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CLASSICAL DOUBLE, R-OPERATORS, AND NEGATIVE FLOWS OF

INTEGRABLE HIERARCHIES

B. A. Dubrovin∗† and T. V. Skrypnyk†‡

Using the classical double G of a Lie algebra g equipped with the classical R-operator, we define two sets of

functions commuting with respect to the initial Lie–Poisson bracket on g
∗ and its extensions. We consider

examples of Lie algebras g with the “Adler–Kostant–Symes” R-operators and the two corresponding sets

of mutually commuting functions in detail. Using the constructed commutative Hamiltonian flows on

different extensions of g, we obtain zero-curvature equations with g-valued U–V pairs. The so-called

negative flows of soliton hierarchies are among such equations. We illustrate the proposed approach with

examples of two-dimensional Abelian and non-Abelian Toda field equations.
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1. Introduction

The theory of hierarchies of integrable partial differential equations is based on the possibility to
represent each of the equations of the hierarchy in the so-called zero-curvature form Ut − Vx + [U, V ] = 0
with the corresponding U–V -pair taking values in some infinite-dimensional Lie algebra g (e.g., in the algebra
of matrix-valued Laurent polynomials of a single complex parameter λ). There are several approaches to
constructing zero-curvature equations starting from Lie algebras. The first of them is based on interpreting
the zero-curvature equation as one Lax (Euler–Arnold) equation written on the centrally extended algebra
of g-valued functions of x [1]. In this approach, ∂x−U plays the Lax operator role, and the second operator
in the Lax pair is V .

In an alternative approach of [2], [3], the zero-curvature equations are interpreted as the compatibil-
ity conditions for two auxiliary Lax (Euler–Arnold) equations. The commutativity of these Lax flows is
guaranteed by the Lie–Poisson commutativity of the corresponding Hamiltonians. In this approach, the
elements U and V in the zero-curvature equations coincide with algebra-valued gradients of commuting
Hamiltonians obtained using the Adler–Kostant–Symes (AKS) scheme. In more detail, these Hamiltonians
coincide with the restrictions of Casimir functions of g to the spaces dual to the subalgebras g±, where
g = g+ + g−. Such an approach allows constructing two types of integrable equations associated with the
Lie algebra g, namely, integrable equations with the elements U and V belonging to the same Lie subal-
gebras g+ or g−. But the approach in [3] does not cover all known integrable equations. In particular,
it does not work for integrable equations (sometimes called negative flows of integrable hierarchies1) with
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U–V -pairs where the U -operator belongs to g+ and the V -operator belongs to g−. In [7], such equations
were included in the general scheme by showing that the restrictions of the Casimir functions of g to the
spaces dual to the subalgebras g+ and g− commute not only inside each group but also between the groups.
This allows constructing negative flows of integrable hierarchies as a consequence of the commutativity of
Lax flows generated by “positive” and “negative” Hamiltonians. In [8], [9], it was proposed to generalize
the above scheme to the case of Lie algebras g that have a general classical R-operator not always related
to the decomposition g = g+ + g− (i.e., not always associated with the AKS scheme). It was shown that
the restrictions of the Casimir functions of g to the subalgebras gR± , where gR± = ImR±, commute not
only inside each group but also between the groups. This observation allows obtaining two sets of mutually
commuting functions on g∗ and three types of zero-curvature equations, in particular, those corresponding
to negative flows of soliton hierarchies [9]. We note that the corresponding commutativity does not follow
from the standard R-matrix scheme [10] on g.

Nevertheless, it turns out that the scheme proposed in [8], [9] is still not the most general approach
for generating commutative flows on g∗ and hence not the most general approach to the construction of
soliton hierarchies with g-valued U–V pairs. In particular, it does not include the infinite-component Toda
hierarchy and does not produce the corresponding auxiliary Lax equations [11].

Here, we propose a more general approach for constructing commuting flows and zero-curvature equa-
tions with g-valued U–V pairs. For this, we consider commuting flows not on g∗ but on G∗, where G is the
classical double of g. We use the fact that a classical R-operator on g induces a natural R-operator R on
G = g⊕ g [12]. This R-operator R on G proves to be always of the AKS type, regardless of the form of the
original operator R on g. It hence follows that GR = GR+ � GR− , where GR is a linear space G equipped
with the so-called R-bracket [10]. Moreover, it turns out that GR+ � g and GR− � gR, where the algebra
gR is a linear space g equipped with the R-bracket [12] and GR± ≡ ImR±.

Therefore, our first observation is that using the standard R-matrix scheme [10] applied to the Lie
algebra G equipped with the R-operator R, we can obtain a set of commuting flows on extensions of g by
some Lie algebra a, where a = gR/JR and JR is an ideal in gR. In the particular case where JR = gR,
we in a simple way rederive the result in [8] about the commutativity of the restrictions of the Casimir
functions of g to the subalgebras gR± . We thus show that the results in [8] fit into the general R-matrix
scheme. In the case JR = [gR, gR], we obtain an important generalization of the abovementioned result,
namely, we prove commutativity of the restrictions of the Casimir functions of g to the subalgebras gR±

shifted using the respective constant elements c∓ ∈ [gR∓ , gR∓ ]. We note that the obtained functions in this
case commute with respect to the Lie–Poisson bracket on g “shifted” by the constant element c+ − c−.

A consideration of commutative families on more complicated quotients (with a non-Abelian a) might
also be useful in the theory of soliton equations. Indeed, our second simple observation suggests that
whatever quotient of GR is considered, from the Lax equations L̇ = [L, M ] corresponding to the commuting
Hamiltonians (the Casimir functions restricted to this quotient), M -operators can be chosen to take values in
g. It hence follows that zero-curvature equations with g-valued U–V -pairs can be obtained as a consistency
condition for the Lax equations on g � a.

We illustrate the above method with the example of Abelian and non-Abelian Toda field equations
(see [13]–[15] and the references therein) that are naturally obtained in the framework of the above scheme
if g is a loop algebra equipped with various gradings. The corresponding quotient algebra in this case is
the simplest non-Abelian extension of g obtained in the framework of the above construction. In the case
where g = gl((∞)) equipped with the natural decomposition into a sum of two subalgebras coinciding with
the upper triangular and strictly lower triangular matrices, we recover the results in [16] for the Lie–Poisson
structure and Lie-theoretical interpretation of the infinite-component Toda field equations, its U–V pair,
auxiliary Lax pairs, etc. [11].
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In conclusion, for completeness, we also consider the prolongation of the second- and third-order Poisson
structures existing in the cases of certain R-operators on g to the classical double. It turns out that the
quadratic and cubic structures are always prolonged to G if they exist on g. Nevertheless, their use in the
soliton theory is restricted because the quotient spaces described above, the Poisson spaces of the linear
R-bracket on G, are generally not Poisson subspaces of the quadratic and cubic brackets.

The structure of this paper is as follows. In Sec. 2, we introduce the main definitions and notation. In
Sec. 3, we use the classical double to obtain commutative families on g∗ and its extensions. In Sec. 4, we
use the obtained results to construct zero-curvature equations with g-valued U–V pairs and illustrate this
approach with examples of Abelian and non-Abelian Toda field equations. Finally, in Sec. 5, we consider
the prolongation of the second- and third-order Poisson structures to the double.

2. Definitions and notation

2.1. Lie algebras and classical R-operators. Let g be a Lie algebra (finite- or infinite-dimensional)
with the Lie bracket [ · , · ], and let R : g → g be a linear operator. The operator R is called a classical
R-operator if it satisfies the modified Yang–Baxter equation [10]

R
(
[R(X), Y ] + [X, R(Y )]

)
− [R(X), R(Y )] = [X, Y ]

for all X, Y ∈ g. Using a classical R-operator, we can define another bracket on g by the formula [10]

[X, Y ]R = [R(X), Y ] + [X, R(Y )], X, Y ∈ g. (1)

We let gR denote the linear space g equipped with the Lie bracket [ · , · ]R. We also use the notation
R± ≡ R ± Id hereafter.

