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Abstract: We prove that the extended Toda hierarchy of [1] admits a nonabelian Lie
algebra of infinitesimal symmetries isomorphic to half of the Virasoro algebra. The gen-
erators Lm, m ≥ −1 of the Lie algebra act by linear differential operators onto the tau
function of the hierarchy. We also prove that the tau function of a generic solution to the
extended Toda hierarchy is annihilated by a combination of the Virasoro operators and
the flows of the hierarchy. As an application we show that the validity of the Virasoro
constraints for the CP 1 Gromov-Witten invariants and their descendents implies that
their generating function is the logarithm of a particular tau function of the extended
Toda hierarchy.

1. Introduction

The extended Toda hierarchy was introduced in [30, 16, 1] in an attempt to encode the
recursion relations among the CP 1 Gromov-Witten invariants into that of a hierarchy
of integrable systems. As it was shown in [1], this hierarchy can be represented in a Lax
pair formalism through the Lax operator

L = �+ v(x)+ eu(x)�−1. (1.1)

The functions v, u serve as the dependent variables for the hierarchy with spatial variable
x and � = eε∂x is the shift operator, ε is a small parameter. We will also introduce a
two-component vector

w = (w1, w2), w1 := v, w2 := u

to use in the formulae where many summations enter.
The flows of the hierarchy are defined via Lax representation

ε
∂L

∂tβ,q
= [Aβ,q, L] := Aβ,qL− LAβ,q, β = 1, 2; q ≥ 0. (1.2)
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Here the operators Aβ,q have the expression

A1,q = 2

q!

[
Lq(logL− cq)

]
+ , A2,q = 1

(q + 1)!

[
Lq+1

]

+
, (1.3)

c0 = 0, cq = 1 + 1

2
+ · · · + 1

q
(1.4)

with the positive part B+ of the difference operator B = ∑
Bk�

k given by B+ =∑
k≥0 Bk�

k . The logarithm of the operator L is defined as follows [1]. Let us first
introduce the dressing operators P and Q of the form

P =
∑

k≥0

pk�
−k, Q =

∑

k≥0

qk�
k, p0 = 1 (1.5)

such that

L = P�P−1 = Q�−1Q−1. (1.6)

Then we define

logL := 1

2

(
Pε∂xP

−1 −Qε∂xQ
−1
)
. (1.7)

Equations (1.2) for β = 2 coincide with the standard flows of the Toda hierarchy. In
particular for q = 0 one obtains the equations of Toda lattice

∂v

∂t2,0
= 1

ε

(
eu(x+ε) − eu(x)

)
=
∑

k≥0

εk

(k + 1)!
∂k+1
x eu,

∂u

∂t2,0
= 1

ε
(v(x)− v(x − ε)) =

∑

k≥0

(−1)k
εk

(k + 1)!
∂k+1
x v, (1.8)

written in the interpolated form. To return to the original discrete setup of [26] one
introduces the lattice variables

un := u(nε), vn := v(nε).

The parameter ε plays the role of the mesh of the lattice. Another part, for β = 1 is a
new one. For q = 0 one obtains just the spatial translations

∂v

∂t1,0
= ∂v

∂x
,

∂u

∂t1,0
= ∂u

∂x
. (1.9)

The flow for β = 1 and q = 1 is less trivial:

∂v

∂t1,1
= vvx + 1

ε

[
eu(x+ε) (B−u(x + ε)− 2)− eu(x) (B−u(x − ε)− 2)

]
,

∂u

∂t1,1
= 1

ε

[
v(x) (B−u(x)− 2)− v(x − ε) (B−u(x − ε)− 2)

+ B+v(x + ε)− B+v(x − ε)
]
, (1.10)
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where the operators B± are defined by

B+ := (�− 1)−1ε∂x =
∑

k≥0

Bk

k!
(ε∂x)

k,

B− := (1 −�−1)−1ε∂x =
∑

k≥0

Bk

k!
(−ε∂x)k. (1.11)

Here Bk are the Bernoulli numbers.
The flows of the extended Toda hierarchy can be represented as Hamiltonian systems

∂wα

∂tβ,q
= {wα(x),Hβ,q}1 ≡ U

αγ
1

δHβ,q

δwγ (x)
(1.12)

with the Hamiltonian operators

U11
1 = U22

1 = 0, U12
1 = 1

ε
(�− 1), U21

1 = 1

ε
(1 −�−1), (1.13)

and the Hamiltonians

Hβ,q =
∫
hβ,qdx, β = 1, 2; q ≥ −1,

with the densities hβ,q defined by

h1,q = 2

(q + 1)!
res
[
Lq+1(logL− cq+1)

]
= resA1,q+1,

h2,q = 1

(q + 2)!
resLq+2 = resA2,q+1. (1.14)

By definition the residue of a difference operator

A =
∑

k∈Z

ak�
k

is given by
resA := a0.

