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LOCAL MODULI OF SEMISIMPLE FROBENIUS COALESCENT STRUCTURES

G. cOoTTI(!HY, B. DUBROVIN(®), D. GUZZETTI()

ABSTRACT. We extend the analytic theory of Frobenius manifolds to semisimple points with coalescing eigen-
values of the operator of multiplication by the Euler vector field. We clarify which freedoms, ambiguities and
mutual constraints are allowed in the definition of monodromy data, in view of their importance for conjectural
relationships between Frobenius manifolds and derived categories. Detailed examples and applications are taken
from singularity and quantum cohomology theories. We explicitly compute the monodromy data at points of
the Maxwell Stratum of the Az-Frobenius manifold, as well as at the small quantum cohomology of the Grass-
mannian G2(C%). In the latter case, we analyse in details the action of the braid group on the monodromy
data. This proves that these data can be expressed in terms of characteristic classes of mutations of Kapranov’s
exceptional 5-block collection, as conjectured by one of the authors.
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1. INTRODUCTION AND RESULTS

There is a conjectural relation, formulated by the second author ([Dub98], [Dub13], see also [BM04], [HMT09]
and references therein), between the enumerative geometry of a wide class of smooth projective varieties and their
derived category of coherent sheaves. In particular, there is an increasing interest for an explicit description of
certain local invariants, called monodromy data, of semisimple quantum cohomologies in terms of characteristic
classes of exceptional collections in the derived categories ([Dub13], [GGI16]). Being intentioned to address this
problem, which, to our opinion, is still not well understood, we have realized that some issues in the theory of
Frobenius manifolds need to be preliminarily clarified, and that an extension of the theory itself is necessary, in
view of the fact that quantum cohomologies of certain classes of homogeneous spaces may show a coalescence
phenomenon.

In this paper, after reviewing the definition of the monodromy data, such as the Stokes matriz and the central
connection matriz, we clarify their mutual constraints, the freedom and the natural operations allowed when we
associate the data to a chart of the manifold. See Theorem 1.1 and 1.2 in the Introduction and Sections 2 and
3. This issue does not seem to be sufficiently clear in the existing literature (some minor imprecisions are found
also in [Dub96], [Dub98], [Dub99b], especially concerning the central connection matrix), and it is fundamental
in order to study of the above mentioned conjectures.

Then, we extend the analytic theory of Frobenius manifolds in order to take into account a coalescence
phenomenon, which occurs already for simple classes of varieties (e.g. for almost all complex Grassmannians,
[Cot16]). By this we mean that the operator of multiplication by the Euler vector field does not have a simple
spectrum at some points where nevertheless the Frobenius algebra is semisimple. We call these points semisimple
coalescence points (see Definition 1.1). Such a phenomenon forbids an immediate application of the analytic
theory of Frobenius manifolds to the computation of monodromy data. On the other hand, typically, the
Frobenius structure is explicitly known only at the locus of semisimple coalescence points. Thus, we need to
prove that the monodromy data associated to each region of the manifold can be computed starting only from
the knowledge of the manifold at coalescence points. From the analytic point of view, coalescence implies that
we have to deal with isomonodromic linear differential systems which violate one of the main assumptions' of
the monodromy preserving deformations theory of M. Jimbo, T. Miwa and K. Ueno [JMUS81]. Applying the
results of [CDG17], where the isomonodromy deformation theory has been extended to coalescence loci, we will
show that the monodromy data computed at a semisimple coalescence point are the data associated to a whole
neighbourhood of the point. The result is in Theorem 1.3 of the Introduction and in Theorem 4.1. Moreover,
by an action of the braid group, these data suffice to compute the data of the whole manifold (see Section 4.1).

We give two explicit examples of the above procedure, one from singularity theory in Section 5, where
we compute the monodromy data at points of the Maxwell Stratum of the As-Frobenius manifold; and one
from quantum cohomology theory in Section 6, where we explicitly compute the Stokes matrix and the central
connection matrix of the quantum cohomology of the Grassmannian Go(C?). The latter example is quite
important, because it makes evident that both formulations in [Dub13],[GGI16], refining the original conjecture
of [Dub98], require more investigations. A general formulation of the conjecture, and complete and detailed
proves for the case of complex Grassmannians, will be the content of a forthcoming paper [CDG]). We explicitly
relate the monodromy data to characteristic classes of objects of an exceptional collection in D¥(Go(C*)),
establishing a correspondence between each region of the quantum cohomology and a full exceptional collection.
See Theorem 1.4 in the Introduction and Theorem 6.2. To our best knowledge, it seems that such an explicit
description has not been done in the literature (the computation of monodromy data in itself is an interesting
non trivial example of analysis of linear differential systems with coalescing eigenvalues, which is also not usually
found in the literature).

Before explaining the results of the paper in more detail, we briefly recall preliminary basic facts. A Frobenius
manifold M is a complex manifold, with finite dimension

n = dim¢ (M),

1 See [JMUZR1], page 312, assumption that the eigenvalues of A, _,  are distinct. See also condition (2) at page 133 of [FIKNOG].
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endowed with a structure of associative, commutative algebra with product o, and unit on each tangent space
T,M, analytically depending on the point p € M; in order to be Frobenius the algebra must also satisfy an
invariance property with respect to a symmetric nondegeneratebilinear form 7 on T'M, called metric, invariant
wrt the product oy, i.e.

n(aopb,c) =n(a,bo,c) forall a,b,ce T,M, pe M

whose corresponding Levi-Civita connection V is flat and, moreover, the unit vector field is flat. The above
structure is required to be compatible with a C*-action on M (the so-called quasihomogeneity assumption, see
the precise definition below).

The geometry of a Frobenius manifold is (almost) equivalent to the flatness condition for an extended connec-
tion V defined on the pull-back 7*T M of the tangent vector bundle along the projection map w: C* x M — M.
Consequently, we can look for n holomorphic functions #,...,#": C* x M — C such that (z,t},...,#") are
V-flat coordinates. In V-flat coordinates ¢ = (t',...,t"), the V-flatness condition @df(z,t) = 0 for a single
function ¢ reads

oC 1
% - (wor+ ) (1)
;Ti:z(,’a(t)g a=1,...,n (1.2)

where the entries of the column vector ((z,t) are the components of the n-gradient of #

0

_ ot 0 0
gradt := Ca(’z’t)aTa’ C%(z,t) := na”%, Nag =1 (at’l’ 8#’) , (1.3)

and Cy(t), U(t) and
p:= diag(p, - - ., pin)

are n x n matrices described in Section 2, satisfying ni4 = UTn and nu + u*'n = 0.

A fundamental matrix solution of (1.1)-(1.2) provides n independent V-flat coordinates (t',...,t"). For fixed
t, the equation (1.1) is an ordinary linear differential system with rational coefficients, with Fuchsian singularity
at z = 0 and an irregular singularity of Poincaré rank 1 at z = oo.

A point p € M is called semisimple if the Frobenius algebra T,M is semisimple, i.e. without nilpotents.
A Frobenius manifold is semisimple if it contains an open dense subset M,y of semisimple points. In [Dub96]
and [Dub99b], it is shown that, if the matrix U/ is diagonalizable at p with pairwise distinct eigenvalues, then
p € M. This condition is not necessary: there exist semisimple points p € M,s where U/ has not a simple
spectrum. In this case, if we move in M, along a curve terminating at p then some eigenvalues of U(t) coalesce.

The eigenvalues u := (ug, ..., u,) of the operator U, with chosen labelling, define a local system of coordinates
p+— u = u(p) in a neighborhood of any semisimple point p, called canonical. In canonical coordinates, we set
1 0

(1.4)

grad i (u,2) = Y} Vi(u ) fi(w),  filw) i=

-
n(ﬁ%ih’ aii‘u)z ou; |,

for some choice of the square roots. Then the equations (1.1), (1.2), are equivalent to the following system

oY V(w)
i RSV I Vs 1.
i (U4— ¢ ) , (15)
oYy
— = (zEx + Vi (v))Y, 1<k<n, (1.6)
&uk
where (Ey);j := 00k, U = diag(uq, ..., up), V is skew-symmetric and
L
U:=0Uv=t Vi=0p ! Vi(u):= ¢ (u)\II(u)_l

@uk
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Here, ¥(u) is a matrix defined by the change of basis between (a—il, cee &iﬂ) and the normalized canonical
vielbein (f1,..., fn)

d = Z \I]iafi~
i=1

ot
The compatibility conditions of the equations (1.5)-(1.6) are
ov
[Uﬂ Vk?] = [Ek;,V], ai = [Vkav] (17)
Uk

When u; # u; for i # j, equations (1.7) coincide with the Jimbo-Miwa-Ueno isomonodromy deformation equa-
tions for system (1.5), with deformation parameters (ui, ..., u,) ([JMUS81], [JM81a], [JM81b]). This isomon-
odromic property allows to classify semisimple Frobenius manifolds by locally constant monodromy data of (1.5).
Conversely, such local invariants allow to reconstruct the Frobenius structure by means of an inverse Riemann—
Hilbert problem [Dub96], [Dub99b], [Guz01]. Below, we briefly recall how they are defined in [Dub96], [Dub99b].

In [Dub96], [Dub99b] it was shown that system (1.5) has a fundamental solution near z = 0 in Levelt normal
form

[ee]
Yo(z,u) = U(u)®(z,u) 225, O(z,u) =1+ Z Dy ()2, (1.8)
k=1
satisfying the orthogonality condition

O(—z,u)'n ®(z,u) =n forall ze (6\\{(_)/}, ue M. (1.9)

Here, R is a certain nilpotent matrix, which is non-zero only if p has some eigenvalues differing by non-zero
integers. Since z = 0 is a regular singularity, ®(z,u) is convergent.

If u = (uy,...,u,) are pairwise distinct, so that U has distinct eigenvalues, then the system (1.5) admits a
formal solution of the form

1

0
Yiormal (z:1) = G(z,u)e™,  G(z,u) =1+ ) Gi(u) .

k=1

G(—2,u)'G(z,u) = 1. (1.10)

Although Yiormal in general does not converge, it always defines the asymptotic expansion of a unique genuine

solution on any sectors in the universal covering R := C\{0} of the punctured z-plane having central opening
angle 7 + ¢ for € > 0 sufficiently small.

The choice of a ray ¢4 (¢) := {z € R: argz = ¢} with directional angle ¢ € R induces a decomposition of the
Frobenius manifold into disjoint chambers.? An /-chamber is defined (see Definition 2.15) to be any connected
component of the open dense subset of points p € M such that the eigenvalues of U at p are all distinct (so,
in particular, they are points of M), and the ray £, (¢) does not coincide with any Stokes rays at p, namely
R(z(ui(p) —u;(p))) # 0 for i # j and 2 € £, (¢).

Let p belong to an ¢-chamber, and let u = (uy, ..., u,) be the canonical coordinates in a neighbourhood of p
contained in the chamber. Then, there exist unique solutions Yieg /right (2, u) such that

cht/right(zvu) ~ Y—formal(zfuf) for z — o,
respectively in the sectors
Migni (@) i={2eR:p—m—e<argz <o +e}, Ilu(p):={2eR:dp—c<argz<¢+m+e}.

The two solutions Yie /right (2, u) are connected by the multiplication by an invertible matrix S, called Stokes
matriz:

Yiets (2, 4) = Yiignt(2,u)S,  for all z € R.
S has the “triangular structure” described in Theorem 2.10. Namely, S;; # 0 implies S;; = 0. In particular,
diag(S) = (1,..,1) and S;; = Sj; = 0 whenever u; = u;. Moreover, there exists a central connection matriz C,
whose properties will be described later, such that

Yiight (z,u) = Yo(2,u)C, for all ze R.

2This definition does not appear in [Dub96] [Dub99b]. See also Remark 2.6.
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In [Dub96] and [Dub99b] it is shown that the coefficients ®;’s and Gj’s are holomorphic at any point of every
{-chamber and that the monodromy data u, R, S, C are constant over a ¢-chamber (the Isomonodromy Theorem
T and IT of [Dub99b], cf. Theorem 2.4 and 2.12 below). They define local invariants of the semisimple Frobenius
manifold M. In this sense, there is a local identification of a semisimple Frobenius manifold with the space of
isomonodromy deformation parameters (uy, ..., u,) of the equation (1.5).

1.1. Results. We now describe the results of the paper at points 1, 2 and 3 below.
e 1 Ambiguity in associating Monodromy Data with a Point of the Manifold (cf. Sections 2 and 3).

From the above discussion, we see that with a point p € M, such that ui(p), ..., u,(p) are pairwise distinct,
we associate the monodromy data (u, R, S,C). These data are constant on the whole ¢-chamber containing p.
Nevertheless, there is not a unique choice of (i, R, S, C) at p. The understanding of this issue is crucial in order
to undertake a meaningful and well-founded study of the conjectured relationships of the monodromy data
coming from quantum cohomology of smooth projective varieties with derived categories of coherent sheaves on
these varieties.

The starting point is the observation that a normal form (1.8) is not unique because of some freedom in
the choice of ® and R (in particular, even for a fixed R there is a freedom in ®). The description of this
freedom was given in [Dub99b], with a minor imprecision, to be corrected below. Let us identify all tangent
spaces T,M, for p € M, using the Levi-Civita connection on M, with a n-dimensional complex vector space
V, so that u € End(V) is a linear operator antisymmetric wrt the bilinear form 7. Let G(n, u) be the complex
(n, pw)-parabolic orthogonal Lie group, consisting of all endomorphisms G: V' — V of the form G = 1y + A,
with A a p-nilpotent endomorphism, and such that n(e’™*Ga, Gb) = n(ei™a,b) for any a,b € V (see Section
2.1 and Definition 2.4). We denote by g(n, 1) its Lie algebra.

Theorem 1.1 (Section 2.1). * Given a fundamental matriz solution of system (1.5) in Levelt form (1.8)
near z = 0 holomorphically depending on (ui,...,u,) and satisfying the orthogonality condition (1.9), with
= U(u)"V(u)¥(u) constant and diagonal, then the holomorphic function R = R(u) takes values in the Lie
algebra g(n, p). Moreover,

(1) All other solutions in Levelt form near z = 0 are Yy(z,u)G(u), where G is a holomorphic function
with values in G(n, u); the Levelt normal form of Yo(z,u)G(u) has again the structure (1.8) with R(u)
replaced with R(u) := G(u)R(u)G(u)™* (cf. Theorem 2.3).

(2) Because of the compatibility of (1.5) and (1.6), G(u) can be chosen so that R is independent of u
(Isomonodromy Theorem I in [Dub99b], Theorem 2.4).

(3) For a fixed R € g(n,un), the isotropy subgroup G(n,p)r of transformations G € G(n,u), such that
GRG™! = R, can be identified with the group

Po(z) := 2*2RG27 271 € End(V)[2],
Co(n, i, R) :=< GeGL(V): P;(0) = 1y, . (1.11)
n(Pe(—z)v1, Pa(2)v2) = n(vi,v2),  for allvi,va €V

The definition (1.11) can be re-written in coordinates as follows
G €GL(n,C): Pg(z) := z'2G27 27" is a matrix-valued polynomial
such that Pg(0) = 1, and Pg(—2)TnPg(z) =7 .

If G e Co(n, pu, R) and Yy(z,u) = ¥(u)®(z,u)z"2"%, then Yy(z,u)G = V(u)®(z,u)Pg(z)z"2". The refinement
introduced here consists in the restriction of the group Co(u, R) introduced in [Dub99b] by adding the condition

Pa(=2)"nPa(z) =,

Co(n, 1, R) := {

3In the description of the monodromy phenomenon of solutions of the system (1.5) near z = 0 the assumption of semisimplicity is
not used. This will be crucial only for the description of solutions near z = 0. Theorem 1.1 can be formulated for system (1.1),
having the fundamental solution Z¢g = ¥~ 1Yjp.
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which does not appear in [Dub99b]. In [Dub99b] neither the n-orthogonality conditions appeared in the definition
of the group Co(u, R), nor this group was identified with the isotropy subgroup of R w.r.t. the adjoint action
of G(n,u) on its Lie algebra g(n, it). These n-orthogonality conditions are crucial for preserving (1.9) and the
constraints (1.12) of all monodromy data (p, R, S, C) (see also Theorem 2.11).

Let us now summarize the freedom in assigning the monodromy data (u, R, S, C) to a given semi-simple point
p of the Frobenius manifold. It has various origins: it can come from a re-ordering of the canonical coordinates
u1(p), ..., un(p), from changing signs of the normalized idempotents, from changing the Levelt fundamental
solution at z = 0 and, last but not least, from changing the slope of the oriented line ¢, (¢). Taking into account
all these possibilities, we have the following

Theorem 1.2 (Section 3). Let p € My be such that (ui(p),...,un(p)) are pairwise distinct. If (u, R, S,C) is a
set of monodromy data computed at p, then with a different labelling of the eigenvalues, different signs, different
choice of Yo(z,u) and different ¢, another set of monodromy data can be computed at the same p, which lies in
the orbit of (i, R, S,C) under the following actions:

e the action of the group of permutations &,
S——PS P C+——C P,
which corresponds to a relabelling (uy, ..., un) = (Ur(1),--,Ur(n)), where T € &, and the invertible
matriz P has entries P;jj = 6;-;). For a suitable choice of the permutation, P S P~ s in upper-

J
triangular form;
e the action of the group (Z/27)*"

S—1IS851I, C—C1ZI,

where T is a diagonal matriz with entries equal to 1 or —1, which corresponds to a change of signs of
the square roots in (1.4);
e the action of the group Co(n, u, R)

S—S, C—GC,  GeCo(nuR),

which corresponds to a change Yo(z,u) — Yy(z,u)G as in Theorem 1.1.
e the action of the braid group, as in formulae (3.3) and (3.4),

S AB(S)-S- (4%(8))T, OO (AP(9) T,
where 8 is a specific braid associated with a translation of ¢, corresponding to a rotation of £1($). More

details are in Section 3.

Any representative of u, R, S,C in the orbit of the above actions satisfies the monodromy identity
CSTS—IO—I _ eQﬂiue27riR
and the constraints
S = Cileiﬂ-iReiﬂ-i#nil(CT)il, ST _ 07167TiR67rm7771(0T)71. (112)

We stress again that the freedoms in Theorem 1.2 must be kept into account when we want to investigate
the relationship between monodromy data and similar objects in the theory of derived categories

e 2 Isomonodromy Theorem at semisimple coalescence points (cf. Section 4).

Definition 1.1. A point p € M, such that the eigenvalues of U/ at p are not pairwise distinct is called a
semisimple coalescence point.

The isomonodromy deformations results presented above apply if U has distinct eigenvalues. If two or more
eigenvalues coalesce, as it happens at semisimple coalescence points of Definition 1.1, then a priori solutions
Yiett/right /7 (2, 1) are expected to become singular and monodromy data must be redefined.

In almost all studied cases of quantum cohomology the structure of the manifold is explicitly known only
at the locus of small quantum cohomology defined in terms of the three-points genus zero Gromov-Witten
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invariants. Along this locus the coalescence phenomenon may occur (for example, coalescence occurs in case
of the quantum cohomology of almost all Grassmannians [Cot16]). Therefore, if we want to compute the
monodromy data, we can only rely on the information available at coalescence points. Thus, we need to extend
the analytic theory of Frobenius manifolds, in order to include this case, showing that the monodromy data are
well defined at a semisimple coalescence point, and locally constant. Moreover, from these data we must be
able to reconstruct the data for the whole manifold. We stress that this extension of the theory is essential in
order to study the conjectural links to derived categories.

The extension is based on the observation that the matrix ¥(u) is holomorphic at semisimple points including
those of coalescence (see Lemma 2.4). Consequently, the matrices V},’s and V' are holomorphic at any semisimple
point, and V' is holomorphically similar to p. These are exactly the sufficient conditions allowing the application
of the general results obtained in [CDG17], which yield the following

Theorem 1.3 (cf. Theorem 4.1 below). Let py be a semisimple coalescence point with canonical coordinates
u(pg) = (u§0)7 e 7u,(f)))."‘ Moreover,
o Let ¢ € R be fized so that €4 ($) does not coincide with any Stokes ray at p, namely %(z(u(o) —u;-o))) #0
for ul(-o) #u'” and ze (9).

J
e Consider the closed polydisc centered at u'®) = (u§0)7 e ,u%o)) and size g > 0

U, (u?) = {u eC" : max |u; — UEO)\ < eo}.

1<igsn

Let €9 > 0 be sufficiently small, so that U, (u(o)) is homeomorphic by the coordinate map to a neigh-
bourhood of py entirely contained in Mgs. An additional upper bound for ey will be specified in Section
4, see eq. (4.2).

o Let A < U, (u®) be the locus in the polydisc Ue, (u(®)) where some eigenvalues of U(u) = diag(us, . . ., uy,)
coalesce.”

Then, the following results hold:
(1) System (1.5) at the fixed value u = u(%) admits a unique formal solution, which we denote with Yigrmai(2),
having the structure (1.10), namely f/formal z) = (1+ Oo= ékz_k e*Y; moreover, it admits unique
k=1
undamental solutions, which we denote with f/left rieht (2), having asymptotic representation }o/formal z
/rig
(¢), for suitable e > 0.% Let S be the Stokes matriz such that

}(;icft (Z) = wff1rig;ht(z)‘§~
(2) The coefficients Gy (u), k > 1, in (1.10) are holomorphic over U, (u(?), and Gr(u®) = Gy ; moreover
}/}ormal(zvu(o)) = vaormal(z)'

: €
in sectors l_Ileft/right

4 Up to permutation, these coordinates can be arranged as

0 0
BTN
o)  _ _ (0
Up g1 =" = U gy
(0) _ _ (0
ur1+-~+'r5_1+1 - = u'r1+~~+r5,1+r5’
where 71,...,7s (r1 + -+ +7rs—1 + rs = n) are the multiplicities of the eigenvalues of U(u®) = diag(ugo), e, u%o))A

5Namely, u; = u; for some 1 < i # j < n whenever u € A. The bound on €, to be clarified later, implies that, with the arrangement
of footnote 4 the sets

{u17 7u7"1}7 {uT1+17 7uT1+7‘2}7 ) {u'r1+“~+7‘571+17 ---7u’r1+“-+7‘5_1+7“5}

do not intersect for any u € U, (u(o)). In particular, u®eAisa point of “maximal coalescence”.
6A more precise characterisation of the angular amplitude of the sectors will be given later.
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(3) For fized z, Yier (2, 1), Yiignt(2,u), computed in a neighbourhood of a point uw € Ue, (wONA, can be
u-analytically continued as single-valued holomorphic functions on the whole U, (u(©)). Moreover

Yieft/rigllt (27 U(O)) = }o/left/right (Z)

(4) For any €1 < €y the asymptotic relations

0
Yieft/right(zﬁu)eiZU ~I+ Z Gk(u)zila fO’/’ z— 0 in Hlseft/right((b)’
k=1

hold uniformly in u € Ue, (u(®)). In particular they also hold at u € A.
(5) Denote by Yo(z) a solution of system (1.5) with the fixed value u = u®), in Levelt form Yy(z) =
U (u) (]l+O(z))z”zR, having monodromy data (1 and R. For any such XG/'O(Z) there exists a fundamental

solution Yy(z,u) in Levelt form (1.8), (1.9) holomorphic in U.,(u(?), such that its monodromy data u
and R are independent of u and

Let C' be the central connection matriz for }0/0 and f’right; namely
Viigne (2) = Yo(2)C.

(6) For any €1 < €y the monodromy data p, R, S, C of system (1.5) are well defined and constant in
the whole U, (u(?), so that the system is isomonodromic in U., (u(?). They coincide with the data
associated with the fundamental solutions Yieg /rignt (2) and Yo(2) above, namely

R=R, S=8, C=C.
The entries of S = (S',L'j)?_j=1 with indices corresponding to coalescing canonical coordinates vanish:

Sij =85 =0 foralli# j such that ugo) = ugo). (1.14)

Theorem 1.3 implies that, in order to compute the monodromy data u, R, S, C in the whole U, (u?), it
suffices to compute p, 132, Sc', C at u(®. These can be used to obtain the monodromy data at any other point of
M (including semisimle coalescence points, by Theorem 1.3), by the action of the braid group B,, introduced
in [Dub96] and [Dub99b]

S— AP S (AP)T, C— C (AP, (1.15)
as in formulae (3.3) and (3.4). This action is well defined whenever uy, ..., u,, are pairwise distinct. It allows to
obtain the monodromy data associated with all ¢-chambers. Therefore, the action can be applied to .S, C are
defined by the above Theorem starting from a point of U, (u(o)) where u, ..., u, are pairwise distinct.

We will give two detailed applications of the above theorem. The first example, in Section 5, is the analysis
of the monodromy data at the points of one of the two irreducible components of the Maxwell stratum of the
Frobenius manifold associated with the Coxeter group As. This is the simplest polynomial Frobenius structure
in which semisimple coalescence points appear. The whole structure is globally and explicitly known, and the
system (1.5) at generic points is solvable in terms of oscillatory integrals. At semisimple points of coalescence,
however, the system considerably simplifies, and it reduces to a Bessel equation. Thus, the asymptotic analysis
of its solutions can be easily completed using Hankel functions, and S and C' can be immediately computed.
By Theorem 1.3 above, these are monodromy data of points in a whole neighbourhood of the coalescence point.
We explicitly verify that the fundamental solutions expressed by means of oscillatory integrals converge to
those expressed in terms of Hankel functions at a coalescence point, and that the computation done away from
the coalescence point provides the same S and C', as Theorem 1.3 predicts. In particular, the Stokes matrix
S computed invoking Theorem 1.3 is in agreement with both the well-known results of [Dub96], [Dub99b],
stating that S + S coincides with the Coxeter matrix of the group W (As3) (group of symmetries of the regular
tetrahedron), and with the analysis of [DMO00] for monodromy data of the the algebraic solutions of PVI,
corresponding to As (see also [CDG17] for this last point).
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The second example is the quantum cohomology QH*®(G2(C*)) of the Grassmannian Go(C*), which sheds
new light on the conjecture mentioned in the beginning.

¢ 3 Quantum cohomology of the Grassmannian G2(C*) (cf. Section 6).

We consider the Frobenius structure on QH*(Gz(C*)). The small quantum ring — or small quantum cohomol-
ogy — of Grassmannians has been one of the first cases of quantum cohomology rings to be studied both in physics
([Wit95], [Vaf92] and mathematical literature ([ST97], [Ber97]), so that a quantum extension of the classical
Schubert calculus has been obtained ([Buc03]). However, the ring structure of the big quantum cohomology is
not explicitly known, so that the computation of the monodromy data can only be done at the small quantum
cohomology locus. It happens that the small quantum locus of almost all Grassmannians G (C™) is made of
semisimple coalescence points (see [Cot16]); the case of Go(C?) is the simplest case where this phenomenon
occurs. Therefore, in order to compute the monodromy data, we invoke Theorem 1.3 above.

In Section 6, we carry out the asymptotic analysis of the system (1.5) at the coalescence locus, corresponding
tot =0 € QH*(G2(C*). We explicitly compute the monodromy data p and R (see (6.4) and (6.20)) and
S and C (see (6.33) and Appendix A, with v = 6. For the computation of S, we take an admissible” line
(:={2eC : z=¢"} with the slope 0 < ¢ < Z. The signs in the square roots in (1.4) and the labelling of
(uq,....,ug) are chosen in Section 6.2. As the fundamental solution (1.13) of (1.5) with fixed ¢ = 0, we choose
the enumerative-topological fundamental solution® Yy(z) := W|,_, ®(z) z#2%, whose coefficients are the genus 0
Gromov-Witten invariants with descendants

a _ g Z Z Z <TnTB7T,\>g’:27V7]>\aZn+17

n=0 X veEf(G)\{0}

with (7,13, TA>82,V = J YT vevi(Tp) veve(T,), and (n*") the inverse of Poincaré metric.
[GO,Z.U]Vir
This solution will be precisely described in Section 7 (cf. Proposition 7.2).
Summarizing, let S and C be the data we have concretely computed by means of the asymptotic analysis of
Section 6. Then, let us denote by S’ and C” the data obtained from S and C by a suitable action

S+——IPS(ZP) ' = &

C+— GC(IP)™ ' = (',
of the groups of Theorem 1.2, with G = A or G = AB € Cy(n, 1, R) as in (1.16), (1.17) below (P and Z are
explicitly given in Theorem 6.2), corresponding to

e an appropriate re-ordering of the canonical coordinates uq, ..., ug near 0 € QH*(G), yielding the Stokes
matrix in upper-triangular form.

e another determination of signs in the square roots of (1.4) of the normalized idempotents vector fields
(fi)i

e another choice of the fundamental solution of the equation (1.5) in Levelt-normal form (1.8), obtained
from the enumerative-topological solution by the action Yy — Y,G of Co(n, i, R).

