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Abstract

Starting from a so-called flat exact semisimple bihamiltonian struc-
tures of hydrodynamic type, we arrive at a Frobenius manifold struc-
ture and a tau structure for the associated principal hierarchy. We
then classify the deformations of the principal hierarchy which possess
tau structures.
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1 Introduction

The class of bihamiltonian integrable hierarchies which possess hydrody-
namic limits plays an important role in the study of Gromov–Witten invari-
ants, 2D topological field theory, and other research fields of mathematical
physics. In [15] the first- and third-named authors of the present paper
initiated a program of classifying deformations of bihamiltonian integrable
hierarchies of hydrodynamic type under the so-called Miura type transfor-
mations. They introduced the notion of bihamiltonian cohomologies of a
bihamiltonian structure and converted the classification problem into the
computation of these cohomology groups. The first two bihamiltonian co-
homologies for semisimple bihamiltonian structures of hydrodynamic type
were calculated in [17, 31], and it was proved that the infinitesimal defor-
mations of a semisimple bihamiltonian structure of hydrodynamic type are
parametrized by a set of smooth functions of one variable. For a given defor-
mation of a semisimple bihamiltonian structure of hydrodynamic type these
functions c1(u

1), . . . , cn(u
n) can be calculated by an explicit formula repre-

sented in terms of the canonical coordinates u1, . . . , un of the bihamiltonian
structure. These functions are invariant under the Miura type transforma-
tions, due to this reason they are called the central invariants of the deformed
bihamiltonian structure.

Emails: dubrovin@sissa.it, liusq@tsinghua.edu.cn, youjin@tsinghua.edu.cn
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In [33], the second- and third-named author of the present paper con-
tinued the study of the above mentioned classification problem. They refor-
mulated the notion of infinite dimensional Hamiltonian structures in terms
of the infinite jet space of a super manifold, and provided a framework
of infinite dimensional Hamiltonian structures which is convenient for the
study of properties of Hamiltonian and bihamiltonian cohomologies. One
of the main results which is crucial for the computation of bihamiltonian
cohomologies is given by Lemma 3.7 of [33]. It reduces the computation of
the bihamiltonian cohomologies to the computations of cohomology groups
of a bicomplex on the space of differential polynomials, instead of on the
space of local functionals. Based on this result, they computed the third
bihamiltonian cohomology group of the bihamiltonian structure of the dis-
persionless KdV hierarchy, and showed that any infinitesimal deformation
of this bihamiltonian structure can be extended to a full deformation.

In [8], Carlet, Posthuma and Shadrin completed the computation of the
third bihamiltonian cohomology group for a general semisimple bihamilto-
nian structure of hydrodynamic type based on the results of [33]. Their
result confirms the validity of the conjecture of [33] that any infinitesimal
deformation of a semisimple bihamiltonian structures of hydrodynamic type
can be extended to a full deformation, i.e. for any given smooth func-
tions ci(u

i) (i = 1, . . . , n), there exists a deformation of the corresponding
semisimple bihamiltonian structure of hydrodynamic type such that its cen-
tral invariants are given by ci(u

i) (i = 1, . . . , n).
This paper is a continuation of [33]. We are to give a detailed study

of properties of the integrable hierarchies associated with a special class of
semisimple bihamiltonian structures of hydrodynamic type and their defor-
mations, which are called flat exact semisimple bihamiltonian structures of
hydrodynamic type. One of their most important properties is the existence
of tau structures for the associated integrable hierarchies and their defor-
mations with constant central invariants.

For a hierarchy of Hamiltionian evolutionary PDEs, a tau structure is a
suitable choice of the densities of the Hamiltonians satisfying certain con-
ditions which enables one to define a function, called the tau function, for
solutions of the hierarchy of evolutionary PDEs, as it is defined in [15]. The
notion of tau functions was first introduced by M. Sato [38] for solutions to
the KP equation and by Jimbo, Miwa and Ueno for a class of monodromy
preserving deformation equations of linear ODEs with rational coefficients
[24, 25, 26] at the beginning of 80’s of the last century. It was also adopted
to soliton equations that can be represented as equations of isospectral de-
formations of certain linear spectral problems or as Hamiltonian systems,
and has played crucial role in the study of relations of soliton equations with
infinite dimensional Lie algebras [10, 27], and with the geometry of infinite
dimensional Grassmannians [39, 40]. The importance of the notion of tau
functions of soliton equations is manifested by the discovery of the fact that
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the tau function of a particular solution of the KdV hierarchy is a partition
function of 2D gravity, see [42, 28] for details. In [15], the first- and the
third-named authors introduced the notion of tau structures for the class
of bihamiltonian integrable hierarchies possessing hydrodynamic limits, and
constructed the so-called topological deformations of the principal hierarchy
of a semisimple Frobenius manifold by using properties of the associated
tau functions. On the other hand, not all bihamiltonian integrable hierar-
chies possess tau structures. In this paper we introduce the notion of flat
exact bihamiltonian structure, and study the classification of the associated
tau structures. It turns out that this notion is an appropriate general-
ization of semisimple conformal Frobenius manifolds when considering the
associated integrable hierarchies and their tau structures. One can further
consider the deformations of a flat exact semisimple bihamiltonian structure
of hydrodynamic type which possess tau structures. It is known that the
central invariants of such deformations must be constant [45]. We show that
deformations with constant central invariants of a flat exact semisimple bi-
hamiltonian structure of hydrodynamic type indeed possess tau structures,
and we also give a classification theorem for the associated tau structures.

The paper is arranged as follows. In Sec. 2 we introduce the notion of
flat exact semisimple bihamiltonian structures of hydrodynamic type and
present the main results. In Sec. 3 we study the relations between flat exact
semisimple bihamiltonian structures of hydrodynamic type and semisimple
Frobenius manifolds, and give a proof of Theorem 2.4. In Sec. 4 we construct
the principal hierarchy for a flat exact semisimple bihamiltonian structures
of hydrodynamic type and show the existence of a tau structure. In Sec. 5
we consider properties of deformations of the principal hierarchies which
possess tau structures and the Galilean symmetry, and then in Sec. 6 we
prove the existence of deformations of the principal hierarchy of a flat exact
bihamiltonian structures of hydrodynamic type, which are bihamiltonian
integrable hierarchies possessing tau structures and the Galilean symmetry,
and we prove Theorem 2.9. Sec. 7 is a conclusion. In the Appendix, we
prove some properties of semi-Hamiltonian integrable hierarchies, some of
which are used in the proof of the uniqueness theorem given in Sec. 5.

2 Some notions and the main results

The class of systems of hydrodynamic type on the infinite jet space of an
n-dimensional manifold M consists of systems of n first order quasilinear
partial differential equations (PDEs)

vαt =

n
∑

β=1

Aα
β(v)v

β
x , α = 1, . . . , n, v =

(

v1, . . . , vn
)

∈M. (2.1)

3



Here Aα
β(v) is a section of the bundle TM ⊗ T ∗M . For the subclass of

Hamiltonian systems of hydrodynamic type the r.h.s. of (2.1) admits a
representation

vαt = Pαβ ∂h(v)

∂vβ
. (2.2)

Here the smooth function h(v) is the density of the Hamiltonian

H =

∫

h(v) dx

and
Pαβ = gαβ(v)∂x + Γαβ

γ (v)vγx (2.3)

is the operator of a Poisson bracket of hydrodynamic type. As it was observed
in [18] such operators satisfying the nondegeneracy condition

det
(

gαβ(v)
)

6= 0 (2.4)

correspond to flat metrics (Riemannian or pseudo-Riemannian)

ds2 = gαβ(v)dv
αdvβ

on the manifold M . Namely,

gαβ(v) = (gαβ(v))
−1

is the corresponding inner product on T ∗M , the coefficients Γαβ
γ (v) are the

contravariant components of the Levi-Civita connection for the metric. In
the present paper it will be assumed that all Poisson brackets of hydrody-
namic type satisfy the nondegeneracy condition (2.4).

A bihamiltonian structure of hydrodynamic type is a pair (P1, P2) of
operators of the form (2.3) such that an arbitrary linear combination λ1P1+
λ2P2 is again the operator of a Poisson bracket. They correspond to pairs of
flat metrics gαβ1 (v), gαβ2 (v) on M satisfying certain compatibility condition
(see below for the details). The bihamiltonian structure of hydrodynamic
type is called semisimple if the roots u1(v), . . . , un(v) of the characteristic
equation

det
(

gαβ2 (v)− u gαβ1 (v)
)

= 0 (2.5)

are pairwise distinct and are not contant for a generic point v ∈M . Accord-
ing to Ferapontov’s theorem [22], these roots can serve as local coordinates
of the manifoldM , which are called the canonical coordinates of the bihamil-
tonian structure (P1, P2). We assume in this paper that D is a sufficiently
small domain on M such that (u1, . . . , un) is the local coordinate system on
D. In the canonical coordinates the two metrics have diagonal forms

gij1 (u) = f i(u)δij , gij2 (u) = ui f i(u)δij . (2.6)

4



We will need to use the notion of rotation coefficients of the metric g1 which
are defined by the following formulae:

γij(u) =
1

2
√

fifj

∂fi
∂uj

, i 6= j (2.7)

with fi =
1
f i . We also define γii = 0.

Definition 2.1 (cf. [15]) The semisimple bihamiltonian structure (P1, P2)
is called reducible at u ∈M if there exists a partition of the set {1, 2, . . . , n}
into the union of two nonempty nonintersecting sets I and J such that

γij(u) = 0, ∀i ∈ I, ∀j ∈ J.

(P1, P2) is called irreducible on a certain domain D ⊂M , if it is not reducible
at any point u ∈ D.

The main goal of the present paper is to introduce tau-functions of bi-
hamiltonian systems of hydrodynamic type and of their dispersive deforma-
tions. This will be done under the following additional assumption.

Definition 2.2 The bihamiltonian structure (P1, P2) of hydrodynamic type
is called exact if there exists a vector field Z ∈ V ect (M) such that

[Z,P1] = 0, [Z,P2] = P1. (2.8)

Here [ , ] is the infinite-dimensional analogue of the Schouten–Nijenhuis
bracket (see the next section and [33] for details of the definition). It is called
flat exact if the vector field Z is flat with respect to the metric associated
with the Hamiltonian structure P1.

Example 2.3 Let (M, · , η, e, E) be a Frobenius manifold. Then the pair of
metrics

gαβ1 (v) = 〈dvα, dvβ〉 = ηαβ ,

gαβ2 (v) = (dvα, dvβ) = iE

(

dvα · dvβ
)

=: gαβ(v)
(2.9)

on T ∗M defines a flat exact bihamiltonian structure with Z = e, see [12]
for the details. For a semisimple Frobenius manifold the resulting bihamilto-
nian structure will be semisimple. Roots of the characteristic equation (2.5)
coincide with the canonical coordinates on the Frobenius manifold.

More bihamiltonian structures can be obtained from those of Example
2.3 by a Legendre-type transformation [12, 44]

v̂α = bγ
∂2F (v)

∂vγ∂vα
, v̂α = ηαβ v̂β. (2.10)
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Here F (v) is the potential of the Frobenius manifold and b = bγ ∂
∂vγ

is a flat
invertible vector field on it. The new metrics on T ∗M by definition have the
same Gram matrices in the new coordinates

〈dv̂α, dv̂β〉 = ηαβ ,
(

dv̂α, dv̂β
)

= gαβ(v). (2.11)

Recall that applying the transformation (2.10) to F (v) one obtains a new
solution F̂ (v̂) to the WDVV associativity equations defined from

∂2F̂ (v̂)

∂v̂α∂v̂β
=
∂2F (v)

∂vα∂vβ
. (2.12)

The new unit vector field is given by

ê = bγ
∂

∂v̂γ
. (2.13)

The new solution to the WDVV associativity equations defines onM another
Frobenius manifold structure if the vector b = bγ ∂

∂vγ
satisfies

[b,E] = λ · b

for some λ ∈ C. Otherwise the quasihomogeneity axiom does not hold true.

Theorem 2.4 For an arbitrary Frobenius manifold M the pair of flat met-
rics obtained from (2.9) by a transformation of the form (2.10)–(2.11) de-
fines on M a flat exact bihamiltonian structure of hydrodynamic type. Con-
versely, any irreducible flat exact semisimple bihamiltonian structure of hy-
drodynamic type can be obtained in this way.

Now we can describe a tau-symmetric bihamiltonian hierarchy associated
with a flat exact semisimple bihamiltonian structure (P1, P2;Z) of hydrody-
namic type. Let us choose a system of flat coordinates

(

v1, . . . , vn
)

for the
first metric. So the operator P1 has the form

Pαβ
1 = ηαβ

∂

∂x

for a constant symmetric nondegenerate matrix ηαβ = gαβ1 . It is convenient
to normalize the choice of flat coordinates by the requirement

Z =
∂

∂v1
.

