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Abstract

We prove the conjectural relationship recently proposed in [16] between certain special
cubic Hodge integrals of the Gopakumar–Mariño–Vafa type [27, 36] and GUE correlators.
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1 Introduction

1.1 The Hodge–GUE conjecture

Let Mg,k denote the Deligne–Mumford moduli space of stable algebraic curves of genus g with
k distinct marked points. Denote by Li the i

th tautological line bundle over Mg,k, and by Eg,k

the rank g Hodge bundle. Denote ψi := c1(Li), i = 1, . . . , k, and λj := cj(Eg,k), j = 0, . . . , g.
The Hodge integrals are integrals over Mg,k of the form

∫

Mg,k

ψi1
1 · · ·ψik

k · λj11 · · ·λjgg , i1, . . . , ik, j1, . . . , jg ≥ 0.

These integrals will be defined to be zero unless

3g − 3 + k =

k∑

ℓ=1

iℓ +

g∑

ℓ=1

ℓ · jℓ.

We will mainly consider in this paper the following special cubic Hodge integrals

∫

Mg,k

Λg(−1)Λg(−1)Λg

(
1

2

)
ψi1
1 · · ·ψik

k (1.1.1)

where Λg(z) :=
∑g

j=0 λj z
j denotes the Chern polynomial of Eg,k. Interest to this particular

case of cubic Hodge integrals was triggered by the celebrated R.Gopakumar–M.Mariño–C.Vafa
conjecture [27, 36] regarding the Chern–Simons/string duality. The special cubic Hodge free
energy is the following generating function of Hodge integrals

Hcubic(t; ǫ) =
∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

Λg(−1)Λg(−1)Λg

(
1

2

)
ψi1
1 · · ·ψik

k .

(1.1.2)
Here and below, t = (t0, t1, . . . ), and ǫ is a parameter. Denote by Hg = Hg(t) the genus g
term of Hcubic(t; ǫ), i.e.

Hcubic(t; ǫ) =
∑

g≥0

ǫ2g−2Hg(t). (1.1.3)

The exponential

eHcubic(t;ǫ) =: Zcubic(t; ǫ) (1.1.4)

is called the special cubic Hodge partition function.
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On another hand, let H(N) denote the space of N ×N Hermitean matrices. Denote by

dM =

N∏

i=1

dMii

∏

i<j

dReMij dImMij

the standard unitary invariant volume element on H(N). The GUE partition function of size
N with even couplings is defined by

ZN (s; ǫ) =
(2π)−N

V ol(N)

∫

H(N)
e−

1
ǫ
tr V (M ; s)dM. (1.1.5)

Here, V (M ; s) is an even polynomial or, more generally, a power series in M

V (M ; s) =
1

2
M2 −

∑

j≥1

s2j M
2j , (1.1.6)

s := (s2, s4, s6, . . . ), and by V ol(N) we denote the volume of the quotient of the unitary group
over the maximal torus [U(1)]N

V ol(N) = V ol
(
U(N)/ [U(1)]N

)
=

π
N(N−1)

2

G(N + 1)
, G(N + 1) :=

N−1∏

n=1

n!.

The integral will be considered as a formal saddle point expansion with respect to the small
parameter ǫ. Introduce the ’t Hooft coupling parameter x by

x := N ǫ.

Expanding the free energy FN (s; ǫ) := logZN (s; ǫ) in powers of ǫ and replacing the Barnes
G-function G(N + 1) by its asymptotic expansion yields

Feven(x, s; ǫ) := FN (s)|N=x
ǫ
− 1

12
log ǫ =

∑

g≥0

ǫ2g−2Fg(x, s). (1.1.7)

The GUE free energy Feven(x, s; ǫ) with even couplings can be represented [21, 22, 3, 37] in the
form

Feven(x, s; ǫ)

=
x2

2ǫ2

(
log x− 3

2

)
− 1

12
log x+ ζ ′(−1) +

∑

g≥2

ǫ2g−2 B2g

4g(g − 1)x2g−2

+
∑

g≥0

ǫ2g−2
∑

k≥0

∑

i1,...,ik≥1

ag(2i1, . . . , 2ik) s2i1 . . . s2ik x
2−2g−(k−|i|), (1.1.8)

where

ag(2i1, . . . , 2ik) =
∑

Γ

1

#SymΓ
(1.1.9)

and the last summation is taken over all connected oriented ribbon graphs Γ (with labelled
half edges but unlabelled vertices) of genus g with k vertices of valencies 2i1, . . . , 2ik, |i| :=
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i1 + · · ·+ ik, and #SymΓ is the order of the symmetry group of Γ. Here and below Bk are the
Bernoulli numbers. The exponential

eFeven(x,s;ǫ) =: Zeven(x, s; ǫ) (1.1.10)

is called the GUE partition function with even couplings. It is convenient to change normal-
ization of the even couplings by introducing

s̄k :=

(
2k
k

)
s2k. (1.1.11)

The following statement was formulated in [16].

Conjecture 1.1.1 The following formula holds true

Zeven(x, s̄; ǫ) = e
A(x,s̄)

ǫ2
+ζ′(−1)Zcubic

(
t
(
x+

ǫ

2
, s̄
)
;
√
2 ǫ
)
Zcubic

(
t
(
x− ǫ

2
, s̄
)
;
√
2 ǫ
)

(1.1.12)

where

A(x, s̄) =
1

2

∑

k1,k2≥1

k1 k2
k1 + k2

s̄k1 s̄k2 −
∑

k≥1

k

1 + k
s̄k + x

∑

k≥1

s̄k +
1

4
− x (1.1.13)

and
ti(x, s̄) :=

∑

k≥1

ki+1s̄k − 1 + δi,1 + x · δi,0, i ≥ 0. (1.1.14)

We refer to the conjectural identity (1.1.12) as a Hodge–GUE correspondence.

The Conjecture has been already verified in [16] for genus g = 0, 1, 2. In the present paper
we prove it for any genus.

Theorem 1.1.2 (Main Theorem) Conjecture 1.1.1 holds true.

The proof of the Main Theorem will be given in Sections 2, 3, 4 below.

Expanding the logarithms of both sides of (1.1.12) near s̄ = 0, x = 1 one obtains a series
of identities for the special cubic Hodge intersection numbers, e.g. ∀ g ≥ 2,

2g
∑

µ∈Y

(−1)ℓ(µ)

m(µ)!

∫

Mg,ℓ(µ)

Λg(−1)Λg(−1)Λg

(
1

2

) ℓ(µ)∏

i=1

ψµi+1
i

=
1

2g(2g − 1)(2g − 2)

g∑

g′=0

(2g′ − 1)

(
2g
2g′

)
E2g−2g′ B2g′

22g−2g′
. (1.1.15)

Here, Y denotes the set of partitions; for µ ∈ Y, ℓ(µ) denotes the length of µ, mi(µ) denotes
the multiplicity of i in µ, m(µ)! :=

∏∞
i=1mi(µ)!. And Ek are the Euler numbers, defined via

1

cosh z
=

∞∑

k=0

Ek

k!
zk.

Note that the left hand side of the above identity is actually a finite sum, due to the dimension
condition. To the best of our knowledge such identities even the simplest one (1.1.15) did not
appear in the literature.
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1.2 Three integrable systems and their Virasoro symmetries

Here we will try to explain connections between the main playing characters of Conjecture 1.1.1
and integrable systems. These connections provided motivations for the formulation of the Main
Conjecture in [16]. They might also be helpful for the reader for a better understanding of the
structure of the proof.

Our point is that the partition functions Zeven and Zcubic as functions of coupling parameters
are tau functions of certain integrable hierarchies. For the GUE partition function depending
on even couplings only it was already observed in 1991 by E.Witten [40]. The corresponding
integrable hierarchy is made of the commuting flows for the Volterra lattice equation, also
called the discrete Korteweg–de Vries (KdV) equation

ẇn = wn (wn+1 − wn−1) , n ∈ Z.

We will write it in the interpolated version

ut =
eu(x+ǫ) − eu(x−ǫ)

ǫ
, (1.2.1)

wn = eu(n ǫ,ǫ t). The solution of interest is given by the formula

eu(x,s;ǫ) =
Zeven(x+ ǫ, s; ǫ)Zeven(x− ǫ, s; ǫ)

[Zeven(x, s; ǫ)]
2 , t = s2. (1.2.2)

Dependence on other even couplings is governed by the higher flows of the Volterra hierarchy.

For the special cubic Hodge partition function the corresponding integrable hierarchy1 looks
more complicated. The commuting flows of this hierarchy are represented by PDEs with infinite
expansions w.r.t. an auxiliary parameter ǫ. The first equation reads

qt = q q′ +
ǫ2

12

(
q′′′ − 3

2
q′ q′′

)

− ǫ4

2880

(
6 q(5) − 9 q′ q(4) − 45 q′′q′′′ + 2 (q′)2 q′′′ + 4 q′ (q′′)2

)

+O(ǫ6), ′ = ∂t0 , t = t1. (1.2.3)

The solution to (1.2.3) of interest is given by

q(t; ǫ) = ǫ2∂2t0 logZcubic(t; ǫ).

All higher order terms of the ǫ2-expansion in this and in other equations of the special cubic
Hodge hierarchy are graded homogeneous differential polynomials in q. See in [14] for the details
about the construction of the Hodge hierarchy.

1In [42] J. Zhou considered alternative generating functions of the cubic Hodge integrals and showed that they
are tau functions of the 2D Toda integrable hierarchy. It would be interesting to establish a direct connection
between these results and the constructions of [14] used in the present paper.