Given these explicit data, we prove Theorem 1.4 below, which clarifies for Go(C*) the conjecture, formulated by
the second author in [Dub98] (see also [BMO04], [HMT09] and references therein) and then refined in [Dubl3],
relating the enumerative geometry of a Fano manifold with its derived category (see also Remark 1.3). More
details and new more general results about this conjecture will be the contents of a forthcoming paper [CDG]
(see also Remark 1.3). For brevity, let G := Go(C*).

Theorem 1.4 (Monodromy data of QH*(G) cf. Theorem 6.2). The Stokes matriz and the central connection
matriz at t = 0 € QH*(G) are related to a full exceptional collection (E1,...,Eg) in the derived category of
coherent sheaves D*(G) in the following way.

"Namely, £, (¢) defined above is an admissible ray.
8This is the solution W(0)Y (z,0) = ¥(0)H(z,0)z"z% in Proposition 7.2, where ® is called H.
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The central connection matriz C’, obtained in the way explained above, is equal to the matriz (one for both
choices of sign +) associated to the following C-linear morphism

X% Ko(G)®z C — H*(G;C)
1 ~
E]l— ———TI*(G) u Ch(E
B -+ sy P26 U Oh(E)
computed w.r.t. the basis ([E1],...,[Es]) of Ko(G), obtained by projection of a full exceptional collection in the
derived category D (G) of coherent sheaves on the Grassmannian, and the Schubert basis (Ty, Ty, Ts, T3, Ty, Ts) =
(1,01,02,01,1,021,022) of H*(G;C) normalized so that

f 022 = CE (C*
G
The exceptional collection (E, ..., Eg) is a 5-block’, obtained from the Kapranov exceptional 5-block collection
2 o
<SOS*, Sls*7 SSLIS‘;-*’ 82’18*, SQ,QS*) ,

by mutation'® under the inverse of any of the following braids'' in Bg

D)

B34B12856 823845334 B12856523 845 B12856823 845834

Here, S denotes the tautological bundle on G and S* is the Schur functor associated to the Young diagram .
B34 acts just as a permutation of the third and fourth elements of the block.
More precisely:

o the matriz representing X w.r.t. the basis ([E1],...,[Es]) of Ko(G) above is equal to the central
connection matriz C' computed w.r.t. the solution Yo(z) - A, where A € Co(n, p, R) is

1 0 0 0 0 0
2 1 0 0 0 0
—272 2 1 0 0 0
A=1 _op i o 1 0 o0 (1.16)
—3 (8im?)  —4x? 2ir 2m 1 0
L (®in®) 2 272 2im 1

gThiS means that X(Eg, E4) = X(E4, E3) = 0 and thus that both (El, FEo, E3,Ey, E5, E@) and (El, FEo,E4, E3, E5, Ee) are excep-
tional collections: we will write

E:
<E1, Es, Ej’ Es, EG)

if we consider the exceptional collection with an unspecified order. Passing from one to the other reflects the passage from one
£-cell to the other one, decomposing a sufficiently small neighborhood of 0 € QH*(G).

10The definition of the action of the braid group on the set of exceptional collections will be given in Section 6.5, slightly modifying
(by a shift) the classical definitions that the reader can find e.g. in [GKO04]. Our convention for the composition of action of braids
is the following: braids act on an exceptional collection/monodromy datum on the right.

11Curiously, these braids show a mere «mirror symmetry»: notice that they are indeed equal to their specular reflection. Any
contingent geometrical meaning of this fact deserves further investigations.
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e the matriz representing %E is equal to the central connection matriz C' computed w.r.t. the solution

Yo(z) - A- B, where B € Co(n, u, R) is

1 0 0 0 0 0
—8y 1 0 0 0 0
_ 32+2 —8v 1 0 0 0
B= 32v2 —8v 0 1 0 0 (1.17)
Z% (¢(3) — 649%) 64~2 8y —8& 1 0
8 (167" —1¢(3)) 5 (¢(3) —6493) 3292 3292 —8y 1
In both cases (£), the Stokes matriz S’ coincides with the inverse of the Gram matriz (x(E;, Ej))?j:l'
The Stokes and the central connection matrices
e at all other points of small quantum cohomology,
e and/or computed w.r.t. other possible admissible lines ¢,
satisfy the same properties as above w.r.t other full exceptional 5-block collections, obtained from (Ei,..., Eg)

by alternate mutation under the braids

w1 = P12Pss, w2 1= B23BasB34823845.

In particular, the Kapranov 5-block exceptional collection itself does not appear neither at t = 0 nor anywhere
else along the locus of the small quantum cohomology.

The monodromy data in any other chamber of QH*(G) are obtained from the data S',C" (or from PSP~! and
CP~Y) computed at 0 € QH*(G), by the action (1.15) of the braid group.

Remark 1.1. We recall that
I'(G):= n I'(1 £6;) where §,’s are the Chern roots of T'G,
J

[e¢]

I'(1—2x)=exp {733 + Z C(n)x”} is the classical I'-function,

n
n=2

Ch(V) := Z e*™@k  x,’s are the Chern roots of a vector bundle V,
k

Ch(V*®) := Z(—l)j Ch(V7) for a bounded complex V*,
J
Remark 1.2. In the above theorem, we have two morphisms %é; the sign (—) is the one taken in [Dubl3],
whereas (+) is the one taken in [GGI16].

Remark 1.3. Our explicit results suggest that the conjecture formulated in [Dub13] and [GGI16] requires some
refinements, at least as far as the central connection matrix C' is concerned. Indeed, the connection matrix
C’ in Theorem 1.4, which we have proved to coincide with the matrix of the morphisms .’{é , belongs to the
Co(n, 1, R)-orbit of the connection matrix obtained from the topological-enumerative fundamental solution, but
is mot the connection matrix wrt the topological-enumerative solution. These refinements will be the content
of a forthcoming paper [CDG].

Remark 1.4. In [Bay04] it is shown that the class of smooth projective varieties admitting generically semisimple
quantum cohomology is closed wrt the operation of blowing up at a finite number of points. Since this holds true
also for the class of varieties which admit full exceptional collections in their derived categories, it is tempting
to conjecture that the mentioned relationship between monodromy data and exceptional collections can be
extended also for non-Fano varieties. This is already suggested in [Bay04]. To the best of our knowledge, no
explicit computations of the monodromy data have been done in the non-Fano case. The computations of the
monodromy data for the %K 3-surface, the rational elliptic surface obtained by blowing up 9 points in P2, could
represent a significant step in this direction. This will represent a future research project of the authors.
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Remarkably, our results suggest the validity of a constraint on the kind of exceptional collections associated
with the monodromy data in a neighborhood of a semisimple coalescing point of the quantum cohomology
QH*(X) of a smooth projective variety X. If the eigenvalues u;’s coalesce, at some semisimple point ¢y, to
s < n values Aj,...,\s with multiplicities pq,...,ps (with p; + -+ 4+ ps = n, here n is the sum of the Betti
numbers of X), then the corresponding monodromy data can be expressed in terms of Gram matrices and
characteristic classes of objects of a full s-block exceptional collection, i.e. a collection of the type

&= (E17 s 7Ep17Ep1+1a <. 'aE[)1+p2a < 'aEp1+"'+Ps—1+15 < 'aEp1+"'+Pi)a E] € Ob.] (Db(X)) ’

Bi Ba Bs

where for each pair (E;, E;) in a same block B, the orthogonality conditions hold
Exté(Ei, E;) =0, forany (.

In particular, any reordering of the objects inside a single block B; preserves the exceptionality of £. More
results about the nature of exceptional collections arising in this context and about their dispositions in the
locus of small quantum cohomology for the class of complex Grassmannians will appear in a forthcoming paper
[CDG].

1.2. Plan of the paper. In Section 2, we review the analytic theory of Frobenius manifolds, their monodromy
data and the isomonodromy theorems, according to [Dub98], [Dub96], [Dub99b]. In particular, we characterise
the freedom in the choice of the central connection matrix C, introducing the group Co(n, u, R). We define a
chamber-decomposition of the manifold, which depends on the choice of an oriented line £ in the complex plane:
this is a natural structure related to the local invariance of the monodromy data (Isomonodromy Theorems 2.4
and 2.12), as well as of their discontinuous jumps from one chamber to another one, encoded in the action of
the braid group, as a wall-crossing phenomenon.

In Section 3 we review all freedoms and all other natural transformations on the monodromy data.

In Section 4 we extend the isomonodromy theorems and give a complete description of monodromy data in
a neighborhood of semisimple coalescence points, specialising the result of [CDG17] in Theorem 4.1.

In Section 5, we study the Az Frobenius manifold near the Maxwell Stratum. We compute monodromy data
both invoking Theorem 4.1 above and using oscillatory integrals. We compare the two approaches, so providing
an explicit example of how Theorem 4.1 works. We also show how monodromy data mutate along a loop inside
the Maxwell Stratum.

In Section 6, we explicitly compute all monodromy data of the Quantum Cohomology of the Grassmannian
G2(C*). The result allows us to explicitly verify the conjecture of [Dub98], [Dub13] relating the monodromy
data to characteristic classes of objects of an exceptional collections in Db(Gy(C*))

In Section 7 we give an analytic characterisation of the enumerative-topological solution, in a different way
with respect to [GGI16].

1.3. Acknowledgements. We would like to thank Marco Bertola, Ugo Bruzzo, Barbara Fantechi, Claus
Hertling, Claude Sabbah, Maxim Smirnov, Jacopo Stoppa, Ian Strachan and Di Yang for several discussions
and helpful comments. The first author is grateful to the Max-Planck Institut fiir Mathematik in Bonn, for
hospitality and support.

2. MODULI OF SEMISIMPLE FROBENIUS MANIFOLDS

We denote with (5) the symmetric tensor product of vector bundles, and with (—)” the standard operation
of lowering the index of a (1, k)-tensor using a fixed inner product.

Definition 2.1. A Frobenius manifold structure on a complex manifold M of dimension n is defined by giving

(FM1) a symmetric nondegenerate O (M )-bilinear tensor n € T’ (@2 T*M >7 called metric, whose corresponding
Levi-Civita connection V is flat;
(FM2) a (1,2)-tensor ce T (TM =O% T*M) such that
e the induced multiplication of vector fields X oY := ¢(—, X,Y), for X, Y € I'(T'M), is associative,
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« e (O T*M),
e Vel (@4 T*M);
(FM3) a vector field e € T'(T' M), called the unity vector field, such that
e the bundle morphism ¢(—,e,—): TM — TM is the identity morphism,
o Ve =0;
(FM4) a vector field E € T'(T'M), called the Fuler vector field, such that
e Lpc=c,
o £xn = (2—d)-n, where d € C is called the charge of the Frobenius manifold.

For simplicity it will be assumed that the tensor VE € TM ® T* M is diagonalizable.

Since the connection V is flat, there exist local flat coordinates that we denote (¢!,...,t"), w.r.t. which
the metric 1 is constant and the connection V coincides with the partial derivatives 0, = 0/0t*, a = 1,...,n.
Because of flatness and the conformal Killing condition, the Euler vector field is affine, i.e.

n
0
VVE =0, sothat E= ) (1= ga)t™ +7a) 52, Gosra € C

a=1

Following [Dub96, Dub98, Dub99b], we choose flat coordinates so that % =eand r, # 0only if g, =1

(this can always be done, up to an affine change of coordinates). In flat coordinates, let n,g = 17(0a, d3), and
Clﬁ = ¢(dt", 0u,0p), so that 0, 0 0 = c;ﬂ&,. Condition (FM2) means that cogy := nap027 and Jncgys are
symmetric in all indices. This implies the local existence of a function F' such that
CaBy = aaaﬁ&yF.
The associativity of the algebra is equivalent to the following conditions for F', called WDV V-equations
00050, F 1°050.0,F = 0,050, F 1"°050.00F,
while axiom (FM4) is equivalent to
Nap = 010a0pF, LpF = (3—d)F + Q(t),

with Q(t) a quadratic expression in t,’s. Conversely, given a solution of the WDVV equations, satisfying the
quasi-homogeneity conditions above, a structure of Frobenius manifold is naturally defined on an open subset

of the space of parameters t“’s.
Let us consider the canonical projection m: P{. x M — M, and the pull-back of the tangent bundle T'M:

m*TM ——TM

L]

PLx M —— M

We will denote by

(1) s the sheaf of sections of T'M,

(2) m*F the pull-back sheaf, i.e. the sheaf of sections of 7*T M

(3) w17 the sheaf of sections of 7*T'M constant on the fibers of 7.
Introduce two (1,1)-tensors U,  on M defined by

2—d
UX):=FoX, pX):= TX —VxE

for all X € T'(TM). In flat coordinates (¢*)?_; chosen as above, the operator p is constant and in diagonal
form

. d
p= diag(py, ..., ftn), o =da—5€ C.
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All the tensors n, e, ¢, E,U, 1 can be lifted to #*T M, and their lift will be denoted with the same symbol. So,
also the Levi-Civita connection V is lifted on #*T M, and it acts so that

VoY =0 forY e (r ' 7y)(M).
Let us now twist this connection by using the multiplication of vectors and the operators U, p.

Definition 2.2. Let M := C* x M. The deformed connection V on the vector bundle T*TM| 5 — M is defined
by

VxY =VxY +2-Xo0Y,

~ 1
Vo.Y =Vo.Y +UY) — —u(Y)

for X,Y € (7% T ) (M).
The crucial fact is that the deformed extended connection V is flat.

Theorem 2.1 ([Dub96],[Dub99b]). The flatness of@ is equivalent to the following conditions on M

Ve is completely symmetric,

the product on each tangent space of M is associative,
VVE =0,

Lgec=c.

Because of this integrability condition, we can look for deformed flat coordinates (t', ..., "), with t* = £%(t, 2).
These coordinates are defined by n independent solutions of the equation

Vdi = 0.

Let ¢ denote a column vector of components of the differential df. The above equation becomes the linear
system

aaf = ch;(t)f,

(2.1)
0:6 = UT(t) — ") &,
where C, is the matrix (Ca)g = cgw. We can rewrite the system in the form
6a< = ZCaCa
(2.2)
0. = U+ 1p) ¢,
where ¢ := n~'¢. In order to obtain (2.2), we have also used the invariance of the product, encoded in the
relations
77710277 = Ca;
Uy =nl, (2.3)
and the n-skew-symmetry of u
pn +np = 0. (2.4)

Geometrically, ¢ is the n-gradient of a deformed flat coordinate as in (1.3). Monodromy data of system (2.2)
define local invariants of the Frobenius manifold, as explained below.
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2.1. Spectrum of a Frobenius manifold and its monodromy data at z = 0. Let us fix a point ¢ of the
Frobenius manifold M and let us focus on the associated equation

0.( = (mt) ¥ iu(t)) 3 (2.5)

Remark 2.1. If {;, (> are solutions of the equation (2.5), then the two products
(G oy o= G (¥ 2)nGa(2)

are independent of z. Indeed we have

0. (¢ (eT™2)mCa(2)) = 0- (¢ (e772)) nGa(2) + (T (€T 2)n0.Ca(2)
= (et72) [nu —U"n+ % (un + W)] Ga(2)
=0 by (2.3) and (2.4).

In order to give an intrinsic description of the structure of the normal forms of solutions of equation 2.5, as
well as a geometric characterization of the ambiguity and freedom up to which they are defined, we introduce
the concept of the spectrum of a Frobenius manifold (see also [Dub99b, Dub04]). Let (V,n, ) be the datum of

e an n-dimensional complex vector space V,
e a bilinear symmetric non-degenerate form n on V,
e a diagonalizable endomorphism p: V' — V which is p-antisymmetric
n(pa,b) + n(a, ub) =0 for any a,be V.
Let spec(p) = (p1, -, ) and let V, be the eigenspace of a pq.
Definition 2.3. Let (V,n, 1) as above. We say that an endomorphism A € End(V) is p-nilpotent if

AV, < P Vyosm for any p, € spec(p).
m=1
In particular such an operator is nilpotent in the usual sense. We can decompose a p-nilpotent operator A in
components Ag, k = 1, such that
AV, S Vi ke for any pg € spec(p),
so that the following identities hold:

MAZTH = Ay Ag2? + A3+ ..., [, Ar] = kAy for k=1,2,3,....

Definition 2.4. Let (V,n, ) as above. Let us define on V' a second non-degenerate bilinear form {-,-} by the
equation
{a,b} := n(e"™a,b), foralla,beV.
The set of all {-, -}-isometries G € End(V') of the form
G=1y + A,
with A a p-nilpotent operator, is a Lie group G(n, ), called (n, p)-parabolic orthogonal group. Its Lie algebra
g(n, ) coincides with the set of all u-nilpotent operators R which are also {-,-}-skew-symmetric in the sense
that
{Rz,y} + {x, Ry} = 0.
In particular, any such matrix R commutes with the operator e?™,

The following result gives a description, in coordinates, of both p-nilpotents operators and elements of g(n, i)
and also describes some of their properties.

Lemma 2.1. Let (V,n,u) as above, and let us fix a basis (v;)'_, of eigenvectors of p.
(1) The operator A € End(V) is p-nilpotent if and only if its associate matriz w.r.t. the basis (v;)_,
satisfies the condition
(A)g = 0 unless i — pup € N*.
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(2) If Ae End(V) is a u-nilpotent operator, then the matrices associated to its components (Ag)k>1 w.r.t.
the basis (v;)'_y satisfy the condition

(Ar)§ = 0 unless jio — g =k, keN*. (2.6)

(3) A p-nilpotent operator A € End(V) is an element of g(n, u) if and only if the matrices of its components
(Ag)ks1 w.r.t. (v;)_q satisfy the further conditions

AL = ()M pAm ™Y, k=1 (2.7)
(4) If Ae g(n, ), then the following identity holds

T .
A iwruZA

2% ne = petiTh, (2.8)

for any z € C*.

Proof. The proof for points (1),(2),(3) can be found in [Dub99b]. For the identity (2.8), notice that (2.7) implies

ZAT =7 (ZA1*A2+A37A4+..‘) 71'

n
Moreover, from (2.6) we deduce that _ _

et A etimh — (—1)k A,
So, we conclude that

T . .
ZA neizﬂ';AZA _ ei“"ﬂ

1—A2+A3—A4+...) (eiiﬂ'uZAeiiﬂ'u)

n ("
n (ZA17A2+A37A4+...) (Z7A1+A27A3+A47...) eiiﬂ’,u
ne

I+

1T

O
The parabolic orthogonal group G(n, ) acts canonically on its Lie algebra g(n, 1) by the adjoint representation
Ad: G(n, ) — Aut(g(n, p1)):
Adg(R):=G-R-G™', forall GeG(n,u), Regn,p).

Such an action, in general is not free.

Definition 2.5. Let R € g(n, u). We define the group Co(n, u, R) as the isotropy group of R for the adjoint
representation Ad: G(n, u) — Aut(g(n, 1))

The following Lemma can be easily directly proved from Definitions 2.3, 2.4, 2.5 and from results of Lemma
2.1.

Lemma 2.2. Let (V,n,u) a triple as above. If G € G(n, ), and R € g(n, p) then
P AdGRG,— R —p
is an element of End(V)[z], i.e. it is polynomial in the indeterminate z. Furthermore, the following is an
equivalent characterization of the isotropy subgroup Co(n, u, R):
Pg(2) := 2"2%G2 Rz € End(V)[2],
Co(n,u, R) =< GeGL(V): P;(0) = 1y,
N(Pg(—2)v1, Pa(2)ve) = n(vy,v2), for allvi,va €V
Given a Frobenius manifold M (not necessarily semisimple), we can canonically associate to it a triple (V,n, i)
as above, which will be called the spectrum of M. Indeed, using the Levi-Civita connection, all tangent spaces

T,M can be identified in a single complex vector space V. The metric and the endomorphism p are naturally
defined by the corresponding tensors on M.

Definition 2.6 ([Dub99b, Dub04]). A Frobenius manifold M is called resonant if, for some o # 8, p1o—pg € Z*.
If no eigenvalues of y differ by a nonzero integer, M will be called non-resonant.

We can now give a complete (componentwise) description of normal forms of solutions of the system (2.5).
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Theorem 2.2 ([Dub96, Dub99b]). Let M be a Frobenius manifold (not necessarily semisimple). The system
(2.5) admits fundamental matriz solutions of the form

Z(z,t) = B(z,t) - 2270 @(z,t) = Y @p(t)2F, Do(t) =1, (2.9)
keN
O(—z,t)" - n- O(z,t) =, (2.10)

where @, € O(M) ® gl,,(C), and R € O(M) ® g(n, 1). A solution of such a form will be said to be in Levelt

normal form at z = 0.

Remark 2.2. In the general case, although not related to Frobenius manifolds, when y is not diagonalizable and
has a non-trivial nilpotent part, analogous results can be proved. However, the normal form becomes a little
more complicated: e.g. it is no more defined by requiring that some entries of matrices Ry are nonzero, but that
some blocks are. For a detailed analysis of such case, we recommend the book by F.R. Gantmacher [Gan60].

Because of the Fuchsian character of the singularity z = 0, the power series ® of Theorem 2.2 is convergent,
and defines a genuine analytic solution. In general, solutions in Levelt normal form are not unique. As the
following result show, the freedom in the choice of solutions in normal form are suitably quantified by the Lie
groups G(n, 1) and its isotropic subgroups Co(n, i, R).

Theorem 2.3 ([Dub96, Dub99b]). Let M be a Frobenius manifold (not necessarily semisimple). Solutions of
(2.5) in normal form are not unique. Given two of them

Z(z,t) = ®(z,t) - 2B E(z,t) = <f>(z,t) . z“zﬁi(t)7
there exists a unique holomorphic G(n, p)-valued function
G(t) =1+ A(¥)
on M such that

Z(z,t) = Z(2,t) - G(1),

where
Po(z,t) i =2 -G(t)-z7#
14 20, (t) + 2200 (t) + ...,

(Ag)g=1 being the components of A. In particular, ifﬁ = R, then G is Co(n, p, R)-valued.

Remark 2.3. A first description of the freedom and ambiguities in the definition of the monodromy data was
given in [Dub96, Dub99b]. In particular, a complex Lie group Co(u, R) was introduced in order to describe the
freedom of normal forms of solutions of (2.5). Such a group is too big, and in particular does not preserve the
orthogonality condition 2.10. It must be replaced by Co(n, u, R) of Definition 2.5, which is the correct one.

For non-resonant Frobenius manifolds the corresponding (7, i)-parabolic orthogonal group G(n, 1) together
with all its subgroups Co(n, i, R) are trivial. Since these groups are the responsible of a certain freedom in
the choice of a normal forms for solutions of (2.5) (according to Theorem 2.3), it follows that for non-resonant
Frobenius manifolds such a choice is unique.

So far, we have focused on the system (2.5) at fixed point of the manifold. Now let us vary the point ¢ in
system (2.5), so that a fundamental solution ®(z,t)z*2"®) as in (2.9), depends on t. If instead of considering
only the equation (2.5), we focus on the whole system (2.2), then the previous results can be further refined:
namely, a t-independent choice for the exponent R is allowed. Again, even for a fixed exponent R, solutions on
normal forms are not unique, and they are parametrized by the isotropy group Co(n, i1, R).

Theorem 2.4 (Isomonodromy Theorem I, [Dub96, Dub99b]). Let M be a Frobenius manifold (not necessarily
semisimple).
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(1) The system (2.2) admits fundamental matriz solutions of the form
Z(z,t) = ®(z,t) - 212",

= Z q)k(t)zk’ (I)O(t) =1, (I)(fzat)T N (I)(Zat) =1,
keN

where ®, € O(M) ® gl,,(C), and R € g(n, p) is independent of t. In particular the monodromy My =
exp(2mip) exp(2miR) at z = 0 does not depend on t.
(2) Solutions of the whole system (2.2) in normal form are not unique. Given two of them

Z(z,t) = B(z,t) - 2128, Z(z,t) = B(z,t) - 212,
W, s yG—]l+A such that
Z(z,t) = Z(z,t) - G,

R=G ' R-G, ®(z1t)=>o(z1) Pg(zt),

there exists a unique matriz G € G(n,

where
Po(z,t) :=2"-G-z7#
14 2A; + 2200+ ...,

(Ag)k>1 being the components of A. In particular, zf}NE = R, then G € Co(n, i, R).
Proof. Let Z(z,t) be a solution of (2.2), and let My(t) be the monodromy of Z(-,t) at z = 0:
Z(e*™ 2 t) = Z(z,t) - My(t).

The coefficients of the equations
0aZ(2,t) = 2Co(t) - Z(2,t), a=1,...,n

being holomorphic in z, we have that

0aZ(2,t) - Z(2,t) 7' = 0, Z(e*™ 2, t) - Z(e*™ 2, t) 7!

= 0o (Z(2,1) - Mo(t)) - (Z(2,1) - Mo(t))™"
= 0aZ(2,t) - Z(2,t) "  + Z(2,t) - 0o Mo(t) - Mo(t)™ - Z(2,t)7*

for any «. Hence

6aMo(t)=O, a=17...,n.
By Theorem 2.3, we necessarily conclude that R is t-independent. (]
Definition 2.7 ([Dub96, Dub99b]). Given a Frobenius manifold M, we will call monodromy data of M at z =0
the data (p, [R]), where [R] denotes the G(n, u)-class of exponents of formal solutions in Levelt normal form of

the system (2.2) as in Theorem 2.2. According to Theorem 2.4, a representative R can be chosen independent
of the point t € M.

We conclude this section with a result giving sufficient conditions on solutions of the system (2.2) for resonant
Frobenius manifolds in order that they satisfy the n-orthogonality condition (2.10). In its essence, this result is
stated and proved in [GGI16], in the specific case of quantum cohomologies of Fano manifolds.

Proposition 2.1. Let M be a resonant Frobenius manifold, and tyo € M a fixed point.
(1) Suppose that there exists a fundamental solution of (2.2) of the form

Z(z,t) = ®(z,t)2"2, @) =1+ i D, (t)2’

with R satisfying all the properties of the Theorem 2.2, such that
H(z) :=2z"1®(z,t) 2"
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is a holomorphic function at z =0 and H(0) = 1. Then ®(z,t) satisfies the constraint
O(—z,t)Tn ®(2,t) =1

for all points t € M.
(2) If a solution with the properties above exists, then it is unique.

Proof. From Remark 2.1, we already know that the following bracket must be independent of z:
(Z(z,t0), Z(2,t0))+ = (<I>(—z,to)(e”z)“(ei”z)R)Tn (®(2,t0)2"2")

= ((e”z)“H(fz)(e”z)R)T n (2" H(z)z")
= e”RTzRTH(—Z)Tei”“z“nz“H(z)zR
= e”RTZRTH(—Z)Te”“nH(z)zR.

By taking the first term of the Taylor expansion in z of the r.h.s., and using (2.8), we get

(Z(2,t0), Z(2,t0))+ = ei”RTei’”‘n.
So, using again the equation z#' nz* = 5 and (2.8), we can conclude that
B(—z,10) (2 10) = (€72 (€72) ") (Zzta). 2z 1))+ (42 =

Because of (2.2) and the property of n-compatibility of the Frobenius product, we have that

0
ot
This concludes the proof of (1). Let us now suppose that there are two solutions

Oy (z,t)2 2T, Dy(z,t)2H 2"

(®(—2,t)"n®(2,t)) = 2z ®(—2,t)" - (nCa — CLn) - (2,t) = 0.

such that
2TH®(2,t0)2" = 1+ 2Ky + 22 Ko + ..., (2.11)
2Py (z,t0) 2" = 1+ 2K + 22K + ... (2.12)
The two solutions must be related by
By(z, )22 = (2, 1)1 - C

for some matrix C € Co(n, i, R). This implies that ®o(z,t) = ®1(z,t) - P(z), where P(z) is a matrix valued
polynomial of the form

P(z) =1+ 2A1 + 22Ay + ...,  with (Ag)3 = 0 unless po — pg =k, and P(1)=C.
We thus have 2z #® ' ®yz# = 27#P(2)2", and

(Z*HP(Z)Z#);‘ =65 + Z (Ak)g Sk—tatns — 35 + Z (Ak)g =0
k k

Then, from formulae (2.11), (2.12) it immediately follows that C' = 1, which proves that ®; = ®s. O
2.2. Semisimple Frobenius Manifolds.