It is known [10] that the images gR± = Im R± of the maps R± define Lie subalgebras gR± ⊂ g. As is
easily seen from the definition, gR+ + gR− = g, but this sum is generally not a direct sum of vector spaces,
i.e., gR+ ∩ gR− �= 0 in the general case.

Remark 1. The situation is much simpler in the case of a Lie algebra g with the so-called AKS
decomposition into a direct sum of two Lie subalgebras: g = g+ + g−. Indeed, if P± are the projection
operators on the subalgebras g±, then R = P+−P− is a classical R-matrix [10]. It is easy to see that in this
case, R± = ±2P± are proportional to the projection operators R± on the subalgebras g±. It also follows
that gR± ≡ g± and gR+ ∩ gR− = 0. It is also known that gR = g+ � g− in this case [10].

2.2. Classical double. We now consider the “double” of the Lie algebra g, i.e., the direct sum
algebra G = g ⊕ g. We identify the elements of X ∈ G with vector columns X =

(
X1
X2

)
, where Xi ∈ g. The

bracket of two elements X ,Y ∈ G is given by the standard formula

[X ,Y] =

(
[X1, Y1]

[X2, Y2]

)

.

The following construction was developed in [12].

Theorem 2.1. 1. Given an arbitrary classical R-operator on g, the operator defined on the double by

the formula

R =

(
R −R−

R+ −R

)

,
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is a classical R-operator on G.

2. The corresponding R-bracket [ · , · ]R on G has the form

[X ,Y]R =

(
[X1, Y1]R −

(
[X1, R−(Y2)] + [R−(X2), Y1]

)

−[X2, Y2]R +
(
[X2, R+(Y1)] + [R+(X1), Y2]

)

)

.

3. The R-matrix R is of the AKS type.

For the reader’s convenience, we sketch the proof of statement 3 in the theorem. We consider the
operators

R+ = R + Id =

(
R+ −R−

R+ −R−

)

, R− = R− Id =

(
R− −R−

R+ −R+

)

.

We let GR± = Im R± denote the corresponding Lie subalgebras. It is easy to see that

R+(X ) =

(
R+(X1) − R−(X2)

R+(X1) − R−(X2)

)

, R−(X ) =

(
R−(X1 − X2)

R+(X1 − X2)

)

.

It hence follows that GR+ ≡ Gd � g and GR− � gR, where

Gd =

{(
X

X

)∣
∣
∣∣X ∈ g

}

, GR− =

{(
R−(X)

R+(X)

)∣
∣
∣∣X ∈ g

}

.

It is easy to see that KerR+ = ImR− and KerR− = ImR+. Hence, the decomposition G = GR+ + GR−

is a decomposition into a direct sum of vector spaces, and the operator R is of the AKS type, i.e., R =
PGR+

−PGR−
. This also follows from the easily proved identities R2

± = 2R± and R+R− = 0, which imply
that R± are proportional to projection operators and their images do not intersect. Therefore, we have GR =
GR+ � GR− . For the R-bracket on the double, this identity means that [X ,Y]R = 2([X+,Y+] − [X−,Y−]),
where X± ≡ R±(X ) or, more explicitly,

[X ,Y]R =

([(
R+(X1) − R−(X2)

)
,
(
R+(Y1) − R−(Y2)

)]

[(
R+(X1) − R−(X2)

)
,
(
R+(Y1) − R−(Y2)

)]

)

−

−
(

[R−(X1 − X2), R−(Y1 − Y2)]

[R+(X1 − X2), R+(Y1 − Y2)]

)

.

Remark 2. In the case of the AKS R-operators, all the formulas in this subsection are substantially
simplified. In particular, the action of the R-operator R on the element X is given by the formula

R(X ) =

(
X+

1 − X−
1 + 2X−

2

2X+
1 − X+

2 + X−
2

)

,

and R-bracket (1) is written as

[X ,Y]R =

(
[X+

1 , Y +
1 ] − [X−

1 , Y −
1 ] − ([X1, Y

−
2 ] + [X−

2 , Y1])

−[X+
2 , Y +

2 ] + [X−
2 , Y −

2 ] + ([X2, Y
+
1 ] + [X+

1 , Y2])

)

,

where Xi = X+
i + X−

i , Yi = Y +
i + Y −

i , X±
i = P±(X), and Y ±

i = P±(Y ), i = 1, 2.
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2.3. Dual spaces, Lie–Poisson brackets, and invariant functions. Let g∗ be the space dual to
the Lie algebra g and 〈 · , · 〉 : g∗ × g → C be the natural pairing between g∗ and g. Let {Xi | i ∈ I} be
a basis in the Lie algebra g, where the set I is finite in the case of a finite-dimensional Lie algebra and
countable in the infinite-dimensional case. Let {X∗

i | i ∈ I}, 〈X∗
j , Xi〉 = δij , be a basis in the dual space g∗.

Let L =
∑

i∈I LiX
∗
i ∈ g∗ be a generic element of g∗ and Li be the coordinate functions on g∗. We consider

the standard Lie–Poisson bracket between F1, F2 ∈ C∞(g∗) on g∗:

{F1(L), F2(L)} = 〈L, [∇F1,∇F2]〉, ∇Fk(L) =
∑

i∈I

∂Fk(L)
∂Li

Xi,

where ∇Fk(L) is a so-called algebra-valued gradient of Fk, k = 1, 2. Moreover, the R-operator provides the
so-called R-bracket on g∗ [10]:

{F1(L), F2(L)}R = 〈L, [∇F1,∇F2]R〉. (2)

We consider the space G∗ dual to the double. We define its elements L ∈ g∗⊕g∗ as the vector columns
L =

(
L1
L2

)
, where L1, L2 ∈ g∗, and the pairing between L ∈ G∗ and X ∈ G is given by

〈L,X〉 = 〈L1, X1〉 + 〈L2, X2〉.

It also defines the standard Lie–Poisson bracket on G∗,

{F1(L), F2(L)} = 〈L, [∇̃F1, ∇̃F2]〉, (3)

and the R-bracket on G∗ corresponding to the R-operator R,

{F1(L), F2(L)}R = 〈L, [∇̃F1, ∇̃F2]R〉, ∇̃F =

(
∇1F

∇2F

)

, (4)

where ∇1,2F is the algebra-valued gradient of F with respect to the variable L1,2.
Let R∗ denote the operator adjoint to R,

R∗ : g
∗ → g

∗, 〈R∗(L), X〉 ≡ 〈L, R(X)〉.

It is easy to see that the operators adjoint to R± have the form

R∗
+(L) =

(
R∗

+(L1) + R∗
+(L2)

−
(
R∗

−(L1) + R∗
−(L2)

)

)

, R∗
−(L) =

(
R∗

−(L1) + R∗
+(L2)

−
(
R∗

−(L1) + R∗
+(L2)

)

)

. (5)

We use these explicit formulas to construct Poisson-commuting functions.
In what follows, we also need the explicit form of the Casimir functions on G. Let I(L) ∈ IG(g∗) be

a Casimir function of g, i.e., {I(L), F (L)} = 0 for all F (L) ∈ S(g∗). Let {Ik(L)}k∈K denote the set of
generators of the ring of Casimir functions on g∗. Here, the set of labels K is infinite if the Lie algebra is
infinite-dimensional.

Lemma 2.1. The ring of Casimir functions of G is generated by the functions

Ik,1(L) ≡ Ik(L1), Ik,2(L) ≡ Ik(L2), k ∈ K. (6)

The proof is straightforward.

