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1. Introduction

Let X be a smooth projective variety. Assume that the odd cohomologies Hodd(X; C)
vanish. Denote by Xg,m,β the moduli space of stable maps of degree β ∈ H2(X, Z) with 
target X of curves of genus g with m marked points. Choose a basis φ1 = 1, φ2, . . . , φn of 
the cohomology space H∗(X; C). The genus g Hodge integrals of X are certain rational 
numbers which admit the generating function

Hg(t; s) =
∑

β∈H2(X,Z)

〈e
∑

k≥1 s2k−1ch2k−1(E)e
∑

p≥0 tα,pτp(φα)〉g,β . (1.1)

Here E is the rank g Hodge bundle over Xg,m,β, chk(E) ∈ H2k(Xg,m,β) are the compo-
nents of the Chern character of E, and

〈
l∏

i=1
chki

(E)
m∏
j=1

τpj
(φαj

)〉g,β

=
∫

[Xg,m,β ]vir

l∏
i=1

chki
(E) ∧

m∏
j=1

ev∗j (φαj
) ∧ c

pj

1 (Lj), (1.2)

where Lj are the tautological line bundles over Xg,m,β, and evi : Xg,m,β → X are the 
evaluation maps. The indices of the independent variables s2k−1, tα,p take integer values 
k ≥ 1, α = 1, . . . , n, p ≥ 0. Here and in what follows, the Einstein summation convention 
is assumed only for repeated Greek indices with one-up and one-down. We call Hg(t; s)
the genus g Hodge potential of X, and the function

H(t; s; ε) =
∞∑
g=0

ε2g−2Hg(t; s)

the Hodge potential of X. Here ε is an independent variable. Note that when the 
s-parameters are set to zero, the functions Hg(t; s), H(t; s; ε) reduce to the generating 
functions for Gromov–Witten invariants of X

Fg(t) = Hg(t;0), F(t; ε) = H(t;0; ε).

The partition function ZE = ZE(t; s; ε) of the Hodge integrals (also called the total 
Hodge potential in [28]) is defined by

ZE(t; s; ε) = eH(t;s;ε).

As it was shown by C. Faber and R. Pandharipande [22], this function satisfies the 
equations
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∂ZE

∂s2k−1
= B2k

(2k)!

⎛
⎝ ∂

∂t1,2k
−
∑
p≥0

tα,p
∂

∂tα,p+2k−1

+ ε2

2

2k−2∑
p=0

(−1)pηαβ ∂2

∂tα,p∂tβ,2k−2−p

)
ZE, (1.3)

where B2k are the Bernoulli numbers. Here the matrix (ηαβ) = (ηαβ)−1 is the inverse1

to the Poincaré pairing matrix

ηαβ =
∫
X

φα ∧ φβ .

To simplify notations, we redenote − B2k
(2k)!s2k−1 by sk. In new notations the equations 

(1.3) take the form

∂ZE

∂sk
=

⎛
⎝∑

p≥0
t̃α,p

∂

∂tα,p+2k−1 − ε2

2

2k−2∑
p=0

(−1)pηαβ ∂2

∂tα,p∂tβ,2k−2−p

⎞
⎠ZE, (1.4)

ZE(t; 0; ε) = Z(t; ε). (1.5)

Here k ≥ 1, t̃α,p = tα,p − δα1 δ
p
1 , Z(t; ε) = eF(t;ε) is the partition function for Gromov–

Witten invariants of X.
In this paper, we present an algorithm to solving equations (1.4) with the given initial 

condition (1.5). It yields a representation of the Hodge potentials Hg(t; s) in terms of 
the Gromov–Witten potentials Fg(t) and the genus zero primary two-point functions

vα(t) = ∂2F0(t)
∂t1,0∂tα,0

, α = 1, . . . , n.

Such a representation of the Hodge potentials enables us to derive the hierarchy of 
PDEs in certain normal form [16] that controls the Hodge integrals as well as to study 
its properties.

Moreover, in our construction the quantum cohomology of X can be replaced with an 
arbitrary calibrated semisimple Frobenius manifold. Recall that the construction of [16]
associates with such a Frobenius manifold an integrable hierarchy of topological type. It 
is a hierarchy of Hamiltonian PDEs of the form

∂uα

∂tβ,q
= Pαγ δHβ,q

δuγ(x) , α, β = 1, . . . , n, q ≥ 0 (1.6)

1 We will use the matrices (ηαβ) and (ηαβ) for raising and lowering indices. E.g., vα = ηαβvβ , vα = ηαβv
β

(see below).
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with n = the dimension of the Frobenius manifold. Here the Hamiltonian operator Pαγ =∑
g≥0 ε

2gPαγ
g and the Hamiltonians

Hβ,q =
∫

hβ,q(u;ux, . . . ; ε) dx, β = 1, . . . , n, q ≥ 0

are formal power series in an independent variable ε2 of the form

Pαγ
0 = ηαγ∂x, Pαγ

g =
2g+1∑
k=1

Pαγ
g,k(u;ux, . . . , u

(2g+1−k))∂k
x , g ≥ 1, (1.7)

hβ,q = θβ,q+1(u) +
∑
k≥1

ε2khβ,q,k(u;ux, . . . , u
(2k)), (1.8)

where u = (u1, . . . , un), u(m) = ∂m
x u, (ηαγ) is a constant symmetric invertible matrix 

(which is also used to raise the Greek indices, similarly as footnote 1), and Pαγ
g,k , hβ,q,k are 

graded homogeneous polynomials [7,8] in uγ
x, uγ

xx, . . . , uγ,m = ∂m
x uγ of degree 2g+1 −k

and 2k respectively with the assignment of degrees

deg ∂m
x uγ = m.

In the above formula θβ,q(u) are the coefficients of expansion of the deformed flat coor-
dinates associated with the chosen calibration of the Frobenius manifold.

As it is clear from the form (1.7), the variables u1, . . . , un are densities of Casimirs 
of the Poisson bracket. It is convenient to include them into the list of conservation laws 
hβ,q of the hierarchy assigning to them the level −1,

hβ,−1 = uβ , β = 1, . . . , n, (1.9)

Hβ,−1 =
∫

uβ(x) dx, Pαγ δHβ,−1

δuγ(x) ≡ 0.

The hierarchy (1.6) also possesses the tau-symmetry property

∂hα,p−1(u;ux, . . . ; ε)
∂tβ,q

= ∂hβ,q−1(u;ux, . . . ; ε)
∂tα,p

, α, β = 1, . . . , n, p, q ≥ 0. (1.10)

Due to this property, for an arbitrary common solution

uα(x, t; ε) = vα(x, t) +
∑
g≥1

ε2gv[g]
α (x, t), α = 1, . . . , n (1.11)

to the equations (1.6), there exists a tau-function

τ(x, t; ε) = exp
∑

ε2g−2Fg(x,t) (1.12)

g≥0
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such that

uα(x, t; ε) = ε2
∂2 log τ(x, t; ε)

∂x ∂tα,0
. (1.13)

Note that, in particular

vα(x, t) = ∂2F0(x, t)
∂x ∂tα,0

. (1.14)

The functions v1(x, t), . . . , vn(x, t) are common solutions to the so-called principal hi-
erarchy

∂vα
∂tβ,q

= ∂

∂x

∂θβ,q+1(v)
∂vα

(1.15)

obtained from (1.6) by the “dispersionless limit” ε → 0. Moreover, the higher genus 
terms Fg, g ≥ 1 in the expansion of the free energy can be expressed [18,16] as functions 
of vα(x,t) and their x-derivatives, up to the order 3g − 2.

Remark 1.1. According to E. Witten [43] in a certain class of quantum field theories the 
partition function can be identified with the tau-function of an integrable hierarchy. The 
time variables of the hierarchy are identified with the coupling constants of the quantum 
field theory; the dependent variables of the hierarchy are two-point correlators of the 
so-called primary fields,

uα = 〈〈φ1φα〉〉, α = 1, . . . , n.

The dimension of the Frobenius manifold coincides with the number of primaries. The 
Hamiltonian densities of the hierarchy coincide with certain two-point correlators of the 
so-called gravitational descendents of the primaries. In our notations,

hα,p(u;ux, . . . ; ε)|u=u(x;t;ε) = 〈〈φ1,0φα,p+1〉〉 = ε2
∂2 log τ(x, t; ε)
∂x ∂tα,p+1 . (1.16)

The parameter ε can be identified with the string coupling constant.

Hamiltonian hierarchies of the type (1.6)–(1.10) will be called tau-symmetric integrable 
hierarchies of Hamiltonian evolutionary PDEs (see below Definition 4.1 for details). They 
can be considered as ε-deformations of principal hierarchies (1.15).

Remark 1.2. In the axiomatic definition [16] of an integrable hierarchy of topological 
type it is also included existence of a bihamiltonian structure of equations (1.6). For the 
hierarchy (1.6) associated with an arbitrary semisimple calibrated Frobenius manifold 
the second Hamiltonian structure does exist. However the proof of polynomiality in jet 
variables of this second Hamiltonian structure remains an open question. The class of 
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tau-symmetric Hamiltonian integrable hierarchies is wider than the subclass of integrable 
hierarchies of topological type.

Let us fix a calibrated n-dimensional semisimple Frobenius manifold; choose a particu-
lar solution of the form (1.11) to the associated hierarchy (1.6) such that the tau-function 
of this solution satisfies the celebrated string equation:

∑
p≥1

t̃α,p
∂τ(t; ε)
∂tα,p−1 + 1

2ε2 ηαβ t̃
α,0t̃β,0τ(t; ε) = 0

with t̃α,p = tα,p− cα,p for some constants cα,p (from now on we will suppress the explicit 
dependence on x due to the identification x = t1,0). The solution is called topological if 
cα,p = δα1 δ

p
1 . Denote

F(t; ε) =
∑
g≥0

ε2g−2Fg(t) = log τ(t; ε)

the logarithm of τ(t; ε). We want to solve the system of equations

∂ZE

∂sk
=

⎛
⎝∑

p≥0
t̃α,p

∂

∂tα,p+2k−1 − ε2

2

2k−2∑
p=0

(−1)pηαβ ∂2

∂tα,p∂tβ,2k−2−p

⎞
⎠ZE (1.17)

with the initial data

ZE(t; 0; ε) = eF(t;ε). (1.18)

The logarithm of the solution

logZE(t; s; ε) =: H(t; s; ε)

will be called Hodge potential associated with the Frobenius manifold. Note that it also 
depends on the choice of a solution to the hierarchy (1.6). The solution to (1.17)–(1.18)
will be written in the form

ZE(t; s; ε) = exp
∑
g≥0

ε2g−2Hg(t; s)

where the coefficients Hg(t; s) of the genus expansion are written in terms of Fg(t) and 
certain polynomials in s1, s2, . . . , sg with coefficients depending polynomially on the 
variables ∂k

xv
α = ∂k

xv
α(t), k ≥ 2. We also derive upper bounds for the degrees of these 

polynomials with respect to a gradation deg defined as follows

deg sk = 2k − 1, k ≥ 1, (1.19)

deg ∂j
xv

α = j − 1, j ≥ 2. (1.20)
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Theorem 1.3. For an arbitrary calibrated semisimple Frobenius manifold and an arbitrary 
solution (1.11) to the associated integrable hierarchy of topological type there exists a 
unique Hodge potential determined by the system of equations (1.17) with the initial 
conditions (1.18). It can be represented in the form

H0 = F0,

H1 = F1 −
1
2s1η

αβ∂vα∂vβF (v),

Hg = Fg + ΔHg

(
v; vx, vxx, . . . , v(3g−3); s1, . . . , sg

)
for g ≥ 2,

where F is the potential of the Frobenius manifold, ΔHg (g ≥ 2) is a polynomial in 
s1, . . . , sg, vxx, . . . , v(3g−3) and a rational function in vx satisfying

deg ΔHg ≤ 3g − 3. (1.21)

The coefficients of these polynomials/rational functions are smooth functions of v be-
longing to the semisimple part of the Frobenius manifold. They are independent from the 
choice of a solution (1.11).

In the above formulae the vector-function v = v(t) depends on t = (tα,p) according 
to the dispersionless limit (1.15) of the hierarchy (1.6). The algorithm for recursive 
calculations of the coefficients ΔHg will be given in Section 3 below.

Example 1.4. For n = 1 there is only one Frobenius manifold. It corresponds to the case 
X = a point. The associated integrable hierarchy of topological type coincides with the 
KdV hierarchy [43,33,16,13]

∂u

∂t0
= ux, (1.22)

∂u

∂t1
= uux + ε2

12uxxx, (1.23)

∂u

∂tq
= 1

2q + 1

(
ε2

4 ∂2
x + 2u + ux∂

−1
x

)
∂u

∂tq−1
, q ≥ 2, (1.24)

where we redenote u1 by u. For the topological solution to the KdV hierarchy the Hodge 
potential gives the generating function of intersection numbers of the ψ- and λ-classes 
on the Deligne–Mumford moduli spaces Mg,m of stable algebraic curves. In this case the 
above procedure gives the following expressions of the Hodge potentials in terms of the 
Witten–Kontsevich tau-function of the KdV hierarchy

H0(t; s) =F0(t), (1.25)

H1(t; s) =F1(t) −
1
s1v = 1 log vx − 1

s1v, (1.26)
2 24 2
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H2(t; s) =F2(t) + s1

(
11v2

xx

480v2
x

− vxxx
40vx

)
+ 7

40s
2
1vxx −

(
s3
1

10 + s2

48

)
v2
x, (1.27)

etc. Here we redenote v1 by v. Recall that

F2(t) = v(4)

1152v2
x

− 7vxxvxxx
1920v3

x

+ v3
xx

360v4
x

.

We also omit the first index (being always equal to one) of the time variables and of the 
Hamiltonians. The dependence of v on t = (t0 = x, t1, . . . ) (change of notations: tp → tp
is made) is determined by the dispersionless limit of the KdV hierarchy

∂v

∂tq
= ∂

∂x

δHq

δv(x) = vq

q! vx, q ≥ 0 (1.28)

(also called the Riemann hierarchy) with

Hq =
∫

vq+2

(q + 2)!dx.