We are looking for an infinite family of systems of first order quasilinear
evolutionary PDEs of the form (2.1) satisfying certain additional conditions.
The systems of the form (2.1) will be labeled by pairs of indices (α, p),
α = 1, . . . , n, p ≥ 0. Same labels will be used for the corresponding time
variables t = tα,p. The conditions to be imposed are as follows.
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1. All the systems under consideration are bihamiltonian PDEs w.r.t.
(P1, P2). This implies pairwise commutativity of the flows [17]

∂

∂tα,p
∂vγ

∂tβ,q
=

∂

∂tβ,q
∂vγ

∂tα,p
. (2.14)

2. Denote

Hα,p =

∫

hα,p(v) dx (2.15)

the Hamiltonian of the (α, p)-flow with respect to the first Poisson bracket,

∂vγ

∂tα,p
= ηγλ

∂

∂x

δHα,p

δvλ(x)
≡ ηγλ

∂

∂x

∂hα,p(v)

∂vλ
. (2.16)

The Hamiltonian densities satisfy the following recursion1

∂

∂v1
hα,p(v) = hα,p−1(v), α = 1, . . . , n, p ≥ 0 (2.17)

(recall that ∂
∂v1

= Z) where we denote

hα,−1(v) = vα ≡ ηαβv
β, α = 1, . . . , n. (2.18)

Observe that the functionalsHα,−1 =
∫

hα,−1(v) dx span the space of Casimirs
of the first Poisson bracket.

3. Normalization
∂

∂t1,0
=

∂

∂x
. (2.19)

Proposition 2.5 Integrable hierarchies of the above form satisfy the tau-
symmetry condition

∂hα,p−1

∂tβ,q
=
∂hβ,q−1

∂tα,p
, ∀ α, β = 1, . . . , n, ∀ p, q ≥ 0. (2.20)

Moreover, this integrable hierarchy is invariant with respect to the Galilean
symmetry

∂v

∂s
= Z(v) +

∑

p≥1

tα,p
∂v

∂tα,p−1
, (2.21)

[

∂

∂s
,

∂

∂tα,p

]

= 0, ∀α = 1, . . . , n, p ≥ 0.

Definition 2.6 A choice of the Hamiltonian densities hα,p(v), α = 1, . . . , n,
p ≥ −1 satisfying the above conditions is called a calibration of the flat exact
bihamiltonian structure (P1, P2;Z) of hydrodynamic type. The integrable
hierarchy (2.16) is called the principal hierarchy of (P1, P2;Z) associated
with the given calibration.

1This recursion acts in the opposite direction with respect to the bihamiltonian one -
see eq. (2.24) below.
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Example 2.7 Let (M, · , η, e, E) be a Frobenius manifold. Denote

(θ1(v; z), . . . , θn(v; z)) z
µzR

with

θα(v; z) =

∞
∑

p=0

θα,p(v)z
p, α = 1, . . . , n (2.22)

a Levelt basis of deformed flat coordinates [14]. Here the matrices

µ = diag(µ1, . . . , µn), R = R1 + . . . , [µ,Rk] = k Rk

constitute a part of the spectrum of the Frobenius manifold, see details in
[14]. Then

hα,p(v) =
∂θα,p+2(v)

∂v1
, α = 1, . . . , n, p ≥ −1 (2.23)

is a calibration of the flat exact bihamiltonian structure associated with the
metrics (2.9) on the Frobenius manifold. In this case the family of pairwise
commuting bihamiltonian PDEs (2.16) is called the principle hierarchy as-
sociated with the Frobenius manifold. With this choice of the calibration the
Hamiltonians (2.15), (2.23) satisfy the bihamilonian recursion relation

{ . ,Hβ,q−1}2 = (q +
1

2
+ µβ){ . ,Hβ,q}1 +

q−1
∑

k=1

(Rq−k)
α
γ { . ,Hβ,k}1. (2.24)

Other calibrations can be obtained by taking constant linear combinations
and shifts

θ̃α(v; z) = θβ(v; z)C
β
α(z) + θ0α(z), α = 1, . . . , n (2.25)

C(z) =
(

Cβ
α(z)

)

= 1+ C1z +C2z
2 + . . . , CT (−z)C(z) = 1

θ0α(z) =
∑

p≥0

θ0α,pz
p, θ0α,p ∈ C.

For the flat exact bihamiltonian structure obtained from (2.9) by a
Legendre-type transformation (2.10)–(2.13) one can choose a calibration by
introducing functions θ̂α,p (v̂) defined by

∂θ̂α (v̂; z)

∂v̂β
=
∂θα(v; z)

∂vβ
, ∀α, β = 1, . . . , n. (2.26)

Remarkably in this case the new Hamiltonians satisfy the same bihamilto-
nian recursion (2.24). Other calibrations can be obtained by transformations
of the form (2.25).
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Proposition 2.8 For a flat exact bihamiltonian structure of hydrodynamic
type obtained from a Frobenius manifold by a Legendre-type transformation
(2.10)–(2.13) the construction (2.26) and (2.23) defines a calibration. Any
calibration can be obtained in this way up to the transformation (2.25) .

The properties of a calibration, in particular the tau-symmetry property
(2.20), of a flat exact semisimple bihamiltonian structure of hydrodynamic
type (P1, P2;Z) enable us to define a tau structure and tau functions for
it and the associated principal hierarchy (2.16), see Definitions 4.13 and
4.15 in Section 4. One of the main purposes of the present paper is to
study the existence and properties of tau structures for deformations of
the bihamiltonian structure (P1, P2;Z) and the principal hierarchy. Let
ci(u

i) (i = 1, . . . , n) be a collection of arbitrary smooth functions, Carlet,
Posthuma, and Shadrin showed that there exists a deformation (P̃1, P̃2) of
(P1, P2) such that its central invariants are given by ci(u

i) (i = 1, . . . , n)
[9]. By using the triviality of the second bihamiltonian cohomology, one can
show that there also exists a unique deformation of the principal hierarchy of
(P1, P2) such that all its members are bihamiltonian vector fields of (P̃1, P̃2)
(see Sec. 6). The deformed integrable hierarchy usually does not possess a
tau structure unless the central invariants are constant (first observed in
[45]). On the other hand, it is shown by Falqui and Lorenzoni in [21] that, if
ci(u

i) (i = 1, . . . , n) are constants, one can choose the representative (P̃1, P̃2)
such that they still satisfy the exactness condition, that is

[Z, P̃1] = 0, [Z, P̃2] = P̃1.

With such a pair (P̃1, P̃2) in hand, we can ask the following questions:

1. Does the deformed integrable hierarchy have tau structures?

2. If it does, how many of them?

The following theorem is the main result of the present paper, which answers
the above questions.

Theorem 2.9 Let (P1, P2;Z) be a flat exact semisimple bihamiltonian struc-
ture of hydrodynamic type which satisfies the irreducibility condition. We fix
a calibration {hα,p |α = 1, . . . , n; p = 0, 1, 2, . . . } of the bihamiltonian struc-
ture (P1, P2;Z). Then the following statements hold true:

i) For any deformation (P̃1, P̃2; Z̃) of (P1, P2;Z) with constant central
invariants, there exists a deformation {h̃α,p} of the Hamiltonian den-
sities {hα,p} such that the corresponding Hamiltonian vector fields X̃α,p

yield a deformation of the principal hierarchy which is a bihamiltonian
integrable hierarchy possessing a tau structure and the Galilean sym-
metry.

9



ii) Let (P̂1, P̂2; Ẑ) be another deformation of (P1, P2;Z) with the same
central invariants as (P̃1, P̃2; Z̃), and let {ĥα,p} be the corresponding
tau-symmetric deformation of the Hamiltonian densities, then the log-
arithm of the tau function for {ĥα,p} can be obtained from the one for
{h̃α,p} by adding a differential polynomial.

3 Flat exact semisimple bihamitonian structures

and Frobenius manifolds

Let M be a smooth manifold of dimension n. Denote by M̂ the super
manifold of dimension (n | n) obtained from the cotangent bundle of M by
reversing the parity of the fibers. Suppose U is a local coordinate chart on
M with coordinates (u1, . . . , un), then

θi =
∂

∂ui
, i = 1, . . . , n

can be regarded as local coordinates on the corresponding local chart Û
on M̂ . Note that θi’s are super variables, they satisfy the skew-symmetric
commutation law:

θiθj + θjθi = 0.

Let J∞(M) and J∞(M̂ ) be the infinite jet space of M and M̂ , which is
just the projective limits of the corresponding finite jet bundles. There is a
natural local chart Û∞ over Û with local coordinates

{ui,s, θsi | i = 1, . . . , n; s = 0, 1, 2, . . . }.

See [33] for more details. Denote by Â the spaces of differential polynomials
on M̂ . Locally, we can regard Â as

C∞(Û)[[ui,s, θsi | i = 1, . . . , n; s = 1, 2, . . . ]].

The differential polynomial algebra A on M can be defined similarly as a
subalgebra of Â. There is a globally defined derivation on J∞(M̂ )

∂ =

n
∑

i=1

∑

s≥0

(

ui,s+1 ∂

∂ui,s
+ θs+1

i

∂

∂θsi

)

. (3.1)

Its cokernel F̂ = Â/∂Â is called the space of local functionals. Denote the
projection Â → F̂ by

∫

. We can also define F = A/∂A, whose elements are
called local functionals on M .

There are two useful degrees on Â, which are called standard gradation

deg ui,s = deg θsi = s

10



and super gradation
deg θsi = 1, degui,s = 0

respectively:

Â =
⊕

d≥0

Âd =
⊕

p≥0

Âp.

We denote Âp
d = Âd ∩ Âp. In particular, A = Â0, Ad = Â0

d. The derivation

∂ has the property ∂(Âp
d) ⊆ Âp

d+1, hence it induces the same degrees on F̂ ,

so we also have the homogeneous components F̂d, F̂
p, F̂p

d , and the ones for

F = F̂0. The reader can refer to [33] for details of the definitions of these
notations.

There is a graded Lie algebra structure on F̂ , whose bracket operation
is given by

[P,Q] =

∫ (

δP

δθi

δQ

δui
+ (−1)p

δP

δui
δQ

δθi

)

,

where P ∈ F̂p, Q ∈ F̂q. This bracket is called the Schouten–Nijenhuis
bracket on J∞(M).

A Hamiltonian structure is defined as an elements P ∈ F̂2 satisfying
[P,P ] = 0. For example, the operator (2.3) corresponds to an element
P ∈ F̂2

1 of the form

P =
1

2

∫

(

gij(u)θiθ
1
j + Γij

k (u)u
k,1θiθj

)

.

The fact that P is a Hamiltonian operator is equivalent to the condition
[P,P ] = 0.

A bihamiltonian structure of hydrodynamic type can be given by a pair
of Hamiltonian structures of hydrodynamic type (P1, P2) satisfying the ad-
ditional condition [P1, P2] = 0. Denote by g1, g2 the flat metrics associated
with the Hamiltonian structures P1, P2. In what follows, we will assume
that (P1, P2) is semisimple with a fixed system of canonical coordinates
u1, . . . , un, in which the two flat metrics take the diagonal form (2.6), and
the contravariant Christoffel coefficients of them have the following expres-
sions respectively:

Γij
k =

1

2

∂f i

∂uk
δij +

1

2

f i

f j
∂f j

∂ui
δjk −

1

2

f j

f i
∂f i

∂uj
δik, (3.2)

Γ̂ij
k =

1

2

∂(uif i)

∂uk
δij +

1

2

uif i

f j
∂f j

∂ui
δjk −

1

2

ujf j

f i
∂f i

∂uj
δik. (3.3)

The diagonal entries f i satisfy certain non-linear differential equations which
are equivalent to the flatness of g1, g2 and the condition [P1, P2] = 0. See the
appendix of [17] for details. We denote by ∇, ∇̂ the Levi-Civita connections
of the metrics g1, g2 respectively.
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We also assume henceforth that the semisimple bihamiltonian structure
of hydrodynamic type (P1, P2) is flat exact (see Definition 2.2), and the
corresponding vector field is given by Z ∈ F̂1. We will denote this exact
bihamiltonian structure by (P1, P2;Z).

Lemma 3.1 If Z ∈ F̂1 satisfies the condition (2.8), then it has the following
form:

Z =

∫

(

n
∑

i=1

θi

)

+X,

where X is a bihamiltonian vector field of (P1, P2).

Proof We first decompose Z ∈ F̂1 into the sum of homogeneous compo-
nents:

Z = Z0 + Z1 + Z2 + · · · , where Zk ∈ F̂1
k .

It is proved in [21] that Z0 must take the form

Z0 =

∫

(

n
∑

i=1

θi

)

. (3.4)

Then X := Z − Z0 satisfies [X,P1] = [X,P2] = 0, so it is a bihamiltonian
vector field of (P1, P2). �

The X-part of Z does not affect anything, so it can be omitted safely.
Then Z = Z0, and we call it the unit vector field of (P1, P2). According to
the convention used in [33], this Z corresponds to a vector field on M given
by

DZ =

n
∑

i=1

∂

∂ui

(see Definition 2.2 and Equation (2.5) of [33]). It is also proved in [21] that
if (2.8) holds true then

DZ(f
i) =

n
∑

k=1

∂f i

∂uk
= 0, i = 1, . . . , n. (3.5)

Note that the flatness of the vector field Z (or, equivalently, DZ) given
in Definition 2.2 can be represented as

∇DZ = 0. (3.6)

Lemma 3.2 DZ is flat if and only if fi := (f i)−1 (i = 1, . . . , n) satisfy the
following Egoroff conditions:

∂fi
∂uj

=
∂fj
∂ui

, ∀ 1 ≤ i, j ≤ n. (3.7)
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Proof The components of DZ read Zj = 1, so we have

0 = ∇iZj = gik1
∂Zj

∂uk
− Γij

k Z
k = −

n
∑

k=1

Γij
k . (3.8)

By using (3.2) and (3.5), the lemma can be easily proved. �

The above lemma implies that, if Z is flat, then γij = γji (see (2.7)).
In this case, the conditions that (P1, P2) is a bihamiltonian structure are
equivalent to the following equations for γ (see the appendix of [17]):

∂γij
∂uk

= γikγjk, for distinct i, j, k, (3.9)

n
∑

k=1

∂γij
∂uk

= 0, (3.10)

n
∑

k=1

uk
∂γij
∂uk

= −γij. (3.11)

The condition (3.10) is actually DZ(γij) = 0. If we introduce the Euler
vector field

E =
n
∑

k=1

uk
∂

∂uk
, (3.12)

then the condition (3.11) is E(γij) = −γij , that is, γij has degree −1 if we
adopt deg ui = 1.