It is also worthwhile to mention interesting results of A. Buryak [5] and M. Kazarian [29] about integrable
hierarchies involved into the theory of linear Hodge integrals.
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One more integrable hierarchy appears in this story: this is the celebrated KdV hierarchy
where the first equation reads

vt = v v′ +
ǫ2

12
v′′′, ′ = ∂t0 . (1.2.4)

Due to the remarkable discovery of E.Witten and M.Kontsevich, a particular tau function of
the KdV hierarchy is given by the generating function of intersection numbers of psi-classes on
the Deligne–Mumford moduli spaces

ZWK(t; ǫ) := exp


∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

∫

Mg,k

ψi1
1 · · ·ψik

k ti1 · · · tik


 . (1.2.5)

The solution of (1.2.4) of interest is given in terms of this tau function by

v = ǫ2∂2t0 logZWK(t; ǫ).

To establish relationships between the partition functions Zeven, Zcubic and ZWK, we will
do it in a more general setting, working with arbitrary2 tau functions τVolterra, τcubic and τKdV

of (1.2.1), (1.2.3) and (1.2.4) respectively.

Recall, for the particular case of the Hodge hierarchy (1.2.3) the construction of [14] gives
a map

{tau functions of the KdV hierarchy} → {tau functions of the special cubic Hodge hierarchy}.

Introduce a function

Φ(z) = 2−2z Γ(1− z)

Γ(1 + z)

√
Γ(1 + 2z)

Γ(1− 2z)
. (1.2.6)

It is a multivalued meromorphic function on the complex plane z ∈ C with branch points at
nonzero half-integers. With a suitable choice of the branches one has

Φ(z) → e∓
πi
4 , |z| → ∞, ± Re z > 0.

It satisfies the identity
Φ(−z)Φ(z) = 1,

so it defines a canonical transformation

f(z) 7→ Φ(z)f(z)

on the Givental symplectic space (see Appendix A below for the details about the Givental’s
construction). Denote Φ̂ the quantization3 of this symplectomorphism acting on the corre-
sponding Fock space.

2We consider formal solutions to these PDEs admitting regular expansions in ǫ

v(x, t; ǫ) =
∑

k≥0

ǫ
k
vk(x; t).

3In the quantization procedure we will identify the function Φ(z) with its asymptotic expansion at z = ∞;
see Appendix A for the details.
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Proposition 1.2.1 1) For an arbitrary tau function τKdV(t; ǫ) of the KdV hierarchy, the func-
tion τcubic(t; ǫ) defined by

τcubic(t; ǫ) := Φ̂ τKdV(t; ǫ) (1.2.7)

is a tau function of the special cubic Hodge hierarchy.
2) For τKdV(t; ǫ) = ZWK(t; ǫ) the corresponding tau function τcubic(t; ǫ) coincides with Zcubic(t; ǫ).

This proposition is just a reformulation of a part of the results of [14].

Let us now describe another map

{tau functions of the special cubic Hodge hierarchy} → {tau functions of the Volterra hierarchy}.

First, observe that any solution of the special cubic Hodge hierarchy admitting regular expan-
sion in ǫ can be obtained from another such solution by a shift

ti 7→ ti + t0i , i ≥ 0

for some constants t0i that can also depend on ǫ. A similar statement is valid, of course, also
for solutions to the KdV and the Volterra hierarchy. We choose a base point τvaccubic(t; ǫ) in the
space of tau-functions in such a way that

Zcubic(t; ǫ) = τvaccubic(t; ǫ)|t1 7→t1−1

(which is usually called the “dilaton shift”). More generally, tau function of an arbitrary
solution can be represented in the form

τcubic(t; ǫ) = τvaccubic(t; ǫ)|ti 7→ti+t̄0i , i≥0. (1.2.8)

Theorem 1.2.2 1) For any tau function (1.2.8) of the special cubic Hodge hierarchy the func-
tion τVolterra(x, s̄; ǫ) defined by

τVolterra(x, s̄; ǫ) := c · e
Avac(x,s̄−s̄

0)

ǫ2 τcubic

(
t
(
x+

ǫ

2
, s̄− s̄0

)
;
√
2 ǫ
)
τcubic

(
t
(
x− ǫ

2
, s̄− s̄0

)
;
√
2 ǫ
)

(1.2.9)
with

Avac(x, s̄) =
1

2

∑

k1, k2≥1

k1k2
k1 + k2

s̄k1 s̄k2 + x
∑

k≥1

s̄k (1.2.10)

and
ti(x, s̄) =

∑

k≥1

ki+1s̄k + x · δi,0+t0i (1.2.11)

for an arbitrary constant c is a tau function of the Volterra hierarchy.

2) For τcubic(t; ǫ) = Zcubic(t; ǫ), we have t0i = δi,1. With the choice c = eζ
′(−1) and s̄0k = δk,1

the formula (1.2.9) gives the GUE partition function with even couplings Zeven(x, s̄; ǫ).

The Main Theorem follows from the above statements. Also an integrable hierarchy con-
jecture of [14] regarding the relationship between the special cubic Hodge hierarchy (1.2.3) and
the Volterra hierarchy readily follows from the first part of the above Theorem 1.2.2.
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In a nutshell the tool for proving the above statements including the Main Theorem is in
using Virasoro constraints for tau functions of the three hierarchies. For the KdV hierarchy
this is well known. Recall [9] that the operators LKdV

m = LKdV
m

(
ǫ−1t, ǫ ∂/∂t

)
, m ≥ −1 given

by

LKdV
−1 :=

∑

i≥1

ti
∂

∂ti−1
+

t20
2 ǫ2

, (1.2.12)

LKdV
0 :=

∑

i≥0

2i+ 1

2
ti
∂

∂ti
+

1

16
, (1.2.13)

LKdV
m :=

ǫ2

2

∑

i+j=m−1

(2i + 1)!! (2j + 1)!!

2m+1

∂2

∂ti∂tj
+
∑

i≥0

(2i + 2m+ 1)!!

2m+1(2i− 1)!!
ti

∂

∂ti+m
, m ≥ 1

(1.2.14)

define infinitesimal symmetries of the KdV hierarchy by their linear action on the tau-function

τKdV(t; ǫ) 7→ τKdV(t; ǫ) + δ · LKdV
m

(
ǫ−1t, ǫ ∂/∂t

)
τKdV(t; ǫ) +O(δ2), m ≥ −1.

The Witten–Kontsevich tau function is uniquely specified by the system of Virasoro constraints

LKdV
m

(
ǫ−1t̃, ǫ ∂/∂t

)
ZWK(t; ǫ) = 0, m ≥ −1

where t̃i = ti − δi,1 (the so-called dilaton shift). For the special cubic Hodge hierarchy one can
use the operators

Lcubic
m

(
ǫ−1t̃, ǫ ∂/∂t

)
= Φ̂ ◦ LKdV

m

(
ǫ−1t̃, ǫ ∂/∂t

)
◦ Φ̂−1, m ≥ −1

for formulating an analogous system of Virasoro constraints for the special cubic Hodge po-
tential; they were already derived in [41]. Surprisingly, we could not find in the literature
any analogue of the Virasoro constraints for the Volterra hierarchy. We obtain them in the
following way.

First, let us modify the Virasoro operators Lcubic
m := Lcubic

m

(
ǫ−1t, ǫ ∂/∂t

)
by introducing

L̃cubic
m =

1

2πi

0+∫

−∞

L(z) emz dz, m ≥ 0 (1.2.15)

where

L(z) =
∑

k≥−1

Lcubic
k

zk+2

and we use in (1.2.15) a Hankel loop integral

1

Γ(x)
=

1

2πi

0+∫

−∞

et t−xdt.

The modified operators still satisfy the Virasoro commutation relations.

The following Key Lemma is crucial for completing the proofs.
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Lemma 1.2.3 (Key Lemma) There exist unique operators Leven
m = Leven

m

(
ǫ−1x, ǫ−1s, ǫ ∂/∂s

)
,

m ≥ 0, s = (s2, s4, . . . ) satisfying

e−
Avac

2ǫ2 ◦ Leven
m

(
ǫ−1x, ǫ−1s, ǫ ∂/∂s

)
◦ e

Avac

2ǫ2 = 4m L̃cubic
m

(
ǫ−1t, ǫ ∂/∂t

)∣∣∣∣ t = tvac(x, s)

ǫ 7→
√
2 ǫ

(1.2.16)

Avac(x, s) =
1

2

∑

k1 k2

k1k2
k1 + k2

(
2k1
k1

)(
2k2
k2

)
s2k1s2k2 + x

∑

k

(
2k
k

)
s2k

ti
vac(x, s) =

∑

k

(
2k
k

)
ki+1s2k + x · δi,0.

The uniquely defined linear operators Leven
m satisfy the Virasoro commutation relations

[Leven
m , Leven

n ] = (m− n)Leven
m+n, ∀m, n ≥ 0 (1.2.17)

and have the following explicit expressions:

Leven
0 =

∑

k≥1

k s2k
∂

∂s2k
+
x2

4ǫ2
− 1

16
, (1.2.18)

Leven
n = ǫ2

n−1∑

k=1

∂2

∂s2k ∂s2n−2k
+ x

∂

∂s2n
+
∑

k≥1

k s2k
∂

∂s2k+2n
, n ≥ 1. (1.2.19)

We now explain how the operators Leven
m are related to symmetries of the Volterra hierarchy.

Theorem 1.2.4 Let τVolterra(x, s; ǫ) be a tau function of the Volterra hierarchy. Introduce the
modified tau function τ̃Volterra(x, s; ǫ) defined by the equation

τVolterra(x, s; ǫ) = τ̃Volterra

(
x+

ǫ

2
, s; ǫ

)
τ̃Volterra

(
x− ǫ

2
, s; ǫ

)
.

Then we have

1) The operators Leven
n give infinitesimal symmetries of the Volterra hierarchy by means of

linear action on the modified tau function

τ̃Volterra(x, s; ǫ) 7→ τ̃Volterra(x, s; ǫ) + δ · Leven
n τ̃Volterra(x, s; ǫ) +O(δ2). (1.2.20)

2) Denote Z̃(x, s; ǫ) the modified GUE partition function associated with τVolterra = Zeven.
It is annihilated, after the dilaton shift s2 7→ s2 − 1

2 by the operators Leven
n .