We briefly comment on quadratic Casimir functions and commuting functions obtained using them.
Let ( · , · ) be an invariant form on g. Using this form, we can identify g and g∗. We then have the obvious
second-order Casimir functions (or generating functions of formal Casimir functions in the case of loop
algebras)

I2,1 =
1
2
(L1, L1), I2,2 =

1
2
(L2, L2).
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3. Classical double and commuting flows

To pass to the main construction considered in this paper, we recall the following theorem, which can
be obtained from the general theory of R-brackets [10] applied to the classical double.

Theorem 3.1. 1. The Casimir functions Ik,ε(L), ε = 1, 2, of the Lie–Poisson brackets of G commute

with respect to the brackets { · , · }R on G∗.

2. The Hamiltonian flows

d

dtεk
F (L) = {F (L), Ik,ε}R, k ∈ K, ε = 1, 2,

generated by the functions Ik,ε can be written in the Euler–Arnold form

dL
dtεk

= ad∗
R+ �∇Ik,ε

L. (7)

We briefly consider the commuting flows on g and its extensions that can be obtained using the
theory of the classical double. For this, we recall that the projection on a quotient algebra is a canonical
homomorphism, which allows obtaining the following corollary.

Corollary 3.1. Let J be an ideal in GR. Let π : G → G/J denote the projection on the quotient

algebra. Let π∗ be the dual map. Then

1. the functions Ik,ε(π∗(L)) commute with respect to the brackets { · , · }R on (G/J)∗, and

2. the Hamiltonian flows corresponding to Ik,ε(π∗(L)) can be written in the Euler–Arnold form

π∗
(

dL
dtεk

)
= ad∗

Mk,ε
π∗(L), (8)

where

Mk,ε = R+

(
π∇̃Ik,ε(π∗(L))

)
, k ∈ K, ε = 1, 2.

We assume that there exist nontrivial ideals JR± ⊂ gR± such that the quotients gR±/JR± are finite-
dimensional. In such a case, applying Corollary 3.1 and taking the quotient by the ideal J = JR+ + JR− ,
we obtain a Poisson-commuting set of functions on the space dual to finite-dimensional extensions of g.
Indeed, we have GR/J = (GR+ � GR−)/J � g � a, where a � GR−/J .

Remark 3. For the quotient algebras described above, the M -operators in Lax equations (8) have the
forms

Mk,1 =

(
R+

(
∇Ik,1(π∗(L))

)

R+

(
∇Ik,1(π∗(L))

)

)

, Mk,2 = −
(

R−
(
∇Ik,2(π∗(L))

)

R−
(
∇Ik,2(π∗(L))

)

)

,

i.e., they belong to the diagonal subalgebra and can be identified with elements of g. We use this fact when
constructing zero-curvature equations with values in g. We note that the corresponding Lax equations (8),
dynamical variables, Poisson brackets, etc., belong to the double of g. We also note that the operator π is
absent from the above formulas for the M -operators because the ideal J in this case was chosen such that
R+π = R+.
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Example 1. We consider the case of AKS R-operators R = P+ −P−. We write the quotient algebras
GR/J and the corresponding dual spaces in explicit form. In this case, we have g = g+ +g− and gR± = g±,
and JR± ≡ J± are ideals in g±. Elements of the corresponding quotient GR/J , where and J = J+ + J−,
are given by

X =

(
X+

1 + X−′

1

X−
2 + X+′

2

)

, X−′

1 ∈ g−/J−, X+′

2 ∈ g+/J+.

The corresponding dual space consists of the elements

L =

(
L+

1 + L−′

1

L−
2 + L+′

2

)

,

where L−′

1 ∈ (g−/J−)∗, L+
1 ∈ (g+)∗, L−

2 ∈ (g−)∗, and L+′

2 ∈ (g+/J+)∗.

In the next subsection, we consider the cases of a � GR−/J = 0 and of an Abelian a that lead to
commutative algebras of integrals on g∗ itself.

3.1. Dual R-matrix commutativity. We consider a consequence of general Theorem 3.1 that we
need for constructing Poisson-commuting sets on g∗ with respect to the standard Lie–Poisson brackets
{ · , · }. The following theorem holds.

Theorem 3.2. 1. The functions Ik(R∗
±(L)) on g∗ generate an Abelian subalgebra in C∞(g∗) with

respect to the Lie–Poisson brackets { · , · } on g∗:

{
Ik

(
R∗

+(L)
)
, Il

(
R∗

+(L)
)}

= 0,

{
Ik

(
R∗

−(L)
)
, Il

(
R∗

−(L)
)}

= 0,

{
Ik

(
R∗

+(L)
)
, Il

(
R∗

−(L)
)}

= 0.

2. The Hamiltonian equations corresponding to the Hamiltonians I
R±
k (L) can be written in the Euler–

Arnold form
dL

dt±k
= ad∗

M±
k

L, M±
k = ∇Ik(R∗

±(L)). (9)

Proof. We project the functions Ik,ε(L), ε = 1, 2, on the space dual to the quotient algebra GR/GR− ,
which coincides with the space dual to the subalgebra GR+ . Using formulas (5) and (6), we obtain the
expressions for the projected Casimir functions:

Ik,1

(
P ∗
GR+

(L)
)

= Ik

(
R∗

+(L1 + L2)
)
, Ik,2

(
P ∗
GR+

(L)
)

= Ik

(
R∗

−(L1 + L2)
)
,

where we take into account that P ∗
GR+

= R∗
+/2 and assume that the Ik are homogeneous functions of L.

We note that because R+ is a projection operator and the corresponding R-operator R is of the AKS
type, it is easy to derive the equality

{
F

(
R∗

+(L)
)
, G

(
R∗

+(L)
)}

=
{
F

(
R∗

+(L)
)
, G

(
R∗

+(L)
)}

R.

Using the fact that the projection on a quotient algebra is a canonical homomorphism, we obtain

{
F

(
R∗

±(L)
)
, G

(
R∗

±(L)
)}

R =
(
{F (L), G(L)}R

)∣∣
L=R∗

±(L)
.
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Hence, setting F = Ik,ε and G = Il,ε′ , we obtain

{
Ik,ε

(
R∗

+(L)
)
, Il,ε′

(
R∗

+(L)
)}

=
(
{Ik,ε(L), Il,ε′(L)}R

)∣∣
L=R∗

+(L)
, ε, ε′ = 1, 2.

On the other hand, {Ik,ε(L), Il,ε′ (L)}R = 0 by Theorem 3.1.
Using the explicit form of the functions Ik,ε(L), we finally obtain

{
Ik

(
R∗

+(L1 + L2)
)
, Il

(
R∗

+(L1 + L2)
)}

= 0,

{
Ik

(
R∗

−(L1 + L2)
)
, Il

(
R∗

−(L1 + L2)
)}

= 0,

{
Ik

(
R∗

+(L1 + L2)
)
, Il

(
R∗

−(L1 + L2)
)}

= 0.

Now, to complete the proof of statement 1 in the theorem, it remains to note that elements of the form
L ≡ L1 + L2 belong to the subspace (Gd)∗ and the corresponding coordinate functions constitute a Lie
algebra isomorphic to (g, { · , · }) with respect to the initial Lie–Poisson brackets on G.

Statement 2 in the theorem can be proved using statement 2 in Theorem 3.1. It can also be proved by
noting that any Hamiltonian equation on g∗ is rewritten in the Euler–Arnold form. The theorem is proved.

Remark 4. In [8], the above theorem was proved directly without any appeal to the classical double.
Nevertheless, the proof using the classical double is simpler and makes Theorem 3.2 understandable from
the standpoint of the general R-matrix scheme.

Example 2. We now consider the case R = P+ − P− in more detail and present the explicit form of
the Lie algebra GR+ realized as a quotient algebra. We have

KerR+ = ImR− =

(
X−

1

X+
2

)

.