Note that

h1,−1 = B−u(x), h2,−1 = v(x) (1.15)

are densities of Casimirs of the Poisson bracket, i.e.

{ . , H1,−1}1 = { . , H2,−1}1 ≡ 0.

Denote A the graded ring of formal power series of the form
∑

k≥0
εkfk(w,wx, . . . ),

where fk are polynomials of v, u, e±u, v(m), u(m), m ≥ 1. The gradation is defined by

deg v(m) = 1 −m, deg u(m) = −m, for m ≥ 0, deg eu = 2, deg ε = 1. (1.16)
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As it was shown in [1], all the Hamiltonian densities (1.14) as well as the right hand
sides of the flows of the extended Toda hierarchy are homogeneous elements of the ring
A.

Introduce functions �α,p;β,q ∈ A by

1

ε
(�− 1)�α,p;β,q := ∂hα,p−1

∂tβ,q
=
{

1
ε

2
p! res

([
Aβ,q, L

p(logL− cp)
])
, α = 1,

1
ε

1
(p+1)! res

[
Aβ,q, L

p+1
]
, α = 2.

(1.17)

Existence of such functions and an important property of τ -symmetry

�β,q;α,p = �α,p;β,q

was established in [1]. These elements of the ring A are uniquely determined by the
above formulae and by the homogeneity condition

deg�α,p;β,q = p + q + 1 + µα + µβ.

Here

µ1 = −1

2
, µ2 = 1

2
.

In this paper we will consider the solutions to the extended Toda hierarchy in the
class of formal series in ε

wα(x, t; ε) =
∑

k≥0

εkwαk (x, t), α = 1, 2,

t = (t1,0, t2,0, t1,1, t2,1, . . . ). (1.18)

As it follows from the definition (1.3),

A1,0 = ε∂x

modulo terms commuting with L. So

∂

∂t1,0
= ∂

∂x
,

i.e., the solution depends on x, t1,0 only via the combination x + t1,0. We will therefore
often suppress the explicit dependence on x in the formulae.

As it follows from Proposition 4.1 of [30], after the transformation of dependent
variables u �→ û, v �→ v̂,

v̂(x) = B+v(x),
û(x) = B+B−u(x), (1.19)

only even powers of ε remain in the ε-expansions of the right hand sides of equations
of the hierarchy (1.2).
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Definition ([1]). For any solution v(x, t; ε), u(x, t; ε) of the extended Toda hierarchy
there exists a function

τ = τ(x, t; ε) = e
∑
g≥0 ε

2g−2Fg(x,t)

such that the functions �α,p;β,q evaluated on this solution can be represented in the
form

�α,p;β,q = ε2 ∂2 log τ

∂tα,p∂tβ,q
(1.20)

for any α, β = 1, 2, p, q ≥ 0. It is called the tau function of the solution (1.18) of the
extended Toda hierarchy.

In particular, we have

hα,p = ε(�− 1)
∂ log τ

∂tα,p+1 , α = 1, 2, p ≥ −1, (1.21)

v = ε(�− 1)
∂ log τ

∂t2,0
= ε

∂

∂t2,0
log

τ(x + ε, t; ε)
τ (x, t; ε) ,

u = (�− 1)(1 −�−1) log τ = log
τ(x + ε, t; ε)τ (x − ε, t; ε)

τ 2(x, t; ε) . (1.22)

Another important property of this hierarchy is that, apart from its Hamiltonian struc-
ture described above, it also possesses a second Hamiltonian structure which is com-
patible with the first one (see (4.15) below). The bihamilonian structure and the tau
symmetry property of the extended Toda hierarchy imply, due to a general theorem of
[9], quasi-triviality of the extended Toda hierarchy. The precise formulation of the quasi-
triviality property in the case of interest is given by the following theorem (cf. Corollary
3.10.23 of [9]):

Theorem 1.1. Any solution v, u of the extended Toda hierarchy is obtained from a solu-
tion v0, u0 of the dispersionless extended Toda hierarchy through the quasi-Miura trans-
formation of the form

v = v0 +
∑

g≥1

ε2g−1(�− 1)
∂Fg(w0, . . . , w

(3g−2)
0 )

∂t2,0
,

u = u0 +
∑

g≥1

ε2g−2(�− 1)(1 −�−1)Fg(w0, . . . , w
(3g−2)
0 ), (1.23)

(cf. (1.19)) and the corresponding tau function of the solution admits the following genus
expansion

log τ = ε−2 log τ [0] +
∑

g≥1

ε2g−2Fg(w0, . . . , w
(3g−2)
0 ). (1.24)