Organization of the paper Sections 2, 3, 4 are all towards the proof of the Main Theorem.
In Section 5 we present two applications of the Main Theorem, including introduction of a
reduced GUE potential and a proof of an integrable hierarchy conjecture proposed in [14].
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2 Virasoro constraints for the cubic Hodge partition function

2.1 Cubic Hodge partition function

Denote by chi(Eg,k), i ≥ 0 the components of the Chern character of Eg,k.

Lemma 2.1.1 The partition function Zcubic has the following alternative expression

Zcubic(t; ǫ) = exp




∞∑

g=0

∞∑

k=0

1

k!

∑

i1,...,ik≥0

∫

Mg,k

ψi1
1 · · ·ψik

k · Ωg,k ti1 · · · tik




with

Ωg,k := exp




∞∑

j=1

(2j − 2)!
(
2−2j+1 − 2

)
ch2j−1(Eg,k)


 .

Proof Let x1, . . . , xg be the Chern roots of Eg,k, i.e.

Λg(z) =

g∏

i=1

(1 + z xi), chm(Eg,n) =
1

m!
(xm1 + · · · + xmg ).

Then we have

Ωg,k = e
∑

j≥1(2j−2)! ((1/2)2j−1−2) ch2j−1 = e
∑

m≥1(−1)m−1 (m−1)! ((−1)m+(−1)m+(1/2)m) chm

= e
∑

m≥1
(−1)m−1

m
((−1)m+(−1)m+(1/2)m) (xm

1 +···+xm
g ) = Λg(−1) · Λg(−1) · Λg

(
1

2

)
.

Note that in the above derivations we have used Mumford’s relations [38]

ch2j(Eg,k) = 0, ∀ j ≥ 0.

The lemma is proved. �

Lemma 2.1.2 ([23]) The special cubic Hodge partition function has the following expression

Zcubic(t; ǫ) = e
∑∞

j=1

B2j
j (2j−1) (−1+2−2j)Dj ZWK(t; ǫ). (2.1.1)

Here, Dj are operators defined by

Dj :=
∂

∂t2j
−
∑

i≥0

ti
∂

∂ti+2j−1
+
ǫ2

2

2j−2∑

a=0

(−1)a
∂2

∂ta∂t2j−2−a
, j ≥ 1, (2.1.2)

and ZWK denotes the Witten–Kontsevich partition function [40, 30]

ZWK(t; ǫ) := exp


∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

∫

Mg,k

ψi1
1 · · ·ψik

k ti1 · · · tik


 .
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Proof This is just a particular case of the C. Faber–R. Pandharipande [23] algorithm for
computing Hodge integrals (see Proposition 2 therein). �

2.2 Virasoro constraints. The first version.

It is known that [9] ZWK satisfies the following system of linear partial differential equations

LKdV
m (ǫ−1t̃, ǫ ∂/∂t)ZWK(t; ǫ) = 0, m ≥ −1 (2.2.1)

where the operators LKdV
m , m ≥ −1 have been defined in (1.2.12)–(1.2.14), and t̃i = ti − δi,1.

The operators LKdV
m , m ≥ −1 satisfy the Virasoro commutation relations

[
LKdV
m , LKdV

n

]
= (m− n)LKdV

m+n, ∀m,n ≥ −1.

Equations (2.2.1) are called the Virasoro constraints for ZWK. Note that solution to (2.2.1) is
unique up to a constant factor [9, 33]. It follows from Lemma 2.1.2 and eq. (2.2.1) that

Lemma 2.2.1 ([41]) The cubic Hodge partition function satisfies

Lcubic
m (ǫ−1t̃, ǫ ∂/∂t)Zcubic = 0, ∀m ≥ −1 (2.2.2)

where t̃i = ti − δi,1, and L
cubic
m (ǫ−1t̃, ǫ ∂/∂t) are linear operators defined by

Lcubic
m (ǫ−1t̃, ǫ ∂/∂t) = eG ◦ LKdV

m (ǫ−1t̃, ǫ ∂/∂t) ◦ e−G

G :=
∞∑

j=1

B2j

j (2j − 1)

(
−1 + 2−2j

)
Dj, m ≥ −1

where the operators Dj are defined in eq. (2.1.2).

Denote Lcubic
m = Lcubic

m (ǫ−1t, ǫ ∂/∂t). Clearly, the operators Lcubic
m satisfy the Virasoro

commutation relation

[Lcubic
m , Lcubic

n ] = (m− n)Lcubic
m+n, ∀m,n ≥ −1.

We call equations (2.2.2) the first version of Virasoro constraints for Zcubic; we also refer to
this version of Virasoro constraints as Zhou’s version.

Example 2.2.2 By a straightforward calculation we obtain that [41, 14]

Lcubic
−1 =

∑

k≥1

tk
∂

∂tk−1
+

t20
2ǫ2

− 1

16
. (2.2.3)
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2.3 A Lie algebra lemma

Lemma 2.3.1 For any basis {Lm |m ≥ −1} of an infinite dimensional Lie algebra satisfying

[Lm, Ln] = (m− n)Lm+n, ∀m,n ≥ −1

where [ , ] denotes the Lie bracket of the Lie algebra, define

L̃m :=
∑

k≥−1

mk+1

(k + 1)!
Lk, m ≥ 0.

Then
[L̃m , L̃n] = (m− n) L̃m+n, ∀m,n ≥ 0.

Proof

[L̃m , L̃n] =




∞∑

k1=−1

mk1+1

(k1 + 1)!
Lk1 ,

∞∑

k2=−1

nk2+1

(k2 + 1)!
Lk2




=

∞∑

k1,k2=−1

mk1+1 nk2+1

(k1 + 1)!(k2 + 1)!
(k1 − k2)Lk1+k2

=

∞∑

k=−1




∑

k1+(k2+1)=k+1
k1≥0,k2≥−1

mk1+1 nk2+1

k1! (k2 + 1)!
−

∑

(k1+1)+k2=k+1
k1≥−1,k2≥0

mk1+1 nk2+1

(k1 + 1)! k2!


 Lk

=

∞∑

k=−1

1

(k + 1)!

(
m (m+ n)k+1 − n (m+ n)k+1

)
Lk = (m− n) L̃m+n.

The lemma is proved. �

2.4 Virasoro constraints. The second version.

Definition 2.4.1 Define a set of linear operators L̃cubic
m by

L̃cubic
m :=

∞∑

k=−1

mk+1

(k + 1)!
Lcubic
k , m ≥ 0.

Clearly, this definition agrees with (1.2.15). Using Lemma 2.2.1 and Lemma 2.3.1 we obtain

Theorem 2.4.2 The cubic Hodge partition function satisfies

L̃cubic
m (ǫ−1t̃, ǫ ∂/∂t)Zcubic = 0, ∀m ≥ 0 (2.4.1)

where t̃i = ti − δi,1. Moreover,

[
L̃cubic
m , L̃cubic

n

]
= (m− n) L̃cubic

m+n, ∀m,n ≥ 0.

12



We call (2.4.1) the second version of Virasoro constraints for Zcubic.

Theorem 2.4.3 The explicit expressions for L̃cubic
0 , L̃cubic

1 and L̃cubic
2 are

L̃cubic
0 =

∑

i≥1

ti
∂

∂ti−1
+

t20
2ǫ2

− 1

16
, (2.4.2)

L̃cubic
1 =

1

2

∑

i≥0

i∑

j=0

(
i

j

)
(2 tj+1 + tj)

∂

∂ti
+

t20
2ǫ2

, (2.4.3)

L̃cubic
2 =

ǫ2

8

∑

i,j≥0

∂2

∂ti∂tj
+
∑

i≥0

i∑

j=0

(
i

j

)
2i−j(tj+1 + tj)

∂

∂ti

−1

8

∑

i≥1

i−1∑

j=0

i−1−j∑

r=0

(−1)r
(

i

i− 1− j − r

)
2i−j−rtj

∂

∂ti
+

t20
2ǫ2

+
1

16
. (2.4.4)

Proof. Formula (2.4.2) readily follows from the definition 2.4.1, namely, we have L̃cubic
0 = Lcubic

−1 .

For m > 0, the direct calculation of L̃cubic
m becomes more complicated, however, we can use the

Givental quantization to simplify the computations. The rest of Section 2 is to prove (2.4.3)
and (2.4.4).

2.5 Proof of (2.4.3) in Thm. 2.4.3

By Lemma A.0.2 we have
eG = Φ̂.

So the operators Lcubic
k (see in Lemma 2.2.1) have the expressions

Lcubic
k (ǫ−1t̃, ǫ ∂/∂t) = Φ̂LKdV

k

(
ǫ−1t̃, ǫ ∂/∂t

)
Φ̂−1, k ≥ −1.

Now using Lemma A.0.1 we obtain that

Lcubic
k (ǫ−1t̃, ǫ ∂/∂t) =

[
Φ̂

(
l̂k +

δk,0
16

)
Φ̂−1

]∣∣∣∣
qi 7→t̃i, ∂qi 7→∂ti , i≥0

, k ≥ −1 (2.5.1)

where lk = (−1)k+1z3/2∂k+1
z z−1/2, k ≥ −1. Simplifying (2.5.1) gives

Lcubic
k (ǫ−1t̃, ǫ ∂/∂t) =

[
Φ(z) lk Φ(z)

−1
]∧ ∣∣∣

qi 7→t̃i, ∂qi 7→∂ti , i≥0
+
δk,0
16

− δk,−1

16
, k ≥ −1.