For the topological (aka Witten–Kontsevich) solution one has

v(t) =
∞∑
k=1

1
k

∑
p1+...+pk=k−1

tp1

p1!
...
tpk

pk!
, (1.29)

which is determined by the dispersionless KdV hierarchy (1.28) and the genus zero string 
equation.

We will now construct a new hierarchy of integrable Hamiltonian PDEs associated 
with the calibrated semisimple n-dimensional Frobenius manifold under consideration. 
The equations of the hierarchy will have the form analogous to (1.6)–(1.10) but they will 
depend on the parameters s1, s2, . . . . Logarithms of tau-functions of the new hierarchy 
are Hodge potentials, log τ = H. That is, the solutions w1, . . . , wn are given by the 
second derivatives of the Hodge potential

wα(t; s; ε) = ε2
∂2H(t; s; ε)
∂x ∂tα,0

= vα +
∑
g≥1

ε2g
∂2Hg(t; s)
∂x ∂tα,0

. (1.30)

Note that, due to Theorem 1.3, the expansion (1.30) can be represented in the form

wα = vα +
∑
g≥1

ε2gV [g]
α

(
v; vx, . . . , v(3g); s1, . . . , sg

)
(1.31)

where the g-th term of the expansion is a polynomial in s1, . . . , sg, vxx, . . . , v(3g) with 
coefficients that are rational functions in vx and smooth functions in v on the semisimple 
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part of the Frobenius manifold. This is the clue for constructing the new hierarchy called 
Hodge hierarchy associated with the given calibrated semisimple Frobenius manifold. 
Namely, following the scheme of [16], we apply the substitution

vα 
→ wα = vα +
∑
g≥1

ε2gV [g]
α

(
v; vx, . . . , v(3g); s1, . . . , sg

)
, α = 1, . . . , n (1.32)

to the equations of the principal hierarchy (1.15) (the so-called quasi-Miura transfor-
mation, in the terminology of [16]). The same substitution has to be applied to the 
Hamiltonian structure and to the Hamiltonians of the hierarchy.

Theorem 1.5. The Hodge hierarchy associated with an arbitrary semisimple calibrated 
Frobenius manifold is a tau-symmetric integrable hierarchy of Hamiltonian evolutionary 
PDEs.

The main step in the proof of the theorem is in proving polynomiality, at every order 
in ε, of the equations of the hierarchy, of the Hamiltonian densities as well as of the 
deformed Poisson bracket. This can be achieved with the help of the technique developed 
by A. Buryak, H. Posthuma and S. Shadrin [7,8].

Example 1.6. For the one-dimensional Frobenius manifold the substitution (1.32) has the 
form

w(t; s) = ∂2

∂x2

(
H0 + ε2H1 + ε4H2 + · · ·

)
= v + ε2

(
−1

2v2s1 −
v2
2

24v2
1

+ v3

24v1

)
+ ε4

[
v5
2

18v6
1
− 35v3

2v3

288v5
1

+ 19v2v
2
3

384v4
1

+ 17v2
2v4

480v4
1

− 73v3v4

5760v3
1
− 41v2v5

5760v3
1

+ v6

1152v2
1

+
(

11v4
2

80v4
1
− 67v2

2v3

240v3
1

+ 17v2
3

240v2
1

+ 23v2v4

240v2
1

− v5

40v1

)
s1

+7v4

40 s2
1 −

(
v2
2
5 + v1v3

5

)
s3
1 −

(
v2
2

24 + v1v3

24

)
s2

]
+ O(ε6). (1.33)

Here we denote

vk = ∂k
xv(t), k ≥ 1.

After the substitution one arrives at the following equations (like above we denote wk =
∂k
xw(t)) (also here change of notations tp → tp)

∂w = P̃
δH̃0 = wx, (1.34)
∂t0 δw(x)
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∂w

∂t1
= P̃

δH̃1

δw(x) = wwx + ε2
(wxxx

12 − wxwxxs1

)

+ ε4
[
−w5

60 s1 +
(
w2w3 + 1

5w1w4

)
s2
1 +

(
−8

5w1w
2
2 − 4

5w
2
1w3

)
s3
1

+
(
−1

3w1w
2
2 − 1

6w
2
1w3

)
s2

]
+ O(ε6), (1.35)

∂w

∂tq
= P̃

δH̃q

δw(x) , q ≥ 2. (1.36)

Here the Hamiltonian operator is given by

P̃ = ∂x − ε2s1 ∂
3
x + 3

5 ε4 s2
1 ∂

5
x + O(ε6) (1.37)

and the first two Hamiltonians have the following expressions

H̃0 =
∫ [

1
2w

2 − 1
2ε

2s1w
2
x + 1

5ε
4s2

1w
2
xx + O(ε6)

]
dx, (1.38)

H̃1 =
∫ [

1
6w

3 + ε2
(
− 1

24 − 1
2s1w

)
w2

x

+ ε4
((

−1
5s

3
1 −

1
24s2

)
ww2

xwxx + 1
30
(
s1 + 6s2

1w
)
w2

xx

)
+ O(ε6)

]
dx. (1.39)

Equations (1.34)–(1.36) are called the Hodge hierarchy of a point.2

More specific examples will be presented in Sect. 4.
We expect that the Hodge hierarchy of Example 1.6 plays the role of a universal 

object in the following class of tau-symmetric integrable hierarchies of scalar Hamiltonian 
evolutionary PDEs obtained by deformations of the Riemann hierarchy (1.28):

∂w

∂tq
= P

δHq

δw(x) , Hq =
∫

hq(w;wx, . . . ; ε) dx, q ≥ 0 (1.40)

with

hq(w;wx, . . . ; ε) = wq+2

(q + 2)! +
∑
k≥1

εkh[k]
q

(
w;wx, . . . , w

(k)
)
,

P = ∂x +
∑
k≥1

εk
k+1∑
l=1

P
[k]
l

(
w;wx, . . . , w

(k+1−l)
)
∂l
x.

2 We would like to mention that, according to [32,44] generating functions of certain Hodge integrals are 
also related to the KP hierarchy and the 2-dimensional Toda hierarchy. See more details in Examples 4.4 and 
4.5 in Section 4. More recently A. Buryak [4] constructed a one-parameter deformation of the KdV hierarchy 
satisfied by a generating function of Hodge classes depending linearly on λ1, . . . , λn. He proved that this 
hierarchy is Miura-equivalent to the Intermediate Long Wave (ILW) hierarchy (see below Example 4.4).
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Here all the terms of expansions in ε must be graded homogeneous polynomials in the 
jet variables wx, wxx, . . . of the degrees

deg h[k]
q = k, degP [k]

l = k + 1 − l.

These integrable hierarchies are required to satisfy the conditions given in Definition 4.1
specified for the one-dimensional Frobenius manifold. They are called in Section 4 the 
tau-symmetric integrable Hamiltonian deformations of the principal hierarchy of the 
one-dimensional Frobenius manifold. For example, the KdV hierarchy satisfies the above 
definition.

Clearly rescalings ε → c ε, c �= 0, of the parameter ε preserve the class of integrable 
hierarchies under consideration. Below we will use sometimes a suitable normalization 
of the coefficients h[k]

q for some q and k in order to reduce the number of parameters of 
the hierarchy.

The class of tau-symmetric Hamiltonian integrable hierarchies is invariant with respect 
to a subgroup of the so-called normal Miura-type transformations. The precise definition 
of normal Miura-type transformations will be given in Section 4 below. One of the ques-
tions addressed in the present paper is the problem of classification of tau-symmetric 
Hamiltonian integrable hierarchies with respect to normal Miura-type transformations. 
Conjecturally, the universal object for such a classification problem is given by the Hodge 
hierarchy of a point. Namely,

Conjecture 1.7. Any nontrivial tau-symmetric integrable Hamiltonian deformation of 
the Riemann hierarchy is equivalent, modulo normal Miura-type transformations and 
rescalings of ε, to the Hodge hierarchy of a point with a certain particular choice of the 
parameters sk, k ≥ 1.

The paper is organized as follows. In Sec. 2 we recall some basic formulas and notions 
of the theory of Frobenius manifolds and describe two approaches, given respectively 
by Dubrovin–Zhang and by Givental, of the definition of the partition function of a 
semisimple Frobenius manifold. We also prove Lemma 2.5 that will be used to prove the 
identity (3.11) of Sec. 3. In Sec. 3 we give an algorithm to represent the Hodge potentials 
Hg, g ≥ 0 in terms of the free energy F0 and the genus zero two-point functions. In 
Sec. 4, we give the definition of tau-symmetric integrable hierarchies of Hamiltonian 
evolutionary PDEs, prove Theorem 1.5 and study in detail the Hodge hierarchy for the 
one-dimensional Frobenius manifold for some particular choices of the parameters sk, 
k ≥ 1. In Sec. 5, by applying the results of Sec. 3 we present some explicit formulae for 
Hodge integrals on the moduli spaces of stable curves, and give the integrable hierarchy 
for the total Gromov–Witten potential of degree zero for a smooth projective threefold. 
Concluding remarks are given in Sec. 6, where we also propose a detailed version of 
Conjecture 1.7.
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2. The partition function of a semisimple Frobenius manifold

We recall in this section some basic properties of Frobenius manifolds, and the 
constructions of the partition functions of semisimple Frobenius manifolds given by 
Dubrovin–Zhang [16] and by Givental [28,29], based respectively on linearization of Vi-
rasoro symmetries of the principal hierarchies of Frobenius manifolds and on quantum 
canonical transformations.

Let M be an n-dimensional Frobenius manifold. By definition on each of its tangent 
space there is defined a structure of commutative and associative algebra with unity, 
and a non-degenerate symmetric bilinear form 〈 , 〉 which is invariant with respect to 
the multiplication operation “·”. These structures depend analytically on the points of 
the Frobenius manifold. The bilinear form gives a flat metric on M , and one can choose 
its local flat coordinates v1, . . . , vn such that the unity vector field is given by e = ∂

∂v1 . 
The potential F (v1, . . . , vn) of the Frobenius manifold satisfies the property that

ηαβ = 〈 ∂

∂vα
,

∂

∂vβ
〉 = ∂3F (v)

∂v1∂vα∂vβ
= constant,

and the multiplication table of the vector fields on M is given by

∂

∂vα
· ∂

∂vβ
= cγαβ(v) ∂

∂vγ
with cγαβ(v) = ηγζ

∂3F (v)
∂vζ∂vα∂vβ

, (ηαβ) = (ηαβ)−1.

The Frobenius manifold structure also satisfies certain quasi-homogeneity property which 
is characterized by an Euler vector field E satisfying ∇∇E = 0, where ∇ is the Levi–
Civita connection of the flat metric. Assume that ∇E is diagonalizable, then the flat 
coordinates can be chosen so that the Euler vector field has the expression

E =
n∑

α=1

(
(1 − d

2 − μα)vα + rα

)
∂

∂vα
.

The axioms of the Frobenius manifold ensure that the deformed connection

∇̃ab = ∇ab + z a · b, ∀ a, b ∈ Vect(M), z ∈ C

on M is also flat. It can be extended to a flat connection on M ×C∗ [11,12] by defining

∇̃ d
dz
b = ∂zb + E · b− 1

z
μ b, ∇̃ d

dz

d

dz
= ∇̃b

d

dz
= 0

for any vector field b of M × C∗ with zero component along the z direction. Here μ =
diag(μ1, . . . , μn). One can find a system of flat coordinates of the deformed connection 
of the form

(ṽ1(v, z), . . . , ṽn(v, z)) = (θ1(v, z), . . . , θn(v, z)) zμzR, (2.1)
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where the functions θα(v, z) are analytic at z = 0. Here R =
(
Rα

β

)
is an n ×n nilpotent 

matrix; it is a part of the monodromy data [12] of the Frobenius manifold at z = 0. It 
is different from zero only in the resonant case μα − μβ = a positive integer for some 
1 ≤ α, β ≤ n. It can be decomposed R = R1 + R2 + · · · in a finite sum of matrices 
satisfying

[μ,Rk] = kRk, k = 1, 2, . . . , (2.2)

and also

〈Rka, b〉 = (−1)k+1〈a,Rkb〉, ∀ a, b ∈ Cn.

For the Frobenius manifold coming from the Gromov–Witten theory of a smooth pro-
jective variety X only the R1 matrix is nontrivial. It coincides with the matrix of 
multiplication by the first Chern class of the tangent bundle of X.

Denote θα,p(v) the coefficients of Taylor expansions of the functions θα(v, z),

θα(v, z) =
∑
p≥0

θα,p(v)zp, α = 1, . . . , n. (2.3)

The functions θα,p(v) satisfy the following equations:

∂vα∂vβθγ,p+1(v) = cσαβ(v)∂vσθγ,p(v), (2.4)

θα,0(v) = ηαγv
γ , θα,1(v) = ∂F (v)

∂vα
,

∂θα,p+1

∂v1 (v) = θα,p(v). (2.5)

It also satisfies the following quasi-homogeneity condition

LE (∂vβθα,p) = (p + μα + μβ)∂vβθα,p +
p∑

r=1
(Rr)γα∂vβθγ,p−r, (2.6)

and the normalization conditions

〈∇θα(v, z),∇θβ(v,−z)〉 = ηαβ . (2.7)

A choice of a system of flat coordinates of the deformed flat connection satisfying the 
above conditions will be called a calibration of the Frobenius manifold. For the particular 
subclass of Frobenius manifolds coming from quantum cohomology of smooth projective 
varieties there is a natural calibration associated with a choice of a basis in the classical 
cohomology. Below it will be assumed by default that every Frobenius manifold under 
consideration is calibrated.
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The principal hierarchy (1.15) of the Frobenius manifold is an integrable Hamiltonian 
hierarchy of hydrodynamic type

∂vα

∂tβ,q
= ηαγ

∂

∂x

δHβ,q

δvγ(x) , q ≥ 0. (2.8)

Here the Hamiltonians are given by

Hβ,q =
∫

θβ,q+1(v(x))dx (2.9)

with the functions θβ,q defined as in (2.3). A dense subset of analytic solutions of the 
principal hierarchy can be obtained by solving the Euler–Lagrange equations

∑
p≥0

t̃α,p
∂θα,p(v)
∂vγ

= 0, γ = 1, . . . , n. (2.10)

Here t̃α,p = tα,p−cα,p, cα,p are certain constants which are equal to zero except for a finite 
number of them, and they are also required to satisfy certain genericity conditions [16].