The corresponding quotient algebra GR/ ImR− can be identified with the linear space consisting of the

elements X =
(

X+
1

X−
2

)
. This space is isomorphic to GR+ , and the isomorphism is given by the map R+:

(
X+

1

X−
2

)

→
(

X+
1 − X−

2

X+
1 − X−

2

)

.

The corresponding dual space consists of the elements L =
(

L+
1

L−
2

)
. We note that such elements can be

identified with the elements L = L+
1 + L−

2 of the linear space g∗. Moreover, the corresponding Lie–Poisson
brackets of these elements on GR/ ImR− coincide with the standard Lie–Poisson bracket of the element
L = L+ + L− on g∗.

The Casimir functions Ik,1(L) and Ik,2(L) restricted to the dual space of the quotient algebra coincide
with the respective functions Ik(L+

1 ) and Ik(L−
2 ). After the identification described above, they pass into

the functions Ik(L+) and Ik(L−) on g∗.

3.2. Shift of the argument and commutative algebras. We consider commutative subalgebras
of functions on g∗ generalizing the commutative algebras constructed in the preceding subsection. These
subalgebras depend on additional parameters obtained using the theory of the classical double. The method
that allows introducing additional parameters into commutative subalgebras is a generalization of the so-
called shift of the argument. The following theorem holds.
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Theorem 3.3. Let c± be constant elements of g∗R±
such that

c±⊥([gR+ , gR+ ] ∪ [gR− , gR− ]),

and let Ik(L) and Il(L) be Casimir functions of g. Then the following statements hold:

1. The equalities

{Ik(R∗
+(L) + c−), Il(R∗

+(L) + c−)}c = 0,

{Ik(R∗
−(L) + c+), Il(R∗

−(L) + c+)}c = 0,

{Ik(R∗
+(L) + c−), Il(R∗

−(L) + c+)}c = 0

hold, where { · , · }c is the shifted bracket

{F1(L), F2(L)}c = 〈L, [∇F1,∇F2]〉 + 〈c− − c+, [∇F1,∇F2]〉. (10)

2. The corresponding Hamiltonian equations can be written as Euler–Arnold equations

dL

dt±k
= ad∗

∇Ik(R∗
±(L)+c∓)(L + c− − c+). (11)

Proof. To prove statement 1 in this theorem, we take into account that GR = GR+ � GR− . Hence,
[GR,GR] = [GR+ ,GR+ ] � [GR− ,GR− ]. We explicitly describe the ideal [GR− ,GR− ]. We have

GR− =
{(

X1

X2

)∣
∣
∣∣ X1 ∈ gR− , X2 ∈ gR+

}
.

It hence follows that the element C = (c1, c2) ∈ G∗ is orthogonal to [GR− ,GR− ] if c1⊥[gR− , gR− ] and
c2⊥[gR+ , gR+ ]. On the other hand, it follows from the explicit form of the elements of G∗

R−
that c2 =

−c1 = −c and that C = (c,−c) is an element of the space dual to the Lie subalgebra GR− . This element is
orthogonal to [GR− ,GR− ] if c⊥([gR+ , gR+ ] ∪ [gR− , gR− ]). Therefore, taking the quotient of the Lie algebra
GR by the ideal [GR− ,GR− ], taking into account that the projection on the quotient algebra is a canonical
homomorphism, and applying Theorem 3.1 to the Casimir functions Ik,ε and Il,ε′ , we obtain

{Ik(R∗
+(L1 + L2) + c), Il(R∗

+(L1 + L2) + c)} = 0,

{Ik(R∗
−(L1 + L2) + c), Il(R∗

−(L1 + L2) + c)} = 0,

{Ik(R∗
+(L1 + L2) + c), Il(R∗

−(L1 + L2) + c)} = 0.

As a result, we obtain a commutative subalgebra with a shift element c symmetrically entering both the
“positive” and the “negative” integrals, i.e., c has components belonging both to g∗R−

and g∗R+
. We note

that the shift of the parts of the Lax matrices belonging to g∗R±
by a constant element of the same space

g∗R±
can be eliminated by a change of variables. But this leads to changing the Poisson brackets. Making

such a shift and setting c± = ±R∗
±(c) and L = L1 + L2, we obtain statement 1 in the theorem.

Statement 2 is proved analogously to statement 2 in the preceding theorem. The theorem is proved.
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Example 3. As in the preceding examples, we consider the case of AKS R-operators R = P+ − P−.
We describe the quotient algebras GR/[GR− ,GR− ] and the corresponding dual spaces explicitly. We have
[GR− ,GR− ] = [g+, g+] � [g−, g−]. The elements of the corresponding quotients GR/[GR− ,GR− ] are written
as

X =

(
X+

1 + X−′

1

X−
2 + X+′

2

)

,

where X+
1 ∈ g+, X−′

1 ∈ g−/[g−, g−], X−
2 ∈ g−, and X+′

2 ∈ g+/[g+, g+]. The corresponding dual space
consists of the elements

(
L+

1 + L−′

1

L−
2 + L+′

2

)

, L−′

1 ∈ (g−/[g−, g−])∗, L+′

2 ∈ (g+/[g+, g+])∗.

The elements L−′

1 and L+′

2 are constant with respect to the Poisson brackets on GR/[GR− ,GR− ], and we
can set c− = L−′

1 and c+ = L+′

2 .
The Casimir functions restricted to the dual space of the quotient algebra are the functions Ik(L+

1 +L−′

1 )
and Il(L−

2 + L+′

2 ). Using the same arguments as in Example 2 and the making the same identification,
we can write these functions as Ik(L+ + c−) and Il(L− + c+), where L is a generic element of g∗. By
Theorem 3.3 proved above, they commute with respect to the brackets { · , · }c on g∗:

{Ik(L+ + c−), Il(L+ + c−)}c = 0,

{Ik(L− + c+), Il(L− + c+)}c = 0,

{Ik(L+ + c−), Il(L− + c+)}c = 0,

where the shifted bracket { · , · }c is defined using formula (10).

4. Integrable hierarchies and negative flows

4.1. Doubles, R-operators, and negative flows of soliton hierarchies. Using the results in the
preceding section, we can construct a hierarchy of integrable equations in partial derivatives admitting zero-
curvature representations. We use one of the Lie algebraic approaches to the theory of soliton equations [3].
It is based on the interpretation of zero-curvature conditions as a consistency condition for two auxiliary
commuting Lax flows on the space dual to an infinite-dimensional Lie algebra.

For simplicity, we formulate the result for the particular case of the graded infinite-dimensional Lie
algebra g of s-valued Laurent polynomials of one complex parameter λ or their subalgebras. Here, s is a
simple Lie algebra in some matrix realization. We note that the dual space g∗ can be identified with the
space of formal s-valued power series.

The following theorem holds.

Theorem 4.1. Let g be the Lie algebra defined above. Let G denote its double and G∗ denote the

corresponding dual space. Let J be an ideal in GR− of finite codimension. Let π : G → G/J denote the

natural projection on the quotient algebra and π∗ : (G/J)∗ → G∗ denote the dual map. If the Hamiltonians

Ik,ε(π∗(L)) on G∗ are finite polynomials, then the g-valued functions Mk,+ = R+∇Ik,1

(
π∗(L)

)
and Ml,− =

R−∇Il,2

(
π∗(L)

)
satisfy the zero-curvature equations with values in g

∂Mk,±

∂t±l
− ∂Ml,±

∂t±k
+ [Mk,±, Ml,±] = 0, (12)

∂Mk,±

∂t∓l
− ∂Ml,∓

∂t±k
+ [Mk,±, Ml,∓] = 0. (13)
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Proof. We note that using the commutativity of two Hamiltonian flows generated by the Hamiltonians
Ik,ε(π∗(L)) and Il,ε′(π∗(L)) (here ε, ε′ ∈ {+,−}) and two Euler–Arnold equations (8), we can easily derive
the equation

ad∗
[[Mk,ε,Ml,ε′ ]]

π∗(L) = 0, (14)

where
[[Mk,ε, Ml,ε′ ]] ≡

∂Mk,ε

∂tε
′

l

− ∂Ml,ε′

∂tεk
+ [Mk,ε, Ml,ε′].