Here we used the fact that the only possible non-zero cocycle term of the above quantization
formula appears when k = −1. We arrive at

Lemma 2.5.1 The operators L̃cubic
m , m ≥ 0 have the following expressions

L̃cubic
m (ǫ−1t̃, ǫ ∂/∂t) =

(
∞∑

k=−1

mk+1

(k + 1)!
Φ(z) lk Φ(z)

−1

)∧ ∣∣∣∣∣
qi 7→t̃i, ∂qi 7→∂ti , i≥0

+
m− 1

16
. (2.5.2)
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For m = 0, eq. (2.5.2) gives

L̃cubic
0 (ǫ−1t̃, ǫ ∂/∂t) = ẑ |qi 7→t̃i, ∂qi 7→∂ti , i≥0 −

1

16
=
∑

i≥1

t̃i
∂

∂ti−1
+

t̃20
2ǫ2

− 1

16

which agrees with the previously derived eq. (2.4.2).

Proof of (2.4.3). Recall that

lk = (−1)k+1 z3/2 ∂k+1
z z−1/2, k ≥ −1.

Then we have
∞∑

k=−1

Φ
lk

(k + 1)!
Φ−1 = Φ z3/2 e−∂z z−1/2 Φ−1 = z3/2 (z − 1)−1/2 Φ(z)

Φ(z − 1)
e−∂z .

Noting that
Φ(z)

Φ(z − 1)
=

z − 1
2√

z(z − 1)
(2.5.3)

we arrive at
∞∑

k=−1

Φ(z)
lk

(k + 1)!
Φ(z)−1 = z

z − 1/2

z − 1
e−∂z .

It remains to compute the following residue

−1

2
Resz=∞ f(−z) z − 1/2

z − 1
f(z − 1)

dz

z
.

Write f(z) = q(z) + p(z), where q(z) =
∑

i≥0 qi z
−i and p(z) =

∑
i≥0 pi (−z)i+1. Then the

above residue decomposes into the following four parts

I = −1

2
Resz=∞ p(−z) z − 1/2

z − 1
p(z − 1)

dz

z
,

II = −1

2
Resz=∞ p(−z) z − 1/2

z − 1
q(z − 1)

dz

z
,

III = −1

2
Resz=∞ q(−z) z − 1/2

z − 1
p(z − 1)

dz

z
,

IV = −1

2
Resz=∞ q(−z) z − 1/2

z − 1
q(z − 1)

dz

z
.

Part I obviously vanishes. Part IV gives
q20
2ǫ2

. Part II coincides with Part III. So we are left to
compute Part III. Using

z − 1/2

z − 1
= 1 +

1

2

∑

k≥1

z−k, z → ∞

we have

III =
1

2

∑

i≥0

pi




i+1∑

j=0

qj

(
i+ 1

j

)
+

1

2

i∑

j=0

qj

i+1−j∑

k=1

(−1)k
(
i+ 1

j + k

)


=
1

4

∑

i≥0

pi

i∑

j=0

(
i

j

)
(2 qj+1 + qj) .
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Note that in the last equality we have used the following elementary identity

i+1−j∑

k=1

(−1)k
(
i+ 1

j + k

)
= −

(
i

j

)
. (2.5.4)

As a result, we obtain (2.4.3). �

2.6 Proof of (2.4.4) in Thm. 2.4.3

Proof of (2.4.4) We have

∞∑

k=−1

2k+1Φ(z)
lk

(k + 1)!
Φ(z)−1 = z3/2 (z − 2)−1/2 Φ(z)

Φ(z − 2)
e−2∂z .

Noting that
Φ(z)

Φ(z − 2)
=

(
z − 1

2

) (
z − 3

2

)

(z − 1)
√
z(z − 2)

we obtain
∞∑

k=−1

2k+1 Φ(z)
lk

(k + 1)!
Φ(z)−1 =

z (z − 1/2) (z − 3/2)

(z − 1) (z − 2)
e−2∂z .

Computing the following residue

−1

2
Resz=∞ f(−z) z (z − 1/2) (z − 3/2)

(z − 1) (z − 2)
f(z − 2)

dz

z2

like it was done above in the proof of (2.4.3) we obtain (2.4.4). �

Theorem 2.4.3 is proved. �

Remark 2.6.1 Following the above procedure it is easy to derive a generating function for the
operators L̃cubic

m

(
ǫ−1t̃, ǫ ∂/∂t

)
. Namely, the operator

∑

m≥0

λm

m!
L̃cubic
m

(
ǫ−1t̃, ǫ ∂/∂t

)

depending on the auxiliary parameter λ is obtained by quantization of the following quadratic
Hamiltonian

H(λ) = −1

2
Resz=∞

dz

z
f(−z) 1F1

(
1

2
− z; 1− z;λ e−∂z

)
f(z).

Here

1F1(a; b; z) =
∞∑

n=0

(a)n
(b)n

zn

n!

is the confluent hypergeometric function.
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3 Virasoro constraints for the GUE partition function with

even couplings

3.1 The GUE partition function. Toda hierarchy and Virasoro constraints.

Recall that the GUE partition function of size N is defined by

ZN (s) =
(2π)−N

V ol(N)

∫

H(N)
e−N trV (M ; s)dM (3.1.1)

where V (M ; s) = 1
2M

2 −∑j≥1 sj M
j, and s = (s1, s2, s3, . . . )

4. Introduce

x := N ǫ.

Expanding the free energy FN (s) := logZN (s) in powers of ǫ yields the GUE free energy

FGUE(x, s; ǫ) := FN (s)|N=x
ǫ
− 1

12
log ǫ =

∑

g≥0

ǫ2g−2Fg(x, s). (3.1.2)

The GUE free energy FGUE(x, s; ǫ) has the form [21, 22, 3, 37]

FGUE(x, s; ǫ) =
x2

2ǫ2

(
log x− 3

2

)
− 1

12
log x+ ζ ′(−1) +

∑

g≥2

ǫ2g−2 B2g

2g(2g − 2)x2g−2

+
∑

g≥0

ǫ2g−2
∑

k≥0

∑

i1,...,ik≥1

ag(i1, . . . , ik) si1 . . . sik x
2−2g−

(
k−

|i|
2

)

, (3.1.3)

ag(i1, . . . , ik) =
∑

Γ

1

#SymΓ
(3.1.4)

where the last summation is taken over all connected oriented ribbon graphs of genus g with k
vertices of valencies i1, . . . , ik. The exponential

eFGUE(x,s;ǫ) =: ZGUE(x, s; ǫ) (3.1.5)

is called the GUE partition function. From (3.1.3), we see that the GUE free energy FGUE(x, s; ǫ)
lives in the following Bosonic Fock space

B =
1

ǫ2
C[ǫ][[x− 1, s1, s2, . . . ]].

Denote Λ = eǫ∂x . Define two functions u, v by

u = u(x, s; ǫ) := (Λ− 1) (1 − Λ−1)FGUE, v = v(x, s; ǫ) := ǫ
∂

∂s1
(Λ− 1)FGUE (3.1.6)

and define
L = Λ+ v + eu Λ−1.

4In Section 1, we used s to denote (s2, s4, . . . ); in this subsection we restore the odd coupling constants
s1, s3, . . . . However, there is no ambiguity as we use the symbol s just for emphasizing that it is a vector.
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Lemma 3.1.1 The functions v, u satisfy the following equations of the Toda Lattice hierarchy

ǫ
∂L

∂sj
= [Aj , L] , Aj :=

(
Lj
)
+
, ∀ j ≥ 1. (3.1.7)

Moreover, ZGUE is the tau-function (cf. Def. 1.2.4 in [15]) of the solution (u, v) to the Toda
hierarchy.

Proof of this lemma uses the orthogonal polynomial technique [37], see e.g. [25] (see also [15],
esp. Cor.A.2.2, Def. 1.2.4 therein in particular regarding the normalization of the tau-function).

Lemma 3.1.2 The GUE partition function ZGUE satisfies the following linear PDEs

LToda
m ZGUE = 0, ∀m ≥ −1. (3.1.8)

Here, LToda
m are linear operators explicitly given by

LToda
m :=ǫ2

m−1∑

k=1

∂2

∂sk ∂sm−k
+ 2x

∂

∂sm
+
∑

k≥1

k sk
∂

∂sk+m
− ∂

∂sm+2
, m ≥ 1, (3.1.9)

LToda
0 :=

∑

k≥1

k sk
∂

∂sk
+
x2

ǫ2
− ∂

∂s2
, (3.1.10)

LToda
−1 :=

∑

k≥2

k sk
∂

∂sk−1
− ∂

∂s1
+
x s1
ǫ2

. (3.1.11)

Moreover, LToda
m satisfy the Virasoro commutation relations

[
LToda
m , LToda

n

]
= (m− n)LToda

m+n, ∀m,n ≥ −1.

This lemma is well-known; see e.g. [37, 35, 25]. Eqs. (3.1.8)–(3.1.11) are called the Virasoro
constraints for the GUE partition function. For convenience of the reader we outline the proof
of this Lemma.

Proof of Lemma 3.1.2 Recall that the GUE partition function ZGUE can be obtained from
the vacuum tau-function [18] of the P1 Frobenius manifold by shifting times; see in [12] for the
details. So the above Virasoro constraints (3.1.8)–(3.1.11) are obtained from e.g. eq. (5.4) of
[19] by taking t2,k−1 = k!