Example 2.1. Consider the one-dimensional Frobenius manifold with the natural calibra-
tion θ1(v, z) = (ez v − 1) /z. The corresponding Euler–Lagrange equations read

∑
p≥0

t̃1,p
vp

p! = 0, (2.11)

which yields in the choice c1,p = δp1 the topological solution

v(t) = − t1,0

t1,1 − 1 − (t1,0)2t1,2

2(t1,1 − 1)3 − (t1,0)3(t1,2)2

2(t1,1 − 1)5 + · · · .

The closed form of this solution is already given in equation (1.29).

Let us define the functions Ωα,p;β,q(v) on the Frobenius manifold by the following 
generating function

∑
p,q≥0

Ωα,p;β,qz
p
1z

q
2 = 〈∇θα(v, z1),∇θβ(v, z2)〉 − ηαβ

z1 + z2
. (2.12)

It follows from the definition that these functions satisfy the equations

∂Ωα,p;β,q

∂vγ
= cξζγ

∂θα,p
∂vξ

∂θβ,q
∂vζ

(2.13)

and the quasi-homogeneity condition
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LE Ωα,p;β,q(t) = (p + q + 1 + μα + μβ)Ωα,p;β,q(t) +
p∑

r=1
(Rr)γα Ωγ,p−r;β,q(t)

+
q∑

r=1
(Rr)γβ Ωα,p;γ,q−r(t) + (−1)q (Rp+q+1)γα ηγβ . (2.14)

They also satisfy the equations

Ωα,p;1,0(v) = θα,p(v), Ωα,p;β,0(v) = ∂θα,p+1(v)
∂vβ

. (2.15)

For any solution v(t) = (v1(t), . . . , vn(t)) of the principal hierarchy solved from (2.10), 
we define the genus zero free energy F0(t) as follows:

F0(t) = 1
2
∑
p,q≥0

t̃α,pt̃β,qΩα,p;β,q(v(t)). (2.16)

Observe that, by using eqs. (2.5), (2.10) and (2.12) one can easily check that

∂2F0(t)
∂tα,p∂tβ,q

= Ωα,p;β,q (v(t)) .

In the case when M is semisimple, one can also define the genus g free energies

Fg = Fg(v; vx, . . . , v(3g−2)), g ≥ 1

of M by solving the so-called loop equations of M [16,14]. In particular, if we substitute 
the variables v, v(k) (k ≥ 1) of the genus g free energy Fg by the topological solution 
v = v(t), v(k) = ∂k

xv(t) obtained from (2.10) by taking cα,p = δα1 δ
p
1 , then we arrive at a 

function of t which, due to [42], coincides with the genus g Gromov–Witten potential if M
is a Frobenius manifold associated to the quantum cohomology (assume semisimplicity) 
of a certain smooth projective variety with vanishing odd cohomologies. Recall that the 
loop equation takes the form [16]

∑
r≥0

∂ΔF
∂vγ,r

∂r
x

(
1

E − λ

)γ

+
∑
r≥1

∂ΔF
∂vγ,r

r∑
k=1

(
r

k

)
∂k−1
x ∂1pα Gαβ ∂r−k+1

x ∂γpβ

= − 1
16tr (U − λ)−2 + 1

4tr
[
(U − λ)−1

μ
]2

+ ε2

2
∑(

∂2ΔF
∂vγ,k∂vρ,l

+ ∂ΔF
∂vγ,k

∂ΔF
∂vρ,l

)
∂k+1
x ∂γpαG

αβ∂l+1
x ∂ρpβ

+ ε2 ∑ ∂ΔF
γ,k

∂k+1
x

[
∇∂pα(v;λ) · ∇∂pβ(v;λ) · vx

]γ
Gαβ , (2.17)
2 ∂v ∂λ ∂λ
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where

ΔF =
∑
g≥1

ε2g−2Fg(v; vx, . . . , v(3g−2)),

pα, α = 1, . . . , n are the periods of the Frobenius manifold, U is the operator of multipli-
cation by the Euler vector field E, and

Gαβ = − 1
2π

[(
eπ i Reπ i μ + e−π i Re−π i μ

)
η−1]αβ .

Theorem 2.2. (See [16].) The loop equation can be solved recursively to give functions 
Fg, g ≥ 1 with

F1 = 1
24 log det(cαβγ(v)vγx) + G(v),

where G(v) is the so called G-function of the Frobenius manifold [14]. For each g ≥ 2 the 
function Fg = Fg

(
v; vx, . . . , v(3g−2)) depends polynomially on ∂k

xv
γ , k ≥ 2 and rationally 

on vγx , and it is uniquely determined by the loop equation (up to the addition of a constant) 
and satisfies the homogeneity condition

degFg = 2g − 2, degFg ≤ 3g − 3.

Here we use the “≤” sign to indicate that Fg is not necessarily homogeneous with 
respect to the degree assignment (1.20) and its highest degree terms have degree 3g− 3.

The partition function of a semisimple Frobenius manifold associated to a solution 
v(t) of the principal hierarchy is defined by

Z(t; ε) = eε
−2F0(t)+

∑
g≥1 ε2g−2Fg(v;vx,...,v(3g−2))

∣∣∣
v=v(t)

, (2.18)

where v(t) is obtained by solving the equation (2.10). It is also called the total descendent 
potential when v(t) is taken to be the topological solution of the principal hierarchy 
corresponding to the following choice of parameters cα,p = δα1 δ

p
1 .

An alternative construction of the partition function for a semisimple Frobenius man-
ifold is given by Givental [28,29]. It is given by the action of certain quantized operators 
on the tensor product of n copies of the partition function Zpt(t; ε) of the one dimen-
sional Frobenius manifold. Let us give a brief review of this construction and prove some 
useful lemmas.

Let Mn be a semisimple Frobenius manifold, i.e. there exists a point u ∈ M such that 
the algebra structure on Tu(M) is semisimple. Let V = Tu(M) or V = Cn. There is a 
non-degenerate symmetric bilinear form 〈 , 〉V on V which is defined by the flat metric 
of M when V = Tu(M), or by the standard Euclidean inner product when V = Cn. 
Denote by V the space of V -valued functions defined on the unit circle S1 which can be 
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extended to an analytic function in a small annulus. On V there is a natural polarization 
V = V+ ⊕ V−, where functions in V+ can be analytically continued inside of S1, while 
functions in V− can be analytically continued outside of S1 and vanish at z = ∞. There 
also exists a symplectic structure ω on V defined by

ω(f, g) = 1
2πi

∮
S1

〈f(−z), g(z)〉V dz, ∀ f(z), g(z) ∈ V. (2.19)

The pair (V, ω) is called Givental’s symplectic space associated to (V, 〈 , 〉V ).
Take a basis eα (α = 1, . . . , n) of V . Let eα be the dual basis with respect to 〈 , 〉V . 

Any element f(z) ∈ V can be written as

f(z) =
∑
k≥0

(
(−1)k+1pk z

k + qk z−k−1) ,
where qk = qα,keα and pk = pα,ke

α. This gives the Darboux coordinates

{qα,k, pα,k | k ≥ 0}

of the symplectic structure ω. The canonical quantization of {qα,k, pα,k} is defined as 
follows:

• When V = Tu(M), we take eα = ∂
∂vα , and then

(pα,k )̂ = ε
∂

∂tα,k
, (qα,k )̂ = ε−1tα,k.

The variables {tα,k} are the times of the principal hierarchy of M . We denote O(V ) =
C[[{tα,k}]].

• When V = Cn, we take ei to be the standard basis of Cn, then

(pi,k )̂ = ε
∂

∂t(i),k
, (qi,k )̂ = ε−1t(i),k.

The variables {t(i),k} are the times of n copies of the KdV hierarchy. We denote 
O(V ) = C[[{t(i),k}]].

Let A(z) be an End(V )-valued function satisfying A†(−z) + A(z) = 0. Then A(z) is 
an infinitesimal sympltectic transformation of (V, ω) whose Hamiltonian is given by

HA(z)(f) = 1
2ω(f,Af) = 1

4πi

∮
〈f(−z), A(z)(f(z))〉V dz.
S1
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This Hamiltonian is a quadratic function on V, and its quantization is defined by

(pIpJ )̂ = ε2
∂2

∂tI∂tJ
, (pIqJ )̂ = tJ

∂

∂tI
, (qIqJ )̂ = ε−2tItJ ,

where I, J are (α, k), (β, l) or ((i), k), ((j), l). Denote the quantization of HA(z) by ĤA(z), 
these quantized operators satisfy the commutation relation

[ĤA(z), ĤB(z)] = Ĥ[A(z),B(z)] + C
(
ĤA(z), ĤB(z)

)
,

where the 2-cocycle C satisfies

C(pIpJ , qKqL) = −C(qKqL, pIpJ) = δKI δLJ + δLI δ
K
J ,

and C = 0 for any other pairs of quadratic monomials. Here I, J, K, L are indices of the 
form (α, p) or ((i), k). Let G(z) = eA(z) be the symplectic transformation defined by 
A(z) (if it exists), then the quantization Ĝ(z) of G(z) is defined as eĤA(z) .

Example 2.3. (a) Let V = Tu(M), and dk(z) = −z−2k+1Id (k ≥ 1). Then it is easy to 
see that dk(z) is an infinitesimal symplectic transformation whose quantization is given 
by

Dk =
∑
p≥0

tα,p
∂

∂tα,p+2k−1 − ε2

2

2k−2∑
p=0

(−1)pηαβ ∂2

∂tα,p∂tβ,2k−2−p
.

(b) Let V = Cn, and d(i)
k (z) = −z−2k+1Pi (k ≥ 1), where Pi : V → V is the projection to 

Cei. Then d(i)
k (z) is also an infinitesimal symplectic transformation whose quantization 

is given by

D(i)
k =

∑
p≥0

t(i),p
∂

∂t(i),p+2k−1 − ε2

2

2k−2∑
p=0

(−1)p ∂2

∂t(i),p∂t(i),2k−2−p
.

(c) Let U : Cn → Cn be a map given by a diagonal matrix whose diagonal entries are 
u1, . . . , un. Then we have

(zU)ˆ = −
n∑

i=1

∑
k≥1

uit(i),k
∂

∂t(i),k−1 − 1
2ε2

n∑
i=1

ui(t(i),0)2.

We have the following two important types of symplectic transformations G(z):
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• Type I Let G(z) be a symplectic transformation which is analytic and non-
degenerate inside of the unit circle. Then, for an arbitrary function I[q(z)] defined 
on V−, we have

(
Ĝ(z)−1I

)
[q(z)] = e

1
2ε2 〈q,Ωq〉V I [(G(z)q(z))−] ,

where 〈q, Ωq〉V =
∑

k,l≥0〈qk, Ωklq
l〉V is defined by

∑
k,l≥0

Ωklw
kzl = G†(w)G(z) − Id

w + z
.

• Type II Let G(z) be a symplectic transformation which is analytic and non-
degenerate outside of the unit circle. Then for an arbitrary function I[q(z)] defined 
on V− we have

(
Ĝ(z)I

)
[q(z)] =

(
e

ε2
2 〈∂q,W∂q〉V I

)
[G−1(z)q(z)],

where 〈∂q, W∂q〉V =
∑

k,l≥0〈pk, Wklpl〉V is defined by

∑
k,l≥0

(−1)k+lWklw
−kz−l = G†(w)G(z) − Id

z−1 + w−1 .

If G(z) is a symplectic transformation from V2 to V1, then the quantized operator Ĝ(z)
maps O(V2) to O(V1).

Let us denote by Zvac
pt (t(i); ε) the vacuum partition function of the one-dimensional 

Frobenius manifold M = C with F (v) = 1
6v

3, which is obtained from the Witten–
Kontsevich tau-function τKdV(t0, t1, . . . ; ε) by a dilaton shift

Zvac
pt (t(i); ε) = τKdV(t0, t1, . . . ; ε)|tp→t(i),p+δp1

.

For any semisimple Frobenius manifold M , the vacuum partition function Zvac
M (t; ε) is 

defined by

Zvac
M (t; ε) = τI(u)Ŝ−1

u (z)Ψ̂uR̂u(z)e(zU)ˆ

(
n∏

i=1
Zvac
pt (t(i); ε)

)
. (2.20)

Here u is a semisimple point of M , and

• zU : Cn → Cn is the diagonal matrix diag(zu1, . . . , zun), where u1, . . . , un are canon-
ical coordinates of M .
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• Su(z) and Ru(z) are given by bases of horizontal sections of the deformed flat 
connection ∇̃ at z = 0 and z = ∞ respectively. The matrix Su(z) has entries 
Sα
β (z) = ηαγ∂γθβ(z), and Ru(z) has asymptotic expansion of the form

Ru(z) = Id + Γ1(u)
z

+ Γ2(u)
z2 + · · · .

• Ψu is the transition matrix from the frame of the flat coordinates to the orthonormal 
frame of the canonical coordinates. Note that in the notions of [11,16] it is given by 
the matrix (ψiα(u))−1.

• τI(u) is the isomonodromic tau-function of the Frobenius manifold [16,14].

Theorem 2.4. (See [28–30,16].) The total descendent potential of M

DM = Zvac
M (t; ε)|tα,p→tα,p−δα1 δp1

is independent of the choice of the semisimple point u ∈ M and satisfies the Virasoro 
constraints

LmDM = 0, m ≥ −1.

Here the Virasoro operators Lm are given in [15,16,28,30] with

L−1 =
∑
p≥1

tα,p
∂

∂tα,p−1 + 1
2ε2 ηαβt

α,0tβ,0 − ∂

∂t1,0
.