In the considered case, the coadjoint representation of g (and hence of G) can be identified with the adjoint
representation. Therefore, it follows from Eq. (14) that the expression [[Mk,ε, Ml,ε′ ]] belongs to the kernel of
adπ∗(L). Because the underlying finite-dimensional Lie algebra is semisimple, it follows that this kernel is
spanned by the expressions (π∗(L))k, where the associative multiplication on the double is componentwise.
Because J is an ideal in GR− of finite codimension, GR = GR+ � GR− , GR+ � g, and the dual space G∗

R+

can be written in component form as

R∗
+(L) =

(
R∗

+(L1 + L2)

−R∗
−(L1 + L2)

)

,

we find that the two components of π∗(L) and hence of
(
π∗(L)

)k are semi-infinite formal Laurent power
series (each in its own direction). On the other hand, Ik,ε

(
π∗(L)

)
and Il,ε′

(
π∗(L)

)
are (by the theorem

condition) finite polynomials. Hence, their matrix gradients Mk,ε and Ml,ε′ and also [[Mk,ε, Ml,ε′ ]] belong to
the algebra g of s-valued Laurent polynomials (here g is realized as a diagonal subalgebra in g⊕ g). Hence,
[[Mk,ε, Ml,ε′ ]] cannot be equal to a linear combination of the expressions (π∗(L))k except in the case of the
trivial linear combination. This means that [[Mk,ε, Ml,ε′]] = 0. The theorem is proved.

Remark 5. Using the same arguments, we can show that this theorem also holds for more complicated
infinite-dimensional Lie algebras, for example, for the quasigraded Lie algebras responsible for the integra-
bility of the Landau–Lifshitz equation and its various generalizations [7] or for the graded algebras of the
type A∞, C∞, and D∞. In the latter case, instead of the condition that the Hamiltonians are polynomials,
less rigid conditions must be imposed.

Remark 6. We note that Eqs. (12) and (13) define three types of integrable hierarchies: two “small”
hierarchies associated with the Lie subalgebras gR± defined by Eqs. (12) and one “large” hierarchy associated
with the whole Lie algebra g including both types of Eqs. (12) and (13). Equations (13) contain a U–V

pair with the U -operator taking values in gR+ and the V -operator taking the values in gR− . They can be
interpreted as the “negative flows” of the integrable hierarchy associated with gR± .

4.2. Case of graded Lie algebras. In this subsection, we demonstrate how the general scheme
described above for producing U–V pairs satisfying zero-curvature equations works for concrete Lie algebras.
We concentrate on the simplest possible examples associated with graded Lie algebras.

4.2.1. Quotients of the double and invariant functions. We consider the example of Z-graded
algebras and the quotient algebras of the corresponding double. By the definition of graded Lie algebras,
we have

g =
∑

j∈Z

gj , [gi, gj] ⊂ gi+j .

Using the grading property, we easily obtain the decomposition g = g+ + g−, where g+ =
∑

j≥0 gj and
g− =

∑
j<0 gj are Lie subalgebras. Let P± denote the projection operators on the Lie subalgebras g±.
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Hence, R = P+ − P− is a classical R-operator [17]. In the standard way [17], we find that J+k =
∑

j>k gj

and J−l =
∑

j>l g−l are ideals in g± and in gR = g+ � g−. Hence, we can consider the quotient algebra
gR/(J+k � J−l) and the quotient algebra GR/(J+k � J−l) of the corresponding “double.” The elements of
the last quotient algebra have the form

(
X+

1 + X−′

1

X−
2 + X+′

2

)

, X+
1 ∈ g+, X−′

1 ∈
l∑

j=1

g−j , X−
2 ∈ g−, X+′

2 ∈
k∑

j=0

gj .

The corresponding elements of the dual space have the explicit form

L =

(
L+

1 + L−′

1

L−
2 + L+′

2

)

, L+
1 ∈ g

∗
+, L−′

1 ∈
l∑

j=1

g
∗
−j, L−

2 ∈ g
∗
−, L+′

2 ∈
k∑

j=0

g
∗
j .

We note that the corresponding components L1 = L+
1 + L−′

1 and L2 = L−
2 + L+′

2 of the Lax operator are
semi-infinite (i.e., infinite in only one direction).

We assume that there exists an invariant bilinear form ( · , · ) on g such that (gi, gj) ∼ δi+j,0. In
this case, we can identify the spaces g∗ and g and construct the second-order Casimir functions using the
formulas

I0
2,1 =

1
2

∑

i∈Z

(L(i)
1 , L

(−i)
1 ), I0

2,2 =
1
2

∑

i∈Z

(L(i)
2 , L

(−i)
2 ),

where L
(±i)
1,2 ⊂ g∓i. We note that on the quotient algebra described above, all these expressions are finite

polynomials if the space gi is finite-dimensional.
We consider several examples.

4.2.2. General non-Abelian Toda systems and graded Lie algebras. We consider the above
construction in the case where k = 1 and l = 1. We then have

I0
2,1 =

1
2
(L(0)

1 , L
(0)
1 ) + (L(1)

1 , L
(−1)
1 ), I0

2,2 =
1
2
(L(0)

2 , L
(0)
2 ) + (L(1)

2 , L
(−1)
2 ),

and the Lax matrix is

L =

(
L+

1 + L
(−1)
1

L−
2 + L

(0)
2 + L

(1)
2

)

, L+
1 =

∞∑

i=0

L
(i)
1 , L−

2 =
∞∑

i=1

L
(−i)
1 .

We note that L
(−1)
1 is a central element because L

(−1)
1 ∈ (g−/[g−, g−])∗.

The M -operators corresponding to the integrals I0
2,1 and I0

2,2 have the form

M0
2,1 = R+∇I0

2,1 =

(
L̄

(0)
1 + L̄

(1)
1

L̄
(0)
1 + L̄

(1)
1

)

, M0
2,2 = R+∇I0

2,2 = −
(

L̄
(−1)
2

L̄
(−1)
2

)

,

where

L̄
(0)
1 =

1
2
∇(L(0)

1 , L
(0)
1 ) ∈ g0, L̄

(1)
1 = P+∇(L(1)

1 , L
(−1)
1 ) ∈ g1,

L̄
(−1)
2 = P−∇(L(1)

2 , L
(−1)
2 ) ∈ g−1.

Their components, namely, the operators

U = L̄
(0)
1 + L̄

(1)
1 , V = L̄

(−1)
2 , (15)
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are the U–V pairs of Abelian and non-Abelian Toda field equations, as is shown below.
We consider the zero-curvature equation for the U–V pair:

∂U

∂t
− ∂V

∂x
+ [U, V ] = 0.

This equation yields the equations for the homogeneous components:

∂L̄
(1)
1

∂t
= 0,

∂L̄
(0)
1

∂t
= −[L̄(1)

1 , L̄
(−1)
2 ],

∂L̄
(−1)
2

∂x
= [L̄(0)

1 , L̄
(−1)
2 ]. (16)

The first of these equations is satisfied automatically because L̄
(1)
1 is obtained from the central element

L
(−1)
1 and hence L̄

(1)
1 = C(1) = const. We solve the last equation in (16). Because of the grading, it is easy

to see that g0 ⊂ g is a subalgebra. Let G0 denote the corresponding Lie group. Let g0 ∈ G0. It can be
shown by direct verification that the substitution

L̄
(−1)
2 = g0C

(−1)g−1
0 , L̄

(0)
1 = (∂xg0)g−1

0 , g0 = g0(x, t),

where C(−1) is a constant element of the space g−1, solves the last equation in (16). The second equation
in (16) after this solution is substituted becomes

∂t((∂xg0)g−1
0 ) = −[C(1), g0C

(−1)g−1
0 ] (17)

and is the so-called non-Abelian Toda field equation [15].