Consider the linear system

∂ψj

∂ui
= γjiψi, i 6= j, (3.13)

∂ψi

∂ui
= −

∑

k 6=i

γkiψk. (3.14)

The above conditions for γij ensure the compatibility of this linear system,
so its solution space S has dimention n, and we can find a fundamental
system of solutions

Ψα = (ψ1α(u), . . . , ψnα(u))
T , α = 1, . . . , n, (3.15)

which form a basis of S.

Lemma 3.3 Let ψ = (ψ1, . . . , ψn) be a nontrivial solution of the linear
system (3.13), (3.14) on the domain D, that is there exist i ∈ {1, . . . , n},
and u ∈ D such that ψi(u) 6= 0. Assume that the rotation coefficients γij
satisfy the irreducibility condition given in Definition 2.1, then there exists
u0 ∈ D such that for each i ∈ {1, . . . , n}, ψi(u0) 6= 0.

13



Proof For any subset S ⊆ {1, . . . , n}, define φS =
∏

i∈S ψi. We assume
φ{1,...,n} = 0 on the domain D, then we are to show that ψ is a trivial
solution, that is φ{i} = 0 on D for each i = 1, . . . , n. To this end, we will
prove that for any S ⊆ {1, . . . , n}, φS = 0 for any u ∈ D by induction on
the size of S. We have known that if #S = n, then φS = 0. Assume for
some k ≤ n, and any S ⊆ {1, . . . , n} with #S = k, we have φS(u) = 0 for
any u ∈ D. For T ⊆ {1, . . . , n} with #T = k − 1, and any given u ∈ D, we
can find i ∈ T , and j /∈ T such that γij(u) 6= 0 because of the irreducibility
condition. Without loss of generality we can assume that ψi(u) does not
identically vanish. Take S = T ∪ {j}, then consider ∂φS

∂ui :

0 =
∂φS
∂ui

=
∑

k∈S

φS−{k}
∂ψk

∂ui
=

∑

k∈S,k 6=i

φS−{i,k}γik(ψ
2
i − ψ2

k),

so we have

φT
∂φS
∂ui

= γijφ
2
Tψi = 0.

Since γij(u) 6= 0, we have φ2Tψi = 0, which implies φT = 0. �

We assume that γij is irreducible from now on, and shrink D (if neces-
sary) such that D is contractible, and ψi1 6= 0 on D for each i = 1, . . . , n.

Lemma 3.4 We have the following facts:

i) Define

ηαβ =

n
∑

i=1

ψiαψiβ ,

then (ηαβ) is a constant symmetric non-degenerate matrix. We denote
its inverse matrix by (ηαβ).

ii) For each α = 1, . . . , n, the 1-form

ωα =

n
∑

i=1

ψiαψi1du
i

is closed, so there exist smooth functions vα such that ωα = dvα. De-
note vα = ηαβvβ, then (v1, . . . , vn) can serve as a local coordinate
system on D. In this local coordinate system we have

DZ =
∂

∂v1
.

iii) Define the functions

cαβγ =

n
∑

i=1

ψiαψiβψiγ

ψi1
,
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then cαβγ are symmetric with respect to the three indices and satisfy
the following conditions:

c1αβ = ηαβ, (3.16)

cαβξη
ξζcζγδ = cδβξη

ξζcζγα, (3.17)

∂cαβγ
∂vξ

=
∂cξβγ
∂vα

. (3.18)

Proof The items i), ii) and the condition (3.16) are easy, so we omit their
proofs. The condition (3.17) follows from the identity ψiξη

ξζψjζ = δij . The
condition (3.18) can be proved by the chain rule and the following identities

∂vα

∂ui
= ψα

i ψi1,
∂ui

∂vα
=
ψiα

ψi1
, (3.19)

where ψα
i = ηαβψiβ. �

The above lemma implies immediately the following corollary.

Corollary 3.5 There exists a smooth function F (v) on D such that

cαβγ =
∂3F

∂vα∂vβ∂vγ
,

and it gives the potential of a Frobenius manifold structure (without the
quasi-homogeneity condition) on D.

By using (3.19) we have

∂

∂ui
◦

∂

∂uj
= cγαβ

∂vα

∂ui
∂vβ

∂uj
∂uk

∂vγ
∂

∂uk
= δij

∂

∂ui
,

so u1, . . . , un are the canonical coordinates of this Frobenius manifold. Then
its first metric reads

〈dui, duj〉1 = ηαβ
∂ui

∂vα
∂uj

∂vβ
= δijψ

−2
i1 ,

which is in general not equal to the original metric g1 associated to the
first Hamiltonian structure P1. Though this Frobenius manifold may be not
quasi-homogeneous, we can still define its second metric as follows:

〈dui, duj〉2 = δiju
iψ−2

i1 .

The two metrics 〈 , 〉1 and 〈 , 〉2 are compatible, since they have the same
rotation coefficients with the original g1, g2 associated to the bihamiltonian
structure (P1, P2).
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The above Frobenius manifold structure depends on the choice of the
solution Ψ1 of the linear system (3.13), (3.14). It is easy to see that

ψi1 = f
1

2

i = (f i)−
1

2 , i = 1, . . . , n

give a solution to the linear system (3.13), (3.14). If we choose it as Ψ1,
then the two metrics 〈 , 〉1 and 〈 , 〉2 coincide with g1, g2, so we call the
corresponding Frobenius manifold structure the canonical one associated to
(P1, P2;Z).

There are also other choices for Ψ1 such that the corresponding Frobenius
manifold is quasi-homogeneous. By using the identity (3.11), one can show
that Euler vector field E defined by (3.12) acts on the solution space S as
a linear transformation. Suppose we are working in the complex manifold
case, then E has at least one eigenvector in S. We denote this eigenvector
by Ψ1, and denote its eigenvalue by µ1, then choose other basis Ψ2, . . . ,Ψn

such that the matrix of E becomes the Jordan normal form, that is, there
exists µα ∈ C, and pα = 0 or 1, such that

E(Ψα) = µαΨα + pα−1Ψα−1.

Lemma 3.6 The Frobenius manifold structure corresponding to the above
Ψ1 is quasi-homogeneous with the Euler vector field E and the charge d =
−2µ1.

Proof The trivial identity E(ηαβ) = 0 implies that

(

µαηαβ + pα−1η(α−1)β

)

+
(

µβηαβ + pβ−1ηα(β−1)

)

= 0.

Denote by LE the Lie derivative with respect to E, then the identity LEωα =
dE(vα) implies

dE(vα) = (µα + µ1 + 1) dvα + pα−1dvα−1,

so there exist some constants rα ∈ C such that

E(vα) = (µα + µ1 + 1) vα + pα−1vα−1 + rα.

On the other hand, we have

E(cαβγ) = (µα + µβ + µγ − µ1) cαβγ

+ pα−1c(α−1)βγ + pβ−1cα(β−1)γ + pγ−1cαβ(γ−1).

By using the above identities, one can show that

∂3

∂vα∂vβ∂vγ
(E(F )− (3 + 2µ1)F ) = 0 for all α, β γ
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that gives the quasi-homogeneity condition for F . �

For each eigenvector Ψ1 of E, one can construct a quasi-homogeneous
Frobenius manifold. All these Frobenius manifolds (including the canonical
one) are related by Legendre transformations (see [12]). To see this, let
us denote by F (v) = F (v1, . . . , vn) and F̃ (ṽ) = F̃ (ṽ1, . . . , ṽn) the Frobe-
nius manifold potentials constructed above starting from the fundamental
solutions (Ψ1, . . . ,Ψn) and (Ψ̃1, . . . , Ψ̃n) of the linear system (3.13), (3.14).
These two fundamental solutions are related by a non-degenerate constant
matrix A = (aαβ) by the formula

(Ψ1, . . . ,Ψn) = (Ψ̃1, . . . , Ψ̃n)A.

Introduce the new coordinates






v̂1

...
v̂n






= A







v1

...
vn







and denote
F̂ (v̂) = F̂ (v̂1, . . . , v̂n) := F (v).

Then it is easy to verify that

v̂α = η̃αβaγ1
∂F̃ (ṽ)

∂ṽβ∂ṽγ
,

∂2F̂ (v̂)

∂v̂α∂v̂β
=
∂2F̃ (ṽ)

∂ṽα∂ṽβ
,

and in the v̂1, . . . , v̂n coordinates the metrics g1, g2 have the expressions

∂v̂α

∂ui
gij1 (u)

∂v̂β

∂uj
= η̃αβ ,

∂v̂α

∂ui
gij2 (u)

∂v̂β

∂uj
= g̃(ṽ).

Proof of Theorem 2.4 The first part of the theorem follows from the results
of [44], and the second part of the theorem is proved by the arguments given
above. The theorem is proved. �

4 The principal hierarchy and its tau structure

Let (P1, P2;Z) be a flat exact bihamiltonian structure. Denote

da = adPa : F̂ → F̂ , a = 1, 2,

δ = adZ : F̂ → F̂ .

Definition 4.1

i) Define H := Ker(d2◦d1)∩F̂
0, whose elements are called bihamiltonian

conserved quantities.
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ii) Define X := Ker(d1) ∩ Ker(d2) ∩ F̂1, whose elements are called bi-
hamiltonian vector fields.

Note that the space X is actually the bihamiltonian cohomology BH1(F̂ , P1, P2),
see [33].

Lemma 4.2 H ⊂ F̂0
0 , and X ⊂ F̂1

1 .

Proof If [P2, [P1,H]] = 0, then there exists K ∈ F̂0 such that [P1,H] =
[P2,K]. By using Lemma 4.1 of [17], we know that H ∈ F̂0

0 .
If X =

∫

(Xαθα) ∈ F̂1
0 satisfies [P1,X] = [P2,X] = 0, then we have

∇jX
i = 0, ∇̂jX

i = 0.

Recall that ∇, ∇̂ are the Levi-Civita connections of the metrics g1, g2 asso-
ciated with P1, P2 respectively,

∇i = ∇ ∂

∂ui
, ∇̂i = ∇̂ ∂

∂ui
(4.1)

and u1, . . . , un are the canonical coordinates of (P1, P2). It follows from the
explicit expressions of gija , Γ

ij
k,a thatX

i = 0 and so we haveBH1
0 (F̂ , P1, P2) ∼=

0. On the other hand, Lemma 4.1 of [17] implies that BH1
≥2(F̂ , P1, P2) ∼= 0,

so consequently X = BH1
1 (F̂ , P1, P2). The lemma is proved. �

Corollary 4.3 i) For any X,Y ∈ X , we have [X,Y ] = 0;

ii) For any X ∈ X , H ∈ H, we have [X,H] = 0;

iii) For any H,K ∈ H, we have {H,K}P1
:= [[P1,H],K] = 0.

Proof i) IfX,Y ∈ X , then the above lemma shows that degX = deg Y = 1,
so deg[X,Y ] = 2. But we also have [X,Y ] ∈ X , so [X,Y ] = 0.

ii) If X ∈ X , H ∈ H, then K = [X,H] ∈ H. But degX = 1, degH = 0,
so degK = 1, which implies K = 0.

iii) Take X = [P1,H], then by applying ii) we obtain {H,K}P1
= 0. �

Lemma 4.4 We have the following isomorphism

X ∼= H/V, (4.2)

where V = Ker(d1) ∩ F̂0 is the space of Casimirs of P1.

i) A local functional H ∈ F̂0 is a bihamiltonian conserved quantity if and
only if one can choose its density h so that h ∈ A0 and satisfies the
condition

∇i∇jh = 0, i 6= j, (4.3)

where ∇i = ∇ ∂

∂ui
are defined as in (4.1).
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ii) A vector field X ∈ F̂1 is a bihamiltonian vector field if and only if it
has the following form

X =

∫ n
∑

i=1

Ai(u)ui,1θi,

where Ai(u) satisfy the following equations:

∂Ai

∂uj
= Γi

ij

(

Aj −Ai
)

, for j 6= i, (4.4)

here Γi
ij is the Christoffel coefficients of the Levi-Civita connection of

g1.

Proof Consider the map φ = d1|H : H → X . It is easy to see that φ is
well-defined, and Ker(φ) = V. Note that

H1
≥1(F̂ , Pa) ∼= 0, a = 1, 2,

so for a given X ∈ BH1
≥1(F̂ , P1, P2), there exists H,G ∈ F such that

X = [P1,H] = [P2, G].

From the second equality we also know that H ∈ H. So the map φ is
surjective and we proved that the map φ induces the isomorphism (4.2).

