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Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point

correlation functions

Marco Bertola, Boris Dubrovin, Di Yang

Abstract

For a simple Lie algebra g, we derive a simple algorithm for computing logarithmic derivatives of
tau-functions of Drinfeld–Sokolov hierarchy of g-type in terms of g-valued resolvents. We show, for the
topological solution to the lowest-weight-gauge Drinfeld–Sokolov hierarchy of g-type, the resolvents
evaluated at zero satisfy the topological ODE.
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1 Introduction

1.1 Simple Lie algebra and Drinfeld–Sokolov hierarchy

Let g be a simple Lie algebra over C of rank n, with the Lie bracket denoted by [·, ·]. Let ad : g → gl(g)
be the adjoint representation of g. We denote by h, h∨ the Coxeter and dual Coxeter numbers [40] of g,
and m1 = 1 < m2 ≤ . . . ≤ mn−1 < mn = h − 1 the exponents. Denote (·|·) : g × g → C the normalized
Cartan–Killing [14] form

(x | y) := 1

2h∨
tr (adx · ady), ∀x, y ∈ g. (1.1.1)

Fix a Cartan subalgebra h ⊂ g, and let △ ⊂ h∗ be the root system. We choose a set of simple roots
Π = {α1, . . . , αn} ⊂ h∗. Then g has the root space decomposition

g = h⊕
⊕

α∈△

gα.

For any α ∈ △, denote by Hα the unique element in h such that (Hα|X) = α(X), ∀X ∈ h. The
normalized Cartan–Killing form induces naturally a bilinear inner product on h∗ :

(α|β) = (Hα|Hβ), ∀α, β ∈ h∗.

Denote by Ei ∈ gαi
, Fi ∈ g−αi

, Hi = 2Hαi
/(αi|αi) the Weyl generators of g. They satisfy

[Ei, Fi] = Hi δij , [Hi, Ej ] = Aij Ej, [Hi, Fj ] = −Aij Fj

where (Aij) denotes the Cartan matrix associated to (g,Π), and δij is the Kronecker delta. Here and
below, free Latin indices take integer values from 1 to n unless otherwise indicated.

Let θ be the highest root w.r.t. Π; recall that (θ|θ) = 2. We choose E−θ ∈ g−θ, Eθ ∈ gθ, normalized
by the conditions (Eθ|E−θ) = 1 and ω(E−θ) = −Eθ, where ω : g → g is the Chevalley involution. Let

I+ :=

n∑

i=1

Ei (1.1.2)

be a principal nilpotent element of g. Define

Λ = I+ + λE−θ. (1.1.3)

Denote by L(g) = g ⊗ C[λ, λ−1] the loop algebra of g. The Lie bracket [·, ·] and the Cartan–Killing
form B(·, ·) extend naturally to L(g). We have

L(g) = Ker adΛ ⊕ Im adΛ, Ker adΛ ⊥ ImadΛ. (1.1.4)

Recall that the principal gradation on L(g) is defined by

deg λ = h, degEi = − degFi = 1, i = 1, . . . , n.

Observe that
deg Λ = 1.
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This gradation is of course also defined on g = g⊗1. With the principal gradation, the loop algebra L(g)
and the simple Lie algebra g decompose into direct sums of homogeneous subspaces L(g)j, gj, j ∈ Z :

L(g) =
⊕

j∈Z

L(g)j , g =
h−1⊕

j=−(h−1)

gj.

We will denote the projection onto the nonnegative subspace by (•)+ : L(g) →
∑

j≥0 L(g)
j , and onto the

negative subspace by (•)−. It is known [39] that Ker adΛ ⊂ L(g) admits the following decomposition

Ker adΛ =
⊕

j∈E

CΛj, Λj ∈ L(g)j , j ∈ E,

[Λi,Λj ] = 0, ∀ i, j ∈ E.

Here, E :=
⊔n

i=1(mi + hZ). We choose normalizations of Λj , j ∈ E satisfying

Λma+kh = Λma λ
k, k ∈ Z, (1.1.5)

(Λma |Λmb
) = h ηab λ. (1.1.6)

Here and below,
ηab := δa+b,n+1. (1.1.7)

Since Λ ∈ L(g)1, we fix the normalization of Λ1 such that

Λ1 = Λ.

It is useful to notice that Λma , a = 1, . . . , n have the form [43]

Λma = Lma + λKma−h, Lma ∈ gma , Kma−h ∈ gma−h, Lma 6= 0, Kma−h 6= 0.

In [19], Drinfeld–Sokolov associate to g an integrable hierarchy of Hamiltonian evolutionary PDEs,
known as the Drinfeld–Sokolov (DS) hierarchy of g-type. Let us briefly review their construction in the
form suitable for subsequent considerations. Denote by b = g≤0 a Borel subalgebra of g, and n = g<0 a
nilpotent subalgebra. Let

L = ∂x + Λ+ q(x), q(x) ∈ b. (1.1.8)

Definition 1.1.1. The basic resolvents Ra, a = 1, . . . , n of L are defined as the unique solutions to

[L, Ra] = 0, Ra ∈ Aq ⊗ g((λ−1)), (1.1.9)

Ra(λ; q, qx, . . .) = Λma + lower order terms w.r.t. deg, (1.1.10)

(Ra(λ; q, qx, . . .) |Rb(λ; q, qx, . . .)) = h ηab λ. (1.1.11)

Here and below, Aq denotes the ring of differential polynomials in q, namely, an element of Aq is a
polynomial in the entries of q, qx, q2x, . . . .

Existence and uniqueness of the basic resolvents will be shown in Prop. 2.2.3.

The DS flows for the b-valued function q = q(x,T), T = (T a
k )

a=1,...,n
k≥0 are evolution PDEs

∂q

∂T a
k

= fak (q, qx, qxx, . . .) (1.1.12)
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for some b-valued differential polynomials fak defined by the following Lax representation

∂L
∂T a

k

=
[
(λkRa)+ , L

]
, a = 1, . . . , n, k ≥ 0. (1.1.13)

Here (•)+ stands for the polynomial part in λ. These flows are well-defined and pairwise commute [19];
they form the pre-DS hierarchy.

Consider transformations of the dependent variable q(x) 7→ q̃(x) of the pre-DS hierarchy induced by
gauge transformations of the form

L = ∂x + Λ+ q(x) 7→ L̃ = eadN(x)L = ∂x + Λ+ q̃(x) (1.1.14)

for an arbitrary smooth n-valued function N(x). A crucial point of the Drinfeld–Sokolov construction is
the following statement.

Lemma 1.1.2. The gauge transformations (1.1.14) are symmetries of the pre-DS flows of (1.1.13). In
particular, they map solutions to solutions.

In our approach the proof of this simple but important statement easily follows by observing that the
basic resolvents R̃a of the gauge-transformed operator L̃ satisfy

R̃a(λ; q̃, q̃x, . . .) = eadN(x)Ra(λ; q, qx, . . .), a = 1, . . . , n. (1.1.15)

The DS hierarchy is obtained from (1.1.13) by considering suitably chosen gauge invariant functions
qcan (see below for more details).

1.2 From resolvents to tau-function

We start from defining tau-functions of an arbitrary solution q(x,T) of the pre-DS hierarchy. Then we
verify its independence from the choice of the gauge with respect to the transformations of the form
(1.1.14).

Definition 1.2.1. Define a sequence of functions Ωa,k;b,ℓ = Ωa,k;b,ℓ(q, qx, . . .) ∈ Aq, a, b = 1, . . . , n, k, ℓ,≥
0 by means of the generating function expression below

∑

k,ℓ≥0

Ωa,k;b,ℓ

λk+1µℓ+1
=

(Ra(λ) |Rb(µ))

(λ− µ)2
− ηab

maλ+mbµ

(λ− µ)2
. (1.2.1)

We call Ωa,k;b,ℓ the two-point correlation functions.

Lemma 1.2.2. The two-point correlation functions Ωa,k;b,ℓ satisfy the following properties

Ωa,k;b,ℓ ∈ Aq, Ωa,k;b,ℓ = Ωb,ℓ;a,k, ∀ a, b = 1, . . . , n, k, ℓ ≥ 0, (1.2.2)

∂T c
m
Ωa,k;b,ℓ = ∂Ta

k
Ωb,ℓ;c,m = ∂T b

ℓ
Ωc,m;a,k, ∀ a, b, c = 1, . . . , n, k, ℓ,m ≥ 0. (1.2.3)

Lemma 1.2.3. For an arbitrary solution q(x,T) to (1.1.13), there exists τ = τ(x,T) such that

∂2 log τ

∂T a
k ∂T

b
ℓ

= Ωa,k;b,ℓ (q(x,T), qx(x,T), . . .) (1.2.4)

∂τ

∂x
= − ∂τ

∂T 1
0

. (1.2.5)
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The proofs are provided later in the paper.

In view of (1.2.5) we will henceforth identify x with −T 1
0 for τ(x,T). So we will use the short notation

τ = τ(T). Note that the scalar function τ(T) advocated for in Lemma 1.2.3 is uniquely determined by
the solution q(x,T) only up to a factor of the form

exp


d0 +

n∑

a=1

∑

k≥0

da,kT
a
k


 , d0, da,k are arbitrary constants. (1.2.6)

Definition 1.2.4. We call τ(T) the tau-function of the solution q(x,T) of the pre-DS hierarchy.

Definition 1.2.5. For an arbitrary solution to the pre-DS hierarchy, let τ(T) be a tau-function of this
solution in the sense of Definition 1.2.4. The N-point correlation functions of τ(T) are defined by

〈〈τa1k1 . . . τaNkN 〉〉DS =
∂N log τ

∂T a1
k1
. . . ∂T aN

kN

, k1, . . . , kN ≥ 0, N ≥ 1. (1.2.7)

From (1.1.15) it easily follows

Lemma 1.2.6. The tau-function of a solution to the pre-DS hierarchy is invariant, up to a factor of the
form (1.2.6), with respect to the gauge transformations (1.1.14).

Thus τ(T) will also be called tau-function of the solution qcan of the DS hierarchy corresponding to a
gauge-fixed Lax operator. The usual procedure [19] to fix the gauge is by choosing a subspace V ⊂ b

transversal to the adjoint action of the nilpotent subgroup so that qcan(x) restricts to a V-valued function
(see below).

1.3 Main results

For any a = 1, . . . , n introduce the following differential operator depending on a parameter λ

∇a(λ) =
∑

k≥0

∂Ta
k

λk+1
. (1.3.1)

For a given N ≥ 1 and a collection of integers a1, . . . , aN ∈ {1, . . . , n}, we define the following
generating series of N -point correlations functions by

Fa1,...,aN (λ1, . . . , λN ;T) = ∇a1(λ1) · · · ∇aN (λN ) log τ(T). (1.3.2)

Observe that, for N ≥ 2 the correlation functions (1.2.7) depend only on the solution q(x,T) of the
pre-DS hierarchy. Our goal is to derive an explicit expression for these generating functions for N ≥ 2 in
terms of the defined above basic resolvents.

For any N ≥ 2 define a cyclic-symmetric N -linear form B : g× · · · × g → C by

B(x1, . . . , xN ) = tr (adx1 ◦ · · · ◦ adxN
), ∀x1, . . . , xN ∈ g. (1.3.3)

Theorem 1.3.1. For an arbitrary solution qcan(T) to the DS-hierarchy, let τ(T) be a tau-function of
this solution. Then ∀N ≥ 2, we have

Fa1,...,aN (λ1, . . . , λN ;T) = − 1

2N h∨

∑

s∈SN

B
(
Rcan

as1
(λs1 ;T), . . . , Rcan

asN
(λsN ;T)

)

∏N
j=1(λsj − λsj+1)

−δN2 ηa1a2
ma1 λ1 +ma2 λ2

(λ1 − λ2)2
(1.3.4)

where Rcan
a (λ), a = 1, . . . , n denote the basic resolvents of Lcan := ∂x + Λ(λ) + qcan. In particular,

∀N ≥ 2, ∀ a1, . . . , aN ∈ {1, . . . , n}, we have Fa1,...,aN (λ1, . . . , λN ;T) ∈ Aqcan[[λ−1
1 , . . . , λ−1

N ]].
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The partition function. We now consider a particular tau-function that we shall call the partition
function: it will be denoted by Z(t) where the new time variables t differ from the original T by a rescaling
(see eq. (1.3.6)). This particular tau-function is uniquely specified up to a multiplicative constant by the
following string equation

n∑

a=1

∑

k≥0

tak+1

∂Z

∂tak
+

1

2

n∑

a,b=1

ηab t
a
0 t

b
0 Z =

∂Z

∂t10
(1.3.5)

(see details in Section 4.2 below). Here, the time variables tak and T a
k are related by

∂

∂tak
= ca,k

∂

∂T a
k

, ca,k =
(−1)k

√
−hma+hk+1

(ma

h )k+1

, a = 1, . . . , n, k ≥ 0 (1.3.6)

where (·)ℓ denotes the Pochhammer symbol, i.e. (y)ℓ := y(y + 1) · · · (y + ℓ− 1).