Definition 2.8. A commutative and associative K-algebra A with unit is called semisimple if there is no
nonzero nilpotent element, i.e. an element a € A\ {0} such that a* = 0 for some k € N.

In what follows we will always assume that the ground field is C.

Theorem 2.5. Let A be a C-Frobenius algebra of dimension n. The following are equivalent:

(1) A is semisimple;
(2) A is isomorphic to CO";
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(3) A has a basis of idempotents, i.e. elements 7y, ...m, such that

T 0 Tj = 05T,

n(mi, 75) = Niidij;
(4) there is a vector £ € A such that the multiplication operator Eo: A — A has n pairwise distinct eigen-
values.

Proof. The equivalence between (1) and (2) is the well-known Wedderburn-Artin Theorem applied to commu-
tative algebras (see [ASS06]). An elementary proof can be found in the Lectures notes [Dub99b]. The fact that
(2) and (3) are equivalent is trivial. Let us prove that (3) and (4) are equivalent. If (3) holds it is sufficient just

to take
E= Zkﬂ'k.
k

So £o has spectrum {1,...,n}. Let us now suppose that (4) holds. Because of the commutativity of the algebra,
all operators ao: A — A are commuting. Consequently, they are all diagonalizable since they preserve the one
dimensional eigenspaces of £o. For a well known theorem, these operators are simultaneously diagonalizable.
So idempotents are easily constructed by suitable scaling eigevectors of £o. O

Definition 2.9 (Semisimple Frobenius Manifolds). A point p of a Frobenius manifold M is semisimple if the
corresponding Frobenius algebra 7}, M is semisimple. If there is an open dense subset of M of semisimple points,
then M is called a semisimple Frobenius manifold.

It is evident from point (4) of the Theorem 2.5 that semisimplicity is an open property: if p is semisimple,
then all points in a neighborhood of p are semisimple.

Definition 2.10 (Caustic and Bifurcation Set). Let M be a semisimple Frobenius manifold. We call caustic
the set

Kar = M\M,s = {pe M: T,M is not a semisimple Frobenius algebra} .
We call bifurcation set of the Frobenius manifold the set
Bar :={pe M: spec(FEo,: T,M — T,M) is not simple} .
By Theorem 2.5, we have KCp; € Bys. Semisimple points in By \KCps are called semisimple coalescence points.

The bifurcation set By; and the caustic Ky are either empty or a hypersurface (in general a singular one),
invariant w.r.t. the unit vector field e (see [Her02]). For Frobenius manifolds defined on the base space of
semiuniversal unfoldings of a singularity, these sets coincide with the bifurcation diagram and the caustic as
defined in the classical setting of singularity theory ([Arn93, Arn90]). In this context, the set By \K s is called
Mazwell stratum. Remarkably, all these subsets typically admit a naturally induced Frobenius submanifold
structure ([Str01, Str04]). In what follows we will assume that the semisimple Frobenius manifold M admits
nonempty bifurcation set By, caustic s and set of semisimple coalescence points B \ICps.

At each point p in the open dense semisimple subset Mss € M, there are n idempotent vectors

7T]_(p), e ,ﬂ-n(p) € TPM7

unique up to a permutation. By Theorem 2.5 there exists a suitable local vector field £ such that 71 (p), ..., 7 (p)
are eigenvectors of the multiplication £o, with simple spectrum at p and consequently in a whole neighborhood
of p. Using the results exposed in [Kat95] about analytic deformation of operators with simple spectrum w.r.t.
one complex parameter, in particular the results stating analyticity of eigenvectors and eigenprojections, and
extending them to the case of more parameters using Hartogs’ Theorem, we deduce the following

Lemma 2.3. The idempotent vector fields are holomorphic at a semisimple point p, in the sense that, chosen and
ordering w1 (p), ..., mn(p), there exist a neighborhood of p where the resulting local vector fields are holomorphic.
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Notice that, although the idempotents are defined (and unique up to a permutation) at each point of My,
it is not true that there exist n globally well-defined holomorphic idempotent vector fields. Indeed, the caustic
Kps is in general a locus of algebraic branch points: if we consider a semisimple point p and a close loop
~v: [0,1] — M, with base point p, encircling Ky, along which a coherent ordering is chosen, then

(T (7(0)), -+, 7 (7(0))) and  (m1(v(1)), ..., 7 (v(1)))

may differ by a permutation. Thus, the idempotent vector fields are holomorphic and single-valued on simply
connected open subsets not containing points of the caustic.

Remark 2.4. More generally, the idempotent vector fields define single-valued and holomorphic local sections
of the tangent bundle TM on any connected open set Q € M\Kj; = M, satisfying the following property: for
any z € § the inclusions

induce morphisms in homotopy

T, 2) 2y (M, 2) —25 70 (M, 2)

such that im(ay) N ker(84) = {0}. Moreover, this means that the structure group of the tangent bundle of M,
is reduced to the symmetric group &,,, and that the local isomorphism of O, -algebras

~ n
I, = O,

existing everywhere, can be replaced by a global one by considering a Frobenius structure prolonged to an
unramified covering of degree at most n! (see [Man99]).

Theorem 2.6 ([Dub92], [Dub96], [Dub99b]). Let p € My, be a semisimple point, and (m;(p))i—, a basis of
idempotents in T,M. Then
[Wiv 7rj] =0;
as a consequence there exist local coordinates uy, ..., u, such that
0
- ou;

Definition 2.11 (Canonical Coordinates [Dub96], [Dub99b]). Let M a Frobenius manifold and p € M a
semisimple point. The coordinates defined in a neighborhood of p of Theorem 2.6 are called canonical coordi-
nates.

Ur

Canonical coordinates are defined only up to permutations and shifts. They are holomorphic local coordinates
in a simply connected neighbourhood of a semisimple point not containing points of the caustic Kps, or more
generally on domains with the property of Remark 2.4. Holomorphy holds also at semisimple coalescence points.

Theorem 2.7 ([Dub99bl). If uy,...,u, are canonical coordinates near a semisimple point of a Frobenius
manifold M, then (up to shifts) the following relations hold

0 0 0 N0 = 0
5 = 57’ I A = ) E= i .
6ui ° é‘uz & aui c 7;1 6ui lzzlu auz

In this paper we will fix the shifts of canonical coordinates so that they coincide with the eigenvalues of the
(1,1)-tensor Eo.

Definition 2.12 (Matrix ¥). Let M be a semisimple Frobenius manifold, ¢!,...,¢" be local flat coordinates

such that % = e and uq,...,u, be canonical coordinates. Introducing the orthonormal basis
1 0
fii= ro- (2.13)
o 2 \* 0
n <8ul ’ Oui)
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for an arbitrary choice of signs in the square roots, we define a matrix ¥ (depending on the point of the Frobenius
manifold) whose elements ¥;, (i-th row, a-th column) are defined by the relation
0

n
&7=2Wiafi Oé=17...,n.
i=1

Lemma 2.4. The matriz ¥ is a single-valued holomorphic function on any simply connected open subset not
containing points of the caustic KCpy, or more generally on any open domain £ as in Remark 2.4. Moreover, it

satisfies the following relations:
1
T 0 0 \?
U = 7, \Ij’il =1 )

w 0 LR\ P
L ) o Ba Y _ i X i3 Fiy
fz = Z \I/zllpzﬂn (}to" CaBy = Z \Ilil .
a,f=1 i=1

If U is the operator of multiplication by the Fuler vector field, then U diagonalizes it:
VUT ! = U = diag(uy, . .., uy).

Proof. The first assertion is a direct consequence of the analogous property of the idempotents vector fields, as
in Lemma 2.3. All the other relations follow by computations (see [Dub99b]). O

We stress that ¥ and the coordinates u;’s are holomorphic also at semisimple coalescence points, due to the
same property of the idempotents.

2.3. Monodromy Data for a Semisimple Frobenius Manifold. Monodromy data at z = oo are defined in
[Dub98],[Dub96] and [Dub99b] at a point of a semisimple Frobenius manifold not belonging to the bifurcation set.
In the present section we review these issues, and we enlarge the definition to all semisimple points, including
the bifurcation ones, namely the semisimple coalescence points of Definition 1.1.

In this section, we fix an open subset Q2 © M, satisfying the property of Remark 2.4, so that we can choose
and fix on 2

e an ordering of idempotent vector fields and canonical local coordinates p — u(p), p € Q,
e a choice of the square roots in the definition of normalized idempotent vector fields f;’s, and hence a
determination of the matrix W.

In this way, system (2.2) and system (2.15) below, are determined. In the idempotent frame
y = V¢, (2.14)
system (2.2) becomes
0y = (zE; + V;)y
(2.15)
.y=U+1v)y
where (E;)% = 6267 and
Vi=0p¥t V=000 (2.16)
U:=0Uv " = diag(us, ..., uy,),
with not necessarily u; # u; when i # j. By Lemma 2.4, ¥(u), V(u) and V;(u)’s are holomorphic on €.
Lemma 2.5. The matriz V = Uu¥~! is antisymmetric, i.e. VT +V = 0. Moreover,
if u; = uj, then Vi = V;; = 0.
Proof. Antisymmetry is an easy consequence of (2.4) and the n-orthogonality of ¥ (see [Dub99b]). Moreover,
compatibility conditions of the system (2.15) imply that
[E:, V] = [V, U].
Reading this equation for entries at place (7, ), we find that
Vij = (uj —ui)(Vi)ij-
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Now, (V;)i; is holomorphic, by and Lemma 2.4 and (2.16), so that if ¢ # j, but u; = u;, then V;; = 0. O
We focus on the second linear system
0.y = (U + iV) Y, (2.17)
and study it at a fized point p € Q.

Theorem 2.8. Let Q © M, as in Remark 2.4. At a (fized) point p € Q, there exists a unique formal (in
general divergent) series

k
:1Z

F(z):=1+ Z —
k
with
FT(—2)F(2) =1,
such that the transformation § = F(z)y reduces the corresponding system (2.17) at p to the one with constant
coefficients

Hence, system (2.17) has a unique formal solution

0
G
Yiermal(2) = G(2)e*V,  G(2) = F(2) ' =1+ ) =} (2.18)
k=1~
Proof. By a direct substitution, one finds the following recursive equations for the coefficients Ag:
(U, A1] =V, (U Agi1] = AV — kA, k=1,2,....

If (7, 7) is such that u; # u; then we can determine (Akﬂ); by the second equation in terms of entries of Ay; if
u; = u; then we can determine (Ak;+1)§- from the successive equation:

[U, Ak+2] = Ak+1V - (k + 1)Ak+1.

Indeed, the (i,j)-entry of the Lh.s. is 0 and, by Lemma 2.5 (Ax1V)% is a linear combination of already
determined entries (Ag41)}, with u; # wp. In such a way we can construct F(z). Let us now prove that
FT(—2)F(z) = 1. Let us take any solution Y of the original system, and pose

A=Y (e )Y (2).
A is a constant matrix, since it does not depend on z. Thus, for an appropriate constant matrix C' we have
F(2)Y(2) = e*VC,
from which we deduce that
F(z)7' =Y ()07 te Y, F(—2) T =efVCc Ty (e7™2)T.

So
F(—2)TF(z)"' =efVC"TAC e ?Y.
Comparing the constant terms of the expansion of the r.h.s and the Lh.s we conclude that C~TAC~! = 1. O
Notice in the above proof that the equation [U, Ap11] = AV —kAy, that is (u;—u;)(Ags1)s = (AV —kAR)%,

implies that, if we let p vary in Q then the Gy’s define holomorphic matrix valued functions Gy (u) at points u,
lying in u(§2), such that u; # u; for ¢ # j. Accordingly, the formal matrix solution

o Gr(u)
}/}ormal(za U) = G(Zau)GZU7 G(Z,U) =1+

; (2.19)

is well defined and holomorphic w.r.t u = u(p) away from semisimple coalescence points in 2. In Theorem 4.1
below, we will show that Yiorma1(2, ©) extends holomorphically also at semisimple coalescence points.
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Remark 2.5. The proof of Theorem 2.8 is based on a simple computation, which holds both at a coalescence
and a non-coalescence semisimple point. The statement can also be deduced from the more general results of
[BJL79b] (see also [CDG17]). A similar computation can be found also in [Tel12] and [GGI16]. Notice however
that this computation does not provide any information about the analiticity of G(u) in case of coalescence
u; — uj, ¢ # j. The analiticity of Yiormai(z,u) — and of actual fundamental solutions — at a semisimple
coalescence point follows from the results proved in [CDG17], and will be the content of Theorem 4.1 below.

In order to study actual solutions at p € €2, we introduce Stokes rays. In what follows, we denote by
pr : R — C\{0} the covering map. For pairs (u;,u;) such that u; # u;, we locally choose arguments «;; of
arg(u; — u;) within the interval [0; 2n[, and we let

s

Tij * B

— Oéij.

Definition 2.13 (Stokes rays). We call Stokes rays of the system (2.17) the rays in the universal covering R
defined by

Rijr:={z€R: argz = 1;; + 2kn}, keZ.
The characterisation of Stokes rays is as follows: z € R;; if and only if
Re((u; —uj)z) =0, Im((u; —uj)z) <O, z€R.
For given 1 < ¢ # j < n, the projection of the rays R;; x, k € Z, on the C-plane
Rij = pr (Rijk)
does not depend on k and is also called a Stokes ray. It coincides with the ray defined in [Dub99b], namely
Rij ={2€C: z=—ip(w; —w;), p>0}. (2.20)

Stokes rays have a natural orientation from 0 to co. For z € C we have

[e*“i| = |e**| if ze R

ZU4

17
> |e**/| if z is on the left of R;;,

< |e**7| if z is on the right of R;;.

le

ZU4

le
Definition 2.14 (Admissible Rays and Line). Let ¢ € R and let us define the rays in R
((¢) = {€R: argz = ¢},

0_(p) :={2eR: arg z=¢ —7}.
We will say that these rays are admissible at u, for the system (2.17), if they do not coincide with any Stokes
rays R;j, for any i,j s.t. u; # u; and any k € Z. Moreover, a line £(¢) := {z = pe'®, p € R} of the complex
plane, with the orientation induced by R, is called admissible at u for the system (2.17) if

Re z(u; — uj)|zeno # 0
for any ¢,j s.t. u; # u;. In other words, a line is admissible if it does not contain (projected) Stokes ray R;;.

Notice that the rays pr (/4 (¢)) are contained in the admissible line £(¢) = {z = pe’?, p € R}, and that the
orientation induced by R is such that the positive part of ¢(¢) is pr (¢4 (¢)).

Definition 2.15 (¢-Chambers). Given a semisimple Frobenius manifold M, and fixed an oriented line ¢(¢) =
{z = pe’®, pe R} in the complex plane, consider the open dense subset of points p € M such that

e the eigenvalues of U at p are pairwise distinct,
e the line ¢ is admissible at u(p) = (u1(p), .., un(p))-

We call ¢-chamber any connected component 2, of this set.
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The definition is well posed, since it does not depend on the ordering of the idempotents (i.e. the labelling of
the canonical coordinates) and on the signs in the square roots defining ¥. Any ¢-chamber satisfies the property
of Remark 2.4: hence, idempotent vector fields and canonical coordinates are single-valued and holomorphic on
any ¢-chamber. The topology of an ¢-chamber in M can be highly non-trivial (it should not be confused with
the simple topology in C™ of an ¢-cell of Definition 4.1 below). For example, in [Guz05] the analytic continuation
of the Frobenius structure of the Quantum Cohomology of P? is studied: it is shown that there exist points
(uy,uz,u3) € C? with u; # u;, which do not correspond to any true geometric point of the Frobenius manifold.
This is due to singularities of the change of coordinates u +— t.

Remark 2.6. In [Dub98], Section 3.4, the second author introduced a striclty related notion of charts of semisim-
ple Frobenius manifolds. Although both definitions of chambers and charts are subordinate to the choice of an
oriented line ¢, notice some differences between the two concepts. Basically, /-chambers are a non-coordinatized
version of charts. Given a semisimple Frobenius manifold, its decomposition is intrinsecally defined and it
depends on the spectrum of U as a set, without particular reference to any ordering of canonical coordinates.

Conversely, adopting an inverse-problem point of view, as in Section 3.4 of [Dub98], charts are identified
with open sets of n-tuples (uq,...,u,) € C* with pairwise distinct values of u;’s in ¢-lexicographical order (see
Definition 3.1), and in correspondence to which a suitable Riemann-Hilbert problem is solvable, so that the local
Frobenius structure can be reconstructed. Furthermore, it is also required a condition guaranteeing that the
changes of coordinates t — u, u — t are not singular. Note that in both cases (charts or chambers), semisimple
coalescence points are not considered: hence, despite of their name, charts do not really constitute an atlas of
the Frobenius manifold.

For a fixed ¢ € R, we define the sectors
Myignt (@) :={z € R: ¢ — 7 < argz < ¢},
Mes(¢) :={z€R: ¢ <argz < ¢ +7}.

Theorem 2.9. Let Q c My, be as in Remark 2.4 and let system (2.15) be determined as in the beginning of
this section. Let ¢ € R be fixed. Then the following statements hold.

(1) At any p € Q such that £(¢) is admissible at u(p) and, for any k € Z there exist two fundamental matriz
solutions iﬁe];t/right(z) uniquely determined by the asymptotic condition

k g
Y}Ezft)/right(z) ~ }/formal(z)7 |Z‘ - X, z€ 62 kHleft/right(¢)'

(2) The above solutions y k) satisfy

left/right
(k) 2mik (0)
leeft/right (6 ' Z) = leeft/right(z)’ z€eR. (221)

(3) In case Q = Qy is an £(¢p)-chamber if p varies in Qy, then the solutions Ylg;g/right(z) define holomorphic

functions
(k)
)/}eft/right(z’ u)

w.r.t. u = u(p). Moreover, the asymptotic expansion

k L)
Ylgaft)/right(za u) ~ )/formal(za u)v |Z| — 0, S 62 kHleﬂ/right(d))a (222)
holds uniformly in u corresponding to p varying in Qp. Here Yiormal(z,u) is the u-holomorphic formal
solution (2.19).

Proof. The proof of (1) and (2) away from coalescence points is standard (see [Was65], [BJL79a], [Dub99b],
[Dub04]), while at coalescence points it follows from the results of [CDG17] and [BJL79b]. Point (3) is stated
in [Dub99b], [Dub04], though the name “/-chamber” does not appear there. O

Remark 2.7. The holomorphic properties at point (3) of Theorem 2.9 hold in a ¢-chamber, where there are no
coalescence points. In our Theorem 4.1 below, we will see that point (3) actually holds in a set Q M, as in
Remark 2.4, no matter if it contains semisimple coalescence points or not. The only requirement is that £(¢) is
admissible at u = u(p) for any p € Q.
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FIGURE 1. The figure shows II7,,; (), If (¢) as dashed sectors, £1(¢) in (black) and Stokes
rays (in color).

Remark 2.8. The asymptotic relation (2.22) means that for any compact K € €, for “any h € N and for any
proper closed subsector S & eQﬂ—kiHright/left (¢) there exists C}. , 5 > 0 such that, if z € S\ {0}, then

v & G| C

k) K,h,S
8 ) - exp(—z07) — Y Il
m=0

|21

sup
ueK

Actually, the solutions y (k) (z,u) maintain their asymptotic expansions (2.22) in sectors wider than e%ikﬂright J1eft (@)

right /left }
after extending at least up to the nearest Stokes rays outside e2m’“Hright Jleft (¢). In particular, for any p e K € €,

and suitably small ¢ = ¢(K) > 0, then the asymptotics holds in ezmkﬂfight Jleft (¢), where
Mgne (@) i={2€R: ¢ —T—e<arg z<¢p+e}, Iu(p):={zeR:¢p—ec<arg z<¢+m+e}.
The positive number ¢ is chosen small enough in such a way that, as p varies in the compact set K, no Stokes
ray is contained in the following sectors:
5 (¢) :={2eR:p—e<arg 2<op+e}, I(p):={zeR:p—m—e<arg z2<d—7+¢e}.

Lemma 2.6. In the assumptions of Theorem 2.9, for any k € Z and any z € R the following orthogonality
relation holds:

k i k
Yléft)(e Z)TYr(ig]?lt(Z) =1

Proof. From Remark 2.1 we already know that the product above is independent of z € R. According to Remark
2.8, if € > 0 is a sufficiently small positive number, then

k T
V) e () ~ Yormai(2), |2 >0, z€ M i (0)

Consequently,

Kg?t)(ei”z) ~ G(—z)e_ZU, VAW (2) ~ G(z)eZU, |z| > o0, z€ e%ikﬂi(q’)).

right

Thus, Ki’fct)(e”z)TYr(ig})lt(z) =1 for all z € e2™*II% (¢), and by analytic continuation for all z € R. O

Let Yo(z,u) be a fundamental solution of (2.17) near z = 0 of the form (1.8), i.e.

0
Yo(z,u) = U(u)®(z,u)z" 2", O(z,u) =1+ Z ()2, O(—z,u)T'n ®(2,u) =n, (2.23)
k=1
with WT'¥ = 5, obtained from (2.9) and (2.10) through the constant gauge (2.14). This solution is not affected
by coalescence phenomenon and since p and R are independent of p € Q, it is holomorphic w.r.t. u (see [Dub99b],
[Dub04]). Recall that Yy(z,u) is not uniquely determined by the choice of R.
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Definition 2.16 (Stokes and Central Connection Matrices). Let Q < M,y be as in Remark 2.4 and let the
system (2.15) be determined as in the beginning of this section. Let ¢ € R be fixed. Let p € Q be such that £(¢)

is admissible at u(p). Finally, let VAW (2) be the fundamental solutions of Theorem 2.9 at p. The matrices

right /left
S and S_ defined at u(p) by the relations
0 0
ViR (2) = Yigl(s) S, zeR, (2.24)
K (€2) = Yigh(2) 5=, z€eR (2.25)
are called Stokes matrices of the system (2.17) at the point p w.r.t. the line £(¢). The matrix C' such that
Y0 (2) = Yo(z,u(p) C, zeR (2.26)

is called central connection matriz of the system (2.15) at p, w.r.t. the line £ and the fundamental solution Yj.

Theorem 2.10. The Stokes matrices S, S_ and the central connection matriz C of Definition 2.16 at a point
p € Q satisfy the following properties, for all k € Z and all z € R:

(1)
Y ¥ () =vH (2) s,

left right
k k+1
Vi (2) = Vi (2) S-,
k _
Yr(igl)lt(z) = Yo(2,u(p)) My e

where My = exp(2mip) exp(2miR);
(2)
v (e = v () 5. 5L

right right
i (2m2) = Vi (2) 71 5
(3)
S_ = g7,

Si=1, i=1,...,n,
Sij # 0 with ¢ # j only if u; # u; and Ri; < pr (Iee (@) -

Proof. The first and second identities of (1) follow from equation (2.21). For the third note that
Vi (2) = Yo (€257 2) = Yo (e 727 2)C = Yo(2) Mg *C.

right right
Point (2) follows easily from the vanishing of the exponent of formal monodromy (diag V' = 0). By definition of
Stokes matrices we have that

Y 2) =Y (725, YO () = v Q)57

left right right
and by Lemma 2.6

0 0 T —
st }/r(igzlt(Z)T}/léft? (e™2) S~ =1.

1
We conclude ST = S. If we consider the sector 115 (¢) for sufficiently small £ > 0 as in proof of Lemma 2.6,

them from the relation Yh(ff)t) (2) = Yr(ig%lt(z)s , we deduce that
6z(ui_uj)5‘j ~ (Sij, ‘Z| — 00, =z € Hi<¢)

So, if u; = u; we deduce S;; = d;;. If i # j are such that u; # u;, then if R;; < pr (ILigns(¢)) we have
le*(Wi—%)| - o for 2] - 0, ze€ 115 (9),

and hence necessarily S;; = 0. For the opposite ray R;; < pr (Iie;) we have

le*(i=)| - 0 for [2| » 0, ze % (),
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so S;; need not to be 0. This proves (3).
O

The monodromy data must satisfy some important constraints, summarised in the following theorem, whose
proof is omitted in [Dub98], [Dub9ob).

Theorem 2.11. The monodromy data u, R,S,C at apoint p € Q as in Definition 2.16 satisfy the identities:
(1) CsTsflcfl — MO — e27ri,u627riR,
(2) S = C’*le*ﬂ'iRe*ﬂ'iﬂnfl(CT)*:l?
(3) ST — C—leﬂ'iRe‘mpn—l(CT)—I.

Proof. The first identity has a simple topological motivation: loops around the origin in C* are homotopic

to loops around infinity. So, one easily obtains the relation using Theorem 2.10, and the definition of central
connection matrix. Using the orthogonality relations for solutions, equation (2.8) and the fact that

z“Tn M =n

(1 being diagonal and n-antisymmetric), we can now prove the identities (2) and (3). By Lemma 2.6 we have
that

1 = Y(O) (Z)Ty(o)(eiwz)

right left
= Yr(igilt(z)TYr(igflt(e”z)S = CTYy(2) Yy (e 2)CS.

Now we have

Yo(2) Y (e 2) = P (@(2)TUTUD(—2)) (e 2)H (e 2) "

R

T T . .
= 2B 1 pateimh et R

_ neiﬂueiﬂ'R .
This shows the first identity. For the second one, we have that

1=v (z)TY((])(ei”z)

right left
0 0 —im
= Yigon () Yigh (e772) "

= CTYy(2)"Yo(e ™ 2)CST.
Again, we have

Yo(2) Yole 72) = 2 21 (@(2) T WTWD(~2)) (e~ 2)H (e 2)

R

=2z ¢ pzte impy Re—inR

—iTr/Le—iTFR-

]

It follows from point (3) of Theorem 2.9 that S and C depend holomorphically on p varying in an ¢-chamber
Qy, namely they define analytic matrix valued functions S(u) and C(u), v = u(p). Moreover, due to the
compatibility conditions [E;, V] = [V;,U] and ;% = V;¥, the system (2.15) is isomonodromic. Therefore
0;S = 0;C = 0. Indeed, the following holds:

Theorem 2.12 (Isomonodromy Theorem, II, [Dub96, Dub98, Dub99b)). The Stokes matriz S and the central
connection matrix C, computed w.r.t. a line £, are independent of p varying in an ¢-chamber. The values of
S, C in two different {-chambers are related by an action of the braid group of Section 3.
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3. AMBIGUITY IN DEFINITION OF MONODROMY DATA AND BRAID GROUP ACTION

In associating the data (u, R, S, C) to p € M several choices have been done, all preserving the constraints of
Theorem 2.11
S = C—le—ine—iw/Ln—l(C—l)T’
ST _ C—leiTrReiTrun—l(C—l)T.
While the operator p is completely fixed by the choice of flat coordinates as in Section 2, R is determined
only up to conjugacy class of the (7, u)-parabolic orthogonal group G(7, 1) as in Theorem 2.3. Suppose now that
R has been chosen in this class. The remaining local invariants S, C' are subordinate to the following choices:

(1) an oriented line £(¢) = {z = pe’®, p € R} in the complex plane;

(2) for given ¢ € R, the change ¢ — ¢ — 2kw, k € Z, or dually, for fixed ¢, the change Ylgf)t)/right(z) —
Yiatnigne (2);

left/right
(3) the choice of an ordering of canonical coordinates on each ¢-chamber €;
(4) the choice of the branches of the square roots (2.13) defining the matrix ¥ on each ¢-chamber Q;
(5) the choice of solution Yy in the Levelt normal form corresponding to the same exponent R.

The transformations of the data depending on the choice of ¢ in (1) will be studied in the next Section. Here
we describe how the freedoms (2), (3), (4) and (5) affect the data (5, C):

e Action of the additive group Z: according to formula (2.21), S remains invariant and
Cw My"- O, keZ, My=e*™re?™E  teq,.
e Action of the group of permutations &,,: if T is a permutation, we can reorder the canonical coordinates:
(Uty ey Uup) = (Ur(1)y oo s Ur(n))-
The system (2.17) is changed to U +—> PUP~! = diag(tur(1), -+ Ur(n)), V = P V P~!. The fundamental

matrices change as follows: Ylgft) Jright ™ P Yli?t) /rightP_1 and Yy — PY,. Therefore

S+— PSP, C—CP (3.1)

e Action of the group (Z/2Z)*™: by changing signs of the normalized idempotents (matrix ¥) we change

the signs of the entries of the matrices S and C. If 7 is a diagonal matrix with 1’s or (—1)’s on the

diagonal, the system (2.17) is changed to U ~ ZUZ = U, V ~ ZVZ. Correspondingly, Yics /right
IYleft/rightI7 YO = IYO Therefore

S—1I8T, Cw~ CT.
e Action of the group Co(n, u, R): for chosen R, the choice of a fundamental system at the origin having
the form (2.23) is defined up to Yy — YyG, where G € Co(n, i1, R) of Definition 2.5. The corresponding

left action on C is
C— GC, G e Co(n, p, R).