Let H ∈ H, then it yields a bihamiltonian vector field X = [P1,H].
According to Lemma 4.2, H ∈ F0, X ∈ F̂1

1 . So we can choose the density
of H =

∫

(h) such that h ∈ A0, and

X =

∫

(Xi
ju

j,1θi),

where Xi
j = −∇i∇jh, and ∇i = gik1 ∇k. The conditions [P1,X] = 0 and

[P2,X] = 0 read

gij1 X
k
j = gkj1 X

i
j , ∇kX

i
j = ∇jX

i
k, (4.5)

gij2 X
k
j = gkj2 X

i
j , ∇̂kX

i
j = ∇̂jX

i
k, (4.6)

The diagonal form (2.6) of g1 and g2 and the first equations of (4.5) and
(4.6) imply that

(ui − uj)f jXi
j = 0,

so Xi
j is diagonal. Then the second equation of (4.5) gives the desired

equation (4.4). Let Γ̂i
ij be the Christoffel coefficients of the Levi-Civita

connection of g2, then one can show that for i 6= j

Γ̂i
ij = Γi

ij =
1

2fi

∂fi
∂uj

,

so the second equation of (4.6) also gives (4.4). The lemma is proved. �
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Lemma 4.5 We have δ(H) ⊆ H. Denote ϕ = δ|H : H → H, then ϕ is
surjective and dimKer(ϕ) = n.

Proof Let H ∈ H, so we have [P2, [P1,H]] = 0. From the graded Jacobi
identity it follows that

[P2, [P1, [Z,H]]] =[P2,−[[H,P1], Z]− [[P1, Z],H]]

=[[P2, Z], [P1,H]] + [[P2, [P1,H]], Z] = [P1, [P1,H]] = 0,

so we have δ(H) ⊆ H.
SupposeH =

∫

(h) ∈ H, then from Lemma 4.4 it follows that the density
h can be chosen to belong to A0 and ∇i∇jh = 0 for i 6= j. If ϕ(H) = 0,
then

n
∑

i=1

∇ih = 0,

so we have ∇i∇jh = 0 for any i, j, i.e. h ∈ V. Thus h can be represented as

h =

n
∑

α=1

cαv
α + c0,

where c0, c1, . . . , cn are some constants, and vα are the flat coordinates of
g1. From the condition DZ = ∂

∂v1
it follows that c1 = 0, so dimKer(ϕ) = n.

To prove that ϕ is surjective, we need to show that for any g ∈ A0

satisfying ∇i∇jg = 0 (i 6= j), there exists h ∈ A0 such that

∇i∇jh = 0 (i 6= j),
n
∑

i=1

∇ih = g. (4.7)

Denote ξj = ∇jh, then by using the identity (3.8) we know that the above
equations imply that

∇iξj =

{

0, i 6= j;
∇ig, i = j.

(4.8)

Let us first prove that the functions ζij defined by the l.h.s. of (4.8)
satisfy the equalities

∇kζij = ∇iζkj. (4.9)

Denote by Γk
ij the Christoffel coefficients of the first metric, then we have

∇kζij = ζij,k − Γα
kiζαj − Γα

kjζiα

= ζij,k − Γj
kiζjj − Γi

kjζii.

Here summation over the repeated upper and lower Greek indices is assumed.
Note that we do not sum over the repeated Latin indices. Since Γj

ki = Γj
ik,

in order to prove the identity (4.9) we only need to show that

ζij,k − Γi
kjζii = ζkj,i − Γk

ijζkk.
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When i = j = k or i, j, k are distinct, the above equation holds true trivially,
so we only need to consider the case when i = j and i 6= k. In this case, the
above equation becomes

(∇ig),k − Γi
ki∇ig + Γk

ii∇kg = 0.

On the other hand, the function g satisfies ∇k∇ig = 0 (k 6= i), which implies

(∇ig),k = Γk
ki∇kg + Γi

ki∇ig,

here we used the fact that Γk
ij = 0 if i, j, k are distinct. So we only need to

show
Γk
ki + Γk

ii = 0, i 6= k,

which is equivalent to the flatness condition (3.7).
The equalities given in (4.9) imply that there exist solutions ξ1, . . . , ξn

of the equations (4.8). Since ζij are symmetric with respect to the indices
i, j, we can find a function h ∈ A0 so that ξi = ∇ih. It follows from (3.8)
and (4.8) that

∑n
i=1∇ih − g is a constant, thus by adjusting the function

h by adding c v1 for a certain constant c we prove the existence of h ∈ A0

satisfying the equations given in (4.7). The lemma is proved. �

The space H is too big, so we restrict our interest to a “dense” (in a
certain sense) subspace of H.

Definition 4.6 Define H(−1) = V, H(p) = ϕ−1
(

H(p−1)
)

, and

H(∞) =
⋃

p≥−1

H(p).

Remark 4.7 The action of ϕ is just ∂
∂v1

, so the space H(∞) is a polynomial
ring in the indeterminate v1. It is indeed dense in the space of smooth
functions in v1 with respect to an appropriate topology.

It is easy to see that δ(V) ⊆ V, so

V = H(−1) ⊆ H(0) ⊆ · · · ⊆ H(∞).

Note that dimH(−1) = n+ 1, and

dimH(p) = dimH(p−1) + dimKer(ϕ) = dimH(p−1) + n,

so we have dimH(p) = n(p+ 2) + 1.
Suppose the collection of functions

{hα,p ∈ A0 | α = 1, . . . , n; p = 0, 1, 2, . . . }

is a calibration of (P1, P2;Z) (see Definition 2.6). Then it is easy to see
that hα,p ∈ H(p), and when p ≥ 0, they form a basis of H(p)/H(p−1). When
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p = −1, H(−1) = V contains not only hα,0 = vα but also a trivial functional
∫

(1), which form a basis of H(−1). Let us rephrase the conditions that must
be satisfied by the functions hα,p of a calibration as follows:

1. Hα,p =

∫

(hα,p) ∈ H, (4.10)

2. hα,−1 = vα, DZ(hα,p) = hα,p−1 (p ≥ 1), (4.11)

3. The normalization condition (2.19). (4.12)

Now let us proceed to constructing a calibration for the canonical Frobe-
nius manifold structure F (v) of (P1, P2;Z). Following the construction of
[12], we first define the functions

θα,0(v) = vα, θα,1(v) =
∂F (v)

∂vα
, α = 1, . . . , n,

where F is introduced in Lemma 3.5. By adding to the function F (v) a
certain quadratic term in v1, . . . , vn, if needed, we can assume that

∂2F (v)

∂v1∂vα
= vα.

Thus we have the following relation:

DZθα,1 =
∂θα,1
∂v1

= θα,0.

The functions θα,p(v) for p ≥ 2 can be defined recursively by using the
following relations:

∂2θγ,p+1(v)

∂vα∂vβ
= cαβξη

ξζ ∂θγ,p(v)

∂vζ
, α, β, γ = 1, . . . , n. (4.13)

The existence of solutions of these recursion relations is ensured by the
associativity conditions (3.17). We can require, as it is done in [12], that
these functions also satisfy the following normalization conditions

∂θα(v; z)

∂vξ
ηξζ

∂θβ(v;−z)

∂vζ
= ηαβ, α, β = 1, . . . , n.

Here θα(v; z) =
∑

p≥0 θα,p(v)z
p. Now we define the functions hα,p(v) so

that their generating functions hα(v; z) =
∑

p≥−1 hα,p(v)z
p+1 satisfy the

following defining relation

hα(v; z) =
1

z

∂θα(v; z)

∂v1
−

1

z
ηα1. (4.14)

Moreover, these functions also satisfy the normalization condition

∂hα(v; z)

∂vξ
ηξζ

∂hβ(v;−z)

∂vζ
= ηαβ , α, β = 1, . . . , n.
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By adding, if needed, a certain linear in v1, . . . vn term to the functions F (v)
we also have the relations

hα,0(v) =
∂F (v)

∂vα
, α = 1, . . . , n. (4.15)

For the above constructed functions {hα,p}, denote Hα,p =
∫

hα,p, and
define

Xα,p = −[P1,Hα,p] =

∫ (

ηγλ∂

(

δHα,p

δvλ

)

θγ

)

, p ≥ 0. (4.16)

Then the associated evolutionary vector field DXα,p (see Definition 2.2 and
Equation (2.5) of [33] for details) corresponds to the system of first order
quasilinear evolutionary PDEs (2.16)

∂vγ

∂tα,p
= DXα,p(v

γ), α = 1, . . . , n, p ≥ 0. (4.17)

Lemma 4.8 The functions hα,p and the associated local functionals that we
constructed above have the following properties:

i) Hα,p =
∫

(hα,p) ∈ H(p),

ii) hα,−1 = vα, DZ(hα,p) = hα,p−1 (p ≥ 0).

Proof According to the definition (4.14) of hγ,p, we have

hγ,p =
∂θγ,p+2

∂v1
=

n
∑

k=1

∂θγ,p+2

∂uk
.

We only need to prove that Hγ,p =
∫

(hγ,p) ∈ H, that is ∇i∇jhγ,p = 0 for
i 6= j. The other properties are easy to verify.

The condition ∇i∇jhγ,p = 0 for i 6= j reads

∂2hγ,p
∂ui∂uj

=

n
∑

l=1

Γl
ij

∂hγ,p
∂ul

,

which is equivalent to

∂2θγ,p+1

∂ui∂uj
=

n
∑

k,l=1

Γl
ij

∂2θγ,p+2

∂uk∂ul
. (4.18)

The recursion relation (4.13) of θα,p has the following form in the canonical
coordinates:

∂2θγ,p+1

∂ui∂uj
= δij

∂θγ,p
∂ui

+
∂(ψα

i ψi1)

∂uj
∂θγ,p+1

∂vα
.
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Note that i 6= j in the identity (4.18), so its left hand side reads

∂(ψα
i ψi1)

∂uj
∂θγ,p+1

∂vα
= γij

(

ψi1ψ
α
j + ψj1ψ

α
i

) ∂θγ,p+1

∂vα
.

The right hand side of (4.18) then reads

n
∑

k,l=1

Γl
ij

∂2θγ,p+2

∂uk∂ul
=

n
∑

k,l=1

Γl
ij

(

δkl
∂θγ,p+2

∂uk
+
∂(ψα

kψk1)

∂ul
∂θγ,p+2

∂vα

)

. (4.19)

Note that
n
∑

k=1

ψα
kψk1 = δα1

is a constant, so the second summation in (4.19) vanishes. In the first
summation, we have

Γl
ij = γij

(

δil
ψj1

ψi1
+ δjl

ψi1

ψj1

)

, for i 6= j,

and
∂θγ,p+2

∂uk
=
∂vα

∂uk
∂θγ,p+2

∂vα
= ψα

kψk1
∂θγ,p+2

∂vα
,

which leads to the identity (4.18). The lemma is proved. �

Lemma 4.9 The first flow ∂
∂t1,0

is given by the translation along the spatial
variable x, i.e.

∂

∂t1,0
= ∂.

Proof From our definition (4.16), (4.17) of the evolutionary vector fields we
have

∂vα

∂t1,0
= ηαβ∂

∂h1,0
∂vβ

= ηαβ∂
∂2θ1,2
∂vβ∂v1

=ηαβ∂
∂θ1,1
∂vβ

= ηαβ
∂2θ1,1
∂vβ∂vγ

vγx = vαx .

Here we use the recursion relation (4.13). The lemma is proved. �

From Lemma 4.8 and Lemma 4.9 we have the following proposition.

Proposition 4.10 The collection of functions

{hα,p(v) |α = 1, . . . , n; p = 0, 1, 2, . . . }

that we constructed above is a calibration of the flat exact bihamiltonian
structure (P1, P2;Z).
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In the next section, we will use some results proved in the Appendix,
which requires that there exists a bihamiltonian vector field

X =

∫

(

n
∑

i=1

Ai(u)ui,1θi

)

∈ X

such that for all i = 1, . . . , n, and for some u ∈ D,

∂

∂ui
Ai(u) 6= 0.

In this case, X is called nondegenerate.

Lemma 4.11 If the bihamiltonian vector field X is nondegenerate, then
Ai(u) 6= Aj(u) for all i 6= j and for some u ∈ D.

Proof According to (4.4), if Ai(u) = Aj(u) for i 6= j and u ∈ D, then

∂Ai

∂ui
=
∂Aj

∂ui
= Γj

ji

(

Ai −Aj
)

= 0.

The lemma is proved. �

By shrinking the domain D, the nondegeneracy condition for X and the
result of the above lemma can be modified to “for all u ∈ D” instead of “for
some u ∈ D”.

Lemma 4.12

i) When n = 1, the bihamiltonian vector fields X1,p (p > 0) are always
nondegenerate.

ii) When n ≥ 2, suppose the bihamiltonian structure (P1, P2) is irre-
ducible, then there exists a nondegenerate bihamiltonian vector field
X satisfying [Z,X] = 0.

Proof We rewrite the bihamiltonian vector field Xα,p defined by (4.16) in
the form

Xα,p =

∫

(

n
∑

i=1

Ai
α,p(u)u

i,1θi

)

,

then Ai
α,p satisfy the following equations:

∂Ai
α,p

∂uj
= Γi

ij

(

Aj
α,p −Ai

α,p

)

, for j 6= i,

∂Ai
α,p

∂ui
= −

∑

j 6=i

∂Ai
α,p

∂uj
+Ai

α,p−1, Ai
1,0 = 1.
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When n = 1, we have Ai
1,p =

(u1)p

p! , soX1,p (p > 0) are always nondegenerate.