From the uniqueness of the solution of the Virasoro constraints that is proved in [16], 
it follows that the partition function Z(t; ε) defined in (2.18) which is associated to the 
solution of the principal hierarchy given by (2.10) can also be represented as

Z(t; ε) = Zvac
M (t; ε)|tα,p→tα,p−cα,p , (2.21)

where the constants cα,p are given as in (2.10).
The following lemma will be used to prove the identity (3.11).

Lemma 2.5. For any semisimple Frobenius manifold M , we have

Dk = Ŝ−1
u (z)Ψ̂uR̂u(z)e(zU)ˆ

(
n∑

i=1
D(i)

k

)
e−(zU)ˆR̂−1

u (z)Ψ̂−1
u Ŝu(z), (2.22)

where Dk and D(i)
k are given in Example 2.3.
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Proof. By computing the 2-cocycle terms, we have
[
(zU) ,̂

n∑
i=1

D(i)
k

]
= −1

2δk,1Tr(U),

which implies

e(zU)ˆ

(
n∑

i=1
D(i)

k

)
e−(zU)ˆ =

n∑
i=1

D(i)
k − 1

2δk,1Tr(U).

It is easy to see that

R̂u(z)
(

n∑
i=1

D(i)
k

)
R̂−1

u (z) =
n∑

i=1
D(i)

k , Ψ̂u

(
n∑

i=1
D(i)

k

)
Ψ̂−1

u = Dk.

Thus in order to prove the lemma, we only need to show that

Ŝ−1
u (z)DkŜu(z) = Dk + 1

2δk,1Tr(U).

Let A(z) = logS(z) =
∑

i≥1 Aiz
i. Then we have

Ŝ−1
u (z)DkŜu(z) −Dk =

[
Dk, ĤA(z)

]
= 1

2(2k − 1)Tr(A2k−1).

By using the identity Tr(A(z)) = log detS(z) we obtain

d

dz
Tr(A(z)) = 1

detS(z)
d

dz
(detS(z)) = Tr

(
dS(z)
dz

S(z)−1
)
.

It follows from the definition of S(z) (see [11,12]) that

dS(z)
dz

S(z)−1 = U + μ

z
− S(z)

(μ
z

+ R1 + R2z + · · · + Rmzm−1
)
S−1(z),

where Tr(U) = Tr(U), V and μ have trace zero. Recall that the matrices R� in the 
decomposition R = R1 + R2 + · · · + Rm are nilpotent. So we have

Tr(A(z)) = Tr(U)z,

or, equivalently, Tr(A2k−1) = δk,1Tr(U). The lemma is proved. �
Corollary 2.6. Let M be a semisimple Frobenius manifold, u ∈ M be a semisimple point 
on M , then the total Hodge potential ZE(t; s; ε) of M can be written as

ZE(t; s; ε) = Zvac
E

(t; s; ε)|tα,p→tα,p−cα,p , (2.23)



B. Dubrovin et al. / Advances in Mathematics 293 (2016) 382–435 403
where the vacuum total Hodge potential is given by

Zvac
E

(t; s; ε) = τI(u)Ŝ−1
u (z)Ψ̂uR̂u(z)e(zU)ˆ

(
n∏

i=1
Zvac

pt,E(t(i); s; ε)
)
, (2.24)

and Zvac
pt,E(t(i); s; ε) is the vacuum total Hodge potential for M = C with F (v) = 1

6v
3, 

which is given by

Zvac
pt,E(t(i); s; ε) = e

∑
k≥1 skD(i)

k Zvac
pt (t(i); ε).

3. An algorithm for solving Hg

We consider in this section the genus expansion

H(t; s; ε) =
∑
g≥0

ε2g−2Hg(t; s)

of the Hodge potential H(t; s; ε) = logZE(t; s; ε). We will give an algorithm to solve 
recursively the defining equations (1.17), (1.18), and to represent the genus g Hodge 
potential Hg(t; s) as the summation of Fg(t) and a polynomial of s1, . . . , sg with coef-
ficients depending polynomially on the jet variables vα,p, 2 ≤ p ≤ 3g − 2 and rationally 
on vα,1.

From the equations (1.17), (1.18) we know that

ZE(t; s; ε) = e
∑

k≥1 skD̃kZ(t; ε), (3.1)

where

D̃k = Dk|tα,p→t̃α,p , t̃α,p = tα,p − cα,p. (3.2)

In the case when the semisimple Frobenius manifold M is given by the quantum coho-
mology of a smooth projective variety, Hg is in fact a polynomial of s1, . . . , sg. So in 
order to compute Hg, we only need to compute

log
(
e
∑g

k=1 skD̃kZ(t; ε)
)

= ε−2H0 + H1 + ε2H2 + · · · + ε2g−2Hg + O(ε2g),

and the exponential maps on the left hand side of the above equation can be truncated 
at certain orders of sk that depend on g and k. This observation enables us to give an 
algorithm to compute Hg, and we show below that this algorithm is also valid for an 
arbitrary semisimple Frobenius manifold.



404 B. Dubrovin et al. / Advances in Mathematics 293 (2016) 382–435
The equations (1.17) and (1.18) are equivalent to the equations for H0

∂H0

∂sk
=
∑
p≥0

t̃α,p
∂H0

∂tα,p+2k−1 − 1
2

2k−2∑
p=0

(−1)pηαβ ∂H0

∂tα,p
∂H0

∂tβ,2k−2−p
, (3.3)

H0(t;0) = F0(t), (3.4)

and the equations for Hg (g ≥ 1)

∂Hg

∂sk
= Dk (Hg) + Ek,g, (3.5)

Hg(t;0) = Fg(t). (3.6)

Here

Dk =
∑
p≥0

t̃α,p
∂

∂tα,p+2k−1 −
2k−2∑
p=0

(−1)pηαβ ∂H0

∂tα,p
∂

∂tβ,2k−2−p
,

Ek,g = −1
2

2k−2∑
p=0

(−1)pηαβ
(

∂Hg−1

∂tα,p∂tβ,2k−2−p
+

g−1∑
�=1

∂H�

∂tα,p
∂Hg−�

∂tβ,2k−2−p

)
.

Proposition 3.1. Equations (3.3) and (3.4) have a unique solution

H0(t; s) = F0(t).

Proof. We only need to prove the following identity: for any k ≥ 1,

∑
p≥0

t̃α,p
∂F0

∂tα,p+2k−1 − 1
2

2k−2∑
p=0

(−1)pηαβ ∂F0

∂tα,p
∂F0

∂tβ,2k−2−p
= 0. (3.7)

Noting that F0 is given by (2.16), one can show that the above identity is a corollary of 
the following equation:

Ωα,p+2k−1;β,q + Ωα,p;β,q+2k−1 =
2k−2∑
�=0

(−1)�Ωα,p;α′,�η
α′β′

Ωβ′,2k−2−�;β,q, (3.8)

where p, q ≥ 0, and k ≥ 1.
For any p, q, define a matrix Ωp,q whose entries are given by

(Ωp,q)αβ = (ηαγΩγ,p;β,q) .

We will prove that, for any s ≥ 1,
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Ωp+s,q + (−1)s−1Ωp,q+s =
s−1∑
�=0

(−1)�Ωp,�Ωs−1−�,q, p, q ≥ 0. (3.9)

Then (3.8) is just the particular case with s = 2k − 1.
The s = 1 case of (3.9) can be proved by using (2.12) and (2.15). We assume that the 

identity (3.9) holds true for s ≤ m. In order to prove the validity of (3.9) for any s ≥ 1, 
we need to prove its validity for s = m + 1. Take s = m and replace (p, q) by (p + 1, q)
in (3.9) we obtain

Ωp+1+m,q + (−1)m−1Ωp+1,q+m =
m−1∑
�=0

(−1)�Ωp+1,�Ωm−1−�,q.

So to prove the validity of (3.9) for s = m + 1 we only need to prove the following 
identity:

(−1)m (Ωp,q+m+1 + Ωp+1,q+m) = Ωp,0Ωm,q

+
m−1∑
�=0

(−1)m−� (Ωp,m−� + Ωp+1,m−1−�) Ω�,q.

Taking s = 1 and replacing (p, q) by (p, q + m) and by (p, m − � − 1) in (3.9) we obtain 
respectively the following identities:

Ωp,q+m+1 + Ωp+1,q+m = Ωp,0Ω0,q+m,

Ωp,m−� + Ωp+1,m−1−� = Ωp,0Ω0,m−1−�.

Thus we are left to show

Ωm,q + (−1)m−1Ω0,q+m =
m−1∑
�=0

(−1)�Ω0,�Ωm−1−�,q,

which is exactly the identity (3.9) for s = m with (p, q) replaced by (0, q). The proposition 
is proved. �

The identity (3.7) with k = 1 first appeared in [19]. In the case of Frobenius manifolds 
coming from quantum cohomology of a smooth projective variety the identity (3.7) is 
proved for any k in [22].

The above lemma also shows that the operator

Dk =
∑
p≥0

t̃α,p
∂

∂tα,p+2k−1 −
2k−2∑
p=0

(−1)pηαβ ∂H0

∂tα,p
∂

∂tβ,2k−2−p

does not depend on s.
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Let us proceed to considering Hg with g ≥ 1.
Define

Hg,h = Hg(t, s)|sk=0 (k>h), Ek,g,h = Ek,g|sk=0 (k>h).

Then Hg,h are determined by the following recursion relations:

∂Hg,h

∂sh
= Dh (Hg,h) + Eh,g,h, Hg,h|sh=0 = Hg,h−1, (3.10)

and the initial condition Hg,0 = Fg.

Theorem 3.2. For any semisimple Frobenius manifold, the genus g Hodge potential Hg

does not depend on sk with k > g, i.e. Hg = Hg,g for all g ≥ 1.

Proof. By using the formula (3.1) we can see that the theorem is equivalent to the 
following asymptotic behavior:

D̃k(Z(t; ε)) = O(ε2k−2)Z(t; ε), when ε → 0. (3.11)

Here D̃k are defined in (3.2).
We already know that, when M is the semisimple Frobenius manifold defined by the 

quantum cohomology of a smooth projective variety the above asymptotic relation holds 
true by definition. In particular, we have

D(i)
k Zvac

pt (t(i); ε) = O(ε2k−2)Zvac
pt (t(i); ε), when ε → 0.

For a general semisimple Frobenius manifold M , the validity of the above asymptotic 
relation can be proved by using the formula (3.1), Lemma 2.5 and standard asymptotic 
analysis techniques. The theorem is proved. �

We would like to mention that an alternative form of the asymptotic formula (3.11)
is given by

DkFg −
1
2

2k−2∑
p=0

(−1)pηαβ ∂2Fg−1

∂tα,p∂tβ,2k−2−p

− 1
2

2k−2∑
p=0

g−1∑
m=1

(−1)pηαβ ∂Fm

∂tα,p
∂Fg−m

∂tβ,2k−2−p
= 0, k ≥ g + 1. (3.12)

It was conjectured in [35] and proved in [34] that the following equalities hold true for 
Gromov–Witten potentials of a smooth projective variety:
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2k−2∑
p=0

(−1)pηαβ ∂2Fg−1

∂tα,p∂tβ,2k−2−p
= 0, k ≥ g + 1, (3.13)

DkFg −
1
2

2k−2∑
p=0

g−1∑
m=1

(−1)pηαβ ∂Fm

∂tα,p
∂Fg−m

∂tβ,2k−2−p
= 0, k ≥ g. (3.14)

Here we conjecture3 the validity of these equalities for all semisimple Frobenius mani-
folds.

Now let us proceed to finding the solution to (3.10). We prove some lemmas first.

Lemma 3.3. Let P (z), Q(z) be the matrices whose entries are given by

Pα
β (z) = ηαγ

∂θγ(z)
∂vβ

, Qα
β (z) = ηαγ

∂θβ(z)
∂vγ

.

Define a matrix C =
(
Cα

β

)
with entries Cα

β = cαβγv
γ
x . Then

i) Q(−z)P (z) = I,
ii) ∂xP (z) = zP (z)C,
iii) ∂xQ(z) = zCQ(z),
iv) For all l, m ≥ 0, ∂l

xQ(−z)∂m
x P (z) is a polynomial in z with degree l + m.

Proof. The normalization condition (2.7) of θα(z) gives P (z)Q(−z) = I, so we have 
Q(−z)P (z) = I. Items ii) and iii) are equivalent to Equation (2.4). Item iv) is an easy 
consequence of ii) and iii). �

Denote by A the ring of functions f(v, vx, . . . , v(m)) (where m can be arbitrary non-
negative integers) satisfying

• f depends on v ∈ M analytically;
• f depends on vx rationally;
• f depends on higher jets vxx, vxxx, . . . , v(m) polynomially.

Define Â = A[s1, s2, . . . ]. We introduce a gradation on Â as follows:

deg sk = 2k − 1, deg f(v, vx) = 0, deg ∂s
xv

α = s− 1, k ≥ 1, s ≥ 2.

Proposition 3.4.
i) The following inequality holds true:

3 As it was suggested by the anonymous referee, validity of this conjectural statement can be derived 
from the results of [34] by applying the approach of [23] based on the Givental idea [28] of a general-
ized Gromov–Witten descendent potential associated with an arbitrary calibrated semisimple Frobenius 
manifold.



408 B. Dubrovin et al. / Advances in Mathematics 293 (2016) 382–435
deg
(

N∑
p=0

(−1)pηα
′β′

∂l
x

(
∂θα′,p

∂vα

)
∂m
x

(
∂θβ′,N−p

∂vβ

))
≤ l + m−N.

In particular, if l + m < N then the above sum vanishes.
ii) The following inequality holds true:

deg (Dk(∂m
x vα)) ≤ m− 2k.

In particular, if m < 2k then Dk(∂m
x vα) = 0.

Proof. The first part is an easy consequence of the item iv) of Lemma 3.3. Let us give 
the proof of the second part of the corollary.

By acting ∂2

∂tα,p∂tβ,q on the identity (3.7), and using the identity (3.8), we obtain

Dk(Ωα,p;β,q)

=
2k−2∑
�=0

(−1)�ηα
′β′

Ωα,p;α′,�Ωβ,q;β′,2k−2−� − Ωα,p+2k−1;β,q − Ωα,p;β,q+2k−1

= 0.