Among all possible orderings of the canonical coordinates, a particularly useful one is the lexicographical order
w.r.t an admissible line £(¢), defined as follows. Let us consider the rays starting from the points g, ..., u, in
the complex plane

L;:= {uj +pei(%7¢): peRJr}, j=1...,n,
and for any complex number zj let us define the oriented line
L= {zo +pe :pe R}

where the orientation is induced by R. In this way we have a natural total order < on the points of L,, 4. We
can choose zg, with |zo| sufficiently large, so that the intersections L; n L., 4 =: {p;} are non-empty.

Definition 3.1 (Lexicographical order). The canonical coordinates u;’s are in ¢-lexicographical order if

p1 <p2 <p3 < - < Pp.

The definition does not depend on the choice of zg € C, with |z| sufficiently large.
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Observe that if uq,...,u, are in lexicographical order w.r.t. the admissible line ¢(¢), then:

(1) the Stokes matrix is in upper triangular form;
(2) the nearest Stokes rays to the positive half-line pr(¢,(¢)) are of the form

Riiv1 S pr (e (¢)) , Rj ;-1 < pr(ILigne(9)) ,
where 1 <i<n—1land 2<j<n.

In general, condition (1) alone does not imply that the canonical coordinates are in lexicographical order:
it does if and only if the number of nonzero entries of the Stokes matrix S is maximal (and equal to @)
In this case, by Theorem 2.10, necessarily u; # u; for ¢ # j. On the other hand, if there are some vanishing
entries S;; = Sj; = 0 for 7 # j, and S is upper triangular, then also PSP~!in (3.1) is upper triangular for any
permutation exchanging u; and u; corresponding to S;; = S;; = 0. For example, this happens at a coalescence

point: by Theorem 2.10, the entries S;; with ¢ # j are 0 corresponding to coalescing values u; = u;, i # j.

Definition 3.2 (Triangular order). We say that ug, ..., u, are in triangular order w.r.t. the line ¢ whenever S
is upper triangular.

It follows from the preceding discussion that at a semisimple coalescence point there are more than one
triangular orders. Moreover, any of them is also lexicographical. For further comments, see Remark 4.1.

3.1. Action of the braid group B,,. In this section, canonical coordinates are pairwise distinct, corresponding
to a non-coalescence semisimple points lying in ¢-chambers. The braid group is

B, = m ((C"\A)/6,),

where A stands for the union of all diagonals in C™. It is generated by n—1 elementary braids 12, f23, ..., Bn—1n
with the relations

Biit1Bjj+1 = Bjj+1Biiv1 fori+1#7,5+1#14,

Biit1Bit1,i+281,i+1 = Bit1,i+284,i+18i+1,i+2-

The action of the braid group B,, on the monodromy data manifests whenever some Stokes ray and the chosen
line ¢ cross under rotation. This can happen in two ways:

e First: we let vary the point of the Frobenius manifold at which we compute the data, keeping fixed
the line ¢; this is the case if, starting from the data computed in an /-chamber we want to compute
the data in a neighboring ¢-chamber, or even more in general if we want to analyze properties of the
analytic continuation of the whole Frobenius structure by letting varying the coordinates (u1, ..., u,)
on the universal cover m

e Second: we fix the point at which we compute the data and change the admissible line ¢ by a rotation.

In the first case the /-chambers are fixed, in the second case they change: indeed, the given point of the Frobenius
manifold is in two different chambers before and after the rotation of ¢. In both cases, we will always label the
canonical coordinates (ug, ..., u,) in lexicographical order w.r.t. £ both before and after the transformation (so
that, in particular, any Stokes matrix is always in upper triangular form).

Any continuous deformation of the n-tuple (uq,...,u,), represented as a deformation of n points in C never
colliding, can be decomposed into elementary ones. If we restrict to the case of a continuous deformation which
ends exactly with the same initially ordered pattern of points, then we can identify an elementary deformation
with a generator of the pure braid group, i.e. m1(C™\A). Otherwise, by allowing permutations, we can identify
an elementary deformation with a generator of the braid group B,. In particular, an elementary deformation
which will be denoted by f; ;41 consists in a counter-clockwise rotation of u; w.r.t. w,;11, so that the two
exchange. All other points u;’s are subjected to a sufficiently small perturbation, so that the corresponding
Stokes’ rays almost do not move. f3; ;41 corresponds to

o clockwise rotation of the Stokes’ ray R; ;1 crossing the line /,
e or, dually, counter-clockwise rotation of the line ¢ crossing the Stokes’ ray R; ;i1
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This determines the following mutation of the monodromy data, as shown in [Dub96] and [Dub99b]:
SBii+1 .— ABii+1 (S) S ABii+1 (S)T (32)
where

(AP (8)),, =1, h=1,...,n h#ii+1
itlit1 T Ohith

(A,Bi,i+1(S))
(Aﬁi’Hl(S))i,i-‘rl = (Aﬁi,i+1(5))i+17i =1.

For a generic braid 8, which is a product of N elementary braids 8 = B;; 4,41 - .- Biy,iy+1, the action is
S — 58 = AP(S). 5. AP (ST (3.3)
where
AB(S) = APinin+1 (SﬁiN—lviN—l‘*'l) o APizia+1 (Sﬁil,i1+1) .Aﬂil,i1+1(5’)_
The action on the central connection matrix (in lexicographical order) is
C— CP:=C (A%)7L (3.4)
Now, let us consider a complete counter-clockwise 27-rotation of the admissible line ¢, and observe the following;:
(1) in the generic case (i.e. when the canonical coordinates u;’s are in general position) there are n(n — 1)
distinct projected Stokes’ rays R;j,. An elementary braid acts any time the line £ crosses a Stokes ray.
So, in total, we expect that a complete rotation of £ correspond to the product of n(n — 1) elementary
braids £ ;+1’s.
(2) Since the formal monodromy is vanishing, the effect of the rotation of ¢ on the Stokes matrix is trivial,
while the central connection matrix C' is transformed to M, 1C, My being the monodromy at the origin
(point (1) of Theorem 2.10). As a consequence, the complete rotation of the line ¢ can be viewed as a
deformation of points u;’s commuting with any other braid.
From point (2) we deduce that the braid corresponding to the complete rotation of £ is an element of the center

Z(B,) = {(B12B2s .. . Bu—1n) " ke Z}.

From point (1) and from the fact that ¢ rotates counter-clockwise we deduce the following

Lemma 3.1. The braid corresponding to a complete counter-clockwise 2m-rotation of £ is

(B12B23 - - - Br—1,0)",

and its acts on the monodromy data as follows:

e trivially on Stokes matrices,
e the central connection matriz is transformed as C' — My *C.

4. ISOMONODROMY THEOREM AT COALESCENCE POINTS

So far the monodromy data, S and C have been defined pointwise and then the deformation theory has been
described at point (3) of Theorem 2.9 and in Theorem 2.12, away from coalescence points. In particular, S and

C' are constant in any ¢-chamber, and the matrices }/léft)/right(z, u) are u-holomorphic in all /-chambers. In this
section we generalize the deformation theory to semisimple coalescence points. We show that the monodromy
data, which are well defined at a coalescence point, actually provide the monodromy data in a neighborhood of
the point, and can be extended to the whole Frobenius manifold through the action of the braid group. In this
section we will use the following notation for objects computed at a coalescence point: a matrix Y, S or C will
be denoted f/, SorC.

Let pp € Bas\K s be a semisimple coalescence point. Consider a neighbourhood Q € M\, of py, satisfying
the property of Remark 2.4. An ordering for canonical coordinates (ug,...,u,) and a holomorphic branch of
the function ¥: Q@ — GL,(C) can be chosen in Q. We denote by u(p) := (u1(p),...,un(p)) the value of the

canonical coordinate map u: Q — C", and we define

Ag = {u(p) = (u1(p), ..., un(p)) € C" ‘ peENN BM}.
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Therefore, if v € Ag, then u; = u; for some ¢ # j. The coordinates u(py) of pp will be denoted u® =
( (0) (0))'

Uy ey Un Ag is not empty and contains u(?). Let rq, ..., rs be the multiplicities of the eigenvalues of
Uu®) = diag(ugo), ey ug)))7 with s <mn, r1 + -+ + rs = n. By a permutation of (uq,...,u,), there is no loss in

generality (cf. Section 3) if we assume that the entries of u(®) are

ugo) == ugg) =: )\
0 0
D= el
(4.1)
(0) _ _ 0 _ .0 _.
Up googrg 41 = 7 = W =1 = ugl) _' >\5’
A # A for k # 1. Let )
0; = imm{ )\i_>\j +p6i(g7¢) , J #1, pGR},
and let ¢y be a small positive number such that
€0 < min 0. (4.2)
We will assume that e is sufficiently small so that the polydisc at u(?), defined by'?
U, (u®) := X B(Aise0) ™,
i=1
is completely contained in the image u(f2) of the chart Q.
Lemma 4.1. For ¢q satisfying (4.2), if u varies in U, (u(?)), the sets
Il = {U17 ,UTI}, .[2 = {'LLT1+1, ,Url+r2}, ey Is = {UT1+...+r571+1, ...,url+...+rsil+rs} (43)

do never intersect. Thus, u(%) is a point of mazimal coalescence in Ue, (u(®)). We will say that a coordinate u,
is close to \; if it belongs to I, which is to say that u, € B(\;j;€o).

Let us fix ¢ € R so that the line £, (¢), £_ (), £(¢) are admissible at py (Definition 2.14). For u € U, (u?),

with ¢y asin (4.2), consider the subset R (u) of Stokes rays Rgp, in the universal covering R which are associated
with all couples of eigenvalues u, and u;, such that u, is close to a A; and wy is closed to A; for some i # j.
Then, the following holds:
Lemma 4.2. Let ¢g be as in (4.2). If u, varies in B(\;;€0) and uy in E()\j;eo), then the rays Rap 1 € R(u)
continuously rotate, but they never cross Ly(¢) and £_(¢). In other words, the projections Ray, = pr(Rap k)
never cross £(¢) in C.

The choice of the line ¢, admissible at pg, induces a cell decomposition of U, (u()), according to the following

Definition 4.1. Let ¢ be admissible at u(®). An f-cell of U, (u?)) is any connected component of the open
dense subset of points u € U, (u(o)) such that uq, ..., u, are pairwise distinct and ¢ is admissible at w.

Proposition 4.1 ([CDG17]). An ¢-cell is homeomorphic to a ball.

We notice that, if u(p) is in a ¢-cell then p lies in an ¢-chamber. Thus, if D is an open subset whose closure
is contained in a cell of U, (u(?)), according to Theorems 2.9, point (3), the system

v _ (U + V(“)> Y, (4.4)

dz z

for u € D admits two fundamental solutions V") (z,u) uniquely determined by the canonical asymptotic

right/left

representation Yr(igzlt Jleft (2,u) ~ Yiormal (2, u) as in (2.19) valid in the sectors Il /rignt (¢) respectively. It follows

12 Here B(As; €0) is the closed ball in C with center ); and radius eg. Note that if the uniform norm |u| = max; |u;| is used, as in
[CDG17], then Uey (u(®) = {u eCn ‘ lu —u®)] < eo}.
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el B(X\j;e0)

FIGURE 2. Points A;, A; and u,, up are represented on the same complex plane. The thick line
has slope /2 — ¢. As u varies, for values of ¢, sufficiently small (left figure) the Stokes rays Ry
and Ry, associated with u, in the disk B(\;;€0) and up in the disk of B(\;;¢€0) do not cross
the line £. If the disks have radius exceeding minj<;<s 0; as in (4.2) (see right figure) then the
Stokes rays Rap, Rpq cross the line 4.

from the proof of Theorem 2.8 that Yormai(z, ) is u-holomorphic in U, (u(?)\Aq. By Remark 2.8 actually the
asymptotic representation is valid in wider sectors Sics right (1), defined as the sectors which contain Iieg jright (¢)
and extends up to the nearest Stokes rays. By Theorem 2.12 the above system with v € D is isomonodromic,
so that the Stokes matrix S defined in formula (2.24) is constant.

Let us now turn our attention to the coalescence point u(?). From the results of [CDG17] — and more generally
in [BJL79b] - it follows that there are a unique formal solution at u(®,

. G
erormal(z) = (1 + 2 :) GZUa
k=1 o

and unique actual solutions Ylgf)t) (z) and }o/r(igit (z), with asymptotic representation given by Yiormal (2) in Hiege/right

and in wider sectors Sier;(u(?)) and Syigne(u(?)) respectively. The Stokes matrices of Y/;(ig%lt (z) and Ylg(f)t) (z) are
defined by

o

V@) = V@8 YR = v 8, $ = 5T

left right right
A priori, the following problems could emerge.

(1) The asymptotic representations

}/ii(f)g/right(z7u) ~ }/formal(zvu)a for |Z| — wand z € m Sleft/right(u) 2 Hleft/right(d))

ueD
do no longer hold for u outside the cell containing D.
(2) The coefficients Gy (u)’s of (2.19) may divergent at Ag.

(3) The locus Ag is expected to be a locus of singularities for the solutions Yiormai(z,u) in (2.19) and
0
Yiéft)/right(za 'LL) vaormal(% u)

(4) The Stokes matrix S may differ from S.

We notice that the system (4.4) at u(®) also has a fundamental solution in Levelt form at z = 0,

Yo(z) = (uO) (I + O(2))z" 2", (4.5)
with a certain exponent R. Hence, a central connection matrix C is defined by

Y9 (2) = Yo(2)C
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We recall that W(u) is holomorphic in the whole U, (u(®)), so that V;(u) vanishes along Aq whenever
u; = u; (see Lemma 2.5). These are sufficient conditions to apply the main theorem of [CDG17], adapted and
particularised to the case of Frobenius manifolds, which becomes the following:

Theorem 4.1. Let M be a semisimple Frobenius manifold, py € By\Kn and Q € Mg, = M\Kpy an open
connected neighborhood of pg with the property of Remark 2.4 on which a holomorphic branch for canonical
coordinates u: @ — C™ and ¥: Q — GL,(C) has been fized. Let ey be a real positive number as above, and
consider the corresponding neighborhood Ue, (u®) of u®) = u(py). Then

(1) The coefficients Gy (u), k =1, in (2.19) are holomorphic over Ue, (u(®)),
Gk(u(0)> = ék and normal(z7u(0)) = }c/formal(z)-
(2) }ﬂi(f)t)(z,u), Yr(ig%lt(z,u), can be u-analytically continued as single-valued holomorphic functions'® on
U, (ul®). Moreover

(0) 0)y _ v(0)
)/ieft/rigllt(z7u( )) - }/left/right(z)'

(3) For any solution Yy(z) as in (4.5) there exists a fundamental solution Yy(z,u) in Levelt form (2.23)
such that

Yo(z,u®) =Yo(z), R=R

(4) For any positive €1 < €y, the asymptotic relations

(e 0]
0 Gr(u)
}/it(aft)/right(z’u) ~ (I]' + Z k
k=1

> ) QZUa z— 0 in Hleft/right(¢)a (46)

hold uniformly in u € Ue, (u'®)). In particular they hold also at points of Aq N Ue, (u?) and at u®).
(5) For any u € Ue, (u(o)) consider the sectors Syight (1) and Sier(u) which contain the sectors Ilgni(¢) and
Iyert (@) respectively, and extend up to the nearest Stokes rays in the set R(u) defined above. Let

Sleft/right = ﬂ Sleft/right (u).
u € Uey (ul®)

Observe that for sufficiently small € > 0 the sectors
Migni (@) :={z€R: ¢ —T—c <arg 2 < ¢ +¢},

‘iseft(QS) ::{ZGRZ¢—E<arg Z<¢—|—7T+5}’

are strictly contained in gright and S\.]Cft respectively. Then, the asymptotic relations (4.6) actually hold
in the sectors ‘SQIC& Jright -

(6) The monodromy data u, R, C, S of system (4.4), defined and constant in an open subset D of a cell of
U, (u®), are actually defined and constant at any u € U, (u'?)), namely the system is isomonodromic in
U, (u?). They coincide with the data p, R, C, S associated to the fundamental solutions Yoieft/right(z)
and Yo(z) of system (4.4) at u®. The entries of S = (Sij)itj=1 satisfy the vanishing condition (1.14),
namely

Sij =85 =0 foralli# j such that ugo) = ugo). (4.7

This Theorem allows us to obtain the monodromy data u, R, C, S in a neighbourhood of a coalescence point

just by computing them at the coalescence point, namely just by computiong pu, ]j'i, é’, S. Its importance has
been explained in the Introduction and will be illustrated in subsequent sections.

Remark 4.1. Suppose that S is upper triangular. By formula (4.7) it follows that in any ¢-cell of U, (u() the
order of the canonical coordinates is triangular, according to Definition 3.2, and only in one cell the order is
lexicographical (Definition 3.1).

13Hence, they are holomoprhic on R X U, (u(o)).
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4.1. Reconstruction of monodromy data of the whole manifold. The monodromy data of the Frobenius
manifold can be obtained from those computed in Theorem 4.1 around u(?). Without loss of generality, let
us suppose that the ordering (4.1) is such that Aq,...,As are in ¢- lexicographical order. Then, the matrix S
computed at the coalescence point u(?) is upper triangular. Therefore, by Theorem 4.1, the matrix is constant
and upper triangular in the whole polydisc U, (u(?)). In particular, it is upper triangular in every cell of U, (u(?).
This means that w1, ...,u, are in triangular order (Definition 3.2) in each such cell, and in particular they are
in lexicographical order in only one of these cells (Definition 3.1). Note that any permutation of canonical
coordinates preserving the sets I,..., I of (4.3) maintains the upper triangular structure of S, namely the
triangular order of uy,...,u, in each cell of U, (u(?)). The permutation changes the cell where the order is
lexicographical. Now, each cell of the polydisc U, (u()) is contained in a chamber of the manifold (identifying
coordinates with points of the manifold, which is possible because of the holomorphy of canonical coordinates
near semisimple coalescent points). Let us start from the cell of U, (u(®)) where uy, ..., u,, are in lexicographical
order. The monodromy data of Theorem 4.1 in this cell are the constant data of the chamber containing the
cell (Theorems 2.4 and 2.12). Since in this chamber wuq, ..., u, are in lexicographical order (and distinct!), we
can apply the action of the braid group to S and C, as dictated by formulae (3.2), (3.4). In this way, the
monodromy data for any other chamber of the manifold are obtained, as explained in Section 3.

5. FIRST DETAILED EXAMPLE OF APPLICATION OF THEOREM 4.1: THE A3 FROBENIUS MANIFOLD. STOKES
PHENOMENON FOR PEARCEY-TYPE OSCILLATING INTEGRALS FROM HANKEL FUNCTIONS

With the example of Az Frobenius manifold below, we show how Theorem 4.1 allows the computation of
monodromy data in an elementary way, by means of Hankel special functions. Moreover, we apply the results of
section 3, especially showing how the braid group can be used to reconstruct the data for the whole manifold,
starting from a coalescence point. The reader not interested in a general introduction to Frobenius manifolds
associated with singularity theory may skip Sections 5.1 and 5.2 and go directly to Section 5.3.

5.1. Singularity Theory and Frobenius Manifolds. Let f be a quasi-homogeneous polynomial on C" with
an isolated simple singularity at 0 € C™. According to V.I. Arnol’d [Arn72] simple singularities are classified
by simply-laced Dynkin diagrams A,, (with n > 1), D,, (with n > 4), Fs, E7, Es. Denoting by (z1...,z,,) the
coordinates in C™ (for singularities of type A,, we consider m = 1), the classification of simple singularities is
summarized in Table 1. Let u be the Milnor number of f (note that u = n for A,,, D,, and E,,), and

f(z,a) = f(z)+ Z a;i¢i(z),
i=1

be a miniversal unfolding of f, where a varies in a ball B < C*, and (¢1(x),...,¢,(x)) is a basis of the Milnor
ring. Using K. Saito’s theory of primitive forms [Sai83], a flat metric and a Frobenius manifold structure can be

defined on the base space B [BV92]. For any fixed a € B, let the critical points be z;(a) = (:cgl), . ,:zzl(m)), 1=
1,..., p, defined by the condition 0, f(z;,a) = 0 for any o = 1,...,m. The critical values u;(a) := f(zi(a),a)
are the canonical coordinates. The open ball B can be stratified as follows:
(1) the stratum of generic points, i.e. points where both critical points (s and critical values u;’s are
distinct;
(2) the Mazwell stratum, which is the closure of the set of points with distinct critical points 2(¥’s but some
coalescing critical values u;’s;
(3) the caustic, where some critical points coalesce.

The union of the Maxwell stratum and the caustic is called function bifurcation diagram = of the singularity
(see [Arn93] and [AGZVS8E]). The complement of the caustic consists exclusively of semisimple points of the
Frobenius manifold. In this section we want to show how one can reconstruct local information near semisimple
points in the Maxwell stratum, by invoking Theorem 4.1. We will focus on the simplest example of As.

5.2. Frobenius structure of type A,. ( [DVV91], [Dub96], [Dub99b],[Dub99al)
Let us consider the affine space M =~ C" of all polynomials

f(z,a) = 2" 4 ap_ 12"+ + a1 + ap,
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’ H Singularity Versal Deformation
A, f(x) =2+t flx,a) =2 +ap_ 2"t + - 4 arr + ag
D, | f(z) =27 + xy23 f(zya) =27  + 2123 + ap12} 72+ -+ ay + agze
Eg flx) =2} + a3 f(z,a) = 2f + 23 + agr?x2 + asz172 + @42} + azre + agwy + ay
E- f(x) = 2329 + 23 f(x,a) = 2329 + 23 + a1 + a2x2 + a37172 + A4T17 + a5T1 + agTT + a7y
Eg flx) =28 + 23 flx,a) = 28 + 23 + ag@dzs + arx?ze + agx$ + asriT2 + 0473 + azxs + azry + a1

TABLE 1. Arnol’d’s classification of simple singularities, and their corresponding miniversal deformations.

where (ag,...,an—1) € M are used as coordinates. We call bifurcation diagram = of the singularity A, the set
of polynomials in M with some coalescing critical values. The bifurcation diagram = is an algebraic subvariety
in M which consists of two irreducible components (the derivative w.r.t. the variable x will be denoted by (-)):

e the caustic I, which is the set of polynomials with degenerate critical points (i.e. solutions of the system
of equations f’(z,a) = f"(z,a) = 0)';

e The Maxwell stratum M, defined as the closure of the set of polynomials with some coalescing critical
values but different critical points.

For more information about the topology and geometry of (the complement of) these strata, the reader can

consult the paper [Nek93], and the monograph [Vas92]. There is a naturally defined covering map p: M — M

of degree n!, whose fiber over a point f(z,a) consists of total orderings of its critical points. On ]\7, Tlyeey Tn
are well defined functions such that

fl@pw) = (n+ 1) [(@—ai(w)), wedl.

i=1

The caustic K is the ramification locus of the covering p. For any simply connected open subset U = M\K,
we can choose a connected component W of p~1(U). The restriction of the functions z1, ..., z,, on W defines
single-valued functions of a € U, which are local branches of x1, ..., x,,. For further details see [Man99].

We define on M the following structures:

(1) a free sheaf of rank n of Oy -algebras: this is the sheaf of Jacobi-Milnor algebras
Owm|z]
f'(@,a)- Omlz]’
For fixed a € M, the fiber of this sheaf is the algebra C[z]/{f'(z,a)). We also define an Op-linear
Kodaira-Spencer isomorphism k: Ty — Op[x]/{f'(x,a)) which associates to a vector field £ the class

Le(f) =&(f) mod f'. In particular, for any o = 0,...,n—1 the class 0,, f is associated with the vector
field 0,,. In this way we introduce a product o of vector fields defined by

£o¢=r"1(E(f)-C(f) mod f).

MThe equation of the caustic is A(f') = 0, where A(f) := Res(f, f”) is the discriminant of the polynomial f'(z,a). The reader
can consult the monograph [GKZ94], Chapter 12.
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The product o is associative, commutative and with unit d,,. We call Fuler vector field the distinguished
vector field E corresponding to the class f mod f’ under the Kodaira-Spencer map . An elementary
computation shows that

n+l—4i 0
E = i 2p(o) =o.
Z n+1 a@ai B(0) = o

(2) A symmetric bilinear form n, defined at a fixed point @ € M as the Grothendieck residue
1 u,a) - U, a
na(g’c) = TJ f(f)( ) C(f)( )du, (51)
e e

f'(u,a)
where T, is a circle, positively oriented, bounding a disc containing all the roots of f'(u,a). It is a
nontrivial fact that the bilinear form 7 is non-degenerate (for a proof, see [AGZV88]) and flat (explicit
flat coordinates can be found in [SYS80]: notice that the natural coordinates a;’s are not flat). Notice

that
n+3

n1’

Lgn =

Theorem 5.1. The manifold M, endowed with the tensors (1,0, 04y, F), is a Frobenius manifold of charge
Z—;i. The caustic KCpy, defined as in Definition 2.10, coincides with the caustic IC of the singularity A, defined
above. By analytic continuation, the semisimple Frobenius structures extends on the unramified covering space

p~H(M\K) < M. Critical values define a system of canonical coordinates.

The reader can find detailed proofs in [Dub96], [Dub99b], [Man99], [Sab08]. If a is a given point of M\K,
i.e. such that f(z,a) has n distinct Morse critical points 1, ..., x,, then the elements

mi(a) == k! <f”( fz,a) ) fori=1,...,n

Ly CL) (Jj - in)
are idempotents of (T,M,o,). This follows from the equality f'(z,a) = (n + 1)[[;—,(z — 2;). Consider now
the critical points x1(a),...,x,(a) locally well defined as functions of a varying in a simply connected open

set away from the caustic. The critical values u;(a) := f(z;(a),a) for ¢ = 1,...,n can also be considered as

aZ;) is the Vandermonde determinant of z;(a)’s, the functions u;’s define

functions on the same set. Since det (

a system of local coordinates on M. In order to see that m; = 57—, it is sufficient to prove that x(du;)(w;) = d;j,

ie of (gc,) = 0;5. This follows from the equalities

Jel@ht) _ oy, = = Y@y ai

8aj

5.3. The case of A3: reduction of the system for deformed flat coordinates. We consider the space
M of polynomials

flx;a) = z* + asx® + a1z + ao,
where ag,a1,as € C are “natural” coordinates on M. The Residue Theorem implies that the metric 7, defined
on M as in (5.1), can be expressed as

§()(w,a) - ¢(f)(u,a) ,

Na (57 C) = —TI€Sy=w0 f’(u, a) U,

and consequently
1—i—j

0;, 0;) = res,— ~dv,
a(0ir 05) U=04 4 20502 + 403

where 0; = 6%1-’ 0j = % So we find that

Ol

Na =

az

A= O O
Onl= O
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Note that ag,a1,as are not flat coordinates for . The commutative and associative product defined on each
tangent space T, M, using the Kodaira-Spencer map, is given by the structure constants at a generic point
ae M:

80 o 67 = (91 for all i,

1 1 1 1
01001 = 02, 01002 = —§a251 - Z‘”ao’ 0200y = —§a262 - Zalal-
The Euler vector field is
24— 3 1
E = Z;) Taiai = aoao + 1(1151 + 5&262.
With such a structure M is a Frobenius manifold. The (1,1)-tensor U of multiplication by E is:
ap —%alaf —%a%
U(a) = % ag — %2 —%alaf

Up to a multiplicative constant, the discriminant of the characteristic polynomial of U/ is equal to
ai (8aj + 27a%)3
and so the bifurcation set of the Frobenius manifold is the locus
B = {ay = 0} U {8a3 + 27a] = 0}.