In these formulae the functions Fg(w,wx, . . . , w(3g−2)) do not depend on the choice of
the solution.
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Here τ [0] = τ [0](x, t) is the tau function for the solution v0, u0 of the dispersionless
extended Toda hierarchy, i.e., it is related to the leading term of the solution (1.18)

w0 = (v0, u0)

via
v0(x, t) = ∂2 log τ [0](x, t)

∂x∂t2,0
,

u0(x, t) = ∂2 log τ [0](x, t)
∂x2 . (1.25)

Recall that the dispersionless extended Toda hierarchy is obtained from the extended
Toda hierarchy by setting ε = 0.All the flows of the dispersionless extended Toda hierar-
chy are systems of hydrodynamic type, i.e. systems of two first order quasilinear PDEs.
For β = 1, q = 0 the dispersionless flow still coincides with the spatial translations
(1.9). For β = 2, q = 0 one obtains

∂v

∂t2,0
= ∂

∂x
eu,

∂u

∂t2,0
= ∂v

∂x
.

Eliminating v yields the so-called long wave limit of the Toda lattice equations
utt = (

eu
)
xx
,

where t = t2,0. The dispersionless limit of (1.10) reads
∂v

∂t1,1
= ∂

∂x

[
1

2
v2 + (u− 1)eu

]
,

∂u

∂t1,1
= ∂

∂x
(u v).

Changing the sign of time t = −t1,1 one identifies these with the equations of motion
of the one-dimensional polytropic gas with the speed v and density u and the equation
of state of the form p = (u2 − 2u+ 2)eu − 2.

It is time to remind the reader that the theory of dispersionless (extended) Toda hier-
archy can be nicely encoded [5, 4] in terms of a particular two-dimensional Frobenius
manifold MToda. The latter can be identified with the quantum cohomology of complex
projective line

MToda = QH ∗(CP 1).

Alternatively, the Frobenius manifold in question is isomorphic to the orbit space of the
simplest extended affine Weyl group [6]

MToda = C
2/W̃ (A1).

Denote v, u the coordinates on MToda. The potential of the Frobenius manifold reads

F = 1

2
v2u+ eu. (1.26)

The third derivatives of the potential define the multiplication law of tangent vectors at
each point of M such that ∂/∂v is the unity and

∂

∂u
· ∂
∂u

= eu
∂

∂v
.
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The flat metric on M reads

< , >= 2du dv. (1.27)

The Euler vector field is

E = v
∂

∂v
+ 2

∂

∂u
.

We will not recall here the universal construction, due to [3] of a “dispersionless” inte-
grable hierarchy valid for an arbitrary Frobenius manifold M . The hierarchy can be
considered as an infinite family of pairwise commuting flows on the loop space L(M).
All these flows are represented by first order quasilinear PDEs; for this reason this hierar-
chy is called dispersionless. The word “hierarchy” means that the systems of integrable
PDEs are organized by means of the action of a bihamiltonian recursion operator.

In [9] we addressed the problem of extending the correspondence

Frobenius manifolds → hierarchies of integrable PDEs

to an arbitrary Frobenius manifold. We proved that, indeed such a universal correspon-
dence exists for an arbitrary semisimple M provided a suitable completion of the loop
space L(M) is made allowing to work with infinite order PDEs. By definition semi-
simplicity of a Frobenius manifold means that, for a generic point w ∈ M the algebra
on TwM is semisimple. We leave as an exercise to the reader to verify that MToda is a
semisimple Frobenius manifold. So, according to the main result of [9], there exists an
integrable hierarchy associated with the Frobenius manifoldMToda. The main aim of the
present paper is to identify this integrable hierarchy with the extended Toda hierarchy
(1.2).

The crucial role in such identification, apart from the Lax representation and tau
structure obtained in [1], play Virasoro symmetries. According to our paper [8] for an
arbitrary Frobenius manifold there exists a universal construction of second order linear
differential operators

Lm = Lm(ε
−1t, ε

∂

∂t
), m ≥ −1

satisfying the Virasoro commutation relations

[Li, Lj ] = (i − j)Li+j , i, j ≥ −1. (1.28)

For MToda these Virasoro operators are given by the following explicit expressions (cf.
[12]):

L−1 =
∑

k≥1

tα,k
∂

∂tα,k−1 + 1

ε2 t
1,0t2,0,

L0 =
∑

k≥1

k

(
t1,k

∂

∂t1,k
+ t2,k−1 ∂

∂t2,k−1

)
+ 2

∑

k≥1

t1,k
∂

∂t2,k−1 + 1

ε2

(
t1,0

)2
,

Lm = ε2
m−1∑

k=1

k! (m− k)!
∂2

∂t2,k−1∂t2,m−k−1 +
∑

k≥1

(m+ k)!

(k − 1)!

(
t1,k

∂

∂t1,m+k

+t2,k−1 ∂

∂t2,m+k−1

)
+ 2

∑

k≥0

αm(k)t
1,k ∂

∂t2,m+k−1 , m ≥ 1, (1.29)
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where

αm(0) = m!, αm(k) = (m+ k)!