Theorem 1.3.2. Let the subspace V := Ker adI− ⊂ g be the lowest weight gauge (see eq. (3.1.1) for the
definition of I−), and Lcan the associated Lax operator. Let Rcan

a , a = 1, . . . , n be the basic resolvents of
Lcan. For the Drinfeld–Sokolov partition function Z, define Ma(λ) = λ−

ma
h Rcan

a (λ; t = 0). Then for any
a ∈ {1, . . . , n}, Ma(λ) satisfies the topological ODE of g-type

M ′ = κ [M,Λ], κ =
(√

−h
)−h

, ′ :=
d

dλ
. (1.3.7)

Observe that, as λ→ ∞, the solutions Ma(λ) admit the expansions

Ma = λ−
ma
h [Λma + lower degree terms w.r.t. deg] , a = 1, . . . , n.

Thus, Ma coincide with the basis of regular solutions to the topological ODE constructed in [8].

1.4 Applications to the FJRW theory

Let f : Cm → C be a quasi-homogeneous polynomial, i.e. there exist positive integers d, n1, . . . , nm s.t.

f(zn1x1, . . . , z
nmxm) = zd f(x1, . . . , xm), ∀ z ∈ C.

The weight of xi is defined to be qi = ni

d , i = 1, . . . ,m. In general the gradient of f vanishes at the
origin and hence the zero level-set f−1(0) is a singular variety and defines a “singularity” in the sense of
singularity theory [3]. The function f is called non-degenerate if the choice of weights qi is unique and
x = 0 is the only singularity of f . Let Gf (or Gmax) denote the maximal diagonal symmetry group of f ,
which is the subgroup of Aut(f) consisting of diagonal matrices γ such that f(γx) = f(x). It is easy to
see that the matrix

J = diag(e2πiq1 , . . . , e2πiqm) ∈ Gf .

Let G be a subgroup of Gf containing 〈J〉. Let n be the dimension of the Fan–Jarvis–Ruan cohomology
ring [28] associated to (f,G). Fan–Jarvis–Ruan associate with the pair (f,G) a certain generalized Witten
class, called the Fan–Jarvis–Ruan–Witten class

Λf,G
g,N (a1, . . . , aN ) ∈ H∗(Mg,N ), ai = 1, . . . , n, i = 1, . . . , N

such that incorporation of these cohomological classes to Mg,N gives rise to a cohomological filed theory
[46, 28]. The FJRW invariants are defined by

〈τa1k1 · · · τaNkN 〉f,Gg =

∫

Mg,N

ψk1
1 · · ·ψkN

N · Λf,G
g,N (a1, . . . , aN )

where ψi, i = 1, . . . , N are ψ-classes.
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Definition 1.4.1. The partition function Zf,G of FJRW invariants is defined by

Zf,G(t) = exp




∑

g,N≥0

1

N !

n∑

a1,...,aN=1

∑

k1,...,kN≥0

〈τa1k1 . . . τaNkN 〉f,Gg ta1k1 · · · t
aN
kN


 .

Now we consider an important subclass of singularities, called simple singularities. They are classified
by the ADE Dynkin diagrams [1, 2]. In particular, we consider

Ak : f = xk+1, k ≥ 1; Dk : f = xk−1 + x y2, k ≥ 4;

E6 : f = x3 + y4; E7 : f = x3 + x y3; E8 : f = x3 + y5.

We are also interested in the mirror singularity of Dk [28], denoted by DT
k :

DT
k : f = xk−1 y + y2, k ≥ 4.

The maximal diagonal symmetry groups Gf of the above polynomials will be denoted by GAk
, GDk

, GDT
k

and GEn , n = 6, 7, 8.

Theorem-ADE ([28, 29]). The following statements hold true

A. The partition function ZAn,G(t), n ≥ 1 with G = 〈J〉 = GAn is a particular tau-function of the
Drinfeld–Sokolov hierarchy of An-type satisfying the string equation (1.3.5).

D. The partition function ZDn,G(t), n ≥ 4 with n even and G = 〈J〉 is a particular tau-function of
the DS hierarchy of Dn-type satisfying (1.3.5).

D’. The partition function ZDk,G(t), k ≥ 4 with G = GDk
is a particular tau-function of the DS

hierarchy of A2k−3-type satisfying (1.3.5).

D”. The partition function ZDT
n ,G(t), n ≥ 4 with G = GDT

n
is a particular tau-function of the DS

hierarchy of Dn-type satisfying (1.3.5).

E. The partition function ZEn,G(t), n = 6, 7, 8, with G = 〈J〉 = GEn is a particular tau-function of
the DS hierarchy of En-type satisfying (1.3.5).

Summarizing, the partition function ZXk,GXk (t) with X = A,D,DT , or E is a particular tau-function of
the DS hierarchy of XT

k -type satisfying (1.3.5).

In the case that f = xr with G = 〈J〉 = Gf , the FJRW invariants 〈τa1k1 · · · τaNkN 〉
f,G
g coincide with

Witten’s r-spin correlators. The statement A of Theorem-ADE justifies Witten’s r-spin conjecture [52],
which was first proved by Faber–Shadrin–Zvonkine [27]; see “Theorem r-spin” below.

For convenience of the reader let us recall in more details the definition of Witten’s r-spin correlators.
For a given N ≥ 1 let 1 ≤ a1, . . . , aN ≤ r be integers satisfying the following divisibility condition

aN + . . .+ aN −N − (2g − 2) = mr, m ∈ Z. (1.4.1)

Then for any algebraic curve C of genus g with N marked points x1, . . . , xN there exists a line bundle
T over C such that

T ⊗r = KC ⊗O ((1− a1)x1)⊗ . . . ⊗O ((1− aN )xN ) . (1.4.2)

7



Here KC is the canonical class of the curve C. Moreover, for a smooth C there are r2g such line bundles.
A choice of such an “r-th root” of the bundle (1.4.2) defines a point in a covering of the moduli space.
After a suitable compactification this covering is denoted by

p : M1/r
g,N (a1, . . . , aN ) → Mg,N . (1.4.3)

For a point (C, x1, . . . , xN ,T ) in the covering space denote V = H1(C,T ). It defines a vector bundle

V → M1/r
g,N (a1, . . . , aN ). Put

cW (a1, . . . , aN ) :=
1

rg
p∗

(
e
(
V∨

))
∈ H2(m−g+1)

(
Mg,N

)
, a1, . . . , aN = 1, . . . , r

where e (V∨) is the Euler class of the dual bundle V∨. The cohomological class cW (a1, . . . , aN ) is called
the Witten class [52, 27, 37, 49, 48]. The r-spin intersection numbers are defined by

〈τa1p1 . . . τaNpN 〉r−spin
g :=

∫

Mg,N

cW (a1, . . . , aN )ψp1
1 . . . ψpN

N . (1.4.4)

The numbers 〈τa1p1 . . . τaNpN 〉r−spin
g are zero unless

a1 − 1

r
+ . . . +

aN − 1

r
+
r − 2

r
(g − 1) + k1 + . . . + kN = 3g − 3 +N. (1.4.5)

The so-called Vanishing Axiom conjectured in [37] and proven in [49, 48] tells that the Witten class
vanishes if any of ai, i = 1, . . . , N reaches r. Hence, below, we only consider the case of a1, . . . , aN
belonging to {1, . . . , r − 1}.

For computing Witten’s r-spin correlators, we use the theorems 1.3.1, 1.3.2 for a particular tau-
function along with the following result.

Theorem r-spin ([52, 27]). The partition function of r-spin intersection numbers

Zr−spin(t) := exp




∑

g,N≥0

1

N !

n∑

a1,...,aN=1

∑

k1,...,kN≥0

〈τa1k1 . . . τaNkN 〉r−spin
g ta1k1 · · · t

aN
kN




is a particular tau-function of the DS hierarchy of An-type, n = r − 1 satisfying (1.3.5).

In [44], Liu–Ruan–Zhang introduced cohomological field theories with finite symmetry, associated with
simple singularities and certain symmetry groups, and with a Γ-invariant sector, where Γ is the group
of automorphisms of the Dynkin digram. These theories are proved to be related to the DS integrable
hierarchies associated to the non-simply laced simple Lie algebras.

Theorem-BCFG ([44]). The partition function of the Γ-invariant sector of DT
n+1, A2n−1, E6 FJRW the-

ory with Gmax is a particular tau-function of the Drinfeld–Sokolov hierarchy of Bn, Cn, F4-type satisfying
(1.3.5); the partition function of the Z/3Z-invariant sector of (D4, 〈J〉) FJRW theory is a particular
tau-function of the Drinfeld–Sokolov hierarchy of G2-type satisfying (1.3.5).

Note that the common feature of Theorem-ADE and Theorem-BCFG claims that the partition func-
tion of FJRW invariants associated to a simple singularity with a symmetry group (possibly also with an

8



invariant sector) is a tau-function of the DS hierarchy of g-type, where g is a simple Lie algebra. We call
these numbers the FJRW invariants of g-type, denoted by

〈τa1k1 · · · τaNkN 〉FJRW−g
g , or simply by 〈τa1k1 · · · τaNkN 〉gg.

As before, let n denote the rank of g. For a given N ≥ 1 and for a collection of integers a1, . . . , aN ∈
{1, . . . , n}, we define the following generating functions of N -point FJRW invariants of g-type

FFJRW
a1,...,aN (λ1, . . . , λN ) := (κ

1
h+1

√
−h)N

∑

g,k1,...,kN≥0

N∏

ℓ=1

(−1)kℓ
(maℓ

h

)
kℓ+1

(
κ

1
h+1 λℓ

)maℓ
h

+kℓ+1
〈τa1k1 . . . τaNkN 〉gg. (1.4.6)

Here κ :=
(√

−h
)−h

.

Combining the results of Theorems 1.3.1 and 1.3.2 with the statements of Theorem-ADE and Theorem-
BCFG we arrive at the following formula for the FJRW invariants of g-type.

Theorem 1.4.2. Let g be a simple Lie algebra and n the rank of g. Let Ma = Ma(λ), a = 1, . . . , n be
the generalized Airy resolvents of g-type, which are the unique solutions to

M ′ = [M,Λ], (1.4.7)

subjected to
Ma(λ) = λ−

ma
h [Λma(λ) + lower degree terms w.r.t. deg] .

Here, h is the Coxeter number and ma, a = 1, . . . , n are the exponents of g. Then the generating functions
(1.4.6) for the N -point FJRW invariants of g-type have the following expressions

dFFJRW
a

dλ
(λ) = − 1

2h∨
B
(
E−θ,Ma(λ)

)
+ λ−

h−1
h δa,n, N = 1, (1.4.8)

FFJRW
a1,...,aN (λ1, . . . , λN ) = − 1

2N h∨

∑

s∈SN

B
(
Mas1

(λs1), . . . ,MasN
(λsN )

)

∏N
j=1(λsj − λsj+1)

−δN2 ηa1a2
λ
−

ma1
h

1 λ
−

ma2
h

2 (ma1 λ1 +ma2 λ2)

(λ1 − λ2)2
, N ≥ 2. (1.4.9)

Eqs. (1.4.7)–(1.4.9) are equivalent to the proposed formulae in [8] (eq. (4.2.9) of the current paper).