Let us focus on the set {a; = 0}, and let us look for semisimple points on it. It is enough to consider the
multiplication by the vector field Ad; + udy (A, u € C), and show that it has distinct eigenvalues. This is a
(1,1)-tensor with components at points (ag, a1, a2) equal to

N A
0 _/Zal )\—5041
A _%G/Q —§a2u— %al
H A —502

whose characteristic polynomial, at points (ag, 0, as), has discriminant
1 . 2
—g)\zag (2)\2 + /12&2)

So, the points (ag,0,as) with as # 0 are semisimple points of the bifurcation set, namely they belong to the
Maxwell stratum. In view of Theorem 5.1, they are semisimple coalescence points of Definition 1.1. We would
like to study deeper the behavior of the Frobenius structure near points (ag, a1, as) = (0,0, ) of the Maxwell
stratum, with fixed ag = 0 and with h € C*.

Remark 5.1. The points (ag, 0,0), instead, are not semisimple because we have evidently 03 = 0 on them.

Let us introduce flat coordinates t1, t2,t3 defined by

142
ag =1t + §t3,

1 0 14
alztg, J_<aal> = 0 1 !
0t /i 0 0 1
a2=t3
In flat coordinates we have:
0 0 ; ty Totats —t3 + 5t _1
1 16 2"3 16 32 1
n=1 0 3 0 |, Ultr,tot3) = | 32 ¢ L ooty . p= 0
oo 5 olwt T :

Thus, the second system in (2.1)
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reads

0:61 = 26ty + $&sts + & ( + 55)

0:60 = —Z&itats + & (t1 - %’) + 3¢t (5.2)

0:63 = &1 (— 15t + 3513) — 15éatats + & (0 — ) -
We know that, if (¢1,t2,t3) is a semisimple point of the Frobenius manifold then the monodromy data are well

defined, and that these are invariant under (small) deformations of 1, t5,t3 by Theorem 2.12 and Theorem 4.1.
The bifurcation set is now

{t = 0} U {83 + 275 = 0} .
Now, if we fix ag = 0, the tensor U at (0,a1,h), i.e. (t1,t2,t3) = (—gh?,t2, h), is

h? h 1 (p3 2
1, —% gt 5 (W —66)
u <—8h ,tg,h) =| % - —3hty : (5.3)
h 3tz _h
2 4 8

The bifurcation locus is reached for a; = t5 = 0. At this points

(t1,t2,t3) = (—éh%o,h).

we have
h? h®
1 -5 0 %
u(—7h2,0,h) = o -r 9
8 4 2
2 8

Remark 5.2. Note that the characteristic polynomial of the matrix (5.3) is equal to

1
Pht,(A) = 35 (—16h*\ — 128h2\* — 256\ — 4h*t3 — 144hAt5 — 27t3)

whose discriminant is

—512h%3 — 5184h5t3 — 17496h3t5 — 19683t5
65536 '

2.2
ty =0, tg—J_rBz\/;hg.

We are investigating the behavior near points of the first case.

It vanishes at

Define the function
1

X(a) := [—9&1 +3(27d2 + 8a§)%] :
which has branch points along the caustic K = {a; = as = 0} U {27a? +8a3 = 0}. Fix a branch of X on a simply

connected domain in M\KC, that we also denote by X (a). The critical points z1,x2, x5 of f(x,a) are equal to

x(a) L ’191"&2 _ 191X(CL)
ST 9B X(a) 203237

where

18 143

-3 o T

are the cubic roots of (—1). Of course, different choices of branches of X correspond to permutations of the
x;’s. After some computations, we find the following expression for W:

%=1, Yq:




G. coTTI" Y B. DUBROVIN®, D. GUZZETTI

40
\/627+az _ (z2tws)y/ 627 +as . A/ 622 +az(az—4zaw3)
2\/5($17I2)({L’1713) 2\/5(1?17{1}2)(‘%171?3) 8\/§(I17I2)(aj17w3)
\I’(t) _ \/6z3+as (gcl-&-acg)\/ﬁ:c%-&-ag \/6x§+a2(a2—4x1x3)
2\/§(I1—I2)(I3—I2) 2\/§(E1—$2)($2—(E3) 8\/§(I1—I2)(12—I3)
vV 623 +a2 (z1422)4/6x2+asz (az—4z132) /622 +as
2\/5(.%1—%3)(%2—.%3) 2\/5(.’E1—£3)(I3—.’E2) 8\/5(%1—’&3)(%3—%2) a:a(t)
where 1
ag =t1 + §t§7 a; =ta, a9 =t3.
The canonical coordinates are u;(t) = f(zi(a(t)),a(t)). Near the point (t1,t2,t3) = (—§h?,0,h), i.e. for small
to, we find:
t2 t t$ 3t5
Lo h) = — 22 2 b 2 O (It |10
waltaih) = = 30+ a5~ Temr * gapi0 + O (2217)
h?  ivhty 3 it3 t3 21it5
u2(t2;h):77+ - - 1
4 V2 8h  164/2hr5/2  32h 5124/2H11/2
18 42947 3t8 46189it3
+ 27 2 _ 21 _ 2 +O(|t2|10),
32h7T  81924/2h17/2  64h'0  524288./2h23/2
h?  ivhty  t3 it3 ta 21t}
U3(t2;h)=—f— —_— — - 4+
4 V2 8h  16+/2hr5/2  32h 512+/2h11/2
18 429it5 3t8 46189it
+ o — Y _ 2+ *2 +0 (t2]"7),
32h7  81924/2h17/2  64h 524288+/2h23/2
1 ~Vh
Vavh 1,2 0 SN 0
U(t,) — i 1 _1(i/n ; 3 A 5
(t2) = i 2 8 + 12 By2h? 161372 52v2h
. 3
ﬁﬁ 2\1/5 —% ivh 8+/2h2 T 16h372 32+/2h
3 1 5
- 0 s 0 xR 0
442 _4\/3?9?1://: 15 iﬁ‘/%’fi/; L3 303 8\{%}512//22 265
3 5 5 5 4
S O e 1 O T - .
128K7/2 128+/2h3 512h5/2 5124/2h5  1024h9/2 2048+/2h4

Hence, at points (t1, ta,t3) = (—%hz,(), h), canonical coordinates u;(0; h) are

h2
(ulau27u3) = (07_27
and the system (5.2) reduces to
azfl = (_§
az€2 = _%262;
0.6 =l — (1 +

The second equation yields

From the first equation we find that

h2
_2)

2
: +i) &+ L&,

+O(t3).
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and so from the third equation we obtain

2E1(2) + 284 (2) + gt =0,
Making the ansatz
& = 2he T A),
the equation for A becomes the following Bessel equation:
6422A"(2) + 642N (2) — (4 + 2°RY)A(2) = 0. (5.7)

Therefore, & is of the form

12 12
& = z%e*hzz (cngl) (Z}SLZ> +02H(12) <Zgz>) , c1,c0€C
4 4

where H, 51)(,2), H 52)(2) stand for the Hankel functions of the first and second kind of parameter v = 1/4. Notice
that if A(z) is a solution of equation (5.7), then also A(e**"z) is a solution.

5.4. Computation of Stokes and Central Connection matrices. In order to compute the Stokes matrix,
let us fix the line ¢ coinciding with the real axis. Such a line is admissible for all points (¢1, t2, t3) = (—éhz, 0, h)
with
|Reh| # |Imh|, heC*.
Indeed, the Stokes rays for (uy,us,us) = ( ,f%hQ, fihQ) are
z:ipﬁ2 = argz:g—Zargh(mod ).

Thus, admissibility corresponds to %w —2argh # km, k € Z. Let us compute the Stokes matrix in the case

0 ™

—— < h<—.
1 <8

4
The asymptotic expansion for fundamental solutions Eefs, Zright Of the system (5.5), is

(o) - reoft))

1 i_o—ih?z i_—gh’z
( 1 ﬁﬁ 2\/1E 1h2 2\1/E 1h2
= ]1+O<)> 0 ——ze 1" Z —=e 1" 7% ,
¢ o ZM—ZWWE Qf—”ﬂz\/ﬁ
42

being

h?  h?
U:=WUv—! = diag(uy, ug, us) = diag (0, R 4) .
For the admissible line ¢ and for the above labelling of canonical coordinates the Stokes matrix must be of the
form prescribed by Theorem 2.10:

1 00
S=|a 1 0 (5.8)
B0 1

for some constants «, 3 € C to be determined. This means that the last two columns of Zj.;y must be the
analytic continuation of Eyignt.

Lemma 5.1. The following asymptotic expansions hold:
e ifmeZ, then

_1
H(l) eimﬂﬁz ~ g eimﬂﬁz : 6—3;;” exp _eimﬂhjz
i 8 ™ 8 8

3
—o M — arg(h?) < argz < QT —mm arg(h?);

in the sector
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_1
(2) imm Zh2 2 imm Zh2 ? gin imm h2
H; e —z | ~aAl—|e —z es exple —z
1 8 T 8 8

—gm =T — arg(h?) < argz < g —mm — arg(h?).

Proof. These formulae easily follow from the following well-known asymptotic expansion of Hankel functions

(see [Wat44]):
2 v m
HV(2) q/ﬂzexp<z<z 5T 4)>7 T+ <argz <27 — 4,

0 being any positive acute angle. Analogously,

2
HO(2) ~ \/>exp (-i(=- - %)) i <argz<m—d.
Vv

e if meZ, then

in the sector

O
Using Lemma 5.1, we obtain
e Eoa Eon ha oa Gn
= — e_%hgz e_ih'zz = . — e_%hzz e_%hzz
—']eft(z) 0 — 232 22 ) —'rlght(z) 0 — 23 2 (5 9)
% % % % % %

where

T, 1 s 1 _=n2 1) ((iR?
§y1(2) = €)1 (2) = €05)1(2) = €51 (2) = ~gmhFeimzre T H] >(8z),

with the required asymptotic expansion in the following sector containing both Il and ILigne

3 3
{z eER: — o7 arg(h?) < argz < 27~ arg(hQ)},

and

12
¢h1(2) = Y= 3¢i5 208 H(ll) e‘”ﬁz ,
(1)71 4\/5 i 8

1 1 zh2 ih?
hya(2) = Y nbetE e H (lz> ,
’ 1

with the required expansion respectively in the sectors

5
{z ER: — g —arg(h?) <argz < o —arg(hQ)} 2 Ijegs,

5
{z eR: — 27~ arg(h?) < argz < g — arg(hQ)} 2 yight-
The entries of Sjef,, Eright denoted by # are reconstructed from the first rows, by applying equation (5.6).

From the second rows of Zieg;, Eright We can immediately say that the entries «, 8 of (5.8) must be equal.
Specializing the following well-known connection formula for Hankel special functions

sin(vm)HY (ze™™) = —sin((m — Dor)HY (2) — e V™ sin(mum)HP (2), m e Z, (5.10)

to the case m = —1,v = %, we easily obtain

f(L1),1(Z) = fgm(z) - f(%)@(z) - 5(1?3),1(2)
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which means that a = 8 = —1. So, we have obtained that, at points (t1,t2,t3) = (f%hQ,O, h) with
T ™
|Reh| > |Imh|, -1 < argh < 1

(and consequently in their neighborhood, by Theorem 4.1) the Stokes matrix is

1 00
S=[-1 1 0]. (5.11)
-1 0 1

In order to compute the central connection matrix, we observe that the Az Frobenius manifold structure is
non-resonant, i.e. the components of the tensor ;o are such that po, — pg ¢ Z for a # 5. This implies that the
(n, u)-parabolic orthogonal group is trivial, and that the fundamental system of (5.5) near the origin z = 0 can
be uniquely chosen in such a way that

Zo(2) = (n+ O(z))z". (5.12)
Now, let us recall the following Mellin—Barnes integral representations of Hankel functions (see [Wat44])

001

ngl) (Z) _ _Mei(szu) (22)1/ J

T2 —o0i

Ngr@_zmr(y+;—s>pan)m&

001

HISQ)(Z) _ Me—i(z—m/)(Qz)yJ
2

™ —0%

F@W@—2wr<y+;—s>@nrm&

which are valid for

e 2U¢ 27+ 1,

o respectively in the sectors |arg(Fiz)| < 2,

o and where the integration path separates the poles of I'(s)['(s — 2v) from those of I' (v + % — s).
Specializing these integral forms to v = 1, and deforming the integration path so that it reduces to positively

4
oriented circles around the poles
1 1

S_-°N
562 2,

we immediately obtain the following expansion of the solution §§,11)?,7 §,21)%7 ;31)% for the points (t1,ts,t3) =
(—%hz, 0, h) , with — & <argh < 7, valid for small values of |z|:

Lemma 5.2. At the points (t1,ta,t3) = (—%h%o,h) , with — 5 <argh < % the following expansion holds:
(L+r(3)
T
1 27 (1 31 (3
_ (7 + ) h°T (Z) 55/4 _ r (Z) T4 0 (|z|9/4) :

N

fg),l(Z) = z

gl
—
gl
\
e
S~—
>

R __¢R _ZT(%) l_4ihr (%) 3/4_ih2F (%) 5/4 ih®T (%) 7/4 9/4
5(2)71(2)*5(3),1(2)*7\/% z3 N z S 22"+ NG z +O(\z| )

Moreover, using equation (5.6) we find that

T4 3 1 _ iYp21 (3

fg),S(Z) = (43/);@2_ — (32 3i/)%h r (4)23/4 10 <|Z|5/4) 7
L k2 (4

£5)3(2) = €(5)3(2) = _Wz i+ 42(\/%4)

Bl

240 (|z|5/4) )
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Proof. These expansion are the first terms of the expressions

gﬁ)’l(z) =£héeigzée”§ .

. n2
’L( 1’ 'thz
e

%5/2) @2t i e (F(S)F(s — )T (1/ L1 5> <e”hzz> _s> ,

and

I/, 1 ;5. 1 _zn?
€ty 1(2) =€ 1(2) = T nbetrade
< ei(—%-ﬁ-%ith)(ihQZ)

By a direct comparison between these expansion of solution Zgnt(2) of (5.9) and the dominant term of
(5.12), namely

oo
W
Bl

©
=

O wI=O
o o=

we obtain the central connection matrix
(1=ar(3) —i(3) —ir(3)

C=_—

: 0 SN~
A+ar(3) () i)

Notice that such a matrix satisfies all the constraints of Theorem 2.11.

N

™

We can put the Stokes matrix in triangular form using two different permutations of the canonical coordinates
(0, —h2%/4,—h?/4), namely

e re-labelling (uq, ug, us) — (ug, us, uy), corresponding to the permutation matrix

)

0
P=10
1

OO =

0
1
0
e or re-labelling (uy,us,us) — (us, u2,uy), corresponding to the permutation matrix

P=

_ o O
o = O
O O =

In both cases these are the lexicographical orders of two different ¢-cells which divide any sufficiently small
neighborhood of the point (t1,t2,t3) = (—%hQ,O,h), with |Reh| > |Imh| and —Z

T < argh < 7, in which
Theorem 4.1 applies. Using both permutations, the Stokes matrix becomes
1 0 -1
Siex = PSP~ 1=10 1 -1}, (5.13)
0 0 1
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hl—>he'™?

FIGURE 3. The triple (ug,us,us) is represented by three points u, us, uz in C. We move along
h — he'Z | starting from =7 <argh < 7. The two dashed regions in the left and right figures
correspond respectively to —% <argh < 7 and 7 <argh < ?ﬂf.

which can be thought as in the lexicographical form in one of the ¢-cells. The central connection matrix, instead,
has the following lexicographical forms in the two ¢-cells:

0 () (@) a-ar)
1
Clex =— | FTVv2r +V2r7 0 , (5.14)
T 2
ir(3) () A+9T(3)
where we take the first sign if the lexicographical order is the relabeling (uq, ug,us) — (ug,us,u1), the second

if it is the re-labeling (u1,ug, us) — (us, ug,uy).

5.5. A “tour” in the Maxwell stratum: reconstruction of neighboring monodromy data. From the
data (5.13) and (5.14), by an action of the braid group, we can compute S and C in the neighborhood of all
other points (¢, to, t3) = (féhz, 0, h) with |Reh| # | Im h|. As an example, let us determine the Stokes matrix
for points

1 2 . 7T 3
(t1,to,t3) = (8h ,(),h) ,  with 1 <argh < Y

Starting from a point in the region —% < argh < % and moving counter-clockwise towards the region 7 <

argh < %m the two coalescing canonical coordinates us = ug = —%h2 move in the u;’s-plane counter-clockwise
w.r.t. u; = 0. For example, in Figure 3 we move along a curve h — he’?, starting in —5 <argh < 7. At

argh = 7, the Stokes rays Rip = {z = —ipﬁg, p>0}and Ryy = {z = ipﬁQ, p > 0} cross the real line ¢, and a
braid must act on the monodromy data.

In order to determine the braid and the transformed monodromy data, we proceed according to the prescription
of Section 4.1, as follows.

(1) We split the coalescing canonical coordinates, for example by considering the point

(ti,to,ts) = (—;hQ,gew,h> . with — % <argh < % (5.15)

for chosen ¢ and ¢, being & small (so that €2 « ). The corresponding canonical coordinates
uy = O(?), (5.16)
Ug =—%2+5|h|%exp [z <argh +<p+72r>] + 0(e?), (5.17)

2
h? h
ug = waLelhl%exp [z <ar§+<pg>] +0(e?), (5.18)
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give a point (u1,us,us) which lies in one of the two cells (Definition 4.1) which divide a polydisc centred at
(u1, ug,us) = (0, —%hz, —%hQ). The Stokes rays are

Ris={z=—iph +O(e), p>0},  Riz=1{z=—iph +0(), p>0},

Ras = {z=pexp [—i <ar2gh+cp+7r>] +0(?), p>0}, (5.19)

and opposite ones Rs1, R31, R3». Notice that in order for the real line ¢ to remain admissible, we choose
p # kmr — %arg h, k € Z, =% < argh < 7. The position of Rp3 w.r.t. the real line £ is determined by the

sign of cos (argh +o+ g) As long as ¢ varies in such a way that sgn cos (arzgh +o+ %) does not change,

then Ros does not cross ¢. See Figure 5. This means that (u1,us,us) remains inside the same cell, i.e. the
point corresponding to coordinates (5.15) remains inside an ¢-chamber, where the Isomonodromy Theorem 2.12
applies.

(2) The Stokes matrix must be put in triangular form Sjex (5.13). In particular,

e if cos (# + o+ g) < 0, then Ro3 is on the left of £, and the lexicographical order is given by the
permutation (uy,ug,us) — (uj, uh, uf) = (uz,us, ui);

e if cos (% +o+ g) > 0, then Ro3 is on the right of £, and the lexicographical order is given by the
permutation (uy,ug,us) — (uj, uh, uf) = (us, ug,u1).

We choose the cell where the triangular order coincides with the lexicographical order. The passage to the

other ¢-cell is obtained by a counter-clockwise rotation of uj w.r.t. u}, which corresponds to the action of the

elementary braid f12. Its action (3.2) is a permutation matrix, since (Siex)12 = 0; it is a trivial action on Sjex,
but not on Cleyx, as (5.14) shows.

(3) We move along a curve h — he'Z in the h-plane from a point (5.15) up to a point

1 o 3
(t1,t2,t3) = (—8h2,56“" ,h) ,  with % <argh < ™

for some ¢’ # km — %arg h, keZ, ] <argh < %’T. The transformation in Figure 3, due to the splitting, can
substituted by the sequence of transformations in Figure 4, each step corresponding to an elementary braid.
Each elementary braid corresponds to a Stokes ray crossing clock-wise the real line ¢ as h varies along the curve

h — he'z .*> The total braid is then factored into the product of the elementary braids as in Figure 6, namely

B12B23B12, or Bi12523612023.
Applying formulae (3.2),(3.4), we obtain

1 1
Sﬁﬁﬁzsﬁlz _ Sllz;zﬂzzﬂlzﬁzs =lo 1 (520)
0 0

—_ O =

These are the monodromy data in the two ¢-cells of a polydisc centred at the point
1
(tl,tz,tg) = (—8h2,0,h) s with % <argh< %7‘(‘.

The braid f3 is responsible for the passage from one cell to the other. Its action AP23 (Sﬁfﬁ 2 2} is a permu-

512323512)
lex

tation matrix, since (S|, 23 = 0, which explains the equality in (5.20). By the action (3.4), the central

15 Notice that the ray Ras rotates slower than Rj2, R13: namely, the angular velocity of Ra3 is approximately (i.e. modulo negligible
corrections in powers of €) equal to % the one of Ri2, R13.
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I
125} —ll/ﬁ— )
u
splitting/
ou3 o u3
o] .u
Uye U= oY) \_] Z.ul

elementary braid

elementary braidl

.u3

( = elementary braid \ -
¢ ary brai

u '\

coalescing\

€—0

FIGURE 4. The transition in Figure 3 by splitting and elementary steps. After the splitting,
we obtain a point (uq,uz,us), as in (5.16)-(5.18), lying in an ¢-cell of the polydisc centred at
(u1,u2,u3) = (0, —1h% —1h?) of the left part of Figure 3. The transformation of Figure 3 is
obtained by successive steps following the arrows. The final step is the right part of Figure 3.
The first elementary braid is 512 (because u} = ug, v = ugz in the the upper left figure). The
second is 33 (after relabelling in lexicographical order, u, = us and u4 = w; in the upper right
figure). The third is S1.

connection matrix (5.14), instead, assumes the following two forms (differing for a permutation of the second
and third column)

L+ () 0 () - ()

C{Zfﬁ%ﬁm - 0 +/271 T2 ,
T2
1= (y) ir(y) ir(3)
Q+ar() —in() —in()
C£;2ﬁ23512523 _ i; 0 1\/% im
T3
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D, . C B
A C
E . B
U9 4
4 F D

FI1GURE 5. In the left picture we represent relative positions of ug w.r.t uy such that the real
line ¢ is admissible. On the right, we represent the corresponding positions of the Stokes ray
Ro3. Notice that if we let vary us, by a deformation of the parameter ¢, starting from A, going
through B up to C, the corresponding Stokes ray does not cross the line ¢, and no braids act.
If we continue the deformation of ¢ from C to D, an elementary braid acts on the monodromy
data.

One way another way

for splittingf g Wfor splitting

RN S——

FIGURE 6. In the picture we represent w1, us, uz as points in C. On the left we describe all the
braids necessary to pass from a neighborhood of (ty,t2,t3) = (—£h?%,0,h) with =T < argh < T
to one with 7 < argh < %71 Different columns of this diagram correspond to different ¢-cells
of the same neighborhood. The passage from such one cell to the other is through an action of
an elementary braid (812 or f23) acting as a permutation matrix. In the picture on the right,

we show the decomposition of the global transformation in elementary ones.

In Table 2 we show the monodromy data for other values of arg h, with the corresponding braid. In Figure
5.5 we represent the braid corresponding to the passage from —% < argh < 7 to %7‘(‘ <argh < Zﬂ'.

1
Remark 5.3. The reader can re-obtain this result by direct computation observing that, for points

1, L. 3
(t1,ta,t3) = (_Sh ,0,h> , with 1 <argh < L
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B23B12

1=

ﬁ B12
up, R B23

ul

B23

N

Uq

812623 B23B12
—
B12

FIGURE 7. Using the diagram representation of the braid group as mapping class group of
the punctured disk, we draw the braids acting along a curve h — e’ h, starting from the
chambers close to (t1,ta,t3) = (—%hQ, 0, h) with —% < argh < 7, and reaching the ones with
%w <argh < %Tl’. The braids in red describe mutations of the split pair us, usz: their action on
the monodromy data is a permutation matrix. In the central disk, the blue numbers refer to
the lexicographical order w.r.t. the real axis ¢ (i.e. from the left to the right). The braids are
the same for both cases (a,b) = (2,3) and (3,2).

the left and right solutions of (5.5) defining the Stokes matrix'® are of the form (5.9) with:

ﬁ 1 ,mx 1 _ zh? (1) . Zh2
g(Ll)lzgg)l:7}”628226 s Hy (e —2],
’ 42 1
T 1 ;3. 1 _ zn? _ mihz
£(L2),1(Z) = §(L3),1(2) = %h?e 8T y2¢ B H(f) (e 3 8Z> ’

I/ 1 5. 1 _zn? ih?
() = €l () = Yttt a (105)),

having the expected asymptotic expansions in suitable sectors containing Ijef and/or ILen; by Lemma 5.1.
Thus, by some manipulation of formulae (5.10) and

sin(vr) HP (ze™™) = "™ sin(mur) HY (2) + sin((m + V)vr)HP (2), meZ,

one sees that
f(Lz),1(Z) = fg),1(2) + f(@)@(z)v f(Lg)J(Z) = 5(131),1(2) + 5(1:%3)’1(2)7

16Notice that for the points with % < argh < %7‘(‘ the original labelling of canonical coordinates (u1,uz2,us3) = (0, - 77)

already put the Stokes matrix in upper triangular form.
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H Slex Clex Braid
o ) ) a-ore)
—5 <argh<7% 0 1 -1 i% FV2r £V2r 0 B2
0 0 1 T
it (7)) Ar(3)  (A+9r(3)
o ear() () ()
T <argh<3in 010 i% 0 +v21  F27m B12523 612523
0 01 T
(1=ar () () T(3)
L) TE) @+r(3)
1 0 -1
im <argh < gm 01 -1 % FV2r V2m 0 (Br1223)%B12
0 0 1 T
L(1) I'(;) @-9r(3)
o (14490 (3) T'(3) T(3)
Sr<argh<Inm 01 0 i% 0 +21  FV2rm (B1223)° 12231223
001 "
(-1-9r(3) ;) T(3)
o @) @) 1)
ETF < argh < %7‘(’ 01 -1 % 1\/% i\/ﬂ 0 (612523)6‘812
00 1 i
() ST C-ar()

TABLE 2. For different values of arg h, we tabulate the monodromy data (Siex, Clex), in lexico-
graphical order, in the two ¢-cells which divide a sufficiently small neighborhood of the point
(t1,t2,t3) = (féhZ, 0, h). The difference of the data in the two ¢-cells (just a permutation of
two columns in the central connection matrix) is obtained by applying the braid written in red:
if it is not applied the sign to be read is the first one, the second one otherwise. Notice that
the central element ((312/323)° acts trivially on the Stokes matrices, and by a left multiplication

by My "' = diag(i, 1, —i) on the central connection matrix.

which are equivalent to (5.20). For the computation of the central connection matrix, one can use analogous
Puiseux series expansions of the solution Zyight (2), obtained from the integral representation of Hankel functions

given above.
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Iy

Ra3

/ \\>&R32
Ri3 Ris

FiGure 8. Disposition of the

Stokes rays for a point in the cho-

sen {-chamber. FIGURE 9. Integration contours Z;
which define the functions J;’s.

i

5.6. Monodromy data as computed outside the Maxwell stratum. In this section, we compute the
Stokes matrix S at non-coalesce points in a neighbourhood of a coalescence one, by means of oscillatory integrals.
We show that .S coincides with that obtained at the coalesce point in the previous section. Moreover, we explicitly
show that the fundamental matrices converge to those computed at the coalescence point, exactly as prescribed
by our Theorem 4.1.

The system (5.2) admits solutions given in terms of oscillating integrals,

&(z,t) = 27 f exp{z- f(z,t)}dz, (5.21)
&a(z,t) = 22 J xexp{z - f(x,t)} dz, (5.22)
&3(z,t) = 27 J <m2 + it;;) exp{z- f(z,t)} dx, (5.23)

where f(z,t) = 2* + t3a? + tow + t1 + §t3. Here 7 is any cycle along which Re(z - f(z,t)) — —co for |z| — +0,
i.e. a relative cycle in Hy(C,Cr ), with

Cr.:={xeC: Re(zf(x,t)) < =T}, with T very large positive number.

First, we show that the Stokes matrix at points in /-chambers near the coalescence point (t1,ts,t3) =
(—%hQ, 0,h) coincide with the one previously computed, in accordance with Theorem 4.1. In what follows we
will focus on the ¢-chamber made of points (¢1,t2,t3) = (—%h%se“ﬂ h), where —% < argh < 7, and ¢, ¢ are
small positive numbers. For points in this ¢-chamber, the Stokes rays are disposed as described in Figure 8.