(k − 1)!

m+k∑

j=k

1

j
, k > 0.

Again, we will not reproduce here the universal construction of the Virasoro operators;
however, we will give below the free field realization of these operator for the MToda
case obtained in Sect. 3.10.2 of our paper [9].

It is the Virasoro invariance property of a hierarchy of integrable PDEs that allows
to reconstruct it uniquely starting from a given semisimple Frobenius manifold, along
with bihamiltonian structure and existence of a tau function. That means that the linear
action of the Virasoro operators onto tau functions defines symmetries of the hierarchy1.

The central result of this paper is the following

Main Theorem. 1. The transformations

τ �→ τ + δ Lmτ, δ → 0 (1.30)

for any m ≥ −1 are infinitesimal symmetries of the extended Toda hierarchy, i.e.,
given a tau function τ = τ(t; ε) of a solution v(t; ε), u(t; ε) of the form (1.18), the
functions

ṽ(t; ε) = v(t; ε)+ εδ(�− 1)
∂

∂t2,0

Lmτ

τ
+O(δ2),

ũ(t; ε) = u(t; ε)+ δ(�− 1)(1 −�−1)
Lmτ

τ
+O(δ2)

satisfy equations of the extended Toda hierarchy modulo terms of order O(δ2).
2. For a generic solution (1.18) of the extended Toda hierarchy, the corresponding tau

function satisfies the Virasoro constraints

Lm

(
ε−1(t − c(ε)), ε

∂

∂t

)
τ = 0, m ≥ −1 (1.31)

for some c(ε). Here c(ε) = (cα,p(ε)) is a collection of formal power series in ε.

We will describe the class of generic solutions in Sect. 4. Note that in the above
formulae we omit writing explicitly the x-dependence since x enters only through the
combination x + t1,0.

The above two theorems and the uniqueness result of [9] (see Theorem 3.10.31) imply

Corollary 1.2. The hierarchy of PDEs associated, according to [9], with the Frobenius
manifold MToda coincides with (1.2).

According to [9], the functions Fg = Fg(w0; . . . , w(3g−2)
0 ) in the genus expansion

(1.24) are uniquely determined by the loop equation that was introduced in Sect. 3.10.7

1 In Sect. 3.10.4 of [9] we called this property linearization of the Virasoro symmetries. The reason for
this name was the following. The dispersionless hierarchy on L(M) constructed in [3] is always invariant
with respect to an action of half of the Virasoro algebra [8]. However, the generators of the Virasoro action
do not act linearly onto the dispersionless tau function τ [0](t). The full hierarchy constructed in [9] is a
deformation of the dispersionless one that transforms the nonlinear action of the Virasoro symmetries to
the linear one.
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of [9] for any semisimple Frobenius manifold. For MToda the loop equation will be
discussed in Sect. 5. It will also be explained how one can compute Gromov - Witten
invariants of CP 1 and their descendents of any genus using the loop equation.

Due to the uniqueness of solution of the loop equation and the validity of the Virasoro
constraints for CP 1 Gromov-Witten invariants [20], we have the following

Corollary 1.3. The generating function of the CP 1 Gromov-Witten invariants and their
descendents is uniquely determined by the system of Virasoro constraints. It coincides
with the logarithm of the tau function of a particular solution of the extended Toda
hierarchy.

This particular solution for the CP 1 Gromov-Witten invariants will be described in
Sect. 5.

Summarizing, we can say that, in the theory of Gromov - Witten invariants of CP 1

and their descendents the extended Toda hierarchy (1.2) plays the role similar to one
played by the KdV hierarchy in the Kontsevich - Witten formulation [28, 21, 29] of the
intersection theory of the tautological classes on the Deligne - Mumford moduli spaces
of stable punctured curves.

2. Some Formulae for the Functions Ωα,p;β,q

We present in this section some important identities for the functions �α,p;β,q defined
in (1.17) and for the Hamiltonians Hα,p.

Let us first recall the definitions of [1] of the logarithmic x-derivatives of the dressing
operators P and Q. Let us look for these logarithmic derivatives in the form

εPxP
−1 =

∑

j≥1

bj�
−j ,

εQxQ
−1 =

∑

j≥0

cj�
j . (2.1)

Lemma 2.1. There exist unique elements bj , cj ∈ A homogeneous of the degrees

deg bj = j, deg cj = −j
such that the operators (2.1) satisfy the following system of equations:

res
(

[εPxP
−1, Lm] − ε∂xL

m
)

= res
(

[εQxQ
−1, Lm] − ε∂xL

m
)

= 0, m ≥ 1.

