.8.2) one obtains

∂2

∂xi∂xj
〈Y, Z〉 =

∂

∂xi
(〈∇jY, Z〉+ 〈Y,∇jZ〉)

= 〈∇i∇jY,Z〉+ 〈∇jY,∇iZ〉+ 〈∇iY,∇jZ〉+ 〈Y,∇i∇jZ〉 .

The same expression can be computed in a different way

∂2

∂xj∂xi
〈Y, Z〉 =

∂

∂xj
(〈∇iY,Z〉+ 〈Y,∇iZ〉)

= 〈∇j∇iY,Z〉+ 〈∇iY,∇jZ〉+ 〈∇jY,∇iZ〉+ 〈Y,∇j∇iZ〉 .

Subtracting one obtains
〈[∇i,∇j ]Y, Z〉+ 〈Y, [∇i,∇j ]Z〉 = 0.

This proves (4.8.17).

The last identity (4.8.19) follows from the previous three. To see this let us consider eq.
(4.8.17) together with three other eqs. obtained by cyclic permutations of indices i, j, k, l

Rijkl +Rkijl +Rjkil = 0

Rlijk +Rjlik +Rijlk = 0

Rklij +Riklj +Rlikj = 0

Rjkli +Rljki +Rklji = 0.
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Adding the first and fourth equations and subtracting the second and third one obtains, with
the help of (4.8.16) and (4.8.18)

2Rijkl − 2Rklij = 0.

For n = 1 all components of the curvature tensor vanish, as it should be. Indeed, any
one-dimensional Riemann manifold is locally isometric to Euclidean space. For n = 2 there is
only one non-zero component R1212. All other components are or equal to ±R1212 or vanish.

Exercise 4.8.14 Prove that the dimension of the space of tables Rijkl, i, j, k, l = 1, . . . , n,

satisfying constraints (4.8.16)–(4.8.19) is equal to n2(n2−1)
12 .

Hint: prove that one can use the following components as independent coordinates in the
space of tensors Rijkl satisfying (4.8.16)–(4.8.19)

Rijkl for i < j ≤ k < l or k ≤ i < j ≤ l.

Other two quantities are often considered in the study of curvature of Riemannian man-
ifolds. The first one is Ricci tensor obtained from the Riemann curvature tensor by a con-
traction

Rij = gklRikjl. (4.8.20)

It is a symmetric tensor of rank 2
Rji = Rij . (4.8.21)

The contraction of Ricci tensor
R = gijRij (4.8.22)

is called scalar curvature. Its value at a given point does not depend on the choice of a system
of coordinates, i.e., the scalar curvature is just a smooth function on the manifold.

Exercise 4.8.15 For n = 2 prove that

Rijkl =
1

2
R det

(
gik gil
gjk gjl

)
.

and
Rij = Rgij .

Derive that any two-dimensional Riemannian manifold with vanishing scalar curvature is
locally isometric to Euclidean plane.

For n = 3 the Riemann curvature tensor has 6 independent components R1212, R1213,
R1223 R1313, R1323, R2323. The Ricci tensor has the same number of independent components
R11, R12, R13, R22, R23, R33. Such a coincidence suggests that the Riemann curvature of a
three-dimensional manifold is completely determined by the Ricci curvature. Indeed, this is
the case, as it follows from the following
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Exercise 4.8.16 For n = 3 prove the following formula

Rijkl = det

(
Rik Ril
gjk gjl

)
− det

(
Rjk Rjl
gik gil

)
− 1

2
R det

(
gik gil
gjk gjl

)
.

Definition 4.8.17 A Riemannian manifold is called Ricci flat if Rij = 0, i, j = 1, . . . , n.

From the results of the last two exercises it follows that any Ricci flat Riemannian manifold
of dimension ≤ 3 is locally isometric to Euclidean space. For n ≥ 4 this is not true any more.
For example, for n = 4 the dimension of the space of Ricci tensors is equal to 10 while the
space of Riemann curvature tensors has dimension 20.

Importance of Ricci flat manifolds is mainly due to the Einstein’s general relativity. Ac-
cording to this theory the space-time in absence of matter is a Ricci flat pseudo-Riemannian
manifold of signature (1, 3) (needless to say that the above definitions of curvature makes
sense also for pseudo-Riemannian manifolds; also all its properties remain valid).

Exercise 4.8.18 Let the metric on a two-dimensional Riemannian manifold have a diagonal
form

ds2 = h2
1

(
dx1
)2

+ h2
2

(
dx2
)2
, h1 = hi

(
x1, x2

)
. (4.8.23)

Prove that the scalar curvature of this metric is given by the following formula

R = − 2

h1h2

[
∂

∂x1

(
h2,1

h1

)
+

∂

∂x2

(
h1,2

h2

)]
(4.8.24)

where

h1,2 :=
∂h1

∂x2
, h2,1 :=

∂h2

∂x1
.

4.9 Geodesics on a Riemannian manifold

Geodesics on Riemannian manifolds are analogues of straight lines. Let us give a precise
definition.

Let γ =
(
x1(t), . . . , xn(t)

)
be a smooth curve on a Riemannian manifold M . As above

the symbol ∇ will denote the Levi-Civita connection for M .

Definition 4.9.1 The curve γ is called geodesic if its velocity vector γ̇ is parallel along γ

∇γ̇ γ̇ = 0.

Using eq. (4.7.1) one arrives at a system of the second order ODEs for geodesics

ẍk + Γkij(x)ẋiẋj = 0, k = 1, . . . , n. (4.9.1)

We have already derived this system in the analysis of the Euler–Lagrange equations for the
length functional

s[γ] =

∫
γ

√
gij(x)ẋiẋj dt. (4.9.2)
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More precisely, it was shown that the critical points of the length functional on the subset of
curves parameterized by the arc length are solutions to the differential equations (4.9.1). An
alternative variational formulation of the theory of geodesics is given by the action functional

S[γ] =

∫
γ

1

2
gij(x)ẋiẋj dt. (4.9.3)

Lemma 4.9.2 The Euler–Lagrange equations

∂L

∂xk
− d

dt

∂L

∂ẋk
= 0, k = 1, . . . , n

for the Lagrangian

L = L(x, ẋ) =
1

2
gij(x)ẋiẋj (4.9.4)

are equivalent to eqs. (4.9.1).

Proof: is similar to the proof of Lemma 4.3.4.

We emphasize that, for the Lagrangian (4.9.4) one does not need to assume that the
parameter on the curve is equal to the arc length. Moreover, the following statement holds
true

Lemma 4.9.3 For a geodesic |γ̇(t)| = const.

In other words, the parameter t along the geodesic is proportional to the arc length.

Proof: We have
d

dt
〈γ̇, γ̇〉 ≡ ∇γ̇ 〈γ̇, γ̇〉 = 2 〈∇γ̇ γ̇, γ̇〉 = 0.

Applying to the system of ODEs (4.9.1) the Cauchy theorem along with the standard
results about smooth dependence of solutions on the initial data one obtains

Theorem 4.9.4 Given a point x0 ∈ M of a Riemannian manifold and a vector v0 ∈ Tx0M
there exists a neighborhood W = W (x0, v0) ⊂ TM and a positive number ε such that for any
(x1, v1) ∈W there exists a unique geodesic γ : (−ε, ε)→M such that

γ(0) = x1, γ̇(0) = v1. (4.9.5)

The map
W × (−ε, ε)→M, (x1, v1, t) 7→ γ(t) (4.9.6)

is smooth.

Example 4.9.5 In a Euclidean space the equations of geodesics, written in Euclidean coor-
dinates, become

ẍk = 0, k = 1, . . . , n.

Thus geodesics are straight lines
xk(t) = akt+ bk.
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The following simple statement is helpful in the study of geodesics.

Theorem 4.9.6 Given an isometry f : M → N of Riemannian manifolds and a geodesic γ
on M . Then f(γ) is a geodesic on N .

Example 4.9.7 Let us prove that geodesics on the standard sphere S2 ⊂ R3 are big circles.
Indeed, let a geodesic γ for t = 0 passes through x0 = γ(0) and has a (nonzero) initial vector
v0 = γ̇(0) ∈ Tx0S2. Consider the two-dimensional plane P passing through the origin, the
point x0 and parallel to the vector v0. The reflection with respect to P is an isometry of the
sphere. Denote γr the image of γ with respect to the reflection. Due to the Theorem it is
again a geodesic. Since γr satisfies the same initial data

γr(0) = x0, γ̇r(0) = v0,

it coincides with γ. Therefore γ = S2 ∩ P .

Similar arguments allow to find geodesics on the pseudosphere

x2 + y2 − z2 = −R2

in the Minkowski space R1,2. They are sections of the pseudosphere by planes passing through
the origin x = y = z = 0.

Euler–Lagrange equations (4.3.10), (4.3.11) give a necessary condition for finding curves
minimizing the value of the length functional (4.9.2). Our next goal is to prove that, locally,
geodesics minimize the length. We will first introduce an analogue of polar coordinates on a
sufficiently small neighborhood of any Riemannian manifold. To this end let us modify the
statement of the theorem of existence and uniqueness 4.9.4.

Theorem 4.9.8 Given a point x0 ∈ M of a Riemannian manifold, there exists a neighbor-
hood U = U(x0) and a positive number ε such that, for an arbitrary point x1 ∈ U and an arbi-
trary vector v1 ∈ Tx1M of the length |v1| < ε there exists a unique geodesics γ : (−2, 2)→M
satisfying initial conditions

γ(0) = x1, γ̇(0) = v1.

Proof: We will use invariance of equations of geodesics with respect to rescalings of inde-
pendent variable

γ(t) 7→ γ(ct)

So, choosing the neighborhood W = W (x0, 0) of the Theorem 4.9.4 in the form

(x1, v1) ∈W ⇔ x1 ∈ U, |v1| < δ

for some U ⊂ M and some δ > 0 we obtain a geodesic γ : (−2ε1, 2ε1) → M with initial
conditions

γ(0) = x1, γ̇(0) = v1 for (x1, v1) ∈W

for some ε1 > 0. The geodesic γc(t) := γ(ct) will be defined on the interval
(
−2ε1

c ,
2ε1
c

)
and

satisfy the initial conditions
γc(0) = x1, γ̇c(0) = c v1.
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Choosing c in such a way that
0 < c < ε1

we obtain a geodesic γc defined on the interval (−2, 2) (or bigger). The length of the initial
vector c v1 will be less than ε1δ =: ε.

Corollary 4.9.9 Let U ⊂ M and ε > 0 be such that for any x ∈ U and any v ∈ TxM
satisfying |v| < ε there exists a geodesic γ : (−2, 2)→M with the initial condition γ(0) = x,
γ̇(0) = v. Then the map

exp : {(x, v) ∈ TM |x ∈ U, |v| < ε} →M, (x, v) 7→ expx(v) := γ(1) (4.9.7)

is well defined and smooth.

Definition 4.9.10 The map (4.9.7) is called exponential map.

Observe that the geodesics itself can be represented in the form

γ(t) = expx(t v), x ∈ U, |v| < ε (4.9.8)

γ(0) = x, γ̇(0) = v.

Its length between the points γ(0) and γ(1) is equal to |v| < ε.

Fix a point x0 ∈M and consider the exponential map

expx0 : Tx0M →M

defined for a sufficiently small neighborhood of 0 ∈ Tx0M . From the equation of geodesics
one obtains the following Taylor expansion

xk(t) = xk(0) + t ẋk(0) +
t2

2
ẍk(0) +O

(
t3
)

= xk0 + t vk − t2

2
Γkij(x0)vivj +O

(
t3
)

(4.9.9)

of the geodesic γ(t) =
(
x1(t), . . . , xn(t)

)
with the initial data

γ(0) = x0, γ̇(0) = v.

Therefore the exponential map for small |v| can be represented by the following series expan-
sion

xk(v) :=
[
expx0(v)

]k
= xk0 + vk − 1

2
Γkij(x0)vivj +O

(
|v|3
)
. (4.9.10)

The following statement readily follows:

Proposition 4.9.11 The map expx0 : Tx0M →M is a local diffeomorphism.

Proof: From (4.9.10) the following expression for the Jacobi matrix ∂xk/∂vi readily follows

∂xk

∂vi
= δki − Γkij(x0)vj +O

(
|v|2
)
. (4.9.11)
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At the origin v = 0 one obtains the identity matrix

∂xk

∂vi
|v=0 = δki .

Due to the previous statement one can use the components
(
v1, . . . , vn

)
of the tangent

vector v ∈ Tx0M with sufficiently small |v| as coordinates on a neighborhood of the point x0.
Denote

hij(v) :=

〈
∂

∂vi
,
∂

∂vj

〉
(4.9.12)

the Gram matrix of the Riemannian metric in the coordinates
(
v1, . . . , vn

)
. The following

statement is often used in various calculations in Riemannian geometry.

Proposition 4.9.12 All first derivatives of the Riemannian metric in the coordinates
(
v1, . . . , vn

)
vanish at the origin v = 0.

Proof: From (4.9.11) obtain

hij(v) =

〈
∂

∂xi
− Γkis(x0)vs

∂

∂xk
,
∂

∂xj
− Γljt(x0)vt

∂

∂xl

〉
+O

(
|v|2
)

= gij (x(v))−
[
Γkis(x0)gkj (x(v)) + Γkjs(x0)gki (x(v))

]
vs +O

(
|v|2
)

= gij(x0) +
∂gij(x0)

∂xs
vs −

[
Γkis(x0)gkj (x0) + Γkjs(x0)gki (x0)

]
vs +O

(
|v|2
)
.

So
∂hij(v)

∂vs
|v=0 =

∂gij(x0)

∂xs
v − Γkis(x0)gkj (x0) + Γkjs(x0)gki (x0) = ∇sgij(x0) = 0.

Corollary 4.9.13 For any point x0 on a Riemannian manifold there exists a system of local
coordinates such that all Christoffel coefficients of the Levi-Civita connection vanish at the
point x0.

We will now extend the previous constructions allowing also the initial point of the ex-
ponential map to vary. Let U and ε be same as before. Denote W ⊂ TM the subset of the
form

W = {(x, v) ∈ TM |x ∈ U, |v| < ε}.

One can define a map

Exp : W →M ×M
Exp(x, v) = (x, expx(v)) . (4.9.13)

Observe that on the zero section U × {0} ⊂W one has Exp(x, 0) = (x, x).
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Exercise 4.9.14 Prove that the differential Exp∗ of the map (4.9.13) at the points of zero
section has the matrix

Exp∗|(x,0) =

(
1 1
0 1

)
. (4.9.14)

Here 1 denotes n× n identity matrix.

Corollary 4.9.15 The map Exp establishes a diffeomorphism of a domain

W ′ = {(x, v) ∈ TM |x ∈ U ′, |v| < ε′}

for some U ′ ⊂ U , 0 < ε′ < ε to a domain W ′ ⊂M ×M containing points of the form (x, x),
x ∈ U ′.

In sequel we will omit primes of U ′ and ε′.

Corollary 4.9.16 1) For any x, y ∈ U there exists a unique geodesic γ : [0, 1]→ U connect-
ing x = γ(0) with y = γ(1) of length s[γ] < ε.

2) The geodesic γ depends smoothly on the endpoints x, y.

3) For any x ∈ U the map expx is a diffeomorphism of the open ε-ball in TxM onto an open
domain Ux ⊂ U .

Let us use the exponential map to construct a system of “polar coordinates” on a neigh-
borhood of a given point x0 in a Riemannian manifold M . Consider the unit sphere

Sn−1
x0 = {v ∈ Tx0M | |v| = 1}

in the tangent space at the point x0. Let the positive number ε be such as above. For every
pair (r, v), 0 ≤ r ≤ ε, v ∈ Sn−1

x0 consider the point expx0(r v) ∈ M . The pair (r, v) can
be considered as coordinates of this point. Recall that the curve γ : [0, ε] → M defined by
γ(r) = expx0(r v) is a geodesic. We call it radial geodesic.

We will now prove the following statement, due to Gauss.

Lemma 4.9.17 For a given 0 < r ≤ ε the surface

Sr = {x = expx0(r v) | v ∈ Sn−1
x0 }. (4.9.15)

is orthogonal to radial geodesics.

Proof: Choose a curve v = v(t) on the sphere Sn−1
x0 . Consider the surface

x(r, t) = expx0(r v(t)). (4.9.16)

We have to prove that 〈
∂x

∂r
,
∂x

∂t

〉
= 0.
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To this end introduce operators

∇r := ∇ ∂x
∂r
, ∇t := ∇ ∂x

∂t
.

Using the equation of geodesics

∇r
∂x

∂r
= 0

obtain
∂

∂r

〈
∂x

∂r
,
∂x

∂t

〉
=

〈
∇r

∂x

∂r
,
∂x

∂t

〉
+

〈
∂x

∂r
,∇r

∂x

∂t

〉
=

〈
∂x

∂r
,∇r

∂x

∂t

〉
.

Using symmetry of the connection

∇r
∂x

∂t
= ∇t

∂x

∂r

rewrite the last expression in the form〈
∂x

∂r
,∇r

∂x

∂t

〉
=

〈
∂x

∂r
,∇t

∂x

∂r

〉
=

1

2

∂

∂t

〈
∂x

∂r
,
∂x

∂r

〉
= 0

since 〈
∂x

∂r
,
∂x

∂r

〉
= const

on a geodesic.

We are now ready to prove the main result of this section.

Theorem 4.9.18 Let U ⊂ M and ε > 0 be the same as in Corollary 4.9.16. For a given
pair of points x, y ∈ U denote γ : [0, 1] → M the geodesic of length less than ε connecting
these two points. Then any other piecewise smooth curve connecting x and y has the length
greater or equal than the length of γ.

Proof is based on the following

Lemma 4.9.19 Represent a sufficiently small piecewise smooth curve γ : [a, b] → M not
passing through x0 in the polar coordinates

γ(t) = expx0 (r(t) v(t)) , 0 < r(t) < ε, |v(t)| = 1. (4.9.17)

Then
s[γ] ≥ |r(b)− r(a)|;

the equality takes place only for a monotone function r(t) and constant v(t) ≡ v0 for some
v0 ∈ Sn−1

x0

In other words the shortest curve connecting two spheres centered at x0 is a radial
geodesic, up to a reparameterization.

Proof: Consider a two-dimensional surface

x(r, t) = expx0(r v(t)).
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We have

γ̇ =
∂x

∂r
ṙ +

∂x

∂t
.

We know that ∣∣∣∣∂x∂r
∣∣∣∣ = 1,

∂x

∂r
⊥ ∂x

∂t
.

So

|γ̇|2 = |ṙ|2 +

∣∣∣∣∂x∂t
∣∣∣∣2 ≥ ṙ2.

The equality takes place iff ∂x
∂t = 0. Therefore

s[γ] =

∫ b

a
|γ̇| dt ≥

∫ b

a
|ṙ| dt ≥ |r(b)− r(a)|.

End of the proof of the Theorem. Consider any path ω from x to x′ = expx(rv), 0 < r < ε,
|v| = 1. For any δ > 0 the path ω must contain a segment connecting the sphere of radius
δ with the sphere of radius r. Length of this segment is greater or equal than r − δ, In the
limit δ → 0 we conclude that s[ω] ≥ r, and equality takes place only when ω is a geodesic.

Corollary 4.9.20 Let γ : [0, l] → M be a curve from γ(0) to γ(l) parameterized by arc
length. Assume that γ is shorter than any other curve between γ(0) and γ(l). Then γ is a
geodesic.

Recall that we defined the distance function on a connected Riemannian manifold by

ρ(x, y) = inf
γ
s[γ], γ : [0, 1]→M, γ(0) = x, γ(1) = y.

Corollary 4.9.21 For any compact subset K ⊂M there exists δ > 0 such that, for arbitrary
x, y ∈ K satisfying ρ(x, y) < δ there exists a unique geodesic between x and y of length less
than δ. It is minimal and depends smoothly on the end points.

Let us now describe global properties of geodesics.

Definition 4.9.22 A Riemannian manifold M is called geodesically complete if any geodesic
γ(t) can be extended for all values of t ∈ R.

The following important result is due to Hopf and Rinow.

Theorem 4.9.23 Arbitrary points x, y of a geodesically complete Riemannian manifold M
can be connected by a geodesic of length ρ(x, y).
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Proof: Denote R = ρ(x, y). Let Ux ⊂ M be a neighborhood of x described in Corollary
4.9.16. Choose ε > 0 from the same Corollary. For a positive δ < ε denote a sphere Sx(δ) of
radius δ centered at x. Due to compactness there exists a point on the sphere

z0 = expx(δ v), |v| = 1

minimizing the distance to y. Our goal is to prove that, continuing the geodesic expx(t v) we
will hit the point y, i.e.,

expx (Rv) = y.

We will begin with proving that, going along the geodesic γ(t) = expx(t v) we are ap-
proaching y. Namely, we will prove that

ρ (γ(t), y) = R− t for t ∈ [δ,R]. (4.9.18)

Let us first check validity of (4.9.18) for t = δ. We have

R = ρ(x, y) = min
z∈Sx(δ)

[ρ(x, z) + ρ(z, y)] = δ + ρ(z0, y).

Hence ρ(z0, y) = R− δ. This proves (4.9.18) for t = δ as z0 = γ(δ).

Let t0 ∈ [δ,R] be the supremum of values of the parameter t for which eq. (4.9.18) holds
true. Due to continuity this equation is valid also for t = t0. It remains to prove that t0 = R.
In the opposite case t0 < R consider a small sphere Sx′(δ

′) of radius δ′ > 0 centered at
x′ := γ(t0). Choose a point z′0 ∈ Sx′(δ′) closest to y. Then

ρ(x′, y) = min
z∈Sx′ (δ′)

[
ρ(x′, z) + ρ(z, y)

]
= δ′ + ρ(z′0, y).

Hence
ρ(z′0, y) = (R− t0)− δ′. (4.9.19)

The claim is that z′0 = γ(t0 + δ′). Indeed, from the triangle inequality along with eq. (4.9.19)
we obtain

ρ(x, z′0) ≥ ρ(x, y)− ρ(z′0, y) = t0 + δ′. (4.9.20)

It remains to observe that a curve from x to z′0 of exactly same length can be obtained by
going along γ from x to x′ = γ(t0) and then along the minimal geodesic from x′ to z′0. Due
to (4.9.20) such a piecewise smooth path is minimal. Hence it must be a geodesic clearly
coinciding with γ.

We proved that γ(t0 + δ′) = z′0. So, eq. (4.9.19) takes the form

ρ
(
γ(t0 + δ′), y

)
= R− (t0 + δ′).

That is, eq. (4.9.18) remains valid for t = t0 + δ′ > t0. Such a contradiction proves that
t0 = R.

Corollary 4.9.24 The closure of any bounded subset in a geodesically complete Riemannian
manifold M is compact.
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Proof: Let the distance between points of a subset X ⊂ M be bounded from above by d.
Then, for any point x ∈M the exponential map expx maps a ball of radius d in TxM into a
compact subset of M . Due to Hopf–Rinow theorem such a subset contains X. Therefore the
closure X̄ is compact.

The following immediate consequence of Corollary 4.9.24 is also often called Hopf–Rinow
theorem.

Corollary 4.9.25 A geodesically complete Riemannian manifold is complete as a metric
space.

Recall that complete metric spaces are those for which any fundamental sequence con-
verges.

One can also prove the converse statement to the Corollary.

At the end of this long section we will apply the theory of geodesics to the study of the
group of isometries of a Riemannian manifold. The group of isometries of a Riemannian
manifold is a Lie group. We will not prove this statement. However we will describe the Lie
algebra of this group. It corresponds to the infinitesimal isometries, i.e., to vector fields X
such that

LieXgij = 0. (4.9.21)

Here the Lie derivatives of the metric tensor is defined by the formula

LieXgij = Xk ∂gij
∂xk

+
∂Xk

∂xi
gkj + gik

∂Xk

∂xj
. (4.9.22)

Vector fields X satisfying (4.19.16) are called Killing vector fields.

Exercise 4.9.26 Prove that the equations (4.19.16) for the Killing vector fields can be recast
into the form

∇iXj +∇jXi = 0, i, j = 1, . . . , n. (4.9.23)

Here
Xi = gisX

s.

One can derive an upper estimate for the dimension of the group of isometries studying
the space of solutions to the system (4.19.18). We explain another approach based on the
theory of geodesics.

Proposition 4.9.27 The dimension of the group of isometries of a n-dimensional geodesi-
cally complete connected Riemannian manifold M is less or equal than n(n+1)

2 .

Proof: Denote G the group of isometries of M . The stabilizer

Gx0 = {g ∈ G | g(x0) = x0} (4.9.24)
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of a given point x0 ∈ M is a subgroup in G. For g ∈ Gx0 denote g∗ : Tx0M → Tx0M the
induced map. It is an orthogonal transformation of the tangent space. In this way we obtain
a homomorphism

Gx0 → O (Tx0M, 〈 , 〉) . (4.9.25)

Let us prove that (4.9.25) is injective. Indeed, let g ∈ Gx0 satisfy g∗ = id. Connect an
arbitrary point x ∈ M with x0 by a geodesic γ : [0, 1] → M . The geodesic g(γ) passes
through the same point x0 = γ(0) and has the same initial vector g∗γ̇(0) = γ̇(0). Hence
g(γ) = γ. In particular g(x) = g (γ(1)) = γ(1) = x. As

dimO (Tx0M, 〈 , 〉) =
n(n− 1)

2

we conclude that

dimGx0 ≤
n(n− 1)

2
.

The coset space G/Gx0 can be identified with the orbit

Gx0 = {g(x0) | g ∈ G} ⊂M

of the point x0. Therefore
dimG/Gx0 ≤ dimM = n.

So

dimG = dimGx0 + dimG/Gx0 ≤ n+
n(n− 1)

2
=
n(n+ 1)

2
.

4.10 Gaussian connection on surfaces. Curvature of curves and surfaces

Let M ⊂ RN be a n-dimensional submanifold in Euclidean space. The Euclidean metric on
RN induces a Riemannian metric ds2 on M . In this section we give an explicit realization of
the Levi-Civita connection on

(
M,ds2

)
.

Denote r(u) =
(
x1(u), . . . , xN (u)

)
∈ RN the embedding map, u =

(
u1, . . . , un

)
are local

coordinates on a chart on M . Recall that the vectors

ri =
∂r

∂ui
, i = 1, . . . , n

span the tangent space TuM ⊂ RN . The Gram matrix of the induced metric reads

gij(u) = 〈ri, rj〉.

Given a point u ∈M and a vector X ∈ RN , there exists a unique decomposition of the form

X = pruX +X⊥ (4.10.1)

where the vector X⊥ is orthogonal to TuM . The first part pruX is called orthogonal projection
of X onto TuM .

We are now ready to define the main construction of this section. Let X, Y be two vector
fields in RN tangent to M . Define another vector field tangent to M by

∇XY |u = pru (∂XY ) for any u ∈M. (4.10.2)
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Lemma 4.10.1 The vector field ∇XY depends only on the restrictions X|M , Y |M of the
vector fields on M ⊂ RN .

Proof: For any smooth function f ∈ C∞
(
RN
)

one has

∂

∂ui
(f |M ) =

N∑
a=1

∂f

∂xa
∂xa

∂ui
= (∂rif)M .

In particular the restriction of ∂rif onto M vanishes if f |M = 0. Clearly, for a vector field
X = Xa ∂

∂xa vanishing on M the restriction of ∂Xf onto M vanishes. Therefore, for a vector
field X tangent to M one has

(∂Xf)M =

n∑
i=1

Xi(u)
∂

∂ui
(f |M ) where X|M =

n∑
i=1

Xi(u)ri

So, the above definition yields the following expression for the covariant derivative

∇XY = pru

n∑
i, j=1

Xi(u)
∂

∂ui
(
Y j(u)rj

)
. (4.10.3)

where, like above

Y |M =

n∑
j=1

Y j(u)rj .

Clearly this expression depends only on the restrictions X(u) and Y (u) of the vector fields
on the submanifold.

Definition 4.10.2 The connection (4.10.2) defined on a submanifold M in a Euclidean space
RN is called Gaussian connection on the submanifold.

Theorem 4.10.3 The Levi-Civita connection for the induced metric on the submanifold M
in a Euclidean space coincides with the Gaussian connection.

Proof: From the formula (4.10.3) it follows that

∇ ∂

∂ui

∂

∂uj
= prurij .

Symmetry of the second derivatives rji = rij implies symmetry of the Gaussian connection.
Next, we have

∂ZX = ∇ZX + (∂ZX)⊥ , ∂ZY = ∇ZY + (∂ZY )⊥ .

Here the vector fields X, Y , Z are assumed to be tangent to M . Using

∂Z〈X,Y 〉 = 〈∂ZX,Y 〉+ 〈X, ∂ZY 〉

and orthogonality
〈

(∂ZX)⊥ , Y
〉

= 0 and
〈
X, (∂ZY )⊥

〉
= 0 we arrive at

∂Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 .
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Hence the Gaussian connection is compatible with the induced metric.

Let us consider a particular case of hypersurfaces M ⊂ Rn+1. In this case the orthogonal
complement to the tangent space TuM at a given point u ∈ M is one-dimensional. Locally
one can choose an orthogonal unit vector n = n(u) smoothly depending on the point of the
submanifold.

n(u)⊥TuM, 〈n,n〉 = 1.

Define a bilinear form on V ect(M) by the formula

b(X,Y ) = 〈∂XY,n〉 . (4.10.4)

It is understood, like above, that X, Y ∈ V ect
(
Rn+1

)
tangent to M .

Lemma 4.10.4 The formula (4.10.4) is a well defined symmetric bilinear form on TuM at
any point u ∈M .

Proof: In order to check that the value of the bilinear form b(X,Y ) at a given point u ∈M
depends only on the values of the vector fields at this point it suffices to prove that

b(f X, Y ) = b(X, f Y ) = f b(X,Y )

for any function f . The only non-obvious part is the last equality:

b(X, f Y ) = 〈∂X(f Y ),n〉 = 〈∂Xf Y,n〉+ 〈f∂XY,n〉 .

The first term in the rhs vanishes since Y⊥n.

For proving symmetry of the bilinear form we use that the vector field

∂XY − ∂YX = [X,Y ]

is tangent to M for any pair of vector fields tangent to M (see Exercise 1.3.16).

Definition 4.10.5 The bilinear form (4.10.4) is called the second fundamental form of the
hypersurface M .

The definition of Gaussian connection for hypersurfaces can be rewritten in the form

∂XY = ∇XY + b(X,Y ) n. (4.10.5)

Equivalently, in local coordinates

rij = Γkijrk + bijn (4.10.6)

where Γkij are Christoffel coefficients of the Gaussian connection and

bij = b

(
∂

∂ui
,
∂

∂uj

)
= 〈rij ,n〉 (4.10.7)

is the matrix of the second fundamental form in the standard basis r1, . . . , rn in TuM .

We will now prove the main result of this section.
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Theorem 4.10.6 The Riemann curvature tensor of the Gaussian connection on a hypersur-
face can be written in terms of the second fundamental form in the following way

Rijkl = det

(
bik bil
bjk bjl

)
. (4.10.8)

Moreover, the second fundamental form satisfies the following equations

∂bij
∂uk
− ∂bik
∂uj

= Γsikbsj − Γsijbsk, i, j, k = 1, . . . , n. (4.10.9)

The formula (4.10.8) is due to Gauss (for n = 2). It plays a crucial role in the proof of
Gauss Teorema Egregium (see below). The equation (4.10.9) was rediscovered many times;
for n = 2 it is due to Peterson, Mainardi and Codazzi6.

Proof: We first prove the following

Lemma 4.10.7 The following equations hold true

∂n

∂ui
= −bjirj where bji = gjsbis. (4.10.10)

Proof: Differentiating the identity 〈n,n〉 = 1 obtain

0 =
∂

∂ui
〈n,n〉 = 2

〈
∂n

∂ui
,n

〉
.

That is, the vector ∂n
∂ui

is orthogonal to n. Therefore

∂n

∂ui
= ajirj

for some matrix aji = aji (u). Using

gkja
j
i =

〈
rk,

∂n

∂ui

〉
=

∂

∂ui
〈rk,n〉 − 〈rik,n〉 = −bik

we complete the proof of Lemma.

Putting together eqs. (4.10.2) and (4.10.10) we obtain an overdetermined system of
equations (sometimes called Weingarten formulae)

∂rj
∂ui

= Γsijrs + bijn (4.10.11)

∂n

∂ui
= −bsirs. (4.10.12)

In order to complete the proof of the Theorem one has to analyze the compatibility conditions
of this system. Differentiating (4.10.11) in uk we obtain

∂3r

∂ui∂uj∂uk
=
∂Γsij
∂uk

rs + Γsij
(
Γtskrt + bskn

)
+
∂bij
∂uk

n− bijbskrs

The rhs must be symmetric in i, k. Collecting the coefficients of r1, . . . , rn one obtains
(4.10.8) while the symmetry in i, k of the coefficient of n yields (4.10.9).

6In the chronological order.
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Exercise 4.10.8 Prove that compatibility of eqs. (4.10.12) follows from (4.10.9).

The following Bonnet theorem says that the system of eqs. (4.10.8), (4.10.9) suffices for
local reconstruction of a hypersurface.

Theorem 4.10.9 Let the symmetric matrix valued function bij(u) and a symmetric posi-
tive definite matrix valued function gij(u) satisfy the Gauss and Peterson–Mainardi–Codazzi
equations (4.10.8), (4.10.9) where the functions Γkij = Γkij(u) are defined by the Christoffel
formulae (4.8.5). Then there exists a sufficiently small piece of a hypersurface in the (n+ 1)-
dimensional Euclidean space with the given first and second fundamental forms gij and bij.
Moreover, such an embedding is determined uniquely up to an isometry of the ambient space
Rn+1.

Proof: Existence of an embedding follows from Lemma 4.7.11 due to the compatibility
(4.10.8) and (4.10.9). Let us prove uniqueness. Let r̃(u) be another embedding. Choose
a point u0 =

(
u1

0, . . . , u
n
0

)
. Consider two bases r1(u0), . . . , rn(u0), n(u0) and r̃1(u0), . . . ,

r̃n(u0), ñ(u0) in Rn+1. The Gram matrices of the Euclidean inner product for these two
bases coincide

〈ri(u0), rj(u0)〉 = 〈r̃i(u0), r̃j(u0)〉 = gij(u0)

〈ri(u0),n(u0)〉 = 〈r̃i(u0), ñ(u0)〉 = 0,

〈n(u0),n(u0)〉 = 〈ñ(u0), ñ(u0)〉 = 1.

Therefore there exists a non-degenerate matrix A ∈ Mat(n + 1,R) satisfying orthogonal
transformation A ∈ O(n+ 1) transforming one basis to another one

(r̃1(u0), . . . , r̃n(u0), ñ(u0)) = (r1(u0), . . . , rn(u0),n(u0)) A.

Applying uniqueness theorem for solutions of the system (4.10.11), (4.10.12) we obtain iden-
tity

(r̃1(u), . . . , r̃n(u), ñ(u)) = (r1(u), . . . , rn(u),n(u)) A.