In particular, we have Dk(vα) = Dk(ηαβΩ1,0;β,0) = 0.
For m ≥ 1, by considering the commutator [Dk, ∂x] one obtains the equality

Dk(∂m
x vα) = ∂x

(
Dk(∂m−1

x vα)
)
− ηαβ

2k∑
p=0

(−1)pηα
′β′ ∂θα′,p

∂v1 ∂m
x

(
∂θβ′,2k−p

∂vβ

)
.

If m < 2k, the first part of the corollary implies that the above sum vanishes; if m ≥ 2k, 
the first part of the corollary gives us the desired inequality. The lemma is proved. �
Lemma 3.5.

N∑
p=0

(−1)pηαβΩα,p;β,N−p = Tr(U)δN,0.

Proof. Recall that

Ω(z1, z2) =
(∑

p,q

ηαγΩγ,p;β,qz
p
1z

q
2

)
= S†(z1)S(z2) − I

z1 + z2
.

So, the statement of the lemma is equivalent to the identity

Tr (Ω(−z, z)) = Tr(U).
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By using L’Hôspital’s rule, it is easy to see that

Tr (Ω(−z, z)) = Tr
(
S†(−z)dS(z)

dz

)
= Tr

(
dS(z)
dz

S−1(z)
)

= Tr(U).

The last step has been explained in the proof of Lemma 2.5. The lemma is proved. �
We note that the following identity holds true:

Tr(U) = Tr(U) = ηαβ
∂2F

∂vα∂vβ
= ηαβΩα,0;β,0.

Proposition 3.6.

i) Let f ∈ Â such that deg f ≤ m. Then we have

deg (Dk(f)) ≤ m + 1 − 2k.

ii) Let f1, f2 ∈ Â such that degfi ≤ mi (i = 1, 2). Then

deg
(

N∑
p=0

(−1)pηαβ ∂f1

∂tα,p
∂f2

∂tβ,N−p

)
≤ m1 + m2 + 2 −N.

In particular, if f1 does not depend on vx, vxx, . . . , then the bound can be reduced to 
m2 +1 −N ; if both f1, f2 do not depend on the jet variables, then the bound becomes 
−N , and the sum vanishes if N ≥ 1.

iii) Let f ∈ Â such that deg f ≤ m. Then

deg
(

N∑
p=0

(−1)pηαβ ∂2f

∂tα,p∂tβ,N−q

)
≤ m + 2 −N.

In particular, if f does not depend on vx, vxx, . . . , then the sum vanishes for N ≥ 1.

Proof. i) By using the chain rule and the part ii) of Proposition 3.4, we have

deg (Dk(f)) = deg

⎛
⎝∑

�≥0

∂f

∂vα,�
Dk(vα,�)

⎞
⎠ ≤ m− (l − 1) + l − 2k = m + 1 − 2k.

Here vα,� = ∂�
xv

α.
ii) By using the chain rule and the principal hierarchy (2.8), one can obtain that

N∑
(−1)pηαβ ∂f1

∂tα,p
∂f2

∂tβ,N−p

p=0
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= ∂f1

∂vα′,l

∂f2

∂vβ′,m

N+2∑
p=0

(−1)p+1ηαβ∂l+1
x

(
∂θα,p
∂vα′

)
∂m+1
x

(
∂θβ,N−p

∂vβ′

)
,

where vα,k = ∂k
xvα. Then the inequality follows from Proposition 3.4.

iii) By using Lemma 3.5 and Equation (2.16), one can show that

2N∑
p=0

(−1)pηαβ ∂2F0

∂tα,p∂tβ,2N−p
= 0,

so we have

2N∑
p=0

(−1)pηαβ ∂2 (∂m
x (vγ))

∂tα,p∂tβ,2N−p
= 0.

Then the inequality can be proved by applying the chain rule again and by using part ii) 
of the corollary. �
Proposition 3.7. The genus one Hodge potential has the expression

H1 = F1 −
s1

2 Tr(U). (3.15)

Proof. From Theorem 3.2 it follows that H1 = H1,1, so we only need to find H1,1, which 
is determined by the following equations:

∂H1,1

∂s1
= D1(H1,1) −

1
2η

αβ ∂2H0

∂tα,0∂tβ,0
= D1(H1,1) −

1
2Tr(U),

H1,1|s1=0 = F1.

Expand H1,1 as formal power series

H1,1 = F1 + s1H(1)
1,1 + s2

1H
(2)
1,1 + · · · ,

then we have

H(1)
1,1 = D1(F1) −

1
2Tr(U),

kH(k)
1,1 = D1(H(k−1)

1,1 ), (k ≥ 2).

Note that deg(F1) = 0, from Proposition 3.6 it follows that D1(F1) = 0, thus H(1)
1,1 =

−1
2Tr(U) and deg(H(1)

1,1) = 0. By using Proposition 3.6 again we arrive at the equalities 
H(k)

1,1 = 0 for k ≥ 2. The proposition is proved. �



B. Dubrovin et al. / Advances in Mathematics 293 (2016) 382–435 411
Theorem 3.8. For g ≥ 2 we have Hg ∈ Â and

degHg ≤ 3g − 3.

In particular, equation (3.10) has a unique solution of the following form

Hg,h = Hg,h−1 +
Ng,h∑
i=1

H(i)
g,hs

i
h,

where Ng,h =
[

3g−3
2h−1

]
, and the coefficients H(i)

g,h can be obtained recursively from the 

equation (3.10).

Proof. We prove the theorem by induction on h. When h = 0 we know from Theorem 2.2
that Hg,0 = Fg satisfies the condition degFg ≤ 3g−3. We assume that degHg,m ≤ 3g−3
when m ≤ h − 1, and then consider the degree of Hg,h.

By definition, Hg,h is a formal power series of sh. We write it as

Hg,h = Hg,h−1 + shH(1)
g,h + s2

hH
(2)
g,h + · · · .

Then equation (3.10) implies that

H(1)
g,h = Dh (Hg,h−1) + Coef(Eh,g,h, s

0
h),

2H(2)
g,h = Dh

(
H(1)

g,h

)
+ Coef(Eh,g,h, s

1
h),

3H(3)
g,h = Dh

(
H(2)

g,h

)
+ Coef(Eh,g,h, s

2
h), · · · ,

where

Eh,g,h = −1
2

2h−2∑
p=0

(−1)pηαβ
(

∂2Hg−1,h

∂tα,p∂tβ,2h−2−p
+

g−1∑
�=1

∂H�,h

∂tα,p
∂Hg−�,h

∂tβ,2h−2−p

)
,

and Coef(P (x), xk) denote the coefficient of xk of a polynomial P (x).
From Proposition 3.6 we know that

deg (Dh(Hg,h−1)) ≤ 3g − 2h− 2,

deg
(2h−2∑

p=0
(−1)pηαβ ∂2Hg−1,h

∂tα,p∂tβ,2h−2−p

)
≤ 3g − 2h− 2,

deg
(2h−2∑

p=0
(−1)pηαβ ∂H�,h

∂tα,p
∂Hg−�,h

∂tβ,2h−2−p

)
≤ 3g − 2h− 2,
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Table 1
An algorithm for Hg.

FUNCTION H(g)

Argument: g The genus g ≥ 2.
Global variables: F(1), . . ., F(g) Free energies of genus 1 to g, obtained from the 

loop equation (2.17).
H(1), . . ., H(g-1) Hodge potentials of genus 1 to g − 1, obtained 

from Proposition 3.7 and the algorithm itself.
VT(a,p,b) ∂vb

∂ta,p , the principal hierarchy (1.15).
DV(k,a,m) Dk (∂m

x va), obtained from Proposition 3.4.
Local variables: h,j Positive integers.

n Ng,h.
H(g,h) Hg,h.
H(g,h,j) H(j)

g,h.
Subroutines: FLOOR(x) [x], the Gauss floor function.

D(k,A) Dk(A), computed by using DV(k,a,m) and the 
chain rule.

E(h,g,h) Eh,g,h, computed by using VT(a,p,c), H(1), . . ., 
H(g-1) and the chain rule.

COEF(A,x,k) Coef(A, xk).
BEGIN

H(g,0):=F(g)
FOR h=1 TO g DO

H(g,h,0):=H(g,h-1)
n:=FLOOR((3*g-3)/(2*h-1))
FOR j=1 TO n DO

H(g,h,j):=(D(h,H(g,h,j-1))+COEF(E(h,g,h), s_h, j-1))/j
END FOR
H(g,h):=SUM(H(g,h,j)s_h^j, j=0,...,n)

END FOR
RETURN H(g,g)

END

so deg(H(1)
g,h) ≤ 3g − 2h − 2. Note that, when g = 2, l = 1, or l = g − 1, H1,h appears in 

the above estimate, whose degree is not 0 but 1. In these cases, we must use the explicit 
form of H1 and the fact that Tr(U) does not depend on the jet variables to obtain the 
best bounds of the degrees of the relevant functions.

Similarly, one can show that deg(H(j)
g,h) ≤ 3g− 3 − (2h − 1)j, so we have deg(Hg,h) ≤

3g − 3. The theorem is proved. �
It is clear that Theorem 3.8, Proposition 3.1, Theorem 3.2 and Proposition 3.7 give a 

refinement of Theorem 1.3. Together with Theorem 2.2, they provide an algorithm (see 
Table 1) for computation of the Hodge potentials Hg for g ≥ 0.

Before we proceed to considering the Hodge hierarchy satisfied by the two-point 
correlation functions (1.30), let us calculate some Hodge integrals by using the above 
algorithm. Assume M is a semisimple Frobenius manifold defined by the quantum coho-
mology of a certain smooth projective variety X with vanishing odd cohomology. Denote 
by λi = ci(E) the Chern classes of the Hodge bundle over the moduli space Xg,m,β.

Corollary 3.9. Let vα(t) be the topological solution of the Euler–Lagrange equations (2.10)
subjected to cα,p = δα1 δ

p
1 . Then the following formula holds true:
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∑
m=0

1
m!

∑
p1,...,pm≥0

tα1,p1 ...tαm,pm

∑
β∈H2(X,Z)

∫
[X1,m,β ]vir

λ1

m∏
j=1

ev∗j (φαj
) ∧ c

pj

1 (Lj)

= 1
24

ηαβ
∂2F

∂vα∂vβ
(v(t)).

Proof. This is a simple corollary of Theorem 3.8 and ch1(E) = λ1. �
For the case when X = a point, we have computed the corresponding Hodge poten-

tials up to genus 6 by applying Theorem 3.8. We also have the following corollary of 
Theorem 3.8.

Corollary 3.10. Let v(t) denote the topological solution (1.29) of the dispersionless KdV 
hierarchy. For g ≥ 2, the following formula holds true:

∑
m≥0

∑
p1,...,pm≥0

tp1 ...tpm

m!

∫
Mg,m

λgλg−1λg−2ψ
p1
1 ...ψpm

m

= 1
2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g v2g−2

x (t).

Proof. Due to Theorem 3.8, for g ≥ 2 the left hand side can be expressed as a polynomial 
in vxx, vxxx, . . . with coefficients rationally depending on vx. Noting that degHg ≤ 3g−3, 
we find that the left hand side has degree 0, so it does not contain vxx, vxxx, . . .. Then 
by using the fact that v(0) = 0, vx(0) = 1, degHg = 2g − 2, and the well-known Hodge 
integral formula (see eq. (5.3) below) we obtain that the left hand side must have the 
form

1
2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g f(v(t))v2g−2

x (t)

for some smooth function f(v) satisfying f(0) = 1.
The string equation now reads

∑
p≥1

t̃p
∂ZE(t; s; ε)

∂tp−1
+ 1

2ε2 t
2
0ZE(t; s; ε) − s1

2 ZE(t; s; ε) = 0, (3.16)

which gives

∂Hg

∂v
= 0, g ≥ 2. (3.17)

So we have f(v) ≡ 1. The corollary is proved. �
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4. Tau-symmetric integrable Hamiltonian deformations of the principal hierarchy

In this section, we introduce the notion of tau-symmetric integrable Hamiltonian 
deformations of the principal hierarchy, and prove Theorem 1.5. We will also study in 
detail the Hodge hierarchy associated to the one-dimensional Frobenius manifold for 
some particular choices of the parameters sk, k ≥ 1.

Definition 4.1. Let M be a Frobenius manifold. A hierarchy of Hamiltonian evolutionary 
PDEs

∂wα

∂tβ,q
= {wα(x), Hβ,q} = Pαγ δHβ,q

δwγ(x) , q ≥ 0 (4.1)

is called a tau-symmetric integrable Hamiltonian deformation of the principal hierarchy 
of M if the flow ∂

∂t1,0 is given by the translation along the spatial variable x and the 
following conditions are satisfied:

1) Integrability: for β = 1, . . . , n, q ≥ 0 the functionals Hβ,q are conserved quantities 
for each flow of the hierarchy.

2) Polynomiality: the Hamiltonian operator Pαβ and the densities of the Hamiltonians 
Hβ,q =

∫
hβ,q dx take the form

Pαβ = ηαβ∂x +
∑
k≥1

εk
k+1∑
l=0

Pαβ
k,l (w;wx, . . . , w

(k+1−l))∂l
x (4.2)

hβ,q = θβ,q+1(w) +
∑
k≥1

εkhβ,q;k(w;wx, . . . , w
(k)), q ≥ 0.

Here Pαβ
k,l , hβ,q;k are homogeneous differential polynomials in wγ

x, w
γ
xx, . . . of degrees 

k + 1 − l and k respectively. Like above the degree is defined as deg ∂m
x wγ = m.

3) Tau-symmetry:

∂hα,p−1

∂tβ,q
= ∂hβ,q−1

∂tα,p
, p, q ≥ 0,

where hα,−1 = wα = ηαγw
γ .

4) Hβ,−1 =
∫
hβ,−1(w(x)) dx are Casimirs of the Hamiltonian operator P ,

Pαγ δHβ,−1

δwγ(x) = 0.