Notice that in order to compute the Stokes matrix at a semisimple point with distinct canonical coordinates
it suffices to know the first rows of Zjeg/right- Assuming that z € R, we define the following three functions
obtained from the integrals (5.21) with integration cycles Z; as in Figure 9:

Ji(z,t0) := J exp (z(m4 + ha? + tgx)) de, 1=1,23. (5.24)

For the specified integration cycles, the integrals J;(z,t2) are convergent in the half-plane |argz| < 7. A

continuous deformation of a path Z;, which maintains its asymptotic directions in the shaded sectors, yields a
convergent integral and defines the analytic continuation of J;(z,t3) on the whole sector |argz| < 37” If we
vary z (excluding z = 0), the shaded regions continuously rotate clockwise or counterclockwise. In order to
obtain the analytic continuation of the functions J;(z,¢2) to the whole universal cover R, we can simply rotate
the integration contours Z;. This procedure also makes it clear that the functions J; have monodromy of order

4: indeed as arg z increases or decreases by 2w, the shaded regions are cyclically permuted.
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In order to obtain information about the asymptotic expansions of the functions J;, we associate to any
critical point x; a relative cycle L;, called Lefschetz thimble, defined as the set of points of C which can be
reached along the downward geodesic-flow

dx _of dz of

starting at the critical point x; for 7 — —o0. Morse and Picard-Lefschetz Theory guarantees that the cycles £;
are smooth one-dimensional submanifolds of C, piecewise smoothly dependent on the parameters z,t, and they
represent a basis for the relative homology groups H;(C,Cr . ). Moreover, the Lefschetz thimbles are steepest
descent paths: namely, Im(zf(z,t)) is constant on each connected component of £;\{z;} and Re(zf(z,t)) is
strictly decreasing along the flow (5.25). Thus, after choosing an orientation, the paths of integration defining
the functions J; can be expressed as integer combinations of the thimbles £; for any value of z:

T = n1 L1 +nolo +n3Lls, n;€Z. (5.26)

If we let z vary, the Lefschetz thimbles change. When 2 crosses a Stokes ray, Lefschetz thimbles jump discontin-
uously, as shown in Figure 10. In particular, for z on a Stokes ray there exists a flow line of (5.25) connecting
two critical points x;’s.

T L1

/'x?\ z3 /;3)\

FI1GURE 10. Discontinuous change of a Lefschetz thimbles. As z varies in R, we pass from the
configuration on the left to the one on the right. The middle configuration is realized when z
is on a Stokes ray: in this case there is a downward geodesic-flow line connecting two critical
points z; and x3.

This discontinuous change of the thimbles implies a discontinuous change of the integer coefficients n; in
(5.26), and a discontinuous change of the leading term of the asymptotic expansions of the functions J;’s. Using
the notations introduced in Figure 11, in each configuration the following identities hold:

Iy = Ly, Iy = L1+ Lo, Iy = L1+ Lo,
(A) Iy = £2, (B) Iy = £2, (C) Iy = £2a
13 = La, I3 = L3, Is = —Ly + L3,
Iy =L — L3, I, =Ly — L3,
(D) Ty = Lo, (E) To = L1+ Lo,
I3 = La, I3 = Ls.

By a straightforward application of the Laplace method we find that, al least for sufficiently small positive
values of arg z, the following asymptotic expansions hold

1
Ji(z,t2) = ﬂ'%iz_%(&v? + h)_%ezui (1 +0 <>) )
z

Since the deformations of the thimbles 75, 73 happen for values of z for which the exponent e*"! is subdominant,
we immediately conclude that the functions

623 + h

2\/§($1 — 1}2)(.’E3 — (EQ)

1
2

SIS

E)a(2:t2) = €)1 (2, 12) = Him 72

jQ(Z,tQ), (527)
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Ly

FIGURE 11. In this figure it is shown how the Lefschetz thimbles £;’s (continuous lines), and
the integrations contours Z;’s (dotted lines) change by analytic continuation with respect to
the variable z. The configuration (A) corresponds to the case argz = 0. Increasing arg z the
configuration (B) and (C) are reached after crossing the Stokes rays R3q, and Rap respectively.
Decreasing arg z, we obtain the configurations (D) and (E) after crossing the rays Rjs and
R;3 respectively. Note that when z crosses the Stokes rays R3s and Rs3 no Lefschetz thimble
changes, coherently with the detailed analysis done in [CDG17].

623 + h

2\/§(£E1 — $3)($2 — 5133)

1 1
\Ifglezu2 (1 +0 ()) R \1/316zu3 (1 +0 ()) R
z z

respectively, both in ITjes, and Ilgne. Thus, we can immediately say that the Stokes matrix computed at a point
(t1,to,t3) = (—%hg,sew, h) is of the form

1
z2

[N

f(Lg),1(Z,t2) = fg),1(2,t2) = dim™ J3(2, t2), (5.28)

have asymptotic expansions

S =

* % =
O = O
_ o O

Note that the arbitrariness of the orientations of the Lefschetz thimbles can be incorporated in the choice of
the entries of the ¥ matrix, and hence it will affect the monodromy data by the action of the group (Z/27Z)3.
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After a careful analysis of the deformations of the Lefschetz thimbles, one finds that the solutions S(Ll) (2, t2),
fg) 1(z,t2) are respectively given by

58),1(2’t2) = ii\If117T7%2%(6$ +h

€y (zrt2) = 20T 327 (623 + 1)? (31(2,t2) — Da(2,12)) (5.30)

Wy (1 +0 (1)>
z

in Ilignt and Ilieg respectively. This immediately allows one to compute the remaining entries of the Stokes
matrix

having the asymptotic expansion

o - Wy (622 + h)% _ i(GIf + h)(x?); x2) _ 41,
Wy (622 + )2 (x1 — x3)(623 + h)
2 1 _
Sy = Wy (627 + h)j _ ir(6931 + h>(3322 r3) _ +1.
\1131(61.5 + h)i (.’El — $2)(6(E3 + h)

This result is independent on the point (t1,ts,t3) = (—%hQ, ee'® h) of the chosen /-chamber. It coincides with

the Stokes matrix obtained at the coalescence point (t1,t2,t3) = (féhz, 0,h), in complete accordance with our
Theorem 4.1.

Remark 5.4. It is interesting to note that the isomonodromy condition in this context is equivalent to the
condition
f" (1) 1 — T3

[ (x2) Ty — 3’
a relation that the reader can easily show to be valid for any polynomial f(z) of fourth degree with three
non-degenerate critical points x1, zs, x3.

Our Theorem 4.1 also states that, as t; — 0 the solutions (5.27), (5.28), (5.29), (5.30) must converge to the
ones computed in the previous section at the coalescence point. We show this explicitly below. In order to do
this, it suffices to set ¢5 = 0 in the integral (5.24). With the change of variable z = 27727752 , we obtain

5 1 82 hz%
J2(2,0) = TJ3(2,0) = *szzfexp — + sy ds
PSRy SNENTS

Here D, (z) is the Weber parabolic cylinder function of order v, with integral representation ([AS70], page 688)

1 52 (+) if — 3T 4+ 2k1 < args < — T + 2k7
1 o 2 2 ’
LS *exp ( 7t zs) ds, where{() if T+ 2km < args < 3T + 2k,

e2?
(2m)
the integration contour L being the one represented in Figure 12, together with the identities

i vxiopr(1) zi
Se2 Hy/ (ze7 ),

D

() =+

N|=

; _vmi 2 _ mi
—5e 2H,S)(ze 2).
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Ficure 13. For t = 0, we can de-
FIGURE 12. Integration contour L compose the integration cycle Z; into
two pieces, Z{,7Z? used to define the
functions J} and J%. The continuous
lines represent the Lefschetz thimbles
through the critical points z;’s.

used in the integral representation of
the Weber parabolic cylinder functions.

It follows that
623 + h

2\/5(1’1 — 952)(1'3 — 1'2)
. . . 2

= i—zﬁh%esgﬂz%e_%ff(ll) (Zh Z) )
8 I 8

which coincides (up to an irrelevant sign) with the solution computed in the previous section at the coalescence
point. The computations for f(L?)) 1(2,0) = 5(1?))) 1(2,0) are identical.

S
Nl

ey 1(2.0) = €6 1 (2,0) = tin 722

32(2,0)

The computations for éﬁ) , and f(f‘l) 1 are a bit more laborious. First of all let us observe that the integral

0 tQ 1
g(z) = f exp <— - zt) t2dt
O 2

is convergent for all z € C, defining an entire function'”. Moreover we have

22 1 22 1 2
g(z) =/meTD_1(z2) = 2756?251(% <Z4) .

[N

With a change of variable t = e~ that rotates the half line R, by #, we find the following identity
2
g(z) = e7i2 f exp (—6_2“97 - 6_192’7') To2dT. (5.31)
R, 2
For t5 = 0 the integral J;(z,0) splits into two pieces:

J1(2,0) = 31(2) + 3%(2), Ti(z):= J exp(z(z* + ha?))dx, i=1,2
z

i
1

where the paths Z{ are as in Figure 13. Setting 2 = 2‘?2_%5%, the image of the paths Zi are in two different
sheets of the Riemann surface with local coordinate s. Keeping track of this, and of the orientations of the

17This is in accordance with the expression of g in terms of the modified Bessel function K, which gives

From the symmetry K1 (e*™%2) = —K1 (2) we deduce that g(e™™2) = g(e™z).
1

1
1
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modified paths, using formula (5.31) for 0 = %, % and a small deformation of the paths of integration, we
find that
5 2 hz2 1
Jl(z) =279, % —f exp i+ sys 2ds
1( ) ( 6372HR+ 2 \/i
T Y 2
=— z 4e e
g NG
1
1N\ 2 2 2
T s Pt ol P he? K emﬁ = 1e EhiK, miltz )
V2 1 8 1 8
and

2 2 2
= 42 535 bz, 3 {Kl (emhz) — K. (6—“}”) Ly el hz)}
1 8 4 8 1 8

I
-+
N
[N
N
[N
I
Nl=
@
|
S
u
>
[N
Ch‘
o[
=
/N
@
m‘;
>
[\
I\
N——

which is exactly (modulo irrelevant signs) the solution at the coalescence point as computed in the previous
section. We leave as an exercise for the reader to show that all other solutions 53)/ ?(z) converge to the ones
computed at the coalescence point.

6. SECOND EXAMPLE OF APPLICATION OF THEOREM 4.1: QUANTUM COHOMOLOGY OF THE
GRASSMANNIAN G3(C*) AND I'-CONJECTURE

In this section we prove Theorem 6.2, which is Theorem 1.4 of the Introduction. This is one of the main
results of the paper. We also prove Proposition 6.1, which we believe is important.

The problem is to compute the monodromy data for the Frobenius manifold known as Quantum cohomology
of the Grassmannian G, (C*). This manifold has a locus of coalescent semisimple points, known as small quantum
cohomology. Hence, the computation is completely justified by our Theorem 4.1. Our explicit computation,
which yields Theorem 6.2 (Theorem 1.4), seems to be missing from the literature. The result allows us to clarify
and verify, by analytic methods and in completely explicit way, the so called T'-conjecture (as formulated by the

second author in [Dub98], then refined'® in [Dub13]) in the case the quantum cohomology of the Grassmannian
G2(CY).

18The detailed comparison between the explicit computations of the monodromy data for complex Grassmannians and the I'-classes
proposed in [GGI16], will be the content of a forthcoming paper [CDG].
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6.1. Notations in Gromov-Witten Theory. Let X be a smooth complex projective variety with odd-
vanishing cohomology

H* Y X:C)=0, k=0.
Let us fix a homogeneous basis (Tp, 11, ..., Tn) of H*(X;C) = @, H**(X;C) such that

e Ty =1 is the unity of the cohomology ring;
o deg Ty =: 2qq;
e T1,...,T, span H?(X;C).

We will denote by n: H*(X;C) x H*(X;C) — C the Poincaré metric

w60 = cue e [ 1o

We also introduce the Novikov ring A := C[[q1,...,¢,]], and the symbol

T Js T
qﬁ::qlﬁ ""'q'r‘ﬁ

Let X, » 3 be the moduli space of stable maps with target X, of genus g, with n distinct marked points and of
degree 8 € Hy(Z;7Z). We will denote by

n
<Td1’71,~--77dn’7n>;(,n,/3 = J /\e ii

[Xgn,8]"" =1

the value of the Gromov- Witten invariant (with gravitational descendants, if some of the d;’s is nonzero), where

Y1y Tn € H‘(X,(C),
(di,...,d,) e N",
VY1, s € H*(X, 0 5; Q) are the universal cotangent line classes,

ev;: Xgn,pg — X is the evaluation map at the i-th marked point,
[Xg,n’g]Vir stands for the virtual fundamental class. Recall that degree of the virtual cycle is equal to
the virtual dimension (over R)

vir dimg X, ,, 3 = 2(1 — g) dime X — 2[ wx +2(3g—3+n).
B

It is convenient to collect Gromov-Witten invariants with descendants as coefficients of a generating function,
called genus g gravitational Gromouv-Witten potential, or simply genus g Free Energy

Z Z M>§n,ﬁ )

n= 06€EH X) n times

the set Eff(X) € Hz(X;Z) being the set of effective classes of X. Introducing (infinitely many) coordinates
ti=(t"?)ap
V= Z tavapTaa
a,p

the free energy ]—'&X € A[[t]] can be seen as a function on the large phase-space, and restricting the free energy
to the small phase space (naturally identified with H*(X;C)),

FXEY0, . V0) = FX ()00, poos

one obtains the generating function of the Gromov-Witten invariants of genus g. It will also be convenient to
introduce the genus g correlation functions defined by the derivatives

0 0
ity T, T g = w3 Fo -
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By the Divisor axiom, the genus 0 Gromov-Witten potential F;X(¢) can be seen as an element of the ring
C[t°, qle’f1 e geet L ,tN]): in what follows we will be interested in the cases in which F5 is the series
expansion of an analytic function, i.e.

FOX e(C{to,qletl,...,qretr,tr'”'l,...,tN}.

Without loss of generality, we can put q; = go = --- = ¢, = 1, and F;X(t) defines an analytic function in an
open neighborhood 2 € H*(X; C) of the point

=0, i=0,74+1,...,N; Ret! - —w0, i=1,2,...,r (6.1)

The function Fg* is a solution of WDVV equations ([KM94], [Man99], [Tia94], [Voi96]), and thus it defines
an analytic Frobenius manifold structure on 2. Using the canonical identifications of tangent spaces T,,Q) =
H*(X;C): 0ta > T, the unit vector field is e = d;» = 1, and the Euler vector field is

N
1
E:=c(X)+ Z <1 -3 degTa> t*T,,.

a=0

The resulting Frobenius structure is called quantum cohomology of X, denoted QH®(X). Notice that at the
classical limit point (6.1) the algebra structure on the tangent spaces coincides with the classical cohomological
algebra structure. Notice that, because of the Divisor axiom, the Frobenius structure is 2wi-periodic in the
2-nd cohomology directions: the structure can be considered as defined on an open region of the quotient
H*(X;C)/2miH*(X;7Z).

Below, we focus on the small quantum cohomology of G := Go(C*), which is the restriction to the locus
H?(G;C), with coordinates (0, 2,0, ...,0).

6.2. Small Quantum Cohomology of Go(C*).

6.2.1. Generalities and proof of its Semisimplicity. For simplicity, let us use the notation G := Go(C*). From
the general theory of Schubert Calculus formulated in the previous chapter, it is known that H*(G;C) is a
complex vector space of dimension 6, and a basis is given by Schubert classes:

oo :=1, 01, 02, 01,1, 02,1, 02,2
where o is a generator of H?*(G;C). By posing
vy 1= 0, U i= 01, U3 = 02, V4= 011, Us = 021, U := 022,
we will denote by t* the coordinates with respect to v;. The coordinates in the small quantum cohomology are
t = (0,t%,0,...,0).

By Pieri-Bertram and Giambelli formulas one finds that the matrix of the Poincaré pairing

n(e B) = f@aw

with respect to the above basis is given by

00000 ¢
0000 ¢ 0
00 c¢c 000 _

1o 00 c¢o0o0f C'_L(z’@)"“'
0 ¢ 0000
¢ 00000
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Using Pieri-Bertram formula we deduce that the matrix of the operator of multiplication by Aoy + poy; is

0 pug 0 Ag O

0 0 0 ug X

A0 0 0 pug

A

LA A 0 0

0 0 pw X O

The discriminant of the characteristic polynomial of this matrix is

16777216 X 23 (At + putq)8

SCOoOT®| O > O

00 0 ol 4

(6.2)

and so, if A # 0, # 0 and A\* + qu* # 0, its eigenvalues are pairwise distinct. This is a sufficient condition to

state that the quantum cohomology of G(2,C*) is semisimple.

Notice that the value at the point p of coordinates (0,¢2,0,...,0) of the Euler field of quantum cohomology

QH*(G(2,C*)) is '? given by the first Chern class ¢;(G) = 40;:

0
E|p = 4@ = 401.

The matrix U of multiplication by F at the point p is given by posing A =4, =0 in (6.2):
4q

0

U(0,t2,0,...,0) =4 C2(0,%,0,...,0) =

OO OO
O = = OO

0

- o O OO

0

4
0
0
0
0
4

0

- o O O O

0

The characteristic polynomial is p(z) = 25 — 1024¢22, so that 0 is an eigenvalues with multiplicity 2. Therefore,
the semisimple points with coordinates (0,¢2,0,...,0) are semisimple coalescence points in the bifurcation set.

6.2.2. Idempotents at the points (0,t%,0,...,0). The multiplication by o1 +01 1 has pairwise distinct eigenvalues,
at least at points for which t? # im(2k + 1). Putting A = p = 1 in (6.2), we deduce that the characteristic

polynomial of this operator is

p(z) = (¢+ z2)(—4q +¢® — 8qz — 2q2* + ).

So the six eigenvalues are

.1 .1
gz, —1q2,

1= —iV2qT — g%, ey:=iV2qT —qF, e3:= —/2¢T +qF,

and the corresponding eigenvectors are

gt o1 L1 o1
M= —q—1q202 +1q2011 + 02,2, e 1= —q + 19202 — 142011 + 022,

Toyi :=(q% + q€2) + (—¢* + 2qe; + qe2)o1 + (2q + 2qe;)on + (29 + 2qe;)o11

+ (=29 — qe; + €})o21 + (¢ + €7)0a .

Then,

2 _

mieomy; =0 ifi#35, m

)\i’]Ti where )\1 > 0;

4= V2¢7 + ¢3,

as a consequence, these vectors are orthogonal since, for ¢ # j, n(m;, 7;) = n(m;-7;,1) = n(0,1) = 0. Introducing

the normalized eigenvectors
T

0(mi,mi)?

fii=

19%e identify TpH*(G) with H*(G) in the canonical way.
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we obtain an orthonormal frame of normalized idempotent vectors, for any choice of the sign of the square roots.
Let us now introduce a matrix ¥ = (1;;) such that

0
aTsziafia a=1,2,...,n.

Note that necessarily we have

iy 1
\IJT\I/ — ,’,], ¢i1 — 77(7(2) )

77(7% Trl)% .
After some computations, we obtain
—uf% 0 -1 1 0 iq%
—ig7z 0 1 -1 0 ig®
1
1 & 1 _ 1 i a2z
3 V2q? qt V2 z V2
v=S o R T T
2 | 243 q V2 2 V2
S G TS TS S
Vit g V2 2 1
1 11 1 rg3
Vaq? gt V2 2 1 V2
This matrix diagonalizes U as follows
U:=ouvt = (07)1guT =
Uq 00 0O 0O 0 O
U2 00 0 0 0 O
B us =1l 00 -0 0 0
- U =24 g0 0 0 o
Us 00 0 0 -1 0
Ug 00 0 0 0 1
The eigenvalues u; stand for u;(0,¢2,..,0). Note that
t2
u;(0,42,0,...,0) = qiu;(0,0, ...,0) = e Tu; (0,0, ...,0). (6.3)

6.2.3. Differential system expressing the Flatness of the Deformed Connection. The matrix y is given by

deg(0/0,) — 4
0= diag(—2, -1,0,0,1, 2), with eigenvalues i, = %, 1<a<6. (6.4)
Consider the system (2.1), rewritten as follows:
~ 1
0.6= U~ € (65)
Q=20 € (6.6)
where £ is a column vector, whose components are &; = 0;t(t, z) (derivatives of a deformed flat coordinate), and
0 4 0000
0 0 4 4 00
5 -4 |10 0 0 0 4 0 > _ 15
Us=ntn==19 9 0040 ©@=3%
4 0 0 0 0 4
0 4¢ 0 0 0 O
Introducing a new function ¢ defined by
&(t, 2
¢(tgz) — 1(2 )
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the first equation of the system becomes a single linear differential equation

225 + 102302 + 252202 + 1520%¢ + (1 — 1024q2*)0.¢ — 2048¢2°¢ = 0 (6.7)
and the solution can be reconstructed from
&= Z2¢
& = 1220,
2 — ZZ z

1

&3 = 3—2(282¢ +220%¢) + h
1

€0 = 35 (20:0+ 2°020) — h (6:8)
1

§5 = 135 (=0 + 32026 + 20%9)
1 1

&6 = m(—512qz2¢> + ;azgz) +T70%¢ 4 62039 + 2201 ¢)

with a constant h.

Remark 6.1. The third and the fourth equations follow from the fact that

1
§3+& = T6(Zaz¢ +2°02¢), 0:(&—&) =0, 0a(&—&) =0
so that &3 — &4 = 2h is a constant.

From system (6.6) it follows that
026 = 0.0
which implies the following functional form:
P(to,z) = P (zq%> .
As a consequence, our problem (6.7) reduces to the solution of a single scalar ordinary differential equation for
a function ®(w), w = zqi:
wi®® +10w3d® + 2502 + 15wd” + (1 — 1024w*)®’ — 2048w D = 0.

Multiplying by w € C*, we can rewrite this equation in a more compact form:

0°® — 1024w* 0P — 2048w ® = 0 (6.9)

where O is the Euler’s differential operator wﬁ. Moreover, defining @ := 4w*, and writing ®(w) = ®(w), we
can rewrite the equation in the form
d 1

- - 1 -
P —wO P — —wdP=0 Op i=w— = -0,
wt @ 2% w4

6.2.4. Expected Asymptotic Expansions. Let Z be a fundamental matrix solution of system (6.5), and let Y be
defined by

E=nU Y. (6.10)
Then, Y is a fundamental solution of system (2.17). The asymptotic theory for such Y’s has been explained in
Section 2.3, and Theorem 2.9 applies. To the formal solution (2.18) it corresponds a formal matrix solution

Eformal = n‘II_IG(Z)_leZU'
To the fundamental solutions Yiefi rigns, there correspond solutions Sy /rigng- For fixed 2, then Zop /right(tQ, z) =
2
Eleft/right (etT z) has the following asymptotic expansion for z — o0

- _ NN .
‘:‘left/right(t2az) = 77\1/ ! (1 +0 (Z)) e U=
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ie ie?u2 e?u3 zZuy e?u5 e?u6
- 1 - 1 1 1
q2 q2 V242 V2q V2q2 V2g2
0 0 Lus Ly “4is 245
- 1 1 - 1 1
1 1 i i
C% 1 AU U2 _ 62”3 _eta eZ%J egu6
- 2 2 2 2
2 r+o z eZuL Uz _8% _é & & ’ (6'11)
\/5 1 2 1 2 1 ﬁ 1
O O Zezung 7162’&4(12 zZUus qz eZ’U,GqZ
1 1 1 1
. 1 . 1 zugz 5 ezu4q§ 2“5(17 ezu6q§
ie*qz  jet2gz A4
q q 2 2 72 72

The first row of the above matrix gives the asymptotics of ¢(z,t2). The correct value of h in (6.8) must be
determined in order to match with the asymptotics of the third and fourth rows of (6.11). We find

1

h= —%, for the first column, (6.12)
c3

h= R for the second column, (6.13)

h =0, for the remaining columns. (6.14)

Indeed, for ¢ corresponding to the first two columns we have respectively

9 cz re” 1 9 cz ¥ 1
d(z,t°) = 7 = <1+O(z>> or ¢(z,t°) = T = (1+O<z>>

Since u; = ugy = 0, the above expressions become

Then

Comparing with the matrix elements (3,1), (4,1) and (3,2), (4, respectwely, we obtain (6.12) and (6.13). For
the remaining columns we proceed in the same way and find (6

312 (20,0 + 220%0) ( >
2)
6.14

6.3. Solutions of the Differential Equation.
6.3.1. Solutions of ©°® — 1024w*O® — 2048w*® = 0 and their asymptotics. The equation
- -1 .
00— wO,d — 37® =0,

belongs to the class of generalized hypergeometric differential equations (see [Luk69], [AS70], [PKO01], [OLBC10)]
and references therein). By applying the Mellin transform to it, we obtain the finite difference equation

s97(s) = <s + ;) T(s+1), 7(s):=MP)(s):= JOO ()t Ldt, (6.15)

0
whose solutions are of the form

_ I'(s)®
s) = ————(s), s)=v(s+1).
6) = ey ¥le) (o) = vle+
Hence, we expect that solutions of (6.9) are of the form
1 I'(s)®
L O —y(s)4 w4 ds,
2t Jo T (s + 5)

for suitable chosen paths of integration A. Actually, we have the following

O(w) =

Lemma 6.1. The following functions are solutions of the generalized hypergeometric equation (6.9):
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e the function
1 I'(s)®
S 2mi Jy, T(s+ 1)

and where Ay is any line in the complex plane from the point ¢ — io0 to

Dy (w) : 475w ds,

defined for —% < argw < 3,
¢+ 100 for any 0 < ¢;
e the function
1 1 .
Dy (w) := I'(s)°T ( — s) e 4S5 s,
As 2

Com

defined for —3 < argw < m, and where Ay is any line in the complex plane from the point ¢ — ico to

. 1
¢+ forany 0 <c < 3.

Before giving the proof of this Lemma, we recall the following well-known useful results ( see e.g. [WW96],
[OLBC10], [Luk69])
Theorem 6.1 (Stirling). The following estimate holds
logT'(s) = L 1 +11 (2m)+ O 1
ogl(s) = { s — 5 |logs — s + 7 log(2m 5
for s > o0 and |arg s| < m, and where log stands for the principal branch of the complex logarithm.

Corollary 6.1. For [t| — +00 we have
N 1
IT(c +it)| = \/27T|t‘07%€75t <1 +0 <t|>) ,
uniformly on any strip of the complex plane o1 < o < 0.

Proof of the Lemma 6.1. First of all let us prove that the functions ®;, ®5 are well defined on the above regions.
Let us start with ®;. Denoting by Z; the integrand in ®; and s = ¢+ it, in virtue of Corollary 6.1 we have that

|Il| -~ (27T)2|t|5(c7%)€757"\t\|t‘fceg\t\efclog4ef4clog\w\+4targw.

The dominant part is

67577'|t|e%|t|e4t argw

In order to have |Z;] — 0 for ¢ — 400 we must impose

LTy <0, i <
_— — a .. a —
2 2 rgw , 1 rgw 2,

analogously, for t — —o0 we have to impose

T +4 >0, i > T
_— — = arg w l.e. argw —_—.
B) B) g s g B

Let us consider now the case of 5. From Corollary 6.1 we deduce that

\Iz| - (2ﬂ)3|t‘5(c—%)e—5,7"|t|| _ t‘—ce—g|—t\e—7rte—clog4e—4clog|w\+4targw,

and now the dominant part is

—%\t\e—g|—t|e—‘n’t dtargw

(& (&

In order to have |Z3| — 0 for t — +o0, we find

o w .
—7—§—ﬂ+4argw<0, ie. argw < T,
bt w . T
— + - —7m+4dargw >0, ie argw<——.

2 2 2
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Let us now prove that ®; and @5 are effectively solutions of equation (6.9). We have that

45 I'(s)®
P _55%475w745d3
2mi Ju, I'(s+3)

45 INT 1)°
= 7J - <s + ) (87—’_3)4_811)_45(18
2mi Jp, 2)T (s + §)

05, (w)

because of the identity (6.15). Changing variable ¢ := s 4+ 1, and consequently shifting the line of integration
Ay to Ay + 1, we have

5 4° 1\ D)
0°P; (w) = J — (t — ) Lzlft T (Gt Op
A1+1 F

2mi 2 (t+ 1)
45 I'(t)° 2.4 I'(t)°

= — (—4t) lerfw—‘*(t—l)dt + —f (7)14—%—4“—”6175.
271 Aq+1 F(t+§) 274 A1+1 F(t+§)

Note that in the region between A; and A; 4+ 1 the two last integrands have no poles; so S Atl = S A by Cauchy
Theorem. This shows that

%P, = P5uw*0d; + 2 45w P,.