For n = 2 the formula (4.10.8) together with the result of Exercise 4.8.15 imply the
following expresson for the scalar curvature of a two-dimensional surface in R3

R = 2
detB

detG
, B =

(
b11 b12

b21 b22

)
, G =

(
g11 g12

g21 g22

)
. (4.10.13)

In the next section we will explain the geometric meaning of this formula in terms of Gaussian
curvature of a surface.

4.11 Curvature of surfaces in R3

The curvature of surfaces can be characterized by the curvature of certain curves on the
surface. Let us introduce the tools useful for computing these curvatures.
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Let
r = r(u, v) (4.11.1)

be a regular smooth two-dimensional surface in the three-dimensional Euclidean space. Define
the unit normal vector at the point r(u, v)

n =
ru × rv
|ru × rv|

. (4.11.2)

The vector n is orthogonal to ru and rv and, hence, it is orthogonal to the tangent plane
T(u,v) to the surface.

Introduce functions

b11(u, v) = 〈ruu,n〉
b12(u, v) = 〈ruv,n〉 (4.11.3)

b22(u, v) = 〈rvv,n〉.

Definition 4.11.1 The quadratic form

b11(u, v)du2 + 2b12(u, v)du dv + b22(u, v)dv2 (4.11.4)

is called the second fundamental form of the surface (4.11.1).

A geometric meaning of the value of the second fundamental form on tangent vectors to
the surface becomes clear from the following statement.

Lemma 4.11.2 Let (u(t), v(t)) be a smooth curve on the surface. The normal component of
the acceleration vector r̈ at a point (u = u(t), v = v(t)) is equal to the value of the second
fundamental form on the velocity vector (u̇, v̇) at this point

〈r̈,n〉 = b11(u, v)u̇2 + 2b12(u, v)u̇ v̇ + b22(u, v)v̇2. (4.11.5)

Proof: In the expression

r̈ = ruuu̇
2 + 2ruvu̇v̇ + rvvv̇

2 + ruü+ rvv̈

the last two terms are orthogonal to n. Hence

〈r̈,n〉 = 〈ruu,n〉u̇2 + 2〈ruv,n〉u̇v̇ + 〈rvv,n〉v̇2.

Denote ν the principal normal to the curve

r(u(t), v(t))

on the surface.
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Theorem 4.11.3 The curvature of a smooth curve on the surface (4.11.1) multiplied by the
cosine of the angle between the principal normal to the curve and the normal to the surface
is equal to the ratio of values of the second and first fundamental forms on the velocity vector
of the curve

k 〈ν,n〉 =
b11(u, v)u̇2 + 2b12(u, v)u̇v̇ + b22(u, v)v̇2

g11(u, v)u̇2 + 2g12(u, v)u̇v̇ + g22(u, v)v̇2
. (4.11.6)

Proof: Recall that the principal normal to the curve is the normalized vecor of acceleration

d2r

ds2
= k ν, k > 0, |ν| = 1.

Applying the Lemma one obtains

k 〈ν,n〉 = b11(u, v)

(
du

ds

)2

+ 2b12(u, v)
du

ds

dv

ds
+ b22(u, v)

(
dv

ds

)2

.

This proves the formula (4.11.6) for the curves parametrized by length since, in that case,
the denominator in (4.11.6) is equal to 1. Since both sides of (4.11.6) do not depend on the
parametrization of the curve, the formula holds trues also for an arbitrary parametrization.

Let us consider the curve obtained by intersecting the surface by the plane passing through
the normal n. It is called the normal section. It is a plane curve; its principal normal vector
ν is collinear with n. Denote τ a unit tangent vector to the surface belonging to the normal
plane. It coincides with the velocity vector of the normal section passing through n and τ .
We obtain

Corollary 4.11.4 The absolute value of the second fundamental form on a unit tangent
vector τ to the surface is equal to the curvature of the normal section passing through τ and
n.

Let us slightly modify the definition of the curvature for the case of a plane section of an
oriented surface: it will coincide with the old one if the direction of the principal normal to
the curve coincides, ν = n, with the direction of the normal to the surface; in the opposite
case, ν = −n, the new curvature will be equal to the negative old one. With such a definition
the result of the Corollary for the curvature k = k(τ) of a plane section passing through the
unit tangent vector τ = (τ1, τ2) at a point (u, v) can be represented in the following form:

k(τ) = b11(u, v)(τ1)2 + 2b12(u, v)τ1τ2 + b22(u, v)(τ2)2 (4.11.7)

g11(u, v)(τ1)2 + 2g12(u, v)τ1τ2 + g22(u, v)(τ2)2 = 1. (4.11.8)

Example. On the sphere of radius R all normal sections are circles of the same radius
R. The curvature of these circles is equal to 1/R. With the choice of the orientation on
the surface by ordering the spherical coordinates u = φ, v = θ the curvature of any normal
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section is equal to −1/R. Hence the second fundamental form of the sphere in the spherical
coordinates reads

−R(dθ2 + cos2 θ dφ2).

In order to get more clear idea about dependence of the curvature of a normal section on
the direction τ at a given point of the surface let us study the minima and maxima of the
function k(τ). This problem is tantamount to finding the maxima/minima of the function
(4.11.7) of two variables τ1, τ2 constrained by the equation (4.11.8). In order to simplify
notations let us redenote

x := τ1, y := τ2.

We will also omit writing explicitly the dependence of the coefficients of the first and second
fundamental forms on u and v.

We arrive at the following constraint maximum/minimum problem:

b11x
2 + 2b12xy + b22y

2 → max/min (4.11.9)

g11x
2 + 2g12xy + g22y

2 = 1. (4.11.10)

To resolve this problem let us consider the following auxiliary function

F = b11x
2 + 2b12xy + b22y

2 − λ
(
g11x

2 + 2g12xy + g22y
2 − 1

)
. (4.11.11)

One has to find the stationary points of F = F (x, y, λ) from the system

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

The last equation is nothing but the constraint (4.11.10). The first two, after division by 2
yield a linear homogeneous system

b11x+ b12y = λ(g11x+ g12y)

b12x+ b22y = λ(g12x+ g22y)

or, in the matrix form,
BX = λGX (4.11.12)

where

B =

(
b11 b12

b21 b22

)
, G =

(
g11 g12

g21 g22

)
, X =

(
x
y

)
. (4.11.13)

Recall that the matrices B and G are both symmetric and, moreover, the matrix G is positive
definite.

We arrive at the theory of invariants of pairs of quadratic forms with the Gram matrices
B and G. Let us briefly explain the main points of this theory in a linear space of an arbitrary
dimension n

b(x, y) = bijx
iyj , g(x, y) = gijx

iyj .

Definition 4.11.5 A nonzero vector X satisfying the linear homogeneous system (4.11.12)
is called an eigenvector of a pair of quadratic forms with the eigenvalue λ.
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Lemma 4.11.6 The eigenvalues of a pair of quadratic forms satisfy the characteristic equa-
tion

det(B − λG) = 0. (4.11.14)

Proof: The linear homogeneous system (4.11.12) has a nonzero solution iff its determinant
vanishes.

Lemma 4.11.7 The eigenvalues of a pair of quadratic forms do not depend on the choice of
the basis in the space.

Proof: Changing the basis transforms the Gram matrices of the quadratic forms to

B′ = TTB T, G′ = TTGT.

So the new characteristic equation

det(B′ − λG′) = det
[
TT(B − λG)T

]
= (detT )2 det(B − λG) (4.11.15)

is proportional to the old one.

In order to complete the theory of normal forms of a pair of bilinear forms we will use
the connection between self-adjoint operators and symmetric bilinear forms in a Euclidean
space. Recall that a linear operator

A : X → X (4.11.16)

on a Euclidean space (X, 〈 , 〉) is called self-adjoint if it satisfies

〈Ax, y〉 = 〈x,Ay〉 ∀x, y. (4.11.17)

The bilinear form
b(x, y) := 〈x,Ay〉 (4.11.18)

is symmetric iff the operator A is self-adjoint. Given the matrix (aij) of the operator in a
basis e1, . . . , en,

Aej = aijei, j = 1, . . . , n (4.11.19)

and the Gram matrix of the inner product in the same basis

〈ei, ej〉 = gij , i, j = 1, . . . , n (4.11.20)

one can can compute the Gram matrix of the bilinear form b(x, y):

bij ≡ b(ei, ej) = gika
k
j , i, j = 1, . . . (4.11.21)

or, in the matrix form
B = GA. (4.11.22)

Inverting one reconstructs the operator A by

A = G−1B (4.11.23)
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or, in the index notations
aij = gikbkj , i, j = 1, . . . , n (4.11.24)

where gij are the entries of the matrix inverse to G = (gij)

G = (gij), G−1 =
(
gij
)
. (4.11.25)

They say that the matrix of the bilinear form b(x, y) is obtained from the matrix of the
operator A by lowering the index (see (4.11.21)) while the inverse procedure (4.11.24) of
reconstructing the operator from the bilinear form is called raising of indices.

Let us return to the eigenvalues and eigenvectors of a pair of quadratic forms. They
coincide with the eigenvalues and eigenvectors of the self-adjoint linear operator A. At this
point it is crucial that the quadratic form g defining the inner product in the space is positive
definite. Under this assumption the following theorem is fundamental in the theory of self-
adjoint operators.

Theorem 4.11.8 Let
A : X → X

be a self-adjoint operator in a n-dimensional Euclidean space (X, 〈 , 〉). Then there exists an
orthonormal basis e1, . . . , en in X consisting of eigenvectors of the operator A

Aei = λiei, i = 1, . . . , n

〈ei, ej〉 = δij .

Applying this theorem to the self-adjoint operator (4.11.23) we arrive at the following

Corollary 4.11.9 Let B and G be two symmetric n×n matrices, and the matrix G is positive
definite. Then

1) the characteristic equation (4.11.14) has n real roots λ1, . . . , λn.

2) There exists a system of coordinates in the linear space such that the quadratic forms
b and g take the following diagonal form

b(x, x) = λ1(x1)2 + · · ·+ λn(xn)2

(4.11.26)

g(x, x) = (x1)2 + · · ·+ (xn)2.

Exercise 4.11.10 Prove that

λ1λ2 . . . λn =
detB

detG
. (4.11.27)

Let us come back to the curvature of normal sections of a surface in R3. We have proved
that the characteristic equation (4.11.14) has two real roots λ1 and λ2 depending on the point
of the surface and, moreover, at a given point there exist two tangent vectors e1, e2 such that

b(e1, e1) = λ1, b(e2, e2) = λ2, b(e1, e2) = b(e2, e1) = 0 (4.11.28)

g(e1, e1) = g(e2, e2) = 1, g(e1, e2) = g(e2, e1) = 0. (4.11.29)
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The second line means that the tangent vectors e1 and e2 are orthogonal as vectors in the
three-dimensional Euclidean space and, moreover, they have unit length.

Definition 4.11.11 The linear operator A = G−1B is called the shape operator of the
surface. The numbers k1 = λ1 and k2 = λ2 are called the principal curvatures of the surface
at a given point. The directions of the vectors e1 and e2 are called the principal directions at
the same point.

We will now see that the principal curvatures give the maximal and minimal values of
curvatures normal sections we were looking after.

Theorem 4.11.12 (Euler formula) Let ϕ be the angle between a unit tangent vector τ and
e1. Then the curvature k of the normal section of the surface passing through τ and the
normal n is equal to

k = k2
1 cos2 ϕ+ k2 sin2 ϕ. (4.11.30)

Proof: In the basis e1, e2 the first and the second fundamental forms become equal to

g(τ, τ) = (τ1)2 + (τ2)2

b(τ, τ) = k1(τ1)2 + k2(τ2)2

τ = τ1e1 + τ2e2.

In this basis the vector τ reads

τ = cosϕe1 + sinϕe2.

For the curvature of normal section passing through τ one obtains

k =
k1(τ1)2 + k2(τ2)2

(τ1)2 + (τ2)2
= k1 cos2 ϕ+ k2 sinh2 ϕ.

Corollary 4.11.13 Let the principal curvatures at a given point of the surface satisfy

k2 ≤ k1.

Then the curvature k of an arbitrary normal section passing through the same point satisfies

k2 ≤ k ≤ k1.

Definition 4.11.14 The product of principal curvatures

K = k1k2 (4.11.31)

is called the Gaussian curvature of the surface at a given point. The mean value

H =
k1 + k2

2
(4.11.32)

is called the mean curvature at the point.
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From the result of Exercise 4.11.10 it follows that the Gaussian curvature is equal to the
ration of the determinants of the second and the first fundamental forms

K =
detB

detG
. (4.11.33)

Comparing with the result of Exercise 4.8.15 along with the formula (4.10.13) one arrives to
the following

Theorem 4.11.15 The component R1212 of the Riemann curvature tensor and the scalar
curvature R of the induced metric on a two-dimensional surface in R3 are given by the
following formulae

R1212 = K det(gij), R = 2K. (4.11.34)

Example 1. For the sphere of radius R with the standard orientation the Gaussian
curvature is equal to K = 1/R2 and the mean curvature is H = −1/R.

Example 2. Let the surface in the Euclidean space be represented as a graph of a
function

z = f(x, y).

The tangent vectors have the already familiar form

rx = (1, 0, fx), ry = (0, 1, fy).

Computing their cross-product we obtain the unit normal vector

n =
(−fx,−fy, 1)√

1 + f2
x + f2

y

. (4.11.35)

So the coefficients of the second fundamental form are equal to

b11 = 〈rxx,n〉 =
fxx√

1 + f2
x + f2

y

b12 = 〈rxy,n〉 =
fxy√

1 + f2
x + f2

y

b22 = 〈ryy,n〉 =
fyy√

1 + f2
x + f2

y

.

Computing the determinant
detB = b11b22 − b212

and dividing by the determinant of the first fundamental form (??)

detG = 1 + f2
x + f2

y

(see (??)) one obtains

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
. (4.11.36)
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One observes that, at a stationary point

fx = fy = 0

the Gaussian curvature is positive near a point of a maximum/minimum where the graph is
convex but it is negative near a saddle point where the Hessian fxxfyy − f2

xy is negative.

Let us now compute the mean curvature of the graph surface. Inverting the matrix G

G−1 =
1

detG

(
1 + f2

y −fxfy
−fxfy 1 + f2

x

)
and computing the trace of the matrix of the shape operator G−1B one obtains

H =
1

2
trG−1B =

1

(detG)3/2

[
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

]
=

1

2

[
fxx + fyy

(detG)1/2
− fx(fxfxx + fyfxy)

(detG)3/2
− fy(fxfxy + fyfyy

(detG)3/2

]
=

1

2

[
fxx + fyy

(detG)1/2
− fx(detG)x

2(detG)3/2
− fy(detG)y

2(detG)3/2

]

=
1

2

 ∂

∂x

fx√
1 + f2

x + f2
y

+
∂

∂y

fy√
1 + f2

x + f2
y

 =
1

2
div

grad f√
1 + f2

x + f2
y

.

Let us now consider the important particular case of minimal surfaces having zero mean
curvature. Clearly, the Gaussian curvature of such a surface must be negative since the
principal curvatures k1 and k2 have opposite signs.

Assuming that the minimal surface is represented as a graph of function z = f(x, y) one
obtains the following PDE for the function f = f(x, y)

div
grad f√

1 + f2
x + f2

y

= 0 (4.11.37)

or, equivalently
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy = 0. (4.11.38)

This equation describes the shape of soap films that, in the absence of external forces tend
to minimize their area. Indeed, let us consider the area of a small piece of the surface

A[f ] =

∫∫
Ω

√
1 + f2

x + f2
y dx dy (4.11.39)

as a functional of the shape function f . Here Ω is a sufficiently small domain on the (x, y)-
plane. A necessary condition to minimize the value of the functional is that, under an
arbitrary small variation of the function f ,

f(x, y) 7→ f(x, y) + δf(x, y)

the variation of the functional must satisfy

A[f + δf ]−A[f ] = O(‖δf‖2). (4.11.40)
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Here the function δf(x, y) must vanish together with its derivatives on the boundary of the
domain Ω; the definition of the norm ‖δf‖ will be clear from subsequent calculations. In
other words, the equation (4.11.40) says that f is a “stationary point” of the “function” A[f ]
on the infinite-dimensional space of functions f = f(x, y).

Let us prove that stationary point condition (4.11.40) reduces to equation (4.11.39). The
left hand side of this condition can be written in the following way

A[f + δf ]−A[f ] =

∫∫
Ω

[√
1 + (fx + δfx)2 + (fy + δfy)2 −

√
1 + f2

x + f2
y

]
dx dy.

The part of the increment linear in δf can be obtained by expanding the above expression in
Taylor series

A[f + δf ]−A[f ] =

∫∫
Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy +O(‖δf‖2).

Thus the stationarity condition (4.11.40) can be recast into the form

∫∫
Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy = 0 (4.11.41)

for an arbitrary function δf(x, y) vanishing on the boundary of the domain Ω. Applying in
two different ways the Fubini theorem∫∫

Ω
dx dy =

∫
dx

∫
dy =

∫
dy

∫
dx

to the two parts of the double integral and integrating by parts one reduces the equation
(4.11.41) to

∫∫
Ω

 fx√
1 + f2

x + f2
y

δfx +
fy√

1 + f2
x + f2

y

δfy

 dx dy
(4.11.42)

= −
∫∫

Ω

 ∂

∂x

fx√
1 + f2

x + f2
y

+
∂

∂y

fy√
1 + f2

x + f2
y

 δf dx dy = 0.

Since δf(x, y) is an arbitrary function one obtains the equation for the stationary points of
the area functional A[f ] written in the form

H = 0

where H is the mean curvature of the surface.
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4.12 Gauss–Bonnet theorem

Let us begin with recalling the following theorem from spherical geometry. Consider a triangle
∆ formed by three geodesics (we already know that they are the big circles on the sphere)
on the sphere of radius R. Denote α, β, γ the angles of this triangle. Then

Area of spherical triangle ∆ = (α+ β + γ − π)R2. (4.12.1)

To prove this formula one can consider first the triangle with one vertex at the north pole
and other two vertices on the equator. Denote γ the angle at the north pole; two other angles
are equal to π

2 . Clearly

Area of the triangle =
γ

2π
×Area of hemisphere = γ R2

that coincides, in this particular case with (4.12.1). The general case can be proven by cutting
and glueing operations.

As the sphere has constant Gaussian curvature K = 1/R2, the above statement can be
rewritten in the following form ∫

∆
K dA = α+ β + γ − π. (4.12.2)

The right hand side can be interpreted in the following way. Choose a nonzero vector v at
one of the vertices of the triangle. As the sides of the triangle are geodesics, the parallel
transport of the vector along any of these curves preserves the angle between the vector and
the geodesic. Denote v′ the result of parallel transport of the vector v along the contour of
the triangle. It is easy to see that the angle between v′ and v is exactly equal to α+β+γ−π.
Recall that this angle does not depend on the choice of the initial vector v.

A far-reaching generalization of the theorem of spherical geometry was obtained by Gauss.
Namely,

Gauss Theorem. Consider a triangle ∆ on a two-dimensional surface in the Euclidean
space R3 formed by three geodesics. Denote α, β, γ the angles of the triangle. Then∫

∆
K dA = α+ β + γ − π

where K is the Gaussian curvature of the surface.

More general version of the Gauss’ theorem was obtained by P.O.Bonnet, so it is usually
called Gauss–Bonnet theorem. To formulate this theorem we need to introduce the notion of
geodesic curvature of smooth curves on a two-dimensional oriented Riemannian manifold M .

Let γ(t) be such a curve parameterized by arc length, i.e., |γ̇(t)| ≡ 1. Then the geodesic
curvature kg is defined as the length of the covariant acceleration vector ∇γ̇ γ̇

kg = ± |∇γ̇ γ̇|

where the sign is defined as follows.
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Denote τ = γ̇(t) the unit tangent vector to the curve at the point γ(t) and ν ∈ Tγ(t)M
the unit vector orthogonal to τ such that the orientation of the frame (τ ,ν) coincides with
the orientation of M . The covariant derivative ∇γ̇ γ̇ is orthogonal to the curve. Indeed,
differentiating the identity 〈γ̇(t), γ̇(t)〉 ≡ 1 we obtain

0 =
d

dt
〈γ̇(t), γ̇(t)〉 = 2〈∇γ̇ γ̇, γ̇〉.

Thus the acceleration vector ∇γ̇ γ̇ is proportional to ν,

∇γ̇ γ̇ = kg ν. (4.12.3)

If γ is a geodesic then its geodesic curvature equals zero.

Theorem 4.12.1 Let U ⊂M be a compact domain in a two-dimensional oriented Rieman-
nian manifold M with a closed piecewise smooth positively oriented boundary ∂U with n
vertices r1, . . . rn connected by smooth curves

γi from ri to ri+1, i = 1, . . . , n

(it is understood that rn+1 = r1). Denote θi the internal angle between γi and γi+1 at the
vertex ri, i = 1, . . . , n. Let K := R

2 be the Gaussian curvature of the manifold. Then∫
U
K dA+

∮
∂U
kgds = 2π χ(U)−

n∑
i=1

(π − θi) (4.12.4)

where χ(U) is the Euler characteristic of U . In particular, for a closed oriented two-dimensional
Riemannian manifold M one has ∫

M
K dA = 2π χ(M). (4.12.5)

Proof: Let us first prove the Theorem for a small domain U that can be covered by one
system of “geodesic polar coordinates” r, φ, so that the metric has the form

ds2 = dr2 + g(r, φ)dφ2

for some smooth function g = g(r, φ). In particular the domain U is homeomorphic to a disk.
The Gram matrix (gij) and its inverse

(
gij
)

have the form

(gij) =

(
1 0
0 g

)
, (gij) =

(
1 0
0 g−1

)
.

It is easy to compute the Christoffel coefficients of the Levi-Civita connection for the metric.
The only non-zero coefficients are

Γ1
22 = −1

2

∂g

∂r
, Γ2

12 = Γ2
21 =

1

2g

∂g

∂r
, Γ2

22 =
1

2g

∂g

∂φ
. (4.12.6)

The Gaussian curvature of the metric can be computed with the help of the formula (4.8.23):

K = − 1
√
g

∂2√g
∂r2

. (4.12.7)
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Let (r(s), φ(s)) be a smooth curve in U parameterized by arc length, so that

ṙ2(s) + g (r(s), φ(s)) φ̇2(s) ≡ 1.

The unit normal vector ν = (ν1, ν2) must satisfy the orthogonality

ṙ ν1 + g φ̇ ν2 = 0

so ν ∼
(
−g φ̇, ṙ

)
. Normalizing we obtain

ν =

(
−g φ̇, ṙ

)
√
g

.

Let us now compute the geodesic curvature of the curve. We will use the formula for the
k-th component of the acceleration vector

(∇γ̇ γ̇)k = ẍk + Γkij ẋ
iẋj

along with the above explicit expressions for the Christoffel coefficients to derive that

(∇γ̇ γ̇)1 = r̈ − 1

2

∂g

∂r
φ̇2, (∇γ̇ γ̇)2 = φ̈+

1

g

∂g

∂r
ṙ φ̇+

1

2g

∂g

∂φ
φ̇2.

So

kg =
√
g

[
ṙ φ̈− φ̇ r̈ +

1

2

(
grφ̇

3 + 2
gr
g
ṙ2φ̇+

gφ
g
ṙ φ̇2

)]
. (4.12.8)

Consider now the angle θ between the tangent vector to the curve γ and a given fixed
direction. For example, cosine of the angle between γ̇ and the unit vector (1, 0) along the
r-axis is equal to

cos θ =
〈(ṙ, φ̇), (1, 0)〉√

ṙ2 + g φ̇2

= ṙ

(here we use that |γ̇|2 = ṙ2 + g φ̇2 = 1). Therefore

tan θ =
√
g
φ̇

ṙ
.

Hence

dθ = d arctan
√
g
φ̇

ṙ
=
√
g

[
ṙ φ̈− φ̇ r̈ +

1

2

(
gr
g
φ̇ ṙ2 +

gφ
g
ṙ φ̇2

)]
ds.

Thus
kgds− dθ =

gr
2
√
g
φ̇
[
ṙ2 + g φ̇2

]
ds = (

√
g)r dφ.

Consider now the integral of the geodesic curvature over the boundary of the domain U .
Due to the above formula we obtain∮

∂U
kg ds =

∮
∂U

(
√
g)r dφ+

∮
∂U
dθ. (4.12.9)
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The second integral is the total rotation angle of the tangent vector to the contour ∂U . If
the boundary of the disk U is a smooth curve then the total rotation angle is equal to 2π,∮

∂U
dθ = 2π.

For a piecewise smooth boundary contour the tangent vector makes jumps at the corners ri.
In this case one has to add the jumps, namely

Lemma 4.12.2 If the domain U is simply connected then

n∑
i=1

∫
γi

dθ +

n∑
i=1

(π − θi) = 2π. (4.12.10)

Observe that π − θi is the external angle of the boundary curve at the i-th vertex.

The first integral in (4.12.9) will be transformed using the Stokes formula:∮
∂U

(
√
g)r dφ =

∫
U
d
(
(
√
g)r dφ

)
=

∫
U

1
√
g

(
√
g)rr
√
g dr ∧ dφ = −

∫
U
K dA

where we use the expression (4.12.7) for the Gaussian curvature and the standard formula
dA =

√
g dr∧dφ for the area element. Together with (4.12.10) this proves the Gauss–Bonnet

formula (4.12.4) for sufficiently small domains U as in this case χ(U) = 1.

Let us now proceed to the general case. The simplest way is to use a triangulation of the
domain U that is, a representation

U =

F⋃
i=1

∆i

where every subset ∆i is a sufficiently small triangle that can be covered by one system of
geodesic polar coordinates. It has three distinct vertices connected by smooth curves called
edges of the triangle. It is required that, for any pair of intersecting triangles ∆i ∩∆j 6= ∅
the intersection must be a common edge of ∆i and ∆j or a common vertex of these triangles.
Denote

V = # {vertices of the triangulation}
E = # {edges of the triangulation}
F = # {triangles}.

The Euler charcteristic of the domain U is equal to

χ(U) = V − E + F. (4.12.11)

Observe that for such a small triangle ∆ with internal angles α, β, γ the already proven
local version of the Gauss–Bonnet theorem reads∫

∆
K dA+

∮
∂∆

kgds = α+ β + γ − π (4.12.12)
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for the positively oriented boundary ∂∆. Denote αi, βi, γi the angles of the triangle ∆i.
Taking sum of eqs. (4.12.12) over all triangles yields∫

U
K dA+

∮
∂U
kgds =

F∑
i=1

(αi + βi + γi − π) (4.12.13)

as the integrals of kgds over the edges in the internal part of U will be cancelled. We will first
consider the case U = M , ∂U = ∅ (see eq. (4.12.5)) of integrating over the closed compact
oriented manifold M . In this case the sum in the rhs can be rewritten as follows

F∑
i=1

(αi + βi + γi − π) = 2πV − π F.

Denote vi the valency of the i-th vertex of the triangulation, i.e., the number of edges passing
through this vertex. We have the following two equations: first,

F∑
i=1

vi = 2E

since every edge is counted twice; second,

F∑
i=1

vi = 3F

since every triangle is counted three times. Thus we have the following identity for a trian-
gulation of a closed two-dimensional manifold

3F = 2E. (4.12.14)

With the help of this identity we obtain

π(2V − F ) = π(2V + 2F − 3F ) = π(2V + 2F − 2E) = 2πχ(M).

This proves the version (4.12.5) of the Gauss–Bonnet theorem for the case U = M .

Let us consider the general case. Write

V = Vint + Vext, E = Eint + Eext

where Vint, Eint are the numbers of vertices and edges belonging to the internal part of U
and Vext, Eext are the numbers of vertices and edges on the boundary ∂U . It is easy to see
that the identity (4.12.14) modifies to

3F = 2Eint + Eext. (4.12.15)

Another obvious identity says that
Vext = Eext. (4.12.16)

We also split the set of vertices on the boundary in two parts

Vext = Ṽext + n
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where Ṽext is the number of vertices on the smooth part of the boundary ∂U .

The sum in the rhs of (4.12.13) can be rewritten as follows∫
U
K dA+

∮
∂U
kgds = 2πVint + πṼext +

n∑
j=1

θj − πF

= 2πVint + πṼext −
n∑
j=1

(π − θj) + πn− πF = 2πVint + πVext −
n∑
j=1

(π − θj)− πF

where θ1, . . . , θn are the internal angles at the points r1, . . . , rn on the boundary. Using eqs.
(4.12.15), (4.12.16) we obtain

π (2Vint + Vext − F ) = π (2Vint + Vext + 2F − 3F ) = π (2Vint + Vext + 2F − 2Eint − Eext)
= π (2Vint + 2Vext + 2F − 2Eint − 2Eext) = 2π(V − E + F ) = 2πχ(U).

The Gauss–Bonnet theorem is proved.

From topology of surfaces it is known that every oriented connected compact two-dimensional
manifold7 is homeomorphic to the sphere with g handles. The number g is called the genus
of the surface. The Euler characteristic of a surface Mg of genus g is equal to χ(Mg) = 2−2g.
Combining this statement with the Gauss–Bonnet theorem we obtain

Corollary 4.12.3 If the Gaussian curvature is positive at every point of a closed oriented
surface then the surface is homeomorphic to the sphere.

Exercise 4.12.4 Let γ1, γ2 be two closed geodesics on a closed oriented surface of positive
Gaussian curvature. Then they necessarily intersect.

4.13 Conformal structures on two-dimensional Riemannian manifolds and
Laplace–Beltrami equation

Let
(
M,ds2

)
be a two-dimensional Riemannian manifold with the metric8

ds2 = Edx2 + 2Fdx dy +Gdy2.

We will prove existence of local coordinates such that the metric takes the form

ds2 = g(u, v)
(
du2 + dv2

)
. (4.13.1)

Theorem 4.13.1 Assume that the coefficients E, F , G are real analytic functions of the
coordinates x, y. Then there exist local coordinates u = u(x, y), v = v(x, y) such that

g(u, v)
(
du2 + dv2

)
= E(x, y)dx2 + 2F (x, y)dx dy +G(x, y)dy2 (4.13.2)

7Here we will use the short name closed oriented surfaces for such manifolds.
8In this section we will use the “old-fashion” notations for the coefficients of the metric tensor

g11 = E, g12 = F, g22 = G

where E, F , G are some function of the coordinates x, y.
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for some function g(u, v) also satisfying the condition of positivity of the Jacobian

det

(
ux uy
vx vy

)
> 0. (4.13.3)

Clearly the last condition means that the change of local coordinates

(x, y) 7→ (u, v)

preserves the orientation.

Proof: Denote

A =

(
ux uy
vx vy

)
the Jacobi matrix of the coordinate change we are looking for. The transformation law of
components of the metric tensor

AT
(
g 0
0 g

)
A =

(
E F
F G

)
(4.13.4)

imply
(g detA)2 = EG− F 2.

Due to the orientation preserving assumption this gives

g detA =
√
EG− F 2. (4.13.5)

Multiplying eq. (4.13.4) on the right by the inverse matrix we obtain

AT =
1

g

(
E F
F G

)
A−1 =

1

g detA

(
E F
F G

)(
vy −uy
−vx ux

)

=
1√

EG− F 2

(
E F
F G

)(
vy −uy
−vx ux

)
.

Therefore we arrive at two systems of PDEs

ux =
−F vx + E vy√

EG− F 2

(4.13.6)

uy =
−Gvx + F vy√

EG− F 2

and

vx =
F ux − E uy√
EG− F 2

(4.13.7)

vy =
Gux − F uy√
EG− F 2

.

Clearly the second system is equivalent to the first one (just interchanging u↔ v).
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We will now reduce the system (4.13.6) to one second order PDE for the function v =
v(x, y). To this end we use equality of mixed derivatives

(ux)y − (uy)x = 0.

Substituting (4.13.6) we obtain

− ∂

∂x

−Gvx + F vy√
EG− F 2

+
∂

∂y

−F vx + E vy√
EG− F 2

= 0. (4.13.8)

It is easy to see that the lhs of the above equation coincides, up to a common factor
√
EG− F 2

with the Laplace–Beltrami equation (4.8.12). Applying the Cauchy–Kovalevskaya theorem
from the theory of PDEs with analytic coefficients9 we establish local existence of a solution
v = v(x, y) near a given point (x0, y0) satisfying the condition

v2
x(x0, y0) + v2

y(x0, y0) 6= 0.

It remains to find, for a given v = v(x, y), the function u = u(x, y). To this end we recall
that the Laplace–Beltrami equation can be represented in the form

∗ d ∗ dv = 0

(cf. eq. (4.8.11) above). Thus the 1-form ∗dv is closed. Hence it locally exists a smooth
function u such that

du = ∗dv.
It is easy to see that the last equation coincides with the system (4.13.6). The last step is to
check positivity (4.13.3) of the Jacobian. Indeed, from (4.13.6) it follows that

det

(
ux uy
vx vy

)
=

1

EG− F 2
det

(
−Fvx + Evy −Gvx + Fvy

vx vy

)
=

=
1

EG− F 2

[
Gv2

x − 2Fvxvy + Ev2
y

]
= gij

∂v

∂xi
∂v

∂xj
> 0. (4.13.9)

Finally, the diagonal entry g of the metric in the coordinates u, v can be easily computed
from the above calculations.

Definition 4.13.2 The coordinates (u, v) constructed in the Theorem are called conformal
or also isothermic coordinates on the two-dimensional Riemannian manifold.

It will be convenient to use complex coordinates w = u + iv, w̄ = u − iv to recast the
metric into the form

ds2 = g (w, w̄) dw dw̄, (4.13.10)

Lemma 4.13.3 Holomorphic changes of coordinates

(w, w̄) 7→
(
w′ = f(w), w̄′ = f(w)

)
,

∂f

∂w̄
= 0 (4.13.11)

with non-vanishing complex derivative

df

dw
6= 0

preserve the form (4.13.10) of the metric.

9Instead of the assumption of analyticity one can apply to (4.13.8) the theory of elliptic PDEs.
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Recall that the holomorphic changes of coordinates also preserve orientation.

Proof: We have

dw′ =
df

dw
dw, dw̄′ =

df

dw
dw̄.

So

ds2 = g′ dw′ dw̄′ = g′
∣∣∣∣ dfdw

∣∣∣∣2 dw dw̄.
Thus

g′
(
w′, w̄′

)
=

∣∣∣∣ dwdw′
∣∣∣∣2 g (w, w̄) . (4.13.12)

The converse statement is given in the following

Exercise 4.13.4 Let u′, v′ be another system of conformal coordinates for the same metric
ds2 satisfying the orientation preserving assumption. Prove that the coordinate change

(u, v) 7→ (u′, v′)

is given by a holomorphic function

w′ = u′ + iv′ = f(w), w = u+ iv,
∂f

∂w̄
= 0 (4.13.13)

with non-vanishing complex derivative dw′

dw 6= 0.

Remark 4.13.5 The system (4.13.6) of two equations for conformal coordinates can be
rewritten in complex form

∂w

∂z̄
= µ

∂w

∂z
(4.13.14)

for their complex combination w = u+ iv as a function of complex variables z = x+ iy and
z̄ = x− iy where

µ =
E −G+ 2iF

E +G+
√
EG− F 2

. (4.13.15)

The equation (4.13.14) is called Beltrami equation. It appears in the theory of quasiconformal
maps, in Teichmüller theory and also in other branches of mathematics.