In particular, for given integers r ≥ 2, N ≥ 1 and a given collection of indices a1, . . . , aN belonging
to {1, . . . , r − 1}, define

F r−spin
a1,...,aN (λ1, . . . , λN ) :=

(
κ

1
r+1

√
−r

)N ∑

k1,...,kN≥0

N∏

ℓ=1

(−1)kℓ
(
aℓ
r

)
kℓ+1

(κ
1

r+1 λℓ)
aℓ
r
+kℓ+1

〈τa1k1 . . . τaNkN 〉r−spin. (1.4.10)

Here κ =
(√

−r
)−r

. Note that we have omitted the genus labelling in the notation of correlator, since it
can be obtained from the degree-dimension matching (1.4.5).

Theorem 1.4.3. Let n = r − 1, g = sln+1(C), Λ =
∑n

i=1Ei,i+1 + λEn+1,1, and let Mi = Mi(λ) be the
basis of generalized Airy resolvents of g-type, uniquely determined by the topological ODE

M ′ = [M,Λ], (1.4.11)
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subjected to
Ma = λ−

a
r [Λa + lower degree terms w.r.t. deg] .

Then the N -point functions (1.4.10) of r-spin intersection numbers have the following expressions

dF r−spin
a

dλ
(λ) = −(Ma)1,n+1(λ) + λ−

r−1
r δa,n, N = 1, (1.4.12)

F r−spin
a1,...,aN (λ1, . . . , λN ) = − 1

N

∑

s∈SN

Tr
(
Mas1

(λs1) . . .MasN
(λsN )

)

∏N
j=1(λsj − λsj+1)

−δN2 ηa1a2
λ
−

a1
h

1 λ
−

a2
h

2 (a1 λ1 + a2 λ2)

(λ1 − λ2)2
, N ≥ 2. (1.4.13)

Example 1.4.4 (r = 2). Witten’s 2-spin invariants coincide with intersection numbers of ψ-classes over
Mg,N [51, 42, 27]. So Thm. 1.4.3 with the choice r = 2 recovers the result of [7, 55]:

∑

g≥0

∑

p1,...,pN≥0

(2p1 + 1)!! · · · (2pN + 1)!!

22g−2+N

∫

Mg,N

ψp1
1 · · ·ψpN

N λ
−

2p1+3
2

1 · · ·λ−
2pN+3

2
N

= − 1

N

∑

r∈SN

Tr (M(λr1) · · ·M(λrN ))∏N
j=1(λrj − λrj+1)

− δN2
λ
− 1

2
1 λ

− 1
2

2 (λ1 + λ2)

(λ1 − λ2)2
, N ≥ 2

where

M =
λ−

1
2

2




−1
2

∑∞
g=1

(6g−5)!!
96g−1·(g−1)!

λ−3g+2 2
∑∞

g=0
(6g−1)!!
96g ·g! λ

−3g

−2
∑∞

g=0
6g+1
6g−1

(6g−1)!!
96g ·g! λ

−3g+1 1
2

∑∞
g=1

(6g−5)!!
96g−1·(g−1)!λ

−3g+2


 .

For N = 1, it follows easily from (1.4.12) the well-known formula

〈τ3g−2〉g =
1

24g · g! for g ≥ 1.

Example 1.4.5 (r = 3). We obtain from Theorem 1.4.3 that the only nontrivial one-point correlators
have the following explicit expressions

∫

M3m−2,1

cW (1)ψ8m−7
1 =

1

66m−4(m− 1)!
(
1
3

)
m

, m ≥ 1

∫

M3m,1

cW (2)ψ8m−2
1 =

1

66mm!
(
2
3

)
m

, m ≥ 1.

For N ≥ 2, Witten’s 3-spin correlators can be computed from the formulae

F 3−spin
i1,...,iN

(λ1, . . . , λN ) = − 1

N

∑

s∈SN

Tr
(
Mis1

(λs1) . . .MisN
(λsN )

)

∏N
j=1(λsj − λsj+1)

− δN2 ηi1i2
λ
−

i1
h

1 λ
−

i2
h

2 (i1 λ1 + i2 λ2)

(λ1 − λ2)2

with explicit formulae of Ma(λ) given in Appendix A.

Organization of the paper. In Sect. 2 we introduce the definition of tau-function and prove Thm1.3.1.
In Sect. 3 we define the essential series of g. In Sect. 4, we prove Thm. 1.3.2.
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2 Tau-function of Drinfeld–Sokolov hierarchy

2.1 Fundamental lemma

Let g be a simple Lie algebra of rank n, L(g) its loop algebra. Fix h a Cartan subalgebra of g. We denote
by ρ∨ ∈ h the Weyl co-vector of g, which is uniquely determined by the following equations

αi(ρ
∨) = 1, i = 1, . . . , n. (2.1.1)

Here αi ∈ h∗, i = 1, . . . , n are simple roots. We define the principal grading operator gr on L(g) by

gr = hλ
d

dλ
+ adρ∨ .

It follows that deg a = j ∈ Z iff gr a = j a, ∀ a ∈ L(g). Decompose

L(g) =
⊕

j∈Z

L(g)j , a ∈ L(g)j ⇔ gr a = j a, j ∈ Z.

∀ a ∈ L(g), we will denote the principal decomposition of a by

a =
∑

j∈Z

a[j], a[j] ∈ L(g)j .

The following lemma is elementary but it will be frequently used.

Lemma 2.1.1. Let x, y be any two elements in g = g⊗1 satisfying gr x = k1 x, gr y = k2 y. If k1+k2 6= 0,
then we have (x | y) = 0.

Proof. Suppose k1 6= 0. By definition, grx = k1 x implies [ρ∨, x] = k1 x. So we have

(x | y) = 1

k1
([ρ∨, x] | y) = − 1

k1
(x | [ρ∨, y]) = −k2

k1
(x | y) ⇒ k1 + k2

k1
(x | y) = 0.

The lemma is proved.

Lemma 2.1.2 (fundamental lemma, [19]). Let q = q(x) be a b-valued smooth function, where b := g≤0.
Let L = ∂x + Λ + q(x). Then there exists a unique pair (U,H) of the form

U =
∑

k≥1

U [−k](λ; q; qx, . . .) ∈ Aq ⊗ Im adΛ, (2.1.2)

H =
∑

j∈E+

H [−j](λ; q; qx, . . .) ∈ Aq ⊗Ker adΛ, (2.1.3)

where Im, Ker are taken in g((λ−1)), and E+ := {j ≥ 0 | j ∈ E} such that

e−adUL = ∂x + Λ+H. (2.1.4)
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Proof. Eq. (2.1.4) is equivalent to

e−U ◦ ∂x ◦ eU + e−adU (q + Λ) = ∂x + Λ+H.

More explicitly this reads
∞∑

j=0

(−adU )
j

j!

(
Ux

j + 1
+ q + Λ

)
= Λ+H. (2.1.5)

Comparing components with principal degree −k of both sides of (2.1.5) we obtain

H [−k] +
[
U [−k−1],Λ

]
= Gk

(
λ; q;U [−1], . . . , U [−k]; ∂x(U

[−1]), . . . , ∂x(U
[−k])

)
, k ≥ 0. (2.1.6)

Here, Gk ∈ L(g), k ≥ 0. Moreover, entries of Gk are polynomials in the entries of

q, U [−1], . . . , U [−k], ∂x(U
[−1]), . . . , ∂x(U

[−k])

whose coefficients are polynomials in λ. The proof proceeds by induction on the principal degree. First,
for k = 0 eq. (2.1.6) reads

H [0] +
[
U [−1] , Λ

]
= q[0]. (2.1.7)

Observe that an element x ∈ g has zero principal degree iff x ∈ h. So q[0] belongs to h. Let us show that
h ⊂ Im adΛ. This is equivalent to orthogonality

(x |Λma) = 0 for any x ∈ h, a = 1, . . . , n. (2.1.8)

Indeed, by Lemma 2.1.1, any element y ∈ g of nonzero principal degree is orthogonal to h. It remains to
recall that any Λma has the form Λma = Lma + λKma−h, where Lma and Kma−h belong to g and have
nonzero principal degree. This proves orthogonality (2.1.8). So we have H [0] = 0. Noting that the map
adΛ : Im adΛ → Im adΛ is invertible, and we have

U [−1] = ad−1
Λ (q[0]) ∈ Im adΛ. (2.1.9)

The second step of the induction clearly follows from eq. (2.1.6) and the decomposition

L(g) = Ker adΛ ⊕ Im adΛ.

The lemma is proved.

Example 2.1.3. Looking at equation (2.1.5) with principal degree −1, we have

H [−1] −
[
U [−2],Λ

]
=

1

2

[
U [−1],

[
U [−1],Λ

]]
+ ∂x(U

[−1])−
[
U [−1], q[0]

]
+ q[−1].

Since U [−2] is assumed to be orthogonal to Ker adΛ, this equation uniquely determines H [−1] and U [−2]

as indicated in the above proof.

2.2 g-valued resolvents

Definition 2.2.1. Let q = q(x) ∈ b. An element R ∈ Aq ⊗ g((λ−1)) is called a resolvent of L if

[L, R] = 0. (2.2.1)

The set of all resolvents of L is denoted by ML, called the resolvent manifold.
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Lemma 2.2.2 ([19]). We have
ML = eadU (Ker adΛ) ,

where we note that the kernel is taken in L(g), namely, Ker adΛ =
⊕

j∈E CΛj.

Proof. Lemma 2.1.2 reduces the problem to considering the resolvent manifold of ∂x +Λ+H. So, let us
look at the following equation for RH ∈ Aq ⊗ g((λ−1)) :

[RH , ∂x + Λ+H] = 0.

Decompose
RH = Rker

H +Rim
H , Rker

H ∈ Aq ⊗Ker adΛ, R
im
H ∈ Aq ⊗ Im adΛ.

It follows that
∂Rker

H

∂x
+
∂Rim

H

∂x
=

[
Rim

H ,Λ +H
]
.

The RHS of the above equation is in the image of adΛ, so we have

∂Rker
H

∂x
= 0, (2.2.2)

∂Rim
H

∂x
=

[
Rim

H ,Λ+H
]
. (2.2.3)

Equation (2.2.2) implies that Rker
H can only depend on λ. The rest is to show that Rim

H must vanish. If
it does not vanish, then there exists an integer d such that

Rim
H =

d∑

i=−∞

R
im,[i]
H , R

im,[d]
H 6= 0.

Noting that deg H < 0, then looking at the highest degree term on both sides of eq. (2.2.3) we obtain

[
Λ, R

im,[d]
H

]
= 0.

So we have R
im,[d]
H = 0. This produces a contradiction. The lemma is proved.

Proposition 2.2.3. ∀ a = 1, . . . , n, there exists a unique solution to the following system of equations

[L, R] = 0, R ∈ Aq ⊗ g((λ−1)), (2.2.4)

R(λ; q, qx, . . .) = Λma + lower order terms w.r.t. deg, (2.2.5)

(Ra(λ; q, qx, . . .) |Rb(λ; q, qx, . . .)) = h ηab λ. (2.2.6)

This unique system of solutions R1, . . .Rn is called in Sect. 1 the basic resolvents of the operator L.

Proof. The existence follows from the fact that eadU (Λma) is a solution, where (2.2.6) is due to (1.1.6),
and (2.2.5) is due to (2.1.2). The uniqueness follows from Lemma 2.2.2.

Corollary 2.2.4. Let U be defined as in Lemma 2.1.2. Then the basic resolvents Ra satisfy

Ra = eadU (Λma), a = 1, . . . , n.

Definition 2.2.5. Define Pma+hk := λk Ra = eadU (Λma+hk), a = 1, . . . , n, k ≥ 0.

13



The pre-DS hierarchy can be written as

∂L
∂T a

k

= [(Pma+kh)+ , L] , a = 1, . . . , n, k ≥ 0.

As customary in the literature, we will sometimes write T a
k as Tma+kh, a = 1, . . . , n, k ≥ 0.