Analogously we have

45 1 , ,
0°d, = —J —s°T'(5)°T ( — s) e 4548 s
21 S, 2
4° 1 1 ,
=— | —(s+5)0(s+1)°T -z —s)emttasy s
21 Ja, 2 2

where the second identity follows from equation (6.15). Note that the integrand function is holomorphic at

s = —=: indeed we have
1 1
li — | (—=— = —1.
sf?;<”2> (2 S)

So in the strip of the complex plane —1 < Re s < % there are no poles, and by Cauchy Theorem, we can change
path of integration by shifting A to Ay — 1:

45
0Py = —
27 ori

1.
5

1 .
—5°T'(5)°T < — s) e ™ 45w 45 s,
As—1 2
Posing now ¢t = s + 1, we can rewrite
5 4° 1 s L it —(t—1), —4(t—1) 5 4 5. 4
0°Py = — —(t==|)T@®T|=—t)e™4 w dt = £°w 0Py + 2 - 42w Dsy.

27t Ja, 2 2

This shows that effectively ®; and ®5 are solutions. O

Note that solutions ®; and ®5 are C-linearly independent, since their Mellin transforms are. However we
have the following identities

Lemma 6.2. By analytic continuation of the functions ®1 and ®5, we have

By (we'?) = 2P (w) — Do (w) (6.16)
Dy(we ') = 21y (we™'2) — Dy (w) (6.17)
By (we'?) = 21n®; (w) + Po(we ™ '2) — 27D, (we™'2) (6.18)

Proof. We have that

+ins

F<1+5>I‘<1—5)— 7r _ _2me”
2 2 Cosin(m (L 4s)) T4
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for a coherent choice of the sign. So

+2ims _ 2me=

First let us choose the one with (—): we find that

iz _ 1 s (1 ims 2me=ims e e
Oy (we 2)_2m' AZF(S)F<2 s)e (I‘(;—ks)I‘(l—s) 1>4 w*ds

= 27’(’@1(11)) — @2(10)7

which is the first identity. The second one can be deduce analogously using the formula with (+) sign. Finally
the third identity is the difference of (6.16) and (6.17). O

Let us now study the asymptotic behavior of these functions. By Stirling’s formula we have that

(27)?

Dy (w) = o JA e¢(s)ds,
1

where

1 1 1 1
o(s) = —5s+5(s—2> logs+8+§—slog (8+2> —slog4—4510gw+0(||>
s

for s — o0 and where log stands for the principal branch of logarithm. Let us find stationary points of ¢(s) for
large values of |s|, |w|. The derivative ¢’ is

10s — 5 1 S 1
'(s) = —4 + 5log s + -1 +-)——5 —logd—4logw+ O —].
@' () og s 75 og(s+y S+% og ogw 5]

For |s| large enough, we have

10s — 5 5 s
~5— =, -
2s 2s s+ 3

1 1 1 1
~1—2—S, log(s+2>=10gs+10g<1+28)~10gs+25.

Substituting these identities in ¢’, we find that the critical point $(w) in functions of w (for |w| large)
5 1
s =2 -+0(— ). 6.19
5(w) \fw+8+ (|w|> (6.19)

Note that for —7 < argw < 7, the point 5(w) is in the half-plane Re s > 0, region in which there are no poles

of the integrand functions in ®;. So we can shift the line A; in order that it passes through 5. In this way we
obtain

2 2 "o
By (w) = ZT o) J =0 gg - T o) J o (s-5)2 5
A1 Al

211 21

The computation of this Gaussian integral shows that

(27)? () Vom
O (w) ~ e = (27
(w) or W”(g) (2m)

where Re 1/¢”(5) > 0. An explicit series expansion shows that

£6(3)

V" (5)

(MY

$(5(w) ~ —4v2w — glng — glogél +0 <|w1|> ,
") ~ Y2 1o (|w1|)

whereas

w

® (w) ~ (27)* e (1 +0 (;)) :

4w?

and from this we deduce that
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FIGURE 14. Deformation of path Ag

Let us now focus on ®3(w). From Theorem 6.1 we deduce that

F(—S) = 6_(S+%)logse—iﬂses(_im) (1 L0 <|18|)>

for s - oo and s ¢ Ry. So,

3
Dy (w) = (2m) f e?ds,
Ao

21

where
1 1 1 1
d(s)=5(s—=|logs—bs—slog|s— =) +s— = —slogd—4slogw+O | — |,
2 2 2 w

for w — oo. By computations analogous to those of the previous case, we find that ¢ has a critical point at

5 1

5(w)=vV2w+ —+0( =
for large values of |w|. Note explicitly that for —7 < argw < 7 this critical point is in the half-plane Re s > 0.
By modifying the path of integration as in Figure 14, in order that it passes through the critical point, by

Cauchy Theorem we have

1
Dy(w) = — | Zo(s)ds — Z res Zo(s),
2mi A s=p
2 peP
where P stands for the set of poles in the region between Ay and A}. For the first summand we have an

asymptotic behavior like before (Gaussian integral)

6—4«/511}
f Ir(s)ds ~ a——5—
Al w

with « constant. For the second summand, on the contrary, we have for n € N

-1 n+1 1 5 )
res Iy(s) = LF (n + 2) eim(nt3) ==}y —4n=2

s=n+3 n!
‘ 5
— 1\
_ <(2n 1)"7ré> gn—by—in—2

So
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oo~ £ 120(3)

for -5 <argw < 7. Let us now use the identity (6.16) in the following form:

In conclusion,

o (w) = 2mPy (we™"E) — By(we™'F), _g < arg(we %) <

ol 2

It implies that
Dy (w) ~ 27772 (1 +0 ()) on the whole sector — g <argw < T.

Let us summarize our results (this will be later improved by Lemma 6.4):

Lemma 6.3. We have the following asymptotic expansions for ®1 and Po:

74\/510 1
e<1+0(>> in the domain fg<argw<g,

[N

@1(w) = (2m) S -

. 5
1T 2

2(0) = 5

1

<1 +0 <>> in the domain — ~ < argw < .
w 2

6.4. Computation of Monodromy Data.

6.4.1. Solution at the origin and computation of Co(n, u, R). Monodromy data at the origin z = 0 are determined
by the action of the first Chern class ¢1(G) = 407 on the classical cohomology ring. So,

000000
40 00 0 0
040000

E=10 4000 0 (6.20)
00 4 40 0
0000 4 0

By Theorem 2.2 and Theorem 2.4, there exists a fundamental matrix solution (2.9)
Y (2) = ®(12, 2) 22",
for some appropriate converging power series ®(¢2, 2) = 1 + O(z) such that
ST (12, —2) n ®(12, 2) = n.
Thus, a fundamental matrix for our problem is given by
Zo(z) =1 ®(t%,2) 22l = T (12, —2) 71 2121

By applying the iterative procedure in [Dub99b] for the proof of Theorem 2.2, at t* = 0 one finds the following
fundamental solution

Z0(0,2) = S(0, 2)nzt 2", (6.21)
224+ 1 0 0 0 0 0
223 1—4z* 0 0 0 0
22 —2z3 1 0 0 0
S(O,Z) = 22 —Z3 0 1 0 0 +O(25)
z 0 —23 =23 441 0
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Notice that the leading term of the solution Zg in (6.21) is exactly
8:21og*(2) $22log’(z) 822log’(z) 8z%log?(z) 4z%log(z)

N

z
8z log®(z)  16zlog?(z)  4zlog(2) 4zlog(2) z 0
2
n 2l = 8log2(z) 4log(2) 1 0 0 0
8log“(z) 4log(2) 0 1 0 0
4log(z) 1 0 0 0 0
% 0 0 0 0 0
From the first row, we deduce that near z = 0 any solution of the equation (6.9), i.e.
O°® — 1024209 — 204820 = 0
is of the form
P(z) = Z 2" (an + bnlog z + ¢y log” z + dy, log® z + e, log™ 2) , (6.22)

n=0

where ag, by, co, do, €9 are arbitrary constants, and successive coefficients can be obtained recursively.

Proposition 6.1. Let R be as in (6.20) of R. Then, Co(n, u, R) is the algebraic abelian group of complex
dimension 3 given by

1 0 0O 0 0 O
aq 1 0O 0 0 0
_ e %} o 1 0 0 O0f. ‘ a%—ag—agzo
CommB) =3 1o, oy 0 1 0o of @sCst {a§+a§2ala4+2a5 —0
ayg ast+az ap ap 1 0
s oy a3 a9 a1 1

In particular, if F(t) € C[[t]] is a formal power series of the form F(t) = 1+ Fit + Fot? + ..., then the matrix
(computed w.r.t. the chosen Schubert basis 0y, 01,02,011,02.1,022) representing the endomorphism
Ar v (=) H*(G;C) — H*(G;C),
where A\p € H*(G;C) is such that
F(TG) U Ap = F(T*G),
is an element of Co(n, p, R). Here ﬁ(V) denotes the Hirzebruch multiplicative characteristic class of the vector
bundle V. — G associated with the formal power series F(t) (see [Hir78]).

Proof. The equations defining the group Cy(n, i, R) are obtained by direct computation from the requirement
that P(z) := 2tz . C' - 27%27# is a polynomial of the form P(z) = 1 + A1z + A2z + ..., together with the
orthogonality condition P(—z)TnP(z) = 7. Notice that the polynomial for the generic matrix of the above form
is equal to

1 0 0 0 0 0
zZo 1 0 0 0 O
22ae zaq 1 0 0 0
P(z) = 22as zo 0 1 0 o0
2oy 22 (e +as) zay  zag 1 0
2*as 230 22as 2%y zaq 1
We leave as an exercise to show that such a matrix group is abelian. Let 41, ..., d¢ be the Chern roots of TG.
Then, for some complex constants a; ; € C, we have
6
F(IG):= 1—[ F(0;) =1+ a101 + az02 + a1101,1 + ag102.1 + az 2022, (6.23)
j=1
R 6
F(T*G) = n F(—(Sj) =1—a101 + ax09 + a1,101,1 —Q2,102,1 + 42,202 2. (624)

Jj=1
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Thus, if
Ar =1+ 2101 + 2202 + 3011 + T4021 + T5022,

from the condition F (TG) U A\p = F (T*G) we obtain the constraints

1 = —2a1,
x9 = 2a3,
x3 = 2a3,

Xry4 = 2(11(&2 + al,l) - 40,% - 2&2,1,
r5 = 4ajaz 1 — 4a3(ag + ay 1) + 4af.

From this it is immediately seen that #3 — xo — 23 = 0 and 23 + 23 — 22124 + 225 = 0. O

6.4.2. Stokes rays and computation of Zier,, Eright- According to Theorem 4.1, monodromy data of QH*(G)
can be computed starting from a point (0,t2,0,...,0) of the small quantum cohomology. Moreover, thanks to
the Isomonodromy Theorems, it suffices to do the computation at 2 = 0, i.e. ¢ = 1, where the canonical
coordinates (6.3) are

ur =us =0, uz= —42'\@, Uy = 42'\/5, Us = —4\/5, Ug = 44/2.
The Stokes rays (2.20) are easily seen to be
Ri3 = Ry3 = {—p: p = 0},
Ri4y = Roy = R3y = {p: p= 0},
Ri5 = Rys = {—ip: p = 0},
Ri6 = Ros = Rse = {ip: p = 0},

Rs35 = {pe_i% :
R45 = {—pei%:
We fix the admissible line /¢

so that the sectors for the asymptotic expansion, containing Iljeg righ and extending up to the nearest Stokes
rays are

Sright = {#z: —m <argz < m/4} St = {z: —0<argz <m+ w/4}.

For such a choice of the line, according to Theorem 2.10, the structure of the Stokes matrix is

1 0 = 0 0 =
01 = 0 0 =
0 01 0 0 =
S = * x x 1 0 = (6'25)
* % % % 1 %
0000 01
We use the following notation for fundamental matrices
§ha & ha ha 6 o Sha o o Sha o Son

Sright = )

§(R1)72 gg)’z 5(@’))2 €(]Z‘)72 5(1?))>1 g(%)72 Eleft = 5(11)72 g(lé)’2 Eé’))2 €(IZJ‘)72 5(1/5))1 5(116))2

e e e e SGre e e Soe Se s SGre e
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Note, in particular, that (6.25) implies that the fifth columns of Z,ighy and Eie, coincide. Then 5(%) , is the
analytical continuation of E(lg)i on Sjert. Moreover, the exponential e*"5 dominates all others e*"7’s in the sector
between the rays Rys and Ryg, i.e. for —m — w/4 < arg z < —7 + w/4. This implies that the asymptotics

L _ ¢R _ C% ZUus 1))
= =——c¢ 1+0(-1)),
$61 =861 = 57 ( <Z
is valid in the whole sector —m — /4 < arg z < 7 + w/4. By lemma 6.3,

1 1
cz o c: L., 1 ™ 7r
——=2°®(2) = —=e"" [14+ 0 | - for — — <argz < —.
ot N =57 ( (z)) g ~M8F= 7
Since the exponential e*“s is dominated by all others exponentials e*“s in the region between Rss and Rsg,
namely for —7/4 < argz < /4, we conclude necessarily that
1
c2

L/R
22201 (2) = £ (2).
T2

This determines the 5-th column of =g and Zieg in terms of @1, using equations (6.8),(6.14). We also obtain
an improvement of Lemma 6.3:

Lemma 6.4. ®; and ®o have the following asymptotic behaviour

=4\ 2w 1
Dy (w) = (27r)%e47 (1 +0 (w)) in the domain —m — % <argw < m+ %
By (w) it (o2 in the domain — — < <
w) = — — in the domain — — < argw .
2 2w? w 2 & i
We are ready to determine the other columns of S jrigne- By Lemma 6.4,
c? 2 1 0 3
- %—%,22<I>1(zei%) = me‘w?’ (1 +0 <z>> , for —2mw+ 7 <agz <, (6.26)
2 9 ; c2 1 7r T

— 2Py (ze") = —=e*" [1+0 (=] |, for —27r—— <argz < —. 6.27
ont” M =57 < (z)) 1T o0

We consider first (6.26). Being solutions of a differential equation, the following holds:
b
o
On the other hand, ¢*“# is dominated by all other e*“i’s in the sector —m + /4 < argz < —m/2 between Rys
and Rgss. This requires that the linear combination necessarily reduces to

22®(ze'?) = linear combination of the 55)’1-, 1<i<6.

1
c2 o
—og 7 Balee') = §6)a

Now we consider (6.27). As above, since e*"¢ is dominated by all the other e*i’s in the sector —57/4 < arg z <
—37/4 between Rys and Rys, we conclude that

727 (2e'T) = f(l:é),r

Analogously we find that

1 - 1 1 5 5
_207:% 2P (ze7'2) = %ezw (1 +0 (Z)> for — ZF <argz <m+ Zﬂ’
C% c% 1
. - -
%—%22<I>1(ze_”) = ﬁe‘w@ <1 +0 (z)) on — 7 <argz < 2w+ 1
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By dominance considerations as above, we conclude that
1

1
L ) iz L 2 5 i
= ———=2°®(ze "2), = —=2°P(ze .
£y or3 ( ), &6y 53 ( )
The above results reconstruct (using identities (6.8),(6.14)) three columns of matrices Zyignt and Sjege respec-
tively. As far as the first two columns are concerned, we invoke again Lemma 6.4 for ®5, which yileds

1 1
2 o 12 1
c—5z2<1>2(zezf) - (1 + 0 ()) on —w <argz < E7
z

T2 2 2
1 C1
%zQ(PQ(ze_Z%) - (1 + 0 <1>) on 0 <argz < 3—71-
T2 2 z 2
Exactly as before, dominance relations of the exponentials e** yield
1
2 . 2 o
;% 22Py(2e'2) = ggm = 5(};),1’ ;—322@2(26*%) = f(Ll),1 = gé)’l’

Using (6.8),(6.12),(6.13), the first two columns are contructed. Summarizing, we have determined the following
columns in terms of ®; and ®,.
- (f{im €1 oo wmknown & %71)
Cright = . . . . . .

= (55»1 £oya wmkmown &5, &) 5<La>,1>
—left — . . . . . . .

In Section 6.4.3 we show that the above partial information and the constraint (2) in Theorem 2.11 are
sufficient to determine the Stokes and central connection matrices simultaneously. Since constraint (2) holds
only in case S and C are related to Frobenius manifolds, we sketch below — for the sake of completeness — the
general method to obtain the missing columns of Zeg/righe and S, in a pure context of asymptotic analysis of
differential equations.

We observe that

1
cz iz cT L, 0 3m
— 2°Pq(ze7'2) = —=e"*(14+ 0(1/2)), for —m+— <argz<m+ —.
(e E) = e (14 0(1/2) T < :
The sub-sector —m < arg z < —37/4 of Syight, is not covered by the sector where the above asymptotic behaviour
holds. On the sub-sector, the dominance relation |e**4| < |e*"*| holds. Thus,

1

1

c? iz
&l = 9.3 201 (2e7'8) +ueff) |, (6.28)

for some complex number v € C, to be determined. Analogously, we observe that

1 1
207:% 20 (ze71F) = ;—\;56“42(1 +0(1/z)), for —2mw — %r <argz < —%.
The sub-sector —7/4 < arg z < m/4 of Syight is not covered by the sector where the asymptotic behaviour holds.
Now, the following dominance relations hold: |e**4| < |e**i|, for ¢ = 1,2,3,6, in 0 < argz < 7/4; for i = 6 in
—m/4 < argz < 0. Thus

1
Cc2 -3

Ehya = —%—%z%l(zel%) + 7€l 1+ T 16E() (6.29)

for some complex number 71, 73,7 € C, to be determined®’. The above (6.28) and (6.29) become a 6-terms
linear relation between functions ®,(zei's" ), as follows

—®y(ze7'2) 40D (2) = —<I>1(zei37ﬂ) + %¢2<Z€i%) — 3P (2€72) 4+ 76D (2¢'™),

20There is no need to include a term +'yz§g) , in the linear combination, since 5{3 L= {g) 1
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q)l(Z) = % [(I)Q(Z) + ég(zei%)] .

At this step, some further information is needed. The equation ©°® — 10242*©® — 20482*® = 0 admits the
symmetry z — ze'2. This means that if @ is a solution of the equation then also ®(ze'%) is. Such a symmetry
defines a linear map on the vector space of solutions of the equation defined in a neighborhood of z = 0. Because
of this symmetry, the form (6.22) can be refined as

O(z) = Z 24 (ay, + by log z + ¢, log? 2 + dy, log® 2 + e, log? z), (6.30)
n=0
where ag, by, co, dg, eg are arbitrary constants, and successive coeflicients can be obtained recursively. In the
basis of solutions of the form (6.30) with (aq, b, co, do, €0) = (1,0, ...,0), (0,1,0,...,0) and so on, the matrix of
the operator 4
(AD) (2) := @(zel%)
is of triangular form with 1’s on the diagonal. Hence, by Cayley-Hamilton Theorem we deduce that
(A-1)° =0,
i.e.
AP —5A% +104% — 1042 + 54 -1 =0.

This proves the following

Lemma 6.5. The solutions of the equation ©°® — 10242*0® — 204824® = 0 satisfy the identity
@(zei%ﬂ) — 5B (ze2™) + 10@(%@'37“) — 10D (2ze'™) 4+ 5B(ze'2) — B(2) = 0. (6.31)

The relation (6.31) applied to ®5 determines v, 71, v3, v6. For example, v = 6. This determines fﬁ) , through
formula (6.28). The fourth column of Z,igh is then constructed with formula (6.8) applied to 5(11) 1 (with h = 0).

The value v = 6 will be determined again in Section 6.4.3 making use of the constraint (2) of Theorem 2.11.
Proceeding in the same way, we also determine ¢ (L:,)) 1- One observes that

1 1
623 220 (267 ) = o

o3 24/2

1 1

2 iz 2 . T 3T
2Py (ze'2) = —=e*"3(1+ 0(1/2)), for — 27— — <argz < —.
537 Pilze) e ( (1/2)) 5 <agz <

The first asymptotic relation does not hold in the sub-sector —7/4 < argz < 7/4 of Siest, The second one does
not hold in 37/4 < argz < 5m/4. Then, the dominance relations in these sub-sectors generate a 6-terms linear
relation with unknown coefficients. The coefficients are determined by (6.31).

Once Ejegi/right has been determined, S can be computed by direct comparison of the two fundamental
matrices (formula (6.31) need to be used at some point of the comparison). The final result is the Stokes matrix
S of formula (6.33) below with v = 6.

e (1+0(1/z)), for % <argz < %T + 27,

3
2

6.4.3. Computation of Stokes and Central Connection Matrices, using constraint (2) of Theorem 2.11. We start
from formula (6.28):

-

1
cz iz cz iz
5{51),1 = o3 20y (ze7F) + vé(ﬁ),l = 23 22 (—<I)1(ze 2) + v@l(z)) .

We show that the constraint (2) of Theorem 2.11 suffices to determine the value of v and reconstruct both the
Stokes and the central connection matrices, as follows.
The definition of the central connection matrix C' and the transformation (6.10) imply that

Eright = Z0C.
The matrix C can be obtained by comparing the leading behaviours of Z,igne and Zg near z = 0. The leading

behaviour of Z¢ in (6.21) is nz“zR. In order to find the behaviour of Zign¢, we need to compute the behaviour
of ®; and ®5 near z = 0. To this end, we consider the integral representations in Lemma 6.1, and deform both
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Ao
deformeiN path

FIGURE 15. Deformation of the path A, s, in order to apply residue theorem. Poles are represented.

paths Ay and Ay to the left, as shown in Figure 15. By residue theorem, we obtain a representations of ®;
and P, as a series of residues at the poles s =0, —1,—2.... Then, by the reconstruction dictated by equations
(6.8),(6.12),(6.13),(6.14), for each entry of the matrix Z,izny we obtain an expansion in z and log z, converging
for small |z].
For example, let us compute the first and second columns of the matrix C: by deformation of the path As

we obtain that for small z the following series expansions hold:

1

2 ;T

5(%’1 = 5(1;)’1 = ;—gz2<l>2(ze15)

cz & 1
= 22 res (F(s)51" ( - s) e_i”34_sz_4s)
T2 s=—n 2

n=0

= a1 22 logh 2 + a2 log® 2 + asz?log? 2 + auz?log z + asz? + O(z24),

where «a; can be explicitly computed. By comparison with the first row of nz#zf we determine the entries

Ci1=Ci2 = @Oél, Co1 = Cop = 64 az,
1 1
Cs1 = Csa = TPt Ce1 = Cp2 = —as.
c c
For the other entries we have to consider expansions of 5(1})73, 55)73’ Eg)A, 5{;)74. For example,
cz 1 c?
f(Ff),a = 55),4 =3 3*2('2‘1’/2(2615) + 225 (ze'3)) — >

Il
|
| Qe
_l’_
)
3| Qe
M
8
w
II\ g
s 92}
S
=
—~
@
N
(o3
—
7 N\
N
|
[
~~_
o
|
-
3
w
S
.
»
[V}
NI
Iy
w
~_

51 log2 z+ Balogz + B3 + 0(24),

where f3; can be explicitly computed. So, by comparison of the third row of gz*z we obtain

C31 =042 = ﬂ*
c
Analogously one obtains C3s = Cy;. Note that the other entries Cj;, with j = 3,4,5,6, are uniquely determined
only by the expansion of 55:)71. because of (6.14). The compuation for all the other entries of C' can be done in
the same way, so it will not be repeated here. Due to the length of the result, we write the whole C' in Appendix
A. As it can be seen in Appendix A, only the fifth column of C is expressed in terms of the constant v. This v
will now be determined.

Since S and C are associated with a Frobenius manifold, the constraint (2) of Theorem 2.11 holds:

S = C—le—ﬂiRe—wiun—1<CT)—1. (632)
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Substituting C' of Appendix A with an indeterminate v in the above constraint, we obtain the Stokes matrix

1 0 4 0 0 4
0 1 4 0 0 4
0 0 1 0 0 6
5= —4 —4 —16 1 6 —v —6 ' (6.33)
4(v—=1) 4(v—=1) 16v—-26 —v (v—6v+1 6v—16
0 0 0 0 0 1

By a direct comparison with the expected matrix form (6.25), which dictates that S5 = 0 and Ss5 = 1, we
conclude that necessarily

v = 6.
In this way we have completely determined both the Stokes and central connection matrices as well as the
fundamental matrix Zyigne. See also (6.39) below.

6.5. Monodromy data and Exceptional collections in D’(G). The monodromy data R and C' computed
above can be read as characteristic classes of objects of an exceptional collection in D’(G), as it has been
conjectured by one of the authors ([Dub98]), though the formulation for the central connection matrix was not
well understood then. Following [KKPO08] where the role of the ['*-classes (characteristic classes obtained by
the Hirzebruch’s procedure starting from the series expansion of the functions I'(1 + ¢) near ¢ = 0) was pointed
out, we claim that the central connection matrix (for canonical coordinates in triangular /lexicographical order)
can be identified with the matrix of the C-linear morhisms
X% : Ko(G) ®z C — H*(G;C)
1

Ew ——T*G)uCh(E
2n)ch (G) (E)

I+ (G) := n I'(1 £6;) where §,’s are the Chern roots of T'G,

J
Ch(V) := Z e*™@k g7 are the Chern roots of a vector bundle V,
k

expressed w.r.t.

e an exceptional basis (g;); of Ko(G) ®z C, i.e. satisfying x(g;,&;) = 1, and the Grothendieck—Euler—
Poincaré orthogonality conditions x(e;,e;) = 0 for ¢ > j, obtained by projection of a full exceptional
collection (E;); in D*(G);

e a basis in H*(G;C) related to (09,01, 02,01,1,021,02,2) (the Schubert basis we have fixed) by a (7, )-
orthogonal-parabolic G endomorphism (as described in Section 2.1) which commutes with the operator
of classical u-multiplication ¢;(G) u —: H*(G;C) — H*(G;C).

By application of the constraint (6.32) and the Grothendieck—Hirzebruch-Riemann—Roch Theorem, one can
prove that the Stokes matrix (in triangular/lexicographical order) is equal to the inverse of the Gram matrix:

(S™9)ij = x(cir€5)-
See [CDG] for a proof.

Remark 6.2. As it was formulated in Theorem 1.2 in the Introduction and in Section 3, some natural transfor-
mations are allowed, such as

e the left action of the group Co(n, i, R):
no anction on S, C— GC, (6.34)

where G € Cy(n, u, R) and has the form prescribed by Proposition 6.1;
e the right action of the group (Z/27)*5:

S—ISI, C+—CT, (6.35)

where 7 is a diagonal matrix of 1’s and —1’s;
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o the right action of the braid group Bg:
S— AP S (AP)T, C— C (AP, (6.36)
as in formulae (3.3) and (3.4).
The above actions naturally manifest respectively on the space H*®(G; C), on the set of full exceptional collections
in the category D°(G), and/or on the set of exceptional bases of the complexified Grothendieck group Ko(G)®zC.
More precisely,

e Co(n, 1, R) acts on H*(G;C) as (n, u)-orthogonal-parabolic endomorphisms commuting with the classical
u-product by the first Chern class ¢1 (G);

e the action of the shift functor [1]: D*(G) — D®(G) on the objects of a full exceptional collection projects
as an action of (Z/2Z)*% on K(G) ®z C by changing of sings of the elements of the corresponding
exceptional basis;

e the braid group Bg acts on the set of exceptional collections (and the corresponding exceptional bases) as
follows: the generator 3; ;11 (1 <@ < 5) transforms the collection (Ey,...,E;i—1,E;, Eiy1, Fita..., Fs)
into (E1,...,Ei—1,Lg,Eiy1,E;,E;yo,...,Eg), where the object Lg, E; 11 is defined, up to unique iso-
morphism, by the distinguished triangle

Lg,E;11]—1] > Hom®*(E;,E;11) ® E; — E;y1 — Lg, Eit1.
Notice that our definition of braid mutations of exceptional objects differs from the one given, for example, in
[GKO04] by a shift: this difference is important in order to obtain the coincidence of the braid group action on
the matrix representing the morphism %% with the action on the central connection matrix.