Exercise 4.13.6 Prove that the orientation preserving assumption (4.13.3) is equivalent to
the inequality

|µ| < 1.
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4.14 Geometry of sphere and pseudosphere in conformal coordinates

Example 4.14.1 Let us construct conformal coordinates on the standard sphere S2

x2 + y2 + z2 = R2.

To this end we use the stereographic projection s : S2 → R2 from the south pole (0, 0,−R) to
the (x, y)-plane

(x, y, z) 7→
(
u =

Rx

R+ z
, v =

Ry

R+ z

)
where (u, v) are the (x, y)-coordinates of the point s(x, y, z). Using

u2 + v2 = R2 x
2 + y2

(R+ z)2
= R2 R

2 − z2

(R+ z)2
= R2R− z

R+ z

we find

z = R
1− u2+v2

R2

1 + u2+v2

R2

so

x =
2u

1 + u2+v2

R2

, y =
2v

1 + u2+v2

R2

.

From here it readily follows that the metric on the sphere takes the following form in the
coordinates (u, v)

ds2 = dx2 + dy2 + dz2 = 4
du2 + dv2(
1 + u2+v2

R2

)2 .

Thus u, v are conformal coordinates on the sphere. After rescaling

u→ Ru, v → Rv

the metric becomes

ds2 = 4R2 du2 + dv2

(1 + u2 + v2)2 = 4R2 dw dw̄

(1 + |w|2)2 . (4.14.1)

The complex variable w = u + iv ∈ C takes arbitrary value. When the point (x, y, z) on the
sphere approaches the south pole then w →∞. It is easy to see that, using the stereographic
projection from the north pole one obtains the same expression. Warning: in this case we
choose the new conformal coordinates u′, v′ as the (x,−y)-coordinates of the stereographic
projection!

Example 4.14.2 We consider now the pseudosphere

x2 + y2 − z2 = −R2, z > 0

in the three-dimensional Minkowski space R1,2. The stereographic projection from the “south
pole” (0, 0,−R) works also in this case. After simple calculations we obtain

x =
2u

1− u2+v2

R2

, y =
2v

1− u2+v2

R2

, z = R
1 + u2+v2

R2

1− u2+v2

R2

,
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so

dx2 + dy2 − dz2 = 4
du2 + dv2(
1− u2+v2

R2

)2 .

After rescaling u → Ru, v → Rv finally obtain the metric on the pseudosphere in complex
coordinates

ds2 = 4R2 du2 + dv2

(1− u2 − v2)2 = 4R2 dw dw̄

(1− |w|2)2 . (4.14.2)

The above formula defines a Riemannian metric on the unit disk D = {w ∈ C | |w| < 1}.
From complex analysis it is well known that there exists a biholomorphic map from the unit
disk to the upper half-plane

H = {z ∈ C | Im z > 0}.

For example, one can use the following fractional-linear transformation H→ D

w =
z − i
z + i

. (4.14.3)

After susbtitution obtain the following Riemannian metric of constant curvature K = −1/R2

on the upper half-plane z = x+ iy, y > 0

dz2 = −4R2 dz dz̄

(z − z̄)2
= 4R2 dx

2 + dy2

y2
. (4.14.4)

We will now consider the orientation preserving isometries of the sphere (4.14.1) and
pseudosphere (4.14.2) or (4.14.4). According to Lemma 4.13.3 and Exercise 4.13.4 such
isometries must be given by holomorphic changes of complex coordinates. We will restrict
ourselves to fractional-linear changes of complex coordinates

z 7→ w =
az + b

cz + d
,

(
a b
c d

)
∈ SL(2,C) (4.14.5)

for the reasons that will be explained later.

Proposition 4.14.3 The fractional-linear trasformation (4.14.5) is an isometry of the sphere
with the metric

ds2 = 4R2 dz dz̄

(1 + |z|2)2

iff the matrix

(
a b
c d

)
∈ SU(2).

Recall that a 2 × 2 matrix A =

(
a b
c d

)
belongs to the subgroup SU(2) ⊂ SL(2,C) if

it satisfies
A†A = 1, detA = 1 (4.14.6)

where A† = ĀT .
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Proof: We have

dw =
dz

(cz + d)2
, dw̄ =

dz̄

(c̄z̄ + d̄)2

so

dw dw̄ =
dz dz̄

|cz + d|4
.

Next,

|w|2 = w w̄ =
az + b

cz + d
· āz̄ + b̄

c̄z̄ + d̄
so

1 + |w|2 =
(a ā+ c c̄)z z̄ + (a b̄+ c d̄) z + (ā b+ c̄ d) z̄ + b b̄+ d d̄

|cz + d|4
.

Finally

4R2 dw dw̄

(1 + |w|2)2
= 4R2 dz dz̄[

(a ā+ c c̄)z z̄ + (a b̄+ c d̄) z + (ā b+ c̄ d) z̄ + b b̄+ d d̄
]2

Thus the isometry condition

4R2 dw dw̄

(1 + |w|2)2
= 4R2 dz dz̄

(1 + |z|2)2

is equivalent to the following system of equations

a ā+ c c̄ = 1, b b̄+ d d̄ = 1, a b̄+ c d̄ = 0 (4.14.7)

along with the unimodularity condition

det

(
a b
c d

)
= 1. (4.14.8)

This is the system of defining equations for the subgroup SU(2).

Remark 4.14.4 One may ask whether the above calculation produces the full group of orien-
tation preserving isometries of the sphere? The answer is ‘yes’. Indeed, the dimension of the
group of isometries of a two-dimensional Riemannian manifold cannot be bigger than 3. The
dimension of the group SU(2) is equal to 3. One can see this in the following way. Denote
aRe, aIm and cRe, cIm the real and imaginary parts of a and c. The first of eqs. (4.14.7) then
takes the form

a2
Re + a2

Im + c2
Re + c2

Im = 1.

This equations defines the standard three-dimensional sphere S3 in the four-dimensional
space. It is easy to see that other equations (4.14.7), (4.14.8) yield the following expressions
of the entries b and d in terms of a and c

b = −c̄, d = a.

Therefore the group SU(2) as a manifold coincides with S3.
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Remark 4.14.5 Observe that the group of orientation preserving isometries of the sphere is
isomorphic to the quotient of SU(2) over the subgroup {±1} of two elements. In this way we
arrive at the following important isomorphism

SO(3) ' SU(2)/{±1}. (4.14.9)

Similar arguments yield the following descrption of the group of orientation-preserving
isometries of the pseudosphere realized by the metric (4.14.2) on the unit disk. Denote
SU(1, 1) the group of 2× 2 matrices A satisfying the conditions

A†GA = G, G =

(
1 0
0 −1

)
, detA = 1. (4.14.10)

Proposition 4.14.6 The group of orientation-preserving isometries of the pseudosphere (4.14.2)
is isomorphic to SU(1, 1)/{±1}.

Remark 4.14.7 From complex analysis it is known that the group of complex automorphisms
of the unit disk is isomorphic to SU(1, 1)/{±1}.

Another important realization of the group of isometries of the pseudosphere is associ-
ated with the metric (4.14.4) on the upper half-plane H. Recall that the group of complex
automorphisms of the upper half-plane is isomorphic to

PSL(2,R) = SL(2,R)/{±1}.

Remarkably, this group coincides with the group of isometries of the pseudosphere:

Proposition 4.14.8 The group of orientation-preserving isometries of the pseudosphere (4.14.4)
is isomorphic to PSL(2,R).

Needless to say that the two realizations of the group of orientation-preserving isometries
of the pseudosphere produce isomorphic groups

SU(1, 1)/{±1} ' PSL(2,R).

They are also isomorphic to the group SO+(1, 2) of Lorentz transformations preserving the
direction of time.

Let us now consider the geodesics of the sphere and pseudosphere represented in the
conformal coordinates. For the sphere we already know that the geodesics are the big circles
obtained by intersecting the sphere with a plane passing through the origin. Consider first
the geodesics passing through the poles of the sphere. After the stereographic projection one
obtains straight lines on the plane passing through the origin. Applying an isometry

z 7→ w =
az + b

cz + d
,

(
a b
c d

)
∈ SU(2)

to a straight line one obtains a circle or a straight line on the complex plane. Clearly these
are all the geodesics of the sphere.
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Let us now consider the case of pseudosphere (4.14.2). Also in this case applying the
stereographic projection to the geodesics obtained by intersection of the pseudosphere x2 +
y2− z2 +R2 = 0 in R1,2 with planes passing through the pole (0, 0, R) one obtains diameters
of the unit circle. Applying an isometry

z 7→ w =
az + b

cz + d
,

(
a b
c d

)
∈ SU(1, 1)

to such a diameter one obtains an arc of a circle or another diameter. As the diameters
are orthogonal to the boundary of the unit disk, their images will also be orthogonal to the
boundary of the disk. Clearly in this way one obtains all geodesics of the pseudosphere drawn
on the unit disk.

Finally, consider the pseudosphere modelled on the upper half plane (4.14.4). Applying
the fractional-linear transformation from the unit disk to the upper half-plane to the diameters
or arcs orthogonal to the boundary one obtains vertical half-lines starting from a point on
the real axis or half-circles with centres on the real line. This construction provides the full
list of geodesics on the upper half-plane (4.14.4). In such a realization it is very easy to see
that, given a geodesic γ (say, a vertical half-line) and a point P 6∈ γ, then there exists an
infinite family of geodesics γ′ passing through P but not intersecting γ.

4.15 Surfaces of constant curvature. Liouville equation

Our nearest goal is the classification of two-dimensional Riemannian manifolds with constant
scalar curvature

R = 2K = const.

It will be shown that, under certain analytic assumption any such Riemannian manifold is
locally isometric to the sphere, pseudosphere or Euclidean plane, depending on the sign of
the curvature.

Remark 4.15.1 Gaussian curvature K makes sense only for surfaces in R3. Otherwise it
can be defined as half of the scalar curvature R. In this section we will use K instead of R
for notational reasons.

Theorem 4.15.2 Any two-dimensional analytic Riemannian manifold of constant curvature
K = const is locally isometric to

sphere, if K > 0;

Euclidean plane, if K = 0;

pseudosphere, if K < 0.

Proof: Let us first spell out the condition of constancy of the curvature of the metric written
in conformal coordinates

ds2 = e2ϕ
(
du2 + dv2

)
, ϕ = ϕ(u, v) (4.15.1)

(we have just redenoted g = e2ϕ).
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Lemma 4.15.3 The curvature K = R
2 of the metric (4.15.1) is equal to

K = −e−2ϕ∆ϕ (4.15.2)

where

∆ =
∂2

∂u2
+

∂2

∂v2

is the Laplace operator.

Proof: It readily follows from the formula (4.8.24).

Thus, for a metric of constant curvature K the function ϕ = ϕ(u, v) in (4.15.1) must
satisfy the following Liouville equation

∆ϕ = −K e2ϕ. (4.15.3)

It is convenient to introduce complex variables

z = u+ iv, z̄ = u− iv, so that
∂

∂z
=

1

2

(
∂

∂u
− i ∂

∂v

)
, ∂z̄ =

1

2

(
∂

∂u
+ i

∂

∂v

)
to recast the Liouville equation into the complex form

∂2ϕ

∂z∂z̄
= −K

4
e2ϕ. (4.15.4)

Our goal is to describe the general solution to the Liouville equation for an arbitrary constant
K.

Lemma 4.15.4 Let ϕ = ϕ (z, z̄) be a solution to the Liouville equation. Then the function

ω =
∂2ϕ

∂z2
−
(
∂ϕ

∂z

)2

(4.15.5)

is holomorphic,
∂ω

∂z̄
= 0. (4.15.6)

Proof: We have

∂ω

∂z̄
=

∂3ϕ

∂z2∂z̄
− 2

∂ϕ

∂z

∂2ϕ

∂z∂z̄
=

∂

∂z

(
−K

4
e2ϕ

)
− 2

(
−K

4
e2ϕ

)
∂ϕ

∂z
= 0.

Let us investigate dependence of the holomorphic function ω on the choice of conformal
coordinates.
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Lemma 4.15.5 Under a holomorphic changes of coordinates

z 7→ z′ = f(z),
∂f

∂z̄
= 0

the function ω(z) transforms according to the following rule

ω′(z′) =
1

f2
z

[
ω(z)− 1

2
Szf

]
(4.15.7)

where

Szf =
fzzz
fz
− 3

2

(
fzz
fz

)2

(4.15.8)

is the Schwarzian derivative of the holomorphic function f(z).

Proof: Differentiating the transformation rule

ϕ′ = ϕ− 1

2

(
log fz + log fz

)
(see eq. (4.13.12) above) in z′ obtain

∂ϕ′

∂z′
=

1

fz

∂

∂z

[
ϕ− 1

2

(
log fz + log fz

)]
=

1

fz

[
ϕz −

1

2

fzz
fz

]
.

Differentiating once more yields

∂2ϕ′

∂z′2
=

1

f2
z

[
ϕzz −

1

2

fzzz
fz

+
1

2

f2
zz

f2
z

]
− fzz
f3
z

[
ϕz −

1

2

fzz
fz

]
.

Hence
∂2ϕ′

∂z′2
−
(
∂ϕ′

∂z′

)2

=
1

f2
z

[
∂2ϕ

∂z2
−
(
∂ϕ

∂z

)2

− 1

2

(
fzzz
fz
− 3

2

(
fzz
fz

)2
)]

.

We want to choose a particular system of conformal coordinates in order to kill the
holomorphic function ω. To this end we have to solve the Schwarz equation

Szf = 2ω(z) (4.15.9)

for the unknown holomorphic change of coordinates.

Lemma 4.15.6 Let ψ1(z), ψ2(z) be two linearly independent solutions to the (complex)
Sturm–Liouville equation

∂2ψ

∂z2
+ ω(z)ψ = 0 (4.15.10)

such that ψ1(z0) 6= 0. Then the function

f(z) =
ψ2(z)

ψ1(z)
(4.15.11)

satisfies the Schwarz equation (4.15.9). Conversely, any solution to (4.15.9) holomorphic on
some neighbourhood of z0 can be represented in such a form.
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Proof: In this proof we will use short notations

ψ′ =
dψ

dz
, ψ′′ =

d2ψ

z.
2

etc. Differentiating the ratio (4.15.11) obtain

fz =
ψ′2ψ1 − ψ2ψ

′
1

ψ2
1

=
C

ψ2
1

where we use the well-known fact saying that the Wronskian ψ′2ψ1 − ψ2ψ
′
1 of two linearly

independent solutions to the Sturm–Liouville equation (4.15.10) is a nonzero constant C.
Furthermore,

fzz = −2Cψ′1
ψ3

1

fzzz = −2Cψ′′1
ψ3

1

+
6Cψ′1

2

ψ4
1

=
2Cω

ψ2
1

+
6Cψ′1

2

ψ4
1

.

Thus
fzzz
fz

= 2ω + 6

(
ψ′1
ψ1

)2

,
fzz
fz

= −2
ψ′1
ψ1
.

This implies eq. (4.15.9) for the function (4.15.11).

The converse statement can be proved just by counting the number of arbitrary constants
for solutions to the equations (4.15.9), (4.15.10). Indeed, every solution ψ1, ψ2 to the Sturm–
Liouville equation depends on two arbitrary constants. However their ratio ψ2/ψ1 depends on
three arbitrary constants as one common factor in the numerator/denominator disappears.
On the other side the general solution to the third order equation (4.15.9) depends on three
arbitrary constants. This completes the proof of the Lemma.

Example 4.15.7 Consider the homogeneous Schwarz equation

Szf = 0.

According to the Lemma its solutions have the form

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, det

(
a b
c d

)
6= 0.

Indeed, in this case the Sturm–Liouville equation (4.15.10) reduces to d2ψ/dz2 = 0. Its
solutions have the form ψ1 = cz + d, ψ2 = az + b.

The last step in proving the main Theorem of this section is the following

Lemma 4.15.8 For any analytic two-dimensional metric of constant curvature there exists
a system of conformal coordinates such that

ds2 =
dz dz̄[

a z z̄ + b z̄ + b̄ z + c
]2 (4.15.12)

for some constants
a, c ∈ R, b ∈ C, a2 + c2 + |b|2 6= 0.
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Proof: From the above arguments it follows existence of a system of conformal coordinates

ds2 = e2ϕdz dz̄

such that the function ϕ = ϕ (z, z̄) satisfies equation

ϕzz − ϕ2
z = 0.

Observe that
∂2

∂z2
e−ϕ =

[
ϕzz − ϕ2

z

]
e−ϕ = 0.

Hence the function e−ϕ depends at most linearly on z. Since this function is real-valued it
also satisfies

∂2

∂z̄2
e−ϕ =

∂2

∂z2
e−ϕ = 0.

So, it dependence on z̄ is also at most linear. Hence

e−ϕ = a z z̄ + b z̄ + b̄ z + c.

End of the proof of the Theorem. Computing the curvature of the metric (4.15.12) with
the help of the formula

K = −4e−2ϕ ∂
2ϕ

∂z∂z̄

obtain
K = 4

(
a c− |b|2

)
. (4.15.13)

Let us first consider the case of zero curvature, K = 0. If a = 0 then b = 0, so c 6= 0. The
metric takes the Euclidean form

ds2 =
dz dz̄

c2
.

In the case a 6= 0 one has c = |b|2
a , so we can factorise

a z z̄ + b z̄ + b̄ z + c = a

(
z +

b

a

)(
z̄ +

b̄

a

)
.

The substitution

w =
1

z + b
a

reduces the metric to the Euclidean form

ds2 =
dw dw̄

a2
.

Consider now the case of positive curvature K > 0. From (4.15.13) it follows a 6= 0. Write

a z z̄ + b z̄ + b̄ z + c = a

(
z +

b

a

)(
z̄ +

b̄

a

)
+
K

4a
.

158



So, after the substitution

w =

√
K

2|a|

(
z +

b

a

)
one obtains the metric of sphere (4.14.1) of the radius R = K−1/2,

ds2 =
4

K

dw dw̄

(1 + |w|2)2 .

In the case of negative curvature, let us first assume that a 6= 0. Then a similar substitu-
tion

w =

√
−K

2|a|

(
z +

b

a

)
yields the metric of pseudosphere (4.14.2) with R = (−K)−1/2,

ds2 = − 4

K

dw dw̄

(1− |w|2)2 .

In the case a = 0 we have |b| = 1
2

√
−K, so b = ρeiα for some α ∈ R where we denote

ρ = 1
2

√
−K. After the substitution

z = ρeiα
[
i w − c

2ρ2

]
obtain

b̄z + bz̄ + c = i ρ2(w − w̄)

that gives the metric of pseudosphere in the form (4.14.4)

ds2 = − 1

ρ2

dw dw̄

(w − w̄)2
=

4

K

dw dw̄

(w − w̄)2
.

The Theorem is proved.

4.16 Differential geometry versus topology: Gauss–Bonnet formula and
Gauss map

One of the main problem in the theory of smooth manifolds is the problem of classification.
An approach to this problem is based on constructing invariants of smooth manifolds, i.e.,
numerical characteristics taking the same values for diffeomorphic manifolds. In particular,
one may look for a construction of such topological invariants in terms of differential geometric
structures on the manifolds. One of the simplest example of such invariant is given by the
following version of the Gauss–Bonnet theorem.

Theorem 4.16.1 (Gauss–Bonnet) Let M be a compact connected oriented two-dimensional
Riemannian manifold. Denote dA the area element on the manifold and R = R(x) the scalar
curvature of the manifold at the point x ∈M . Then

1) the quantity

χ(M) :=
1

4π

∫
M
RdA (4.16.1)
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does not depend on the Riemannian metric on M ;

2) If M admits an embedding10 in R3 then χ(M) is an integer.

Proof: Our first step will be to prove that the quantity (4.16.1) does not depend on the
metric. Consider a more general setting of a n-dimensional compact connected oriented
Riemannian manifold. Denote

dV =
√
g dx1 ∧ · · · ∧ dxn, g = det(gij)

the volume form on M and R, as above, the scalar curvature of the Riemannian metric. For
a given manifold M the integral

S[gij ] :=

∫
M
R
√
g dnx (4.16.2)

can be considered as a functional of the metric on the manifold. (Here and below we use short
notation dnx = dx1 ∧ · · · ∧ dxn.) Our goal is to investigate the dependence of this functional
on the metric. To this end let us compute the principal linear part of the increment

δS = S[gij + δgij ]− S[gij ] (modulo |δgij |2) (4.16.3)

called first variation of the functional S. Instead of the variation δgij it is convenient to use
the variation of the inverse matrix δgij related to δgij by the obvious formula

δgij = −gikδgkl glj (4.16.4)

(cf. the formula
d

dx
A−1 = −A−1dA

dx
A−1

for the derivative of the inverse of a matrix-valued function A = A(x)).

Lemma 4.16.2 (Hilbert) The first variation of the functional (4.16.2) is given by the fol-
lowing formula

δS =

∫
M

(
Rij −

1

2
Rgij

)
δgij
√
g dnx. (4.16.5)

Here Rij is the Ricci tensor of the metric.

Proof: Recall that the scalar curvature is the contraction

R = gijRij

of the Ricci tensor

Rij = Rkikj =
∂Γkij
∂xk

−
∂Γkkj
∂xi

+ ΓkksΓ
s
ij − ΓkisΓ

s
kj

10Actually, any smooth compact oriented two-dimensional manifold does admit an embedding into R3.
Moreover, any compact two-dimensional submanifold in R3 is orientable. The proof of these statements goes
beyond the scope of this course.
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where

Γkij =
1

2
gks
(
∂gsj
∂xi

+
∂gis
∂xj
− ∂gij
∂xs

)
.

The variation δS can be written as a sum of three terms

δ

∫
M
Rijg

ij√g dnx =

∫
M

[
gijδRij +Rijδg

ij +R
δg

2g

]
√
g dnx. (4.16.6)

Let us begin with the third term in this expression. Denote G = (gij), so g = detG. Therefore

δg = det[G+ δG]− detG = det
[
G
(
1 +G−1δG

)]
− detG

= detG · det
[
1 +G−1δG

]
− detG

= detG · tr
(
G−1δG

)
+O

(
|δG|2

)
= −detG · tr

(
δG−1G

)
+O

(
|δG|2

)
= −g · gijδgij .

In this caluclation we have used the following formula for determinant of a square matrix
close to identity

det(1 +A) = 1 + trA+O
(
|A|2

)
and also the formula for the derivatives of the inverse function

G−1 · δG = −δG−1 ·G.

We see that the contributions of the second and third terms in eq. (4.16.6) give exactly the
right hand side of the needed formula (4.16.5). So, it remains to prove that the first term∫

M
gijδRij

√
g dnx (4.16.7)

=

∫
M
gij
(

∂

∂xk
δΓkij −

∂

∂xi
δΓkkj + δΓkksΓ

s
ij + ΓkksδΓ

s
ij − δΓkisΓskj − ΓkisδΓ

s
kj

)
√
g dnx

vanishes.

The strategy is to apply to the above expression the Stokes formula written in the form
(4.8.10). The crucial observation is that, the variation δΓkij of the Christoffel coefficients is a

tensor of type (1, 2). Indeed, from (4.6.10) it readily follows that the difference Γ̃kij − Γkij of
two affine connections under a change of coordinates transforms according to the tensor law
(the terms with the second derivatives cancel).

For covariant derivatives of the tensor δΓkij we have the standard formula

∇kδΓkij =
∂

∂xk
δΓkij + ΓkksδΓ

s
ij − ΓkisδΓ

s
kj − ΓskjδΓ

k
is.

Moreover, the contraction δΓkkj is a tensor of type (0, 1). The covariant derivative of this
tensor reads

∇iδΓkkj =
∂

∂xi
δΓkkj − ΓsijδΓ

k
ks.

So, the expression (4.16.7) can be recast into the form∫
M
gijδRij

√
g dnx =

∫
M
gij
(
∇kδΓkij −∇iδΓkkj

)√
g dnx.

161



The last step is to observe that

gij∇kδΓkij = ∇k
(
gijδΓkij

)
, gij∇iδΓkkj = ∇i

(
gijδΓkkj

)
since

∇gij = 0

for the Levi-Civita connection. Introduce two vector fields

Xk = gijδΓkij , Y i = gijδΓkkj .

Then the expression (4.16.7) takes the following form∫
M
gijδRij

√
g dnx =

∫
M

(
∇kXk −∇iY i

)√
g dx =

∫
∂M

n∑
i=1

(Xi−Y i)
√
g dx1∧. . . ˆdxi · · ·∧dxn = 0

since the boundary of the manifold M is empty.

Remark 4.16.3 The first variation formula (4.16.5) remains true also for noncompact man-
ifolds provided the variation of the metric vanishes together with its two derivatives outside
a compact domain.

Remark 4.16.4 The formula (4.16.5) makes sense also for pseudo-Riemannian manifolds;
it suffices just to replace

√
g with

√
|g|. In particular an analogue of the least action principle

for the Einstein equations in vacuum

Rij −
1

2
Rgij = 0, i, j = 1, . . . , 4 (4.16.8)

readily follows from the Hilbert formula applied to a pseudo-Riemannian manifold of signature
(1, 3).

Let us return to the theorem. We know that, for two-dimensional Riemannian manifolds
Rij = 1

2Rgij . Therefore δS ≡ 0. It is now easy to derive independence from the metric of
the integral

S[gij ] =

∫
M2

R
√
g d2x.

Indeed, according to Lemma 4.1.10 the space of positive definite quadratic forms on a linear
space is a convex cone. That is, given two Riemannian metrics gij(x) and g̃ij(x) on M the
linear combination

gij(x; t) = (1− t) gij(x) + t g̃ij(x), t ∈ [0, 1] (4.16.9)

is a Riemannian metric. Consider the value of the functional S[gij ] on the metric (4.16.9).
Differentiation with respect to the parameter t yields

d

dt

∫
M
R
√
g dnx = −

∫
M

(
Rij −

1

2
Rgij

)
gik(x, t)[g̃kl(x)− gkl(x)]glj(x; t)

√
det(gpq(x, t)) d

nx

due to the Hilbert formula. For a two-dimensional manifold the right hand side vanishes.
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We will now assume that the two-dimensional manifold can be embedded into R3. Ac-
cording to the above arguments it suffices to compute the value of the functional (4.16.1) for
the induced metric on M . Consider the Gauss map

n : M → S2 (4.16.10)

x 7→ n(x)

that assigns to a point x ∈ M a unit normal vector n(x) at this point. Denote dAsphere the
standard area element on the unit sphere S2. Applying the Theorem 3.4.11 one obtains∫

M
n∗dAsphere = 4π deg n

since the total area of the unit sphere is equal to 4π.

Lemma 4.16.5 The pullback of the area element of the unit sphere with respect to the Gauss
map is equal to

n∗dAsphere = K dA (4.16.11)

where dA is the area element and K is the Gaussian curvature of the surface.

Proof: Without loss of generality one can assume that the surface is represented as a graph
of function z = f(x, y). The area element of the surface is given by the wellknown formula

dA =
√

1 + f2
x + f2

y dx ∧ dy

(see Exercise 4.1.15 above). Then the unit normal vector is given by the formula

n =
(−fx,−fy, 1)√

1 + f2
x + f2

y

.

Also the unit sphere
u2 + v2 + w2 = 1

near the north pole will be written as a graph

w =
√

1− u2 − v2.

The area element of the sphere in these coordinates reads

dAsphere =
du ∧ dv√

1− u2 − v2
=
du ∧ dv
w

.

In these coordinates the Gauss map reads

u(x, y) = − fx√
1 + f2

x + f2
y

v(x, y) = − fy√
1 + f2

x + f2
y

.
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Also observe a formula for the third coordinate on the sphere

w(x, y) =
1√

1 + f2
x + f2

y

.

So

n∗dAsphere =
du(x, y) ∧ dv(x, y)

w(x, y)
= J

√
1 + f2

x + f2
y dx ∧ dy = J dA

where J is the Jacobian of the Gauss map (4.16.10)

J = det

(
ux uy
vx vy

)
.

A simple computation of the Jacobian gives

J =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
.

This formula coincides with the expression (4.11.36) for the Gaussian curvature.

We obtained that the integer number χ(M) is equal to twice the degree of the Gauss map.
The Theorem is proved.

It can be computed for a particular embedding of a sphere with g handles shown at the
picture. In this case the north pole has g + 1 preimages. At the upper point of the surface
the Gaussian curvature is positive, so the local degree is equal to +1. At other g points the
Gaussian curvature is negative, so the local degrees at all these points are equal to −1. Thus
the degree of the Gauss map for such an embedding is equal to (1 − g). We arrive at the
following final form of the Gauss–Bonnet formula for spheres with g handles

1

2π

∫
M
K dA = 2− 2g. (4.16.12)

The number in the right hand side is called the Euler characteristic of the surface M . It
is one of the simplest topological invariants of smooth manifolds. The formula (4.16.12)
represents the simplest issue of a relationship between differential geometric and topological
characteristics of smooth manifolds. There are many other examples of this deep connection.
However, the discussion of these examples goes beyond the scope of this course.

4.17 Second variation in the theory of geodesics

In this section we will address the problem of minimality of a given geodesic. To this end we
will derive a formula for the second variation of the action functional (4.9.3).

Let us first explain the idea for smooth functions on a finite dimensional case. Let f = f(x)
be a function on RN . To find a (local) minimum of this function one has to

• find critical points of this function solving equations

∂f(x)

∂xi
= 0, i = 1, . . . , N ;
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• for a given critical point x0 check that the matrix of second derivatives

∂2f(x0)

∂xi∂xj
(4.17.1)

is positive definite.

In order to reformulate these two sufficient conditions of a local minimum in a coordinate-
free way one can rewrite a definition of a critical point in the form

d

dτ
f(x0 + τv)τ=0 = 0 for any vector v.

The symmetric bilinear form associated with the matrix (4.17.1) can be represented as follows

d2f(x0)(v1, v2) =
∂2

∂τ1∂τ2
f(x0 + τ1v1 + τ2v2)τ1=τ2=0. (4.17.2)

The following expression for the Taylor expansion of the function f(x0 + τ v) at the critical
point x0 will be useful

f(x0 + τ v) = f(x0) + τ2d2f(x0)(v, v) +O
(
τ3
)
. (4.17.3)

The Hessian is degenerate if there exists a vector v1 6= 0 such that

d2f(x0)(v1, v2) = 0 for any vector v2. (4.17.4)

In this case the first differential of the function f vanishes along the direction of the vector
v1, up to corrections of a higher order

df(x0 + τ v1) = O
(
τ2
)
. (4.17.5)

The formula (4.17.5) can be interpreted as an “infinitesimal deformation” of the critical point.
In the opposite case of non-degenerateness of the second differential the critical point x0 is
isolated. It is a minimum iff the quadratic form associated with (4.17.2) is positive definite

d2f(x0)(v, v) > 0 for any v 6= 0. (4.17.6)

We will now consider an infinite dimensional analogue of the above considerations. For a
given pair of points x0, x1 in a Riemannian manifold M consider the space of smooth curves
γ : [a, b]→M such that γ(a) = x0, γ(b) = x1. The action functional

S[γ] =
1

2

∫ b

a
〈γ̇, γ̇〉 dt

can be considered as a “function” on the infinite-dimensional space of curves with fixed
endpoints. Tangent vectors to this space can be realized as smooth vector fields v = v(t) at
the points γ(t) vanishing at the endpoints

v(a) = v(b) = 0. (4.17.7)

With any such a vector field one associates a small deformation γτ (t) of the curve of the form

γτ (t) := expγ(t) (τ v(t)) , |τ | < ε (4.17.8)
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for some positive ε (see the previous section for details about exponential map). To simplify
notations we will redenote γ + τ v the curve (4.17.8).

The formula for the first variation (an analogue of the first differential of a function) of
the previous section (see Lemma 4.9.2) says that

δS[γ](v) :=
d

dτ
S[γ + τ v]τ=0 = −

∫ b

a
〈∇γ̇ γ̇, v〉 dt. (4.17.9)

Exercise 4.17.1 Prove the following formula generalizing (4.17.9) for piecewise smooth curves

δS[γ](v) = −
∫ b

a
〈∇γ̇ γ̇, v〉 dt−

∑
k

∆tk〈γ̇, v.〉 (4.17.10)

In this formula ∆t stands for the jump of a piecewise continuous function at the point t,
i.e.,

∆tf = f(t+ 0)− f(t− 0). (4.17.11)

The summation is taken over all points tk of discontinuity of γ̇(t).

From the first variation formula it follows, as we already know, that the “critical points”
of the action functional are geodesics. We will now show that minimal geodesics provide
minima for the action functional.

Lemma 4.17.2 Let γ : [0, 1] → M be a minimal geodesic between the points x0 = γ(0) and
x1 = γ(1). Then, for any piecewise smooth curve γ̃ : [0, 1] → M connecting x0 with x1 one
has

S[γ] ≤ S[γ̃],

the equality takes place iff γ̃ is a minimal geodesic of the same length s[γ̃] = s[γ].

Proof: We will use the Schwarz inequality(∫ 1

0
f(t)g(t) dt

)2

≤
∫ 1

0
f2(t) dt ·

∫ 1

0
g2(t) dt

valid for arbitrary piecewise continuous functions f(t), g(t), 0 ≤ t ≤ 1. The equality takes
place iff f(t) ≡ c g(t) for some constant c. Applying this inequality to the case f(t) = |γ̇(t)|,
g(t) ≡ 1 one obtains

(s[γ])2 ≤ 2S[γ], (4.17.12)

the equality takes place iff the parameter along the curve γ is proportional to the arc length.
Let γ(t) be a minimal geodesic from x0 to x1 that is, for an arbitrary piecewise smooth curve
γ̃ connecting the same points one has s[γ] ≤ s[γ̃]. Using (4.17.12) we obtain

S[γ] =
1

2
(s[γ])2 ≤ 1

2
(s[γ̃])2 ≤ S[γ̃].
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Let us proceed with analyzing minimality of geodesics as critical points of the action
functional. We will now derive a formula for the second variation of the action functional

δ2S[γ](v1, v2) :=
∂2

∂τ1∂τ2
S[γ + τ1v1 + τ2v2]τ1=τ2=0 (4.17.13)

for a geodesic γ and a pair of vector fields v1 = v1(t), v2 = v2(t) vanishing at the endpoints
of γ.

Theorem 4.17.3 The second variation of the action functional on a geodesic γ : [a, b]→M
is given by the following formula

δ2S[γ](v1, v2) = −
∫ b

a
〈Jv1, v2〉 dt (4.17.14)

where the operator J acting on vector fields along the geodesic is given by the following formula

Jv = ∇2
γ̇v +R(γ̇, v)γ̇. (4.17.15)

In the formula (4.17.15) R(X,Y ) : TxM → TxM is the curvature operator defined for any
pair of vectors at a given point x ∈M . The second order linear differential operator (4.17.15)
is called Jacobi operator.