4.3. Loop algebras and the standard Toda system. The main example of the above construction
is connected with loop algebras. Let s be the Lie algebra of a simple Lie group G. Let g = s ⊗ Pol(λ, λ−1)
denote the loop algebra. We assume that s is equipped with an automorphism σ : s → s of the order p.
There is a natural decomposition [18] s =

∑p−1
i=0 si such that

sk = {X ∈ s | σ(X) = e2πik/pX}.

In particular, s0 is the subalgebra stable under the action of the automorphism σ.
We extend this grading to the loop space g, by definition setting

deg λ = p, deg X ⊗ q(λ) = deg X + deg q(λ).

In this case, we obtain
gj = {X(λ) ∈ s ⊗ Pol(λ, λ−1)| deg X(λ) = j}.

In particular, g0 = s0. The corresponding group G0 ⊂ G hence coincides with the Lie group of the Lie
subalgebra s0. Equation (17) is written for the generic element of this group.

We consider the most interesting example of such a situation corresponding to the case of an Abelian
group G0. Let g be a loop algebra with the principal grading. In more detail, let σ : s → s be a Coxeter
automorphism. Let h denote the Coxeter number of s. We have the corresponding Zh-grading of s

s =
h−1∑

i=0

si.
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The subalgebra s0 coincides with the Cartan subalgebra h = Span
C
{Hαi | i = 1, . . . , rank g}. Moreover,

sk = Span
C
{Xα | α ∈ Δ, |α| = k mod h}. Here, Hαi , Xα is a Cartan–Weil basis of s, Δ is the set of all

roots, and |α| denotes the root height. In particular, Hαi = [Xαi , X−αi ], where αi are simple roots.
We describe the subspaces gi explicitly. By definition, we have

g0 = h, gk =
∑

|α|=k

sα + λ
∑

|α|=h−k

s−α, k = 1, . . . , h − 1,

where sα = Span
C
{Xα}. The other graded subspaces are gk+nh = λngk, k = 1, . . . , h− 1. We consider the

corresponding U–V -pair given by (15):

U = (∂xg0)g−1
0 + C(1), V = g0C

(−1)g−1
0 .

In this case, the group G0 is Abelian and coincides with the Cartan subgroup. It is therefore easy to
parameterize its element g0 as g0 = exp{

∑rank s

i=1 φiHαi} and obtain

U =
rank s∑

i=1

∂xφiHαi +
∑

αi∈P

c(1)
αi

Xαi + λc
(1)
−θX−θ,

V =
∑

αi∈P

c(−1)
αi

e−αi(φ)X−αi + λ−1c
(−1)
θ e−θ(φ)Xθ,

where P is the set of simple roots, θ is the highest root, and Hαi is the basic element in the Cartan
subalgebra corresponding to the simple root αi. In this U–V pair, it is easy to recognize the U–V pair of
the finite-component Toda field equation [14]. The corresponding Eqs. (17) become

∂t∂xφi = c(1)
αi

c
(−1)
−αi

e−αi(φ) + aic
(1)
−θc

(−1)
θ eθ(φ), φ =

rank s∑

i=1

φiHαi , (18)

where the constants ai are defined from the decomposition of Hθ = [Xθ, X−θ]

Hθ =
rank s∑

i=1

aiHαi .

It is easy to see from the explicit form of (18) that the coefficients c
(−1)
−αi

, c
(1)
αi , c

(−1)
θ , and c

(1)
−θ are redundant,

and if they are nonzero, then they can be eliminated from the equations by a rescaling.

Remark 7. The R-operator used in this paper is non-skew-symmetric. There is an alternative ap-
proach to the finite-component two-dimensional Toda lattice based on a skew-symmetric R-operator [1], [19].

4.4. Infinite-component Toda system. Now let g = gl((∞)). We recall that this is the Lie algebra
of infinite matrices M = (Mij)i,j∈Z, where Mij = 0 for |i − j| � 1. This situation can be regarded as the
n → ∞ limit of the case g = gl(n) in the preceding section. But it deserves a more careful consideration.

The basis in the algebra gl((∞)) consists of the elements Xij , i, j ∈ Z, with the standard commutation
relations [Xij , Xkl] = δkjXil − δilXkj . In terms of this basis, we have the graded subspaces of the natural
Z-grading gk = Span

C
{Xij | j − i = k}. There exists a natural invariant bilinear form ( · , · ) on gl((∞))

such that (Xij , Xkl) = δkjδil. Using this form, we identify g∗ with g such that g∗k = g−k.
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We consider the classical double of gl((∞)). We apply the construction in Sec. 4.2.1 to the correspond-
ing dual space and its quotient spaces by the ideals of the form J+k and J−l, where k and l are fixed positive
integers. The elements of the spaces dual to these quotients have the form

L =

(
L+

1 + L−′

1

L−
2 + L+′

2

)

∈ [GR/(J+k � J−l)]∗,

where

L+
1 =

∞∑

i=0

L
(i)
1 , L−

2 =
∞∑

i=1

L
(−i)
2 ,

L−′

1 =
l∑

j=1

L
(−i)
1 , L+′

2 =
k∑

j=0

L
(i)
1 , L(i)

s ∈ gl((∞))−i, s = 1, 2.

In particular, the Lax matrix L of the infinite-component Toda system corresponds to the case k = l = 1.
We therefore consider only this case in what follows.

We let the same symbols Xij denote the natural basis in the space dual to gl((∞)). The Lax operator
can be described in this basis by the coordinates l

(m)
1 (i), l

(m)
2 (j), as

L(m)
s =

∑

i∈Z

l(m)
s (i − m)Xi,i−m, s = 1, 2.

Just as before, the coordinates l
(−1)
1 (i) are Casimir functions of the Lie–Poisson bracket on the space dual

to the quotient GR/(J+1 � J−1). We can therefore set them equal to constants, l
(−1)
1 (i) = ci. Hence,

L
(−1)
1 =

∑
i∈Z

ciXi−1,i. Using the invariant form ( · , · ) on gl((∞)), we obtain two quadratic Hamiltonians
I0
2,1 and I0

2,2 on the double of gl((∞)) with the explicit form

I0
2,s =

1
2

∑

i∈Z

(l(0)s (i))2 +
∑

i∈Z

l(1)s (i)l(−1)
s (i), s = 1, 2,

on the quotient space under consideration. The flows generated by these Hamiltonians are written in the
Lax form

∂L
∂ts

= [M̃0
2,s,L], s = 1, 2,

where the M -operators with values in the double of gl((∞)) are

M̃0
2,1 = R+∇̃I0

2,1 =

(
L

(0)
1 + L

(−1)
1

L
(0)
1 + L

(−1)
1

)

, M̃0
2,2 = R+∇̃I0

2,2 =

(
L

(1)
2

L
(1)
2

)

.

Although g is not a loop algebra and the functions I0
2,s are not finite polynomials in this case, similarly

to the proof of Theorem 4.1, we can prove that the corresponding M -operators satisfy the zero-curvature
condition. Therefore, we can write a gl((∞))-valued U–V -pair satisfying the zero-curvature equation:

U = L
(0)
1 + L

(−1)
1 , V = L

(1)
2 , L(i)

s ∈ gl((∞))−i, s = 1, 2.

It yields the equations

∂xvi = vi(ui+1 − ui), ∂tui = ci−1vi−1 − civi, i ∈ Z, (19)
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where ui ≡ l
(0)
1 (i), vi ≡ l

(1)
2 (i), x = t1, and t = t2. By the substitution ui = ∂xφi, vi = eφi+1−φi , Eqs. (19)

reduce to the usual infinite-component Toda system [11]:

∂2
xtφi = ci−1e

φi−φi−1 − cie
φi+1−φi , i ∈ Z. (20)

Just as before, if the constants ci are nonzero, then they can be eliminated by a rescaling.