Proof. See [1]. For example,

b1 = −B+v, c0 = B−u, c1 = e−u(x+ε)B−v.
��
Lemma 2.2. The following identities hold true

∂�α,p;β,q
∂v

= �α,p−1;β,q +�α,p;β,q−1 + (δα,1δβ,2 + δα,2δβ,1)δp,0δq,0; (2.2)



∑

m≥0

v(m)
∂

∂v(m)
+ 2

∂

∂u



�α,p;β,q

= (p + q + 1 + µα + µβ)�α,p;β,q + Rγα�γ,p−1;β,q + R
γ
β�α,p;γ,q−1

+2 δα,1δβ,1δp,0δq,0. (2.3)
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Here the numbers µα and a 2 × 2 matrix R =
(
R
γ
β

)
are defined by

µ1 = −µ2 = −1

2
, R

γ
β = 2δγ2 δβ,1, (2.4)

and we assume that �α,p−1;β,q = �β,q;α,p−1 = 0 when p = 0.

Proof. Let us consider the difference operators

B := ∂

∂v
P ε∂xP

−1 = −
∑

j≥1

∂bj

∂v
�−j ,

C := ∂

∂v
Qε∂xQ

−1 = −
∑

j≥0

∂cj

∂v
�j .

The coefficients bj ∈ A, cj ∈ A were defined in (2.1). We want to show that

LB = 1, LC = −1. (2.5)

Indeed, differentiating the identity

[Pε∂xP
−1, L] = 0

with respect to v we derive that the operators B and L commute. Therefore

[B − P�−1P−1, Lm] = 0, m ≥ 1.

Since b1 = −B+v,
∂b1

∂v
= −1.

So the expansion of the difference operator B −P�−1P−1 begins with�−2. From the
equations

res[B − P�−1P−1, Lm] = 0 for any m ≥ 1,

we prove that the coefficient of�−2 of the operator B −P�−1P−1 is a constant. Since

deg
∂bj

∂v
= j − 1,

the degree of this coefficient, as an element of A, is equal to 1. So, the coefficient must
be equal to zero. Continuing this process we prove that

B = P�−1P−1 = �−1 +O(�−2).

In a similar way we can prove that

C = −Q�Q−1 = −e−u(x+ε)�+O(�2).

Now, using the definition (1.7) of logL we obtain

∂

∂v
logL = 1

2
(B − C) = 1

2
(P�−1P−1 +Q�Q−1).
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Therefore

Lq
∂ logL

∂v
= Lq−1. (2.6)

From the last equation it readily follows that

∂

∂v

[
2

p!
Lp(logL− cp)

]
= 2

(p − 1)!
Lp−1(logL− cp−1), p ≥ 1,

∂

∂v

[
1

(p + 1)!
Lp+1

]
= 1

p!
Lp, p ≥ 0.

These two equations yield, together with

h1,−1 = (1 −�−1)−1ε∂xu, h2,−1 = v

and the definition (1.17), the formula (2.2).
To prove the second formula of the lemma, let us introduce the operators H and E

that act on the space of difference operators of the form
∑
bk�

k with coefficients in A
as follows:

H
∑

bk�
k =

∑
kbk�

k, (2.7)

E
∑

bk�
k =

∑



∑

m≥0

v(m)
∂bk

∂v(m)
+ 2

∂bk

∂u



�k. (2.8)

It is easy to see that these operators satisfy the Leibnitz rule

P
[
(
∑

ak�
k)(
∑

bl�
l)
]

=
(
P
∑

ak�
k
)∑

bl�
l +

∑
ak�

k
(
P
∑

bl�
l
)
.

(2.9)

Here P = H or P = E . By our definition it follows that

(H + E) L = L. (2.10)

Due to Lemma 2.1

(H + E) logL = 1. (2.11)

Now by using (2.10) and (2.11) we obtain

(�− 1)E�2,p;1,q = 1

(p + 1)!
Eres

[
A1,q , L

p+1
]

= 1

(p + 1)!
(H + E) res

[
A1,q , L

p+1
]

= 1

(p + 1)!
res
[
qA1,q + 2A2,q−1, L

p+1
]

+ 1

p!
res
[
A1,q , L

p+1
]

= (p + q + 1)(�− 1)�2,p;1,q + 2(�− 1)�2,p;2,q−1. (2.12)

So, from the homogeneity condition for �α,p;β,q we arrive at

E�2,p;1,q = (p + q + 1)�2,p;1,q + 2�2,p;2,q−1.