Proof: Using formula (4.17.10) for the first variation obtain

∂2

∂τ1∂τ2
S[γ + τ1v1 + τ2v2]τ2=0 = − ∂

∂τ1

∫ b

a

〈
∇ ˙̃γ

˙̃γ, v2

〉
dt, where γ̃ = γ + τ1v1.

So

∂2

∂τ1∂τ2
S[γ + τ1v1 + τ2v2]τ1=τ2=0 = −

∫ b

a
∇v1 〈∇γ̇ γ̇, v2〉 dt

= −
∫ b

a
[〈∇v1∇γ̇ γ̇, v2〉+ 〈∇γ̇ γ̇,∇v1v2〉] dt = −

∫ b

a
〈∇v1∇γ̇ γ̇, v2〉 dt

since ∇γ̇ γ̇ = 0 on a geodesic. Using the definition of the curvature tensor we obtain

∇v1∇γ̇ −∇γ̇∇v1 = R(γ̇, v1).

So

δ2S[γ](v1, v2) = −
∫ b

a
〈∇γ̇∇v1 γ̇ +R(γ̇, v1)γ̇, v1〉 dt.

Using symmetry of the Levi-Civita connection we have

∇v1 γ̇ = ∇γ̇v1.

We arrive at the needed formula.

Remark 4.17.4 Using the symmetry (4.8.19) of the Riemann curvature tensor it is easy to
check the symmetry of the Jacobi operator∫ b

a
〈Jv1, v2〉 dt =

∫ b

a
〈v1, Jv2〉 dt.
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Exercise 4.17.5 Prove the following generalization of the second variation formula valid for
piecewise smooth vector fields on the geodesic γ

δ2S[γ](v1, v2) = −
∫ b

a
〈Jv1, v2〉 dt−

∑
∆tk 〈∇γ̇v1, v2〉 . (4.17.16)

The summation is taken over all discontinuities t = tk of the derivative of the vector field
v1(t).

Definition 4.17.6 1) A Jacobi vector field v on a geodesic γ : [a, b] → M is a solution to
the Jacobi equation

Jv = 0 (4.17.17)

vanishing at the endpoints
v|γ(a) = v|γ(b) = 0.

2) The points x = γ(a) and y = γ(b) are conjugate along the geodesics γ : [a, b]→M if there
exists a nonzero Jacobi field on γ.

3) The dimension of the space of Jacobi vector fields on γ is called the multiplicity of the con-
jugate points γ(a) and γ(b). It will be denoted multγ(γ(a), γ(b)). We put multγ(γ(a), γ(b)) =
0 if the points γ(a), γ(b) are notconjugate along γ.

From the Theorem 4.17.3 we obtain

Corollary 4.17.7 For a geodesic γ : [a, b]→M the bilinear form δ2S[γ](v1, v2) degenerates
iff the endpoints γ(a), γ(b) are conjugate along γ.

Proof: If v1 6= 0 is a Jacobi vector field along γ then, using the second variation formula, we
obtain

δ2S[γ](v1, v2) = −
∫ b

a
〈Jv1, v2〉 dt = 0 (4.17.18)

for any vector field v2. Conversely, assume that, for some v1 6= 0, (4.17.18) holds true for any
vector field v2. Choose v2(t) = λ(t)Jv1(t) where λ(t) ≥ 0 is a smooth function vanishing at
t = a and t = b but different from identical zero. Then

δ2S[γ](v1, v2) =

∫ b

a
λ(t) 〈Jv1, Jv1〉 dt ≥ 0,

it vanishes only if Jv1 = 0.

The Jacobi equation (4.17.17) can be considered as a system of n = dimM second order
linear differential equations for a vector-valued function v(t) defined on a geodesic γ(t). It can
be rewritten as a system of 2n first order linear differential equations for the vector-valued
functions v(t) and v̇(t) := ∇γ̇v(t)

∇γ̇v = v̇

∇γ̇ v̇ = −R(γ̇, v)γ̇

 (4.17.19)
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A solution to this system is uniquely determined by initial conditions

v(a) = v0

v̇(a) = v̇0

for a given pair of n-dimensional vectors v0, v̇0. Thus the space of solutions to the Jacobi
equation has dimension 2n.

Proposition 4.17.8 For (b − a) sufficiently small any Jacobi vector field along a geodesic
γ : [a, b]→M identically vanishes.

Proof: Choose a system of local coordinates near the point γ(a) such that all Christoffel
coefficients vanish at this point (see Corollary 4.9.13 above). In these coordinates

∇γ̇v|t=a =
dv(a)

dt
= v̇0, ∇γ̇ v̇|t=a =

dv̇(a)

dt
= −R(γ̇0, v0)γ̇0

where γ̇0 := γ̇|t=a. Expanding the vector-valued function v(t) =
(
vi(t)

)
in Taylor series near

t = a one obtains

vi(t) = vi0 + (t− a)v̇i0 −
1

2
(t− a)2

[
(R(γ̇0, v0)γ̇0)i +

∂Γikl(γ(a))

∂xj
γ̇j0γ̇

k
0v

l
0

]
+O

(
(t− a)3

)
.

For the choice of initial data v0 = 0 the above expansion specifies to

v(t) = (t− a)v̇0 +O
(
(t− a)3

)
.

For v̇0 6= 0 such a vector-function does not vanish for sufficiently small |t− a|.

Corollary 4.17.9 For a geodesic γ : [a, b] → M consider a linear map of the space of
solutions v = v(t) to the Jacobi equation (4.17.17) to the space of boundary values

v 7→ (v(a), v(b)) ∈ R2n.

For sufficiently small |b− a| this map is an isomorphism of linear spaces.

As a sufficiently small piece of any geodesic is minimal we arrive at

Proposition 4.17.10 For any point x0 ∈ M there exists ε > 0 such that, for any geodesic
γ : [0, 1] → M starting at x0 = γ(0) of length less than ε the second variation defines a
positive definite quadratic form, i.e.,

δ2S[γ](v, v) > 0 (4.17.20)

for any nonzero piecewise smooth vector field v = v(t) along γ vanishing at the endpoints

v(0) = v(1) = 0.
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Proof: Since the geodesic between the points γ(0) and γ(1) of distance < ε for a sufficiently
small ε is unique and minimal we have

S[γ + τ v] ≥ S[γ]

for sufficiently small τ , see Lemma 4.17.2 above. The equality takes place only for v(t) ≡ 0.
Using the expansion

S[γ + τ v] = S[γ] + τ2δ2S[γ](v, v) +O
(
τ3
)

(4.17.21)

(cf. (4.17.3)) we derive δ2S[γ](v, v) ≥ 0. Due to Corollary 4.17.9 the inequality is strict for a
non-zero vector field.

Let us consider in more details solutions to Jacobi equation on two-dimensional Rieman-
nian manifolds. Let γ : [0, l] → M2 be a geodesic parameterized by arc length, i.e., |γ̇| = 1.
On the two-dimensional manifold M2 one can construct an orthogonal vector field γ̇⊥ of unit
length along the geodesic. So, at every point γ(t) one has an orthonormal frame

(
γ̇(t), γ̇⊥(t)

)
smoothly depending on t ∈ [0, l]. Represent a solution v = v(t) to the Jacobi equation Jv = 0
as a linear combination of these vectors

v(t) = ϕ(t) γ̇(t) + ψ(t) γ̇⊥(t) (4.17.22)

for some smooth functions ϕ(t), ψ(t).

Proposition 4.17.11 The Jacobi equation for the vector field (4.17.22) is equivalent to the
following system of linear differential equations

ϕ̈ = 0 (4.17.23)

ψ̈ +K(γ(t))ψ = 0 (4.17.24)

where K(γ(t)) is the Gaussian curvature of the manifold at the point γ(t).

Proof: We have ∇γ̇ γ̇ = 0. It is easy to show that also ∇γ̇ γ̇⊥ = 0. Thus

∇γ̇v = ϕ̇ γ̇ + ψ̇ γ̇⊥, ∇2
γ̇v = ϕ̈ γ̇ + ψ̈ γ̇⊥.

Substituting into the Jacobi equation one obtains

ϕ̈ γ̇ + ψ̈ γ̇⊥ = −R(γ̇, ϕ γ̇ + ψγ̇⊥)γ̇ = −ψR(γ̇, γ̇⊥)γ̇

since R(γ̇, γ̇) = 0 due to antisymmetry Rjikl = −Rijkl of the Riemann curvature tensor. It
remains to prove that

R(γ̇, γ̇⊥)γ̇ = K γ̇⊥.

Decompose the vector field R(γ̇, γ̇⊥)γ̇ as a linear combination of the basic vector fields

R(γ̇, γ̇⊥)γ̇ = α γ̇ + β γ̇⊥.

We have
α =

〈
R(γ̇, γ̇⊥)γ̇, γ̇

〉
= 0
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due to antisymmetry Rijlk = −Rijkl. Next,

β =
〈
R(γ̇, γ̇⊥)γ̇, γ̇⊥

〉
.

Choose a system of coordinates (x1, x2) near the point γ(t) such that, in these coordinates

γ̇(t) =
∂

∂x1
, γ̇⊥(t) =

∂

∂x2
.

In these coordinates

R(γ̇(t), γ̇⊥(t))γ̇(t) = R1212(γ(t)) = K(γ(t))

(see eq. (4.11.34) above).

We see that the theory of Jacobi vector fields in two dimensions reduces to the study of
the Dirichlet boundary value problem for the Sturm–Liouville equation (4.17.24) with the
Gaussian curvature as the potential. We will return to this study at the end of the next
section. Here we consider two simple examples.

Example 4.17.12 We already know that the Gaussian curvature of the sphere S2 ⊂ R3 of
radius R is equal to 1

R2 . So, the Jacobi equations (4.17.23), (4.17.24) take the form

ϕ̈ = 0

ψ̈ + 1
R2ψ = 0.

Solutions to this system of ODEs vanishing at t = 0 have the form

ϕ = a t
ψ = b sin t

R

for arbitrary constants a, b. The choice a = 0, b 6= 0 yields a Jacobi vector field vanishing
at t = 0 and t = π R. Clearly this pair of conjugate points correspond to the pair of opposite
poles on the sphere. Furthemore all points of the form t = π k R for any positive integer k
will be conjugate with the initial point t = 0.

Example 4.17.13 In a similar way solutions to the Jacobi equations on the pseudosphere
of radius R

ϕ̈ = 0

ψ̈ − 1
R2ψ = 0

vanishing at the initial point t = 0 read

ϕ = a t, ψ = b sinh
t

R
.

Such a vector field for b 6= 0 has no other zeroes except for t = 0. So, any geodesic on the
pseudosphere contains no conjugate points.
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A somewhat more intuitive realization of Jacobi vector fields can be obtained in terms of
geodesic variations. By definition a geodesic variation of a geodesic γ(t), t ∈ [0, 1] is a family
γ(t, s) of geodesics smoothly depending on the parameter s ∈ (−ε, ε) for sufficiently small
ε > 0 such that

γ(t, 0) = γ(t) (the given geodesic) (4.17.25)

and
γ(0, s) ≡ γ(0), γ(1, s) ≡ γ(1). (4.17.26)

Proposition 4.17.14 Given a geodesic variation γ(t, s), the vector field

v(t) :=
d

ds
γ(t, s)s=0

is a Jacobi vector field along the geodesic γ(t).

Proof: By definition (4.17.25), (4.17.26) the vector field along the geodesic γ(t) vanishes
at the endpoints. Let us prove that it satisfies Jacobi equation. Denote γ̇ = d

dtγ(t, s) the
velocity vector of the geodesic γ(t, s) for a given value of s. We have

∇γ̇
d

dt
γ(t, s) = 0 for any s.

Differentiating this equation in s and using the definition of the Riemann curvature tensor
yields

0 = ∇s∇tγ̇ = ∇t∇sγ̇ +R(γ̇, γs)γ̇ = ∇2
γ̇

∂γ

∂s
+R(γ̇, γs)γ̇.

Setting s = 0 one arrives at the Jacobi equation for the vector field v = γs(t, 0).

For the example of two-dimensional sphere one can construct a geodesic variation of the
big circle geodesic connecting the pair of opposite points rotating the sphere around the line
passing through these points. In this way one obtains the Jacobi vector field constructed in
the Example 4.17.12.

In a similar way one obtains a (n−1)-dimensional space of Jacobi vector fields connecting
the pair of opposite points on the standard n-dimensional sphere. Thus the multiplicity of
such a pair of conjugate points is greater or equal than (n− 1).

Exercise 4.17.15 Prove that any Jacobi vector field along a geodesic γ(t) can be realized by
the construction of Proposition 4.17.14 from a geodesic variation of γ.

4.18 Index theorem

We begin this section with recalling some basic definitions from the theory of quadratic form.
Given a quadratic form Q(x), x ∈ RN , one can always find a basis such that Q reduces to
the diagonal form

Q(x) =
1

2

(
λ2

1x
2
1 + · · ·+ λnx

2
n

)
, λi 6= 0.
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The negative inertia index (or, simply, index ) of the quadratic form is defined as the number
of negative squares

indQ = #{λi < 0}.

A coordinate-free formulation of index of a quadratic form can be given in the following way:

indQ = max dim
{
V ⊂ RN such that Q|V is negative definite

}
. (4.18.1)

Index of a critical point x0 of a smooth function f(x) is defined as the index of the quadratic
form d2f(x0)

indx0f = indd2f(x0). (4.18.2)

Recall that, if the critical point x0 is a (local) minimum of the function f(x) then indx0f = 0.
If indx0f > 0 then the critical point x0 is not a local minimum of the function f(x).

Consider now the action functional defined on the infinite-dimensional space Ω(M,x0, x1)
of piecewise smooth curves on a Riemannian manifold connecting two points x0 and x1. Fix
a critical point of this functional, i.e., a geodesic γ : [0, 1] → M , γ(0) = x0, γ(1) = x1. The
“tangent space” TγΩ(M,x0, x1) at the point γ by definition consists of all piecewise smooth
vector fields v(t) along γ vanishing at the endpoints, v(0) = v(1) = 0. The second variation
δ2S[γ] defines a quadratic form on this space.

Definition 4.18.1 Index of a geodesic γ is defined as the index of the second variation
quadratic form δ2S[γ](v, v), v ∈ TγΩ(M,x0, x1).

Our goal is to compute the index of this quadratic form.

Theorem 4.18.2 (Morse) Index of a given geodesic γ : [0, 1]→M is equal to the number of
pairs of conjugate points (γ(0), γ(t)) for 0 < t < 1 counted with their multiplicities

ind δ2S[γ] =
∑

0<t<1

multγ (γ(0), γ(t)) . (4.18.3)

In particular the theorem implies that index of any geodesic is finite.

Proof: We first split the infinite-dimensional space TγΩ := TγΩ(M,x0, x1) into a direct sum
of two subspaces such that the first subspace is finite-dimensional and restriction of δ2S[γ]
onto the second one is positive. To this end choose a partition 0 = t0 < t1 < · · · < tk = 1 of
the segment [0, 1] such that every piece γ|[ti−1,ti] is minimal. Denote

1) TγΩ(t0, t1, . . . , tk) ⊂ TγΩ the space of broken Jacobi fields v(t) along γ such that v(0) =
v(1) = 0 and Jv = 0 for t ∈ [ti−1, ti] for all i = 1, . . . , k. Here J is the Jacobi operator
(4.17.15). Due to Corollary 4.17.9 we can assume that the vector field v(t) is uniquely
determined by the vectors v(t0) = 0, v(t1), . . . , v(tk−1), v(tk) = 0. Thus TγΩ(t0, t1, . . . , tk) is
a finite-dimensional space of dimension n · (k − 1) where n = dimM .

2) T⊥γ Ω ⊂ TγΩ the space of vector fields w(t) along γ such that w(ti) = 0, i = 0, 1, . . . , k.

Observe that, if a vector field w ∈ T⊥γ Ω satisfies Jacobi equation Jw = 0 then w is identically
equal to zero.
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Lemma 4.18.3 The following statements hold true.

1)
TγΩ = Tγ(t0, t1, . . . , tk)⊕ T⊥γ Ω. (4.18.4)

2) For arbitrary v ∈ Tγ(t0, t1, . . . , tk), w ∈ T⊥γ Ω one has

δ2S[γ](v, w) = 0. (4.18.5)

3) The restriction of δ2S[γ] onto the subspace T⊥γ Ω is a positive definite quadratic form.

Proof: For a given vector field X(t) ∈ TγΩ denote v(t) the unique vector field in Tγ(t0, t1, . . . )
such that v(ti) = X(ti), i = 0, . . . , k. Define w(t) ∈ T⊥γ Ω by

w(t) := X(t)− v(t).

This justifies the decomposition (4.18.4).

Using the second variation formula (4.17.16) for v ∈ TγΩ(t0, t1, . . . , tk), w ∈ T⊥γ Ω we
obtain

δ2S[γ](v, w) = −
∫ 1

0
〈Jv,w〉 dt−

k−1∑
i=1

∆ti 〈∇γ̇v, w〉 = 0

since Jv = 0 on any interval (ti−1, ti) and w(ti) = 0 for i = 1, . . . , k−1. This proves (4.18.5).

Let us prove positivity of the restriction of δ2S[γ] onto T⊥γ Ω. The action functional can
be represented as a sum

S[γ] =

k∑
i=1

Si[γ], Si[γ] =
1

2

∫ ti

ti−1

|γ̇|2dt.

As the every piece γ|[ti−1,ti] is minimal we have

Si[γ + τ w] ≥ Si[γ], i = 1, . . . , k

for sufficiently small γ. Hence δ2S[γ](w,w) ≥ 0. Let us prove that δ2S[γ](w,w) 6= 0. In
the opposite case choosing an arbitrary vector field w′ ∈ T⊥γ Ω and a sufficiently small real
parameter c one therefore obtains

0 ≤ δ2S[γ](w + cw′, w + cw′) = 2c δ2S[γ](w,w′) + c2δ2S[γ](w′, w′).

The right hand side of this expression can be nonnegative for an arbitrary sufficiently small
value of c only if δ2S[γ](w,w′) = 0. Besides, we already know that δ2S[γ](w, v) = 0 for any
v ∈ TγΩ(t0, t1, . . . , tk). Thus the assumption δ2S[γ](w,w) = 0 for some nonzero w ∈ T⊥γ Ω
implies degeneracy of the bilinear form δ2S[γ] on TγΩ. So Jw = 0 hence w = 0. This
contradiction completes the proof of positivity of the Hessian of action functional on the
subspace T⊥γ Ω.

Corollary 4.18.4 Index of the geodesic γ is equal to the index of the restriction of the
quadratic form δ2S[γ] onto the finite-dimensional subspace Tγ(t0, t1, . . . , tk). Hence ind δ2S[γ] <
∞.
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Let us consider the restriction γ[0,τ ] of the geodesic γ on a subinterval [0, τ ] for 0 < τ ≤ 1.
Denote

ind(τ) = indδ2S
[
γ[0,τ ]

]
We will now study the dependence of the index on the parameter τ .

Lemma 4.18.5 For sufficiently small τ > 0 the index ind (τ) is equal to zero.

Proof: This readily follows from Proposition 4.17.10.

Lemma 4.18.6 ind(τ) is an increasing function of τ .

Proof: If τ < τ ′ then there exists a subspace Vτ ⊂ Tγ[0,τ ]Ω of dimension ind(τ) such that

δ2S
[
γ[0,τ ]

]
(v, v) < 0 for any nonzero v ∈ Vτ .

A nonzero vector field v ∈ Vτ can be extended onto the bigger interval [0, τ ′] by identical zero
on [τ, τ ′]. Denote v̄ ∈ Tγ[0,τ ′]Ω the extended vector field. We have

δ2S
[
γ[0,τ ′]

]
(v̄, v̄) = −

∫ τ

0
〈Jv, v〉 −∆τ 〈∇γ̇ v̄, v̄〉 .

The first term in the right hand side is negative,

−
∫ τ

0
〈Jv, v〉 = δ2S

[
γ[0,τ ]

]
(v, v) < 0.

The second one vanishes

∆τ 〈∇γ̇ v̄, v̄〉 = −〈∇γ̇v(τ), v(τ)〉 = 0

since v(τ) = 0. In this way we obtain an embedding Vτ ⊂ Vτ ′ , v 7→ v̄ where the quadratic
form δ2S

[
γ[0,τ ′]

]
is negative definite on Vτ ′ . Therefore dimVτ ≤ Vτ ′ hence ind(τ) ≤ ind(τ ′).

Lemma 4.18.7 ind(τ) is a left-continuous function, i.e.,

ind(τ − ε) = ind(τ)

for any sufficiently small ε > 0.

Proof: Let ti < τ < ti+1. Denote T := Tγ[0,τ ]Ω(t0, t1, . . . , ti, τ). This space

T ' Tγ(t1)M ⊕ · · · ⊕ Tγ(ti)M

of dimension n ·i does not depend on τ ∈ (ti, ti+1). Denote Qτ the restriction of the quadratic
form δ2S

[
γ[0,τ ]

]
onto T. The index ind(τ) is equal to the index of the quadratic form Qτ .

Let V ⊂ T be a subspace of dimension ind(τ) such that

Qτ |V < 0.

175



Since the quadratic form Qτ depends continuously on τ one concludes that also

Qτ ′ |V < 0

for arbitrary τ ′ sufficiently close to τ . Therefore ind(τ ′) ≥ ind(τ). But for τ ′ = τ − ε for a
small positive ε one has ind(τ−ε) ≤ ind(τ) due to the previous Lemma. The two inequalities
imply that ind(τ − ε) = ind(τ).

We will now describe discontinuity points of ind(τ). We will use notations for the space
T and the quadratic form Qτ introduced in the proof of the previous Lemma.

Lemma 4.18.8 Denote

ν = dim kerQτ = multγ(γ(0), γ(τ))

Then for sufficiently small ε > 0 one has

ind(τ + ε) = ind(τ) + ν.

Proof: Let us first prove that

ind(τ + ε) ≤ ind(τ) + ν. (4.18.6)

As the negative inertia index of the quadratic form Qτ on the finite-dimensional space T is
equal to ind(τ) and dimension of the kernel of the quadratic form is equal to ν one concludes
that the positive inertia index of the quadratic form is equal to dim T − ind(τ) − ν. Thus
there exists a subspace Ṽ ⊂ T of this dimension such that the restriction of Qτ onto this
subspace is positive definite. By continuity one also have positivity

Qτ ′ |Ṽ > 0

for τ ′ sufficiently close to τ . So

ind(τ ′) ≤ dim T− dim Ṽ ≤ dim T− (dim T− ind(τ)− ν) = ind(τ) + ν.

Choosing τ ′ = τ + ε one arrives at the inequality (4.18.6).

Let us now prove the opposite inequality

ind(τ + ε) ≥ ind(τ) + ν. (4.18.7)

Choose ind(τ) linearly independent vector fields v1, . . . , vind (τ) along γ[0,τ ] vanishing at the

endpoints γ(0), γ(τ) such that the symmetric matrix

(Qτ )ij = δ2S
[
γ[0,τ ]

]
(vi, vj), i, j = 1, . . . , ind(τ)

is negative definite. One can also choose ν linearly independent Jacobi vector fields Y1, . . .Yν
vanishing at the endpoints γ(0), γ(τ). Observe that the vectors

∇γ̇Yj(τ), j = 1, . . . , ν
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are linearly independent due to independency of vector fields Yj . Choose ν vector fields X1,
. . . , Xν along γ[0,τ+ε] vanishing at the endpoints γ(0), γ[τ + ε] in such a way that their values
at t = τ satisfy

〈∇γ̇Yj(τ), Xk(τ)〉 = δjk, j, k = 1, . . . , ν.

Finally, the vector fields vi, Yj originally defined on [0, τ ] extend to the interval [0, τ + ε] by
zero on the part [τ, τ + ε]. The extended vector fields will be denoted by the same letters vi
and Yj . Using the second variation formula (4.17.16) one can check that

δ2S
[
γ[0,τ+ε]

]
(Yj , Yk) = 0

δ2S
[
γ[0,τ+ε]

]
(vi, Yj) = 0

δ2S
[
γ[0,τ+ε]

]
(Yj , Xk) = δjk.

For a sufficiently small c 6= 0 consider ind(τ) + ν vector fields

v1, . . . , vind (τ), c
−1Y1 − cX1, . . . , c

−1Yν − cXν (4.18.8)

on the geodesic γ[0,τ+ε]. Consider the matrix of the quadratic form Qτ+ε in this basis. This
matrix has the form (

Qτ (vi, vj) cAij
cAji −δjk + c2Bjk

)
(4.18.9)

where
Aij = −δ2S

[
γ[0,τ+ε]

]
(vi, Xj),

Bjk = δ2S
[
γ[0,τ+ε]

]
(Xj , Xk).

As the matrix Qτ (vi, vj) is negative definite we conclude that the entire matrix (4.18.9) is
negative definite for c = 0. Therefore it remains negative definite also for sufficiently small c.

We have constructed a linear subspace of dimension ind(τ) + ν in Tγ[0,τ+ε]Ω spanned by

the vectors (4.18.8) such that the quadratic form δ2S
[
γ[0,τ+ε]

]
is negative definite on this

space. Hence
ind(τ + ε) ≥ ind(τ) + ν.

Comparing with (4.18.6) we prove the statement of the Lemma.

We have proved that the monotone increasing function ind(t) has a jump equal to
multγ(γ(0), γ(τ)) when the parameter t passes through a conjugate point t = τ ; it is continous
in other points. This completes the proof of Index Theorem.

Corollary 4.18.9 If a geodesic γ : [a, b]→M contains a pair of conjugate points inside the
interval (a, b) then it is not minimal.

We will now apply this condition of non-minimality to two-dimensional connected Rie-
mannian manifolds. Our goal is to prove the following
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Theorem 4.18.10 Let the Gaussian curvature of a two-dimensional Riemannian manifold
M2 satisfy the inequality

K(x) ≥ a2 > 0 ∀x ∈M2.

Then the distance between arbitrary points x, y ∈M2 satisfy

ρ(x, y) ≤ π

a
.

In particular, if M2 is geodesically complete then it is compact.

Proof: It suffices to prove that any geodesic of the length greater than π/a contains a
pair of conjugate points inside. To this and we will study zeroes of solutions to the Jacobi
equation represented as the system (4.17.23), (4.17.24). The first equation can be easily
solved, ϕ = c0t+ c1 for some constants c0, c1. To study zeroes of the second equation we will
use the following result from the theory of second order linear differential equations.

Lemma 4.18.11 (Sturm). Let the potential K(t) of the Sturm–Liouville equation

ψ̈ +K(t)ψ = 0 (4.18.10)

satisfy inequality
K(t) ≥ K0(t)

for some smooth function K0(t). Let χ(t) be a nontrivial solution to another Sturm–Liouville
equation

χ̈+K0(t)χ = 0 (4.18.11)

vanishing at the points t0 and t1. Then any solution to (4.18.10) must have a zero in the
interval (t0, t1).

Under assumptions of the theorem one can take K0(t) = a2. The equation (4.18.11)
reduces to χ̈ + a2χ = 0. Its solution χ = sin at has zeroes at t = 0 and t = π/a. Take a
nontrivial solution ψ(t) to eq. (4.17.24) vanishing at t = 0. According to Sturm lemma it must
have another zero ψ(t1) = 0, t1 ∈

(
0, πa

)
. So, if the length l of the geodesic γ : [0, l] → M2,

|γ̇| = 1 is greater than π/a then it contains a pair of conjugate points γ(0), γ(t1). Hence it is
not minimal. Compactness of a geodesically complete two-dimensional manifold with positive
Gaussian curvature easily follows from boundedness with the help of Corollary 4.9.24.

In a similar way one can prove the following

Theorem 4.18.12 Let M2 be a two-dimensional connected Riemannian manifold of negative
Gaussian curvature K ≤ 0. Then any geodesic contains no conjugate points. If, in addition,
M2 is geodesically complete and simply connected then it is diffeomorphic to R2.

We leave the proof of this theorem as an exercise for the reader (cf. also Examples 4.17.12
and 4.17.13 above).

178



4.19 Lie groups as Riemannian manifolds

We have already considered the class of linear vector fileds (see Example 1.3.13 above).
Namely, for any n× n matrix A the vector field TA on Rn reads

T iA(x) = −Aikxk

(note the sign change with respect to Example 1.3.13). The main property of such vector
fields is the following formula

[TA, TB] = T[A,B]. (4.19.1)

The dynamical system associated with a linear vector field TA is a system of linear differential
equations with constant coefficients

ẋi = −Aikxk, i = 1, . . . , n.

Its general solution is given by the matrix exponential

x(t) = e−A tx0. (4.19.2)

Example 4.19.1 Taking three linear vector fields in R3

Lx = z
∂

∂y
− y ∂

∂z
, Ly = x

∂

∂z
− z ∂

∂x
, Lz = y

∂

∂x
− x ∂

∂y
(4.19.3)

one obtains a closed Lie algebra

[Lx, Ly] = Lz, [Ly, Lz] = Lx, [Lz, Lx] = Ly (4.19.4)

isomorphic to the Lie algebra so(3) of 3× 3 antisymmetric matrices.

Let us now consider linear vector fields on the space Rn2 ' Mat(n,R) of n × n square
matrices. Namely, for any X ∈Mat(n,R) define

LX(A) = AX, A ∈Mat(n,R). (4.19.5)

Lemma 4.19.2 The linear vector fields (4.19.5) satisfy

[LX , LY ] = L[X,Y ]. (4.19.6)

We leave the proof as an exercise for the reader.

Linear vector fields (4.19.5) satisfy an important property of left invariance. Namely, for
a given matrix g ∈Mat(n,R) consider the left shift map Mat(n,R)→Mat(n,R)

A 7→ g A. (4.19.7)

Due to linearity the differential of this map coincides with the map itself. The action of the
differential on the field LX maps the field to itself

g LX(A) = LX(g A). (4.19.8)
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Remark 4.19.3 One can define in a similar way right-invariant vector fields

RX(A) = −XA. (4.19.9)

Like above one derives a formula for the commutator

[RX , RY ] = R[X,Y ]. (4.19.10)

These vector fields satisfy the right invariance property

RX(A)g = RX(Ag) for any g ∈Mat(n,R). (4.19.11)

Let us now consider a Lie group G ⊂ Mat(n,R). Denote g := TeG the tangent space at
the unity of the group.

Lemma 4.19.4 For any X ∈ g the left-invariant vector field LX is tangent to G.

Applying the result of Exercise 1.3.16 one obtains

Corollary 4.19.5 There is a natural Lie algebra structure on the tangent space g := TeG to
a Lie group G ⊂Mat(n,R) at unity.

For X ∈ g the exponential g(t) = etX ∈ G is a one-parameter subgroup, i.e.,

g(s+ t) = g(s)g(t), g(0) = e, g(−t) = g(t)−1. (4.19.12)

A connected Lie group is generated by its one-parameter subgroups.

Example 4.19.6 For the Lie group O(n) of n× n orthogonal matrices the Lie algebra coin-
cides with the space of n× n antisymmetric matrices. This space is usually denoted so(n).

For g ∈ G the left shift (4.19.7) is a diffeomorphism. Its differential maps isomorphically
the tangent space TeG = g to TgG. Therefore the left-invariant vector fields LX for X ∈ g
exhaust the tangent space at any point of the Lie group, i.e.,

TgG ' g for any g ∈ G (4.19.13)

as linear spaces.

Due to the isomorphism (4.19.13) any positive definite symmetric bilinear form 〈 , 〉g on
g defines a Riemannian metric on the Lie group G by the following rule

〈LX , LY 〉 |g = 〈X,Y 〉g for any g ∈ G and arbitrary X, Y ∈ g. (4.19.14)

Such a metric is called left-invariant metric on G. Alternatively the same bilinear form 〈 , 〉g
on g defines a right-invariant Riemannian metric on G by the formula

〈RX , RY 〉 |g = 〈X,Y 〉g for any g ∈ G and arbitrary X, Y ∈ g. (4.19.15)

In general the metrics (4.19.14) and (4.19.15) are different.
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Definition 4.19.7 A Riemannian metric on a Lie group G is called biinvariant if it is
invariant with respect to both left and right shifts.

Exercise 4.19.8 Prove that inner automorphisms Ad : G→ G

Adgh→ g h g−1

are isometries of a biinvariant metric on a Lie group.

Proposition 4.19.9 The metric (4.19.15) on a connected Lie group is biinvariant iff the
bilinear form 〈 , 〉g on g satisfies

〈[X,Y ], Z〉g = −〈X, [Y,Z]〉g for all X, Y, Z ∈ g. (4.19.16)

Proof: We have to check that the two metrics (4.19.14) and (4.19.15) coincide, i.e.,

〈g X, g Y 〉 = 〈X g, Y g〉 for any g ∈ G and arbitrary X, Y ∈ g.

It suffices to verify validity of this identity for g = et Z , Z ∈ g. Differentiating it in t at t = 0
one obtains

〈ZX, Y 〉+ 〈X,ZY 〉 = 〈X,Y Z〉+ 〈XZ, Y 〉.

In this equation X, Y , Z are considered as tangent vectors to G at the point e. This gives
(4.19.16). Conversely, from (4.19.16) it is easy to derive validity of

〈g(t)X, g(t)Y 〉 = 〈X g(t), Y g(t)〉

in all orders in t.

Definition 4.19.10 A symmetric bilinear form on a Lie algebra g is called invariant if it
satisfies (4.19.16).

Exercise 4.19.11 Let g = span (e1, . . . , en) be a finite-dimensional Lie algebra. Recall that
the structure constants ckij of the Lie algebra are defined as coordinates of the commutators
[ei, ej ] of the basic vectors with respect to the same basis

[ei, ej ] = ckijek, i, j = 1, . . . , n. (4.19.17)

Denote
gij = 〈ei, ej〉g (4.19.18)

the Gram matrix of a symmetric bilinear form and put

cijk = csijgsk. (4.19.19)

Prove that the bilinear form 〈 , 〉g is invariant iff the tensor cijk is antisymmetric with respect
to arbitrary permutation of indices.
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Let us construct an example of a biinvariant metric on the Lie group O(n) of orthogonal
n × n matrices. Let us first observe that a Euclidean inner product on the space Rn2

=
Mat(n,R) can be written in the form

〈X,Y 〉 = trXY T =

n∑
i, j=1

Xi
jY

i
j , X =

(
Xi
j

)
, Y =

(
Y i
j

)
. (4.19.20)

Here Y T is the transposed matrix. Observe that for orthogonal matrices X ∈ O(n) one has

〈X,X〉 = tr1 = n.

Thus, the orthogonal group O(n) ⊂Mat(n,R) belongs to the sphere Sn
2−1 of radius

√
n.

Proposition 4.19.12 The restriction of the Euclidean metric (4.19.20) onto the orthogonal
group O(n) is an invariant Riemannian metric.

Proof: It suffices to prove that, restricting the bilinear form (4.19.20) onto the space so(n)
of antisymmetric matrices is an invariant symmetric positive definite bilinear form on the Lie
algebra so(n). Indeed, for antisymmetric matrices

〈X,Y 〉 = −trXY.

Using invariance of trace with respect to permutations

trAB = trBA

one obtains

〈[X,Y ], Z〉 = −trXY Z + trY XZ = −trY ZX + trY XZ = trY [X,Z] = −〈Y, [X,Z]〉.