(
sk − 1

2δk,2
)
, k ≥ 1 and t1,0 = x, t1,1 = 1, t1,k = 0, k ≥ 2. �

Lemma 3.1.3 The GUE free energy FGUE satisfies the following property: if k1 + · · ·+ km is
an odd number, then

∂mFGUE

∂sk1 . . . ∂skm

∣∣∣∣
s1=s3=s5=···=0

≡ 0. (3.1.12)

Proof By using the formulae (3.1.3), (3.1.4) and by noticing that the total valency of any
ribbon graph is an even number. �
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Lemma 3.1.4 The following formulae hold true for the GUE free energy FGUE:

ǫ2
∂2FGUE

∂s1∂s1
= eu, (3.1.13)

ǫ2
∂2FGUE

∂s1∂s3
= eu

(
v(x)2 + v(x− ǫ)2 + v(x)v(x− ǫ)

)
+ eu

(
1 + Λ + Λ−1

)
(eu), (3.1.14)

ǫ2
∂2FGUE

∂s2∂s2
= eu (v(x− ǫ) + v(x))2 + eu

(
Λ + Λ−1

)
(eu), (3.1.15)

ǫ(Λ− 1)

(
∂FGUE

∂s2

)
= v2 + (Λ + 1) (eu) . (3.1.16)

Proof One can use the recursion relations [19] or the matrix resolvent method [15] to obtain
these identities. �

3.2 Reduction to even couplings. Discrete KdV hierarchy and Virasoro

constraints.

The GUE free energy/partition function with even couplings can be obtained from the GUE
free energy/partition function by putting s1 = s3 = s5 = · · · = 0, namely,

Feven(x, s; ǫ) = FGUE(x, s1 = 0, s2, s3 = 0, s4, . . . ; ǫ),

Zeven(x, s; ǫ) = ZGUE(x, s1 = 0, s2, s3 = 0, s4, . . . ; ǫ)

where s = (s2, s4, s6, . . . ). It follows from Lemma 3.1.3 and eq. (3.1.6) that

v ≡ 0,

so we have

L = Λ+ eu Λ−1, (3.2.1)

u = u(x, s; ǫ) = (Λ− 1) (1 − Λ−1)F(x, s; ǫ). (3.2.2)

Note that

Feven(x, s; ǫ) ∈ Beven =
1

ǫ2
C[ǫ][[x− 1, s2, s4, . . . ]], u(x, s; ǫ) ∈ ǫ2Beven. (3.2.3)

It follows from Lemma 3.1.1 the following

Lemma 3.2.1 The function u satisfies the discrete KdV hierarchy (aka the Volterra hierarchy):

ǫ
∂L

∂s2k
=
[
(L2k)+ , L

]
, k ≥ 1 (3.2.4)

as well as the initial condition
eu(x,0) = x. (3.2.5)
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It should be noted that solution to (3.2.4) and (3.2.5) exists and is unique in ǫ2Beven.Moreover,
one can easily get an analogue of the definition of tau function of the Volterra hierarchy from
[15] such that Zeven is a particular tau function. The tau function τ of any solution to the
Volterra hierarchy is uniquely determined up to a linear function of s and x. This linear function
can further be fixed by the so-called string equation (see below) up to a linear function in x.
We omit the details because these are just specializations of the results of [15] to the even
couplings.

Example 3.2.2 The k = 1 flow of the discrete KdV hierarchy (3.2.4) reads as follows

∂u

∂s2
=

1

ǫ
(Λ− Λ−1)(eu).

Theorem 3.2.3 Let Zeven(x, s; ǫ) denote the GUE partition function with even couplings (see
(1.1.10)). Define Z̃(x, s; ǫ) by

logZeven(x, s; ǫ) =
(
Λ1/2 + Λ−1/2

)
log Z̃(x, s; ǫ).

Then Z̃(x, s; ǫ) satisfies the followings system of equations (which we call the Virasoro con-
straints):

Leven
n (ǫ−1x, ǫ−1s̃, ǫ ∂/∂s)Z̃(x, s; ǫ) = 0, n ≥ 0 (3.2.6)

where s̃2k = s2k− 1
2δk,1, and L

even
n are linear differential operators defined in (1.2.18), (1.2.19).

Moreover, Leven
m satisfy (half of) the Virasoro commutation relations (1.2.17).

Proof Equations (1.2.17) can be verified straightforwardly. It then suffices to prove (3.2.6) for
n = 0, 1, 2, because the rest of (3.2.6) can be proved via (1.2.17). Denote F̃ = log Z̃.

Start with n = 0. Taking m = 0 in (3.1.8) of Lemma 3.1.2 we have

∑

k≥1

k sk
∂ZGUE

∂sk
+
x2

ǫ2
ZGUE − ∂ZGUE

∂s2
= 0.

Taking s1 = s3 = s5 = · · · = 0 in this identity and dividing it by Z we obtain

∑

k≥1

2k s2k
∂Feven

∂s2k
+
x2

ǫ2
− ∂Feven

∂s2
= 0. (3.2.7)

Applying
(
Λ1/2 + Λ−1/2

)−1
on both sides of (3.2.7) and dividing by 2 we find

∑

k≥1

k s2k
∂F̃
∂s2k

+
x2

4ǫ2
− 1

16
− 1

2

∂F̃
∂s2

= 0.

This proves (3.2.6) with n = 0.

For n = 1, taking m = 2 in (3.1.8) we have

2x
∂ZGUE

∂s2
+
∑

k≥1

k sk
∂ZGUE

∂sk+2
+ ǫ2

∂2ZGUE

∂s21
− ∂ZGUE

∂s4
= 0.
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Taking s1 = s3 = s5 = · · · = 0 in this identity and dividing it by Z we obtain

2x
∂Feven

∂s2
+
∑

k≥1

2k s2k
∂Feven

∂s2k+2
+ ǫ2

(
∂2FGUE

∂s21
+

(
∂FGUE

∂s1

)2
)∣∣∣∣∣

s1=s3=···=0

− ∂Feven

∂s4
= 0.

Using Lemma 3.1.3 and the identity (3.1.13) we have

2x
∂Feven

∂s2
+
∑

k≥1

2k s2k
∂Feven

∂s2k+2
+ eu − ∂Feven

∂s4
= 0. (3.2.8)

Taking s1 = s3 = s5 = · · · = 0 in (3.1.16) we have

ǫ
Λ− 1

Λ + 1

(
∂Feven

∂s2

)
= eu. (3.2.9)

Applying
(
Λ1/2 + Λ−1/2

)−1
on both sides of (3.2.8), using (3.2.9), and dividing by 2 we find

x
∂F̃
∂s2

+
∑

k≥1

k s2k
∂F̃

∂s2k+2
− 1

2

∂F̃
∂s4

= 0.

This proves (3.2.6) with n = 1.

Finally, for n = 2, taking m = 4 in (3.1.8) we have

2 ǫ2
∂2ZGUE

∂s1 ∂s3
+ ǫ2

∂2ZGUE

∂s2∂s2
+ 2x

∂ZGUE

∂s4
+
∑

k≥1

k sk
∂ZGUE

∂sk+4
− ∂ZGUE

∂s6
= 0.

Taking s1 = s3 = · · · = 0 in this identity, using Lem. 3.1.3, and dividing it by Zeven we obtain

2 ǫ2
∂2FGUE

∂s1 ∂s3

∣∣∣∣
s1=s3=···=0

+ ǫ2

(
∂2Feven

∂s2∂s2
+

(
∂Feven

∂s2

)2
)

+ 2x
∂Feven

∂s4
+
∑

k≥1

2k s2k
∂Feven

∂s2k+4
− ∂Feven

∂s6
= 0.

Using Lemma 3.1.4 and noticing that v ≡ 0 we have

2 eu (1 + Λ + Λ−1)(eu) + ǫ2

(
∂2Feven

∂s2∂s2
+

(
∂Feven

∂s2

)2
)

+ 2x
∂Feven

∂s4
+
∑

k≥1

2k s2k
∂Feven

∂s2k+4
− ∂Feven

∂s6
= 0 (3.2.10)

as well as

ǫ2
∂2Feven

∂s2∂s2
= eu

(
Λ+ Λ−1

)
(eu), (3.2.11)

ǫ
Λ− 1

Λ + 1

(
∂Feven

∂s4

)
= eu (1 + Λ + Λ−1)(eu). (3.2.12)

20



Hence by using eqs. (3.2.9), (3.2.11), (3.2.12) we can rewrite (3.2.10) as

ǫ2
(
Λ− 1

Λ + 1

(
∂Feven

∂s2

))2

+ ǫ
Λ− 1

Λ + 1

(
∂Feven

∂s4

)

+ǫ2

(
2
∂2Feven

∂s2∂s2
+

(
∂Feven

∂s2

)2
)

+ 2x
∂Feven

∂s4
+
∑

k≥1

2k s2k
∂Feven

∂s2k+4
− ∂Feven

∂s6
= 0.

Using the definition Feven = (Λ1/2 + Λ−1/2) F̃ we obtain

2 ǫ2


∂

2Feven

∂s2 ∂s2
+

(
Λ1/2

(
∂F̃
∂s2

))2

+

(
Λ−1/2

(
∂F̃
∂s2

))2



+ǫ (Λ1/2 − Λ−1/2)

(
∂F̃
∂s4

)
+ 2x

∂Feven

∂s4
+
∑

k≥1

2k s2k
∂Feven

∂s2k+4
− ∂Feven

∂s6
= 0.

Now applying
(
Λ1/2 + Λ−1/2

)−1
on both sides of the above identity and dividing by 2 we obtain

ǫ2


 ∂2F̃
∂s2 ∂s2

+

(
∂F̃
∂s2

)2

+ x

∂F̃
∂s4

+
∑

k≥1

k s2k
∂F̃

∂s2k+4
− 1

2

∂F̃
∂s6

= 0

This proves (3.2.6) with n = 2. The theorem is proved. �

Remark 3.2.4 Finding Virasoro constraints for Zeven(x, s) in a compact form was an open
question [35, 25]. Of course, Zeven itself does satisfy certain Virasoro type constraints, but
these constraints may contain non-linear terms. E.g. for Leven

1 , the non-linear constraint reads

2x

∂

∂s2
+
∑

k≥1

2k s2k
∂

∂s2k+2
+ eu − ∂

∂s4


Zeven = 0, u = (Λ− 1) (1 − Λ−1) logZeven.

The key of our study is the introduction of Z̃ which linearizes the nonlinear constraints, such
that one can write down all the constraints in a closed form. The definition of Z̃ is so simple,
but surprisingly it completely solves the open question.