When n ≥ 2, a bihamiltonian vector field X =
∫ (
∑n

i=1A
i(u)ui,1θi

)

satisfying [Z,X] = 0 is characterized by the following equation

∂Ai

∂uj
= Γi

ij

(

Aj −Ai
)

, for j 6= i, (4.20)

∂Ai

∂ui
= −

∑

j 6=i

∂Ai

∂uj
. (4.21)

The solution space of this system has dimention n. If X is degenerate, that
is, there exists i0 ∈ {1, . . . , n} such that

0 ≡
∂Ai0

∂ui0
= −

∑

j 6=i0

Γi0
i0j

(

Aj −Ai0
)

= −
n
∑

j=1

Γi0
i0j
Aj .

Since (P1, P2) is irreducible, there exists j0 ∈ {1, . . . , n} with j0 6= i0 such
that Γi0

i0j0
(u) 6= 0 for some u ∈ D, so from the above equation we have

Aj0 = −
1

Γi0
i0j0

∑

k 6=j0

Γi0
i0k
Ak.

Substituting this expression of Aj0 into (4.20) and (4.21), we obtain a new
linear homogeneous system with unknowns Ak (k 6= j0). The dimension of
the solution space of this new system is at most n − 1, so not all solutions
of (4.20) and (4.21) are degenerate. The lemma is proved. �

Let us proceed to prove Proposition 2.5 which shows that the functions
hα,p of a calibration of (P1, P2;Z) satisfy the tau symmetry condition, and
the associated principal hierarchy (2.16) possesses Galilean symmetry.

Proof of Proposition 2.5 By using the chain rule and the properties of
{hα,p}, we have

∂hα,p−1

∂tβ,q
=

n
∑

i=1

∂ui

∂tβ,q
∂hα,p−1

∂ui

=

n
∑

i=1





n
∑

j=1

∇i∇jhβ,qu
j,1





(

n
∑

k=1

∂2hα,p
∂ui∂uk

)

=

n
∑

i=1

(

f i∇i∇ihβ,qu
i,1
)

(

n
∑

k=1

∂2hα,p
∂ui∂uk

)

.

Note that the flatness of Z implies the identity (3.8), so we have

n
∑

k=1

∂2hα,p
∂ui∂uk

=
n
∑

k=1

∇i∇khα,p = ∇i∇ihα,p.
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Therefore,

∂hα,p−1

∂tβ,q
=

n
∑

i=1

f i (∇i∇ihβ,q) (∇i∇ihα,p) u
i,1 =

∂hβ,q−1

∂tα,p
.

Next we show that for any γ = 1, . . . , n,

∂

∂tα,p
∂vγ

∂s
=

∂

∂s

∂vγ

∂tα,p
.

The left hand side reads

∂

∂tα,p
∂vγ

∂s
=

∂vγ

∂tα,p−1
+
∑

β,q

tβ,q
∂2vγ

∂tα,p∂tβ,q−1
.

Note that ∂vγ

∂tα,p only depends on vµ and vµx , so we have

∂

∂s

∂vγ

∂tα,p
=
∂vµ

∂s

∂

∂vµ

(

∂vγ

∂tα,p

)

+
∂vµx
∂s

∂

∂vµx

(

∂vγ

∂tα,p

)

=



δµ1 +
∑

β,q

tβ,q
∂vµ

∂tβ,q−1





∂

∂vµ

(

∂vγ

∂tα,p

)

+





∑

β,q

tβ,q
∂vµx

∂tβ,q−1





∂vµx
∂s

∂

∂vµx

(

∂vγ

∂tα,p

)

=
∂

∂v1
∂vγ

∂tα,p
+
∑

β,q

tβ,q
∂2vγ

∂tβ,q−1∂tα,p
,

so we only need to show that ∂vγ

∂tα,p−1 = ∂
∂v1

∂vγ

∂tα,p , which can be easily obtained
from the fact that Xα,p−1 = [Z,Xα,p]. The proposition is proved. �

Since we have [Xβ,q,Hα,p−1] = 0,
∂hα,p−1

∂tβ,q must be a total x-derivative,
so there exists a function Ωα,p;β,q ∈ A0 such that

∂hα,p−1

∂tβ,q
=
∂hβ,q−1

∂tα,p
= ∂Ωα,p;β,q. (4.22)

The functions Ωα,p;β,q are determined up to the addition of constants, so
one can adjust the constants such that these functions satisfy some other
properties which we describe below.

Definition 4.13 A collection of functions

{Ωα,p;β,q ∈ A0 | α, β = 1, . . . , n; p, q = 0, 1, 2, . . . }

is called a tau structure of the flat exact bihamiltonian structure (P1, P2;Z)
with a fixed calibration {hα,p} if the following conditions are satisfied:
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i) ∂Ωα,p;β,q =
∂hα,p−1

∂tβ,q =
∂hβ,q−1

∂tα,p .

ii) Ωα,p;β,q = Ωβ,q;α,p.

iii) Ωα,p;1,0 = hα,p−1.

Lemma 4.14 A tau structure {Ωα,p;β,q} satisfies the following equations:

∂Ωα,p;β,q

∂tγ,r
=
∂Ωα,p;γ,r

∂tβ,q
. (4.23)

Proof By using Definition 4.13 of tau structures we have

∂

(

∂Ωα,p;β,q

∂tγ,r
−
∂Ωα,p;γ,r

∂tβ,q

)

=
∂

∂tγ,r
∂hα,p−1

∂tβ,q
−

∂

∂tβ,q
∂hα,p−1

∂tγ,r
= 0,

so the difference between the left hand side and the right hand side of (4.23)
is a constant. However, both sides can be represented as differential poly-
nomials of degree 1, so the constant must be zero. The lemma is proved.
�

Definition 4.15 (cf. [15]) Let {Ωα,p;β,q} be a tau structure of (P1, P2;Z)
with the calibration {hα,p}. The family of partial differential equations

∂f

∂tα,p
= fα,p, (4.24)

∂fβ,q
∂tα,p

= Ωα,p;β,q(v), (4.25)

∂vγ

∂tα,p
= ηγξ∂Ωα,p;ξ,0(v) (4.26)

with unknown functions (f, {fβ,q}, {v
γ}) is called the tau cover of the prin-

cipal hierarchy (2.16) with respect to the tau structure {Ωα,p;β,q}, and the
function τ = ef is called the tau function of the principal hierarchy. Here
α, β, γ = 1, . . . , n, p ≥ 0.

By using Lemma 4.14, one can easily show that members of the tau cover
commute with each other. It is obvious that the covering map

(f, {fβ,q}, {v
γ}) 7→ ({vγ})

pushes forward the tau cover to the principal hierarchy. This is the reason
why it is named “tau cover”.

In the remaining part of this section, we assume that the calibration
{hα,p} is constructed from {θα,p} as above, see Proposition 4.10. We can
construct, following [12], the functions Ωα,p;β(v) by

∂hα(v; z1)

∂vξ
ηξζ

∂hβ(v; z2)

∂vζ
− ηαβ = (z1 + z2)

∑

p,q≥0

Ωα,p;β,q(v)z
p
1z

q
2. (4.27)

We can easily prove the following proposition.
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Proposition 4.16 The collection of functions

{Ωα,p;β,q(v) |α, β = 1, . . . , ; p, q = 0, 1, 2, . . . }

is a tau structure of the exact bihamiltonian structure (P1, P2;Z) with the
given calibration {hα,p}.

Lemma 4.17 The functions {Ωα,p;β,q} constructed in (4.27) satisfy the iden-
tities

∂Ωα,p;β,q

∂v1
= Ωα,p−1;β,q +Ωα,p;β,q−1 + ηαβδp0δq0. (4.28)

Proof For a fixed pair of indices {α, β}, the above identities are equivalent
to the identity

∂Ωα;β(v; z1, z2)

∂v1
= (z1 + z2)Ωα;β(v; z1, z2) + ηαβ (4.29)

for the generating function

Ωα;β(v; z1, z2) =
∑

Ωα,p;β,q(v)z
p
1z

q
2.

Note that the generation function hα(v; z) satisfies

∂hα(v; z)

∂v1
= z hα(v; z) + ηα1,

then the identity (4.29) can be easily proved by using the definition (4.27).
The lemma is proved. �

Theorem 4.18 The tau cover admits the following Galilean symmetry:

∂f

∂s
=

1

2
ηαβt

α,0tβ,0 +
∑

α,p

tα,p+1fα,p, (4.30)

∂fβ,q
∂s

= ηαβt
α,0δq0 + fβ,q−1 +

∑

α,p

tα,p+1Ωα,p;β,q, (4.31)

∂vγ

∂s
= δγ1 +

∑

α,p

tα,p+1 ∂v
γ

∂tα,p
. (4.32)

Proof To prove ∂
∂s

is a symmetry of the tau cover, we only need to show:

[

∂

∂s
,

∂

∂tα,p

]

K = 0, (4.33)

where K = f , fβ,q, or v
γ . Denote the right hand side of (4.30) by W , then

(4.31), (4.32) can be written as

∂fβ,q
∂s

=
∂W

∂tβ,q
,

∂vγ

∂s
= ηγβ

∂2W

∂t1,0∂tβ,0
,
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so the identity (4.33) is equivalent to the following one:

∂

∂s
Ωα,p;β,q =

∂2

∂tα,p∂tβ,q
W.

By using the chain rule, we have

∂

∂s
Ωα,p;β,q =

∂Ωα,p;β,q

∂vγ
∂vγ

∂s
=
∂Ωα,p;β,q

∂vγ



δγ1 +
∑

ξ,s

tξ,s+1 ∂v
γ

∂tξ,s





=
∂Ωα,p;β,q

∂v1
+
∑

ξ,s

tξ,s+1∂Ωα,p;β,q

∂tξ,s
.

On the other hand,

∂2

∂tα,p∂tβ,q
W =

∂

∂tα,p



ηξβt
ξ,0δq0 + fβ,q−1 +

∑

ξ,s

tξ,s+1Ωξ,s;β,q





=ηαβδp0δq0 +Ωα,p−1;β,q +Ωα,p;β,q−1 +
∑

ξ,s

tξ,s+1∂Ωξ,s;β,q

∂tα,p
.

The theorem then follows from Lemma 4.14 and 4.17. �

5 Tau-symmetric integrable Hamiltonian deforma-

tions of the principal hierarchy

Let (P1, P2;Z) be a flat exact semisimple bihamiltonian structure of hy-
drodynamic type. In this and the next section we consider properties of
deformations of the principal hierarchy (2.16) and its tau structure. To this
end, we fix a calibration {hα,p} and a tau structure {Ωα,p;β,q} as in the
previous section, and we assume that (P1, P2;Z) is also irreducible.

Note that the principal hierarchy is determined by the first Hamiltonian
structure P1 and the calibration {hα,p}, so we first consider their deforma-
tions.

Definition 5.1 The pair (P̃1, {h̃α,p}) is called a tau-symmetric integrable
deformation, or simply a deformation for short, of (P1, {hα,p}) if it satisfies
the following conditions:

i) P̃1 ∈ F̂2 has the form

P̃1 = P1 + P
[2]
1 + P

[3]
1 + . . . ,

where P
[k]
1 ∈ F̂2

k+1, and it is a Hamiltonian structure.
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ii) h̃α,p has the form

h̃α,p = hα,p + h[2]α,p + h[3]α,p + · · · ,

where h
[k]
α,p ∈ Ak. Define H̃α,p =

∫

(hα,p), then for any pair of indices
(α, p), (β, q) we must have

{H̃α,p, H̃β,q}P̃1
= 0. (5.1)

Here {F,G}P̃1
= [[P̃1, F ], G] for F,G ∈ F .

iii) Define X̃α,p = −[P̃1, H̃α,p], and denote ∂̃α,p = DX̃α,p
, then {h̃α,p}

satisfy the tau-symmetry condition

∂̃α,p

(

h̃β,q−1

)

= ∂̃β,q

(

h̃α,p−1

)

. (5.2)

Remark 5.2 Note that we assume the deformation starts from the second

degree, i.e. there is no P
[1]
1 and h

[1]
α,p terms. Without this condition we can

also prove the next lemma, and then define the tau cover. We add it to avoid
some subtle problems in Theorem 5.7 (see Remark 5.8 for more details).
Note that for integrable hierarchies that arise in the study of semisimple
cohomological field theories, there are no deformations with odd degrees.

A deformation of (P1, {hα,p}) yields a tau-symmetric integrable Hamil-
tonian deformation of the principal hierarchy (2.16) which consists of the
flows

∂vα

∂tβ,q
= DX̃β,q

(vα), 1 ≤ α, β ≤ n, q ≥ 0. (5.3)

Here the evolutionary vector fields are given by

X̃β,q = −[P̃1, H̃β,q].

From the property ii) of Definition 5.1 we know that these deformed evolu-
tionary vector fields are mutually commuting, and so the associated flows
which we denote by ∂̃β,q are also mutually commuting. This is the reason
why we call the above deformed hierarchy (5.3) an integrable Hamiltonian
deformation of the principal hierarchy. We will show below that the de-
formed hierarchy also possesses a tau structure. We note that the notion
of tau-symmetric integrable Hamiltonian deformation of the principal hier-
archy associated to a Frobenius manifold was introduced in [19]. In the
definition given there the following additional conditions are required:

1. ∂̃1,0 = ∂.