Exercise 4.19.13 Prove that the restriction of the Euclidean metric

〈X,Y 〉 = < trXY ∗ = <
n∑

i, j=1

Xi
j Ȳ

i
j , X =

(
Xi
j

)
, Y =

(
Y i
j

)
∈Mat(n,C) (4.19.21)

in R2n2
= Mat(n,C) onto the unitary group U(n) defines a biinvariant Riemannian metric

on U(n).

Remark 4.19.14 For any finite-dimensional Lie algebra g there is a natural invariant sym-
metric bilinear form

〈X,Y 〉 = tr (adX · adY ) (4.19.22)

called Killing form. Here the adjoint endomorphism

adX : g→ g

is a linear map defined by
adX(Y ) = [X,Y ].

Its invariance is an easy exercise. According to E.Cartan criterion the Killing form does not
degenerate iff the Lie algebra g is semisimple. The Killing form of a semisimple Lie algebra
is negative definite iff g is the Lie algerbra of a compact Lie group.
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Exercise 4.19.15 Prove that the Gram matrix of the Killing form in a basis e1, . . . , en is
expressed via the structure constants of the Lie algebra (see Exercise 4.19.11 above) as follows

〈ei, ej〉 = clikc
k
jl.

Exercise 4.19.16 Prove the following formulae for the Killing forms of some classical Lie
algebras

gl(n) : 〈X,Y 〉 = 2n trXY − 2 trX trY

sl(n) : 〈X,Y 〉 = 2n trXY

so(n) : 〈X,Y 〉 = (n− 2) trXY

su(n) : 〈X,Y 〉 = 2n trXY.

We define a connection on a Lie group G by the formula

∇LXLY :=
1

2
[LX , LY ]. (4.19.23)

Theorem 4.19.17 The connection (4.19.23) on a Lie group equipped with a biinvariant Rie-
mannian metric coincides with the Levi-Civita connection on G.

Proof: With the help of the formula (4.6.12) for the torsion tensor we easily prove that the
connection (4.19.23) is symmetric:

∇LXLY −∇LY LX − [LX , LY ] =
1

2
[LX , LY ]− 1

2
[LY , LX ]− [LX , LY ] = 0.

To prove compatibility with the metric it suffices to check that

∂LZ 〈LX , LY 〉 = 〈∇LZLX , LY 〉+ 〈LX ,∇LZLY 〉

for arbitrary X, Y , Z ∈ g. Indeed, the left hand side is equal to zero since the inner product
〈LX , LY 〉 is constant. Also the right hand side vanishes, indeed

〈∇LZLX , LY 〉+ 〈LX ,∇LZLY 〉 =
1

2
〈[LZ , LX ], LY 〉+

1

2
〈LX , [LZ , LY ]〉

=
1

2
〈[Z,X], Y 〉g +

1

2
〈X, [Z, Y ]〉g = 0

due to invariance of the bilinear form 〈 , 〉g.

Corollary 4.19.18 The curvature tensor of a biinvariant metric on a Lie group G is given
by one of the following two equivalent formulae

R(LX , LY )LZ = −1

4
L[[X,Y ],Z]

〈R(LX , LY )LZ , LW 〉 = −1

4
〈[X,Y ], [Z,W ]〉g.

We end this section with description of geodesics of a biinvariant metric.
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Theorem 4.19.19 One-parameter subgroups g(t) = etX , X ∈ g are geodesics of a biinvari-
ant metric on G.

Proof: The velocity vector ġ(t) of the one-parameter subgroup coincides with the vector field
LX . So

Lġ ġ = ∇LXLX =
1

2
L[X,X] = 0.

The statement of the Theorem is a motivation for the name “exponential map” used in
section 4.9.

4.20 Differential geometry of complex manifolds

Let us begin with reminding some basics of complex linear algebra. A n-dimensional complex
vector space V can be naturally identified with a real space VR of dimension 2n. If z1, . . . ,
zn are complex coordinates in V then their real and imaginary parts xk = < zk, yk = = zk
are coordinates in VR. Alternatively it is sometimes convenient to use the combinations

zk = xk + i yk, z̄k = xk − i yk, k = 1, . . . , n (4.20.1)

as complex-valued coordinates in VR. (Here and below i =
√
−1.) Clearly such a change of

coordinates is invertible

xk =
zk + z̄k

2
, yk =

zk − z̄k

2i
. (4.20.2)

Any linear operator A ∈ EndC(V ) will automatically be a linear operator in EndR(V ).
The linear operator of multiplication by i

J : V → V, Jξ = i ξ (4.20.3)

is of particular importance. The matrix of this operator in the coordinates x1, . . . , xn, y1, . . . , yn

is equal to

J =

(
0 −1
1 0

)
(4.20.4)

(we will often identify the operator J with its matrix).

Definition 4.20.1 A R-bilinear form ( , ) on VR is called Hermitian if it satisfies the fol-
lowing properties

(λx, y) = λ(x, y), (x, λ y) = λ̄(x, y) ∀x, y,∈ V, ∀λ ∈ C (4.20.5)

(y, x) = (x, y), ∀x, y ∈ V. (4.20.6)

A Hermitian form is called positive definite if it also satisfies

(x, x) > 0 for any x 6= 0. (4.20.7)
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In a basis e1, . . . , en an analogue of the Gram matrix is defined

hkl̄ = (ek, el). (4.20.8)

The value of the Hermitian form on a pair of vectors z = zkek, w = wlel can be computed
by the following formula

(z, w) = hkl̄z
kw̄l. (4.20.9)

The matrix

H =


h11̄ . . . h1n̄

h21̄ . . . h2n̄

. . . . .

. . . . .
hn1̄ . . . hnn̄


satisfies the property of Hermitian symmetry

HT = H̄. (4.20.10)

Remark 4.20.2 The following notation

A∗ := ĀT (4.20.11)

is used for Hermitian conjugation of a matrix. Thus, the Hermitian symmetry property
(4.20.10) can be written as H∗ = H.

Any complex Hermitian symmetric matrix H defines a Hermitian form on Cn. Such a
Hermitian form is positive definite iff all principal minors of H are positive (observe that the
principal minors of a Hermitian symmetric matrix are all real).

With a Hermitian form (x, y) one can associate two real bilinear forms taking real and
imaginary parts <(x, y) and =(x, y). Clearly <(x, y) is a symmetric bilinear form while
=(x, y) is an antisymmetric bilinear form

<(y, x) = <(x, y), =(y, x) = −=(x, y).

One of this forms determines another one, in particular,

Lemma 4.20.3 The real and imaginary parts of a Hermitean form satisfy

<(x, y) = =(J x, y). (4.20.12)

Here J is the operator of multiplication by i.

Proof: Due to complex linearity with respect to the first argument one has

<(i x, y) + i=(i x, y) = i [<(x, y) + i=(x, y)] .

This implies
<(x, y) = =(J x, y), =(x, y) = −<(J x, y).
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Corollary 4.20.4 Real and imaginary parts of a positive definite Hermitian forms are a
positive definite symmetric bilinear form <(x, y) and a nondegenerate antisymmetric bilinear
form =(x, y).

Proof: The first part of the statement is obvious. To prove the second one one has to check
that, if =(x, y) = 0 for any y then x = 0. Indeed, if =(x, y) = 0 then <(J x, y) = 0. Choosing
y = J x one obtains <(J x, J x) = 0 hence J x = 0. So x = 0.

Example 4.20.5 Taking H = 1 one obtains the following Hermitian form

(z1, z2) =

n∑
k=1

zk1 z̄
k
2 . (4.20.13)

In the real coordinates zk1 = xk1 + iyk1 , zk2 = xk2 + iyk2 the real and imaginary parts of the
Hermitian form read

<(z1, z2) =

n∑
k=1

(
xk1x

k
2 + yk1y

k
2

)
, =(z1, z2) = −

n∑
k=1

(
xk1y

k
2 − xk2yk1

)
. (4.20.14)

A linear operator A : V → V acting on a complex linear space equipped with a positive
definite Hermitian form ( , ) is called unitary if

(Ax,Ay) = (x, y) ∀x, y ∈ V. (4.20.15)

The matrix of a unitary operator satisfies

A∗H A = H. (4.20.16)

In the particular case H = 1 one obtains definition of unitary matrices

A∗A = 1. (4.20.17)

Example 4.20.6 A unitary matrix of order 1 is just a complex number of modulus one,
a = ei φ. Any unitary matrix of order 2 has the form(

a −eiφb̄
b eiφā

)
, |a|2 + |b|2 = 1.

Exercise 4.20.7 For any unitary matrix A prove

|detA| = 1. (4.20.18)

The subspace of complex linear operators EndC(V ) ⊂ EndR(V ) can be identified with
the centralizer of J . In the simplest case of dimension 1 matrices of complex linear operators
have the form

A =

(
a −b
b a

)
, a, b ∈ R. (4.20.19)
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In the coordinates z, z̄ the matrix becomes diagonal

A→
(
λ 0
0 λ̄

)
, λ = a+ ib. (4.20.20)

A smooth complex valued function f(x, y) = u(x, y)+ iv(x, y) can be considered as a map
C→ C. The function is called holomorphic11 if its differential

df = fxdx+ fydy = uxdx+ uydy + i (vxdx+ vydy)

is a complex linear map. In other words, the Jacobi matrix(
ux uy
vx vy

)
(4.20.21)

of the map R2 → R2 must have the form (4.20.19), that is, the Cauchy–Riemann equations

ux = vy, vx = −uy (4.20.22)

hold true. Representing the differential in complex coordinates

df = fzdz + fz̄dz̄, fz :=
1

2
(fx − ify) , fz̄ :=

1

2
(fx + ify) (4.20.23)

one rewrites the Cauchy–Riemann equations for the function f in the form

fz̄ = 0. (4.20.24)

One can say that holomorphic functions f are those that do not depend on z̄. They are
usually written as f = f(z).

Exercise 4.20.8 Prove that the determinant of the Jacobi matrix (4.20.21) of a holomorphic
function f(z) is given by the formula

det

(
ux uy
vx vy

)
=

∣∣∣∣∂f∂z
∣∣∣∣2 . (4.20.25)

In a similar way a smooth function f : Cn → C is holomorphic if it satisfies a system of
Cauchy–Riemann equations with respect to every coordinate zk = xk + iyk

∂f

∂z̄k
= 0, k = 1, . . . , n. (4.20.26)

Here the operators ∂/∂zk and ∂/∂z̄k are defined like in (4.20.23)

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
,

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
. (4.20.27)

11One of the first result of complex analysis says that holomorphic functions can be represented as sums of
convergent power series. Because of this they are often called complex analytic functions.
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Finally, a smooth map f : U → Cm of a domain U ⊂ Cn is holomorphic if, for its coordinate
representation

z =
(
z1, . . . , zn

)
7→
(
w1(z), . . . , wm(z)

)
the Cauchy–Riemann equations hold true for every component

∂wj

∂z̄k
= 0, k = 1, . . . , n, j = 1, . . . ,m.

We are ready to define a class of complex analytic manifolds.

Definition 4.20.9 A complex analytic manifold of complex dimension n is a smooth 2n-
dimensional manifold M equipped with an atlas (Uα, ϕα)α∈I ,

ϕα : Uα → ϕα(Uα) ⊂ Cn = R2n

such that, on the intersections Uα∩Uβ 6= ∅ the transition functions ϕβ ◦ϕ−1
α are holomorphic.

We will denote z1
α, . . . , znα complex coordinates on the chart Uα. On the intersections

Uα ∩ Uβ one has holomorphic transition functions zjβ
(
z1
α, . . . , z

n
α

)
,

∂zjβ
∂z̄kα

= 0, j, k = 1, . . . , n.

Observe that the Jacobian of the transition functions is always positive

det

(
∂zα
∂zβ

∂zα
∂z̄β

∂z̄α
∂zβ

∂z̄α
∂z̄β

)
=

∣∣∣∣det

(
∂zα
∂zβ

)∣∣∣∣2 > 0 (4.20.28)

(cf. Exercise 4.20.8). So, any complex manifold has a natural orientation.

The real and imaginary parts of zk = xk + iyk will be used as local coordinates on M
considered as a real manifold MR. It will also be convenient to use complex combinations

zk = xk + iyk, z̄k = xk − iyk

as coordinates on MR. In this way, instead of using the vector fields

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

as a basis in the tangent space to M one can use their complex combinations (4.20.27). Any
tangent vector ξ ∈ TPM at a point P ∈M can be decomposed as

ξ = ξ1 ∂

∂z1
+ · · ·+ ξn

∂

∂zn
+ ξ1̄ ∂

∂z̄1
+ · · ·+ ξn̄

∂

∂z̄n
= ξk

∂

∂zk
+ ξk̄

∂

∂z̄k
. (4.20.29)

The complex coordinates ξk, ξk̄ satisfy

ξk̄ = ξk, k = 1, . . . , n. (4.20.30)
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Forgetting about the constraint (4.20.30) one obtains a vector ξ in the complexified tangent
space ξ ∈ CTPM . It is a complex vector space of complex dimension 2n. It is naturally
decomposed into a sum of two complex n-dimensional subspaces

CTPM = T 1,0
P M⊕T 0,1

P M, T 1,0
P M = span

{
∂

∂z1
, . . . ,

∂

∂zn

}
, T 0,1

P M = span

{
∂

∂z̄1
, . . . ,

∂

∂z̄n

}
.

(4.20.31)
The decomposition (4.20.31) is invariant with respect to changes of local coordinates.

A complex antilinear map

σ : CTPM → CTPM, σ (λ ξ) = λ̄σ(ξ) (4.20.32)

defined by

σ

(
∂

∂zk

)
=

∂

∂z̄k
, σ

(
∂

∂z̄k

)
=

∂

∂zk
, k = 1, . . . , n (4.20.33)

permutes the subspaces T 1,0 and T 0,1. Clearly σ is an involution, σ2 = id. The subspace of
σ-invariant vectors, σ(ξ) = ξ, coincides with the (real) 2n-dimensional tangent space TPM .

Example 4.20.10 Complex vector space Cn is an example of a n-dimensional complex man-
ifold. It is covered with one chart with complex coordinates z1, . . . , zn. Same is true for any
domain in Cn.

Example 4.20.11 Complex projective space CPn is defined as a quotient of Cn+1 \{0} over
complex rescalings

CPn =
{
Z =

(
Z0, Z1, . . . , Zn

)
∈ Cn+1 \ {0}

}
/{Z ∼ λZ, λ ∈ C \ {0}}. (4.20.34)

It can be covered by (n+ 1) charts U0, U1, . . . , Un

Uk =
{
Z =

(
Z0, Z1, . . . , Zn

)
∈ Cn+1 |Zk 6= 0

}
. (4.20.35)

The local coordinates on the chart Uk are defined as follows

(
z1
k, . . . , z

n
k

)
=

(
Z0

Zk
, . . . ,

Ẑk

Zk
, . . . ,

Zn

Zk

)
(4.20.36)

(the k-th term Zk

Zk
= 1 is omitted). On the intersection Uk ∩ Ul one has

(
z1
l , . . . , z

n
l

)
=
Zk

Z l
(
z1
k, . . . , z

n
k

)
.

It is easy to express the ratio Zk/Z l of two non-zero homogeneous coordinates as a holomor-
phic function of local coordinates. For example, for k < l one has

Zk

Z l
= zk+1

l =
1

zlk
.
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In the simplest example n = 1 one has two charts U0 and U1 on CP 1. Any of these two
coincides with the complex plane C. Denote z the local coordinate on U0 and w the local
coordinate on U1. On the intersection z 6= 0, w 6= 0 the transition function reads

w =
1

z
or z =

1

w
.

Actually, there is only one point in CP 1 not belonging to the chart U0, namely, the point
w = 0 in U1. When w tends to 0 the coordinate z tends to infinity. So, CP 1 can be identified
with the complex plane with one infinite point added

CP 1 = C ∪ {∞}. (4.20.37)

Topologically it is a two-dimensional sphere S2. Because of this the complex projective line
CP 1 is often called Riemann sphere.

Let M be a complex analytic manifold of complex dimension n. We will consider a
particular subclass of Riemannian metrics on such a manifold considered as a smooth 2n-
dimensional real manifold MR.

Definition 4.20.12 We say that a Riemannian metric on MR is compatible with the complex
structure on M if the operator J of multiplication by i is orthogonal,

〈Jξ1, Jξ2〉 = 〈ξ1, ξ2〉 ∀ ξ1, ξ2 ∈ TPMR (4.20.38)

for any point P in the manifold.

Definition 4.20.13 A Hermitian metric on M is a C-bilinear pairing

T 1,0
P M × T 0,1

P M → C, ξ, η 7→ (ξ, η) (4.20.39)

smoothly depending on the point P ∈M such that

(ξ1, σ(ξ2)) = (ξ2, σ(ξ1)) ∀ ξ1, ξ2 ∈ T 1,0
P M (4.20.40)

and
(ξ, ξ) > 0 for any 0 6= ξ ∈ TPM (4.20.41)

Hermitian form on the tangent space TPM at every point

5 Symplectic manifolds. Poisson manifolds

5.1 Basic definitions. Poisson brackets

Definition 5.1.1 A symplectic structure on a manifold M is a nondegenerate closed differ-
ential 2-form

ω =
∑
i<j

ωij(x)dxi ∧ dxj , ωji(x) = −ωij(x)

dω = 0, det (ωij(x)) 6= 0 ∀ x ∈M. (5.1.1)
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Clearly the dimension of M must be even; in this section it will usualy be denoted 2n. The
(0,2)-tensor ωij(x) defines an antisymmetric bilinear form on the tangent spaces

〈X,Y 〉 = ωij(x)XiY j , i, j ∈ TxM (5.1.2)

〈Y,X〉 = −〈X,Y 〉.

Nondegenerateness of ω means that

if 〈X,Y 〉 = 0 ∀ Y ∈ TxM then X = 0.

Recall that the condition of closedness of the 2-form reads as follows

dω = 0 ⇔ ∂ωij
∂xk

+
∂ωki
∂xj

+
∂ωjk
∂xi

= 0 for all i, j, k = 1, . . . , 2n. (5.1.3)

Example 5.1.2 Consider Euclidean space R2n with the coordinates (q1, . . . , qn, p1, . . . , pn)
equipped with the 2-form

ω =

n∑
i=1

dpi ∧ dqi.

The constant matrix of this 2-form has consists of four n× n blocks(
0 −1
1 0

)
=: J. (5.1.4)

This is the standard phase space of classical mechanics. We will often use short notations
q =

(
q1, . . . , qn

)
, p = (p1, . . . , pn),

dp ∧ dq =

n∑
i=1

dpi ∧ dqi.

More generally, one can consider a 2n-dimensional linear space W equipped with a non-
degenerate antisymmetric bilinear form ω(X,Y ). We will call (W,ω) a symplectic space. As
it is well known from linear algebra for an arbitrary nondegenerate antisymmetric bilinear
form there exists a basis e1, . . . , en, f1, . . . , fn in the space W such that

ω(ei, ej) = ω(f i, f j) = 0, ω(ei, f
j) = −δji .

In this basis the matrix of the bilinear form has the standard form (5.1.4).

Example 5.1.3 Let Qn be a smooth manifold. Consider the total space of cotangent bundle

M2n = T ∗Q.

This is a smooth manifold of the dimension 2n with local coordinates q1, . . . , qn, p1, . . . , pn.
Here q1, . . . , qn are local coordinates on the base Qn while the coordinates p1, . . . , pn on the
fiber T ∗1Q over a point q ∈ Qn are defined as follows

pi(ξ) = ξi if ξ = ξ1dq
1 + · · ·+ ξndq

n.
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Let us prove that the 1-form
α = p1dq

1 + · · ·+ pndq
n (5.1.5)

does not depend on the choice of local coordinates q1, . . . , qn on Qn. For a given a change
of coordinates

qi 7→ qi
′

= qi
′ (
q1, . . . , qn

)
the components of a covector ξ transform as follows

ξi′ =
∂qi

∂qi′
ξi

(the (0,1)-tensor law). Thus one has the following linear change of the p-coordinates on T ∗Q

pi′ =
∂qi

∂qi′
pi.

So,

pi′dq
i′ =

∂qi

∂qi′
pi
∂qi
′

∂qk
dqk = pidq

i.

The differential dα of the 1-form is a well-defined 2-form on T ∗Q,

ω = dα =
n∑
i=1

dpi ∧ dqi. (5.1.6)

It defines on T ∗Q a structure of symplectic manifold.

We will now define Poisson bracket on a symplectic manifold. Denote
(
ωij(x)

)
the inverse

matrix to (ωij(x)). Like in the case of inverse of a Riemannian metric, this is a (2,0)-tensor
on M2n, i.e., an antisymmetric bilinear form on the cotangent space T ∗xM

2n. Evaluating this
bilinear form on a pair of differentials df , dg, f, g ∈ C∞(M) defines a new function denoted
by

{f, g} := ωij(x)
∂f

∂xi
∂g

∂xj
∈ C∞(M). (5.1.7)

It is called the Poisson bracket of the functions f and g.

For the symplectic manifold of Example 5.1.2 one arrives at the well known formula for
the Poisson bracket used in classical mechanics

{f, g} =
n∑
i=1

∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (5.1.8)

Same formula holds true also for the Poisson bracket of functions on the cotangent bundle
T ∗Q (see Example 5.1.3 above).

Theorem 5.1.4 The pairing

C∞(M)× C∞(M)→ C∞(M), f, g 7→ {f, g}

defines on C∞(M) a structure of Lie algebra satisfying the following Leibnitz rule

{f g, h} = f{g, h}+ g{f, h} ∀ f, g, h ∈ C∞(M). (5.1.9)
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We have to prove that the Posson bracket is an antisymmetric bilinear operation satisfying
Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 ∀ f, g, h ∈ C∞(M). (5.1.10)

Bilinearity and antisymmetry, as well as the Leibnitz rule (5.1.9) are obvious. In order
to prove validity of the Jacobi identity we will address the following question: given an
antisymmetric (2,0)-tensor πij(x) on a manifold M , under what conditions the formula

{f, g} := πij(x)
∂f

∂xi
∂g

∂xj
(5.1.11)

defines on the space of functions C∞(M) a structure of Lie algebra12? Observe that the
brackets of the coordinate function coincide with the components of the bivector

{xi, xj} = πij(x). (5.1.12)

Lemma 5.1.5 Denote

Π(f, g, h) := {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} ∈ C∞(M).

the lhs of the Jacobi identity. Then, in local coordinates the following formula holds true

Π(f, g, h)(x) =
∂f

∂xi
∂g

∂xj
∂h

∂xk
Π(xi, xj , xk).

The proof is by a straightforward computation.

Corollary 5.1.6 The Jacobi identity for the bracket (5.1.11) holds true iff{
{xi, xj}, xk

}
+
{
{xk, xi}, xj

}
+
{
{xj , xk}, xi

}
≡ ∂πij

∂xs
πsk+

∂πki

∂xs
πsj+

∂πjk

∂xs
πsi = 0 (5.1.13)

∀ i, j, k = 1, . . . ,dimM .

Exercise 5.1.7 1) For a symplectic manifold
(
M2n, ω

)
the bivector πij(x) = ωij(x) where(

ωij(x)
)

= (ωij(x))−1 satisfies the equations of Corollary 5.1.6

∂πij

∂xs
πsk +

∂πki

∂xs
πsj +

∂πjk

∂xs
πsi = 0 ∀ i, j, k = 1, . . . , 2n. (5.1.14)

2) Prove that a nondegenerate (2,0)-tensor πij(x) satisfies the Jacobi identity (5.1.13) iff

the 2-form ω =
∑

i<j ωij(x)dxi ∧ dxj where (ωij(x)) =
(
πij(x)

)−1
is closed.

One can say that, for a nondegenerate antisymmetric matrix of functions πij(x) the

inversion map
(
πij(x)

)
7→
(
πij(x)

)−1
linearizes the nonlinear equations (5.1.14) (see eqs.

(5.1.3) above).

Motivating by the previous discussion we introduce

12Needless to say that the Leibnitz rule (5.1.9) for the bracket (5.1.11) holds true automatically.
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Definition 5.1.8 A Poisson structure on a manifold M is a structure of a Lie algebra on
the space of functions C∞(M) satisfying the Leibnitz rule (5.1.9). A manifold M equipped
with a Poisson structure is called Poisson manifold.

Exercise 5.1.9 Prove that a Poisson structure on an arbitrary Poisson manifold has the
form (5.1.11) for some bivector πij(x).

Due to the previous results any symplectic manifold
(
M2n, ω

)
is a Poisson manifold. It

satisfies the non-degeneracy condition:

{f, g} = 0 ∀ g ∈ C∞(M) ⇒ f is (locally) constant. (5.1.15)

Exercise 5.1.10 Prove that any Poisson manifold satisfying the nondegeneracy condition is
a symplectic manifold.

A simple class of examples of Poisson manifolds can be obtained taking an arbitrary
antisymmetric constant matrix πij in the formula (5.1.11) for the Poisson bracket. We will
now introduce another important class of examples.

Example 5.1.11 Let g be a Lie algebra of dimension n. Denote M = g∗ the dual space.
Choose a basis e1, . . . , en in g. Commutators of the basic elements can be represented as
linear combinations of themselves [

ei, ej
]

= cijk e
k. (5.1.16)

The coefficients cijk of the linear combinations are called structure constants of the Lie algebra.

Every vector in g defines a linear function on the dual space g∗ = M . In this way the
basis in g defines a system of coordinates on the dual space. Denote x1, . . . , xn this system
of coordinates. The Poisson bracket on M = g∗ is defined by the following formula

{xi, xj} = cijk x
k. (5.1.17)

Thus, the components of the bivector πij(x) = cijk x
k depend linearly on the coordinates.

Exercise 5.1.12 Prove that any Poisson manifold equipped with a Poisson bracket M de-
pending linearly on the coordinates is isomorphic to g∗ for some finite-dimensional Lie algebra
g.

Hint: observe that linear functions on M form a closed Lie algebra wrt the Poisson
bracket.

Example 5.1.13 Choosing a standard basis in the Lie algebra so(3) one obtains a 3-dimensional
Poisson manifold with coordinates x, y, z with Poisson brackets

{x, y} = z, {y, z} = x, {z, x} = y. (5.1.18)

194



Example 5.1.14 For linear inhomogeneous Poisson brackets

{xi, xj} = cijk x
k + cij0 (5.1.19)

the constant coefficients cijk are still structure constants of a Lie algebra g while the constants

cij0 correspond to a 2-cocycle on the Lie algebra, cij0 = c0

(
ei, ej

)
, i.e., a bilinear antisymmetric

form on g satisfying
c0([a, b], c) + c0([c, a], b) + c0([b, c], a) = 0

for arbitrary three vectors a, b, c in g. The 2-cocycle is called trivial if there exists a linear
function ` on g such that

c0(a, b) = ` ([a, b]) ∀ a, b ∈ g.

(Prove that the above formula defines a 2-cocycle for an arbitrary linear function `.) A trivial
2-cocycle in (5.1.19) can be killed by the shift

xi 7→ xi + `
(
ei
)
.

We will now introduce an important class of Hamiltonian vector fields on a Poisson
manifold (M,π) (and, therefore, on any symplectic manifold (M,ω)).

Definition 5.1.15 The vector field XH with the components

Xi
H(x) = πij(x)

∂H(x)

∂xj
(5.1.20)

is called the Hamiltonian vector field generated by the Hamiltonian H ∈ C∞(M). Equivalently,
the first order linear differential operator associated with the Hamiltonian vector field XH acts
on an arbitrary smooth function f ∈ C∞(M) by

XHf = {f,H}. (5.1.21)

Observe that the dynamical system associated with the Hamiltonian vector field XH can
be written in the following form

ẋi = {xi, H(x)}, i = 1, . . . ,dimM. (5.1.22)

It will be called the Hamiltonian system generated by the Hamiltonian H.

Example 5.1.16 For the standard phase space R2n of classical mechanics the Hamiltonian
system coincides with the canonical Hamiltonian equations of motion

q̇i =
∂H

∂pi
(5.1.23)

ṗi = −∂H
∂qi

i = 1, . . . , n with the Hamiltonian H = H(q, p).
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Remark 5.1.17 In order to treat Hamiltonian systems with time-dependent Hamiltonians
H = H(q, p, t) it is convenient to introduce extended phase space R2n+2 with the coordinates
(q, p, t, E) with the symplectic structure

ω̂ = dp ∧ dq − dE ∧ dt. (5.1.24)

Modify the Hamiltonian:
Ĥ = H − E.

Then the Hamiltonian system reads

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

ṫ = 1

Ė =
∂H

∂t
.

On the level surface Ĥ = 0 invariant wrt the Hamiltonian flow (see below) one obtains the
equations of motion along with the identity

d

dt
H(q(t), p(t), t) =

∂H(q, p, t)

∂t

well known in classical mechanics.

Example 5.1.18 A Hamiltonian system on the dual space to the Lie algebra so(3) (see
Example 5.1.13 above) reads

ẋ = {x,H} = z
∂H

∂y
− y∂H

∂z

ẏ = {y,H} = x
∂H

∂z
− z ∂H

∂x

ż = {z,H} = y
∂H

∂x
− x∂H

∂y

or, in vector form
ṙ = ∇H × r, r = (x, y, z).

In the particular case of a quadratic Hamiltonian H = 1
2

(
a x2 + b y2 + c z2

)
one obtains the

Euler equations of free motion of a rotated rigid body

ẋ = (b− c)y z
ẏ = (c− a)z x

ż = (a− b)x y.

We finish this section with the following useful statement about Hamiltonian vector fields
on symplectic manifolds.
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Lemma 5.1.19 Let Y be a vector field on a symplectic manifold (M,ω). Then for any
function f on M the following formula holds true

Y f = ω(Y,Xf ). (5.1.25)

Proof: We have

Y f = Y k ∂f

∂xk
= Y kδsk

∂f

∂xs
= Y kωkjω

js ∂f

∂xs
= ωkjY

kXj
f = ω(Y,Xf ).

5.2 Poisson symmetries. Hamiltonian flows as symplectomorphisms

Let (M1, π1), (M2, π2) be two Poisson manifolds.

Definition 5.2.1 1) A smooth map F : M1 → M2 is called a Poisson morphism if the
pull-back F ∗ : C∞(M2)→ C∞(M1) is a homomorphism of Lie algebras

{F ∗f, F ∗g}M1
= {f, g}M2 ∀ f, g ∈ C∞(M2).

2) A diffeomorphism F : M →M of a Poisson manifold (M,π) to itself that is a Poisson
morphism is called Poisson symmetry.

Consider also the infinitesimal version of Poisson symmetries.

Definition 5.2.2 A vector field X ∈ V ect(M) on a Poisson manifold (M,π) is called in-
finitesimal symmetry of the Poisson structure if

X{f, g} = {Xf, g}+ {f,Xg} ∀ f, g ∈ C∞(M). (5.2.1)

Proposition 5.2.3 A vector field Xi is an infinitesimal symmetry of the Poisson structure
πij on M iff

LieXπ
ij ≡ Xk ∂π

ij

∂xk
− ∂Xi

∂xk
πkj − πik ∂X

j

∂xk
= 0 ∀ i, j = 1, . . . ,dimM. (5.2.2)

The proof is straightforward.

The name “infinitesimal symmetry” is motivated by the following

Proposition 5.2.4 Let X ∈ V ect(M) be an infinitesimal symmetry on a Poisson manifold
(M,π). Denote gt : M → M the one-parameter group of diffeomorphisms generated by the
vector field X, |t| < ε for some ε > 0. Then gt is a Poisson symmetry of (M,π).
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Proof: For any x = (x1, . . . , xn) ∈M one has

[gt(x)]i = xi + tXi(x) +O(t2).

So, for any f ∈ C∞(M) we have

g∗t f(x) = f(x) + tXf(x) +O(t2).

Hence, for a pair of smooth functions one obtains

{g∗t f1, g
∗
t f2} = {f1 + tXf1, f2 +Xf2}+O(t2) = {f1, f2}+ t [{f1, Xf2}+ {Xf1, f2}] +O(t2)

= {f1, f2}+ tX{f1, f2}+O(t2) = g∗t {f1, f2}.

Theorem 5.2.5 Any Hamiltonian vector field XH , H ∈ C∞(M) on a Poisson manifold
(M,π) is an infinitesimal symmetry of the Poisson structure π.

Proof: Using XHf = {f,H}, XHg = {g,H} (see eq. (5.1.21) above) along with Jacobi
identity we obtain

XH{f, g} = {{f, g}, H} = −{{H, f}, g} − {{g,H}, f} = {XHf, g}+ {f,XHg}.

Corollary 5.2.6 The one-parameter group of diffeomorphisms gt generated by a Hamiltonian
vector field XH on a Poisson manifold (M,π) consists of Poisson symmetries of (M,π).

Consider the particular case of Hamiltonian vector fields on a symplectic manifold (M,ω).

Corollary 5.2.7 For any Hamiltonian vector field XH , H ∈ C∞(M) on a symplectic mani-
fold (M,ω) one has

LieXHω = 0. (5.2.3)

Proof: The identity operator id : TxM → TxM is constant along any vector field X:
LieXδ

i
j = 0. Differentiating the equation

δij = ωikωkj

along XH and using LieXHω
ik = 0 one derives that also LieXHωkj = 0.

We will now consider a symplectic analogue of Poisson symmetries.

Definition 5.2.8 Let F : M1 → M2 be a diffeomorphism of two symplectic manifolds
(M1, ω1) and (M2, ω2). It is called symplectomorphism if F ∗ω2 = ω1.
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For a Hamiltonian vector field XH on (M,ω) denote gt : M → M the one-parameter
(local) group of diffeomorphisms generated by XH . Recall that gt acts by shifts along trajec-
tories of the Hamiltonian system

ẋ = {x,H}

by the time t for sufficiently small |t|. It will also be called the Hamiltonian flow generated
by the Hamiltonian H.

Theorem 5.2.9 For an arbitrary Hamiltonian H on a symplectic manifold (M,ω) the cor-
responding Hamiltonian flow gt defines a (local) one-parameter group of symplectomorphisms
gt : M →M ,

g∗t ω = ω.

Proof: This immediately follows from Corollary 5.2.7.

Remarkably, on a symplectic manifold locally also the converse statement holds true.

Theorem 5.2.10 Let gt : M → M be a one-parameter group of symplectomorphisms of the
symplectic manifold (M,ω). Denote

X =
d

dt
gt(x)|t=0

the velocity vector field of gt. Then locally there exists a function H such that X = XH .

Proof: From the equations

0 = LieXωij = Xk ∂ωij
∂xk

+
∂Xk

∂xi
ωkj + ωik

∂Xk

∂xj

it follows that the 1-form
ξ := ξidx

i where ξi = ωikX
k

is closed, dξ = 0. Indeed,

∂ξi
∂xj
− ∂ξj
∂xi

=

(
∂ωik
∂xj

−
∂ωjk
∂xi

)
Xk + ωik

∂Xk

∂xj
+
∂Xk

∂xi
ωkj = LieXωij

where we use the closedness condition (5.1.3) to replace the two terms in the parenthesis
with ∂ωij/∂x

k. So, due to Poincaré Lemma it locally exists a function H such that ξ = dH.
Raising the index by the inverse matrix ωks one obtains X = XH .