Remark 6.3. The conjecture we are discussing was also formulated in [GGI16] in the same time as [Dubl13] for
any Fano manifold X. In [GGI16] the authors seem to stress the relevance of the class I'T(X), while in [Dub13]
of ' (X). As we will show below, I' (X) and I'"(X) can be interchanged by the action (6.34) of the group
CO (7% M, R)

We now show that the monodromy data computed in the previous Section are of the above form for an
exceptional collection in the same orbit of the Kapranov collection, under the action of the braid group. The
Kapranov exceptional collection for G is formed by vector bundles S*(S*) (S is the tautological bundle), where
S* denotes the Schur functor corresponding to the Young diagram A ?!. In the general case of Gc(k,n), the
graded Chern character of these bundles is given by

_ det(e2m Tty oy,

= Hi<j(62mm _ eQm’zj)

i.e. the Schur polynomial calculated at the Chern roots x1,...,z; of S*. In our case we obtain the following
classes: posing a := e?™1 and b := €>™*2 with z1 + 29 = 01 and z122 = 01,1 we have that

for A\ =0 Ch (S*S*) =1,
for A\=[J,  Ch(S*S*)) =a+b,
for A\=[TJ,  Ch(S"S*)) = (a+b)* —ab,
for \=H,  Ch(S*(8*)) = ab,
for \ =,  Ch(S*8*)) = (a + b)ab,
for \=H-,  Ch(S8%)) = a®”.

Ch (SN(8%)) = sa(e®™1,..., e?™7k) ;

Observing that

8 4
ab =1+ 2mwio; — 27r2(02 +01) — §i7r302,1 + §7r402’2,

4
a+b=2+42mic; — 2r%0y + 277201,1 + 5@'71'30271,

21The reader can find the definition of Schur functors as endo-functors of the category of vector spaces in [FH91]. The definition
easily extends to the category of vector bundles.
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after some computations one obtains all graded Chern characters. Recalling the value of the [F-class
~ 1 4
I'F(G) =1+ 4y0, + 5 (48v% + ) (01,1 + 02) % 5(1673 +ym? —((3))o21

1
+ 35 (7687 + 96+v°7* — m* — 1927((3)) 02,

we can explicitly compute all the classes

1 A~
—— (T7(6) A Cn (8X(5%)) -
4m2c2
We denote by C’iap the matrix obtained in this way: in appendix A the reader can find the entries of the matrix
Ckan-
ap

The Stokes matrix can be put in triangular form by a suitable permutation of (u1, ..., ug), to which a permu-
tation matrix P is associated, according to the transformations (3.1). There are two permutations which yield
PSP~! in triangular form, namely

1t (U, ug, uz, ua, us, ue) > (U, uy, us, wy, us, ug) = (Us, U, Uz, U, U3, Us ), (6.37)

T2 (uh U2, U3, Ug, Us, u6) = (u/17 u/27 ug’w 'Ulip ui’)? U/G) = (u57 Ugq, U1, U2, U3, UG). (638)
In both cases, the Stokes matrix S in (6.33), with v = 6, becomes

1 -6 20 20 70 20
0 1 —4 -4 —-16 -6
1 _| 0 o0 1 0 4 4

S+—— PSP~ = 00 0 1 4 4 (6.39)
0 0 0 0 1 6
0 0 0 0 0 1

The matrix C in Appendix A, with v = 6, becomes

Cw—CP! (6.40)

A direct computation proves the following:

Theorem 6.2. Consider the monodromy data of the quantum cohomology of the Grassmannian G at 0 €
QH*(G), as computed in Section 6.4.3 with respect to an admissible line*> £ = ((¢) of slope 0 < ¢ < T and
w.r.t. the basis of solutions (6.21). These are the matriz S in formula (6.33) and the matriz C in Appendiz A,
with v = 6. Arrange S in triangular form as in (6.39), with P associated with one of the above permutations
71 or T above, and transform C as in (6.40). The data so obtained are related to the Kapranov exceptional
collection by a finite sequence of natural transformations (6.54), (6.35), (6.36). More precisely, the following

sequence transforms CP~! into Ckap

e (1) the change of sings in the normalised idempotents vector fields, determined by the action (6.35) of
the diagonal matriz T := diag(1,—1,—1,1,—1,1) (if we start from the cell where 11 is lexicographical),
or T :=diag(1,—1,1,—1,—1,1) (if we start from the cell where 15 is lexicographical),

e (2) change of solution at the origin through the action (6.34), with G equal to

1 0 0 0 0 0
2im 1 0 0 0 0
—27? 2im 1 0 0 0

A= —972 %N 0 1 0 0 € CO (777 Hs R)a
—% (8ir®)  —dnm? 2ir 2w 1 0
ant o _1(8in®) —27® —27 2im 1

e (3) the action (6.36) with either the braid B120568450823034 (if we start from the cell where 1 is lexico-
graphical), or the braid B34120568450230834 (if we start from the cell where o is lexicographical).

22The computations have been done for ¢ = 7/6, but nothing changes if 0 < ¢ < %, since the sectors where the asymptotic
behaviours are studied always are the same Sieg /right-
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Moreover, CP~1 in (6.40) is transformed into C;ap if, after the sequence of the above transformations (1),(2),(3)

above, the following transformation is further applied:
e (4) the action (6.34), with matriz G equal to

1 0 0 0 0 0
-8y 1 0 0 0 0
- 3277 8y 10 0 0
b= 3272 —S’Y 0 1 0 0 € CO (7]7 1y R)
TUTRCTS R [ A S
(167 —v¢(3)) §(C(3)—649%) 329% 329 —8y 1

The inverse of the Stokes matriz obtained from PSP~! in (6.39) by either the sequence (1),(2),(3) or
(1)(2)(3)(4) (recall that steps (2) and (4) act trivially on S) coincides with the following Gram matriz of

the Kapranov exceptional collection

1 4 10 6 20 20
001 4 4 16 20
00 1 0 4 10

Grav =10 0 0 1 4 6 (6.41)
00 0 0 1 4

00 0 0 0 1

Equivalently, the Stokes and connection matrices at 0 € QH®*(G) correspond to the exceptional block collections
obtained from the Kapranov block collection by mutations under the inverse of the braid [1208568450823034 or the
braid B34012856845023034 (the action of B34 acting just as a permutation of the third and fourth elements of the
block).

Remark 6.4. In both cases Cf(rap and Cy,, the realtion (6.32) holds between C;grap and Gg;p.

6.6. Reconstruction of Monodromy Data along the Small Quantum locus. In this section we recon-
struct the monodromy data at all other points of the small quantum cohomology of G, by applying the procedure
described in Section 4.1, and already illustrated in Section 5.

We identify the small quantum cohomology with the set of points ¢t = (0,2,0,...,0). These points can be
represented on the real plane (Ret?,Imt?). At a point (0,¢2,0,...,0), the canonical coordinates are (6.3), so
that the Stokes rays are

Rij(1) = €/ Rij(0) = 71"/ Ry (0),
where R;;(0) are the rays R;; of Section 6.4.2. Let £ be a line of slope ¢ €]0, 7/4[, admissible for ¢* = 0, i.e.
for the the Stokes rays R;;(0). Then, whenever Im¢? € 7 - Z — 4¢, at least a pair of rays R;;(t?) and Rj;(¢?) lie
along the line ¢, for some (¢, 7). This means that the small quantum cohomology of G is split into the following
horizontal bands of the (Re#?,Im t?)-plane:

Hy = {t?: kr—4d¢ <Imt* < (k+ 1)1 — 49}, keZ

If £2 varies along a curve connecting two neighbouring bands, at least a pair of opposite rays R;; (?) and Rﬁ(t2)
cross ¢ in correspondence with ¢2 crossing the border between the bands.

A point (0,¢2,0, ...,0), such that ¢? is interior to a band, is a semisimple coalescence point, where Theorem
4.1 applies. The polydisc U, (u(0,#2, ...,0)) is split into two ¢-cells. Each cell correspons, through the coordinate
map p — u(p), to the closure of an open connected subset of an ¢-chamber of QH*(G), as explained in Section
4.1. Therefore, each band H}, precisely belongs to the boundary of two ¢-chambers corresponding to the two cells,
while each line Imt? = k7w — 4¢ between two bands Hy_; and Hj, belongs to the intersection of the boundaries
of four neighbouring chambers of QH*(G). As explained in Section 4.1, the monodromy data computed via
Theorem 4.1 in U, (u(0,t2,...,0)) are the data of the two chambers shearing the boundary H. In particular,
as a necessary consequence of Theorem 4.1, these data are the data at each point of Hj. This means that the
monodromy data are constant in each band Hy.

In order to compute the monodromy data in every chamber of QH*(G) is sufficies to apply the procedure
of Section 4.1 starting from the data C, S computed at ¢t = 0 in Section 6.4.3. Preliminary, by a permutation
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P, we have obtained upper triangular PSP~! and the corresponding CP~! in (6.39) and (6.40), which are
the monodromy data in the cell of U, (v'(0,0,...,0)) where u}(0,0,...,0), ..., ug(0, 0, ...,0) are in lexicographical
order as in (6.37) or (6.38). Thus, they are the data of the band Hy. Then, the braid group actions (3.3) and
(3.4) can be applied. In particular, we have computed the action of those braids which allow to pass from the
chamber (with lexicographical order) whose boundary contains Hg, to the chambers whose boundary contains
Hp, for k = 1,2,...,8. The values of S and C so obtained are, as explained above, the constant monodromy
data for Hg, Hi, ...., Hg. They are reported in Table 3. From the table, we can read the monodromy data for
the whole small quantum cohomology, since for any k € Z, the data for Hj g are the same as for Hy, as will be
clear from the explanation below.

In order to determine the braid connecting neighbouring #Hj’s, it suffices to consider a fixed configuration
of distinct uy(0,t2,...,0),...,ug(0,%2,...,0) in lexicographical order, corresponding to a fixed t = (0,¢2,0,..,0)
slightly away from ¢t = 0. The corresponding rays Rij(tz) are fixed. Then, we let £ rotate and keep track of the
rays which are crossed by ¢. Indeed, the motion of the point (0,2,0,...,0) by increasing Im(¢?) determines
a uniform clockwise rotation of the Stokes rays, whose effect is the same of a counter-clockwise rotation of
the admissible line (by increasing its slope ¢) and the consequent gliding of the ¢-horizontal bands towards
Im(#?) — —oo. The result is shown in Figure 16. Note that, each time ¢ crosses a ray, the coordinates u;’s must
be relabelled in the lexicographical order. As it appears in Figure 16 and Table 3, the passage from Hj to Hy11
is obtained by composition of the braids

w1 = B128s6, wa 1= (2384583423845,

in the form of products of increasing length wy, wiws, wiwowr, wiwewiws, ... and so on. Coherently with
Lemma 3.1, after a complete mutation of the admissible line ¢, the braid acting on the monodromy data is
(wiw2)* = (B12P23B34845P56)%, the generator of the center of the braid group Bg. This corresponds to the
cyclical repetition of the same Stokes matrix in Hy and Hgs (while C is shifted to M()_lc).

Remark 6.5. There is a remarkable similarity between the above cyclical repetition and the fact that exceptional
collections are organised in algebraic structures called helices, introduced in [Gor89] [GR87], and extensively
developed in [Gor90] [Gor94] [GKO04]. This will be thoroughly explained in a forthcoming paper [CDG].

Table 3: List of Stokes matrices for all bands decomposing the small
quantum cohomology of G: the computation is done at a point
(0,£2,0,...,0) w.r.t. a line £ of slope ¢ €]0,7/4[, admissible for
t = 0. The starting matrix Sjex in Ho is PSP~ of formula (6.39),
with signs changed by (6.35) with Z = diag(-1,1,1,—1,1,—1).
The braids acting on the monodromy data are wy := B1205¢ and

wg 1= 523545534ﬂ23545-

Band Hj, H Slex ‘ Braid ‘
1 6 —-20 20 —-70 20
01 -4 4 -16 6
0<Im(t?)+4p<m 8 8 (1) (1) i _44 id
0 0 O 0 1 —6
0 0 O 0 0 1

Continued on the next page
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Table 3 — Continued from the previous page

Band Hy, Slex Braid
1 -6 -4 4 6 20
0 1 4 -4 -16 -70
0 0 1 0 —4 =20
2
7w < Im(t%) + 4¢ < 27 0 0 0 1 4 2 w1
0 O 0 0 1 6
0 0 0 0 0 1
1 6 20 —-20 —-70 20
01 4 -4 —-16 6
0 0 1 0 —4 4
2
2 < Im(t*) + 4¢ < 37 00 0 1 4 4 Wiws
0 0 O 0 1 —6
0 0 O 0 0 1
1 -6 4 —4 6 20
0o 1 -4 4 -16 -70
0 0 1 0 4 20
2
3 < Im(t*) + 4¢ < 4w 0 0 0 1 4 _20 W1Wa1
0 O 0 0 1 6
0 0 0 0 0 1
1 6 =20 20 —-70 20
01 -4 4 -16 ©6
0 0 1 0 4 —4
41 < Im(t?) + 4¢ < 57 00 0 1 -4 4 W1WoW1Wo
0 0 0 0 1 —6
0 0 0 0 0 1
1 -6 —4 4 6 20
0 1 4 -4 -16 -70
0 0 1 0 —4 =20
51 < Im(t?) + 4¢ < 67 0 0 0 1 4 20 W1WaW1Waw1
0 O 0 0 1 6
0 O 0 0 0 1
1 6 20 —20 —-70 20
0 1 4 —4 —-16 6
0 0 1 0 —4 4
6m < Im(t?) +4¢ < 77 00 0 1 4 4 W1 Wol Wal1 W2
0 0 O 0 1 —6
0 0 O 0 0 1

Continued on the next page
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Table 3 — Continued from the previous page

Band Hy, Slex Braid
1 -6 4 -4 6 20
0o 1 -4 4 -16 -70
0 0 1 0 4 20
7 < Im(t?) + 4¢ < 87 0 0 0 1 4 _90 W1 Wal] Wal] Waw
0 O 0 0 1 6
0 O 0 0 1
1 6 =20 20 -—-70 20
01 -4 4 -16 ©6
0 0 1 0 4 —4
81 < Im(t?) +4¢ < 97 00 0 1 -4 4 W1 W1 Wl Wai Wy
0 0 0 0 1 —6
0 0 0 0 0 1

7. A NOTE ON THE TOPOLOGICAL SOLUTION FOR FANO MANIFOLDS

For quantum cohomologies of smooth projective varieties, a fundamental system of solutions of the equation
for gradients of deformed flat coordinates

0aC = 2Ca,
(7.1)
62( = (Z/{ + %M) Cv

can be expressed in enumerative-topological terms, namely the genus 0 correlations functions.
Proposition 7.1. For a sufficiently small R > 0, it is defined an analytic function

©: Bc(0; R) x Q — End(H*(X;C))

O(zt): = 1d + aio<< f ’_(z; , Ta>>0(t)Ta

o N
=Id+ )] 2" Y (=), Ta)e(OT
n=0 a=0

with series expansion

This function © satisfies the following properties:
(1) for any ¢ € H*(X;C), the vector field

O, = O(2, 1) = ¢ + C§0<< - f‘i ,Ta>> (6T

¢+ ), 2" qux Tayo(t)T™

satisfies the equations
6a®¢, = z&a * @¢;
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(/ﬂ23ﬁ45

B23 a5

i W ...... B23Bas 312ﬁ56\\‘1“-
FIGURE 16. The picture, to be read in boustrophedon order, shows the braids corresponding
to the passage from one band Hj to Hypy1 . Starting from the configuration of the canonical
coordinates at 0 € QH*(G), we slightly split the coalescence as described in the first red
picture in the first line. The numbers represent the lexicographical order of the canonical
coordinates w.r.t. the admissible line. Letting the admissible line ¢ continuously rotate by
increasing its slope, we determine all elementary braids acting in the mutation up to the next
red configuration. By coalescence of the points ug, u4 in a red picture we obtain a configuration
of canonical coordinates realized in the locus of small quantum cohomology. Thus we deduce
that successive bands of the small quantum cohomology are related by alternate compositions

of the braids w; := B12856 and wy := 2345834523 845-

(2) when restricted to the small quantum locus Q N H*(X;C), d.e. t* =0 fori=0,r +1,...,N, then

U(b « - 4
Oy =¢€* u¢+z Z SB< ¢’Ta>02ﬂT’ (5:=;tTieH2(X;(C);

B#0 a=0
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(3) for any ¢1,¢d2 € H*(X;C) we have
n (@(—Z, t)(blv @(Z, t)(b?) =n ((blv ¢2) ;
(4) for any ¢ € H*(X;C), the vector field
(:)¢ = (@(zgt) o z“zcl(X)U(_)) )
s a solution of the system (7.1), i.e.

0uBy = 20 s By, 0.8, — (u ; 1u) 8,

Thus, the vector fields éTa ’s are gradients of deformed flat coordinates: if (@g)a,g, (ég)ag are the matrices
representing the two End(H*(X; C))-valued functions © and © w.r.t. the basis (Tn)a, i.c.

N N
O(z,t)Tp = Y O5(2, 1) e, O(2,t)T5 = > O5(2,1)Ta,

a=0 a=0
then there exist analytic functions (ta(2,t))a, (ha(2,t))a on Be(0; R) x Q such that
0% (2, 1) = (gradis(z,1)*, (fo,f1,...,En) = (ho,ha, ... hy) - 227,
O35(z,t) = (grad hs(z,t))?, 0T (—z,t)nO(2,t) = n,

[e¢]
ha(2,t) == Y hap)2”,  hao(t) = ta = *naa.
p=0

Proof. Notice that
0
Y (z,t) := H(z,t)z"2%,  H(zt) = 2 H,(t)zP, Hp(t)=1
p=0

is a fundamental solution of (7.1) if and only if H(z,t) satisfies the system
OuH = 2C, H,

0.H=UH + [u,H] - HR.

Because of the symmetry of ¢+, the columns of H are the components w.r.t. (da)a of the gradients of some
functions:

0
ha(z,t) i= Y hap(t)2”,  hao(t) = ta,
p=0

Hg(z,t) = (grad hg)?, Hg‘_’p(z,t) = (grad hgp)*.
The above system for H is equivalent to the following recursion relations on A, p’s functions:

0a0phqyp(t) = copluhqyp1(t), p=1, (7.2)

dime X — 2 o
Le(gradhgp) = (p + Cf + ua> grad he,p + Z (gradhg,p 1)RE, p=1.
B=0
The last equation is equivalent to the recursion relations on the differentials

dime X — 2 N 5
Lu(dhap) = (p— ——5—— +ta | dhap + Yl dhspaRY, p=1. (7.3)
B=0

In our case we have
H(z,t) = (03(2,1)ap,  Oahpp(t) = L1p-1Tp, Ta Do (1)-
The recursion relations (7.2) then reads

<<Ta7Tﬁ7T7>>o = <<Ta’TB7TV>>077V7 forp =1,
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o, mp1Ty, T3 )y = Lo, T3, T" Yo Lrp—2Ty, T ), for p = 2.
These are exactly the topological recursion relations in genus 0.
Let us now prove that also the recursion relations (7.3) hold. K. Hori ([Hor95], see also [EHX97]) proved
that, for any w e H?(X;C), we have the following constraint on the genus g free energy

OFX OFX 60 ol
a g _ oV ja,mn g9 -9 a,04v,0 "9 .
w 300 = BGEZH(X) <L ) gﬁJrZa wel o T+ a;gw Coaut™ " 54 JqucdlmX_l(X), (7.4)
where .7-';7(5 is the (g, 8)-free energy
[ee]
1
X —
Floi= 2 i
n times
By dimensional consideration, one obtains also the selection rule
a,n a‘/—:;( X : X
Z(n+qa—1)t Mg = Z fw Fop+(3—dimX)(g—1)F, . (7.5)
n,o BeEf(X) B

If we introduce the perturbed first Chern class
E(t) i=c1(X) + Y (1= o — mit" "1 (T,) = D 7 1 (c1(X) U T,),
m,o
and using the selection rule (7.5), the Hori’s constraint (7.4) (specialized to ¢ = 0 and w = ¢;(X)) can be
reformulated as

1
(€ = (3 — dim X)X + S0 L e (X) U T, U T,

Taking the derivative w.r.t. t*",t%0 we obtain
€€, mTa, T ) — (n+ qa + qp — 2)mnTa, Tp Do — Lmn-1(c1(X) U Ta), Tp g
= (3 —dim X) {7 To, T ) + (5n’0J- a(X)u T, uTps.
X

These recursion relations, restricted to the small phase space, are easily seen to be equivalent to (7.3). This
proves (1), (4) and the convergence of O(z, t) for |z| small enough, because of the regular feature of the singularity
z = 0. The proof of (2) can be found in [CK99]. Condition (3) follows from WDVV and string equation, as
shown in [Giv98]. O

In the case of Fano manifolds, we have the following analytic characterization of the fundamental solution
(ég) 5 Furthermore, because of Proposition 2.1, we obtain another proof of (3) in the previous Proposition.

Proposition 7.2. If X is a Fano manifold, among all fundamental matriz solutions of the system _(7.1) for
deformed flat coordinates,®® there exists a unique solution such that, on the small quantum locus (i.e. t' =0 for
t=0,7+1,...,N) the function z~*H(z,t)z* is holomorphic at z = 0, with series expansion

THH(z, )2 = et 4 2K (t) + 22 Ka(t) + ..., t'=0fori=0,r+1,...,N,

This solution coincides with the solution (ég@;,t)) 5
&,

Proof. We already know from Proposition 2.1 that such a solution is unique. Let us now prove the main
statement. In what follows, we will denote the degree deg T, just by |a] for brevity. By point (2) of Proposition
7.1, we have that

z (@(z“fb)) =z ( v zle + Z Z XB < UZ?ZJ ¢aTa>0 , 5Ta> ,

B#0 a=0

23Throughout the paper, Y(z,t) = H(z,t)2z*2" has been denoted Y (z,t) = ®(z,t)z+2".
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with § := Y,!_| t'T; € H*(X; C). Specialising to ¢ = T, we have

N 0 §,0
- eﬂ Lo — v 2
(O = VTt 3 D1 Y S AT (098 U ), Ta)g 50
B#0 a,A=0n,k=0

In the second addend, we have non-zero terms only if

. |Oz‘ + |)\‘ = 2dim¢ X,
e 2n+ 2k + |o| + |a| = vir dimg X2 3.

By putting together these conditions, we obtain
1
n+1l+k+ (o] —|N) = —J wx.
2 i

The assumption of being Fano is equivalent to the requirement that the functional g — — Sﬁ wx is positive on
the closure of the effective cone. This proves the Proposition, the l.h.s. being exactly the exponents of z which
appear in the above series expansion. O

Example 7.1. Notice that the solution (6.21) that we considered in the previous section for the computation
of the monodromy data fo QH*(G) satisfies the condition

2" (n7'5(0,2)n) z* is holomorphic near z = 0,

1—2z4 224 —zt 24 28
0 42441 —z* 2 0 2%
0 0 1 0 —z4 24
— -1 B 9
27* (7180, 2)n) = 0 0 0 1 A A +0(2?).
0 0 0 0 1— 424 224
0 0 0 0 0 224 +1

This means that (n='5(0, 2)n) 2#2" coincides with the topological solution 0(0, 2).

APPENDIX A.

Here we summarize the explicit values for the columns of the central connection matrix C' = (C;;), computed
in Section 6.4.3, where v is indicated. The correct value is v = 6 (v was first introduced in (6.28)).

1
24/cm?
4y +im
24/cm?
48~2 +24iym—572
124/cm?
Ci = 48724 24iy T+ T )
124/cm?
64~°3 +48iy? w4y +3im> —4¢(3)
64/cm?
768~ +768i7 > m+967% w2 +144iyn® — 1t —48(4y+im)¢(3)
72+/cm?

1
24/cm?

4y +im

24/cm?
48~2 4 24iym+ T2
124/cm?
Ciz = 48v2+2)4{'77r757r2 ,
124/cm?
64~°3 +48iy? w4y +3im> —4¢(3)
64/cm?
768~ +768i7> m+967% w2 +144iym® — 7t —48(4y+im)¢(3)
72./cm?
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—768v*—1536iv°m+1056~> 7% —237* +96i7¢ (3) +96+ (3im® +2¢(3))

OF SEMISIMPLE FROBENIUS COALESCENT STRUCTURES

1
44/cm?
—2y—im
24/cm?
—48+%—48iym+117>
244/cm2
—48+v%—48iym+117> )
244/cm?
2¢(3)—(2v+im) (4y+im)(4y+3iT)
64/cm?

CZ‘4(U) =

144+/cm?

v—1
44/cm?
2y(v—1)+im

24/cm?
48~%(v—1)+48iym+(v+11) 7>

244/cm?
48~%(v—1)+48iym+(v+11)7>

244/cm?

3272 (v—1)+48iv 1 +2v(v+11) 72 —3in® —2(v—1)¢(3)
64/cm?

7687* (v—1)+1536i7° 7 +96~ (v+11) 7% — (v+23)7* —96im( (3) +96~ (—3ir® —2(v—1)¢(3))

38407* +1536i73 1416327272 —288iyn> —297* —960~v¢(3)—96i7¢(3)

144./cn?

5
4./cm?
10\“//;1'77
2+/cm?
2402 +48iym+ 177>
244/c?

24072 +48iyn+177> )

244/cm?
160> +48iy2m+34ym? —3im® —10¢(3)
64/cm?

24./cm?
Ois = \[ 2

768~y

144+/cm?

_1
44/cm?
0

2
Ve,
48y +m

48~v“+7 )
244/cm2
—C(3)+16~° +y7>
3/cm?
_1927¢(3)—768~" +7* —967° 7>
144./cn?

1
4\/E7r2
Yt
Vem?
48~ 4+96iym—4Tn2
244/cm?
48+% 4+96iyT—477>
244/cm?
(y+i7m) (4y+3im) (4y+5im)—C(3)
34/cm?
+3072iy3 1 —4512~v2 72 —2880iym> +6717w* —192(y+i7)¢(3)

144\/cn?
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We write now entries of the matrix C’gap whose columns are given by the components of the characteristic

classes

the order of the column is given by A=0, A =1, A =2, A= (1,1), A = (2,1) and \ = (2,2).

’ 1 T7(G) U Ch (SM(8));
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(C) -
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_1
44/cm?
0
Jen?
L+ﬁ
Pz )
- NG
(CKa ) = 1292 )
PJo it 2
Ve
—((3)+167° +ym?
3y/cm?
_ 192~¢(3)—768~* + 7t —96+° 7>
144+/cm?

_1
24/cm?
4y+im
24/cm?
2~(2v+im)

_ 5
12
Ve
2~,(2:2+m) +T72
Ve
64~> +48iy % m+4ym? +3in> —4¢(3)
6+/cm?

7687 +768iv® m+967° 72 +14diyw® —m* —48(4y+im){(3)
72+/cm?

_3
44/cm?
3(2y+in)
24/cm?
6y(y+im) 19

72 8

(&
6y(y+em) | 13
Sain) 4 13

Ve
3272 +48iy2m—6ym2 +5im> —2¢(3)
24/cm?

4 2i~3 .
7672+%+32%+10i77r+%7 2(2v+im)¢(3)

\/E ks

1
44/cm?
2y+im
24/cm?

2v(y+im) 11
24

w2

Ve

2y(y+im) 11

= 24
Ve

(2y+im) (4y+im) (4y+3im)—2{(3)
64/cm?
7687 +1536iy3 T —1056+> 7> —288iym® +237" —96(2v+im)¢(3)
144+/cm?

1
24/cm?
4y+3im
24/cm?
2y(2y+3im) 29
- 12
NG
2y(2v+3im) 1

P 1

<

¥

Ve
(4y+im) (4y+3im)(4y+5im)—4((3)
64/cm?
768" +2304i7° 7 —2208+° 7> —720iy7® +477* —48(4vy+3im)¢(3)

72/cm?
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1
44/cm?
y+im
Vem?
2y(y+2im) 47

24

i

_ Ve
(OKap)HE! - 27(77;21#) _%

NG
(y+im) (Ay+3im) (dy+5im) —¢(3)
34/cm?
768y +3072iy3 m—4512~2 72 —2880iyn® +6717* —192(y+iT)¢(3)
144/cn?

By application of the constraint

we find

1 -4 6 10 —20 20 1 4 10 6 20 20
0 1 -4 -4 16 —20 01 4 4 16 20

¢ |0 0 1 0 -4 6 g1 _| 00 1 0 4 10
Kap 0 0 0 1 -4 10 | Kap 00 0 1 4 6
00 0 0 1 —4 00 0 0 1 4

0 0 0 0 0 1 00 0 0 0 1

Now, Sg;p coincides with the Gram matrix Gkap = (X(SAS * SHS *)) A of the Kapranov exceptional collection.
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