2. H̃α,−1 are Casimirs of P̃1.
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These two conditions are consequences of the Definition 5.1. In fact, since
the evolutionary vector fieldX corresponding to the flow ∂̃1,0−∂ is a symme-
try of the deformed integrable hierarchy and it belongs to F̂1

≥2, by using the
existence of a non-degenerate bihamiltonian vector field proved in Lemma
4.12 and the property ii) of Corollary A.3 we know that X must vanishes.
Thus we have

∂̃1,0 = ∂. (5.4)

Similarly, from the fact that [P1,Hα,−1] = 0 we know that the vector field
X = −[P̃1, H̃α,−1] ∈ F̂1

≥2. Since it is a symmetry of the deformed integrable
hierarchy (5.3) we know that it also vanishes. Thus the second condition
also holds true.

Lemma 5.3 For any deformation (P̃1, {h̃α,p}) of (P1, hα,p}), there exists a
unique collection of differential polynomials {Ω̃α,p;β,q} satisfying the follow-
ing conditions:

i) Ω̃α,p;β,q = Ωα,p;β,q +Ω
[2]
α,p;β,q +Ω

[3]
α,p;β,q + · · · , where Ω

[k]
α,p;β,q ∈ Ak.

ii) ∂Ω̃α,p;β,q = ∂̃α,p

(

h̃β,q−1

)

.

iii) Ω̃α,p;β,q = Ω̃β,q;α,p, and Ω̃α,p;1,0 = h̃α,p−1.

iv) ∂̃γ,rΩ̃α,p;β,q = ∂̃β,qΩ̃α,p;γ,r.

Here α, β, γ = 1, . . . , n and p, q, r ≥ 0. This collection of differential polyno-
mials {Ω̃α,p;β,q} is called a tau structure of (P̃1, {h̃α,p}).

Proof According to the definition of {h̃α,p},

∫

(

∂̃α,p

(

h̃β,q

))

= [X̃α,p, H̃β,q] = −{H̃α,p, H̃β,q}P̃1
= 0,

so there exists Ω̃α,p;β,q satisfying the conditions i), ii). These conditions
determine Ω̃α,p;β,q up to a constant, which has degree zero. Note that the
condition i) fixes the degree zero part of Ω̃α,p;β,q, so it is unique. The condi-
tions iii) and iv) can be verified by considering the action of ∂ on both sides
of the equalities, as we did in the proof of Lemma 4.14. �

Definition 5.4 ([15]) The differential polynomials

wα = ηαβ h̃β,−1 = vα + Fα
2 + Fα

3 + · · · , Fα
k ∈ Ak (5.5)

are called the normal coordinates of (P̃1, {h̃α,p}) and of the deformed prin-
cipal hierarchy (5.3).
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The properties of the differential polynomials Ω̃α,p;β,q enable us to define the
tau cover for (P̃1, {h̃α,p}) and the deformed principal hierarchy (5.3), just as
we did for the principal hierarchy given in Definition 4.15. From (5.5) we
know that we can also represent vα in the form

vα = wα + F̃α
2 + F̃α

3 + · · · , (5.6)

where F̃α
k are differential polynomials of w1, . . . , wn of degree k. So the func-

tions Ω̃α,p;β,q(v, vx, . . . ) can also be represented as differential polynomials
in w1, . . . , wn by the change of coordinates formulae given in (5.6).

Definition 5.5 (c.f. [15]) The family of partial differential equations

∂f̃

∂tα,p
= f̃α,p, (5.7)

∂f̃β,q
∂tα,p

= Ω̃α,p;β,q, (5.8)

∂wγ

∂tα,p
= ηγξ∂Ω̃α,p;ξ,0 (5.9)

with the unknowns functions ({wα}, {f̃α,p}, f̃ ) is called the tau cover of the
deformed principal hierarchy (5.3) with respect to the tau structure {Ω̃α,p;β,q},

and the function τ̃ = ef̃ is called the tau function of the deformed principal
hierarchy.

Definition 5.6 Suppose (P̃1, {h̃α,p}) and (P̂1, {ĥα,p}) are two deformations

of (P1, {hα,p}). Define H̃α,p =
∫

(

h̃α,p

)

and Ĥα,p =
∫

(

ĥα,p

)

. If there exists

a Miura transformation eadY (Y ∈ F̂1
≥1) such that

P̂1 = eadY

(

P̃1

)

, Ĥα,p = eadY

(

H̃α,p

)

,

then we say that (P̃1, {h̃α,p}) and (P̂1, {ĥα,p}) are equivalent.

If (P̃1, {h̃α,p}) and (P̂1, {ĥα,p}) are equivalent, then

X̂α,p = −[P̂1, Ĥα,p] = −eadY
(

[P̃1, H̃α,p]
)

= eadY

(

X̃α,p

)

,

which is equivalent to ∂̂α,p = eDY ∂̃α,pe
−DY . The associated deformed prin-

cipal hierarchy has the form (c.f. (5.3))

∂vα

∂tβ,q
= D

X̂β,q
(vα), 1 ≤ α, β ≤ n, q ≥ 0. (5.10)

It is obtained from (5.3) by representing the equations of the hierarchy
in terms of the new unkown functions ṽα = e−DY (vα) and re-denoting
ṽα, ṽαx , . . . by vα, vαx , . . . .
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Theorem 5.7 Suppose (P̃1, {h̃α,p}) and (P̂1, {ĥα,p}) are two equivalent de-
formations related by a Miura transformation eadY , and they have tau struc-
tures {Ω̃α,p;β,q} and {Ω̂α,p;β,q} respectively. Then there exists a differential
polynomial G such that

ĥα,p = eDY

(

h̃α,p

)

+ ∂∂̂α,pG,

Ω̂α,p;β,q = eDY

(

Ω̃α,p;β,q

)

+ ∂̂α,p∂̂β,qG.

Moreover, suppose {f̃(t), {f̃α,p(t)}, {w̃
α(t)}} is a solution to the tau cover

corresponding to the tau structure {Ω̃α,p;β,q}, then

f̂(t) = f̃(t) +G(t), f̂α,p(t) = f̃α,p +
∂G(t)

∂tα,p
, ŵα(t) = w̃α(t) + ηαβ

∂2G(t)

∂x∂tβ,0

give a solution {f̂(t), {f̂α,p(t)}, {ŵ
α(t)}} to the tau cover corresponding to

the tau structure {Ω̂α,p;β,q} and the associated deformed principal hierarchy.
Here G(t) is defined from the differential polynomial G = G(v, vx, . . . ) by

G(t) =
(

e−DYG(v, vx, . . . )
)

|vα=vα(w̃(t)),w̃x(t),... ),

and vα = vα(w̃, w̃x, . . . ) are defined by the relation w̃α = ηα,γ h̃γ,0(v, vx, . . . )
just as we did in (5.6).

Proof The condition Ĥα,p = eadY

(

H̃α,p

)

implies that there exists gα,p ∈

A≥1 such that

ĥα,p = eDY

(

h̃α,p

)

+ ∂gα,p.

The tau-symmetry condition ∂̂α,pĥβ,q−1 = ∂̂β,qĥα,p−1 for {ĥα,p} and the one
for {h̃α,p} implies that

∂
(

∂̂α,pgβ,q−1 − ∂̂β,qgα,p−1

)

= 0,

so we have ∂̂α,pgβ,q−1 = ∂̂β,qgα,p−1. In particular, by taking (β, q) = (1, 0),
we have

∂̂α,pg1,−1 = ∂gα,p−1,

so
∫

(g1,−1) gives a conserved quantity for ∂̂α,p with a positive degree. Ac-
cording to Theorem A.2, there exists G ∈ A such that

g1,−1 = ∂G, (5.11)

then we have
∂
(

∂̂α,pG− gα,p−1

)

= 0,
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so gα,p−1 = ∂̂α,pG for α = 1, . . . , n, p ≥ 0. Thus we have

∂Ω̂α,p;β,q = ∂̂α,pĥβ,q−1 = ∂̂α,p

(

eDY

(

h̃β,q−1

)

+ ∂∂̂β,qG
)

=eDY ∂̃α,p

(

h̃β,q−1

)

+ ∂∂̂α,p∂̂β,qG = ∂
(

eDY

(

Ω̃α,p;β,q

)

+ ∂̂α,p∂̂β,qG
)

,

so the difference between Ω̂α,p;β,q and eDY

(

Ω̃α,p;β,q

)

+ ∂̂α,p∂̂β,qG is a con-

stant. However, they have the same leading terms, so the constant must be
zero.

The remaining assertions of the theorem follow from our definition of the
tau covers of the deformed principal hierarchies. The theorem is proved. �

Remark 5.8 If in Definition 5.1 we permit the appearance of first degree

deformations, i.e. P
[1]
1 and h

[1]
α,p, the first identity of the above theorem should

be replaced by

ĥα,p = eDY

(

h̃α,p

)

+ ∂̂α,pσ,

where σ is a conserved density of ∂̂α,p, and the solutions f̂ = log τ̂ and
f̃ = log τ̃ of the tau covers of Ω̂α,p;β,q and Ω̃α,p;β,q satisfy the relation

∂ (log τ̂ − log τ̃) = σ.

The different tau functions defined in [20, 35, 43] for the Drinfeld–Sokolov
hierarchies have such a relationship.

Next let us consider the Galilean symmetry of the deformed principal
hierarchy.

Definition 5.9 The triple (P̃1, {h̃α,p}, Z̃) is a deformation of (P1, {hα,p}, Z)
if

i) The pair (P̃1, {h̃α,p}) is a deformation of (P1, {hα,p}).

ii) The vector field Z̃ has the form

Z̃ = Z + Z [2] + Z [3] + . . . , Z [k] ∈ F̂1
k ,

and satisfies conditions [Z̃, P̃1] = 0 and

DZ̃ h̃α,−1 = ηα,1, DZ̃ h̃α,p = h̃α,p−1, α = 1, . . . , n, p ≥ 0.

Lemma 5.10 Let {Ω̃α,p;β,q} be a tau structure of (P̃1, {h̃α,p}, Z̃), and w
1, . . . , wn

are the normal coordinates. Assume that the identity (4.28) holds true, then
we have:

∂Ω̃α,p;β,q

∂w1
= Ω̃α,p−1;β,q + Ω̃α,p;β,q−1 + ηαβδp0δq0.
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Proof According to Lemma 4.17, we only need to show that

∂
∂Ω̃α,p;β,q

∂w1
= ∂Ω̃α,p−1;β,q + ∂Ω̃α,p;β,q−1,

that is,

∂

∂w1

(

∂̃β,q

(

h̃α,p−1

))

= ∂̃β,q

(

h̃α,p−2

)

+ ∂̃β,q−1

(

h̃α,p−1

)

. (5.12)

We first note that one can replace ∂
∂w1 by DZ̃ . This is because

DZ̃ = ∂s
(

DZ̃ (wγ)
) ∂

∂wγ,s
= ∂s (δγ1 )

∂

∂wγ,s
=

∂

∂w1
.

Then the identity (5.12) is equivalent to [DZ̃ , ∂̃β,q] = ∂̃β,q−1, which follows

from the identities ∂̃β,q = −D[P̃1,H̃β,q]
, and

[DZ̃ ,D[P̃1,H̃β,q]
] = D[Z̃,[P̃1,H̃β,q]]

= D[P̃1,H̃β,q−1]
.

The lemma is proved. �

Similar to Theorem 4.18, we have the following theorem on the Galilean
symmetry of the deformed hierarchy {∂̃α,p}.

Theorem 5.11 Under the assumption of Lemma 5.10, the above defined
tau cover (5.7)–(5.9) admits the following Galilean symmetry:

∂f̃

∂s
=

1

2
ηαβt

α,0tβ,0 +
∑

α,p

tα,p+1f̃α,p, (5.13)

∂f̃β,q
∂s

= ηαβt
α,0δq0 + f̃β,q−1 +

∑

α,p

tα,p+1Ω̃α,p;β,q, (5.14)

∂wγ

∂s
= δγ1 +

∑

α,p

tα,p+1 ∂w
γ

∂tα,p
. (5.15)

Proof We can prove the theorem by using the same argument as the one
given in the proof of Theorem 4.18, and by using Lemma 5.10. �

Example 5.12 Let c = {cg,n : V ⊗n → H∗(Mg,n,Q)} be a semisimple co-
homological field theory. Its genus zero part defines a semisimple Frobenius
manifold, which corresponds to a flat exact semisimple bihamiltonian struc-
ture of hydrodynamic type. Its principal hierarchy has a useful deformation,
called topological deformation, such that the partition function of c is a tau
function of this deformed hierarchy [15, 5, 6]. On the other hand, Buryak
constructed another deformation, called double ramification deformation,
from the same data, and conjectured that they are actually equivalent [2].
This conjecture is refined in [3] as follow:
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Suppose F is the free energy of the topological deformation. Buryak
et al show that there exists a unique differential polynomial P such that
F red = F + P satisfies the following condition:

Coefǫ2g
∂nF red

∂tα1,p1 · · · ∂tαn,pn

∣

∣

∣

∣

t∗,∗=0

= 0, p1 + · · · + pn ≤ 2g − 2.