It is easy to see that the obstruction to the global existence of the Hamiltonian H is in the
cohomology H1(M,R). See more details below in the discussion of the Poisson cohomology.

Exercise 5.2.11 Let gt : Q → Q be a one-parameter group of diffeomorphisms of a n-
dimensional manifold Q generated by a vector field X ∈ V ect(Q). Define a lift of this group
onto the total space of the cotangent bundle by

Gt : T ∗Q→ T ∗Q, Gt(x, ξ) =
(
gt(x), g∗−tξ

)
.
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1) Prove that Gt is a one-parameter group of symplectomorphisms of T ∗Q.

2) Prove that this flow is generated by the Hamiltonian

H(x, p) = piX
i(x).

On a 2n-dimensional symplectic manifold (M,ω) there is a natural volume element

V olM =
1

n!
ω ∧ ω ∧ · · · ∧ ω (n factors). (5.2.4)

It is easy to see that the 2n-form (5.2.4) never vanishes. Therefore we arrive at

Proposition 5.2.12 Any symplectic manifold has a natural orientation.

Exercise 5.2.13 On the standard 2n-dimensional symplectic space R2n with the symplectic
structure ω =

∑
dp1 ∧ dqi the volume element (5.2.4) takes the form

V olR2n = dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpn ∧ dqn.

From Theorem 5.2.9 it follows

Corollary 5.2.14 (Liouville theorem) Any Hamiltonian flow on a symplectic manifold is
volume preserving.

Proof: Using Leibnitz rule for Lie derivatives one obtains

LieXHV olM =
1

n!
LieXHω ∧ ω ∧ · · · ∧ ω + · · ·+ 1

n!
ω ∧ ω ∧ · · · ∧ LieXHω = 0.

Remark 5.2.15 For a nondegenerate antisymmetric 2n × 2n matrix (ωij) consider the 2-
form

ω =
∑
i<j

ωijdx
i ∧ dxj

on the space R2n with coordinates x1, . . . , x2n. The corresponding volume element (5.2.4)
can be represented as follows

1

n!
ω ∧ · · · ∧ ω = Pf(ω)dx1 ∧ · · · ∧ dx2n (5.2.5)

where Pf(ω) is a polynomial in the entries of the matrix ωij. Such a polynomial is called
Pfaffian of the antisymmetric matrix. For example,

Pf

(
0 a
−a 0

)
= a

Pf


0 a1 a2 a3

−a1 0 b3 −b2
−a2 −b3 0 b1
−a3 b2 −b1 0

 = a1b1 + a2b2 + a3b3

(prove it!).
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Exercise 5.2.16 Prove that
[Pf(ω)]2 = det(ω). (5.2.6)

Exercise 5.2.17 Prove that under a change of a basis in R2n, ω 7→ ω′ = ATωA for A ∈
GL(2n,R) the Pfaffian transforms as follows

Pf
(
ATωA

)
= detA · Pf(ω).

Let us consider Hamiltonian vector fields on the dual space M = g∗ to a n-dimensional
Lie algebra g (see Example 5.1.11 above). More specifically, consider linear Hamiltonians

Ha = aix
i

for some constant coefficients a1, . . . , an. The corresponding Hamiltonian vector field XHa

will be denoted Xa. It is a linear vector field

Xi
a(x) = cijk ajx

k, i = 1, . . . , n

associated with the matrix

Aik(a) = cijk aj , i.e. Xi
a(x) = Aik(a)xk. (5.2.7)

Consider now the following element of the Lie algebra

a = aie
i ∈ g.

It defines a linear operator
ada : g→ g, ada(b) = [b, a]

(the so-called adjoint action of the Lie algebra on itself). In coordinates one has

(ada(b))k = cijk biaj = Aik(a)bi (5.2.8)

where the matrix Aik(a) is as above. Observe that in eq. (5.2.7) one has summation wrt the
lower index k of the matrix Aik(a) while in eq. (5.2.8) it appears the same matrix but the
summation is taken with respect to the upper index i. Therefore one can write eq. (5.2.7) as

Xa(x) = ad∗a(x) (5.2.9)

where
ad∗a : g∗ → g∗

is the adjoint operator to ada.

Recall that the adjoint action of the Lie algebra g can be identified with the differential
of the adjoint action of the corresponding Lie group G

Adg : g→ g, b 7→ g b g−1, g ∈ G, b ∈ g (5.2.10)

where the Lie algebra is identified with the tangent space TeG. So, for a one-parameter
subgroup

g(t) = et a ∈ G
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one has
Adg(t)b = b+ t ada(b) +O(t2).

Therefore the linear Hamiltonian Ha(x) = aix
i generate the coadjoint action Ad∗g(t) of the

Lie group G on the dual space g∗ to the Lie algebra.

Taking an arbitrary vector a ∈ g we obtain the coadjoint action of an arbitrary one-
parameter subgroup in G generated by the Hamiltonian vector field Xa. So the above argu-
ments together with Corollary 5.2.6 imply the following

Proposition 5.2.18 The linear Poisson bracket of Example 5.1.11 on the dual space to a
Lie algebra g is invariant with respect to the coadjoint action of the associated Lie group G.

5.3 First integrals of Hamiltonian systems

Recall that a smooth function f ∈ C∞(M) is called first integral of a vector field X ∈ V ect(M)
if Xf = 0. The vector field X is tangent to the level surfaces f =const.

Consider a Hamiltonian vector field XH on a Poisson manifold (M,π).

Lemma 5.3.1 Derivative of a function f along the Hamiltonian vector field XH is equal to

XHf = {f,H}. (5.3.1)

Proof: Follows immediately from the definitions.

Corollary 5.3.2 If the function f Poisson commutes with the Hamiltonian H then it is a
first integral of the Hamiltonian vector field XH .

In particular, the Hamiltonian H itself is a first integral of XH . This is the conservation
of energy statement on Poisson manifolds. In particular we have another

Corollary 5.3.3 The Hamiltonian vector field XH on a Poisson manifold is tangent to the
level surfaces H=const of the Hamiltonian.

The following statement about Hamiltonian vector fields on symplectic manifolds will be
useful in sequel.

Lemma 5.3.4 A Hamiltonian vector field XH on a symplectic manifold at any point of the
level surface H=const satisfies

ω(Y,XH) = 0 for any vector field Y tangent to the level surface H = const. (5.3.2)

Proof: According to Lemma 5.1.19 we have

ω(Y,XH) = Y H.

As the function H is constant on the level surface, its derivative along any vector field Y
tangent to the level surface is equal to zero.
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Theorem 5.3.5 First integrals of a Hamiltonian system form a Lie subalgebra in the Lie
algebra of functions on a Poisson manifold (M,π).

Proof: Let f , g be two first integrals of a Hamiltonian vector field XH . From (5.2.1) it
follows that

XH{f, g} = {XHf, g}+ {f,XHg} = 0.

On a Poisson manifold we have a Lie algebra structure on the space of functions on M
defined by the Poisson bracket. We also have a Lie algebra structure on the space of vector
fields on M given by the commutator. The following statement establishes a connection
between these two structures on a Poisson manifold (M,π).

Theorem 5.3.6 The map

C∞(M)→ V ect(M), H 7→ XH

is an (anti)homomorphism of Lie algebras

[XF , XH ] = −X{F,H} ∀ F, H ∈ C∞(M). (5.3.3)

Proof: For any function f on M one has

XF f = {f, F}.

Using (5.2.1) we obtain

XHXF f = XH{f, F} = {XHf, F}+ {f,XHF} = {{f,H}, F}+ {f, {F,H}} .

Thus

[XH , XF ] f = XHXF f −XFXHf =

= {{f,H}, F}+ {f, {F,H}} − {{f, F}, H} − {f, {H,F}} .

Due to Jacobi identity the first three terms in the rhs give zero. This proves the Theorem.

Corollary 5.3.7 If the Hamiltonians H, F Poisson-commute then the Hamiltonian vector
fields XH , XF commute.

Remark 5.3.8 Actually, for commutativity [XH , XF ] = 0 of Hamiltonian vector fields it
suffices that the Poisson bracket {H,F}=const.

Exercise 5.3.9 Prove that two Hamiltonian vector fields on a symplectic manifold commute
iff the Poisson bracket among the Hamiltonians is a (locally) constant function.
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5.4 Darboux Lemma. Casimirs and symplectic leaves on Poisson manifolds

Darboux lemma claims that, locally all symplectic manifolds of the same dimension are the
same, up to a symplectomorphism.

Theorem 5.4.1 (Darboux lemma) Let
(
M2n, ω

)
be a symplectic manifold. Then for any

point x0 ∈ M2n there exists a neighborhood U ⊂ M2n and local coordinates q1, . . . , qn, p1,
. . . , pn such that

ω|U =

n∑
i=1

dpi ∧ dqi.

Proof: Let p1 be an arbitrary smooth function on M such that

p1(x0) = 0, dp1(x0) 6= 0.

Consider the Hamiltonian vector field Xp1 . By assumption it does not vanish at x0 and, thus
also on some neighborhood of this point. In a sufficiently small neighborhood U of x0 choose
a (2n− 1)-dimensional submanifold N transversal to the vector field,

Xp1(y) 6= 0 ∀y ∈ N ∩ U.

If U is sufficiently small then, for any x1 ∈ U there exists a unique y ∈ N ∩ U such that the
trajectory x(t) of the Hamiltonian system

ẋ = {x, p1}

such that x(0) = y reaches x for some t,

x(t) = x.

Denote q1(x) := t. By construction

{q1, p1} = Xp1q1 =
d

dt
t = 1. (5.4.1)

We obtain a pair of functions q1, p1 on the neighborhood U of x0 with the canonical Poisson
bracket {q1, p1} = 1. If the dimension n = 1 then we are done with the proof. Otherwise we
proceed by induction.

Define M̃ ⊂ U by the equations q1 = 0, p1 = 0. It is a smooth submanifold of the
dimension 2n− 2. Denote

ω̃ = ω|M̃ .

Let us prove that
(
M̃, ω̃

)
is a symplectic manifold. Clearly dω̃ = 0. Let us verify nodegen-

erateness of ω̃. To this end we will show that, the tangent space TyM̃ at any point y ∈ M̃
coincides with the orthogonal complement of the two-dimensional span

(
Xp1 , Xq1

)
Y ∈ TyM̃ ⇔ ω(Y,Xp1) = ω(Y,Xq1) = 0.
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Take a tangent vector field Y ∈ TyM̃ . Extend it locally to a vector field on M . At the
points of M̃ it satisfies

Y p1 = 0, Y q1 = 0.

Due to the Lemma this implies that

ω(Y,Xp1) = 0, ω(Y,Xq1) = 0

at the points of M̃ . Vice versa, these two conditions imply that Y is tangent to M̃ .

We have proved that TyM̃ coincides with the orthogonal complement to the 2-dimensional
subspace spanned by Xp1 , Xq1 . The following statement from linear algebra proves that(
M̃, ω̃

)
is a (2n− 2)-dimensional symplectic manifold.

Lemma 5.4.2 Let V be a subspace in the symplectic space (R2n, ω) such that ω|V does not
degenerate. Then the restriction of ω on the orthogonal complement

V ⊥ := {Y ∈ R2n | ω(Y,X) = 0 ∀ X ∈ V }

does not degenerate either.

By induction on a neighbourhood of the point x0 in
(
M̃, ω̃

)
there exists a system of

canonical coordinates q̃2, . . . , q̃n, p̃2, . . . , p̃n such that

ω̃ =
n∑
i=2

dp̃i ∧ dq̃i.

To extend these coordinates on a neighbourhood of M̃ in M we will use shifts along the
Hamiltonian flows generated by the functions p1 and q1. Observe that the Hamiltonian
vector fields Xp1 and Xq1 are transversal to the submanifold M̃

αXp1 + βXq1 ∈ TyM̃ ⇔ α = β = 0. (5.4.2)

Denote gt and fs the one-parameter local groups of symplectomorphisms of M generated by
Xp1 and Xq1 respectively. Since {q1, p1} = 1, these one-parameter groups commute

gt ◦ fs = fs ◦ gt for arbitrary sufficiently small t, s.

Due to transversality (5.4.2) for an arbitrary point x ∈M sufficiently close to x0 there exists
a unique point y ∈ M̃ and unique pair of small numbers t, s such that

x = gt (fs(y)) .

Define
qi(x) := q̃i(y), pi(x) := p̃i(y), i = 2, . . . , n.

We obtain a system of coordinates on a neighbourhood of the point x0 ∈ M . Let us prove
that these coordinates are canonical.
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First, by construction the functions pi and qi for i ≥ 2 are invariant with respect to the
Hamiltonian flows gt, fs generated by p1 and q1 respectively. Hence

{p1, pi} = {p1, q
i} = 0, {q1, pi} = {q1, qi} = 0 for i ≥ 2. (5.4.3)

From vanishing of these Poisson brackets it follows that the Hamiltonian vector fields Xpi

and Xqi for i ≥ 2 are invariant wrt the flows gt, fs. So, the values of the two-form ω on these

vector fields at the points y ∈ M̃ and x = gtfs(y) ∈M coincide. Therefore

{pi, pj}x = {pi, pj}y, {pi, qj}x = {pi, qj}y, {qi, qj}x = {qi, qj}y for i, j = 2, . . . , n

and x = gtfs(y).

Since the functions p1, q1 are first integrals of the vector fields Xpi , Xqi , i ≥ 2, these vector

fields are tangent to the level surface M̃ . Thus the matrix of the 2-form ω in the basis Xq1 ,
. . . , Xqn , Xp1 , . . . , Xpn decomposes in two blocks of sizes 2× 2 and (2n− 2)× (2n− 2) where
the latter coincides with the matrix of ω̃ on M̃ . Therefore the vector fields Xpi |M̃ , Xqi |M̃ ,

i ≥ 2 are Hamiltonian vector fields on (M̃, ω̃) with the Hamiltonians p̃i, q̃
i respectively. Due

to the inductive construction these are canonical coordinates on M̃ . So

{qi, pj} = δij , {qi, qj} = {pi, pj} = 0, i, j = 2, . . . , n. (5.4.4)

From (5.4.1), (5.4.3), (5.4.4) it follows that q1, . . . , qn, p1, . . . , pn are canonical local coordi-
nates on M .

Similar arguments can be applied to local classification of Poisson manifolds (M,π) of
constant rank.

Exercise 5.4.3 Let π be an antisymmetric bilinear form on a N -dimensional vector space
V . Denote 2n the rank of the matrix of the bilinear form. Assuming that 2n < N denote
W ⊂ V the kernel of the bilinear form, dimW = N −2n. Prove that π induces a well-defined
antisymmetric bilinear form on the quotient space V/W that is nondegenerate.

Theorem 5.4.4 Let the matrix πij(x) of the bivector π on the Poisson manifold (M,π) have
a constant rank 2n < dimM on a neighbourhood of a point x0 ∈M . Denote k := dimM−2n.

1) Locally near x0 there exist k independent13 functions c1(x), . . . , ck(x) such that

{f, c1} = · · · = {f, ck} = 0 ∀ f ∈ C∞(M). (5.4.5)

2) Near x0 there locally exist functions q1, . . . , qn, p1, . . . , pn on M with canonical
Poisson brackets

{qi, pj} = δij , {qi, qj} = {pi, pj} = 0, i, j = 1, . . . , n. (5.4.6)

3) The functions q1, . . . , qn, p1, . . . , pn, c1(x), . . . , ck(x) give a system of local coordinates
on M near the point x0.

13Recall that the functions c1(x), . . . , ck(x) are called independent if their differentials span a k-dimensional
subspace in T ∗xM at every x ∈M .
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The crucial point in the proof of the Theorem is in the following

Lemma 5.4.5 Let X1, . . . , XN be smooth vector fields on the manifold M satisfying the
following conditions:

(1) dim span (X1, . . . , XN ) ≡ m;

(2) There exist smooth functions csij(x) such that

[Xi, Xj ] =

N∑
s=1

csij(x)Xs, i, j = 1, . . . , N.

Then locally there exist independent functions f1(x), . . . , fk(x) such that

m+ k = dimM

and
X1fa = · · · = XNfa = 0, a = 1, . . . , k.

The functions c1(x), . . . , ck(x) Poisson-commuting with everything are called Casimir
functions or simply Casimirs on the Poisson manifold. From the above statement it follows
that every smooth common level surface of the Casimirs

Mc0 := {x ∈M | c1(x) = c1
0, . . . , c

k(x) = ck0}

has a natural symplectic structure. In this way one obtains a structure of symplectic folia-
tion of a Poisson manifold of constant rank. The level surfaces of the form Mc0 are called
symplectic leaves of the foliation.

Example 5.4.6 The Poisson bracket (5.1.18) on the dual space to the Lie algebra so(3) has
constant rank 2 away from the origin. One can choose the function

c(x, y, z) = x2 + y2 + z2

as the Casimir. The symplectic leaves are two-dimensional spheres.

Exercise 5.4.7 For a smooth function f(x, y, z) on R3 define a Poisson bracket by

{x, y} = fz(x, y, z)

{y, z} = fx(x, y, z)

{z, x} = fy(x, y, z).

Here the subscripts denote the partial derivatives. Prove that the above formulae define a
Poisson bracket on R3. Morever, the symplectic leaves of this bracket are (nonsingular) level
surfaces f(x, y, z) = const.

Example 5.4.8 A function c(x) on the dual space to a Lie algebra g is a Casimir of the
linear Poisson bracket (5.1.17) if it satisfies the linear differential equation

0 = {c(x), a(x)} = cijk
∂c

∂xi
ajx

k, a(x) = ajx
j
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for any vector a ∈ g. That means that c(x) takes constant values along the trajectories of the
Hamiltonian vector field Xi

a = cijk ajx
k. Since the vector fields of the form Xa generate the

coadjoint action of the associated Lie group G (see the end of Section 5.2 above), we conclude
that the Casimirs of the linear Poisson bracket (5.1.17) are functions invariant with respect
to the coadjoint action,

c
(
Ad∗g(x)

)
= c(x) ∀ g ∈ G.

Therefore the symplectic leaves of the linear Poisson bracket on g∗ are orbits of the coadjoint
action of the associated Lie group.

Remark 5.4.9 An arbitrary foliation M = ∪φ0Mφ0 of a codimension m in a Poisson man-
ifold (M,π) represented locally in the form

Mφ0 = {x | φ1(x) = φ1
0, . . . , φ

m(x) = φm0 }

will be called cosymplectic if the m×m matrix {φa, φb} does not degenerate on the leaves. In
this situation a new Poisson structure { , }D can be defined on M s.t. the functions φa(x)
are Casimirs of { , }D. This is the Dirac bracket given explicitly by the formula

{f, g}D = {f, g} −
∑
a,b

{f, φa}{φa, φb}−1{φb, g}. (5.4.7)

It can be restricted in an obvious way to produce a Poisson structure on every leaf. The
restriction map

(C∞(M), { , })→ (C∞(Mφ0), { , }D)

is a homomorphism of Lie algebras.

5.5 Poisson cohomology and supermanifolds

The notion of Poisson cohomology of (M,π}) was introduced by Lichnerowicz. Before we
proceed to precise definitions let us consider a particular case. Consider a Poisson manifold
(M,π). A bivector δπ =

(
δπij(x)

)
is called an infinitesimal deformation of the Poisson

structure if the family of brackets

{f, g}ε =
(
πij + ε · δπij

) ∂f
∂xi

∂g

∂xj

depending on a parameter ε satisfies Jacobi identity modulo terms of order O
(
ε2
)
. In local

coordinates this condition reads as follows

πis
∂

∂xs
δπjk+δπis

∂

∂xs
πjk+πks

∂

∂xs
δπij+δπks

∂

∂xs
πij+πjs

∂

∂xs
δπki+δπjs

∂

∂xs
πki = 0 ∀ i, j, k.

Lemma 5.5.1 For any vector field X ∈ V ect(M) on (M,π) the bivector

δπij = LXπij (5.5.1)

defines an infinitesimal deformation of the Poisson structure.
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Clearly in this case the deformation of the Poisson structure is induced by the infinitesimal
change of coordinates

xi 7→ xi + ε ·Xi(x) +O(ε2)

generated by the vector field X. Such infinitesimal deformations will be called trivial.

Infinitesimal deformations of (M,π) form a linear space. There is a subspace of trivial
infinitesimal deformations. The quotient

{infinitesimal deformations of (M,π)}/{trivial infinitesimal deformations}

classifies deformations of the Poisson structure π on M modulo changes of coordinates. This
quotient is denoted H2(M,π) and called the second Poisson cohomology of (M,π).

Example 5.5.2 Let π be a non-degenerate Poisson structure on the 2n-dimensional ball
M = B2n. Then H2(M,π) = 0. This follows from Darboux lemma.

For a general definition of Poisson cohomology we need to use the Schouten–Nijenhuis
bracket. Denote

Λk = H0(M,ΛkTM)

the space of multivectors on M . The Schouten–Nijenhuis bracket is a bilinear pairing a, b 7→
[a, b],

Λk × Λl → Λk+l−1

uniquely determined by the properties of supersymmetry

[b, a] = (−1)kl[a, b], a ∈ Λk, b ∈ Λl (5.5.2)

the graded Leibnitz rule

[c, a ∧ b] = [c, a] ∧ b+ (−1)lk+ka ∧ [c, b], a ∈ Λk, c ∈ Λl (5.5.3)

and the conditions [f, g] = 0, f, g ∈ Λ0 = F ,

[v, f ] = vi
∂f

∂xi
, v ∈ Λ1 = V ect(M), f ∈ Λ0 = F ,

[v1, v2] = commutator of vector fields for v1, v2 ∈ Λ1. In particular for a vector field v and a
multivector a

[v, a] = Lieva.

Exercise 5.5.3 For two bivectors h = (hij) and f = (f ij) their Schouten–Nijenhuis bracket
is the following trivector

[h, f ]ijk =
∂hij

∂xs
fsk +

∂f ij

∂xs
hsk +

∂hki

∂xs
f sj +

∂fki

∂xs
hsj +

∂hjk

∂xs
fsi +

∂f jk

∂xs
hsi. (5.5.4)

Observe that the l.h.s. of the Jacobi identity (5.1.13) reads

{{xi, xj}, xk}+ {{xk, xi}, xj}+ {{xj , xk}, xi} =
1

2
[h, h]ijk.
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The Schouten–Nijenhuis bracket satisfies the graded Jacobi identity

(−1)km[[a, b], c] + (−1)lm[[c, a], b] + (−1)kl[[b, c], a] = 0, a ∈ Λk, b ∈ Λl, c ∈ Λm. (5.5.5)

It follows that, for a Poisson bivector h the map

∂ : Λk → Λk+1, ∂a = [h, a] (5.5.6)

is a differential, ∂2 = 0. The cohomology of the complex (Λ∗, ∂π). We will denote it

H∗(M,π) = ⊕k≥0H
k(M,π).

In particular, H0(M,π) coincides with the ring of Casimirs of the Poisson bracket, H1(M,π)
is the quotient of the Lie algebra of infinitesimal symmetries

v ∈ V ect(M), Liev{ , } = 0

over the subalgebra of Hamiltonian vector fields, H2(M,π) is the quotient of the space of
infinitesimal deformations of the Poisson bracket by those obtained by infinitesimal changes
of coordinates (i.e., by those of the form Liev{ , } for a vector field v).

On a symplectic manifold (M,π) Poisson cohomology coincides with the de Rham one.
The isomorphism is established by “lowering the indices”: for a cocycle a = (ai1...ik) ∈ Λk

the k-form ∑
i1<···<ik

ωi1...ikdx
i1 ∧ · · · ∧ dxik , ωi1...ik = hi1j1 . . . hikjka

j1...jk

is closed.

We will now introduce an equivalent approach to Poisson cohomology that uses the lan-
guage of supermanifolds. Coordinates on a supermanifold are of two types: even and odd.
Even coordinates commute pairwise while odd coordinates anticommute. We will now intro-
duce a particular example of a supermanifold. Let M be an arbitrary smooth manifold of the
dimension N . There are standard coordinates x1, . . . , xN , p1, . . . , pN on the total space of
cotangent bundle T ∗M . Here xi are local coordinates on the base M and pj are coordinates
on the fibers T ∗xM for x ∈M . Define a supermanifold ΠT ∗M with even coordinates x1, . . . ,
xN ,

xjxi = xixj

and odd coordinates θ1, . . . , θN ,
θjθi = −θiθj .

One can say that the supermanifold ΠT ∗M is obtained from T ∗M by changing the parity
along the fibers. As usual, a smooth change of coordinates on the base

xi 7→ xi
′
(x)

induces a linear change of odd coordinates

θi 7→ θi′ =
∂xi

∂xi′
θi. (5.5.7)

The variables xi and θj commute pairwise,

xiθj = θjx
i.
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The space of functions on ΠT ∗M has the following description

F(ΠT ∗M) =

{
â =

∑
k

1

k!
ai1...ik(x)θi1 . . . θik

}
,

(note that the sum is necessarily finite due to the anticommutativity of the θ-variables)
where the coefficients ai1...ik(x) are antisymmetric wrt permutations of indices. Due to the
transformation rule (5.5.7) these coefficients are k-vectors on M . Thus

F(ΠT ∗M) ∼= Γ(ΛTM). (5.5.8)

As the variables xi commute with everything, the derivatives
∂

∂xi
as operators on F(ΠT ∗M)

are defined in a natural way. Definition of derivatives wrt odd variables requires more atten-
tion. Define left derivative ∂

∂θi
as follows.

1) If the monomial θi1 . . . θik does not contain θi then

∂

∂θi
(θi1 . . . θik) = 0.

2) In the opposite case, using the anticommutativity move the factor θi on the first position
in the monomial, then erase it.

3) Extend this definition linearly on F(ΠT ∗M),

∂

∂θi

(∑
k

1

k!
ai1...ik(x)θi1 . . . θik

)
=
∑
k

1

k!
ai1...ik(x)

∂

∂θi
(θi1 . . . θik) .

Example 5.5.4
∂

∂θ1
θ1θ2 = θ2,

∂

∂θ1
θ2θ1 = −θ2.

The algebra F(ΠT ∗M) has a natural gradation defined by degree in the odd variables.
Define a superbracket

F(ΠT ∗M)×F(ΠT ∗M)→ F(ΠT ∗M)

on a pair of homogeneous elements P, Q ∈ F(ΠT ∗M) by

{P,Q} =
∂P

∂θs

∂Q

∂xs
+ (−1)|P |

∂P

∂xs
∂Q

∂θs
, (5.5.9)

where |P | := degP .

Proposition 5.5.5 The superbracket (5.5.9) satisfies graded commutativity

{Q,P} = (−1)|P |·|Q| {P,Q} , (5.5.10)

graded Leibnitz rule

{R,P Q} = {R,P}Q+ (−1)|P |(|Q|+1)P {R,Q} (5.5.11)

and graded Jacobi identity

(−1)|P ||R|{{P,Q}, R}+ (−1)|R||Q|{{R,P}, Q}+ (−1)|Q||P |{{Q,R}, P}. (5.5.12)
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Example 5.5.6 Let π = 1
2π

ij(x) ∂
∂xi
∧ ∂
∂xj

be a bivector on a manifold M . Denote

π̂ =
1

2
πij(x)θiθj ∈ F (ΠT ∗M)

the corresponding function on the supermanifold ΠT ∗M . Then

{π̂, π̂} = πskθk
∂πij

∂xs
θiθj

=
∑
i<j<k

(
∂πij

∂xs
πsk +

∂πki

∂xs
πsj +

∂πjk

∂xs
πsi
)
θiθjθk.

This expression is equal to zero iff the bivector π defines a Poisson structure on the manifold
M .

Exercise 5.5.7 If ρ̂ = 1
2ρ
ijθiθj is another bivector then

{π̂, ρ̂}

=
∑
i<j<k

(
∂πij

∂xs
ρsk +

∂πki

∂xs
ρsj +

∂πjk

∂xs
ρsi +

∂ρij

∂xs
πsk +

∂ρki

∂xs
πsj +

∂ρjk

∂xs
πsi
)
θiθjθk.

Let (M,π) be a Poisson manifold. Denote Fk = Fk (ΠT ∗M) the component of degree k
of the space of functions on the supermanifold ΠT ∗M . Define an operator ∂ : Fk → Fk+1 by
the formula

∂P = {π̂, P}. (5.5.13)

Using {π̂, π̂} = 0 along with the graded Jacobi identity (5.5.12) we derive

Proposition 5.5.8 Square of the operator (5.5.13) is equal to zero

∂2 = 0.

Therefore the Poisson structure on the manifold M induces a structure of a complex of
vector spaces on ⊕

k

Fk (ΠT ∗M) = F (ΠT ∗M) .

Cohomology of this complex are called the Poisson cohomology of (M,π)

Hk(M,π) := Hk (F (ΠT ∗M) , ∂) .

The following simple statement provides a necessary and sufficient condition for trivial-
ity of 1- and 2-cocycles on a Poisson manifold (M,π) with trivial topology M ' ball and
constancy of the rank of π.

Exercise 5.5.9 Let π = (πij(x)) be a Poisson structure of a constant rank 2n < N = dimM
on a sufficiently small N -dimensional ball U .

1). 1-cocycle v = (vi(x)) is trivial in H1(U, π) iff the vector field v is tangent to the symplectic
leaves.

2). 2-cocycle ρ = (ρij(x)) is trivial in H2(U, π) iff

ρ(dc′, dc′′) = 0 (5.5.14)

for an arbitrary pair of Casimirs of the bracket π.
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5.6 Symplectic reduction

Let (M,ω) be a symplectic manifold of dimension 2n and H ∈ C∞(M) a Hamiltonian.
Assume that the Hamiltonian vector field XH(x) never vanishes for any x ∈ M . Moreover,
assume that there exists a codimension one submanifold M ′ ⊂ M such that any integral
curve of XH has a unique point x′ ∈ M ′ of intersection with M ′ and XH(x′) is transversal
to Tx′M

′. In this case one can consider M ′ as the space of integral trajectories of the vector
field XH or, equivalently, as the quotient of M over the action of the one-parameter group of
diffeomorphisms generated by XH . Functions on such a quotient can be identified with those
functions on M being constant on the integral trajectories. Therefore

C∞(M ′) = {f ∈ C∞(M) | {f,H} = 0} .

Since the centralizer of H in the Lie algebra C∞(M) is a Lie subalgebra, one obtains a natural
Poisson structure on the quotient. Let us call it the reduced Poisson bracket.

Lemma 5.6.1 Any Casimir of the reduced Poisson bracket has locally the form f(H(x)) for
an arbitrary smooth function f(H).

Proof: Consider the inverse matrix ωij(x) as a nondegenerate antisymmetric bilinear form
on the cotangent space T ∗xM ,

〈a, b〉x = ωij(x)aibj .

Denote v = dH(x) ∈ T ∗xM and introduce the orthogonal complement

V = {u ∈ T ∗xM | 〈u, v〉x = 0} ⊂ T ∗xM.

Due to nondegeneracy one has dimV = 2n−1. The subspace V is spanned by differentials of
functions f ∈ C∞(M) commuting with H: {f,H} = 0. Obviously it also contains the vector
v 6= 0 itself. For similar reasons the orthogonal complement of V is one-dimensional,

{w ∈ T ∗xM | 〈w, u〉 = 0 ∀u ∈ V } = span(v).

This implies the statement of Lemma.

Corollary 5.6.2 Rank of the reduced Poisson bracket is equal to 2n− 2.

According to the constructions of Section 5.4 the symplectic foliation on the (2n − 1)-
dimensional manifold M ′ consists of the level surfaces of the Casimir H(x) of the reduced
Poisson bracket. More precisely, denote

Mh := {x ∈M |H(x) = h}

a level surface of the Hamiltonian. Assume that h is a regular value of the function H(x).
Then Mh ⊂ M is a smooth submanifold of codimension 1. The corresponding (2n − 2)-
dimensional symplectic leaf of the reduced Poisson bracket is obtained by intersection

Mred(h) := M ′ ∩Mh (5.6.1)
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assuming that the submanifolds M ′ and Mh intersect transversally. A somewhat shorter
description says that, points of Mred(h) are integral curves of the Hamiltonian vector field
belonging to the level surface H(x) = h.

Denote ωred(h) the symplectic structure induced on the symplectic leaf (5.6.1). The pair
(Mred(h), ωred(h)) is called reduced symplectic manifold.

The above construction plays the central role in the procedure of reduction of Hamilto-
nian systems with symmetries. Consider another Hamiltonian F ∈ C∞(M) commuting with
H. Then shifts along trajectories of the Hamiltonian vector field XH define a symmetry of
the Hamiltonian vector field XF . That means that these shifts map trajectories of XF to
trajectories of XF . The symplectic reduction allows one to reduce the problem of integration
of the dynamical system

ẋ = {x, F}

with 2n degrees of freedom to a reduced dynamical system with (2n− 2) degrees of freedom.
Indeed, the Hamiltonian flow generated by XF maps trajectories of XH to trajectories of XH .
Moreover it is tangent to the level surface Mh for any h. Therefore it defines a dynamical
system on Mred(h). It is Hamiltonian wrt the symplectic structure ωred(h).

Let us consider a more general situation of symplectic reductions over Lie groups of
symmetries of Hamiltonian systems. Let

G×M →M, (g, x) 7→ g · x

(g1g2) · x = g1 · (g2 · x) ∀ g1, g2 ∈ G

be a smooth (left) action of a connected Lie group G by symplectomorphisms on a symplectic
manifold (M,ω). For any one-parameter subgroup{

gat = et a
}
⊂ G, a ∈ g

one obtains a flow on M
x 7→ gat · x

preserving the symplectic structure. Denote

Xa(x) =
d

dt
(gat · x)t=0 (5.6.2)

the velocity vector of the flow. From

et aet b = 1 + t(a+ b) +O(t2)

we conclude that the vector fields Xa depend linearly on a ∈ g. Moreover, using the well
known identity for one-parameter subgroups

et aet be−t ae−t b = 1 + t2[a, b] +O(t2)

valid for any pair of elements a, b ∈ g one obtains that

[Xa, Xb] = X[a,b]. (5.6.3)
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Locally the vector field Xa is generated by some Hamiltonian Ha(x). Assume that these
Hamiltonians are defined globally on M . So one has Hamiltonian vector fields of the form
(5.6.2)

Xa = XHa ∀ a ∈ g.

that generate the symplectic action of the Lie group G.

The Hamiltonians Ha(x) are determined up to additive constants. Using this freedom
and linearity of Xa in a we can assume, without loss of generality that also the Hamiltonians
depend linearly on a ∈ g. Due to the identity (5.6.3) one has

{Ha, Hb} = H[a,b] + κ(a, b), a, b ∈ g (5.6.4)

for some constant κ(a, b). Clearly κ(a, b) is a bilinear antisymmetric function that is a 2-
cocycle on the Lie algebra g, i.e., it satisfies the identity

κ ([a, b], c) + κ ([c, a], b) + κ ([b, c], a) = 0 ∀ a, b, c ∈ g

(cf. Example 5.1.14 above).