Remark 8. Equation (20) does not have the same form as Eqs. (18), which corresponds to gl(n),
because we use a different basis in the Cartan subalgebra in this subsection: Hi ≡ Xii instead of Hαi =
Xii − Xi−1i−1.

4.5. Lie–Poisson bracket for the infinite-component Toda system. In this subsection, we
explicitly describe the R-operator Lie–Poisson bracket corresponding to the natural AKS decomposition
used in the preceding subsection. We begin with the Lie brackets and then use the fact that the Lie–Poisson
brackets of the coordinate functions repeat the Lie brackets of the basis elements of the algebra.

For convenience, we introduce the basis

X(i)(m) ≡ Xm,i+m, i, m ∈ Z,

in the algebra gl((∞)). The commutation relations in this basis become

[X(i)(m), X(j)(n)] = δi+n−m,0X
(i+j)(m) − δm−n+j,0X

(i+j)(n),

and the R-operator is then written as R = P+ −P−, where P+ and P− are the projection operators on the
Lie subalgebras respectively generated by X(i)(m), i ≥ 0, and X(j)(n), j < 0. The R-bracket on gl((∞))
can be written as

[X(i)(m), X(j)(n)]R = 2
(
1 − σ(i) − σ(j)

)(
δi+n−m,0X

(i+j)(m) − δm−n+j,0X
(i+j)(n)

)
,

where σ(i) = 1 if i < 0 and σ(i) = 0 if i ≥ 0.
For the double of gl((∞)), i.e., for the direct sum gl((∞))⊕ gl((∞)), we obtain the R-bracket written

for the basic elements X
(i)
s (m), s = 1, 2:

[X(i)
1 (m), X(j)

1 (n)]R = 2
(
1 − σ(i) − σ(j)

)(
δi+n−m,0X

(i+j)
1 (m) − δm−n+j,0X

(i+j)
1 (n)

)
,

[X(i)
2 (m), X(j)

2 (n)]R = 2
(
σ(i) + σ(j) − 1

)(
δi+n−m,0X

(i+j)
2 (m) − δm−n+j,0X

(i+j)
2 (n)

)
,

[X(i)
1 (m), X(j)

2 (n)]R = 2
(
σ(i) − 1

)(
δi+n−m,0X

(i+j)
1 (m) − δm−n+j,0X

(i+j)
1 (n)

)
+

+ 2σ(j)
(
δi+n−m,0X

(i+j)
2 (m) − δm−n+j,0X

(i+j)
2 (n)

)
.

The Lie–Poisson brackets for the coordinate functions l
(i)
s (m) follow from these commutation relations:

{l(i)1 (m), l(j)1 (n)}R = 2
(
1 − σ(i) − σ(j)

)(
δi+n−m,0l

(i+j)
1 (m) − δm−n+j,0l

(i+j)
1 (n)

)
,

{l(i)2 (m), l(j)2 (n)}R = 2
(
σ(i) + σ(j) − 1

)(
δi+n−m,0l

(i+j)
2 (m) − δm−n+j,0l

(i+j)
2 (n)

)
,

{l(i)1 (m), l(j)2 (n)}R = 2
(
σ(i) − 1

)(
δi+n−m,0l

(i+j)
1 (m) − δm−n+j,0l

(i+j)
1 (n)

)
+

+ 2σ(j)
(
δi+n−m,0l

(i+j)
2 (m) − δm−n+j,0l

(i+j)
2 (n)

)
.

The Lie–Poisson brackets of the Toda system are obtained using the specialization l
(−1)
1 (i) = ci; l

(k)
1 (i) = 0,

k < −1; and l
(j)
2 (i) = 0, j > 1. These brackets coincide with the first Poisson structure of the two-

dimensional Toda hierarchy found in [16].
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5. Quadratic and cubic Poisson structures on the double

In this section, we discuss the prolongation of the second- and third-degree Poisson brackets from g to
its classical double G and the consistency of the corresponding brackets.

5.1. Quadratic Poisson structure. It is known that for some classical R-operators on g, in addition
to the linear R-bracket, a second-degree Poisson bracket, important in the theory of classical integrable
systems, can also be defined.

Hereafter, we assume that there exists an identification between g and g∗. Moreover, we assume that
the Lie algebra g also has the structure of an associative algebra. The following theorem holds [20], [21].

Theorem 5.1. Let the classical R-operator and its skew-symmetric part (R−R∗)/2 satisfy the mod-

ified classical Yang–Baxter equation on g. Then

1. the formula

{F1, F2}2 = 〈L, [R(L∇F1 + ∇F1L),∇F2]〉 − 〈L, [R(L∇F2 + ∇F2L),∇F1]〉 (21)

defines a Poisson bracket on g,

2. the Casimir functions of g mutually commute with respect to bracket (21),

3. the Hamiltonian equations of motion with respect to the Casimir functions Ik on g and (21) are

written in the Lax form
dL

dtk
= [R(L∇Ik + ∇IkL), L],

and

4. Poisson brackets (21) and (2) are compatible.2

It turns out that this theorem can be extended to the double of g.

Theorem 5.2. Let the classical R-operator and its skew-symmetric part (R−R∗)/2 satisfy the mod-

ified classical Yang–Baxter equation on g. Then

1. the formula

{F1(L), F2(L)}2 = 〈L, [R(L∇̃F1 + ∇̃F1L),∇F2]〉 − 〈L, [R(L∇̃F2 + ∇̃F2L),∇F1]〉 (22)

defines a Poisson bracket on G,

2. the Casimir functions of G mutually commute with respect to bracket (22),

3. the Hamiltonian equations of motion with respect to the Casimir functions Ik,ε on G and (22) are

written in the Lax form
dL
dtεk

= [R(L∇̃Ik,ε + ∇̃Ik,εL),L], ε = 1, 2,

and

4. Poisson brackets (22) and (3) are compatible.

2We recall that two Poisson brackets { · , · }1 and { · , · }2 on the same space are said to be compatible if an arbitrary linear
combination a1{ · , · }1 + a2{ · , · }2 is a Poisson bracket.
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Remark 9. Lie–Poisson bracket (22) can be written more explicitly in terms of the operators R and
R± as

{F1(L1, L2), F2(L1, L2)}2 = 〈L1, [R(L1∇1F1 + ∇1F1L1) − R−(L2∇2F1 + ∇2F1L2),∇1F2]〉 +

+ 〈L2, [R+(L1∇1F1 + ∇1F1L1) − R(L2∇2F1 + ∇2F1L2),∇2F2]〉 −

− 〈L1, [R(L1∇1F2 + ∇1F2L1) − R−(L2∇2F2 + ∇2F2L2),∇1F1]〉 −

− 〈L2, [R+(L1∇1F2 + ∇1F2L1) − R(L2∇2F2 + ∇2F2L2),∇2F1]〉.

Proof of the theorem. We first note that if g is an associative algebra, then G is also an associative
algebra and has the natural structure of a direct sum of associative algebras. To prove the theorem, it
suffices to apply Theorem 5.1 and prove that the conditions in Theorem 5.1 on the classical R-operator
on g imply that the classical R-operator R and its skew-symmetric part (R −R∗)/2 satisfy the modified
classical Yang–Baxter equation on the double G. This statement for R follows automatically from the
results in [12]. It remains to show that (R −R∗)/2 satisfies the modified classical Yang–Baxter equation
on G. We show this directly. We have

A ≡ 1
2
(R−R∗) =

1
2

(
A −S

S −A

)

, A = R − R∗, S = R + R∗.