Lemma 2.2.6. ∀ i, j ∈ E+, we have

∂Pj

∂Ti
= [(Pi)+, Pj ], (2.2.7)

∂(Pi)+
∂Tj

− ∂(Pj)+
∂Ti

+ [(Pi)+, (Pj)+] = 0. (2.2.8)

Proof. Using the fundamental lemma 2.1.2 we have

∂L
∂Ti

= [(Pi)+,L] ⇒
[
∂Ti

− (Pi)+,L
]
= 0 ⇒

[
∂Ti

+ Si , ∂x + Λ +H
]
= 0

where Si :=
∑∞

k=0
(−1)k

(k+1)!ad
k
U

(
∂U
∂Ti

)
− e−adU [(Pi)+] . Clearly, Si takes values in Aq ⊗ L(g). Decompose

Si = Sker
i + Sim

i , Sker
i ∈ Aq ⊗Ker adΛ, Sim

i ∈ Aq ⊗ Im adΛ.

Then we have

∂H

∂Ti
− ∂Si
∂x

+ [Si,Λ +H] = 0 ⇒
{

∂H
∂Ti

− ∂Sker
i

∂x = 0,
∂Sim

i

∂x = [Sim
i ,Λ +H].

Using the same argument as in the proof of Lemma 2.2.2 we find from the above equation for Sim
i that

Sim
i must vanish. So Si belongs to Aq ⊗Ker adΛ. On another hand,

∂Pj

∂Ti
= [(Pi)+, Pj ] ⇔ [∂Ti

− (Pi)+ , Pj ] = 0 ⇔ [∂Ti
− S , Λj] = 0.

Hence eq. (2.2.7) is proved. Clearly eq. (2.2.7) implies eq. (2.2.8); this is because

l.h.s. of eq. (2.2.8) = [(Pj)+, Pi]+ − [(Pi)+, Pj ]+ + [(Pi)+, (Pj)+] = 0.

Lemma 2.2.7. ∀ a = 1, . . . , n we have

∇a(λ)Rb(µ) =
[Ra(λ), Rb(µ)]

λ− µ
− [Qa, Rb(µ)], Qa := Coef(Ra(λ), λ

1). (2.2.9)

Proof. We have

∇a(λ)Rb(µ) =
∑

k≥0

∂Ta
k
Rb(µ)

λk+1
=

∑

k≥0

[(µk Ra(µ))+ , Rb(µ)]

λk+1

= −
∑

k≥0

[ res
ρ=∞

ρkRa(ρ)
ρ−µ dρ , Rb(µ)]

λk+1

=
1

2π
√
−1

∮

|µ|<|ρ|<|λ|
dρ

[Ra(ρ) , Rb(µ)]

(λ− ρ)(ρ− µ)

=
[Ra(λ), Rb(µ)]

λ− µ
−
[
Coef(Ra(λ), λ

1) , Rb(µ)
]
.
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2.3 Two-point correlation functions

Recall that in Def. 1.2.1, the two-point correlation functions Ωa,k;b,ℓ was defined by

∑

k,ℓ≥0

Ωa,k;b,ℓ

λk+1µℓ+1
=

(Ra(λ) |Rb(µ))

(λ− µ)2
− ηab

maλ+mbµ

(λ− µ)2
. (2.3.1)

Lemma 2.3.1. Def. 1.2.1, i.e. the above formula (2.3.1) is well-posed.

Proof. Noting that1

Rb(µ) = Rb(λ) +R′
b(λ)(µ − λ) + (µ− λ)2 ∂λ

(
Rb(λ)−Rb(µ)

λ− µ

)
(2.3.2)

and using eqs. (1.1.6) we have

(Ra(λ) |Rb(µ))

(λ− µ)2
= ηab

hλ

(λ− µ)2
− (Ra(λ) |R′

b(λ))

λ− µ
+

(
Ra(λ)

∣∣∣ ∂λ
(
Rb(λ)−Rb(µ)

λ− µ

))
.

In the above formulae, prime, “ ′ ”, denotes derivative w.r.t. the spectral parameter. Since Ra(λ) =
O(λ1), a = 1, . . . , n, it follows that the third term in the above identity has the form as the l.h.s. of
(1.2.1). Therefore it remains to show

ηab
hλ

(λ− µ)2
− (Ra(λ) |R′

b(λ))

λ− µ
− ηab

maλ+mbµ

(λ− µ)2

has the form as the l.h.s. of (1.2.1). We will actually prove the above expression vanishes. Indeed,

∂x
(
Ra(λ) |R′

b(λ)
)
=

(
[Ra(λ),Λ + q] |R′

b(λ)
)
+

(
Ra(λ) | [R′

b(λ),Λ + q] + [Rb(λ),Λ
′]
)
= 0. (2.3.3)

Here we have used the ad-invariance of the Cartan–Killing form and the commutativity between resol-
vents. Noting that Ra ∈ Aq ⊗ g((λ−1)), we find that (2.3.3) implies that (Ra(λ) |R′

b(λ)) does not depend
on q, qx, q2x, . . ., i.e. it is just a function of λ. Hence

(
Ra(λ) |R′

b(λ)
)
=

(
Ra(λ) |R′

b(λ)
)
q(x)≡0

=
(
Λma |Λ′

mb

)
.

The second equality uses (2.2.6). To compute
(
Λma |Λ′

mb

)
, as before, write

Λma = Lma + λKma−h, Lma ∈ gma , Kma−h ∈ gma−h, a = 1, . . . , n.

Using Lem. 2.1.1 we have (
Λma |Λ′

mb

)
= (Lma |Kmb−h) .

Note that (Λma |Λmb
) = ηab hλ implies that

(Lma |Kmb−h) + (Lmb
|Kma−h) = ηab h. (2.3.4)

The commutativity [Λma ,Λmb
] = 0 implies that

[Kma−h, Lmb
] + [Lma ,Kmb−h] = 0.

1We would like to thank Anton Mellit for bringing our attention to the useful formula (2.3.2).
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Applying (ρ∨ | ·) to the above equation and using the ad-invariance of (·|·) we have

([ρ∨,Kma−h] |Lmb
) + ([ρ∨, Lma ] |Kmb−h]) = 0 ⇒ (ma − h) (Kma−h |Lmb

) +ma (Lma |Kmb−h]) = 0.

Combining eqs. (2.3.4) and the above equation we obtain

(Lma |Kmb−h) = ηabmb, ∀ a, b = 1, . . . , n. (2.3.5)

Hence

ηab
hλ

(λ− µ)2
− (Ra(λ) |R′

b(λ))

λ− µ
− ηab

maλ+mbµ

(λ− µ)2
= 0.

The lemma is proved.

Proposition 2.3.2. The following formulae hold true

∑

k≥0

Ωa,k;b,0

λk+1
= (Ra(λ) |Qb)− ηabmb, a, b = 1, . . . , n. (2.3.6)

In particular, we have ∑

k≥0

Ωa,k;1,0

λk+1
= (Ra(λ) |E−θ)− ηa1, a = 1, . . . , n. (2.3.7)

Proof. Taking in (2.3.1) the residue w.r.t. µ at µ = ∞ we obtain (2.3.6). Noticing that

R1(µ) = µE−θ + I+ + terms with principal degree lower than 1

we must have Q1 = Coef(R1(µ), µ
1) = E−θ. This proves (2.3.7).

2.4 Tau-function: Proof of Lemmata 1.2.2, 1.2.3

We are ready to introduce our definition of tau-function. We begin with the proof of Lemma 1.2.2.

Proof of Lemma 1.2.2. First of all we have

∑

k,ℓ≥0

Ωa,k;b,ℓ

λk+1µℓ+1
=

(Ra(λ) |Rb(µ))

(λ− µ)2
− ηab

maλ+mbµ

(λ− µ)2
=

(Rb(µ) |Ra(λ))

(µ− λ)2
− ηba

mbµ+maλ

(µ− λ)2

=
∑

k,ℓ≥0

Ωb,k;a,ℓ

µk+1λℓ+1
=

∑

k,ℓ≥0

Ωb,ℓ;a,k

µℓ+1λk+1

where we have used the symmetry property of ηab and (·|·). It follows Ωa,k;b,ℓ = Ωb,ℓ;a,k.

Secondly, we have

∑

k,ℓ,m≥0

∂T c
m
Ωa,k;b,ℓ

ξm+1λk+1µℓ+1
= ∇c(ξ)

∑

k,ℓ≥0

Ωa,k;b,ℓ

λk+1µℓ+1

=
(∇c(ξ)Ra(λ) |Rb(µ))

(λ− µ)2
+

(Ra(λ) |∇c(ξ)Rb(µ))

(λ− µ)2

=
([Rc(ξ), Ra(λ)] |Rb(µ))

(λ− µ)2(ξ − λ)
− ([Qc, Ra(λ)] |Rb(µ))

(λ− µ)2

+
(Ra(λ) | [Rc(ξ), Rb(µ)])

(λ− µ)2(ξ − µ)
− (Ra(λ) | [Qc, Pb(µ)])

(λ− µ)2
.
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Clearly the two terms with negative signs give a zero contribution due to the ad-invariance of the Cartan–
Killing form. The remaining two terms simplify to

([Rc(ξ), Ra(λ)] |Rb(µ))

(λ− µ)2

(
1

ξ − λ
− 1

ξ − µ

)
= −([Rc(ξ), Ra(λ)] |Rb(µ))

(λ− µ)(µ− ξ)(ξ − λ)
.

So we have ∑

k,ℓ,m≥0

∂T c
m
(Ωa,k;b,ℓ)

ξm+1λk+1µℓ+1
= −([Rc(ξ), Ra(λ)] |Rb(µ))

(λ− µ)(µ− ξ)(ξ − λ)
.

This gives also
∑

k,ℓ,m≥0

∂Ta
k
(Ωc,m;b,ℓ)

λk+1ξm+1µℓ+1
= −([Ra(λ), Rc(ξ)] |Rb(µ))

(ξ − µ)(µ− λ)(λ− ξ)
.

Hence
∂T c

m
(Ωa,k;b,ℓ) = ∂Ta

k
(Ωc,m;b,ℓ) (2.4.1)

due to skew-symmetry of the Lie bracket. The lemma is proved. �

Proof of Lemma 1.2.3. Thirdly, we show the compatibility between (1.2.5) and (1.2.4), namely, to
show that

∂Ωa,k;b,ℓ

∂T 1,0
= −∂Ωa,k;b,ℓ

∂x
. (2.4.2)

Taking c = 1,m = 0 in the already proved identity (2.4.1) we have

∂Ta
k
(Ω1,0;b,ℓ) = ∂T 1

0
(Ωa,k;b,ℓ).

Hence (2.4.2) is equivalent to
∂Ω1,0;b,ℓ

∂T a,k
= −∂Ωa,k;b,ℓ

∂x
.

Now we make a generating function: the above identity is equivalent to

∑

k,ℓ

∂Ω1,0;b,ℓ

∂T a,k
z−k−1w−ℓ−1 = −

∑

k,ℓ

∂Ωa,k;b,ℓ

∂x
z−k−1w−ℓ−1.

We have

−RHS =
B(∂xRa(z), Rb(w))

(z − w)2
+
B(Ra(z), ∂xRb(w))

(z − w)2

=
B([Ra(z),Λ(z) + q]|Rb(w))

(z − w)2
+
B(Ra(z), [Rb(w),Λ(w) + q])

(z − w)2

=
B(Λ(z) + q , [Rb(w), Ra(z)])

(z − w)2
− B(Λ(w) + q , [Rb(w), Ra(z)])

(z − w)2

=
B(Λ(z)− Λ(w) , [Rb(w), Ra(z)])

(z − w)2
.

Recall that
Λ(z) = I+ + zE−θ, Λ(w) = I+ + wE−θ.

So we have

−RHS =
B((z − w)E−θ , [Rb(w), Ra(z)])

(z − w)2
=
B(E−θ , [Rb(w), Ra(z)])

(z − w)
.
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On another hand, we have

LHS = ∇(z)
∑

l

Ω1,0;b,l w
−l−1

= ∇(z) [B(E−θ, Rb(w)) + const]

= B(E−θ,∇(z) [Rb(w)])

=
B(E−θ, [Ra(z), Rb(w)])

z −w
+B(E−θ, [Qa, Rb(w)]).