The last assumption about the action of the Lie group is that the 2-cocycle is trivial, i.e.,
there exists a linear function ` on the Lie algebra such that

κ(a, b) = ` ([a, b]) .

Then one can shift the Hamiltonians by constants

Ha 7→ Ha + `(a)

in order to arrive at the commutation relations

{Ha, Hb} = H[a,b]. (5.6.5)

After all these preliminaries we can give the following

Definition 5.6.3 A smooth action of a connected Lie group G on a symplectic manifold
(M,ω) is called Hamiltonian if the generator (5.6.2) of any one-parameter subgroup gat = et a

is a Hamiltonian vector field with the Hamiltonian Ha(x) depending linearly on a ∈ g and
satisfying the commutation relations (5.6.5). The functions Ha(x) will be called Hamiltonian
generators of the action of the Lie group.

Example 5.6.4 Let the group G act on a n-dimensional manifold Q,

G×Q→ Q, (g, q) 7→ g · q.

We can lift this action on the symplectic manifold M = T ∗Q by

g · (q, ξ) =
(
g · q, g−1∗ξ

)
. (5.6.6)

We claim that this action is Hamiltonian. The needed family of Hamiltonians Ha(q, p) are
given by the following formula

Ha(q, p) = α(va(q)) = piv
i
a(q) (5.6.7)
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where α = pidq
i is the standard 1-form on T ∗Q and

va(q) =
d

dt

(
et a · q

)
t=0
∈ V ect(Q)

is the generator of the action on Q of the one-parameter group
{
gat = et a

}
⊂ G.

We leave as an exercise to verify linearity in a ∈ g of the Hamiltonians (5.6.7) as well as
validity of the commutation relation (5.6.5).

Let us consider a Hamiltonian action of a connected Lie group G on a symplectic manifold
(M,ω) generated by Hamiltonians Ha(x). Due to linearity in a ∈ g one obtains a map

µ : M → g∗, 〈µ(x), a〉 = Ha(x) ∀ a ∈ g. (5.6.8)

Definition 5.6.5 The map (5.6.8) is called the moment map for the Hamiltonian action of
G on M .

Theorem 5.6.6 Let µ : M → g∗ be the moment map for the Hamiltonian action of a
connected Lie group G on (M,ω). Then ∀ g ∈ G the following diagram is commutative

M
g·−→ Myµ yµ

g∗ −→
Ad∗

g−1

g∗

The proof readily follows from the following

Lemma 5.6.7 For any g ∈ G one has

Ha(g · x) = HAdg−1 (a)(x). (5.6.9)

Proof: It suffices to verify the statement of the Lemma for a one-parameter subgroup gt = et b

for an arbitrary vector b ∈ g. One has

d

dt
Ha

(
gbt · x

)
t=0

= XbHa(x) = {Ha, Hb} = H[a,b] = H−adb(a).

This is the infinitesimal version of the identity (5.6.9).

Let H ∈ C∞(M) be a G-invariant Hamiltonian on (M,ω),

H(g · x) = H(x) ∀ g ∈ G, ∀x ∈M. (5.6.10)

We say that G acting on (M,ω) is a group of symmetries of the Hamiltonian system generated
by H.
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Lemma 5.6.8 Let the symplectic manifold (M,ω) be equipped with a Hamiltonian action of
a connected Lie group G being a group of symmetries of the Hamiltonian H. Then

(1) H Poisson commutes with the Hamiltonian generators of the group action

{H,Ha} = 0 ∀ a ∈ g.

(2) The Hamiltonian flow XH maps orbits of the G-action to orbits of the same action.

Proof: Let gt = et a for some a ∈ g be a one-parameter subgroup in G. Using symmetry
(5.6.10) of the Hamiltonian we obtain

0 =
d

dt
H(gt · x) = XaH = {H,Ha}.

This proves the first part of Lemma.

Due to the commutativity the flow generated by the Hamiltonian H maps solutions to
the system

ẋ = {x,Ha}

to other solutions of the same system, for any a ∈ g. Such solutions are nothing but orbits
of the one-parameter subgroup gt = et a. This proves the second part of Lemma.

Corollary 5.6.9 For a Hamiltonian action of a Lie group G on a symplectic manifold (M,ω)
and for any G-invariant Hamiltonian H the level surface of the moment map

Mµ0 := {x ∈M |µ(x) = µ0} (5.6.11)

for any µ0 ∈ g∗ is invariant wrt the flow generated by H.

For a given µ0 ∈ g∗ denote

Gµ0 := {g ∈ G |Ad∗g (µ0) = µ0} (5.6.12)

the stabilizer of the point µ0 ∈ g∗. It is a Lie subgroup in G. From Theorem 5.6.6 it readily
follows that this subgroup acts on the level surface Mµ0 .

The flow generated by the G-invariant Hamiltonian H leaves invariant the level surface
Mµ0 and it reshuffles the orbits of the stabilizer Gµ0 belonging to this level surface. The main
idea of symplectic reduction is to define the reduced phase space Mred(µ0) as the space of
these orbits

Mred(µ0) := Mµ0/Gµ0 . (5.6.13)

This can be done under the following additional assumptions:

(i) µ0 ∈ g∗ must be a regular value of the moment map. Then the level surface (5.6.11)
will be a smooth submanifold in M .

(ii) The stabilizer Gµ0 ⊂ G is a compact subgroup.

(iii) Elements g 6= e of this subgroup act on the level surface Mµ0 without fixed points.
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Theorem 5.6.10 Let (M,ω) be a symplectic manifold equipped with a Hamiltonian action
of a Lie group G and let µ0 ∈ g∗ satisfy the above conditions. Then

1) the reduced phase space (5.6.13) carries a natural symplectic structure ωred(µ0).

2) The flow generated by a G-invariant Hamiltonian H ∈ C∞(M) can be restricted
onto the level surface (5.6.13). After the restriction one obtaines a Hamiltonian flow on
(Mred(µ0), ωred(µ0)).

The above construction is called Marsden–Weinstein symplectic reduction.

Example 5.6.11 Consider in particular the zero level of the moment map. Let 0 ∈ g∗ be
a regular value of µ. Then µ−1(0) is a smooth manifold. Assume that G acts freely and
properly on the zero level µ−1(0) of the moment map. Then also the quotient µ−1(0)/G is a
smooth manifold. This quotient has a natural symplectic structure ωred inherited from ω. The
resulting symplectic manifold is denoted M//G. It is called the symplectic quotient of (M,ω)
over the group action G. Observe that dimM//G = dimM − 2 dimG. The construction of
symplectic quotient is closely related with the Geometric Invariant Theory (GIT).

5.7 Evolution PDEs as infinite-dimensional Hamiltonian systems

Let us start with a list of main formulae illustrating analogies between basic definitions of
the theory of finite-dimensional Hamiltonian systems (the first column of the table) and their
infinite-dimensional counterparts (partial differential equations, PDEs). We begin with the
case of systems of evolution PDEs with one spatial variable x ∈ S1.

ODEs PDEs

Functions H(u) H =
∫
h(u;ux, uxx, . . . ) dx

Differentials dH =
∑

∂H
∂ui du

i δH =
∫

δH
δui(x)δu

i(x) dx

δH
δui(x) =

∑
(−1)s∂sx

∂h
∂ui,s , ui,s := ∂sxu

i

Vector fields u̇i = F i(u) uit = F i(u;ux, uxx, . . . )

Poisson brackets {f, g} =
∑
{ui, uj} ∂f∂ui

∂g
∂uj {F,G} =

∫∫
δF

δui(x){u
i(x), uj(y)} δG

δuj(y)dxdy

Hamiltonian vector fields u̇i = {ui, H} uit = {ui(x), H}

=
∫
{ui(x), uj(y)} δH

δuj(y) dy

Super-bracket π̂ =
∑
{ui, uj}θiθj π̂ =

∫∫
{ui(x), uj(y)}θi(x)θj(y) dx dy

{π̂, π̂} =
∑

∂π̂
∂θi

∂π̂
∂ui {π̂, π̂} =

∫
δπ̂

δθi(x)
δπ̂

δui(x) dx

The main technical constructions will be

- Formal variational calculus;
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- Local Poisson brackets.

Let M be a smooth n-dimensional manifold. The infinite-dimensional “manifold” we will
be dealing with the loop space

L(M) = {S1 →M}. (5.7.1)

It will be defined in terms of the ring of functions on it.

For a given chart U ⊂M with coordinates u1, . . . , un denoteA(U) the space of differential
polynomials, i.e., polynomials in independent variables ui,s, i = 1, . . . , n, s = 1, 2, . . .

f(x;u;ux, uxx, . . . ) :=
∑
m≥0

fi1s1;...;imsm(x;u)ui1,s1 . . . uim,sm (5.7.2)

where the coefficients fi1s1;...;imsm(x;u) are smooth functions on S1×U . Here the alternative
notations are often used

uix = ui,1, uixx = ui,2, . . .

We emphasize that no polynomiality in u =
(
u1, . . . , un

)
is assumed.

On the intersection of two charts
(
U, u1, . . . , un

)
and

(
U ′, u1′ , . . . , un

′
)

we have graded

polynomial changes

ui
′
x =

∂ui
′

∂ui
uix

ui
′
xx =

∂ui
′

∂ui
uixx +

∂2ui
′

∂ui∂uj
uixu

j
x

etc. The differential polynomials (5.7.2) are required to be invariant wrt such changes. In
this way we obtain a globally well-defined space A(M). According to this definition every
differential polynomial f(x;u;ux, uxx, . . . ) ∈ A(M) can be considered as a function of the jet
space JN (M) of the manifold M for some N ≥ 0. The variables uix = ui,1, uixx = ui,2, . . . will
be called jet variables.

Introduce an operator ∂x : A(M)→ A(M) by

∂xf =
∂f

∂x
+
∂f

∂ui
ui,1 + · · ·+ ∂f

∂ui,s
ui,s+1 + . . . . (5.7.3)

Define spaces
A0,0 = A/R, A0,1 = A0,0 dx,

and an operator
d : A0,0 → A0,1, df := ∂xf dx. (5.7.4)

Denote
Λ0 = A0,1/dA0,0 (5.7.5)

the quotient and define an operator

d : A0,0 → A0,1, df := ∂xf dx. (5.7.6)

Elements of the quotient
Λ0 = A0,1/dA0,0 (5.7.7)
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will be written as “integrals over a circle” S1

f̄ :=

∫
f(x;u;ux, uxx, . . . )dx ∈ Λ0. (5.7.8)

They will also be called local functionals with densities f .

Define a symmetric bilinear form on A(M) by

< f, g >=

∫
f g dx. (5.7.9)

Its nondegeneracy follows from

Lemma 5.7.1 If
∫
fg dx = 0 for any g ∈ A(M) then f ∈ A is equal to zero.

The full ring F = F(L(M)) of functions on the formal loop space coincides with the
completed symmetric tensor algebra of local functionals Λ0

F = R⊕ Λ0 ⊕ Ŝ2Λ0 ⊕ Ŝ3Λ0⊕̂ . . . (5.7.10)

Elements of ŜkΛ0 are represented as multiple integrals of differential polynomials of k copies
of the variables ui(x1), . . . , ui(xk), u

i
x(x1), . . . , uix(xk) etc.∫

f(x1, . . . , xk;u(x1), . . . , u(xk);ux(x1), . . . , ux(xk), . . . )dx1 . . . dxk ∈ ŜkΛ0

(they are often called k-local functionals).

Define the variational bicomplexxδ xδ xδ
0 → A2,0

d→ A2,1
π→ Λ2 → 0xδ xδ xδ

0 → A1,0
d→ A1,1

π→ Λ1 → 0xδ xδ xδ
0 → A0,0

d→ A0,1
π→ Λ0 → 0xδ xδ xδ

0 0 0

where the entries Ak,l are elements of the total degree k + l in the Grassmann algebra with
generators δui,s and dx of the degree l in dx. The horizontal differentials are defined by

d : Ak,0 → Ak,1, dω = dx ∧ ∂xω, ∂xδu
i,s = δui,s+1. (5.7.11)

Elements of the factor
Λk = Ak,1/dAk,0

are called (local) k-forms on the loop space. k-forms will also be written as integrals∫
dx ∧ ω ∈ Λk, ω =

1

k!
ωi1s1;...;ikskδu

i1,s1 ∧ · · · ∧ δuik,sk ∈ Ak,0. (5.7.12)
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It is assumed that the coefficients
ωi1s1;...;iksk ∈ A

are antisymmetric wrt permutations of pairs of indices

ip, sp ↔ iq, sq.

Example 5.7.2 Any 1-form is represented as

φ =

∫
dx ∧ φiδui ∈ Λ1. (5.7.13)

Let us proceed to defining the vertical arrows of the bicomplex. For a monomial

ω = f δui1,s1 ∧ · · · ∧ δuik,sk

put

δω =
∑
t≥0

∂f

∂uj,t
δuj,t ∧ δui1,s1 ∧ · · · ∧ δuik,sk , (5.7.14)

and
δdx = 0.

Due to anticommutativity
δd = −dδ

the action of δ is well-defined also on the quotient Λk.

Example 5.7.3 Action of δ on Λ0 is given by

δ

∫
f dx =

∫
dx ∧

(∑
s

(−1)s∂sx
∂f

∂ui,s

)
δui ∈ Λ1 (5.7.15)

(the Euler–Lagrange differential).

We will use the following notations

δf̄

δui(x)
:=
∑
s

(−1)s∂sx
∂f

∂ui,s
(5.7.16)

for components of the 1-form. Here f̄ =
∫
f dx.

Theorem 5.7.4 For M=ball the rows and columns of the variational bicomplex are exact.

Example 5.7.5 A differential polynomial f is (locally) a total x-derivative iff

δf̄

δui(x)
= 0, i = 1, . . . , n.

The following statement is useful in the study of deformations of infinite-dimensional
Poisson brackets.

221



Example 5.7.6 (Inverse problem of caluclus of variations.) A system of ODEs

ω1(u;ux, uxx, . . . ) = 0, . . . , ωn(u;ux, uxx, . . . ) = 0

can be locally represented as the system of Euler–Lagrange equations

ωi =
δf̄

δui(x)
, i = 1, . . . , n

for some functional

f̄ =

∫
f(u;ux, . . . ) dx

iff the following equations

∂ωi
∂uj,s

=
∑
t≥s

(−1)t
(
t
s

)
∂t−sx

∂ωj
∂ui,t

(5.7.17)

hold true for any i, j = 1, . . . , n, s = 0, 1, . . . (the Helmholtz criterion).
(Hint: spell out the conditions of closedness

δω = 0 ∈ Λ2

of a 1-form
ω = ωi dx ∧ δui ∈ Λ1;

then use exactness of the variational bicomplex.

Example 5.7.7 A 2-form

ω =

∫
dx
(
ωi; j sδu

i ∧ δuj,s
)

is closed, δω = 0 ∈ Λ3, iff t+s∑
m=s

m−s∑
r=0

+
∑

m≥t+s+1

t∑
r=0

 (−1)m
(

m
r s

)
∂m−r−s
x

∂ωj;k t−r
∂ui,m

+
∂ωi;j s
∂uk,t

− ∂ωi;k t
∂uj,s

= 0 (5.7.18)

for any i, j, k = 1, . . . n, s = 0, 1, 2, . . . .

Corollary 5.7.8 Any solution to the equations (5.7.18) satisfying

ωi;j s =
∑
t≥s

(−1)t+1

(
t
s

)
∂t−sx ωj;i t

(antisymmetry) can be locally represented in the form

ωi;j s =
1

2

 ∂φi
∂uj,s

+
∑
t≥s

(−1)t+1

(
t

s

)
∂t−sx

∂φj
∂ui,t

 .
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5.8 Lagrangian submanifolds, generating functions and Hamilton–Jacobi
equation

Let V be a linear subspace in the symplectic space (R2n, ω).

Definition 5.8.1 The subspace V is called isotropic if

ω(X,Y ) = 0 ∀ X, Y ∈ V.

Lemma 5.8.2 Dimension of an arbitrary isotropic subspace in (R2n, ω) is less or equal than
n.

Proof: For a linear k-dimensional subspace V ⊂ R2n consider its orthogonal complement

V ⊥ := {X ∈ R2n | ω(X,Y ) = 0 ∀ Y ∈ V.}

Nondegeneracy of the bilinear form ω implies that dimV ⊥ = 2n− k. The isotropic subspace
belongs to its orthogonal complement, V ⊂ V ⊥. Therefore k ≤ 2n− k, ⇒ k ≤ n.

Definition 5.8.3 An n-dimensional isotropic subspace in a 2n-dimensional symplectic space
is called Lagrangian subspace.

Example 5.8.4 In the standard symplectic phase space (R2n, dp∧dq) the coordinate subspace
P with coordinates (p1, . . . , pn) is a Lagrangian subspace. Another example is given by the
coordinate subspace Q with coordinates (q1, . . . , qn). More generally, for any subset I ⊂
{1, 2, . . . , n} denote LI the coordinate subspace with coordinates(

pi1 , . . . , pik , q
j1 , . . . qjn−k

)
∈ LI , i1, . . . , ik ∈ I, j1, . . . , jn−k ∈ {1, 2, . . . , n} \ I. (5.8.1)

Clearly it is a Lagrangian subspace in R2n.

Consider now the case of an arbitrary symplectic manifold (M2n, ω).

Definition 5.8.5 A submanifold L ⊂ M2n is called isotropic if ω|L = 0. An isotropic
submanifold is called Lagrangian if dimL = n.

Clearly the tangent space TxL to an isotropic submanifold L ⊂ M for any x ∈ L is an
isotropic subspace in (TxM,ω|TxM ). A similar claim works for tangent spaces to a Lagrangian
submanifold.

The following alternative definition of a Lagrangian submanifold will also be useful. Recall
that the symplectic form ω can be locally represented as differential of a 1-form, ω = dα.

Definition 5.8.6 Let L ⊂M be a n-dimensional submanifold of a 2n-dimensional symplectic
manifold (M,ω). It is Lagrangian iff ∮

γ
α = 0 (5.8.2)

for an arbitrary sufficiently small closed contour γ ⊂ L.
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Lemma 5.8.7 The definitions 5.8.5 and 5.8.6 are equivalent.

Proof: Let L be a Lagrangian submanifold in the sense of the first definition. Restricting
the equation ω = dα onto L we obtain

d (α|L) = 0.

Due to Stokes theorem integrals of the closed 1-form α|L over small14 closed contours γ ⊂ L
are all equal to zero.

Conversely, choose a point x0 ∈ L and consider a function

S(x) =

∫ x

x0

α (5.8.3)

for x ∈ L sufficiently close to x0. The integral is taken along an arbitrary sufficiently small
path on L connecting x0 with x. Because of (5.8.2) this integral does not depend on the
choice of the integration path, so the function S(x) is well defined. One has

α|L = dS(x) ⇒ ω|L = d (α|L) = 0.

Consider a particular case of Lagrangian submanifolds in the standard phase space (R2n, dp∧
dq) represented as a graph

L = {(q, p) | pi = fi(q), i = 1, . . . , n}. (5.8.4)

Equivalently one can say that the projection of the Lagrangian manifold L onto the coordinate
subspace Q = (q1, . . . , qn) is a local diffeomorphism.

Proposition 5.8.8 For a sufficiently small piece of Lagrangian manifold of the form (5.8.4)
there exists a function S(q) such that

fi(q) =
∂S(q)

∂qi
, i = 1, . . . , n.

Proof: Put

S(q) =

∫ q

q0

(pdq)|L (5.8.5)

for an arbitrary point (q, f(q)) ∈ L. Using the second version 5.8.6 of the definition of
Lagrangian submanifold we conclude that the integral does not depend on the choice of
integration path on L. So the function S(q) on L is well defined. Differentiating the integral
wrt the upper limit we conclude that

pi =
∂S(q)

∂qi
, i = 1, . . . , n. (5.8.6)

14It suffices to consider closed contours homotopic to the trivial one consisting of one point.
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Definition 5.8.9 The function S(q) in the representation (5.8.6) is called the generating
function of the Lagrangian submanifold L.

Example 5.8.10 Consider a Lagrangian subspace L ⊂ R2n in the standard symplectic phase
space (R2n, dp ∧ dq). Assume that the projection

L→ Q = {(q1, . . . , qn)}

is one-to-one. Then the generating function of L is quadratic

L =

{
pi =

∂S(q)

∂qi

}
, S(q) =

1

2
Sijq

iqj (5.8.7)

for some symmetric n× n matrix (Sij).

The following statement will be important in understanding of the geometric origin of the
Hamilton–Jacobi equation.

Theorem 5.8.11 Let H be an arbitrary smooth function on a symplectic manifold (M2n, ω).
Assume that E ∈ R is a regular value of the function H, so the level surface H−1(E) ⊂M is
a smooth submanifold of the dimension 2n − 1. Consider a Lagrangian submanifold L ⊂ M
belonging to the level surface,

H|L ≡ E.

Then any integral curve of the Hamiltonian system

ẋ = {x,H}

that has a common point with L belongs entirely to L.

Proof: According to Corollary 5.3.3 the Hamiltonian vector field XH is tangent to the level
surface of the Hamiltonian. Assume that the integral curve of the Hamiltonian system passes
through the point x ∈ L but the tangent vector XH(x) does not belong to TxL. Choose
a basis Y1, . . . , Yn in the tangent space TxL to the Lagrangian submanifold. By definition
ω(Yi, Yj) = 0. From Lemma 5.3.4 it follows that ω(Y,XH) = 0 for any vector tangent to the
level surface of the Hamiltonian. Thus ω(Yi, XH) = 0, i = 1, . . . , n. In this way we obtain a
(n+ 1)-dimensional isotropic subspace in TxM spanned by the vectors Y1, . . . , Yn, XH . Such
a contradiction completes the proof of the Theorem.

Thus a Lagrangian submanifold L belonging to the level surface of the Hamiltonian is
fibered into trajectories of the Hamiltonian system. It can be constructed therefore by choos-
ing a submanifold L0 ⊂ L of codimension one transversal to the Hamiltonian vector field
and, then transporting L0 along the trajectories of the Hamiltonian flow.

The following Example explains connection of the setting of the Theorem with the (trun-
cated) Hamilton–Jacobi equation.
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Example 5.8.12 Let L be a Lagrangian submanifold in the standard symplectic phase space
(R2n, dp∧dq) belonging to the non-singular level surface H(q, p) = E. Assume that L has the

form p = ∂S0(q)
∂q for some function S0(q). Then the generating function satisfies the truncated

Hamilton–Jacobi equation

H

(
q,
∂S0(q)

∂q

)
= E. (5.8.8)

From above considerations it immediately follows

Corollary 5.8.13 Consider a (n− 1)-dimensional isotropic submanifold L0 in the (2n− 1)-
dimensional level surface H(q, p) = E. Assume that (1) the projection of L0 to the coordinate
q-space Q = {(q1, . . . , qn)} is injective, and (2) that the Hamiltonian vector field XH is
transversal to L0 at the points of L0. Then the submanifold

L = {(x0, x(t)) | x0 ∈ L0, x(t) is the solution to the system ẋ = {x,H} such that x(0) = x0}

spanned with trajectories x(t) of the Hamiltonian vector field for sufficiently small |t| is a
Lagrangian submanifold in (R2n, dp ∧ dq) belonging to the level surface of the Hamiltonian.
Every such Lagrangian submanifold can be obtained by this construction.

Example 5.8.14 Consider now a (n+ 1)-dimensional Lagrangian submanifold L in the ex-
tended phase space (R2n+2, dp∧dq−dE∧dt) (see Remark 5.1.17 above) belonging to the level
surface Ĥ = 0 of the Hamiltonian Ĥ = H(q, p)− E. Assume that the projection of L to the
coordinate space (q1, . . . , qn, t) is a local diffeomorphism. Like in the previous Example we
prove that the Lagrangian submanifold is spanned by trajectories of the Hamiltonian system

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
, ṫ = 1.

The generating function S(q, t) of such a Lagrangian submanifold satisfies

pi =
∂S(q, t)

∂qi
, E = −∂S(q, t)

∂t
.

The imposed condition L ⊂ {Ĥ = 0} spells out as the Hamilton–Jacobi equation for the
function S = S(q, t)

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0. (5.8.9)

Corollary 5.8.15 Let L0 =
{
q = ∂S0(q)

∂q

}
be a Lagrangian submanifold in the phase space(

R2n, dp ∧ dq
)
. For sufficiently small |t| consider the family Lt of Lagrangian manifolds

obtained by translations of L0 along trajectories of the Hamiltonian system ẋ = {x,H}.
Then

1) the family Lt ⊂ R2n spans a (n + 1)-dimensional Lagrangian submanifold L ⊂ R2n+2

belonging to the level surface Ĥ = 0 with the generating function

S(q, t) = S0(q) +

∫ t

0
[pdq −H(q, p)dt] (5.8.10)
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where the integration is taken along the integral trajectory (q(t), p(t)) of the Hamiltonian flow
starting from the point x0 = (q, ∂S0(q)/∂q) ∈ L0 to a point in Lt.

2) Any solution S(q, t) to the Hamilton–Jacobi equation (5.8.9) can be obtained in this
way.

Remark 5.8.16 We have proved that the problem of solving the Hamilton–Jacobi PDEs
(5.8.9) (or the truncated version (5.8.8)) can be reduced to integrating the corresponding
system of Hamiltonian ODEs. However, the technique based on the Hamilton–Jacobi equation
proved to be very powerful in solving Hamiltonian systems. The main point is the following
statement, due to Jacobi.

Theorem 5.8.17 Let S(q,Q) be a solution to the truncated Hamilton–Jacobi equation de-
pending on n independent parameters Q = (Q1, . . . , Qn),

H

(
q,
∂S(q,Q)

∂q

)
= E(Q). (5.8.11)

Assume validity of the following nondegeneracy condition

det

(
∂2S(q,Q)

∂qi ∂Qj

)
6= 0,

so that the system of equations

pi =
∂S(q,Q)

∂qi
, i = 1, . . . , n

can be locally resolved by smooth functions Q1(q, p), . . . , Qn(q, p). Then these functions are
pairwise commuting first integrals of the Hamiltonian system ẋ = {x,H}.

Proof: Introduce functions P1, . . . , Pn by

Pi = −∂S(q,Q)

∂Qi
, i = 1, . . . , n.

From the nondegeneracy condition it follows that P1, . . . , Pn, Q1, . . . , Qn is a system of
local coordinates. By definition one has

pdq − PdQ = dS(q,Q) ⇒ dp ∧ dq = dP ∧ dQ.

So, the new coordinates are also canonical.

One has a Lagrangian fibration

LQ :=

{
p =

∂S(q,Q)

∂q

}
over the n-dimensional coordinate space Q1, . . . , Qn. The Hamilton–Jacobi equation (5.8.11)
says that the restriction

H |LQ
depends only on Q but not on P . So, after the canonical transformation (q, p) 7→ (Q,P ) one
obtains

H(q, p), Q1(q, p), . . . , Qn(q, p) 7→ E(Q), Q1, . . . , Qn.
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The family Lt of Lagrangian submanifolds in the phase space obtained by moving L0 along
the trajectories of the Hamiltonian flow ẋ = {x,H} can be defined also for not necessarily
small values of the time parameter t. However, it can happen that, after some moment t0
the projection of Lt on the coordinate q-space will not be a diffeomorphism. In other words
for t > t0 the Lagrangian submanifold Lt will not be representable as a graph of the form
pi = fi(q). In order to describe this process in more details we will study below singularities
of projections of Lagrangian submanifolds. This study will also be related to topology of
Lagrangian Grassmannian.

5.9 Symplectic group

Definition 5.9.1 The symplectic group Sp(n) is the group of linear symplectomorphisms

A : R2n → R2n

of the symplectic phase space
(
R2n, ω = dp ∧ dq

)
, i.e.

ω (Ax,Ay) = ω (x, y) ∀ x, y ∈ R2n. (5.9.1)

Denote the 2n × 2n matrix of the linear map A by the same letter A. The definition
(5.9.1) can be rewritten in the matrix form

ATJ A = J (5.9.2)

where J is the standard antisymmetric matrix of the 2-form dp ∧ dq (see eq.(5.1.4) above).

Exercise 5.9.2 Prove that the matrix A satisfying (5.9.2) has detA = 1.

Hint: use the Liouville theorem.

Example 5.9.3 For n = 1 the group Sp(1) coincides with the group SL(2) of 2× 2 matrices
with determinant 1.

Consider the Lie algebra sp(n) of the group Sp(n). By definition it consists of symplectic
transformations close to identity,

A = 1 + δA+ higher order terms, δATJ + J δA = 0.

The corresponding linear vector field

X(x) = δAx

must be a symmetry of the symplectic structure. Thus it is a Hamiltonian vector field with
quadratic Hamiltonian

H(x) =
1

2
Qijx

ixj =
1

2

(
aijq

iqj + 2bji q
ipj + cijpipj

)
(5.9.3)
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where n× n matrices a = (aij) and c = (cij) are symmetric. The 2n× 2n matrix Q = (Qij)
of the quadratic Hamiltonian reads

Q =

(
a bT

b c

)
.

The matrix δA ∈ sp(n) is equal to

δA =

(
b c
−a −bT

)
.

Let δB be another infinitesimal symplectic transformation generated by a quadratic
Hamiltonian F (x). From Theorem 5.3.6 it follows that the commutator [δA, δB] is a Hamil-
tonian vector field generated by the quadratic Hamiltonian −{H,F}.

We arrive at the following

Theorem 5.9.4 The Lie algebra sp(n) of the symplectic group is isomorphic to the space of
quadratic Hamiltonians (5.9.3) with the Lie algebra structure given by the Poisson bracket
with negative sign.

So, the dimension of the Lie algebra sp(n) and, hence, of the group Sp(n) is equal to

dimSp(n) = n(2n+ 1).

We will now obtain another useful realization of the symplectic group. Define a com-
plex structure on R2n = Cn by introducing complex coordinates z = q + ip. Observe that
the matrix of the operator of multiplication by i =

√
−1 coincides with the matrix J of

the symplectic form. The group GL(n,C) of complex invertible linear transformations con-
sists of those invertible linear maps A : R2n → R2n that commute with the operator J of
multiplication by i.

Define also a Euclidean inner product on R2n by

ds2 =

n∑
i=1

(
dqi

2
+ dpi

2
)
.

Linear transformations preserving the Euclidean structure form the group O(2n).

So, we have three structures on R2n: a symplectic form, a complex structure, and a
Euclidean structure.

Lemma 5.9.5 A linear transformation R2n → R2n preserving two of the above structures
preserves also the third one.

Proof: We have to consider combinations of the following three conditions for the matrix
A ∈Mat(2n,R)

A ∈ Sp(n)⇔ ATJ A = J (5.9.4)

A ∈ Gl(n,C)⇔ AJ = JA and detA 6= 0 (5.9.5)
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A ∈ O(2n)⇔ ATA = 1. (5.9.6)

1) (5.9.4)+(5.9.5) imply
J = ATJ A = ATAJ ⇒ ATA = 1.

2) (5.9.4)+(5.9.6) imply
J = ATAJ = ATJ A.

3) (5.9.5)+(5.9.6) imply

AT = A−1 ⇒ ATJ A = A−1J A = A−1AJ = J.

Corollary 5.9.6 One has the following group isomorphisms

O(2n) ∩GL(n,C) = GL(n,C) ∩ Sp(n) = Sp(n) ∩O(2n) = U(n). (5.9.7)

Recall that the unitary group U(n) is defined as the subgroup of GL(n,C) consisting of
linear transformations preserving the Hermitean form dz dz̄. Observe that the real part of
the Hermitean form coincides with the above Euclidean structure while its imaginary part
coincides with the symplectic form.

Example 5.9.7 For n = 1 the symplectic group consists of 2 × 2 unimodular matrices (see
above). Complex linear transformations are multiplications by complex numbers a+ ib. Their

matrices are

(
a −b
b a

)
. In the intersection of these two families we obtain the matrices

of the form

(
cosφ − sinφ
sinφ cosφ

)
. This is a unitary transformation of the one-dimensional

complex space given by multiplication by ei φ.

5.10 Lagrangian Grassmannian

Definition 5.10.1 The set Λ(n) of all Lagrangian subspaces in the symplectic space (R2n, dp∧
dq) is called the Lagrangian Grassmannian.

Example 5.10.2 For n = 1 any line on the plane passing through the origin is Lagrangian.
So Λ(1) = RP1 ' S1.

We will now introduce a structure of a smooth manifold on Λ(n). We have already seen
that Lagrangian subspaces L ⊂ R2n projectable onto the coordinate Lagrangian q-subspace
Q = {(q1, . . . , qn)} can be represented as

L = {pi =
∂S(q)

∂qi
, i = 1, . . . , n}, S(q) =

1

2
Sijq

iqj .

Thus, one can use coefficients Sij = Sji of the quadratic generating function as coordinates
on the subset of Λ(n) of Lagrangian subspaces intersecting transversally the coordinate La-
grangian subspace P = {(p1, . . . , pn)}. Following this idea we will construct an atlas of 2n

charts on the Lagrangian submanifold using the following geometrical
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Lemma 5.10.3 For any Lagrangian subspace L ∈ Λ(n) there exists a subset I ⊂ {1, 2, . . . , n}
such that L ∩ LI = 0.

Recall (see Example 5.8.4 above) that LI is a coordinate Lagrangian subspace in R2n with
the coordinates

LI 3
(
qi1 , . . . , qik , pj1 , . . . , pjn−k

)
, i1, . . . , ik ∈ I, j1, . . . , jn−k ∈ J := {1, 2, . . . , n} \ I.

Proof: Consider the intersection T = L ∩ P of L with the coordinate Lagrangian subspace
P . Denote k = dimT . If k = 0 then we are done: take I = the empty set. Otherwise
choose a coordinate (n−k)-dimensional subspace V ⊂ P with the coordinates (pj1 , . . . , pjn−k)
intersecting transversally T :

T ∩ V = 0.

Denote J = {j1, . . . , jn−k} and take the complement I = {1, 2, . . . , n} \ J . Let us prove that
L ∩ LI = 0.

DenoteW the k-dimensional subspace with the coordinates
(
qi1 , . . . , qik

)
where {i1, i2, . . . , ik} =

I. By definition
LI = V ⊕W.

Assume that X ∈ L ∩ LI . Then, since X ∈ L we have

ω(X,L) = 0 hence ω(X,T ) = 0.

Next, since X ∈ LI we have

ω(X,LI) = 0 hence ω(X,V ) = 0.

By construction P = T ⊕ V , therefore ω(X,P ) = 0. Since P is a Lagrangian subspace we
deduce that X ∈ P . Therefore X ∈ P ∩ L = T , X ∈ P ∩ LI = V . But T ∩ V = 0, so X = 0.

According to the Lemma the Lagrangian Grassmannian can be covered by 2n charts UI
where I is an arbitrary subset of {1, 2, . . . , n} defined by

L ∈ UI ⇔ L ∩ LI = 0.