Other cases of the formula (2.3) can be proved in a similar way. The lemma is proved.
��
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Lemma 2.3. The variational derivatives of the Hamiltonians Hβ,q are given by the fol-
lowing formulae

δHβ,q

δv(x)
= hβ,q−1 = ε(�− 1)

∂ log τ

∂tβ,q
, (2.13)

δHβ,q

δu(x)
= �2,0;β,q = ε2 ∂2 log τ

∂t2,0∂tβ,q
. (2.14)

Proof. From the Hamiltonian representation (1.12) of the extended Toda hierarchy we
have

∂v

∂tβ,q
= 1

ε
(�− 1)

δHβ,q

δu
,

∂u

∂tβ,q
= 1

ε

(
1 −�−1

) δHβ,q
δv

. (2.15)

On the other hand, the formulae (1.21) and (1.22) imply that

∂v

∂tβ,q
= 1

ε
(�− 1)�2,0;β,q,

∂u

∂tβ,q
= 1

ε

(
1 −�−1

)
hβ,q−1. (2.16)

So, due to the homogeneity property of the densities of the Hamiltonians we arrive at
the expressions (2.13) and (2.14). The lemma is proved. ��

3. Virasoro Operators for the Frobenius Manifold MToda

Recall that, according to the general algorithm of [9] the Virasoro operators associated
with a given Frobenius manifold are obtained by the following free field realization2

that we now present for the example of MToda. Let a1,p, a2,p, p ∈ Z be free bosonic
operators satisfying the following commutation relation3

[a1,p, a2,q ] = (−1)pδp+q+1,0. (3.1)

Introduce vectors of operators

ap := (a1,p, a2,p), p ∈ Z. (3.2)

Consider the generating function

f(z) :=
∑

p∈Z

apzp+µzR =
∑

p∈Z

ap

(
zp− 1

2 0

2zp+ 1
2 log z zp+ 1

2

)

. (3.3)

Here the diagonal matrix µ and nilpotent matrix R correspond to the spectrum at the
origin of the Frobenius manifold MToda,

µ =



− 1

2 0

0 1
2



 , R =
(

0 0
2 0

)
. (3.4)

2 In [8] we used a different free field realization of the Virasoro operators inspired by [10].
3 Note change of notations: in [9] we used half integer labels.
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The current φ(ν)(λ) for any non-integer ν is defined by a (suitably defined) Laplace-type
transform

φ(ν)(λ) =
∫ ∞

0

dz

z
1
2 +ν e

−λ zf(z)

=
∑

p∈Z

ap
λp−ν

(
(p − ν) 0

2
λ

[
′(p − ν + 1)− log λ(p − ν + 1)

] 1
λ
(p − ν + 1)

)
.

(3.5)

The generating function of the regularized Virasoro operators L(ν)m is defined by the
following quadratic combination of the derivatives of the currents

T (ν)(λ)

=
∑

m∈Z

L
(ν)
m

λm+2

= 1

2
: ∂λφ

(−ν)G(ν)
[
∂λφ

(ν)
]T

: + 1

4λ2 tr

(
1

4
− µ2

)

=
∑

p,q∈Z

1

λp+q+3 : apMpq(ν, λ) aTq :, where (3.6)

Mpq(ν, λ)

=



0 sin πν

2π (p + ν + 1)(q − ν + 2)

− sin πν
2π (q − ν + 1)(p + ν + 2) 1

λ
∂ν
[ sin πν

π
(p + ν + 2)(q − ν + 2)

]



 .

In this formula the Gram matrix G(ν) reads

G(ν) = 1

2π

[
eπ i Reπ i(µ+ν) + e−π i Re−π i(µ+ν)

]
η−1

= 1

π

(
0 sin πν

− sin πν 2π cosπν

)
, (3.7)

η is the Gram matrix of the metric (1.27), i.e., in our case

η = η−1 =
(

0 1
1 0

)
;

the term with the trace in (3.6) does not contribute since µ2 = 1
4 . The normal ordering

in (3.6) is defined in such a way that all the operators a1,p and a2,p with nonnegative p
are to be written on the right. So

L(ν)m =
∑

p+q=m−2

: a2,pa2,q : ∂ν

[
sin πν

π
(p + ν + 2)(q − ν + 2)

]

+
∑

p+q=m−1

: a1,pa2,q :
sin πν

2π
[(p + ν + 1)(q − ν + 2)

−(p − ν + 1)(q + ν + 2)] .
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Using the standard identities of the theory of gamma-functions

(x + 1) = x (x), (x)(1 − x) = π

sin πx
,

we finally obtain the following expression for the regularized Virasoro operators

L(ν)m = 1

2

∑

p

(−1)p+1
[
(ν − p +m+ 1)

(ν − p)
+ (−ν − p +m+ 1)

(−ν − p)

]
: a1,pa2,m−p−1 :

+
∑

p

(−1)p∂ν

[
(m− ν − p)

(−ν − p − 1)

]
: a2,pa2,m−p−2 : . (3.8)

The operators
L
(ν)
−1 =

∑

p

(−1)p+1 : a1,pa2,−p−2 :

and
L
(ν)
0 =

∑

p

(−1)pp : a1,pa2,−p−1 : +
∑

p

(−1)p+1 : a2,pa2,−p−2 :

do not depend on ν. The operators (3.8) with m > 0 depend polynomially on ν; those
with m < −1 depend rationally on ν. Therefore there exist limits

Lm := lim
ν→0

L(ν)m , m ≥ −1.