We note that, for the case of one-dimensional Frobenius manifold, the integrability 
condition can be deduced from the other conditions given in the above definition of the 
tau-symmetric integrable Hamiltonian deformation of the principal hierarchy.
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The integrability condition of the above definition implies the commutativity of the 
flows of the hierarchy, i.e.

∂

∂tβ,q

(
∂wγ

∂tα,p

)
= ∂

∂tα,p

(
∂wγ

∂tβ,q

)
, ∀ p, q ≥ 0. (4.3)

This condition together with the polynomiality and tau-symmetry condition also ensures 
the existence of functions

Ω̃α,p;β,q = Ωα,p;β,q(w) +
∑
k≥1

εkΩ[k]
α,p;β,q(w;wx, . . . , w

(k))

such that

∂hα,p−1

∂tβ,q
= ∂xΩ̃α,p;β,q = ∂xΩ̃β,q;α,p.

Here Ω[k]
α,p;β,q are graded homogeneous polynomials of wγ

x , . . . , ∂
k
xw

γ of degree k. By 
taking (β, q) = (1, 0) in the above equalities we obtain

hα,p = Ω̃α,p+1;1,0, α = 1, . . . , n, p ≥ −1.

For any given solution w = w(t; ε) of the integrable hierarchy (4.1), since the differ-
ential polynomial

∂Ω̃α,p;β,q(w;wx, . . . )
∂tγ,k

is symmetric with respect to permutations of pairs of indices {α, p}, {β, q}, {γ, k}, there 
exists a function τ(t; ε), called the tau-function of the solution w(t; ε), such that

Ω̃α,p;β,q = ε2
∂2 log τ(t; ε)
∂tα,p∂tβ,q

, α, β = 1, . . . , n, p, q ≥ 0.

In particular, we have

wα(t; ε) = ε2
∂2 log τ(t; ε)
∂x∂tα,0

,

hα,p(w(t; ε);wx(t; ε), . . . ; ε) = ε2
∂2 log τ(t; ε)
∂x ∂tα,p+1 , p ≥ −1. (4.4)

Let us define a subclass of Miura-type and quasi-Miura transformations

wα 
→ w̃α = wα +
∑

εkW k
α (w;wx, wxx, . . . ) , α = 1, . . . , n (4.5)
k≥1
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(cf. (1.31) above) suitable for working with tau-symmetric integrable hierarchies (cf. 
[16]). Recall that for a Miura-type transformation the terms W k

α of the expansion must 
be graded homogeneous differential polynomials of degree k with coefficients depending 
smoothly on w ∈ semisimple part of M . For a quasi-Miura transformation the k-th term 
W k

α depends rationally on the first jet variables wγ
x and polynomially on ∂l

xw
γ , l ≥ 2. Like 

before, this rational function must be homogeneous in the jet variables of the degree k.

Definition 4.2. We call a Miura-type transformation (4.5) normal if it can be represented 
in the form

w̃α = wα + ε2 ∂x∂tα,0

∑
k≥0

εkAk(w;wx, . . . ) (4.6)

for some functions Ak(w; wx, . . . ). In a similar way it is defined the class of normal 
quasi-Miura transformations.

It is easy to see that for a normal Miura transformation the functions Ak are graded 
homogeneous polynomials of wγ

x, . . . , ∂
k
xw

γ of degree k. For a normal quasi-Miura trans-
formation the functions Ak for k ≥ 2 depend rationally on wγ

x and polynomially on ∂l
xw

γ , 
l ≥ 2; the term A1 may also contain logarithms of the first order jets (see more details 
in [16]).

Recall that, under a Miura-type (or quasi-Miura) transformation the Hamiltonian 
operator transforms as follows:

P̃αβ = L∗α
γP

γξLβ
ξ ,

where

Lα
β =

∑
s

(−∂x)s ◦ ∂w̃α

∂wβ,s
, L∗α

β =
∑
s

∂w̃α

∂wβ,s
◦ ∂s

x, wα,s = ∂s
xw

α.

We also choose the following functions as the densities for the Hamiltonians of the 
transformed hierarchy:

h̃α,p(w̃; w̃x, . . . ) = hα,p(w;wx, . . . ) + ε2 ∂x∂tα,p+1

∑
k≥0

εkAk(w;wx, . . . ).

Needless to say that the Hamiltonians

∫
hα,p(w;wx, . . . ) dx and

∫
h̃α,p (w̃; w̃x, . . . ) dx

coincide. Thus we have the following lemma.
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Lemma 4.3. A normal Miura-type transformation transforms a tau-symmetric integrable 
Hamiltonian deformation of the principal hierarchy of a Frobenius manifold to a defor-
mation of the same type.

Unlike the normal Miura-transformations, a normal quasi-Miura transformation in 
general does not preserve the polynomiality property of a tau-symmetric integrable hier-
archy. However, in the special case when the normal quasi-Miura transformation is given 
by

uα = vα + ε2∂x∂tα,0

∑
g≥1

ε2g−2Fg(v; vx, . . . , v(3g−2)),

where Fg are the genus g free energies of a semisimple Frobenius manifold M , it trans-
forms the principal hierarchy of the Frobenius manifold to its topological deformation 
(1.6), which is a tau-symmetric integrable deformation of the principal hierarchy, see [16,
7,8] for details. Similarly, Theorem 1.5 tells that the quasi-Miura transformation (1.30)
also transforms the principal hierarchy to a tau-symmetric integrable hierarchy.

Proof of Theorem 1.5. Let us consider a normal quasi-Miura transformation defined in 
(1.30), (1.31). It transforms the principal hierarchy (1.15) of a semisimple Frobenius 
manifold to the Hodge hierarchy

∂wα

∂tβ,q
= P̃αγ δH̃β,q

δwγ(x) . (4.7)

According to Theorem 1.3, the quasi-Miura transformation defined by (1.30) has the 
form (1.31). So the transformed Hamiltonian operator and Hamiltonian densities have 
the following forms

P̃αγ = ηαγ∂x +
∑
g≥1

ε2g
3g+1∑
k=1

P̃αγ
g,k(w;wx, . . . , w

(3g+1−k); s1, . . . , sg)∂k
x ,

h̃β,q = θβ,q+1(w) +
∑
g≥1

ε2gh̃β,q,g(w;wx, . . . , w
(3g); s1, . . . , sg).

It is easy to verify the first, third, and fourth conditions of Definition 4.1. So we only 
need to show the polynomiality of P̃αγ and h̃β,q.

Note that the total Hodge potential ZE(t; s; ε) is in the orbit of Givental group actions. 
Indeed, the corresponding infinitesimal transformation is given by

−
∑
k≥1

skẑ−2k+1.

Thus the polynomiality of the Hodge hierarchy and its Hamiltonian structure follows 
from Buryak–Posthuma–Shadrin’s result [7,8]. The theorem is proved. �
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Let us study the Hodge hierarchy (1.34)–(1.36) of a point in detail for some specific 
choices of the values of the parameters s1, s2, . . . . The simplest case is the original KdV 
hierarchy obtained by taking s1 = s2 = · · · = 0. We proceed to consider other examples.

Example 4.4. (See Buryak [4].) Let us assume that the parameters sk take the following 
form:

sk = − B2k

2k(2k − 1)s
2k−1, for k ≥ 1, (4.8)

where s is an arbitrary parameter. Then we have

e
∑

s2k−1ch2k−1(E) = e
∑

(2k−2)!s2k−1ch2k−1(E) = e
∑

m≥1(−1)m−1(m−1)!smchm(E).

Denote x1, . . . , xg the Chern roots of the Hodge bundle on the moduli space of genus g
curves. From the definition

chm(E) = 1
m! (x

m
1 + · · · + xm

g )

it follows that

e
∑

m≥1(−1)m−1(m−1)!smchm(E) =
g∏

i=1
e
∑

m≥1(−1)m−1 sm

m xm
i

=
g∏

i=1
(1 + s xi) = 1 + s λ1 + · · · + sgλg =: Λg(s).

Here we use standard notations for the Chern classes of Hodge bundle

λi = ci(E), i = 1, . . . , g.

Λg(s) is called the Chern polynomial of the Hodge bundle. So, after the substitution 
(4.8) the Hodge potential of a point specifies to

H 
→
∑
g

ε2g−2
∑
n≥0

∑
k1,...,kn

tk1 . . . tkn

n!

∫
Mg,n

Λg(s)ψk1
1 . . . ψkn

n .

This is exactly the generating function of the special Hodge numbers considered by 
Buryak in [4]. He proved that the function

u = w +
∑ (−1)g

22g(2g + 1)!ε
2gsgw2g
g≥1
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with w = ε2 ∂2H
∂x∂x satisfies the Intermediate Long Wave (ILW) equation

ut1 = uux +
∑
g≥1

ε2gsg−1 |B2g|
(2g)! u2g+1.

So from Buryak’s result it follows that the integrable hierarchy (1.34)–(1.36) of Hamilto-
nian evolutionary PDEs, with the special choice (4.8) of the parameters sk, is equivalent 
to the ILW hierarchy, and the associated Hamiltonian operator have the explicit expres-
sion

P̃ = ∂x +
∑
g≥1

(2g − 1)|B2g|
(2g)! sgε2g∂2g+1

x .

We note that in [32] Kazarian considered the generating function of the form

G =
∑
g

ε2g−2
∑
n≥0

∑
k1,...,kn

tk1 . . . tkn

n!

∫
Mg,n

Λg(−ξ2)ψk1
1 . . . ψkn

n . (4.9)

He proved that, after the substitution (t0, t1, . . . ) 
→ (q1, q2, . . . ) of the form

t0 = q1, tk+1 =
∑
m≥1

m
(
ξ2qm + 2ξqm+1 + qm+2

) ∂

∂qm
tk, k ≥ 0,

the function τ := expG(ξ; q1, q2, . . . ) turns out to be the tau-function of a family of 
solutions to the KP hierarchy depending on the parameter ξ.

Example 4.5. Now let us consider a particular choice of the parameters sk such that 
the resulting Hodge hierarchy of a point possesses a bihamiltonian structure. We require 
that the parameters are given by

sk = (4k − 1) B2k

2k(2k − 1)s
2k−1, k ≥ 1. (4.10)

Here, as in the above example, s is an arbitrary parameter. Then the Hodge potential is 
reduced to

H 
→
∑
g

ε2g−2
∑
n≥0

∑
k1,...,kn

tk1 . . . tkn

n!

∫
Mg,n

Λg(s) Λg(−2 s) Λg(−2 s)ψk1
1 . . . ψkn

n .

Consider the following combination

∂w

∂t
:= 2

∞∑
(2s)k ∂w

∂tk

k=0
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of the flows of the Hodge hierarchy. It has the expression

∂w

∂t
= 2e2s wwx + ε2

3 e2s w
(
−s3w3

x + s2wxwxx + swxxx

)
+ O(ε4).

Making a rescaling

w → w

2s

and setting s = 1, we obtain the equation

wt = 2ewwx + ε2

3 ew
(
−1

4w
3
x + 1

2wxwxx + wxxx

)
+ O(ε4). (4.11)

Finally, performing a Miura-type transformation

u = w +
∞∑
k=1

ε2k
32k+2 − 1

(2k + 2)!4k+1w2k,

we can check up to the ε12-approximations that the equation (4.11) is transformed to 
the discrete KdV equation

ut = 1
ε

(
eu(x+ε) − eu(x−ε)

)
= 2euux + ε2

3 eu
(
u3
x + 3uxuxx + uxxx

)
+ O(ε4),

which is also known as the Volterra lattice equation. At the same order of approximation, 
we find that, apart from the KdV case, this is the only specification of the Hodge hier-
archy of a point which possesses a bihamiltonian structure4 by using the method given 
in [38,36]. From [1,24] we know that the bihamiltonian structure of the Volterra system 
is given by the following pair of compatible Poisson brackets

{u(x), u(y)}1 = δ(x− y + ε) − δ(x− y − ε)
ε

,

{u(x), u(y)}2 =
[
eu(x) + eu(y)

] δ(x− y + ε) − δ(x− y − ε)
ε

+1
ε

[
eu(x+ε)δ(x− y + 2ε) − eu(y+ε)δ(x− y − 2ε)

]
.

4 The Camassa–Holm equation [9]

vt − ε
2
vxxt =

3
2
v vx − ε

2
[
vxvxx +

1
2
v vxxx

]

is known to also possess of a bihamiltonian structure. However it cannot be obtained as a specification of 
the hierarchy (1.34)–(1.36) as it does not admit a tau-structure [16].
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The central invariant [17,36] of this bihamiltonian structure is given by

c(λ) = 1
24λ,

where λ = 4eu is the canonical coordinate of this bihamiltonian structure. If we take the 
bihamiltonian structure as

{ , }˜
1 = −{ , }2, { , }˜

2 = −{ , }1,

then the central invariant becomes c̃(λ̃) = 1/24, where λ̃ = λ−1.

In [44] Zhou constructed alternative generating functions of the cubic Hodge integrals 
and showed that they are tau-functions of a family of solutions to the KP hierarchy. 
Denote by n = l(μ) the length of a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μn > 0), and by P+
the set of all non-empty partitions. Introduce the notation

zμ =
∏
j

mj(μ)!jmj(μ)

where mj(μ) = | i : μi = j |. The tau-function of Zhou’s solution to the KP hierarchy as 
a function of (t1, t2, . . . ), tn = 1

npn depending on an arbitrary parameter r is given by 
the sum

τ = exp

⎛
⎝ ∑

μ∈P+

Gμ(r; ε)pμ

⎞
⎠ , pμ = pμ1pμ2 . . . pμn

,

where

Gμ(r; ε) = −
√
−1l(μ)

zμ
[r(r + 1)]l(μ)−1

l(μ)∏
i=1

∏μi−1
a=1 (μir + a)

μi!

×
∑
g≥0

ε2g−2
∫

Mg,l(μ)

Λ∨
g (1)Λ∨

g (r)Λ∨
g (−1 − r)∏l(μ)

i=1
1
μi

(
1
μi

− ψi

) .