We note that the second term of the last expression must be zero because

degQa + h ≤ ma ⇒ [E−θ, Qa] = 0. (2.4.3)

The lemma is proved. �

Hence we have arrived at our definition of tau-function, i.e. Def. 1.2.4. In the next subsection, we will
prove the gauge invariant property of our definition.

2.5 Gauge invariance

The change of the Lax operator

L = ∂x + Λ+ q(x) 7→ L̃ = eadN(x)L = ∂x + Λ + q̃(x), N(x) ∈ n (2.5.1)

is called a gauge transformation q 7→ q̃. It will also be convenient to deal with the infinitesimal form of
(1.1.14), L̃ = L+ δL,

δL = [N(x),L] = [N(x), q(x) + I+]−
∂N(x)

∂x
. (2.5.2)

Let R̃a, a = 1, . . . , n be the basic resolvents of L̃. It is not difficult to verify that ∀ a = 1, . . . , n, R̃a =
eadN(x)Ra.

Lemma 2.5.1. The gauge transformations (1.1.14) are symmetries of the pre-DS hierarchy.

Proof. We have to prove the commutativity

∂

∂s

∂L
∂T

=
∂

∂T

∂L
∂s

between the j-th flow of the pre-DS hierarchy

∂L
∂Tj

=
[
(Pj)+ , L

]
, j ∈ E+

and the flow given by the infinitesimal gauge transformation

∂L
∂s

= [N,L]

for some n-valued function N = N(x). Using (1.1.15) we derive

∂Pj

∂s
= [N,Pj ] .

So, after simple calculations with the help of the Jacobi identity we compute the difference between the
mixed derivatives

∂

∂s

∂L
∂T

− ∂

∂T

∂L
∂s

=
[
[N,Pj ]+ −

[
N, (Pj)+

]
,L

]
= 0.
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The two-point correlation functions Ω̃a,k;b,ℓ, k, ℓ ≥ 0 associated to L̃ are defined by

∑

k,ℓ≥0

Ω̃a,k;b,ℓ

λk+1µℓ+1
=

(
R̃a(λ) | R̃b(µ)

)

(λ− µ)2
− ηab

maλ+mbµ

(λ− µ)2
. (2.5.3)

Lemma 2.5.2. ∀ a, b ∈ {1, . . . , n}, k, ℓ ≥ 0, we have Ω̃a,k;b,ℓ = Ωa,k;b,ℓ.

Proof.
(
R̃a(λ) | R̃b(µ)

)
=

(
eadN(x)Ra(λ) | eadN(x)Ra(µ)

)
= (Ra(λ) |Rb(µ)) .

In a similar way one can easily prove that ∀N ≥ 2 the correlation functions 〈〈τa1k1 . . . τaNkN 〉〉DS are
gauge invariant.

Now we are ready to prove Lemma 1.2.6.

Proof of Lemma 1.2.6. The lemma easily can be proved by applying Lem. 2.5.2 and Def. 1.2.4. �

Due to Lemma 1.2.6 it is clear that ∀N ≥ 3 the correlation functions 〈〈τa1k1 . . . τaNkN 〉〉DS are gauge
invariant.

2.6 Gauge fixing and Drinfeld–Sokolov hierarchy

We consider in this section a particular family of gauges [19, 5, 23].

Definition 2.6.1. A linear subspace V ⊂ b is called a gauge of DS-type if b = V ⊕ [I+, n].

Let V be a gauge of DS-type. The fact that adI+ : n → b is injective implies dimC V = n. Write

V =

0⊕

j=−(h−1)

Vj, Vj ⊂ gj.

Denote bj = b∩gj.We have bj = Vj⊕ [I+, b
j−1], j = −(h−1), . . . , 0. Clearly, V−(h−1) = CE−θ. Noticing

that for j = −(h − 1), . . . , 0, the dimension dim bj can be different from dim bj−1 iff −j is an exponent
of g [47, 19], we find that Vj is a null space unless (−j) is an exponent. Thus

V =
n⊕

a=1

Va, dimC Va = 1

where non-zero elements in Va have principal degree −ma. We now take a basis {X1, . . . ,Xn} of V
satisfying degXa = −ma. It has been proved in [19] that for any Lax operator L = ∂x +Λ+ q(x), there
exists a unique n-valued function N can(x) such that

eadNcan(x)L = ∂x + Λ+ qcan(x) =: Lcan, for some V-valued function qcan. (2.6.1)

Write qcan =
∑n

a=1 waX
a = (w1, . . . , wn). The DS-flows of qcan, or say of wa, can be written as

∂qcan

∂T a
k

=

[(
λkRcan

a

)
+
,L

]
+

[
∂eN

can

∂T a
k

e−Ncan

,L
]
. (2.6.2)

A priori the RHS of (2.6.2) has a dependence in q, as we can see from the second term that it contains
flow of components of n. However, Lem. 2.5.1 says that the gauge transformation is a symmetry of the
pre-DS hierarchy. So RHS of (2.6.2) depends only on qcan, i.e. wa, a = 1, . . . , n satisfy equations of the
form

∂wa

∂T b
k

= Ga,b,k (q
can, qcanx , qcanxx , . . .) , k ≥ 0. (2.6.3)
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Definition 2.6.2. Equations (2.6.3) are called the DS hierarchy of g-type associated to V.

Let Rcan
a be the basic resolvents of Lcan, and Ωcan

a,k;b,ℓ the two-point correlations functions of Lcan, i.e.

∑

k,ℓ≥0

Ωcan
a,k;b,ℓ

λk+1µℓ+1
=

(Rcan
a (λ) |Rcan

b (µ))

(λ− µ)2
− ηab

maλ+mbµ

(λ− µ)2
. (2.6.4)

Corollary 2.6.3. Let τ(T) be a tau-function of the DS hierarchy. The following formulae hold true

∂2 log τ

∂T a
k ∂T

b
ℓ

= Ωcan
a,k;b,ℓ, ∀ a, b = 1, . . . , n, k, ℓ ≥ 0.

Proof. By gauge invariance of two-point correlation functions.

We also call τ(T) a tau-function of the solution qcan(T) = (w1(T), . . . , wn(T)).

2.7 Proof of Theorem 1.3.1

The proof will be almost identical to the proof for the case g = A1 case [7]. Let V be any gauge of
DS-type. Fix X1, . . . ,Xn a basis of V satisfying deg Xa = −ma.

Lemma 2.7.1. Let Lcan = ∂x + Λ+ qcan, qcan =
∑n

a=1 waX
a. For every a = 1, . . . , n a solution to

[Lcan, Rcan] = 0, Rcan ∈ Aw ⊗ L(g),

Rcan(λ;w;wx, w2x, . . .) = Λma + lower order terms w.r.t. deg,

Rcan(λ; 0; 0, . . . , 0) = Λma (2.7.1)

exists and is unique. Here w = (w1, . . . , wn).

Proof. The lemma is a particular case of Prop. 2.2.3.

Proof. of Thm. 1.3.1. For any permutation s = [s1, . . . , sp] ∈ Sp, p ≥ 2, define

P (s) := −
p∏

j=1

1

λsj − λsj+1

, λsp+1 ≡ λs1 .

We first prove the generating formula of multi-point correlation functions of a solution of the pre-DS
hierarchy, then we use the ad-invariance of B for the gauge-fixed case.

Let L = ∂x + Λ + q(x), q(x) ∈ b be a linear operator, Ra the basic resolvents of L. For an arbi-
trary solution q(x,T) to the pre-DS hierarchy (1.1.13), let τ(T) be the corresponding tau-function, and
Fa1,...,aN (T), N ≥ 1 the generating series of N -point correlations functions of τ(T).

We now use mathematical induction to prove formula (1.3.4) with Rcan replaced by R. For N = 2,
the formula is true by definition. Suppose it is true for N = p (p ≥ 2), then for N = p+ 1, we have

Fα1,...,αp+1(λ1, . . . , λp+1;T) = ∇αp+1(λp+1)Fα1,...,αp(λ1, . . . , λp;T)

= − 1

2h∨ p
∇αp+1(λp+1)

∑

s∈Sp

B
(
Rαs1

(λs1), . . . , Rαsp
(λsp)

)

∏p
j=1(λsj − λsj+1)

= − 1

2h∨ p

∑

s∈Sp

p∑

q=1

B
(
Rαs1

(λs1), . . . ,
[
Rαp+1 (λp+1)

λp+1−λsq
+Qαp+1 , Rαsq

(λsq)
]
, . . . , Rαsp

(λsp)
)

∏p
j=1(λsj − λsj+1)

.
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Recall that the elements Qα ∈ g were defined in eq. (2.2.9). Now we observe that the terms containing
the commutator with Qαp+1 sum up to zero due to the ad–invariance of B, namely due to the formula

p∑

q=1

(X1, . . . , [A,Xq ],Xq+1, . . . ,Xp) = 0 , ∀X1, . . . ,Xp, A ∈ g.

Thus we are left with

=
1

2h∨ p

∑

s∈Sp

P (s)

p∑

q=1



B
(
Rαs1

(λs1), . . . , Rαsq−1
(λsq−1), Rαp+1(λp+1), Rαsq

(λsq), . . . , Rαsp
(λsp)

)

λp+1 − λsq

−
B
(
Rαs1

(λs1), . . . , Rαsq−1
(λsq−1), Rαp+1(λp+1), Rαsq

(λsq), . . . , Rαsp
(λsp)

)

λp+1 − λsq−1




=
1

2h∨ p

∑

s∈Sp

P (s)

p∑

q=1

(λsq − λsq−1)

B
(
Rαp+1(λp+1), Rαsq

(λsq), . . . , Rαsp
(λsp), Rαs1

(λs1), . . . , Rαsq−1
(λsq−1)

)

(λp+1 − λsq )(λp+1 − λsq−1)

=
1

2h∨ p

p∑

q=1

∑

s∈Sp

P ([p + 1, sq, . . . , sp, s1, . . . , sp−1])

B
(
Rαp+1(λp+1), Rαsq

(λsq), . . . , Rαsp
(λsp), Rαs1

(λs1), . . . , Rαsq−1
(λsq−1)

)

=
1

2h∨

∑

s∈Sp

P ([p+ 1, s])B
(
Rαp+1(λp+1), Rαs1

(λs1), . . . , Rαsp
(λsp)

)
.

For any gauge V of DS-type, there exists a unique n-valued smooth function N(x) such that

eadN(x)L = Lcan.

Observing that R̃a = eadN(x)Ra and using the Ad-invariance of B we obtain

Fa1,...,aN (λ1, . . . , λN ;T) = −
∑

s∈SN

B
(
Rcan

as1
(λs1), . . . , R

can
asN

(λsN )
)

2N h∨
∏N

j=1(λsj − λsj+1)
− δN2 ηa1a2

ma1 λ1 +ma2 λ2
(λ1 − λ2)2

.

Finally, Fa1,...,aN (λ1, . . . , λN ;T) ∈ Aqcan [[λ−1
1 , . . . , λ−1

N ]] due to Lem. 2.7.1. The theorem is proved.

Corollary 2.7.2. For an arbitrary solution qcan to the DS hierarchy of g-type associated to V let τ be a
tau-function of this solution. The following formulae hold true

∑

k≥0

〈〈τa,kτb,0〉〉DS

λk+1
= (Rcan

a (λ) |Qcan
b )− ηabmb, a, b = 1, . . . , n. (2.7.2)

In particular, we have

∑

k≥0

〈〈τa,kτ1,0〉〉DS

λk+1
= (Rcan

a (λ) |E−θ)− ηa1, a = 1, . . . , n. (2.7.3)
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Proof. Taking in (1.3.4) with N = 2 the residue w.r.t. µ at µ = ∞ we obtain (2.7.2). To show (2.7.3),
we only need to notice that for b = 1, Coeff(Rcan

1 (µ), µ1) = E−θ. Indeed,

Rcan
1 (µ) = λE−θ + I+ + . . .

Here, the dots denote terms with principal degree lower than 1 which contain no more λ1-power.

More explicitly, let (U can,Hcan) be the unique pair associated to Lcan. Note that

Rcan
a = eadUcan Λma . (2.7.4)

Also note that Eq. (2.1.2) implies that U can must have the following decomposition

U can =
∑

k≥0

U can
−k λ−k, U can

0 ∈ n, U can
−k ∈ g, k ≥ 1.