To arrive at the Virasoro operators given above in the Introduction one use the fol-
lowing realization of the bosonic operators aα,p:

aα,p =





ε ∂
∂tα,p

, p ≥ 0

ε−1(−1)p+1tα,−p−1, p < 0
. (3.9)

Here we use the matrix η for lowering the indices

tα,p := ηαβt
β,p.

In the next section we will prove that the linear action of the Virasoro operators Lm
with m ≥ −1 defines infinitesimal symmetries of the extended Toda hierarchy.

4. Proof of the Main Theorem

We first consider the following system of Euler-Lagrange equations:

∑

p≥0

t̃ α,p
δHα,p−1

δv(x)
= 0,

∑

p≥0

t̃ α,p
δHα,p−1

δu(x)
= 0 (4.1)

with

t̃ α,p = tα,p − cα,p(ε)+ δα1 δp,0 x (4.2)
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for some formal power series cα,p(ε). Here and henceforth summations with respect to
the repeated Greek indices are assumed. We assume that only finitely many of them are
nonzero. The series must satisfy the condition of genericity that we shall now formulate.

Let us expand the Hamiltonian densities (1.14) in powers of ε,

hα,p = θα,p+1(v, u)+O(ε). (4.3)

The explicit formulae for the functions θα,p(v, u) can be found in [9] (see also the for-
mulae (A.12), (A.13) below). Let us impose the following assumptions for the leading
terms of the series cα,p(ε).

1. There exist values v̄, ū such that

∑

p≥0

cα,p(0)
∂θα,p(v, u)

∂v

∣
∣
∣
∣
v=v̄,u=ū

= 0,

∑

p≥0

cα,p(0)
∂θα,p(v, u)

∂u

∣
∣
∣
∣
v=v̄,u=ū

= 0,

(4.4)

and
2. The operator of multiplication by the vector

∇
∑

p≥1

cα,p(0)θα,p−1(v̄, ū) (4.5)

is invertible element of the Frobenius algebra Tv̄,ūMToda.

Under these assumptions the following lemma holds true (cf. Lemma 3.8.2 of [9]).

Lemma 4.1. There exists a unique solution to the Euler - Lagrange equations (4.1) in
the class of formal series

v = v(x, t, ε) = a0(ε)+
∑

k>0

aα1,p1;...;αk,pk (ε)t
α1,p1 . . . tαk,pk |t1,0 �→t1,0+x,

u = u(x, t, ε) = b0(ε)+
∑

k>0

bα1,p1;...;αk,pk (ε)t
α1,p1 . . . tαk,pk |t1,0 �→t1,0+x, (4.6)

where

a0(0) = v̄, b0(0) = ū. (4.7)

Proof. In the leading order in ε the Euler - Lagrange equations (4.1) become just equa-
tions for the critical points of the function

∑

p≥0

(tα,p − cα,p(0)+ xδα1 δ
p
0 )θα,p(v, u).

The above two assumptions imply that there exists a unique critical point

v0 = v0(x, t, ε), u0 = u0(x, t, ε)
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of the function ∑

p≥0

(tα,p − cα,p(ε)+ xδα1 δ
p
0 )θα,p(v, u)

in the class of formal power series of the structure similar to (4.6) with

v0(0, 0, 0) = v̄, u0(0, 0, 0) = ū.

It is easy to see that these functions can be uniquely extended to a solution to the full
Euler - Lagrange equations (4.1). The lemma is proved. ��
Lemma 4.2. The space of solutions of the Euler-Lagrange equation (4.1) is invariant
with respect to the flows of the extended Toda hierarchy.

Proof. Let us represent the difference operators Aβ,q defined in (1.3) by

Aβ,q =
∑

k≥0

aβ,q;k�k, β = 1, 2, q ≥ 0. (4.8)

Then by using Lemma 2.3 we obtain

δHα,p

δv(x)
= aα,p;0(x),

δHα,p

δu(x)
= aα,p;1(x − ε) eu(x). (4.9)

The Lax pair representation (1.2) of the extended Toda hierarchy yields

∂Aα,p

∂tβ,q
− ∂Aβ,q

∂tα,p
= [Aβ,q, Aα,p],

∂eu

∂tβ,q
= [

aβ,q;0(x)− aβ,q;0(x − ε)
]
eu(x).