In this expression

Λ∨
g (r) :=

g∑
i=0

(−r)iλg−i = (−r)gΛg

(
−1
r

)

is the Chern polynomial of the dual Hodge bundle. The derivation of this statement uses 
the Gopakumar–Mariño–Vafa formula [31,39] proven in [37,41]. This formula expresses 
the intersection numbers of the above form in terms of Schur polynomials. Also a gener-
ating function of more general cubic Hodge integrals labeled by pairs of partitions was 
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considered in [44]. It gives rise to solutions of the 2D Toda hierarchy. See in Example 4.6
for our specification of the Hodge hierarchy of a point for this more general case.

We also note that in [2] Brini derived up to ε4-approximation the integrable hierarchy 
for the Hodge integrals associated to the tri-polynomial

Λ∨
g (1)Λ∨

g (f)Λ∨
g (−1 − f),

where f is called a framing. It is conjectured in [3] that this integrable hierarchy is 
equivalent to the q-deformed KdV hierarchy [25] which does not possess bihamiltonian 
structure in the usual sense for generic q.

Example 4.6. Let us consider a special choice of the parameters sk, k ≥ 1 such that the 
Hamiltonian operator P̃ of the Hodge hierarchy of a point has the coefficients indepen-
dent of w and its x-derivatives

P̃ = ∂x +
∑
g≥1

ε2gPg(s1, . . . , sg)∂2g+1
x . (4.12)

We conjecture that this requirement is equivalent to the following choice of the param-
eters sk:

sk = − B2k

2k(2k − 1)

(
p2k−1 + q2k−1 −

(
pq

p + q

)2k−1
)
, k ≥ 1.

Here p and q are arbitrary complex numbers such that p +q �= 0. We checked the validity 
of the conjecture at the approximation up to ε12, and the Hamiltonian operator P̃ has 
the expression

P̃ = ∂x − ε2s1∂
3
x + 3

5ε
4s2

1∂
5
x − ε6

(
31s3

1
105 + s2

504

)
∂7
x

+ ε8
(

71s4
1

525 + s1s2

315

)
∂9
x − ε10

(
117s5

1
1925 + 9s2

1s2

3080

)
∂11
x

+ ε12
(

42 953
1 576 575s

6
1 + 11

5292s
3
1s2 + 703s2

2
181 621 440

)
∂13
x + O(ε14). (4.13)

We also conjecture the following closed formula for the Hamiltonian operator

P̃ =
p

2
√
p+q

ε∂x

sin
(

p
2
√
p+q

ε∂x

) ◦
q

2
√
p+q

ε∂x

sin
(

q
2
√
p+q

ε∂x

) ◦
√
p+q
2 ε∂x

sin
(√

p+q
2 ε∂x

) ◦ ∂x. (4.14)

This two-parameter family of the Hodge hierarchy corresponds to the cubic Hodge po-
tential
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H =
∑
g

ε2g−2
∑
n≥0

∑
k1,...,kn

tk1 . . . tkn

n!

∫
Mg,n

Λg(p) Λg(q) Λg

(
− pq

p + q

)
ψk1

1 . . . ψkn
n . (4.15)

Note that

(1) when p = 0, q = s this example degenerates to Example 4.4;
(2) when p = −2s, q = s this example is reduced to Example 4.5;
(3) if we set u1 = p, u2 = q, u3 = − p q

p+q , then they satisfy

1
u1

+ 1
u2

+ 1
u3

= 0,

which is exactly the local Calabi–Yau condition that appears in the localization 
calculation of Gromov–Witten invariants.

The conjectural formula (4.14) holds true for Examples 4.4 and 4.5.

5. Hodge integrals and degree zero Gromov–Witten invariants

In this section we collect some explicit formulae for intersection numbers of the form

∫
Mg,m

λi1 . . . λikψ
p1
1 ...ψpm

m (5.1)

for g ≤ 5. Note that, from the Mumford’s relation

Λ∨
g (s)Λ∨

g (−s) = (−1)gs2g

one derives the following identities for the λ-classes:

λ2
k + 2

k−1∑
i=0

(−1)k−iλiλ2k−i = 0, k ≥ 1

(it is understood that λ0=1 and λm = 0 for m > g). So, it suffices [26] to consider the 
integrals (5.1) with pairwise distinct i1, i2, . . . ik. The Theorem 1.3 implies the following 
vanishing property of the intersection numbers (5.1).

Corollary 5.1. For g ≥ 2 the intersection numbers (5.1) vanish unless

i1 + · · · + ik ≤ 3g − 3.

Proof. This readily follows from the upper bound estimate
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degHg ≤ 3g − 3, g ≥ 2. �
Alternatively, Corollary 5.1 can be easily obtained from the dimension counting together 
with the string equation (3.16).

Introduce the following notation for the generating functions of the integrals (5.1) for 
given i1, i2, . . . , ik:

Hg(λi1 . . . λik ; t) =
∑
m≥0

1
m!

∑
p1,...,pm≥0

tp1 ...tpm

∫
Mg,m

λi1 . . . λikψ
p1
1 ...ψpm

m . (5.2)

They will be expressed via the topological solution v = v(t) to the dispersionless KdV 
hierarchy and its derivatives vk = v(k)(t) with respect to x = t0. Due to formula (1.29)
the series expansions of the derivatives read as follows

vx(t) = 1 +
∞∑
k=1

∑
p1+...+pk=k

tp1

p1!
. . .

tpk

pk!
,

v(m)(t) =
∞∑
k=1

∑
p1+...+pk=k+m−1

(k + 1)...(k + m− 1) tp1

p1!
. . .

tpk

pk!
, m ≥ 2.

For g = 1 the only nontrivial generating function is H1(λ1; t). From (1.25) it readily 
follows that

H1(λ1; t) = 1
24v.

This formula was already obtained in [27]. For g = 2 with the help of (1.27) one derives 
the following three generating functions

H2(λ1; t) = 1
480

v3

v1
− 11

5760
v2
2
v2
1
,

H2(λ2; t) = 7
5760v2,

H2(λ1λ2; t) = 1
5760v

2
1 .

The expression for H2(λ2; t) was obtained in [27], other two seem to be new (the formula 
for H2(λ1; t) was also obtained in [13] by a different method). It is easy to continue this 
calculation of all intersection numbers of λ-classes and ψ-classes also for higher g by 
applying the procedure of the Theorem 3.8. E.g., for genera 3 and 4 the complete list is 
given below.

H3(λ1; t) = 131v5
2

6 − 9343v3
2v3

5 + 869v2v
2
3
4 + 185v2

2v4
4 − 689v3v4

3
45 360v1 1 451 520v1 322 560v1 96 768v1 967 680v1
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− 383v2v5

967 680v3
1

+ 7v6

138 240v2
1
,

H3(λ2; t) = − 19v4
2

53 760v4
1

+ 151v2
2v3

207 360v3
1
− 61v2

3
322 560v2

1
− 373v2v4

1 451 520v2
1

+ 41v5

580 608v1
,

H3(λ3; t) = 31v4

967 680 ,

H3(λ1λ2; t) = v3
2

36 288v2
1
− 19v2v3

483 840v1
+ 23v4

193 536 ,

H3(λ1λ3; t) = 31v2
2

1 451 520 + 41v1v3

1 451 520 ,

H3(λ2λ3; t) = v2
1v2

120 960 ,

H3(λ1λ2λ3; t) = v4
1

1 451 520 ,

H4(λ1; t) = − 263v8
2

8100v10
1

+ 87 059v6
2v3

777 600v9
1

− 1 932 781v4
2v

2
3

16 588 800v8
1

+ 613 883v2
2v

3
3

16 588 800v7
1

− 7379v4
3

4 300 800v6
1
− 8513v5

2v4

259 200v8
1

+ 2 598 059v3
2v3v4

49 766 400v7
1

− 422 129v2v
2
3v4

29 030 400v6
1

− 3313v2
2v

2
4

645 120v6
1

+ 317v3v
2
4

276 480v5
1

+ 71 179v4
2v5

9 953 280v7
1
− 26 473v2

2v3v5

3 317 760v6
1

+ 2069v2
3v5

2 322 432v5
1

+ 2441v2v4v5

1 935 360v5
1

− 1129v2
5

23 224 320v4
1
− 2383v3

2v6

1 990 656v6
1

+ 31 111v2v3v6

38 707 200v5
1
− 463v4v6

5 806 080v4
1

+ 1277v2
2v7

8 294 400v5
1

− 179v3v7

4 147 200v4
1
− 559v2v8

38 707 200v4
1

+ v9

1 244 160v3
1
,

H4(λ2; t) = 7541v7
2

1 814 400v8
1
− 1 540 579v5

2v3

116 121 600v7
1

+ 293 051v3
2v

2
3

24 883 200v6
1
− 145 921v2v

3
3

58 060 800v5
1

+ 95 047v4
2v4

23 224 320v6
1
− 152 107v2

2v3v4

29 030 400v5
1

+ 81 331v2
3v4

116 121 600v4
1

+ 33 913v2v
2
4

69 672 960v4
1
− 32 719v3

2v5

34 836 480v5
1

+ 104 981v2v3v5

139 345 920v4
1
− 145v4v5

1 548 288v3
1

+ 57 787v2
2v6

348 364 800v4
1
− 1969v3v6

33 177 600v3
1
− 15 461v2v7

696 729 600v3
1

+ 1357v8

696 729 600v2
1
,

H4(λ3; t) = − 247v6
2

1 290 240v6
1

+ 16 951v4
2v3

29 030 400v5
1
− 51 791v2

2v
2
3

116 121 600v4
1

+ 1469v3
3

29 030 400v3
1

− 1459v3
2v4

7 257 600v4
1

+ 5963v2v3v4

29 030 400v3
1
− 6217v2

4
348 364 800v2

1
+ 409v2

2v5

7 741 440v3
1
− 473v3v5

17 418 240v2
1

− 3953v2v6
2 + 13v7

,
348 364 800v1 6 220 800v1
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H4(λ4; t) = 127v6

154 828 800 ,

H4(λ1λ2; t) = − 841v6
2

1 161 216v6
1

+ 349v4
2v3

161 280v5
1
− 2083v2

2v
2
3

1 290 240v4
1

+ 593v3
3

3 317 760v3
1
− 6359v3

2v4

8 709 120v4
1

+ 12 031v2v3v4

16 588 800v3
1
− 473v2

4
7 741 440v2

1
+ 2179v2

2v5

11 612 160v3
1
− 31v3v5

331 776v2
1

− 757v2v6

19 353 600v2
1

+ 269v7

38 707 200v1
,

H4(λ1λ3; t) = 67v5
2

3 628 800v4
1
− 1703v3

2v3

34 836 480v3
1

+ 1567v2v
2
3

58 060 800v2
1

+ 197v2
2v4

11 612 160v2
1

− 907v3v4

87 091 200v1
− 29v2v5

6 967 296v1
+ 1859v6

348 364 800 ,

H4(λ1λ4; t) = 1093v2
3

348 364 800 + 127v2v4

29 030 400 + 103v1v5

69 672 960 ,

H4(λ2λ3; t) = − v4
2

1 382 400v2
1

+ v2
2v3

453 600v1
+ 113v2

3
12 902 400 + 127v2v4

9 676 800 + 17v1v5

3 317 760 ,

H4(λ2λ4; t) = 127v3
2

87 091 200 + 29v1v2v3

5 529 600 + 127v2
1v4

116 121 600 ,

H4(λ3λ4; t) = 17v2
1v

2
2

19 353 600 + v3
1v3

3 225 600 ,

H4(λ1λ2λ3; t) = 443v3
2

43 545 600 + 137v1v2v3

3 870 720 + 1343v2
1v4

174 182 400 ,

H4(λ1λ2λ4; t) = 97v2
1v

2
2

29 030 400 + v3
1v3

777 600 ,

H4(λ1λ3λ4; t) = v4
1v2

3 628 800 ,

H4(λ2λ3λ4; t) = v6
1

87 091 200 .

For higher genus the calculations are also simple (we have the complete list for g ≤ 6) 
but the expressions become more involved. We write just one example

H5(λ1λ2λ3λ4; t) = 5851v4
1v

2
2

1 277 337 600 + 89v5
1v3

85 155 840 .

Finally, we list several particular Hodge integrals (with no insertion of ψ-classes) 
derived from the above expressions by taking t = 0. For g = 2,

H2(λ3
1; 0) = 1

2880 .

This number was originally calculated in [40]. For g ≥ 3, we have
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H3(λ1λ2λ3; 0) = 1
1 451 520 , H4(λ2λ3λ4; 0) = 1

87 091 200 ,

H5(λ3λ4λ5; 0) = 1
2 554 675 200 , H6(λ4λ5λ6; 0) = 691

31 384 184 832 000 .

These numbers agree with the well-known formula

Hg(λg−2λg−1λg; 0) = 1
2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g , g ≥ 2. (5.3)

We have

H3(λ6
1; 0) = 1

90 720 ,

H4(λ9
1; 0) = 1

113 400 ,

H5(λ12
1 ; 0) = 31

680 400 , H5(λ1λ2λ4λ5; 0) = 1
766 402 560 ,

H6(λ15
1 ; 0) = 431

481 140 , H6(λ1λ3λ5λ6; 0) = 691
6 276 836 966 400 ,

H6(λ2λ3λ4λ6; 0) = 1697
2 988 969 984 000 , H6(λ1λ2λ3λ4λ5; 0) = 150 719

15 692 092 416 000 .

These integrals except H6(λ1λ3λ5λ6; 0) were also derived by Faber in [20,21].
We will now apply the above results to constructing integrable hierarchy of the topo-

logical type associated with the degree zero part of quantum cohomology of a smooth 
projective threefold X. The construction extends the results of [13] where the integrable 
hierarchy was constructed for manifolds of complex dimension d ≥ 4. As in [13] we 
assume vanishing of odd cohomologies of X.