Substituting this expression in the modified classical Yang–Baxter equation, we find that it is equivalent to
the three conditions

A
(
[A(X), Y ] + [X, A(Y )]

)
− [A(X), A(Y )] = 4[X, Y ],

− S
(
[S(X), Y ]

)
− A

(
[X, S(Y )]

)
+ [A(X), S(Y )] = 0,

S
(
[A(X), Y ] + [X, A(Y )]

)
− [S(X), S(Y )] = 0,

(23)

which must be satisfied for any X, Y ∈ g. The first of these equations follows from the conditions in the
theorem. Using the definition of the operators A and S, we can easily show that (23) are equivalent to the
three equations

R
(
[R(X), Y ] + [X, R(Y )]

)
− [R(X), R(Y )] = [X, Y ], (24a)

R∗([R∗(X), Y ]
)
− R∗([X, R(Y )]

)
+ [R∗(X), R(Y )] = [X, Y ], (24b)

R
(
[R∗(X), Y ] + [X, R∗(Y )]

)
− [R∗(X), R∗(Y )] = −[X, Y ] (24c)

for all X, Y ∈ g. Equation (24a) is the modified classical Yang–Baxter equation for R. Equation (24b)
is derived using the modified classical Yang–Baxter equation and the condition for the existence of a
nondegenerate invariant form on g. Finally, Eq. (24c) is derived using the modified classical Yang–Baxter
equation for A. The theorem is proved.

Remark 10. Theorem 5.2 means that if a quadratic Poisson structure exists on g, then it can always
be extended to the double G. In particular, such an extension exists for skew-symmetric R-operators on g

because the corresponding operator R on G is also skew-symmetric.
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5.2. Cubic Poisson structure. In this subsection, we describe the cubic Poisson structure on g and
its prolongation to G. We use the following theorem from [20], [21], which holds under the same assumptions
about the Lie algebra g as in the preceding subsection.

Theorem 5.3. Let R be a classical R-operator. Then

1. the formula

{F1(L), F2(L)}3 = 〈L, [R(L∇F1L + L∇F1L),∇F2]〉 −

− 〈L, [R(L∇F2L + L∇F2L),∇F1]〉 (25)

defines a Poisson bracket on g,

2. the Casimir functions of g mutually commute with respect to bracket (25),

3. the Hamiltonian equations of motion with respect to the Casimir functions Ik of g and (25) are written

in the Lax form
dL

dtk
= [R(L∇IkL), L],

and

4. if the skew-symmetric part (R − R∗)/2 of R satisfies the modified classical Yang–Baxter equation on

g, then Poisson brackets (25), (21), and (2) are compatible.

A similar statement also holds for the classical double of g.

Corollary 5.1. Let R be a classical R-operator. Then

1. the formula

{F1(L), F2(L)}3 = 〈L, [R(L∇̃F1L + L∇̃F1L), ∇̃F2]〉 −

− 〈L, [R(L∇̃F2L + L∇̃F2L), ∇̃F1]〉 (26)

defines a Poisson bracket on G,

2. the Casimir functions on G mutually commute with respect to bracket (26).

3. the Hamiltonian equations of motion with respect to the Casimir functions Ik,ε on G and (22) are

written in the Lax form
dL
dtεk

= [R(L∇̃Ik,εL),L],

and

4. if the skew-symmetric part (R − R∗)/2 of R satisfies the modified classical Yang–Baxter equation on

g, then Poisson brackets (26), (22), and (4) are compatible.

Remark 11. Lie–Poisson bracket (26) can be written more explicitly in terms of the operators R and
R± as

{F1(L1, L2), F2(L1, L2)}3 = 〈L1, [R(L1∇1F1L1) − R−(L2∇2F1L2),∇1F2]〉 +

+ 〈L2, [R+(L1∇1F1L1) − R(L2∇2F1L2),∇2F2]〉 −

− 〈L1, [R(L1∇1F2L1) − R−(L2∇2F2L2),∇1F1]〉 −

− 〈L2, [R+(L1∇1F2L1) − R(L2∇2F2L2),∇2F1]〉.
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Proof of the corollary. We note that using the identification of g and g∗ as linear spaces and g-
modules, we can also identify the spaces G and G∗ as linear spaces and G-modules. As explained above,
the double G of an associative algebra g always has the structure of an associative algebra. To prove the
corollary, it only remains to apply Theorem 5.3 to the classical double G and take into account that, as
proved in Theorem 5.2, the antisymmetric part (R − R∗)/2 satisfies the modified classical Yang–Baxter
equation on G if (R − R∗)/2 satisfies the modified classical Yang–Baxter equation on g.

Remark 12. The second- and third-degree Poisson structures exist and are compatible with the linear
Poisson structure (when R and (R − R∗)/2 satisfy the modified classical Yang–Baxter equation). They
produce commuting Hamiltonian flows written in the Lax form. Nevertheless, their use in soliton theory
is not as straightforward and universal as the use of the linear Poisson bracket. Indeed, to obtain the
phase space of a soliton equation, as explained above, we must restrict ourself to certain linear subspaces
coinciding with the quotient algebras of the corresponding linear R-bracket. On the other hand, these linear
subspaces, generally speaking, are not quotient spaces by the ideals of the quadratic and cubic brackets. To
restrict these brackets to the corresponding subspaces, we must apply an additional Dirac reduction. This
procedure was considered in [16] for the infinite-component Toda system.

At the end of this section, we explain why the second- and third-order Poisson structures exist and
are compatible with the linear Poisson structure in the case of an infinite-component Toda system before
the restriction to the quotient spaces of the linear bracket. Because the infinite-component Toda system is
connected with the double of gl((∞)), we must prove the following proposition.

Proposition 5.1. On the double of gl((∞)) equipped with the AKS R-operator R = P+−P−, where

P+ and P− are projection operators on the subalgebras of upper triangular and strictly lower triangular

matrices, there exist quadratic and cubic Poisson structures compatible with the linear Poisson bracket and

given by the respective formulas (22) and (26).

Proof. We note that the double of gl((∞)) is obviously an associative algebra. Hence, to apply
Theorem 5.2 and Corollary 5.1 to the considered case, it suffices to show that (R − R∗)/2 satisfies the
modified classical Yang–Baxter equation on gl((∞)). In our case, R = P+ − P−, where P+ and P− are
projection operators on the respective subalgebras of upper triangular and strictly lower triangular matrices
We also note that this R-operator can be written as R = P+ +P0−P−, where P+ is the projection operator
on the Lie subalgebra of strictly upper triangular matrices, P0 is the projection on the Lie subalgebra of
diagonal matrices, and P− ≡ P−. Using the explicit form of the invariant pairing, i.e., the bilinear form on
gl((∞)), we can easily show that P ∗

± = P∓, P ∗
0 = P0, and consequently (R − R∗)/2 = P+ − P−. It follows

from the results in [22] (also see [9]) that if g = g+ + g0 + g− is a triangular decomposition of a Lie algebra
g, i.e., g± and g0 are closed Lie subalgebras and g0-modules, then any operator of the form P+ + R0 −P−,
where P± are projection operators on g±, is a solution of the modified classical Yang–Baxter equation on
g if R0 is a solution of the modified classical Yang–Baxter equation on g0. Moreover, if the subalgebra
g0 is Abelian, then any operator R0 (including the trivial one) is a solution of the modified Yang–Baxter
equation on g0. The operator P+ − P− in this case is therefore a solution of the modified Yang–Baxter
equation on g.

On the other hand, it is obvious that the decomposition of the algebra g = gl((∞)) into the strictly
upper-triangular, strictly lower-triangular, and diagonal parts is a triangular decomposition with an Abelian
(diagonal) part g0. Hence, the considered R-operator (R − R∗)/2 = P+ − P− is indeed a solution of the
modified Yang–Baxter equation on gl((∞)), and by Theorem 5.2 and Corollary 5.1, there exist quadratic
and cubic Poisson structures on gl((∞)) and its double. The proposition is proved.
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