Hence we have
Qcan

b = Coeff(Rcan
b (µ), µ1) = e

adUcan
0 Kmb−h, b = 1, . . . , n. (2.7.5)

Before ending this section, we consider taking a faithful irreducible matrix realization π of g. Let χ
be the unique constant satisfying

(a|b) = χTr(π(a)π(b)), ∀ a, b ∈ g. (2.7.6)

For simplicity we will write π(a) just as a, for a ∈ g. Similarly as Thm. 1.3.1 we have

Proposition 2.7.3. Let V be a gauge of DS-type, Lcan the gauge fixed Lax operator (2.6.1), and Rcan
a , a =

1, . . . , n the basic resolvents of Lcan. For an arbitrary solution qcan(T) to the DS hierarchy associated to
V, we have

Fa1,...,aN (λ1, . . . , λN ;T) = − 1

χ ·N
∑

s∈SN

Tr Rcan
as1

(λs1) · · ·Rcan
asN

(λsN )
∏N

j=1(λsj − λsj+1)
− δN2 ηa1a2

ma1 λ1 +ma2 λ2
(λ1 − λ2)2

.

(2.7.7)

Remark 2.7.4. The r.h.s. of (1.3.4) and the r.h.s. of (2.7.7) coincide. However, this does not mean
the summands coincide with each other.

2.8 An algorithm for writing the DS-hierarchy

Let V be any gauge of DS-type, {X1, . . . ,Xn} a basis of V s.t. degXa = −ma and let

Lcan = ∂x + Λ + qcan(x), qcan(x) =
n∑

a=1

wa(x)X
a.

Recall that there exists a unique n-valued function N can(x) s.t.

eadNcanL = Lcan.

Denote by Rcan
a , a = 1, . . . , n the basic resolvents of Lcan. The corresponding DS-hierarchy will be defined

as in (2.6.2). Although we know that RHS of (2.6.2) depends only on qcan, qcanx , . . ., the second term of
RHS of (2.6.2) contains evolution of general components in n.

So the following question is under consideration:

For any given gauge V, can we write down the DS-hierarchy for qcan using only the information of
Rcan

a ?

Let us give a positive answer to this question by using our definition of tau-function.
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1. Compute the basic resolvents Rcan
a , a = 1, . . . , n.

2. Calculate the Miura transformation wa 7→ ra from eq. (2.7.3). Recall that the normal coordinates
are defined by ra := 〈〈τa,0τ1,0〉〉DS .

3. Calculate 〈〈τb,kτa,0〉〉DS from eqs. (2.7.2). Note that the DS-flows for the normal coordinates ra are

∂ra
∂T b,k

= −∂x 〈〈τb,kτa,0〉〉DS , a, b = 1, . . . , n, k ≥ 0. (2.8.1)

The r.h.s of eqs. (2.8.1) are differential polynomials in w. Substituting wa 7→ ra in the r.h.s. of
eqs. (2.8.1) we obtain the DS hierarchy for ra.

4. Substitute the inverse Miura transformation to the DS hierarchy for ra we obtain the DS hierarchy.

3 Computational aspect of resolvents

3.1 The lowest weight gauge

Recall that there is a particular choice of a gauge of DS-type [5], called the lowest weight gauge. Let us
review its construction. Write the Weyl co-vector as ρ∨ =

∑n
i=1 xiHi, xi ∈ C and define

I− = 2

n∑

i=1

xi Fi. (3.1.1)

Then I+, I−, ρ
∨ generate an sl2(C) Lie subalgebra of g:

[ρ∨, I+] = I+, [ρ∨, I−] = −I−, [I+, I−] = 2ρ∨. (3.1.2)

According to [43, 5] there exist elements γ1, . . . , γn ∈ g such that

Ker adI− = SpanC{γ1, . . . , γn}, [ρ∨, γi] = −mi γ
i.

Since γn ∈ CE−θ we could and will normalize it to be

γn = E−θ. (3.1.3)

The subspace Ker adI− ⊂ b is a gauge of DS-type, which is called the lowest weight gauge. Denote by

Lcan = ∂x +Λ + qcan(x)

the gauge fixed Lax operator associated to Ker adI− , where q
can(x) :=

∑n
a=1 ua(x) γ

a.

Definition 3.1.1. The functions ua, a = 1, . . . , n are called the lowest weight coordinates.

3.2 Extended principal gradation

Definition 3.2.1. Define the extended principal degree by the following degree assignments

dege ∂x = 1, dege λ = h, (3.2.1)

dege ui = mi + 1, (3.2.2)

degeEi = 1, dege Fi = −1, i = 1, . . . , n. (3.2.3)
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It is easy to see that, if a ∈ L(g)j then dege a = deg a = j. Namely, the extended principal degree
coincides with the principal degree for any loop algebra element. In particular,

dege γi = −mi, dege adjI+γ
i = −mi + j, j = 0, . . . , 2mi. (3.2.4)

Lemma 3.2.2. For the gauge-fixed Lax operator Lcan, we have dege Lcan = 1.

Let (U can,Hcan) be the unique pair associated to Lcan, and Rcan
a the basic resolvents.

Lemma 3.2.3. The following formulae hold true

dege U can = 0, degeHcan = 1, degeRcan
a = ma, a = 1, . . . , n. (3.2.5)

Proof. By using the recursion procedure (2.1.6) and by the mathematical induction.

Corollary 3.2.4. The N -point (N ≥ 2) generating series of correlation functions Fa1,...,aN (λ1, . . . , λN ;T)

are homogenous of degree −Nh+
∑N

ℓ=1maℓ w.r.t. the extended principal gradation.

3.3 Essential series of the Drinfeld–Sokolov hierarchy

Recall that the simple Lie algebra g admits the lowest weight decomposition [5]

g =

n⊕

a=1

La, La = SpanC{γa, adI+ γa, . . . , ad2ma

I+
γa}

where each La is an sl2(C)-module w.r.t. the sl2(C) Lie subalgebra generated by I+, I−, 2ρ
∨, called a

lowest weight module. It is then clear that any g-valued function R(λ) can be uniquely written as

R(λ) =
n∑

a=1

2ma∑

m=0

Kam(λ) admI+γ
a.

Theorem 3.3.1. Let Lcan = ∂x + Λ + qcan = ∂x + Λ +
∑n

a=1 ua γ
a be a Lax operator associated to the

lowest weight gauge. Let Rcan ∈ Au ⊗ g((λ−1)) be any resolvent of Lcan. Write

Rcan =
n∑

i=1

Ri ad
2mi

I+
γi +

n∑

i=1

2mi−1∑

m=0

Kim admI+γ
i. (3.3.1)

We have 1) ∀ i ∈ {1, . . . , n}, m ∈ {0, 1, . . . , 2mi − 1}, Kim has the following expression

Kim =
n∑

j=1

2mi−m∑

ℓ=0

(
sji,ℓ,0 + λ sji,ℓ,1

)
∂ℓx (Rj) ,

where the coefficients sji,ℓ,0, s
j
i,ℓ,1 belong to Au, and they do not depend on the choice of the resolvent.

2) The ODE [Lcan, Rcan] = 0 is equivalent to n scalar linear ODEs for R1, . . . ,Rn.

3) The following formulae hold true for the degrees of the coefficients (3.3.1) of the basic resolvents

degeRa; i = ma −mi, degeKa; im = ma +mi −m, i, a = 1, . . . , n; m = 0, . . . , 2mi − 1. (3.3.2)
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Proof of Thm. 3.3.1 Write

Rcan(λ;u;ux, . . .) =

n∑

i=1

2mi∑

m=0

Kim(λ;u;ux, . . .) ad
m
I+γ

i, Ki,2mi
:= Ri.

Substituting the above expressions into (2.2.4) we obtain

n∑

i=1

2mi∑

m=0

∂Kim

∂x
admI+γ

i +
n∑

i=1

2mi∑

m=1

Ki,m−1 ad
m
I+γ

i +

[
λ γn +

n∑

ℓ=1

uℓγ
ℓ,

n∑

i=1

2mi∑

m=0

Kim admI+γ
i

]
= 0. (3.3.3)

Introduce the lowest weight structure constants cmℓijs by

[γℓ, admI+γ
i] =

n∑

j=1

2mj∑

s=0

cmℓijs ad
s
I+γ

j, i, ℓ = 1, . . . , n, m = 0, . . . , 2mi. (3.3.4)

Substituting (3.3.4) into (3.3.3) we obtain

n∑

i=1

2mi∑

m=0

∂Kim

∂x
admI+γ

i +

n∑

i=1

2mi∑

m=1

Ki,m−1 ad
m
I+γ

i

+

n∑

ℓ=1

n∑

i=1

2mi∑

m=0

n∑

j=1

2mj∑

s=0

ũℓKim c
m
ℓijs ad

s
I+γ

j = 0 (3.3.5)

where ũℓ = uℓ + λ δℓ,n. It follows that

Kj,s−1 +
∂Kjs

∂x
+

n∑

ℓ=1

n∑

i=1

2mi∑

m=0

ũℓKim c
m
ℓijs = 0, j = 1, . . . , n, s = 0, . . . , 2mj . (3.3.6)

Here Kj,−1 := 0. Noting that the structure constant cmℓijs are zero unless

0 ≤ m = mi +mℓ + s−mj ≤ 2mi. (3.3.7)

Hence we obtain

Kj,s−1 = −∂Kjs

∂x
−

n∑

ℓ, i=1
mi≥|mℓ+s−mj |

ũℓ ·Ki,mi+mℓ+s−mj
c
mi+mℓ+s−mj

ℓijs , j = 1, . . . , n, s = 0, . . . , 2mj . (3.3.8)

Define an ordering for pairs of integers {(j, s) | j = 1, . . . , n, s = 0, . . . , 2mj} : we say (j1, s1) > (j2, s2), if
s1 > s2, or s1 = s2 and j1 < j2. Noting that Ki,2mi

:= Ri we can use (3.3.8) to solve out Kj,s−1 in terms
of Rj and their x-derivatives starting from the largest pair (j, s − 1) = (n, 2mn − 1) to the smallest pair
(j, s − 1) = (n, 0). This proves Part 1) of the theorem.

Taking s = 0 in (3.3.8) we obtain the system of ODEs for R1, . . . ,Rn, which proves Part 2).

Formulae (3.3.2) follow from Lemma 3.2.3 and eq.(3.3.1), which proves Part 3). �

Definition 3.3.2. We call Ra;1, . . . ,Ra;n the essential series of the DS hierarchy of the g-type.

Using the same argument as in [8], the essential series Ra;a never vanishes.

Definition 3.3.3. We call Ra;a the fundamental series of the DS hierarchy.
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4 Proof of Theorem 1.3.2

4.1 Relation between normal coordinates and lowest weight coordinates

The concept of normal coordinates was introduced in [26]; see also [24].

Definition 4.1.1. We call ra := 〈〈τa,0τ1,0〉〉DS the normal coordinates of the DS hierarchy.

Recall that
Λma(λ) = Lma + λKma−h, Lma ∈ gma , Kma−h ∈ gma−h.

Using the commutativity between Λm1 , . . . ,Λmn along with the normalization (1.1.6) we have

[Lma , Lmb
] = 0, [Kma−h,Kmb−h] = 0, (4.1.1)

[Kma−h, Lmb
] + [Lma ,Kmb−h] = 0 (4.1.2)

and
(Lma |Kmb−h) = ηabmb, ∀ a, b = 1, . . . , n. (4.1.3)

Note that Lm1 = I+, we have in particular

[I+, Lma ] = 0 , ∀ a = 1, . . . , n. (4.1.4)

Therefore the elements Lma are the highest weight vectors of the lowest weight module La, i.e.

Lma = const · ad2ma

I+
γa, const 6= 0.

Lemma 4.1.2. The lowest weight vectors γa can be normalized such that

(γa |Lma) = 1. (4.1.5)

Proof. We know that different irreducible representations of sl2(C) are orthogonal w.r.t. to (·|·) and,
hence, the nondegeneracy of (·|·) implies the nondegeneracy of its restriction to each irreducible repre-
sentation. Note that

( γa | adkI−Lma) = −(I− | [γa, adk−1
I−

Lma ]) = 0, ∀ k ∈ {1, . . . , 2ma}.