Proof of Theorem 1.2.4 Part 2) of the theorem has been proved in Theorem 3.2.3. Part
1) is proved by the fact that any modified tau function τ̃Volterra(x, s; ǫ) can be obtained from
Z̃(x, s; ǫ) by shifting the s-variables. �

Remark 3.2.5 Note that the modified tau function τ̃Volterra and the solution u to the discrete
KdV hierarchy is related by

u =
(
Λ1/2 − Λ−1/2

) (
Λ− Λ−1

)
log τ̃Volterra.

The Virasoro symmetries

∂τ̃Volterra
∂rn

:= Leven
n τ̃Volterra, n ≥ 0

21



also act on u. For example,

∂u

∂r0
=
∑

k≥1

k s2k
∂u

∂s2k
+ 1,

∂u

∂r1
=

1

2

(
3Λ + 3Λ−1 + 2

)
eu(x) + x

∂u

∂s2
+
∑

k≥1

ks2k
∂u

∂s2k+2
.

4 Proof of the Main Theorem

Proof of Thm. 1.1.2. Let Hcubic(t; ǫ) denote the cubic Hodge free energy (1.1.2). Define

F∗ = F∗(x, s; ǫ) =
(
Λ

1
2 + Λ− 1

2

)
Hcubic

(
t(x, s);

√
2 ǫ
)
+ ǫ−2A+ ζ ′(−1) (4.0.1)

where s = (s2, s4, s6, . . . ), A is the series in (x, s) defined in (1.1.13), s̄k =
(2k
k

)
s2k and

ti(x, s) =
∑

k≥1

ki+1s̄k − 1 + δi,1 + x · δi,0.

Denote t̃i = ti − δi,1 and ˜̄sk = s̄k − δk,1. Then we have

t̃i(x, s) =
∑

k≥1

ki+1 ˜̄sk + x · δi,0. (4.0.2)

We are to show F∗ = Feven. This is precisely the statement of the Conjecture.

Recall that in Thm. 3.2.3 we have proved that the generating series F̃ defined by

F̃(x, s; ǫ) =
(
Λ1/2 + Λ−1/2

)−1
Feven(x, s; ǫ) (4.0.3)

satisfies the following system of equations

Leven
n (ǫ−1x, ǫ−1s̃, ǫ∂/∂s) eF̃(x,s;ǫ) = 0, n ≥ 0 (4.0.4)

where the linear operators Leven
n are given by (1.2.18), (1.2.19).

Now we define a series F̃∗ by

F̃∗(x, s; ǫ) :=
(
Λ1/2 + Λ−1/2

)−1
F∗(x, s; ǫ)

(4.0.1)
= Hcubic

(
t(x, s);

√
2ǫ
)
+ ǫ−2 A

2
+
ζ ′(−1)

2
.

(4.0.5)
In order to show that F∗ = Feven, it suffices to prove that F̃∗ = F̃ , as the operator

Λ1/2 + Λ−1/2 = 2

(
1 +

ǫ2

8
∂2x +

ǫ4

384
∂4x + . . .

)

is obviously invertible.
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4.1 Proof of the Key Lemma

The Key Lemma 1.2.3 builds up a bridge connecting Hodge and GUE, which is crucial in the
proof of the Main Theorem.

Proof of the Key Lemma. By (1.2.16) the operators Leven
m , m ≥ 0 if exist must be unique.

Note that the Key Lemma also gives the explicit form (1.2.18)–(1.2.19) for Leven
m , so we only

need to verify that (1.2.18)–(1.2.19) do satisfy (1.2.16). The operators Leven
m given by the

formulae (1.2.18)–(1.2.19) satisfy the commutation relations (1.2.17) as it was already proven
in Theorem 3.2.3, so it suffices to verify (1.2.16) for m = 0, 1, 2.

Let us do it one by one for m = 0, 1, 2 in the following three lemmas.

Lemma 4.1.1 The identity (1.2.16) is true for m = 0.

Proof Noting that
∂A

∂s̄k
=
∑

k1≥1

k k1
k + k1

˜̄sk1 + x (4.1.1)

where A is the series in (x, s) defined in (1.1.13), we have

e−
A

2 ǫ2 ◦Leven
0 (ǫ−1x, ǫ−1s̃, ǫ∂/∂s)◦e

A

2 ǫ2 =
∑

k≥1

k ˜̄sk
∂

∂s̄k
+
x2

4ǫ2
− 1

16
+

1

2 ǫ2

∑

k≥1

k ˜̄sk


∑

k1≥1

k k1
k + k1

˜̄sk1 + x


 .

Using (4.0.2) and noticing

∂

∂x
=
∂

∂t0
, (4.1.2)

∂

∂s̄k
=
∑

i≥0

ki+1 ∂

∂ti
, (4.1.3)

we obtain that ∑

k≥1

k ˜̄sk
∂

∂s̄k
=
∑

i≥1

t̃i
∂

∂ti−1
.

Hence

e−
A

2 ǫ2 ◦ Leven
0 (ǫ−1x, ǫ−1s̃, ǫ∂/∂s) ◦ e

A

2 ǫ2 =
∑

i≥1

t̃i
∂

∂ti−1
+

t20
4ǫ2

− 1

16
.

The lemma is proved. �

Lemma 4.1.2 The identity (1.2.16) is true for m = 1.
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Proof We have

e−
A

2 ǫ2 ◦ Leven
1 (ǫ−1x, ǫ−1s̃, ǫ∂/∂s) ◦ e

A

2 ǫ2

=2x
∂

∂s̄1
+
∑

k≥1

2k(2k + 1)

k + 1
˜̄sk

∂

∂s̄k+1
+

1

ǫ2
x
∂A

∂s̄1
+

1

ǫ2

∑

k≥1

k(2k + 1)

k + 1
˜̄sk

∂A

∂s̄k+1

=2x
∂

∂s̄1
+
∑

k≥1

2k(2k + 1)

k + 1
˜̄sk

∂

∂s̄k+1
+
x

ǫ2


∑

k≥1

k

1 + k
˜̄sk + x




+
1

ǫ2

∑

k≥1

k(2k + 1)

k + 1
˜̄sk


∑

k1≥1

(k + 1) k1
k + 1 + k1

˜̄sk1 + x




=2
∑

i≥0

i∑

j=0

(
i

j

)(
2t̃j+1 + t̃j

) ∂

∂ti
+
t20
ǫ2

(4.1.4)

where we used again (4.1.1), (4.0.2) and (4.1.2), (4.1.3). The lemma is proved. �

Lemma 4.1.3 The identity (1.2.16) is true for m = 2.

Proof By a straightforward calculation we have

e−
A

2 ǫ2 ◦ Leven
2 (ǫ−1x, ǫ−1s̃, ǫ∂/∂s) ◦ e

A

2 ǫ2

=4 ǫ2
∂2

∂s̄1∂s̄1
+ 6x

∂

∂s̄2
+ 4

∑

k≥1

k(2k + 3)(2k + 1)

(k + 2)(k + 1)
˜̄sk

∂

∂s̄k+2

+ 2
∂2A

∂s̄21
+ 4

∂A

∂s̄1

∂

∂s̄1
+

1

ǫ2

(
∂A

∂s̄1

)2

+
1

2ǫ2


6x

∂A

∂s̄2
+ 4

∑

k≥1

k(2k + 3)(2k + 1)

(k + 2)(k + 1)
˜̄sk

∂A

∂s̄k+2


 .

It follows from (4.1.2), (4.1.3) and (4.0.2) that

4
∑

k≥1

k(2k + 3)(2k + 1)

(k + 2)(k + 1)
˜̄sk

∂

∂s̄k+2

= 4
∑

k≥1

k
(
4(k + 1)2 − 1

)

(k + 1)
˜̄sk
∑

i≥0

(k + 2)i
∂

∂ti

= 16
∑

k≥1

∑

i≥0

k(k + 1)˜̄sk

i∑

j=0

(
i

j

)
2i−jkj

∂

∂ti
− 4

∑

k≥1

k

k + 1
˜̄sk
∑

i≥0

i∑

j=0

(
i

j

)
(k + 1)j

∂

∂ti

= 16
∑

i≥0

i∑

j=0

(
t̃j + t̃j+1 − x δj,0

)(i
j

)
2i−j ∂

∂ti

−4
∑

k≥1

∑

i≥0

k

k + 1
˜̄sk

∂

∂ti
− 4

∑

i≥0

i∑

j=1

(
i

j

) j−1∑

ℓ=0

(
j − 1

ℓ

)(
t̃ℓ − x δℓ,0

) ∂

∂ti
. (4.1.5)
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Also noticing eqs. (4.1.2), (4.1.3), (4.1.1), (4.0.2),

∂2A

∂s̄21
=

1

2
. (4.1.6)

and
∂2

∂s̄1∂s̄1
=
∑

i,j≥0

∂2

∂ti∂tj
, (4.1.7)

we find

e−
A

2 ǫ2 ◦ Leven
2 (ǫ−1x, ǫ−1s̃, ǫ∂/∂s) ◦ e

A

2 ǫ2

=4 ǫ2
∑

i,j≥0

∂2

∂ti∂tj
+ 6x

∂

∂s̄2
+ 16

∑

i≥0

i∑

j=0

(
t̃j + t̃j+1 − x δj,0

)(i
j

)
2i−j ∂

∂ti

− 4
∑

k≥1

∑

i≥0

k

k + 1
˜̄sk

∂

∂ti
− 4

∑

i≥0

i∑

j=1

(
i

j

) j−1∑

ℓ=0

(
j − 1

ℓ

)(
t̃ℓ − x δℓ,0

) ∂

∂ti

+ 1 + 4


∑

k≥1

k

1 + k
˜̄sk + x


 ∂

∂s̄1
+

1

ǫ2


∑

k≥1

k

1 + k
˜̄sk + x




2

+
3x

ǫ2


∑

k≥1

2 k

2 + k
˜̄sk + x




+
2

ǫ2

∑

k≥1

k(2k + 3)(2k + 1)

(k + 2)(k + 1)
˜̄sk


∑

k1≥1

(k + 2) k1
k + 2 + k1

˜̄sk1 + x




=16


 ǫ

2

4

∑

i,j≥0

∂2

∂ti∂tj
+
∑

i≥0

i∑

j=0

(
i

j

)
2i−j(t̃j+1 + t̃j)

∂

∂ti

−1

8

∑

i≥1

i−1∑

j=0

i−1−j∑

r=0

(−1)r
(

i

i− 1− j − r

)
2i−j−r t̃j

∂

∂ti
+

t20
4ǫ2

+
1

16


 .