Equivalently, the projection of L ∈ Λ(n) onto the coordinate Lagrangian subspace LJ , J =
{1, 2, . . . , n} \ I is an isomorphism of linear spaces. Local coordinates on the chart UI can
be chosen taken coefficients of a quadratic generating function S(x), x ∈ LJ . We leave as an
exercise to verify that, on the intersections UI1 ∩ UI2 the transition functions are smooth.

As the number of subsets in {1, 2, . . . , n} is equal to 2n, we obtain an atlas of 2n charts

on the n(n+1)
2 -dimensional manifold Λ(n).

We will now give an alternative description of the Lagrangian Grassmannian representing
it as a homogeneous space of the unitary group U(n). Recall that the unitary group consists
of n× n complex matrices satisfying

ŪTU = 1.

Any real symmetric matrix satisfies this condition iff it is orthogonal. We obtain a natural
embedding O(n) ⊂ U(n). Also recall that, according to Lemma 5.10.3 the unitary group is a
subgroup in the symplectic group. Therefore it acts on the set of Lagrangian subspaces.
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Lemma 5.10.4 Λ(n) ' U(n)/O(n).

Proof: Fix a Lagrangian subspace L0 ∈ Λ(n). We want to obtain any other Lagrangian
subspace L by acting on L0 with a unitary transformation A ∈ U(n) ⊂ Sp(n). Choose
an orthonormal, with respect to the Euclidean structure on R2n, basis τ0 in L0 and an
orthonormal basis τ in L. The pairs (τ0, Jτ0) and (τ, Jτ) give us two orthonormal bases
in R2n. Consider the orthogonal transformation A ∈ O(2n) mapping the first basis to the
second one. By construction it commutes with the operator J of multiplication by i, that is
A ∈ GL(n,C). So A ∈ O(2n) ∩GL(n,C) = U(n).

We obtain an action of the unitary group on the Lagrangian Grassmannian. Clearly the
action is transitive. Let us describe the stabilizer of L0 with respect to this action of U(n)
on Λ(n). If the Lagrangian subspaces L and L0 coincide then τ and τ0 are two orthonormal
bases in the n-dimensional space, so the linear transformation A belongs to O(n).

Corollary 5.10.5 Λ(n) is a connected compact manifold.

From Lemma 5.10.4 we obtain a fibration U(n)→ Λ(n) with the fiber O(n). For example,
for n = 1 Λ(1) = RP1 ' S1, U(1) = S1, O(1) = {±1}. The fibration U(1) → S1 is a two-
sheet covering over the circle.

We will now construct an important fibration of the Lagrangian Grassmannian Λ(n) over
the circle. It is given by the square of determinant

det2 : Λ(n) = U(n)/O(n)→ S1. (5.10.1)

The map is well defined since (1) determinant of a unitary matrix is a complex number with
absolute value 1 and (2) determinant of an orthogonal matrix is equal to ±1, so the map
(5.10.1) does not depend on the choice of a representative in the coset ∈ U(n)/O(n).

Let us describe the fiber of the map det2 over a given point ei φ ∈ S1. It suffices to
consider the full preimage of the point 1 ∈ S1. Denote this preimage by

SΛ(n) := {L ∈ Λ(n) | det2(L) = 1}.

The subgroup SU(n) ⊂ U(n) of unitary matrices with determinant 1 acts transitively on
SΛ(n); the stabilizer of any point in SΛ(n) is isomorphic to SO(n). Therefore the fibers of
the det2-map can be identified with the quotient SU(n)/SO(n). By the way, it implies that
the fibers are connected.

We will now prove that the det2 map provides a generator in the cohomology group
H1(Λ(n),Z).

Lemma 5.10.6 π1(Λ(n)) = Z.

Proof: Consider a commutative diagram of fibrations

SO(n) → O(n)
det→ S0 = {±1}y y y

SU(n) → U(n)
det→ S1y y ye2i φ

SΛ(n) → Λ(n)
det2→ S1
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Applying the long exact sequence of the fibration15 in the first column

· · · → π1(SO(n))→ π1(SU(n))→ π1(SΛ(n))→ π0(SO(n))→ 0

one deduces from π1(SU(n)) = 1, π0(SO(n)) = 1 that SΛ(n) is simply-connected. From the
exact sequence of the fibration in the last line

· · · → π1(SΛ(n))→ π1(Λ(n))
det2→ π1(S1)→ π0(SΛ(n))→ 0

we obtain, using π1(SΛ(n)) = π0(SΛ(n)) = 1 and π1(S1) = Z that π1(Λ(n)) = Z.

The map det2 : Λ(n)→ S1 defines a 1-cocycle α ∈ H1(Λ(n),Z). Value of this cocycle on
a closed loop γ : S1 → Λ(n) is the degree of the through map

S1 γ→ Λ(n)
det2→ S1. (5.10.2)

Example 5.10.7 For a given L ∈ Λ(n) consider the closed curve γ(θ) = ei θL in Λ(n),
0 ≤ θ ≤ π (observe that multiplication by −1 belongs to the subgroup O(n)). We have
det
(
ei θ · 1

)
= ein θ, so det2

(
ei θ · 1

)
= e2in θ. Thus the value of the cocycle α on γ equals n.

For subsequent considerations it will be useful to construct local sections of the fibration
U(n)→ Λ(n) over every coordinate chart UI . Let us do it for the particular chart with I = ∅.
That is, the Lagrangian subspaces belonging to this chart are graphs of the form

L = {p = Sq} where S = (Sij) is a symmetric n× n matrix.

Define a complex n× n matrix U by

U =
1 + i S

1− i S
. (5.10.3)

The formula makes sense since 1 − iS is an invertible matrix. Indeed, all eigenvalues of the
symmetric matrix S are real.

Lemma 5.10.8 (i) The matrix U satisfies the following properties.

(1) U ∈ U(n).

(2) UT = U .

(3) det(U + 1) 6= 0.

(ii) For any matrix U satisfying the above three conditions define the matrix

S = i
1− U
1 + U

. (5.10.4)

15Recall that for a fibration p : E → B with the base B, the fiber p−1(pt) =: F and the total space of
fibration E one has a long exact sequence of homotopy groups

· · · → πi(F )→ πi(E)→ πi(B)→ πi−1(F )→ · · · → π0(E)→ 0.
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It satisfies

(4) It has real entries.

(5) ST = S.

(6) The matrix
√
U := 1+iS√

1+S2
is symmetric, unitary and it satisfies

(√
U
)2

= U .

(7) The matrix
√
U maps the Lagrangian subspace L∅ to L = {p = Sq}.

Proof: Applying the Hermitean conjugation U∗ = ŪT to the matrix (5.10.3) obtain

U∗ =
1− iS
1 + iS

= U−1.

Symmetry of the matrix U is obvious. To prove the third statement we observe that (U +
1)−1 = 1

2(1− iS).

Proof of the formula (5.10.4) as well as of the properties (4)–(6) is straightforward. In
order to verify the last statement of the Lemma first observe that the real n × n matrix√

1 + S2 maps L∅ to itself. So, it suffices to check that the matrix 1 + iS maps L∅ to L.
Indeed, the real and imaginary parts of the vector z = (1 + iS)q are

<z = q, =z = Sq.

Hence z ∈ L.

Corollary 5.10.9 The value of the det2 map at the point L = {p = Sq} in U∅ ⊂ Λ(n) is
equal to

det2(L) = det
1 + i S

1− i S
. (5.10.5)

5.11 Maslov index

Our next goal is to represent the cocyle α ∈ H1(Λ(n),Z) by intersection with a cycle of
codimension 1.

For a given integer k ≥ 0 and a given Lagrangian subspace L0 ∈ Λ(n) consider the subset

Λk(n,L0) = {L ∈ Λ(n) | dimL ∩ L0 = k}. (5.11.1)

Lemma 5.11.1 Λk(n,L0) is an open submanifold in Λ(n) of codimension k(k+1)
2 .

Proof: Consider the set of symmetric n× n matrices of corank k. Let us prove that this set
has codimension k(k+1)

2 in the space of all symmetric matrices.

Assume that there exists a nondegenerate principal (n− k)× (n− k) minor(
Sipiq

)
1≤p, q≤n−k .

Write

S =

(
A B
BT C

)
, AT = A, CT = C
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where the (n− k)× (n− k) block A has nonzero determinant. Eliminating the BT -block we
obtain (

A−1 0
−BT A−1 1

)(
A B
BT C

)
=

(
1 A−1B
0 C −BTA−1B

)
.

This matrix has corank k iff the symmetric k×k matrix C−BTA−1B is equal to zero. This
imposes k(k+1)

2 equations on S.

The above calculation proves the statement of the Lemma for the case L0 is the coordinate
q-subspace. For any other choice the proof is similar.

The concrete realization of the cycle Λ1(n) as a subset in the Lagrangian Grassmannian
clearly depends on the choice of the subspace L0. Choose

L0 = {q1 = · · · = qn = 0}. (5.11.2)

Exercise 5.11.2 For the choice (5.11.2) prove that U∅ ∩ Λ1(n) = ∅.

We will now choose a subset of n charts of the form UI covering Λ1(n). For any k = 1, . . . , n
denote Lk the coordinate Lagrangian subspace with coordinates

Lk = {(q1, . . . , q̂k, . . . , qn, pk)}. (5.11.3)

Here and below a hat means that this coordinate is omitted from the list. For the corre-
sponding coordinate chart UI , I = {1, 2, . . . , k̂, . . . , n} the short notation

Uk := U{1,2,...,k̂,...,n}

will be used. Recall that this chart consists of Lagrangian subspaces projectable onto Lk.

Lemma 5.11.3 Let L(t), |t| < ε for a sufficiently small ε be a smooth curve in Λ(n) having
a unique intersection point with Λ1(n) at t = 0. Then there exists k ∈ {1, 2, . . . , n} such that,
for small |t| the curve belongs to the chart Uk, i.e., it can be represented in the form

pi = pi (q1, . . . , q̂k, . . . , qn, pk; t) =
∑
j 6=k

Rij(t)qj +Rik(t)pk, i 6= k

qk = qk (q1, . . . , q̂k, . . . , qn, pk; t) =
∑
j 6=k

Rkj(t)qj +Rkk(t)pk (5.11.4)

for some smooth functions Rij(t).

Proof: Consider the case of a family of Lagrangian subspaces L(t) belonging to the chart
U{1,2,...,n}. They can be represented in the form

qi =
n∑
j=1

Sij(t)pj , i = 1, . . . , n (5.11.5)
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for some symmetric matrix Sij(t) smoothly depending on t. L(t0) belongs to Λ1 for some t0,
i.e., by definition, dimL(t0) ∩ L0 = 1 iff the rank of the matrix S(t0) = (Sij(t0)) is equal to
n− 1. Then there exists a nonzero vector v = (v1, . . . , vn) in the kernel of Sij(t0),

S(t0)v = 0.

The vector v is determined uniquely up to a nonzero factor. We will derive the representation
of the form (5.11.4) under the condition vk 6= 0. It suffices to consider the particular case
vn 6= 0. Then the (n− 1)× (n− 1) minor

Sij(t0), i, j = 1, . . . , n− 1

does not degenerate. Write

S =

(
A b
bT c

)
where A = (Sij(t))1≤i, j≤n−1, b = (b1, . . . , bn)T , bi = Sin(t), c = Snn(t). The matrix A
does not degenerate. So, eqs. (5.11.5) can be resolved for p1, . . . , pn−1, qn. This yields a
representation of the Lagrangian subspace L(t) as a graph of a (linear) function on Ln:

p1

·
·
·

pn−1

qn

 =



A−1 −A−1b

bTA−1 c− bTA−1b





q1

·
·
·

qn−1

pn


This completes the proof of Lemma for L(t) belonging to the chart U{1,2,...,n}. For other
charts the proof is analogous.

Corollary 5.11.4 Intersection of the curve (5.11.4) with Λ1(n) is determined by the equation

∂qk
∂pk
≡ Rkk(t) = 0. (5.11.6)

The curve γ(t) is transversal to the cycle Λ1(n) at the point γ(t0) ∈ Λ1(n) iff t = t0 is a
simple zero of Rkk(t)

Proof: Let L(t) be represented in the form (5.11.4). For the points in the intersection L∩L0

we have
pi = Rik(t)pk, i 6= k, 0 = Rkk(t)pk.

For Rkk(t) 6= 0 the set L(t) ∩ L0 consists of one point 0. This proves the Corollary.

According to the above statements the intersection points of the curve γ(t) with the part
of the cycle Λ1(n) belonging to Uk are determined by the equation

∂qk
∂pk

= 0 where qk = qk (q1, . . . , q̂k, . . . , qn, pk) .

If the intersection is transversal then this derivative changes sign at the intersection point.
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Definition 5.11.5 The positive/negative side of the cycle Λ1(n) is defined by the condition

∂qk
∂pk

< 0 /
∂qk
∂pk

> 0

respectively.

Example 5.11.6 Let us first consider the case n = 1. Consider the circle

q = cos θ

p = sin θ

on the (q, p)-plane. The Lagrangian Grassmannian Λ(1) can be obtained by identifying the
opposite points on the circle. Thus

(q, p) = (cos θ, sin θ) , −π
2
≤ θ ≤ π

2
(5.11.7)

can be considered as a closed curve on Λ(1). Let us look at the intersection of this curve
with the cycle Λ1 = Λ1(1, L0). Choose L0 = {p = 0}. Then the cycle Λ1 is the point
(1, 0) ∼ (−1, 0). The curve (5.11.7) intersects Λ1 at one point θ = 0. Near this point the
curve can be represented as a graph q = q(p). One has

dq

dp
=
dq/dθ

dp/dθ
= − tan θ.

So, the curve (5.11.7) is on the negative side dq/dp > 0 of the cycle Λ1 for θ < 0 and on the
positive side for θ > 0. At θ = 0 the derivative dq/dp has a simple zero. Thus the intersection
index of the curve (5.11.7) with the cycle Λ1 is equal to +1.

Let us now compute the value of the cocycle defined by the degree of the det2 map on the
curve (5.11.7). In the complex coordinates the curve reads

q + ip = eiθ.

So
2

det(θ) = e2iθ.

To compute the degree of the map S1 → S1,

θ 7→ e2iθ

it suffices to count the algebraic number of preimages of the point 1. Within the range π
2 ≤

θ ≤ π
2 the only point in the preimage is θ = 0. It is easy to see that the map is orientation-

preserving near θ = 0. Thus the degree of the det2 map on the closed loop (5.11.7) is equal
to +1. As H1(Λ(n),Z) ' π1(Λ(n)) = Z we conclude that, for n = 1 the value of the det2

cocycle on any closed oriented loop in Λ(1) coincides with the intersection index of the loop
with the cycle Λ1. In other words, the det2 cocycle is dual to the cycle Λ1(1).

Let us proceed to the general case. For a given L ∈ Λ1(n) consider the curve γ(θ) = eiθL.
For θ = 0 it crosses the cycle Λ1(n).
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Lemma 5.11.7 The curve γ(θ) intersects transversally the cycle Λ1(n).

Proof: Let us first compute the curve γ(θ) for L ∈ U∅, L = {p = Sq} = {(1 + iS)q}. We
have

eiθL = (cos θ − sin θ S)q + i(sin θ + cos θ S)q = (cos θ − sin θ S)

[
q + i

sin θ + cos θ S

cos θ − sin θ S
q

]
.

So, the curve γ(θ) for sufficiently small |θ| belongs to the chart U∅ and the corresponding
symmetric matrix S(θ) reads

S(θ) =
sin θ + cos θ S

cos θ − sin θ S
. (5.11.8)

The velocity vector of this curve at the initial point

d

dθ
S(θ)|θ=0 = 1 + S2

is a symmetric positive definite matrix.

A similar calculation can be repeated for the Lagrangian subspace L in Λ1(n) assum-
ing that L is projectable onto one of the coordinate Lagrangian subspaces. Introduce the
canonical coordinates Q1, . . . , Qn, P1, . . . , Pn, dp ∧ dq = dP ∧ dQ, on the set of Lagrangian
subspaces projectable onto Lk by

Qi = qi, i 6= k, Qk = −pk
Pi = pi, i 6= k, Pk = qk.

In these coordinates the Lagrangian subspace L reads L = {P = SQ} for some symmetric
matrix S. Repeating the above calculation we obtain again that the velocity vector of the
curve γ(θ) = eiθL at the point γ(0) ∈ Λ1(n) corresponds to a positive definite symmetric
matrix 1 + S2. According to Lemma 5.11.3 the velocity vector is not transversal to Λ1(n)
iff its diagonal entry d

dθSkk(θ)|θ=0 =
(
1 + S2

)
kk

is equal to zero. But all diagonal entries of
a positive definite symmetric matrix are positive. This contradiction completes the proof of
the Lemma.

Theorem 5.11.8 The oriented cycle Λ1(n) ⊂ Λ(n) is dual to the cocycle det2 ∈ H1(Λ(n),Z).

Proof: Consider the closed curve γ(θ) = eiθL, 0 ≤ θ ≤ π in Λ(n). We already know that the
value of the cocycle det2 on this curve is equal to n (see Example 5.10.7 above). It remains to
prove that the number of intersection points of this curve with the cycle Λ1(n) is also equal
to n.

Let the Lagrangian subspace L ∈ Λ0(n) have the form L = {q + iSq} for a symmetric
matrix S. Denote U = 1+iS

1−iS ∈ U(n) the corresponding symmetric unitary matrix satisfying
det(1 + U) 6= 0 such that

S = S(U) = i
1− U
1 + U

(see Lemma 5.10.8 above). For the rotated subspace eiθL the corresponding symmetric matrix
S(θ) reads

S(θ) =
sin θ + cos θ S

cos θ − sin θ S
= i

1− e2iθU

1 + e2iθU
.
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This Lagrangian subspace fails to belong to Λ0(n) iff

det
(

1 + e2iθU
)

= 0. (5.11.9)

Let us compute the number of solutions to this equation wrt θ.

Denote eiφ1 , . . . , eiφn the eigenvalues of the matrix U . By assumption they satisfy

|φk| < π, k = 1, . . . , n.

Without loss of generality we can assume that all the eigenvalues are distinct. Equation
(5.11.9) reduces to

θ ≡ π − φk
2

modπ.

There are exactly n solutions to this equation on the interval (0, π). Like in Example 5.11.6
it is easy to see that all intersection points have to be counted with +1 sign. That is, the
intersection index of the curve with the oriented cycle Λ1(n) is equal to n.

On another side, value of the det2 cocycle on the curve eiθL is equal to the degree of the
following map θ → S1, 0 ≤ θ ≤ π

det
1 + iS(θ)

1− iS(θ)
= det

(
e2iθU

)
.

This degree is also equal to n.

We have proved that the intersection index of the curve γ with the cycle Λ1(n) is equal
to the value of the basic cocycle

det2 ∈ H1(Λ(n),Z).

This means that the cycle Λ1(n) is dual to the cocycle det2.

5.12 Applications to quasiclassical asymptotics of solutions to Schrödinger
equation

The Schrödinger equation for the wave function ψ = ψ(x, t; ~) is a linear partial differential
equation depending on a small parameter ~. It is one of the main object in quantum mechan-
ics. Here we consider the simplest case of the Schrödinger equation for a particle of mass m
in the n-dimensional space with a potential U(x)

i~
∂ψ

∂t
= Ĥψ, Ĥ := − ~2

2m
∆ + U (x) (5.12.1)

Here

∆ =

n∑
k=1

∂2

∂x2
k

is the Laplace operator. The stationary version of the Schrödinger equation

Ĥψ = Eψ (5.12.2)
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depending on a parameter E will also be under consideration.

The study of behaviour of solutions to Schrödinger equation in the limit ~ → 0 is an
important point in the analysis of correspondence between classical and quantum mechanics.
Locally the asymptotic solutions are supposed to have the form

ψ = e
i
~S (5.12.3)

where S admits an asymptotic expansion in positive powers of ~

S ∼ S0(x, t) + ~S1(x, t) + ~2S2(x, t) + . . . (5.12.4)

For the leading term the Schrödinger equations (5.12.1) and (5.12.2) reduce to the Hamilton–
Jacobi equation

∂S0

∂t
+H

(
x,
∂S0

∂x

)
= 0 (5.12.5)

and the truncated Hamilton–Jacobi equation

H

(
x,
∂S0

∂x

)
= E (5.12.6)

respectively. Here the Hamiltonian16 is given by

H (x,p) =
p2

2m
+ U(x). (5.12.7)

It is often called classical Hamiltonian while the operator Ĥ is obtained by its quantization.

As we already know, solutions to the truncated Hamilton–Jacobi equation are generat-
ing functions of Lagrangian submanifolds in the symplectic space

(
R2n, dp ∧ dx

)
belonging

to the energy level surface H(x,p) = E. A geometric interpretation of solutions to the
full Hamilton–Jacobi equation takes us to the study of families of Lagrangian submanifolds
transported by the Hamiltonian flow

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

Such a geometric interpretation suggests that the quasiclassical asymptotics (5.12.3), (5.12.4)
work only before arriving at singularities of projections of the Lagrangian submanifolds. It
turns out that the description of the global structure of the quasiclassical solutions involves
Maslov index of the Lagrangian submanifolds.

We will begin with considering the simplest case of quasiclassical asymptotics of stationary
Schrödinger equation for n = 1,

−~2

2
ψ′′ + u(x)ψ = E ψ (5.12.8)

(we put m = 1). To derive the structure of the asymptotic expansion (5.12.3), (5.12.4) it is
convenient to do the substitution

ψ = e
i
~
∫ x σ dx.

16In this section we will use the notations (x1, . . . , xn) = x for the canonical coordinates in the Hamiltonian
formalism.
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For the function σ obtain a Riccati equation

−i ~σ′ + σ2 + 2(u− E) = 0. (5.12.9)

Look for a solution in the form of a power series in ~

σ = σ0 + ~σ1 + ~2σ2 + . . .

This gives
σ0 = ±

√
2(E − u)

σ1 = − i
4

u′

E − u
=
i

4

d

dx
log(E − u)

etc. This implies the following structure of the quasiclassical solution

ψ± = (E − u(x))−1/4 exp

[
± i
~

∫ x√
2(E − u(x)) dx

]
(1 +O (~)) . (5.12.10)

We see that the function S0 from (5.12.3), (5.12.4) in this example has the form

S0 = ±
∫ x√

2(E − u(x)) dx.

So, it satisfies the truncated Hamilton–Jacobi equation

H
(
x, S′0(x)

)
= E, where H(x, p) =

p2

2
+ u(x).

Observe that, on the energy level surface

p2

2
+ u(x) = E (5.12.11)

one has
p = ±

√
2(E − u(x)).

Thus the phase function S0 coincides with the generating function of the Lagrangian curve
H = E

S0 =

∫ x

p dx. (5.12.12)

We will us assume that the potential u(x) is a bounded from below smooth function of
x ∈ R going sufficiently fast to +∞ for x → ±∞. The quasiclassical solution (5.12.10) has
different properties in two regions

u(x) < E, oscillatory behaviour

and
u(x) > E, exponential growth/decay.

A natural question to be addressed now is in matching of the two asymptotic solutions near
a turning point x0 such that u(x0) = E. At this point the projection of the Lagrangian curve
(5.12.11) onto the x-axis becomes singular.
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Consider the case of a largest turning point x0, i.e., u(x) > E for x > x0. Assume that
u(x)−E has a simple zero at x = x0. For x > x0 choose the exponentially decaying solution

ψright = (u(x)− E)−1/4 exp

[
−1

~

∫ x

x0

√
2(u(x)− E)

]
(1 +O (~)) . (5.12.13)

On the left of the turning point we have two oscillatory solutions (5.12.10). We want to find
coefficients C± such that (5.12.13) and

ψleft = C+ψ+ + C−ψ− (5.12.14)

were the asymptotic expansions of the same solution to the Schrödinger equation (5.12.8) in
the regions x > x0 and x < x0 respectively.

Proposition 5.12.1 If the asymptotic expansions (5.12.13), (5.12.14) correspond to the same
solution of eq. (5.12.8) then

C± = e±
πi
4 .

We will outline the idea of derivation of the above proposition. It is based on calculation
of the asymptotic behaviour of solutions to the Schrödinger equation near the turning point
x0. Write

u(x)− E = a0(x− x0) + a1(x− x0)2 + . . . , a0 6= 0

the Taylor expansion near the turning point. Assume that x0 is the right end point of the
interval u(x) ≤ E, so a0 > 0. After a change of the independent variable

x 7→ x̄, x− x0 = λ x̄, λ =
~2/3

(2a0)1/3

the equation (5.12.8) becomes

d2ψ

dx̄2
−
[
x̄+O

(
~2/3

)]
ψ = 0.

This suggests that, modulo small corrections the solutions to the Schrödinger equation near
a turning point can be approximated by solutions to Airy equation

y′′ − x y = 0. (5.12.15)

Solutions to eq. (5.12.15) are entire functions of the complex variable x ∈ C. They can be
represented by a contour integral

y(x) =

∫
γ
e−

λ3

3
+λxdλ (5.12.16)

where the integration contour γ goes to infinity such that

<
(
−λ

3

3
+ λx

)
→ 0, x→∞, x ∈ γ

To this end the tails of the contour γ must go to infinity in such a way that

<(λ3)|γ → +∞.
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For different choices of the contour we obtain different solutions. They depend on the ho-
mology class of γ in the relative homology H1(C, {<(λ3) >> 0}). In particular, integrating
along the imaginary axis we obtain, after a change of the integration variable λ = i t and
multiplication of (5.12.16) by a suitable constant the solution

Ai(x) =
1

2πi

∫ i∞

−i∞
e−

λ3

3
+λxdλ =

1

π

∫ ∞
0

cos

(
1

3
t3 + x t

)
dt (5.12.17)

called Airy function.

Let us describe the asymptotic behaviour of Airy function for large |x|. They can be
obtained using the method of steepest descent. First, consider the case x→ +∞. The phase
−1

3λ
3 + xλ has a critical points at λ = ±

√
x. The direction of the steepest descent goes in

the vertical direction. Move the integration from the imaginary axis to the line <(λ) = −
√
x.

Denote s the parameter along this line,

λ = −
√
x+ i s.

After the substitution

−λ
3

3
+ λx = −2

3
x3/2 −

√
x s2 +

i s3

3
one obtains

Ai(x) ' 1

2π

∫ ∞
−∞

e−
2
3
x3/2−

√
x s2ds ' e−

2
3
x3/2

2
√
πx1/4

, x→ +∞. (5.12.18)

The case x→ −∞ can be treated in a similar way. In this case one has two critical points
of the phase

λ = i
√
|x| and λ = −i

√
|x|.

The steepest descent directions make angle ∓π
4 with the real line. Integrate along the broken

line

λ(s) =

{ √
|x|+ s e

πi
4 , −∞ < s ≤ 0√

|x|+ s e−
πi
4 , 0 ≤ s <∞

we obtain, after simple calculations

Ai(x) ' 1√
π

cos
(

2
3 |x|

3/2 − π
4

)
|x|1/4

. (5.12.19)

Coming back to the problem of matching of asymptotic expansions of solutions to Schrödinger
equation (5.12.8) in the regions x > x0, x ∼ x0, x < x0 recall that the independent variable
in the Airy equation is related to the “physical” coordinate by a shift and rescaling

x̄ = (2a0)1/3x− x0

~2/3
.

So, the asymptotics (5.12.18), (5.12.19) of the Airy solution ψ(x) = Ai(x̄) in the physical
coordinates become

ψ ∼


C

exp

(
− 2
√

2a0
3~ (x−x0)3/2

)
2(x−x0)1/4

, x > x0

C
cos

(
2
√

2a0
3~ |x−x0|3/2−π4

)
|x−x0|1/4

, x < x0

(5.12.20)
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where
C = (2a0)

1
12~

1
6 .

But, for x > x0 one has∫ x

x0

√
2(u(x)− E) dx =

∫ x

x0

√
2a0(x− x0) + . . . dx ' 2

3

√
2a0(x− x0)3/2.

So, the solution ψright (see eq. (5.12.13) above) for x near x0 behaves as

ψright(x) ∼ a−
1
4

0

e−
2
√

2a0
3~ (x−x0)3/2

(x− x0)1/4
, x > x0.

In a similar way on the left of x0, x ∼ x0 from (5.12.14) one obtains

ψ±(x) ∼ a−
1
4

0

e±i
2
√

2a0
3~ |x−x0|3/2

|x− x0|1/4
, x < x0.

Multiplying the solution ψ(x) = Ai
(

(2a0)1/3 x−x0
~2/3

)
by a suitable constant we see that all the

three asymptotic expansions match one another if the coefficients C± are equal to e±
π i
4 .

Observe that, a similar calculation at the left turning point x0 produces the same result,
as in this case, a0 < 0, the solution

ψleft(x) ∼ (−a0)−
1
4
e−

2
√
−2a0
3~ (x0−x)3/2

(x0 − x)1/4
, x < x0

exponentially decays at x→ −∞ and the oscillatory solutions have the form

ψ±(x) ∼ (−a0)−
1
4
e±i

2
√
−2a0
3~ |x−x0|3/2

|x− x0|1/4
, x > x0.

Consider now the global behaviour of the quasiclassical solution

ψ ∼ 1
√
p
e
i
~
∫
p dx.

Consider the simplest case of a potential u(x) with one minimum at x = xmin and monotone
descreasing/increasing on the left/on the right of xmin. Denote x0 < x1 the two turning
points u(x) = E. The quasiclassical solution exponential decays outside the interval [x0, x1].
Inside the interval it oscillates. From the above computations it follows that

ψ ∼ c0√
p

cos

(
1

~

∫ x

x0

p dx− π

4

)
, x > x0

and

ψ ∼ c1√
p

cos

(
1

~

∫ x

x1

p dx− π

4

)
, x < x1
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for some constants c0, c1. These two asymptotics agree on the interval [x0, x1] iff

c0 cos

(
1

~

∫ x1

x0

−π
4

)
= c1 cos

π

4

that implies
1

~

∫ x1

x0

p dx− π

2
= π n, c1 = (−1)nc0.

The last equation can be rewritten in the form of the Bohr–Sommerfeld quantization condition

1

2π

∮
p dx = ~

(
n+

1

2

)
. (5.12.21)

Exercise 5.12.2 Prove that the quasiclassical wave function satisfying (5.12.21) has n zeroes
on the interval (x0, x1).

The quantity

I(E) :=
1

2π

∮
p dx (5.12.22)

is the action variable of the Hamiltonian system

ẋ = p, ṗ = −u′(x)

evaluated on the closed Lagrangian curve

p2

2
+ u(x) = E.

The quantization condition (5.12.21) selects as discrete subset E = En,

I(En) = ~
(
n+

1

2

)
(5.12.23)

of the Lagrangian curves that correspond to quasiclassical asymptotics of the eigenvalues of
the Schrödinger operator Ĥ. The roots of eq. (5.12.23) provide a good approximation for
actual eigenvalues at the limit E →∞.

The quantization condition (5.12.21) admits a generalization to the multidimensional case.
Quasiclassical eigenfunctions of the truncated Schödinger equation (5.12.2) are associated
with n-dimensional Lagrangian submanifolds M ⊂ R2n belonging to the level surfaces of the
Hamiltonian

H|L ≡ E.

An analogue of the Bohr–Sommerfeld quantization condition imposes a series of restrictions
onto the Lagrangian submanifold M . They have the form

1

2π~

∮
C
p dx ≡ 1

4
α(C) (modZ) ∀ C ∈ H1(M,Z). (5.12.24)

Here α ∈ H1(M,Z) is the pullback, with respect to the analogue of the Gauss map

M → Λ(n)
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of the Maslov class denoted by the same letter α ∈ H1 (Λ(n),Z). We see that this condition
depends only on the class of α in H1(M,Z/4Z).

In the particular case n = 1 the general quantization condition (5.12.24) reduces to the
classical Bohr–Sommerfeld condition (5.12.21). Indeed, let the cycle C coincide with the

level curve p2

2 + u(x) = E going counterclockwise. Then the full preimage of the Maslov
cycle Λ1(1) ∈ H0(Λ(1) = S1,Z) consists of two points (x0, 0) and (x1, 0). According to the
orientation introduced above both points are counted with the multiplicity +1. Therefore
α(C) = 2, so we arrive at the quantization condition (5.12.21).

Let us now briefly discuss quasiclassical solutions to the time-dependent Schrödinger
equation (5.12.1). The initial data for these solutions consist of

• a Lagrangian submanifold L0 ⊂
(
R2n, dp ∧ dq

)
;

• a 1/2-density A0 on this submanifold.

We will consider only the particular case of initial Lagrangian submanifolds represented
as graphs of functions of q,

L0 = {p =
∂S0

∂q
}.

In the q-coordinates the 1/2-density is represented by a function A0(q). The semiclassical
initial data for the Schrödinger equation then has the form

ψ0(q) ∼ A0(q)e
i
~S0(q). (5.12.25)

The solution to the semiclassical Cauchy problem (5.12.1), (5.12.25) will be described in
terms of the family Lt of Lagrangian manifolds obtained from L0 by shifting along trajectories
of the Hamiltonian flow

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

Denote gt the one-parameter group of symplectomorphisms

(q, p)→ gt(q, p)

generated by the Hamiltonian vector field. Denote

Q = gt

(
q,
∂S0(q)

∂q

)
= Q(q)

the restriction of gt onto L0.

The shifted Lagrangian submanifold

Lt = gt(L0)

is not necessarily projectable onto the q-space. Let Q be not a critical value of the projection
of Lt onto the q-space. That is, for a given Q there are few points of the form (Q,Pj) ∈ Lt,
and the q-projection is a local diffeomorphism near every point (Q,Pj).

Every such point (Q,Pj) is the end point of an integral curve γj(θ) starting at a point
xj = (qj , pj) ∈ L0,

γj(0) = (qj , pj), γj(t) = (Q,Pj), j = 1, 2, . . .
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Assume nonvanishing of the Jacobians

det

(
∂Q

∂qj

)
6= 0, j = 1, 2, . . . (5.12.26)

Under this assumption the q-coordinates near the point (qj , pj) ∈ L0 can be used as local
coordinates on Lt near the point (Q,Pj).

The family of Lagrangian submanifolds Lt span a (n + 1)-dimensional Lagrangian sub-
manifold in the extended phase space

L̂ =
⋃

0≤θ≤t
Lθ ⊂

(
R2n+2, dp ∧ dq − dE ∧ dt

)
.

Denote
γ̂j(θ) = (γj(θ), θ,H(q(θ), p(θ))

the lift of the curve γj(θ) to the extendend phase space. As we already know the generating
function of the Lagrangian submanifold Lt near the point (Q,Pj) can be represented by the
integral

Sj(Q, t) = S0(qj) +

∫ t

0
[p dq −H(q, p)dθ] (5.12.27)

where the integration is taken along the integral curve γ̂j(θ). Finally denote µj the sum of
Maslov indices of all turning points on the curve γ̂j(θ), 0 ≤ θ ≤ t.

Theorem 5.12.3 (J.Keller; V.Maslov; V.Arnold) Solution to the quasiclassical initial value
problem (5.12.1), (5.12.25) has the form

ψ(Q, t) =
∑
j

A0(qj)

∣∣∣∣det

(
∂qj
∂Q

)∣∣∣∣1/2 e i~Sj(Q,t)−π i2 µj . (5.12.28)
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