So (γa |Lma) 6= 0 since otherwise we obtain a contradiction with the nondegeneracy of (·|·). Hence for
a = 1, . . . , n−1, we can normalize γa such that (γa |Lma) = 1. Particular consideration must be addressed
for γn, since we have already defined γn = E−θ. Taking in (4.1.3) a = n, b = 1 we obtain

(Lmn |Km1−h) = 1 ⇒ (Lmn |E−θ) = 1,

which finishes the proof.

From now on we fix a choice of γ1, . . . , γn satisfying (4.1.5). Then Lemmata 2.1.1, 4.1.2 imply

(γa |Lmb
) = δab . (4.1.6)

Note that for Dn with n even, eq. (4.1.6) is valid with a suitable choice of γn/2, γn/2+1.

According to Cor. 3.2.4 and Thm. 1.3.1, 〈〈τa,kτ1,0〉〉 are differential polynomials in u, homogeneous of
degree

ma + 1 + kh

w.r.t. to dege. In particular, we have

dege ra = ma + 1, a = 1, . . . , n.

We arrive at
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Lemma 4.1.3. There exists a Miura transformation u→ r of the form

ra = ca ua + Pa[u1, . . . , ua−1], a = 1, . . . , n (4.1.7)

for some non-zero constants ca, where Pa are differential polynomials in u1, . . . , ua−1 satisfying

dege Pa[u1, . . . , ua−1] = ma + 1. (4.1.8)

Remark 4.1.4. For Dn with n even, Lemma 4.1.3 is valid with a suitable choice of γn/2, γn/2+1.

Remark 4.1.5. The inverse Miura transformation has the form

ua = c−1
a ra + P̃a([r1, . . . , ra−1]), (4.1.9)

thanks to the triangular nature of the transformation (4.1.7).

Lemma 4.1.6. The constants ca in Lemma 4.1.3 have the following explicit expressions

ca = −ma

h
. (4.1.10)

Proof. Fix a ∈ {1, . . . , n}. We are to compute ra|u1,...,ua−1≡0. Assume u1 ≡ 0, . . . , ua−1 ≡ 0. Looking at
equation (2.1.5) for the pair (U,H) we obtain

U [−1] = . . . = U [−ma] = 0 = H [−1] = . . . = H [1−ma].

The first nontrivial equation arises from the component of principal degree −ma in (2.1.5):

H [−ma] +
[
U [−ma−1],Λ

]
= ua γ

a (no summation in a). (4.1.11)

Let us decompose the elements H [−ma], U [−ma−1] as follows

H [−ma] =
ga(x)

λ
Λh−ma

= ga(x)K−ma +
ga(x)

λ
Lh−ma

, a = 1, . . . , n,

U [−ma−1] =
1

λ
Yh−ma−1 +W−ma−1, a = 1, . . . , n− 1,

U [−mn−1] =
1

λ
Y0.

Substituting these expressions in (4.1.11) and comparing the coefficients of powers of λ we obtain

λ−1 : ga(x)Lh−ma
+ [Yh−ma−1, I+] = 0, (4.1.12)

λ0 : ga(x)K−ma + [Yh−ma−1, E−θ] + [W−ma−1, I+] = uaγ
a, (4.1.13)

λ1 : [W−ma−1, E−θ] = 0 (automatic!). (4.1.14)

Since Lh−ma
is the highest weight vector of the irreducible sl2(C)-module Ln+1−a, the solution to

eq. (4.1.12) is

Yh−ma−1 =
ga(x)

2(h −ma)
[I−, Lh−ma

] + f(x)Lh−ma−1

for some function f(x) which is a differential polynomial in u. So we have

[Yh−ma−1, E−θ] =
ga(x)

2(h−ma)
[I−, [Lh−ma

, E−θ]] + f(x) [Lh−ma−1, E−θ]

(4.1.2)
=

ga(x)

2(h−ma)
[I−, [I+,K−ma ]] + f(x) [Lh−ma−1, E−θ]. (4.1.15)
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Plugging (4.1.15) into (4.1.13) we find

ga(x)K−ma +
ga(x)

2(h−ma)
[I−, [I+,K−ma ]] + [W−ma−1, I+] + f(x) [Lh−ma−1, E−θ] = ua γ

a.

Employing the Jacobi identity we obtain

ga(x)
h

h−ma
K−ma +

[
I+ ,

ga(x)

2(h−ma)
[I−,K−ma ]−W−ma−1

]
+ f(x) [Lh−ma−1, E−θ] = uaγ

a.

Taking the inner products of both sides of the above equation with Lma we have
(
Lma

∣∣∣∣
h ga(x)

h−ma
K−ma +

[
I+ ,

ga(x) [I−,K−ma ]

2(h −ma)
−W−ma−1

]
+ f(x) [Lh−ma−1, E−θ]

)
= ua (Lma |γa) .

(4.1.16)
Noticing that Lma is a highest weight vector of the sl2(C)-module La, i.e.

[Lma , I+] = 0, [Lma , Lh−ma−1] = 0,

and using (4.1.3), (4.1.5) we obtain

ga(x) =
h−ma

h · (Lma |K−ma)
(Lma | γa)ua(x) =

1

h
ua(x).

Using Def. 4.1.1 and eq. (2.7.3) we have

−ra = res
λ=∞

(
eUΛmae

−U
∣∣∣E−θ

)
= res

λ=∞

(
Λma(λ)

∣∣∣E−θ − [U(λ), E−θ ] +
1

2
[U(λ), [U(λ), E−θ ]] + . . .

)
.

The only possible contribution to the residue comes from the terms of principal degree −h−ma and the
first one in the series is easily seen to be residueless

res
λ=∞

(Λma(λ)|E−θ) dλ = 0.

Note that we have already shown that U has the form

U = U [−ma−1] +
∑

j≤−ma−2

U [j].

Therefore only the very next term −(Λma(λ) | [U(λ), E−θ ]) can contribute to the residue. Thus

ra = res
λ=∞

(Λma(λ) | [U(λ), E−θ ] ) = res
λ=∞

(
Λma(λ) | [U [−ma−1](λ), E−θ]

)
. (4.1.17)

Now substituting

Λma(λ) = λKma−h + Lma , U [−ma−1] =
1

λ
Yh−ma−1 +W−ma−1 (4.1.18)

in (4.1.17) we obtain

− ra(x) =

(
Lma

∣∣∣∣[Yh−ma−1, E−θ]

)
=

(
Lma

∣∣∣∣
[

ga(x)

2(h−ma)
[I−, Lh−ma

] + f(x)Lh−ma−1, E−θ

])

=
ga(x)

2(h−ma)
(Lma | [[E−θ , Lh−ma

] , I−] )

=
ga(x)

2(h−ma)
(Lma | [[K−ma , I+] , I−] ) =

ga(x)

2(h−ma)
( [I+ , [I− , Lma ]] |K−ma )

= ga(x)
ma

h−ma
(Lma |K−ma ) =

ma

h
ua(x).

The lemma is proved. �
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Remark 4.1.7. For the An case, a similar lemma on relations between normal coordinates and Wronskian-
gauge coordinates was obtained e.g. in [9]; see Lemma 3.1 therein.

4.2 Partition function and topological ODE

The partition function of the DS hierarchy of g-type is a particular tau-function specified (up to a
constant factor) by the string equation (1.3.5). The compatibility between the string equation and the
DS hierarchy follows from the fact that the flow ∂s−1 defined by

∂s−1τ :=

n∑

a=1

∑

k≥0

tak+1

∂τ

∂tak
+

1

2

n∑

a,b=1

ηab t
a
0 t

b
0τ −

∂τ

∂t10

is an additional symmetry of the DS hierarchy.

The function u = u(T) = u(t) associated to Z(t) is called the topological solution to the lowest-
weight-gauge DS hierarchy, and r = r(t) = r(T) the topological solution in normal coordinates.

Lemma 4.2.1. The normal coordinates associated to the partition function Z satisfy

ra(t)|ta
k
=δa1 δk,0 t

1
0
= −δa,n

h− 1

h · κ t10, κ :=
√
−h−h

. (4.2.1)

Proof. By applying the ta0-derivative on both sides of eq. (1.3.5) we have

∂2 logZ

∂t10 ∂t
a
0

∣∣∣
ta
k
=δa1 δk,0 t

1
0

= δa,n t
1
0.

Hence from (1.3.6) we obtain

∂2 logZ

∂T 1
0 ∂T

a
0

∣∣∣
ta
k
=δa1 δk,0 t

1
0

= −δa,n
h− 1

h

√
−hh t10.

The lemma is proved.

Lemma 4.2.2. The topological solution to the lowest-weight-gauge DS hierarchy of g-type satisfies

ua(t)|ta
k
=δa1 δk,0 t

1
0
= δa,n

1

κ
t10. (4.2.2)

Proof. By applying Lemma 4.1.3, Lemma 4.1.6 and Lemma 4.2.1.

Topological ODE of g-type. Let u = u(T) = u(t) be the topological solution to the lowest-weight-
gauge DS hierarchy. Note that

t10 = −T 1
0 = x.

Define
Ma(λ, x) = λ−

ma
h Rcan

a |tb
k
=x δb1 δk,0

, a = 1, . . . , n;

then we have [
∂x + Λ +

x

κ
γn , Ma(λ, x)

]
= 0. (4.2.3)

Noting that γn = E−θ we have

∂x (Ma) +
[
I+ +

(
λ+

x

κ

)
E−θ , Ma

]
= 0, a = 1, . . . , n. (4.2.4)
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Lemma 4.2.3 (Key Lemma). The following formulae hold true

∂x (Ma) =
1

κ
∂λ (Ma), a = 1, . . . , n. (4.2.5)

Proof. Consider the transformation of independent variables (λ, x) → (s, x) defined by

s = λ+
x

κ
, x = x.

Then we have
1

κ

dMa

ds
+ [I+ + sE−θ , Ma] = 0, a = 1, . . . , n. (4.2.6)

Note that eq. (4.2.6) for Ma is the topological ODE of g-type [8]. At s = ∞, Ma is a regular solution
satisfying that

Ma = s−
ma
h Λma(s) + lower order terms w.r.t. degp . (4.2.7)

According to the uniqueness part of Thm. 1.2 in [7] we have

Ma(s, x) =Ma(s). (4.2.8)

The lemma is proved.

Proof. of Thm. 1.3.2. Note that Ma(λ) = Ma(λ;x = 0). Substituting eq. (4.2.5) into eq. (4.2.4), and
then taking x = 0. we obtain

[L,Ma(λ)] = 0, L := ∂λ + κΛ,

Ma(λ) = λ−
ma
h [Λma(λ) + lower order terms w.r.t. degp] .

The theorem is proved.

Proof. of Thm. 1.4.2. By Thm-ADE, Thm-BCFG, Thm. 1.3.1, and by Thm. 1.3.2 we obtain

(κ
√
−h)N

∑

g,k1,...,kN≥0

(−1)k1+...+kN

N∏

ℓ=1

(
miℓ

h

)
kℓ+1

(
κ λ̃ℓ

)miℓ
h

+kℓ+1
〈τi1k1 . . . τiNkN 〉gg

= − 1

2N h∨

∑

s∈SN

B
(
M̃is1

(λ̃s1), . . . , M̃isN
(λ̃sN )

)

∏N
j=1(λ̃sj − λ̃sj+1)

−δN2 ηi1i2
λ̃
−

mi1
h

1 λ̃
−

mi2
h

2 (mi1 λ̃1 +mi2 λ̃2)

(λ̃1 − λ̃2)2
, N ≥ 2. (4.2.9)

where M̃a = M̃a(λ̃), a = 1, . . . , n are the unique solutions to

dM̃

dλ̃
= κ [M̃ ,Λ(λ̃)], κ =

(√
−h

)−h
,

M̃a(λ̃) = λ̃−
ma
h

[
Λma(λ̃) + lower degree terms w.r.t. deg

]
.