It is conjectured that F red is just the free energy of the double ramification
deformation.

Buryak et al’s refined conjecture is compatible with our Theorem 5.7.
They also show that the double ramification deformation satisfies the string
equation, which can also be derived from our Theorem 5.11.

6 Tau-symmetric bihamiltonian deformations of the

principal hierarchy

In this section, we construct a class of tau-symmetric integrable Hamilto-
nian deformations of the principal hierarchy associated with a semisimple
flat exact bihamiltonian structure (P1, P2;Z) of hydrodynamic type. These
deformations of the principal hierarchies are in fact bihamiltonian integrable
hierarchies.

From [8, 33] we know that the bihamiltonian structure (P1, P2) possesses
deformations of the form

P̃1 = P1 +
∑

k≥1

Q1,k, P̃2 = P2 +
∑

k≥1

Q2,k, Q1,k, Q2,k ∈ F̂2
k+1

such that (P̃1, P̃2) is still a bihamiltonian structure, i.e.

[P̃a, P̃b] = 0, a, b = 1, 2.

The space of deformations of the bihamiltonian structure (P1, P2) is charac-
terized by the central invariants c1(u), . . . , cn(u) of (P̃1, P̃2). The following
theorem of Falqui and Lorenzoni gives a condition under which the deformed
bihamiltonian structure inherits the exactness property. This means that
there exists a vector field Z̃ ∈ F̂1 such that

[Z̃, P̃1] = 0, [Z̃, P̃2] = P̃1.

Theorem 6.1 ([21]) The deformed bihamiltonian structure (P̃1, P̃2) is ex-
act if and only if its central invariants c1, . . . , cn are constant functions.
Moreover, there exists a Miura type transformation g such that

g(P̃1) = P1, g(P̃2) = P2 +
∑

k≥1

Qk, Qk ∈ F̂2
2k+1 (6.1)

and g(Z̃) = Z, where Z = Z0 is given by (3.4).
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In what follows, we assume that (P̃1, P̃2; Z̃) is a deformation of the flat
exact bihamiltonian structure (P1, P2;Z) with constant central invariants
c1, . . . , cn, P̃1, P̃2 have the form given in (6.1), and Z̃ = Z. We denote by
u1, . . . , un and v1, . . . , vn the canonical coordinates of (P1, P2) and the flat
coordinates of P1 respectively. We also fix a calibration

{hα,p(v) ∈ A0 | α = 1, . . . , n; p = 0, 1, 2, . . . }

and a tau structure

{Ωα,p;β,q(v) ∈ A0 | α, β = 1, . . . , n; p, q = 0, 1, 2, . . . }

of the flat exact bihamiltonian structure (P1, P2;Z) (see above their con-
struction given in Propositions 4.10, 4.16).

We define the space of Casimirs of P̃1, the space of bihamiltonian con-
served quantities and the space of bihamiltonian vector fields respectively,
just like we did for (P1, P2), as follows:

V̂ :=Ker([P̃1, ·]) ∩ F ,

Ĥ :=Ker([P̃2, [P̃1, ·]]) ∩ F ,

X̂ :=Ker([P̃1, ·]) ∩Ker([P̃2, ·]) ∩ F̂1.

Theorem 6.2 We have the following isomorphisms:

V ∼= V̂, H ∼= Ĥ, X ∼= X̂ . (6.2)

In particular, X̂ ∼= Ĥ/V̂ .

Proof Since P̃1 = P1, we only need to prove that H ∼= Ĥ, X ∼= X̂ . Suppose
H ∈ Ĥ is a bihamiltonian conserved quantity of (P̃1, P̃2). Expand H as the
sum of homogeneous components

H = H0 +H1 +H2 + · · · , Hk ∈ F2k,

then H0 is a bihamiltonian conserved quantity of (P1, P2), so we have a map
π : Ĥ → H, H 7→ H0. The fact that H is concentrated in degree zero (see
Lemma 4.4) implies that π is injective. To prove the isomorphism H ∼= Ĥ,
we only need to show that π is surjective, that is, for any bihamiltonian
conserved quantity H0 of (P1, P2) there exists a bihamiltonian conserved
quantity H of (P̃1, P̃2) with H0 as its leading term.

Recall that (P̃1, P̃2;Z) takes the form (6.1). If we denote da = [Pa, ·] (a =
1, 2), then Qk satisfy the following equations:

d1Qk = 0, d2Qk +
1

2

k−1
∑

i=1

[Qi, Qk−i] = 0.
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We assert that, for any bihamiltonian conserved quantityH0 ∈ H of (P1, P2),
there exists Hk ∈ F2k such that

H = H0 +H1 +H2 + · · ·

is a bihamiltonian conserved quantity of (P̃1, P̃2). This assertion is equivalent
to the solvability of the following equations for Hk to be solved recursively:

d1d2Hk =

k
∑

i=1

[Qi, d1Hk−i], k = 1, 2, . . . .

Assume that we have already solved the above equations for H1, . . . ,Hk−1

starting from H0. Denote by Wk the right hand side of the above equation.
Then it is easy to see that d1Wk = 0, and

d2Wk =

[

P2,

k
∑

i=1

[Qi, d1Hk−i]

]

=−

k
∑

i=1

([[d1Hk−i, P2], Qi] + [[P2, Qi], d1Hk−i])

=
k
∑

i=1

([d1d2Hk−i, Qi] + [−d2Qi, d1Hk−i])

=

k
∑

i=1

k−i
∑

j=1

[[Qj , d1Hk−i−j], Qi] +
1

2

k
∑

m=1

m−1
∑

i=1

[[Qi, Qm−i], d1Hk−m]

=
1

2

∑

i,j≥1,l≥0,i+j+l=k

([[Qj , d1Hl], Qi] + [[Qi, d1Hl], Qj ] + [[Qi, Qj ], d1Hl])

=0,

so Wk ∈ Ker(d1)∩Ker(d2)∩ F̂2
≥4. Since BH

2
≥4(F̂) ∼= 0, there exists Hk ∈ F

such that Wk = d1d2Hk. Thus the isomorphism H ∼= Ĥ is proved.
It is easy to see that the map

d1 : Ĥ/V̂ → X̂ , H 7→ X = −[P̃1,H]

gives the isomorphism Ĥ/V̂ ∼= X̂ , which also induces the isomorphism X ∼=
X̂ . The theorem is proved. �

It follows from the above theorem that there exist unique deformations

H̃α,p = Hα,p +H [1]
α,p +H [2]

α,p + . . . , H [k]
α,p ∈ F2k

of the bihamiltonian conserved quantities Hα,p =
∫

(hα,p) ∈ H such that,
together with the constant local functional

∫

(1), they form a basis of the
subspace

Ĥ∞ =
⋃

p≥0

Ĥ(p)
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of Ĥ, where Ĥ(p) is the image of H(p) in Ĥ of the isomorphism given in the
above theorem. For any pair of indices (α, p), (β, q), it is easy to see that the
local functional H = {H̃α,p, H̃β,q}P̃1

:= [[P̃1, H̃α,p], H̃β,q] is a bihamiltonian

conserved quantity w.r.t. (P̃1, P̃2). Since H ∈ F≥1 we obtain

{H̃α,p, H̃β,q}P̃1
= 0 (6.3)

by using Lemma 4.12 and the property i) of Corollary A.3.
Define an operator

δZ : F̂ → Â, Q 7→

n
∑

i=1

δQ

δui
=
δQ

δv1
. (6.4)

Here we used the fact that

DZ =
∂

∂v1
=

n
∑

i=1

∂

∂ui
.

Then for a local functional H ∈ F we have [Z,H] =
∫

(δZ(H)). Now let us
define

h̃α,p = δZH̃α,p+1, α = 1, . . . , n, p = −1, 0, 1, . . . . (6.5)

Theorem 6.3 The triple (P̃1, {h̃α,p}, Z̃) gives a deformation of (P1, {hα,p}, Z).

Proof Define H̃ ′
α,p =

∫

(

h̃α,p

)

. From the definition of h̃α,p we see that

H̃ ′
α,p = [Z, H̃α,p+1], so it belongs to Ĥ. From the property DZhα,p+1 = hα,p

we know that H̃ ′
α,p and H̃α,p have the same leading term

∫

(hα,p). Since the

bihamiltonian conserved quantities of (P̃1, P̃2) are uniquely determined by
their leading terms, we obtain

H̃ ′
α,p = H̃α,p.

In particular, we know from (6.3) that {H̃ ′
α,p, H̃

′
β,q}P̃1

= 0, and

X̃ ′
α,p = −[P̃1, H̃

′
α,p] = −[P̃1, H̃α,p] = X̃α,p.

Denote by θ̄α the super variables corresponding to the flat coordinates
v1, . . . , vn. Recall that

P̃1 = P1 =
1

2

∫

(

ηαβ θ̄αθ̄
1
β

)

, where ηαβ = 〈dvα, dvβ〉g1 ,

so we have

X̃α,p =

∫

(

ηβγ∂

(

δH̃α,p

δvγ

)

θ̄β

)

.
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Denote by V = η1γv
γ , then

∂V

∂tα,p
=
δX̃α,p

δθ̄γ

∂V

∂vγ
= η1γη

γβ∂

(

δH̃α,p

δvβ

)

= ∂

(

δH̃α,p

δv1

)

,

which implies that

∂
(

∂̃α,p

(

h̃β,q−1

)

− ∂̃β,q

(

h̃α,p−1

))

=
∂

∂tα,p
∂V

∂tβ,q
−

∂

∂tβ,q
∂V

∂tα,p
= 0.

Since the difference ∂̃α,p

(

h̃β,q

)

− ∂̃β,q

(

h̃α,p

)

is a differential polynomial

with terms of degree greater or equal to one, so it must be zero. The above
computation shows that (P̃1, {h̃α,p}) is a deformation of (P1, {hα,p}), see
Definition 5.1.

Next let us consider the action of DZ on h̃α,p. We have

DZ(h̃α,p+1) =
∂

∂v1
δ

δv1
H̃α,p+2 =

δ

δv1
δ

δv1
H̃α,p+2 =

δ

δv1
H̃α,p+1 = h̃α,p.

Here we used the following identity for variational derivatives:

∂

∂v1
δ

δv1
=

δ

δv1
δ

δv1
,

which is a particular case of the identity (i) of Lemma 2.1.5 in [32].
We still need to check the identitiesDZ(h̃α,−1) = ηα,1, which is equivalent

to δZH̃α,−1 = ηα,1. Note that the leading term H̃
[0]
α,−1 =

∫ (

ηαβv
β
)

of H̃α,−1

is a Casimir of P1 = P̃1, so it also belongs to Ĥ. On the other hand, elements

of Ĥ are determined by their leading terms, so we have H̃α,−1 = H̃
[0]
α,−1,

which implies the desired identity. The theorem is proved. �

Remark 6.4 Our construction (6.5) of the Hamiltonian densities that sat-
isfy the tau symmetry property follows the approach given in [15] for the
construction of the tau structure of the KdV hierarchy. Note that this ap-
proach was also employed in [3] to construct tau structures for the double
ramification hierarchies associated to cohomological field theories.

The deformation (P̃1, {h̃α,p}, Z̃) constructed in the above theorem de-
pends on the choice of P̃2. It is natural to ask: if we start from another
deformation (P̂1, P̂2; Ẑ) which has the same central invariants as (P̃1, P̃2; Z̃)
does, how does the result on the deformation (P̃1, {h̃α,p}, Z̃) change?

Without loss of generality, we can assume that both (P̂1, P̂2; Ẑ) and
(P̃1, P̃2; Z̃) have been transformed to the form (6.1). If (P̂1, P̂2) has the same
central invariants as (P̃1, P̃2), then there exists a Miura type transformation
of the second type

v 7→ v̄ = e−DY (v)
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with Y ∈ F̂1
≥2 such that

P̂a = eadY

(

P̃a

)

, a = 1, 2.

Note that P̂1 = P̃1 = P1, so [P1, Y ] = 0, which implies that there exists
K ∈ F≥1 such that Y = [P1,K].

Lemma 6.5 The vector field Y and the functional K satisfy [Y,Z] = 0 and
[K,Z] = 0.

Proof Denote Z ′ = eadY (Z), then we have

[P̂1, Z
′] = eadY

(

[P̃1, Z]
)

= 0,

[P̂2, Z
′] = eadY

(

[P̃2, Z]
)

= P̂1,

so W = Z ′ − Z is a bihamiltonian vector field of (P̂1, P̂2). On the other
hand, W ∈ F̂1

≥2, so we have W = 0 and, consequently, we have [Y,Z] = 0.
It follows from the identity [Y,Z] = 0 that [P1, [K,Z]] = 0, so C = [K,Z]

is a Casimir of P1. Since C ∈ F≥1, we obtain C = 0. The lemma is proved.
�

From the above lemma we have
∫

(δZK) = [Z,K] = 0,

so there exists g ∈ A such that

δZK = ∂g. (6.6)

Let {Ĥα,p}, {H̃α,p} be the bihamiltonian conserved quantities of (P̂1, P̂2)
and (P̃1, P̃2) respectively with the same leading terms {hα,p}, and {X̂α,p},
{X̃α,p} be the corresponding bihamiltonian vector fields:

X̂α,p = −[P1, Ĥα,p], X̃α,p = −[P1, H̃α,p].

They are related by

Ĥα,p = eadY

(

H̃α,p

)

, X̂α,p = eadY

(

X̃α,p

)

.