In the last equality we have used the following elementary identity

i∑

j=ℓ

(
i

j

)(
j − 1

ℓ− 1

)
=

i∑

r=ℓ

(−1)r−ℓ

(
i

r

)
2i−r, ∀ ℓ, i ∈ Z, i ≥ ℓ ≥ 0.

The lemma is proved. �

The Key Lemma is proved. �

Theorem 2.4.2 along with the Key Lemma immediately implies the following theorem.

Theorem 4.1.4 The function F̃∗(x, s; ǫ) satisfies the following Virasoro constraints

Leven
n

(
ǫ−1x, ǫ−1s̃, ǫ ∂/∂s

)
eF̃

∗(x,s;ǫ) = 0, n ≥ 0 (4.1.8)

where s̃2k = s2k − 1
2δk,1.
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4.2 End of the proof of the Main Theorem

Genus expansion. By definition the special cubic Hodge free energy Hcubic(t; ǫ) and the
GUE free energy Feven(x, s; ǫ) with even couplings have the following genus expansions:

Hcubic(t; ǫ) =

∞∑

g=0

ǫ2g−2 Hg(t), (4.2.1)

Feven(x, s; ǫ) =

∞∑

g=0

ǫ2g−2 Fg(x, s). (4.2.2)

Recall that it was proven in [16] the genus 0, 1, 2 parts of Conjecture 1.1.1, i.e.

F0(x, s) = H0(t(x, s)) +A, (4.2.3)

F1(x, s) = 2H1(t(x, s)) +
1

8

∂2H0(t(x, s))

∂x2
+ ζ ′(−1), (4.2.4)

F2(x, s) = 4H2(t(x, s)) +
1

4

∂2H1(t(x, s))

∂x2
+

1

384

∂4H0(t(x, s))

∂x4
. (4.2.5)

From (4.0.3) and (4.0.5), we see that F̃ and F̃∗ also have genus expansions:

F̃(x, s; ǫ) =:

∞∑

g=0

ǫ2g−2 F̃g(x, s), (4.2.6)

F̃∗(x, s; ǫ) =:

∞∑

g=0

ǫ2g−2 F̃∗
g (x, s). (4.2.7)

Noting that

F̃0(x, s) =
F0(x, s)

2
, F̃∗

0 (x, s) =
H0 (t(x, s))

2
+
A

2

and using (4.2.3) we obtain the following identity

F̃0(x, s) = F̃∗
0 (x, s). (4.2.8)

Similarly, we have
F̃1(x, s) = F̃∗

1 (x, s), F̃2(x, s) = F̃∗
2 (x, s). (4.2.9)

Let us proceed to higher genera.

Recall two crucial lemmas which were proven in [14] and [16], respectively.

Lemma 4.2.1 ([14]) There exist functions Hg(z, z1, z2, . . . , z3g−2), g ≥ 1 of independent vari-
ables z, z1, z2, . . . such that

Hg(t) = Hg

(
v(t),

∂v(t)

∂t0
, . . . ,

∂3g−2v(t)

∂t3g−2
0

)
, g ≥ 1 (4.2.10)

and that
3g−2∑

j=1

j zj
∂Hg

∂zj
= (2g − 2)Hg.
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Here v(t) := ∂2H0(t)
∂t20

is the unique series solution to

v = t0 +
∑

i≥1

ti
vi

i!
, v(t) = t0 + . . . . (4.2.11)

Lemma 4.2.2 ([16]) There exist functions Fg(z, z1, . . . , z3g−2), g ≥ 1 of independent variables
v, v1, v2, . . . such that

Fg(x, s) = Fg

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, g ≥ 1 (4.2.12)

and that
3g−2∑

j=1

j zj
∂Fg

∂zj
= (2g − 2)Fg.

Here u(x, s) := ∂2F0(x,s)
∂x2 = logw(x, s), and w(x, s) is the unique series solution to

w = x+
∑

k≥1

k s̄k w
k, w(x, s) = x+ . . . . (4.2.13)

Lemma 4.2.3 For any g ≥ 2, there exist functions F̃g(z, z1, . . . , z3g−2) and F̃
∗
g (z, z1, . . . , z3g−2)

of independent variables z, z1, . . . , z3g−2 such that

F̃g(x, s) = F̃g

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, (4.2.14)

F̃∗
g (x, s) = F̃ ∗

g

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
(4.2.15)

with u(x, s) defined as in Thm. 4.2.2.

Proof Observe that, as in [16], under the substitution

ti(x, s) =
∑

k≥1

ki+1s̄k − 1 + δi,1 + x · δi,0

we have v(t(x, s)) = u(x, s), where v(t) is defined as in Thm. 4.2.1. The lemma is then proved
by Lemmata 4.2.1, 4.2.2 and the defining eqs. (4.0.3), (4.0.5). �

End of the proof of the Main Theorem. We have proved that F̃ and F̃∗ satisfy
the same set of PDEs (4.1.8) (or say (4.0.4)), and have the same structures (4.2.6)–(4.2.7),
(4.2.14)–(4.2.15). We are left to prove certain uniqueness.

Similarly as in [9, 33], one can deduce that eqs. (4.1.8), or eqs. (4.0.4) determine F̃∗, or F̃
in the ring Beven up to an additive arbitrary function in x. However, we already know that
both F̃∗ and F̃∗ have genus expansions (4.2.6)–(4.2.7). So we must have

F̃ − F̃∗ = K(x; ǫ) =
∑

g≥0

ǫ2g−2Kg(x)

where Kg(x) are functions in x only. We are going to show that ∀ g ≥ 0, Kg(x) vanishes. Note
that the genus 0, 1, 2 parts were proven (cf. (4.2.8), (4.2.9)). So we are left to consider g ≥ 3.
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Theorem 4.2.4 For any g ≥ 3, Kg(x) ≡ 0.

Proof Since g ≥ 3, we know from Lem. 4.2.3 that there exist a function Qg(z, z1, . . . , z3g−2) of
independent variables z, z1, . . . , z3g−2 such that

F̃g(x, s) − F̃∗
g (x, s) = Qg

(
u(x, s),

∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
= Kg(x).

It follows that
∂Qg

(
u(x, s), ∂u(x,s)∂x , . . . , ∂

3g−2u(x,s)
∂x3g−2

)

∂s̄k
≡ 0, ∀ k ≥ 1. (4.2.16)

Recall that the function u(x, s) satisfies the following PDEs [16]:

∂u

∂s̄k
= k eku ux, k ≥ 1.

Substituting these flows in the l.h.s. of (4.2.16) and dividing the resulting expression by eku,
we obtain a polynomial in k of degree 3g−1. Since for any k ∈ Z this polynomial must vanish,
all its coefficients must vanish. Looking at these coefficients from the highest degree (= 3g−1)
to the lowest degree (= 1), and using its triangular nature (can be deduced easily) we obtain

∂Qg

∂zj
= 0, j = 1, . . . , 3g − 2;

∂Qg

∂z
= 0.

So Qg must be a constant. However, noting that

3g−2∑

j=1

j zj
∂Qg

∂zj
= (2g − 2)Qg,

we find that Qg must vanish. As a result, Kg(x) ≡ 0. The theorem is proved. �

We arrive at F̃ = F̃∗, which implies Feven = F∗. The Main Theorem is proved. �

Proof of Theorem 1.2.2 Part 1) of the theorem follows from the Main Theorem by shifting
the time variables. Part 2) of the theorem is a reformulation of the Main Theorem. �

5 Two applications of the Main Theorem

Several applications of the Main Conjecture proven in the present paper have been given in
[16]. In this section we present two more new applications.

5.1 Application I. On the reduced GUE free energy

In this subsection, we introduce a reduced GUE free energy, which will provide a new un-
derstanding of the relationship between the intersection numbers of psi-classes on the Mg,k

(“topological gravity”) and matrix integrals (“matrix gravity”).
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Recall that the following formula has been obtained in [16] as a consequence of the Hodge–
GUE conjecture: ∀ g ≥ 2,

Fg(v, v1, . . . , v3g−2) =
v2g−2

22g(2g)!
+
D2g−2

0 [H1(v; v1)]

22g−3(2g − 2)!
+

g∑

m=2

23m−2g

(2g − 2m)!
D

2(g−m)
0 [Hm(v, v1, . . . , v3m−2)]

(5.1.1)
where D0 := v1 ∂v +

∑
k≥1 vk+1 ∂vk . Noticing that, for any m ≥ 2, Hm is a rational function of

v1, v2, . . . , which does not contain v explicitly [14], and that

H1 =
1

24
log v1 −

1

16
v

we find that for any g ≥ 2, Fg is also a rational function in v1, v2, . . . , which does not contain
v explicitly, i.e.

∂Fg

∂v
= 0, g ≥ 2.

Introduce a gradation for these rational functions by assigning

d̃eg vk = 1, ∀ k ≥ 1.

Then both Hg and Fg with g ≥ 2 decompose into homogeneous parts w.r.t. to d̃eg

Hg =

2g−2∑

d=1−g

H [d]
g , Fg =

2g−2∑

d=1−g

F [d]
g , g ≥ 2.