Now consider the following conjugation of M̃a together with a rescaling in λ̃ :

Ma(λ) = σρ
∨
M̃a(λ̃)σ

−ρ∨ ,

λ = σ−h λ̃
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where σ := κ−
1

h+1 . It is straightforward to check that

dM

dλ
= [M,Λ(λ)],

Ma(λ) = λ−
ma
h [Λma(λ) + lower degree terms w.r.t. deg] .

Combining with (4.2.9), this proves the validity of the formula (1.4.9). To prove formula (1.4.8), one
further needs to observe the following identity obtained from the string equation (1.3.5)

〈τa,k+1τ1,0〉FJRW−g = 〈τak〉FJRW−g, a = 1, . . . , n, k ≥ 0.

The rest of proving (1.4.8) follows from the identity (2.7.3) and the above conjugation of M̃a with the
rescaling in λ̃.

Proof of Thm. 1.4.3. The theorem is a particular case of Thm. 1.4.2 with the particular realization of An

Lie algebra being consistent with normalization of flows suggested by Witten [52]. �

Example 4.2.4 (Rationality of Witten’s r-spin intersection numbers.). It is known that Witten’s r-spin
intersection numbers are non-negative rational numbers. Let us verify the rationality through (1.4.12)
and (1.4.13). Indeed, our definition of N -point r-spin correlators reads

F r−spin
a1,...,aN

(λ1, . . . , λN ) =
(
κ

1
r+1

√
−r

)N ∑

k1,...,kN≥0

N∏

ℓ=1

(−1)kℓ
(aℓ

r

)
kℓ+1

(κ
1

r+1 λℓ)
aℓ
r
+kℓ+1

〈τa1k1 . . . τaNkN 〉r−spin

=
∑

g≥0

(−r)g−1+N
∑

k1,...,kN≥0

N∏

ℓ=1

(−1)kℓ
(
aℓ
r

)
kℓ+1

λ
aℓ
r
+kℓ+1

ℓ

〈τa1k1 . . . τaNkN 〉r−spin
g

where we have used κ =
√−r−r

and the dimension-degree matching (1.4.5). Clearly, all the coefficients

are rational. On the other hand, the r.h.s. of (1.4.12) or of (1.4.13) belongs to Q[[λ
−1/r
1 , . . . , λ

−1/r
N ]] as

our regular solutions Ma(λ), a = 1, . . . , n to the topological ODEs of sln(C)-type (1.4.11) are of rational
coefficients. The rationality of r-spin correlators is verified.

A 3-spin

The matrices Mi(λ), i = 1, 2 for the Witten’s 3-spin invariants have the following explicit expressions.
Denote Mi(λ) = (Mi(λ)

a
b )a,b=1,...,3. Then we have
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(M1)
1
1 =

∑

g≥0

(−1)g36gΓ(8g + 4
3)

108g g! Γ(g + 1
3)

λ−
24g+4

3 − 1

72

∑

g≥0

(−1)g36gΓ(8g + 16
3 )

108g g! Γ(g + 4
3)

λ−
24g+16

3

(M1)
1
2 = −

∑

g≥0

(−1)g36gΓ(8g + 1
3)

108g g! Γ(g + 4
3)

λ−
24g+1

3 +
1

24

∑

g≥0

(−1)g36gΓ(8g + 13
3 )

108g g! Γ(g + 4
3)

λ−
24g+13

3

(M1)
1
3 = − 1

12

∑

g≥0

(−1)g36gΓ(8g + 10
3 )

1083g g! Γ(g + 4
3)

λ−
24g+10

3

(M1)
2
1 =

∑

g≥0

(−1)g36gΓ(8g + 7
3 )

108g g! Γ(g + 1
3)

λ−
24g+7

3 − 1

12

∑

g≥0

(−1)g36gΓ(8g + 10
3 )

108g g! Γ(g + 4
3 )

λ−
24g+7

3 − 1

72

∑

g≥0

(−1)g36gΓ(8g + 19
3 )

108g g! Γ(g + 4
3 )

λ−
24g+19

3

(M1)
2
2 =

1

36

∑

g≥0

(−1)g36gΓ(8g + 16
3 )

108g g! Γ(g + 4
3)

λ−
24g+16

3

(M1)
2
3 = −

∑

g≥0

(−1)g36gΓ(8g + 1
3)

108g g! Γ(g + 4
3)

λ−
24g+1

3 − 1

24

∑

g≥0

(−1)g36gΓ(8g + 13
3 )

108g g! Γ(g + 4
3)

λ−
24g+13

3

(M1)
3
1 = − 1

72

∑

g≥0

(−1)g36gΓ(8g + 22
3 )

108g g! Γ(g + 4
3)

λ−
24g+22

3 −
∑

g≥0

(−1)g36gΓ(8g + 1
3)

108g g! Γ(g + 1
3 )

λ−
24g−2

3

(M1)
3
2 =

∑

g≥0

(−1)g36gΓ(8g + 7
3 )

108g g! Γ(g + 1
3)

λ−
24g+7

3 − 1

12

∑

g≥0

(−1)g36gΓ(8g + 10
3 )

108g g! Γ(g + 4
3 )

λ−
24g+7

3 +
1

72

∑

g≥0

(−1)g36gΓ(8g + 19
3 )

108g g! Γ(g + 4
3 )

λ−
24g+19

3

(M1)
3
3 = −

∑

g≥0

(−1)g36gΓ(8g + 4
3)

108g g! Γ(g + 1
3)

λ−
24g+4

3 − 1

72

∑

g≥0

(−1)g36gΓ(8g + 16
3 )

108g g! Γ(g + 4
3)

λ−
24g+16

3

and

(M2)
1
1 = −1

6

∑

g≥0

(−1)g36gΓ(8g + 8
3)

108g g! Γ(g + 2
3)

λ−
24g+8

3 − 1

144

∑

g≥0

(−1)g36gΓ(8g + 20
3 )

108g g! Γ(g + 5
3)

λ−
24g+20

3

(M2)
1
2 =

1

144

∑

g≥0

(−1)g36gΓ(8g + 17
3 )

108g g! Γ(g + 5
3)

λ−
24g+17

3 +
1

2

∑

g≥0

(−1)g36gΓ(8g + 5
3)

108g g! Γ(g + 2
3)

λ−
24g+5

3

(M2)
1
3 = −

∑

g≥0

(−1)g36gΓ(8g + 2
3)

108g g! Γ(g + 2
3)

λ−
24g+2

3

(M2)
2
1 = − 1

144

∑

g≥0

(−1)g36gΓ(8g + 23
3 )

108g g! Γ(g + 5
3)

λ−
24g+23

3 −
∑

g≥0

(−1)g36gΓ(8g + 2
3)

108g g! Γ(g + 2
3)

λ−
24g−1

3 +
1

6

∑

g≥0

(−1)g36gΓ(8g + 11
3 )

108g g! Γ(g + 2
3)

λ−
24g+11

3

(M2)
2
2 =

1

3

∑

g≥0

(−1)g36gΓ(8g + 8
3)

108g g! Γ(g + 2
3)

λ−
24g+8

3

(M2)
2
3 =

1

144

∑

g≥0

(−1)g36gΓ(8g + 17
3 )

108g g! Γ(g + 5
3)

λ−
24g+17

3 − 1

2

∑

g≥0

(−1)g36gΓ(8g + 5
3)

108g g! Γ(g + 2
3)

λ−
24g+5

3

(M3)
3
1 = −1

6

∑

g≥0

(−1)g36gΓ(8g + 14
3 )

108g g! Γ(g + 2
3)

λ−
24g+14

3 +
1

144

∑

g≥0

(−1)g36gΓ(8g + 17
3 )

108g g! Γ(g + 5
3)

λ−
24g+14

3

(M3)
3
2 = − 1

144

∑

g≥0

(−1)g36gΓ(8g + 23
3 )

108g g! Γ(g + 5
3)

λ−
24g+23

3 −
∑

g≥0

(−1)g36gΓ(8g + 2
3)

108g g! Γ(g + 2
3)

λ−
24g−1

3 −1

6

∑

g≥0

(−1)g36gΓ(8g + 11
3 )

108g g! Γ(g + 2
3)

λ−
24g+11

3

(M3)
3
3 = −1

6

∑

g≥0

(−1)g36gΓ(8g + 8
3 )

108g g! Γ(g + 2
3)

λ−
24g+8

3 +
1

144

∑

g≥0

(−1)g36gΓ(8g + 20
3 )

108g g! Γ(g + 5
3 )

λ−
24g+20

3 .

B Remark on tau-functions

Let us recall a consistent gauge slice introduced by Hollowood–Miramontes (HM) [35]. It is proven in
[35, 36] that for any smooth function q(x) ∈ b, there exists

V (x) =
∑

k≥0

Vk(x)

λk
∈ L(g)≤0, Vk(x) ∈ g
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such that
e−adV L = ∂x + Λ, L = ∂x + Λ+ q. (B.0.1)

Note that the functions Vk(x) in general are not differential polynomials in q [35, 53]. The HM gauge is
characterized by

V0 = 0, i.e. V ∈ L(g)<0 =
g

λ
⊕O(λ−2). (B.0.2)

It is straightforward to derive from eq. (B.0.1) an infinite sequence of equations

q(x) = [V1, E−θ],

∂x(V1) + [V1, I+] +
1

2
[V1, [V1, E−θ]] = −[V2, E−θ],

etc. Existence of the HM gauge has been proved by Hollowood and Miramontes in [35]. For the DS
hierarchy associated to the HM gauge, T 1

0 can be identified with −x [35].

So now we assume V0 = 0 and denote Φ = eV . Let

LHM = ∂x + Λ+ qHM

and let RHM
a be the basic resolvents of LHM . Define

w = exp(V ) exp(−ξ), with ξ := −
n∑

a=1

∑

k≥0

T a
k Λma+kh.

Recall that w is called the wave function associated to the HM gauge,

Lemma B.0.1 ([35, 36]). Denote Φ = eV . The DS hierarchy of the HM gauge can be viewed as the
compatibility between the linear flows

wTa
k
=

(
λk RHM

a

)
+
w. (B.0.3)

Definition B.0.2 (Cafasso–Wu, [13]). For an arbitrary solution qHM to the DS hierarchy associated to
the HM gauge, the tau-function τCW of this solution is defined by

∂ log τCW

∂T a
k

= − res
λ=∞

λk
(
Φ−1(λ;T)Φλ(λ;T)

∣∣∣∣Λma(λ)

)
dλ, a = 1, . . . , n, k ≥ 0. (B.0.4)

We leave as an exercise to the readers to prove the following

Proposition B.0.3. Up to a factor of the form (1.2.6), τ coincides with τCW .

Remark B.0.4. Eq. (2.3.4) uniquely determines τCW of qHM only up to a constant; however, the freedom
(1.2.6) for τCW of qHM also exists, because of the non-locality of V (x).
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Québec, H3G 1M8, Canada

marco.bertola@{sissa.it, concordia.ca}

36



Boris Dubrovin

SISSA, via Bonomea 265, Trieste 34136, Italy

dubrovin@sissa.it

Di Yang

Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn 53111, Germany

diyang@mpim-bonn.mpq.de

37


	1 Introduction
	1.1 Simple Lie algebra and Drinfeld–Sokolov hierarchy
	1.2 From resolvents to tau-function
	1.3 Main results
	1.4 Applications to the FJRW theory

	2 Tau-function of Drinfeld–Sokolov hierarchy
	2.1 Fundamental lemma
	2.2 g-valued resolvents
	2.3 Two-point correlation functions
	2.4 Tau-function: Proof of Lemmata 1.2.2, 1.2.3
	2.5 Gauge invariance
	2.6 Gauge fixing and Drinfeld–Sokolov hierarchy
	2.7 Proof of Theorem 1.3.1
	2.8 An algorithm for writing the DS-hierarchy

	3 Computational aspect of resolvents
	3.1 The lowest weight gauge
	3.2 Extended principal gradation
	3.3 Essential series of the Drinfeld–Sokolov hierarchy

	4 Proof of Theorem 1.3.2
	4.1 Relation between normal coordinates and lowest weight coordinates
	4.2 Partition function and topological ODE

	A 3-spin
	B Remark on tau-functions