The flows corresponding to {X̂α,p} and {X̃α,p} are denoted respectively by

{∂̂α,p} and {∂̃α,p}. We also have the associated triples (P̃1, {h̃α,p}, Z̃) and

(P̂1, {ĥα,p}, Ẑ) which are constructed in Theorem 6.3. Let {Ω̃α,p;β,q} and

{Ω̂α,p;β,q} be the corresponding tau structures. Then the relation between
these tau structures and the solutions of the associated tau covers of the
deformed principal hierarchies is given by Theorem 5.7, and the following
theorem gives the explicit expression of the differential polynomial G.
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Theorem 6.6 The differential polynomial G of Theorem 5.7 is given by the
formula

G =
∞
∑

i=1

1

i!
Di−1

Y (g) , (6.7)

where the function g is defined in (6.6).

Proof From our construction of the densities of the Hamiltonians we have

ĥα,p = δZĤα,p+1, h̃α,p = δZH̃α,p+1,

so

ĥα,p = δZ

(

eadY

(

H̃α,p+1

))

=

∞
∑

k=0

1

k!
δZ

(

adkY

(

H̃α,p+1

))

.

By using the the definition (6.4) of δZ and the identities given in Lemma
6.7 we can show that

δZ

(

adkY

(

H̃α,p+1

))

= Dk
Y

(

h̃α,p

)

+
k
∑

i=1

(

k

i

)

Dadk−i
Y (H̃α,p+1)D

i−1
Y (δZY ) ,

so we have

ĥα,p =

∞
∑

k=0

1

k!

(

Dk
Y

(

h̃α,p

)

+

k
∑

i=1

(

k

i

)

Dadk−i
Y (H̃α,p+1)D

i−1
Y (δZY )

)

=eDY

(

h̃α,p

)

+D
Ĥα,p+1

(

∞
∑

i=1

1

i!
Di−1

Y (δZY )

)

By using the fact that

δZY = δZ [P1,K] = DP1
(δZK) = ∂DP1

(g),

and [DY ,DP1
] = 0, [∂,DQ] = 0 for Q ∈ F̂ (see Lemma 6.7), we obtain

ĥα,p = eDY

(

h̃α,p

)

+ ∂D
Ĥα,p+1

DP1
G,

where

G =

∞
∑

i=1

1

i!
Di−1

Y (g) .

Then by using the identity (see Lemma 6.7)

DHDP1
= D−[P1,H] −DP1

DH ,

and the fact that DH (G) = 0, we have

ĥα,p = eDY

(

h̃α,p

)

+ ∂D
X̂α,p+1

G = eDY

(

h̃α,p

)

+ ∂∂̂α,pG.

The theorem is proved. �

In the proof of the above theorem the following lemma is used.
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Lemma 6.7 The operator

DP =
∑

s≥0

(

∂s
(

δP

δθα

)

∂

∂uα,s
+ (−1)p∂s

(

δP

δuα

)

∂

∂θsα

)

, P ∈ F̂p

and the bracket

[P,Q] =

∫ (

δP

δθα

δQ

δuα
+ (−1)p

δP

δuα
δQ

δθα

)

, P ∈ F̂p, Q ∈ F̂q

satisfy the following identities:

[∂,DP ] = 0;

δ

δuα
[P,Q] = DP

(

δQ

δuα

)

+ (−1)pqDQ

(

δP

δuα

)

;

(−1)p−1D[P,Q] = DP ◦DQ − (−1)(p−1)(q−1)DQ ◦DP .

Proof The first identity can be obtained from the definition of DP . The
second one is a corollary of the identity (iii) of Lemma 2.1.3 and the identity
(i) of Lemma 2.1.5 given in [32]. The third identity is a corollary of the
second one. The lemma is proved. �

Theorem 6.3 gives the existence part of Theorem 2.9, and Theorem 6.6
(combining with Theorem 5.7) gives the uniqueness part.

There are two important examples of such deformations when the flat
exact semisimple bihamiltonian structures is provided by a semisimple co-
homological field theory. In [15] the first- and the third-named authors
construct, for any semisimple Frobenius manifold, the so-called topological
deformation of the associated principal hierarchy and its tau structure. As
we mentioned in Example 5.12, in [2] Buryak constructed a Hamiltonian
integrable hierarchy associated to any cohomological field theory, and in [3]
he and his collaborators showed that this integrable hierarchy also possesses
a tau structure. Buryak conjectured in [2] that the above two integrable
hierarchies are equivalent via a Miura type transformation. He and his col-
laborators further refined this conjecture in [3] as an equivalence between
tau-symmetric Hamiltonian deformations via a normal Miura type transfor-
mation. The notion of normal Miura type transformation was introduced in
[19], our Definition 5.6 (see also Theorem 5.7) is a kind of its generalization.
We hope our results could be useful to solve the Buryak’s et al conjecture.

7 Conclusion

We consider in this paper the integrable hierarchies associated to a class
of flat exact semisimple bihamiltonian structures of hydrodynamic type.
This property of flat exactness enables us to associate to any semisimple bi-
hamiltonian structure of hydrodynamic type a Frobenius manifold structure
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(without the Euler vector field), and a bihamiltonian integrable hierarchy
which is called the principal hierarchy. We show that this principal hierarchy
possesses a tau structure and also the Galilean symmetry. For any deforma-
tion of the flat exact semisimple bihamiltonian structures of hydrodynamic
type which has constant central invariants, we construct the deformation of
the principal hierarchy and show the existence of tau structure and Galilean
symmetry for this deformed integrable hierarchy. We also describe the am-
biguity of the choice of tau structure for the deformed integrable hierarchy.
Our next step is to study properties of the Virasoro symmetries that are
inherited from the Galilean symmetry of the deformed integrable hierarchy
in order to fix an appropriate representative of the tau structures which,
in the case associated to a cohomological field theory, corresponds to the
partition function. We will do it in a subsequent publication.
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A On semi-Hamiltonian hierarchies

In this appendix, we prove a classification theorem for conserved quantities
and symmetries of a semi-Hamiltonian system satisfying certain nondegen-
erateness conditions.

Definition A.1 ([41]) i) A system of evolutionary partial differential equa-
tions of the form

∂ui

∂t
= Ai(u)ui,1, i = 1, . . . , n (A.1)

is called semi-Hamiltonian, if Ai 6= Aj for i 6= j and

∂k

(

∂jA
i

Aj −Ai

)

= ∂j

(

∂kA
i

Ak −Ai

)

, for distinct i, j, k,

where ∂k = ∂
∂uk .

ii) A semi-Hamiltonian system of evolutionary partial differential equa-
tions is called nondegenerate if ∂iA

i 6= 0 for all i = 1, . . . , n. We denote
Ai

i = ∂iA
i from now on.

According to Tsarev’s results [41], a semi-Hamiltonian system has in-
finitely many conserved quantities of the form

H =

∫

h ∈ F̂0
0 ,
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and infinitely many symmetries of the form

Y =

∫

(

n
∑

i=1

Bi(u)ui,1θi

)

∈ F̂1
1 .

An important question is: Are there conserved quantities and symmetries
with higher degrees, which belong to F̂0

≥1 and F̂1
≥2? The following Theorem

and Corollary give the answer.

Theorem A.2 Suppose X is a nondegenerate semi-Hamiltonian system.

i) If H ∈ F̂0
≥1 satisfies [X,H] = 0, then H = 0.

ii) If Y ∈ F̂1
≥2 satisfies [X,Y ] = 0, then Y = 0.

Proof i) Suppose H =
∫

h, where h ∈ A(N). Recall that A(N) is the
space of differential polynomials that do not depend on ui,s with s > N . We
denote δi =

δ
δui and define Zi = δi[X,H]. Since [X,H] = 0, we know that

Zi = 0. On the other hand, by using Lemma 6.7 we have

Zi = DX (δiH) +DH (δiX)

=
∑

t≥0

∂t
(

Aαuα,1
) ∂ (δiH)

∂uα,t
+ ∂iA

αuα,1δαH − ∂
(

AiδiH
)

.

Then one can obtain that

0 = (−1)N (Zi)(k,2N+1) =
(

Ak −Ai
)

h(k,N)(i,N),

where (f)(i,t) =
∂f

∂ui,t for f ∈ A.
The above equation implies that h(k,N)(i,N) = 0 for i 6= k, so we can

assume that
h =

∑

i

hi(u, . . . , u
(N−1);ui,N ).

If we can prove that hi depends on u
i,N linearly, that is

h =
∑

i

gi(u, . . . , u
(N−1))ui,N +R(u, . . . , u(N−1)),

then for k 6= i we have

0 = (−1)N (Zi)(k,2N) =
(

Ak −Ai
)(

(gi)(k,N−1) − (gk)(i,N−1)

)

.

So there exists g ∈ A(N−1) such that g(i,N−1) = gi. In particular, h − ∂g ∈

A(N−1). Then the first part of the theorem can be proved by induction on
N .
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Now let us proceed to prove the linear dependence of hi on u
i,N . Define

Yi = (hi)(i,N)(i,N), then we have the following identity:

0 =(−1)N (Zi)(i,2N)

=
∑

t≥0

∂t (Xα) (Yi)(α,t) −Ai∂Yi +
(

2Ai
iu

i,1 + (2N − 1)∂Ai
)

Y i, (A.2)

where Xk = Akuk,1. We need to show that Yi = 0.
Consider Yi as a polynomial of ui,1, . . . , ui,N , and expand it as

Yi =
∑

β

cβ
(

ui,1
)β1

· · ·
(

ui,N
)βN

,

where β = (β1, . . . , βN ), and cβ do not depend on ui,1, . . . , ui,N . We define
a lexicographical order on the set of monomials recursively:

(

ui,1
)β1

· · ·
(

ui,N
)βN

�
(

ui,1
)γ1

· · ·
(

ui,N
)γN

⇔ βN < γN or βN = γN and
(

ui,1
)β1

· · ·
(

ui,N−1
)βN−1 �

(

ui,1
)γ1

· · ·
(

ui,N−1
)γN−1 .

Then Yi can be written as the sum of its leading term and the remainder

Yi = cw +R, where w =
(

ui,1
)β1 · · ·

(

ui,N
)βN .

The equation (A.2) now reads

0 =





∑

t≥0

∂tXα(c)(α,t) −Ai∂c



 w +





∑

t≥0

∂tXα(w)(α,t) −Ai∂w



 c

+
(

2Ai
iu

i,1 + (2N − 1)∂Ai
)

cw + R̃,

where R̃ is the sum of terms coming from R.
Consider the quotient of the above equation modulo w:

0 =
∑

t≥0

∂tXα(c)(α,t) −Ai∂c+
(

(2 + β2 + · · ·+ βN )Ai
iu

i,1

+(2N − 1 + β1 + 2β2 + · · ·+NβN ) ∂Ai
)

c. (A.3)

Suppose c ∈ A(m) (m ≥ 1), the derivative with respect to uk,m+1 of the
above equation gives

0 =
(

Ak −Ai
)

(c)(k,m) ⇒ (c)(k,m) = 0 for k 6= i.

On the other hand (c)(i,m) = 0 by definition, so we have c ∈ A(m−1). An
induction on m implies that c ∈ A0.

47



Finally, take the leading term of (A.3) with respect to the lexicographical
order, we obtain

(β1 + 3β2 + · · · + (N + 1)βN + 2N + 1)Ai
iu

i,1 c = 0,

so c = 0, and consequently we deduce that Yi = 0. The first part of the
theorem is proved.

ii) Suppose Y =
∫

(Bαθα), where B
i ∈ A(N), and define Zi = δ

δθi
[X,Y ],

then we have

0 = Zi =
∑

t≥0

∂tXαBi
(α,t) −BαXi

(α,0) −Ai∂Bi.

The equation Zi
(k,N+1) = 0 implies that Bi

(k,N) = 0 for k 6= i. Denote

Y i = Bi
(i,N), we have

0 = Zi
i,N =

∑

t≥0

∂tXαY i
(α,t) −Ai∂Y i +N∂Ai Y i −BαAi

(α,0)δN,1.

When N ≥ 2, by using a similar argument that we used in the above proof
of the first part of the theorem, we can show that the above equations have

the only solution Y i = 0. When N = 1, suppose Bi = c
(

ui,1
)β

+ R, then
the leading term of the above equation reads

(

β2 − 1
)

Ai
i

(

ui,1
)β
c = 0,

so we have β = 1 or c = 0. The second part of the theorem is proved. �

Corollary A.3 Given a vector field

X = X1 +X2 + · · · ∈ F̂1
≥1,

where Xd ∈ F̂1
d , and X1 is nondegenerate semi-Hamiltonian. Then the

following statements hold true:

i) If H ∈ F is a conserved quantity of X, then

H = H0 +H1 + · · ·

where Hd ∈ Fd, H0 is a conserved quantity of X1, and Hd (d ≥ 1) is
uniquely determined by H0.

ii) If Y ∈ F̂1
≥1 is a symmetry of X, then

Y = Y1 + Y2 + · · ·

where Yd ∈ F̂1
d , Y1 is a symmetry of X1, and Yd (d ≥ 2) is uniquely

determined by Y1.

The proof is trivial, so we omit it. Note that the degree of a symmetry
starts from 1. There may exists other symmetries with degree zero (e.g., the
unit vector filed Z for Xα,0).
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