Definition 5.1.1 Define the lowest degree GUE free energy F red by

F red(x, s; ǫ) :=
∑

g≥0

ǫ2g−2F red
g (x, s)

F red
0 (x, s) := F0(x, s)

F red
1 (x, s) := F1(x, s)

F red
g (x, s) := F [1−g]

g

(
∂u(x, s)

∂x
, . . . ,

∂3g−2u(x, s)

∂x3g−2

)
, g ≥ 2

where u(x, s) is defined as in Lem. 4.2.2.

Now let
FWK(t; ǫ) =

∑

g≥0

ǫ2g−2FWK
g (t)

denote the free energy of the Witten–Kontsevich correlators, where

FWK
g (t) :=

∑

k≥0

1

k!

∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

ψi1
1 · · ·ψik

k .

We know that for g ≥ 2,

FWK
g (t) = H [1−g]

g

(
∂v(t)

∂t0
, . . . ,

∂3g−2v(t)

∂t3g−2
0

)

where v(t) is defined in Lem. 4.2.1. By comparing the lowest degree part of the identity (5.1.1)

and noticing that the operator D0 does not change the degree defined by d̃eg, we arrive at
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Corollary 5.1.2 The following formula holds true

F red(x, s; ǫ) + ǫ−2
(
− 1

2

∑

k1,k2≥1

k1 k2
k1 + k2

s̄k1 s̄k2 +
∑

k≥1

k

1 + k
s̄k − x

∑

k≥1

s̄k −
1

4
+ x
)

=
∑

g≥0

ǫ2g−2 2g FWK
g (t(x, s)) + ζ ′(−1) (5.1.2)

where s̄k :=
(
2k
k

)
s2k and

ti(x, s) :=
∑

k≥1

ki+1s̄k − 1 + δi,1 + x · δi,0, i ≥ 0.

5.2 Application II. Proof of the integrable hierarchy conjecture

The Main Theorem confirms the validity of the following Integrable Hierarchy Conjecture
originally proposed in [14].

Theorem 5.2.1 Let Hcubic(t; b; ǫ) denote the following generating series of special cubic Hodge
integrals

Hcubic(t; b; ǫ) =
∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

Λg(−2b)Λg(−2b)Λg(b)ψ
i1
1 · · ·ψik

k

where b is a non-zero parameter. Define

U(t; b; ǫ) =
(
Λ1/2 − Λ−1/2

) (
Λ− Λ−1

)
Hcubic

(
t; b;

ǫ√
b

)
, Λ := eǫ ∂t0 . (5.2.1)

Then U satisfies the following discrete KdV equation (which is equivalent to (1.2.1) by a rescal-
ing):

∂U

∂t
=

1

2ǫ

(
eU(t0+ǫ) − eU(t0−ǫ)

)
(5.2.2)

where
∂t :=

∑

i≥0

2ibi ∂ti .

Proof Let us first prove (5.2.2) for b = 1
2 . According to the Main Theorem, under the following

substitution of time variables

ti(x, s) :=
∑

k≥1

ki+1s̄k − 1 + δi,1 + x · δi,0, i ≥ 0,

the following identity holds true

Feven(x, s; ǫ) =
(
Λ

1
2 + Λ− 1

2

)
Hcubic

(
t(x, s);

1

2
;
√
2 ǫ

)
+ ǫ−2A+ ζ ′(−1) (5.2.3)

where Feven is the GUE free energy with even couplings, A is defined in (1.1.13). Define

u(x, s; ǫ) = (Λ− 1) (1 − Λ−1)Feven(x, s; ǫ).
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Noting that
∂t0 = ∂x ⇒ Λ = eǫ ∂x

and applying (Λ− 1) (1 − Λ−1) on both sides of (5.2.3) we obtain

u(x, s; ǫ) = U (t(x, s); 1/2; ǫ) .

Since u satisfies
∂u

∂s̄1
=

1

2ǫ
(Λ− Λ−1) eu

and since
∂

∂s̄1
=
∑

i≥0

∂

∂ti

we have
∂U

∂t
=

1

2ǫ

(
eU(t0+ǫ) − eU(t0−ǫ)

)
.

Let us now consider a general b, b 6= 0. Denote v(t) the unique series solution to

∑

i≥0

ti
vi

i!
= v.

It was shown in [14] that there exist functions Hg(z, z1, . . . , z3g−2; b) such that

Hg(t; b) = Hg

(
v(t),

∂v(t)

∂t0
, . . . ,

∂3g−2v(t)

∂t3g−2
0

; b

)
, g ≥ 1.

Expand

U(t; b; ǫ) =
∑

g≥0

ǫ2gU [2g](t; b).

Eq. (5.2.2) is now proved by noticing

U [0](t; b) = 2 b v(t)

as well as observing the following identity [17, 14, 28]

−b∂Hg(v, v1, . . . , vg−2; b)

∂b
+

3g−2∑

k=0

vk
∂Hg(v, v1, . . . , v3g−2; b)

∂vk
=

1

24
δg,1 − (g − 1)Hg, ∀ g ≥ 1.

The theorem is proved. �

Theorem 5.2.1 can be equivalently described as follows: the Hodge hierarchy [14] associated
with

Λg(−2b)Λg(−2b)Λg(b), b 6= 0

is normal Miura equivalent to the discrete KdV hierarchy (up to a simple rescaling).
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Remark 5.2.2 At a first glance, it looks not easy to use eq. (5.2.2) for computing Hodge inte-
grals. However, actually, the single discrete KdV equation (5.2.2) contains the full information
about the special cubic Hodge integrals via the quasi-triviality approach [18, 13, 34]! This is be-
cause the construction of the so-called Hodge hierarchy [14] associated to Λg(−2b)Λg(−2b)Λg(b)
tells that V := ǫ2 ∂2t0H(t; b; ǫ) gives the quasi-triviality transformation of this hierarchy. The
algorithm of computing Hg from the quasi-triviality approach is given in [34, 17].

It would be interesting to study the so-called double ramification counterpart of the special
cubic Hodge hierarchy in the framework of the conjectural DR/DZ correspondence formulated
by A.Buryak [6]. We plan to do it in a subsequent publication.

A Appendix. Givental quantization

Denote by V the space of Laurent polynomials in z with coefficients in C. Define a symplectic
bilinear form ω on V by

ω(f, g) := −Resz=∞ f(−z) g(z) dz
z2

= −ω(g, f), ∀ f, g ∈ H.

The pair (V, ω) is called a Givental symplectic space. For any f ∈ V, write

f =
∑

i≥0

qi z
−i +

∑

i≥0

pi (−z)i+1.

Then {qi, pi}|∞i=0 gives a system of canonical coordinates for (V, ω). The canonical quantization
in these coordinates yields operators of the form

p̂i = ǫ
∂

∂qi
, q̂i =

1

ǫ
qi

on the Fock space of formal power series in qi. For any infinitesimal linear symplectic transfor-
mation A on (V, ω), i.e. A satisfies

ω(Af, g) + ω(f,A g) = 0, ∀ f, g ∈ V,

the Hamiltonian associated to A is

HA(f) =
1

2
ω(f,A f) = −1

2
Resz=∞ f(−z)Af(z) dz

z2
.

This Hamiltonian is a quadratic function on V, and its quantization is defined via

p̂ipj = ǫ2
∂2

∂qi∂qj
, p̂iqj = qj

∂

∂qi
, q̂iqj =

1

ǫ2
qiqj.

Denote the quantization of HA by Â. We have, for any two infinitesimal symplectic transfor-
mations A,B, [

Â , B̂
]
= [̂A,B] + C (HA , HB) ,
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where C is the so-called 2-cocycle term satisfying

C(pipj , qkql) = −C(qkql, pipj) = δi,kδj,l + δi,lδj,k,

and C = 0 for all other pairs of quadratic monomials in p, q.

Denote D = −z ∂z z−1 and put

lk := z1/2Dk+1 z1/2 = (−1)k+1z3/2∂k+1
z z−1/2, k ≥ −1. (A.0.1)

Then we have

Lemma A.0.1 ([26]) The operators lk are infinitesimal symplectic transformations on V;
moreover,

LKdV
k (ǫ−1t̃, ǫ ∂/∂t) = l̂k

∣∣∣
qi 7→t̃i, ∂qi 7→∂ti , i≥0

+
δk,0
16

, k ≥ −1

where t̃i := ti − t0i .

Lemma A.0.2 ([26]) The multiplication operators z1−2j , j ≥ 1 are infinitesimal symplectic
transformations on V; moreover, the operators Dj defined in (2.1.2) satisfy

Dj = ẑ1−2j
∣∣∣
qi 7→t̃i, ∂qi 7→∂ti , i≥0

, j ≥ 1. (A.0.2)

Consider now quantization Φ̂ of the symplectomorphism f(z) 7→ Φ(z)f(z) where the func-
tion Φ(z) was defined by eq. (1.2.6) above. It will be defined by

Φ̂ := e(log Φ(z))∧

where we replace log Φ(z) by its asymptotic expansion at |z| → ∞, Re z 6= 0. The latter has
the form, up to an inessential piecewise constant term

log Φ(z) ∼
∞∑

k=1

B2k

k(2k − 1)

2−2k − 1

z2k−1
.

Using (2.1.2) we immediately arrive at

Lemma A.0.3 We have

Φ̂ = e
∑∞

k=1
B2k

k(2k−1)
Dk(2−2k−1). (A.0.3)

Remark A.0.4 The function Φ(z) is analytic near z = 0, Φ(0) = 1 and

log Φ(z) = −2z log 2− 2
∞∑

k=1

22k − 1

2k + 1
ζ(2k + 1) z2k+1, |z| < 1

2
. (A.0.4)

One can define another quantum operator Φ̂0 by quantizing the series (A.0.4). Geometric
interpretation of this quantum operator remains an interesting open question.
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