Theorem 5.2. For a smooth projective threefold X with Hodd(X) = 0 the total Gromov–
Witten potential of degree zero is (log of) a tau-function of the following integrable 
hierarchy

∂u
∂tαp

= ∂

∂x

(
φα ·

[
up+1

(p + 1)! −
ε2

24c2 ·
up−1

(p− 1)!u
2
x

+ ε2

24c3 ·
(

2 up−1

(p− 1)!uxx + up−2

(p− 2)!u
2
x

)

+ (c3 − c1c2) ·
(
ε3
(

3 up−1

(p− 1)!uxuxx + up−2

(p− 2)!u
3
x

)
f ′(εux)

+ ε4
up−1

(p− 1)!u
2
xuxxf

′′(εux)
)])

, (5.4)

for the H∗(X)-valued function u = u(x, t), t = (tαp ). Here ci = ci(X) are Chern classes 
of the tangent bundle of X and the function f is defined by the following series
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f(s) = 1
2

∞∑
g=2

(−1)g

(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g s2g−2. (5.5)

The proof is based on the following lemma.

Lemma 5.3. For any smooth projective threefold X satisfying the above assumptions the 
degree zero Gromov–Witten potential is given by the following expressions

F = ε−2F0(t) + 1
24 〈c3, logvx〉 −

1
24 〈c2,v〉 + 〈c3 − c1c2, f(εvx)〉 (5.6)

where v = v(t) is defined by the formula

v =
∞∑

n=1

1
n

∑
p1+···+pn=n−1

tp1

p1!
. . .

tpn

pn! , (5.7)

the genus zero part reads

F0(t) =
∑
n≥3

1
n(n− 1)(n− 2)

∑
p1+···+pn=n−3

∫
X

tp1

p1!
. . .

tpn

pn!

and f is given by eq. (5.5).

In these formulae we use cohomology-valued time variables tp = tα,pφα ∈ H∗(X, C)
and the dependent functions v(t) = vα(t)φα ∈ H∗(X, C).

Proof. The first three terms in (5.6) were already derived in [13]. To find the expression 
for Fg for g ≥ 2 one has to use that

〈τp1(φα1) . . . τpm
(φαm

)〉g,β=0

=
∫

Mg,m×X

ψp1
1 . . . ψpm

m e (E∨ � TX)φα1 . . . φαm
. (5.8)

Here e (E∨ � TX) is the Euler class of the obstruction bundle over Mg,m × X. For a 
three-fold X one has

e (E∨ � TX) = (−1)g 1
2(c3 − c1c2)λ3

g−1 = (−1)g(c3 − c1c2)λg−1λg−2λg (5.9)

for g ≥ 2, (see [27]). Hence

〈τp1(φα1) . . . τpm
(φαm

)〉g,β=0

= (−1)g
∫

Mg,m

λg−2λg−1λgψ
p1
1 . . . ψpm

m

∫
X

(c3 − c1c2)φα1 . . . φαm
.
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It follows that

Fg =
∫
X

(c3 − c1c2)Hg(λg−2λg−1λg; t),

where we replace the arguments in the function (5.2) with the cohomology-valued 
time variables. To compute this function it suffices to know the expression for 
Hg(λg−2λg−1λg; t) for X = pt. In this case

Hg(λg−2λg−1λg; t) = 1
2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g v2g−2

x (5.10)

as it follows from Corollary 3.10. This completes the proof of the Lemma. �
Applying the substitution

vα = 〈φα,v〉 
→ uα = 〈φα,u〉 = vα + ε2
∂2

∂x ∂tα,0

∑
g≥1

ε2g−2Fg (5.11)

with

∑
g≥1

Fg = 1
24 〈c3, logvx〉 −

1
24 〈c2,v〉 + 〈c3 − c1c2, f(εvx)〉 , (5.12)

to the dispersionless degree zero hierarchy

∂v
∂tα,p

= ∂

∂x

(
φα · vp+1

(p + 1)!

)
, α = 1, . . . , n (5.13)

one arrives at the equations (5.4). Theorem 5.2 is proved.
It is easy to also compute the resulting bihamiltonian structure of the integrable 

hierarchy (5.4) by applying the same substitution (5.11) to the Poisson brackets of the 
hierarchy (5.13). The resulting bihamiltonian structure reads

{〈a,u(x)〉, 〈b,u(y)〉}1 = 〈a, b〉δ′(x− y) − ε2

12 [〈a, c2〉〈b, φ〉 + 〈b, c2〉〈a, φ〉] δ′′′(x− y)

{〈a,u(x)〉, 〈b,u(y)〉}2 =

=
[〈(a

2 + μ(a)
)
· b,u(x)

〉
+
〈
a ·
(
b

2 + μ(b)
)
,u(y)

〉
+ 〈a · b, c1〉

]
δ′(x− y)

− ε2

12 [∂x (〈a, c2〉〈b · φ,u(x)〉δ′′(x− y)) − ∂y (〈b, c2〉〈a · φ,u(y)〉δ′′(x− y))]

− ε2 〈a · b, c1 · c2〉 δ′′′(x− y). (5.14)
12
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Here a, b ∈ H∗(X) are arbitrary cohomology classes, φ ∈ H6(X) is the volume element 
normalized by

∫
X

φ = 1.

The operator μ : H∗(X) → H∗(X) is defined by the formula

μ(a) =
(
k − 3

2

)
a for a ∈ H2k(X).

The bihamiltonian structure (5.14) turns out to coincide with the one derived in [13] by 
specializing the latter at d = 3.

For the remaining cases d = 1, 2 the structure of the integrable hierarchy for degree 
zero Gromov–Witten invariants is more involved. In the case X = P1 it can be obtained 
from the extended Toda hierarchy [10] by taking the degree zero limit. For the remaining 
case of X = a surface the computation of the degree zero Gromov–Witten invariants of 
X requires an explicit form of the following Hodge integrals

Hg(λg−2λg; t), Hg(λg−1λg; t).

Construction of the corresponding integrable hierarchy will be studied in a separate 
publication.

6. Conclusion

In this paper, we give an algorithm to solve the equations satisfied by the Hodge poten-
tials associated to an arbitrary semisimple Frobenius manifold. This algorithm enables us 
to represent the Hodge potential in terms of the genus zero free energy of the Frobenius 
manifold and the genus zero two-point functions. We show that the Hodge potential is 
the logarithm of a tau-function of an integrable hierarchy of Hamiltonian evolutionary 
PDEs called the Hodge hierarchy, which is a tau-symmetric integrable deformation of 
the principal hierarchy of the Frobenius manifold with deformation parameters sk, k ≥ 1
and ε. For the one-dimensional Frobenius manifold, this integrable hierarchy is called 
the Hodge hierarchy of a point.

For a certain particular choice of the parameters sk, we show at the approximation 
up to ε12 that the Hodge hierarchy of a point is equivalent to the discrete KdV hierarchy 
which possesses a bihamiltonian structure. Conjecturally, the KdV hierarchy and the 
discrete KdV hierarchy are the only two integrable hierarchies that are contained in 
the Hodge hierarchy of a point and possess bihamiltonian structures. We also reveal a 
relationship between the constant condition (4.12) for the Hamiltonian operator P̃ of 
the Hodge hierarchy of a point and the local Calabi–Yau condition that appears in the 
localization calculation of Gromov–Witten invariants.
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We also formulate Conjecture 1.7 on certain universality of the Hodge hierarchy of 
a point in the class of tau-symmetric integrable Hamiltonian deformations (1.40) of the 
Riemann hierarchy (or the principal hierarchy of the one-dimensional Frobenius mani-
fold) defined in Section 4. In fact, we have the following conjecture about tau-symmetric 
integrable Hamiltonian deformations of the Riemann hierarchy:

Conjecture 6.1. Any tau-symmetric integrable Hamiltonian deformation of the Riemann 
hierarchy is equivalent, under a normal Miura-type transformation, to the canonical tau-
symmetric integrable deformation of the form

∂w

∂tq
= ∂

∂x

(
δHq

δw(x)

)
, q ≥ 0 (6.1)

which is uniquely determined by the following standard form of the density h1 of the 
Hamiltonian H1:

h1 = w3

6 − ε2

24a0w
2
1 + ε4a1w

2
2 + ε6(a2w

3
2 + b1w

2
3)

+ ε8
(
a3w

4
2 + b2w2w

2
3 + b3w

2
4
)

+ ε10
(
a4w

5
2 + b4w

2
2w

2
3 + b5w2w

2
4 + b6w

2
5
)

+ ε12
(
a5w

6
2 + b7w

3
2w

2
3 + b8w

4
3 + b9w

2
2w

2
4 + b10w

3
4

+ b11w2w
2
5 + b12w

2
6
)

+ · · · + total derivatives. (6.2)

Here wk = ∂k
xw, a0, ai, bi, i ≥ 1 are certain constants and, starting from ε4, the terms 

appearing in this standard form are selected by the following two rules:

i) The factor with the highest order derivative in each monomial is nonlinear.
ii) Each of these terms does not contain any wx factor.

In this standard form, the coefficient of ε2 w2
1 is denoted by −a0

24 ; the coefficient of ε2kwk
2

is denoted by ak−1, k ≥ 2; other coefficients are denoted by b1, b2, . . . . Moreover, in the 
case a0 = 0 all coefficients aj , bj , j ≥ 1 must vanish. In the case a0 �= 0, the coefficients 
bj with j ≥ 1 are uniquely determined by a0, a1, a2 . . . .

Observe that parameter a0 �= 0 can be absorbed by rescaling of ε. So it will not be 
taken into account in the problem of classification of tau-symmetric integrable deforma-
tions.

As it was already proven in [4,36] (see e.g. Lemma 3.3 in [36]), an integrable hierarchy 
of Hamiltonian PDEs for a single dependent function u is uniquely determined by h1. 
Let us explain the statement about uniqueness of the standard form (6.2) of a canonical 
tau-symmetric perturbation. First of all, constancy of the coefficients a’s, b’s in the 
Hamiltonian density h1 can be derived from the tau-symmetry property. Let us analyze
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the freedom in the choice of this Hamiltonian. Recall that under a canonical normal 
Miura transformation of the form

w̃(x) = w(x) + ε{w(x),K} + 1
2!ε

2{{w(x),K},K} + 1
3!ε

3{{{w(x),K},K},K} + · · ·

with

K =
∫ ∞∑

p=0
ε2p+1kp(w1, . . . , w2p+1) dx, kp ∈ Aw, deg kp = 2p + 1

the Hamiltonian H1 transforms as follows

H̃1 = H1 + ε{H1,K} + 1
2!ε

2{{H1,K},K} + · · · .

Applying integration by parts one can easily derive that

{1
6w

3(x),
∫ q∏

i=1
wmi

i dx
}

= −
(
(m1 − 1) +

q∑
j=2

(j + 1)mj

)
w1

q∏
i=1

wmi
i + l.o.t. (6.3)

modulo total derivatives. Here, m1, . . . , mq are non-negative integers with mq ≥ 2, and 
“l.o.t.” denotes terms of strictly lower reverse-lexicographic order satisfying the above 
two conditions i) and ii). From (6.3), using

(m1 − 1) +
q∑

j=2
(j + 1)mj �= 0

it can be easily derived that the standard form (6.2) of h1 is unique.
Proof of existence of a normal Miura-type transformation that reduces an arbitrary 

Hamiltonian tau-symmetric integrable hierarchy to its unique standard form will be 
presented in a separate publication; such a Miura-type transformation if exists must be 
unique as the leading term of the transformation is unique (use Lemma 3.3 in [36]).

We can verify the validity of Conjecture 6.1 at the approximation up to ε12. For 
a0 �= 0, the first few bj are found to be

b1 = −240a2
1

7a0
, b2 = −2376a1a2

7a0
,

b3 = a3
0a2 + 43 200a3

1
35a2

0
, b4 = −1728(6a2

2 + 7a1a3)
11a0

,

b5 = 7a3
0a3 + 1 497 600a2

1a2

56a2
0

, b6 = −240(a3
0a1a2 + 14 400a4

1)
77a3

0
.

Under the assumption of the validity of the above conjecture, the class of non-trivial 
tau-symmetric Hamiltonian deformations of the Riemann hierarchy is parameterized by 
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the constants a1, a2, . . . (normalizing a0 = 1). In order to establish the equivalence of the 
above conjecture with Conjecture 1.7, we need to find a bijective map between the sets 
of parameters {sk | k ≥ 1} and {ak | k ≥ 1}. Indeed, we find that the following normal 
Miura-type transformation

w̃ = w + ε2∂2
x

(
1
2s1w

)
+ ε4∂2

x

[(
s3
1

10 + s2

48

)
w2

x + 3s2
1

40 wxx

]

+ ε6∂2
x

[(
− 8s6

1
175 + 5s2

2
504 − s1s3

480 − s3
1s2

21

)
w4

x +
(

s3

480 + s2
1s2

7 + 48s5
1

175

)
w2

xwxx

+
(

s4
1

210 − s1s2

1008

)
(−10w2

xx + wxw3) +
(

17s3
1

1680 + s2

1008

)
w4

]
+ · · · (6.4)

transforms the Hodge hierarchy of a point (1.35) to the above standard form (6.2) with

h̃1 =1
6 w̃

3 − ε2

24 w̃
2
x − ε4

120s1w̃
2
xx − ε6

[(
s3
1

360 + s2

1728

)
w̃3

xx + s2
1

420 w̃
2
xxx

]

− ε8
[(

2s5
1

525 + s2
1s2

504 + s3

34 560

)
w̃4

xx +
(

11s4
1

1400 + 11s1s2

6720

)
w̃xxw̃

2
xxx

+
(

s3
1

1260 + s2

60 480

)
w̃2

xxxx

]
+ · · · + total derivatives.

Thus we have the following correspondence between the two set of parameters

s1 = −120a1, s2 = 8 294 400a3
1 − 1728a2,

s3 = −34 398 535 680 000
7 a5

1 + 11 943 936 000
7 a2

1a2 − 34 560a3.

Note added: In [5], A. Buryak introduced a novel approach of constructing an integrable 
hierarchy associated to a given cohomological field theory (CohFT), called the double 
ramification (DR) hierarchy. Conjecturally [5], being associated to a given CohFT, the 
DR hierarchy is normal Miura equivalent to the Hodge hierarchy. This deep conjecture 
has been verified in several interesting examples [4–6].
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