These equations together with (4.8) imply

∂

∂tβ,q

(
δHα,p

δwγ (x)

)
= ∂

∂tα,p

(
δHβ,q

δwγ (x)

)
, α, β, γ = 1, 2; p, q ≥ 0. (4.10)

So, under the flows of the extended Toda hierarchy we have

∂

∂tβ,q




∑

p≥0

t̃ α,p
δHα,p−1

δwγ (x)



= δHβ,q−1

δwγ (x)
+
∑

m≥0

∂

∂wξ,m

(
δHβ,q

δwγ (x)

)
∂mx




∑

p≥1

t̃ α,p
∂wξ

∂tα,p−1



.

(4.11)

Here and below we use the following notations for the x-derivatives of the functions u
and v

wξ,m := ∂mwξ

∂xm
, ξ = 1, 2, m ≥ 0.

So
w1,m = v(m), w2,m = u(m).

By using (4.12) that we will prove in Lemma 4.4 below we know that the r.h.s. of (4.11)
can be rewritten as

δHβ,q−1

δwγ (x)
− ∂

∂v

(
δHβ,q

δwγ (x)

)

which equals zero due to (4.9), (2.6) and the identity ∂L
∂v

= 1. The lemma is proved. ��
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Due to the uniqueness of solutions of the initial value problem for the Euler-Lagrange
equation (4.1) and the above theorem, we have

Theorem 4.3. Any solution of Eq. (4.1) gives a solution to the extended Toda hierarchy.

Using quasitriviality it can be shown that the class of solutions of the extended Toda
hierarchy that is given by the above theorem forms a dense subset of the class of its
analytic solutions wα(x, t, ε), α = 1, 2 (see Theorem 3.6.15 and 3.10.31 in [9]). We
call this class of solutions the generic class of solutions of the extended Toda hierarchy,
and we will restrict ourselves to it henceforth.

Lemma 4.4. Any solution (v, u) of the Euler-Lagrange equation (4.1) satisfies the equa-
tions

∑

p≥1

t̃ α,p
∂v

∂tα,p−1 + 1 = 0,

∑

p≥1

t̃ α,p
∂u

∂tα,p−1 = 0, (4.12)

∑

q≥1

[
q

(
t̃1,q

∂v

∂t1,q
+ t̃2,q−1 ∂v

∂t2,q−1

)
+ 2t̃1,q

∂v

∂t2,q−1

]
+ v = 0,

∑

q≥1

[
q

(
t̃1,q

∂u

∂t1,q
+ t̃2,q−1 ∂u

∂t2,q−1

)
+ 2t̃1,q

∂u

∂t2,q−1

]
+ 2 = 0. (4.13)

Proof. Equation (4.12) is the result of the application of the operators ∂
∂t2,0

and 1
ε
(�−1)

on the Euler-Lagrange equation (4.1). To prove Equation (4.13), we need to use the fol-
lowing bihamiltonian recursion relation of the extended Toda hierarchy [1]:

U
αγ
2

δHβ,q−1

δwγ
= (q + µβ + 1

2
)U

αγ
1

δHβ,q

δwγ
+ R

γ
β U

αξ
1
δHγ,q−1

δwξ
. (4.14)

Here the first Hamiltonian structureUαβ1 is defined in (1.13) and the second one is given
by

U11
2 = 1

ε

(
eε ∂x eu(x) − eu(x)e−ε ∂x

)
, U12

2 = 1

ε
v(x)

(
eε ∂x − 1

)
,

U21
2 = 1

ε

(
1 − e−ε ∂x

)
v(x), U22

2 = 1

ε

(
eε ∂x − e−ε ∂x

)
. (4.15)

The matrices R and µ are defined by (2.4) (see also (3.4)). Then Eq. (4.13) is obtained
by applying the operator Uαγ2 to both sides of the Euler-Lagrange equation (4.1) and by
using the bihamiltonian recursion relation (4.14). The lemma is proved. ��

Let v, u be any solution of the Euler-Lagrange equation (4.1) specified by a choice
of the series cα,p(ε) and of the leading term v̄, ū in (4.4). Due to Theorem 1.1 and
Theorem 4.3 this solution can be obtained from a solution v0, u0 of the dispersionless
Toda hierarchy. Denote by τ [0] and τ the corresponding tau functions with the relation

log τ = ε−2 log τ [0] +
∑

g≥1

ε2g−2Fg(w0, . . . , w
(3g−2)
0 ). (4.16)
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Note that the genus zero tau function τ [0] is defined up to multiplication by a function

of the form e
∑
c

[0]
α,pt

α,p
with constants c[0]

α,p. We now fix this ambiguity by taking

log τ [0] = 1

2

∑
�

[0]
α,p;β,q(v0, u0)t̃

α,p t̃β,q , (4.17)

where

�
[0]
α,p;β,q = �α,p;β,q

∣
∣
ε=0 . (4.18)

The validity of this definition for the tau function of the solution v0, u0 of the disper-
sionless extended Toda hierarchy is based on the fact that v0, u0 satisfy the genus zero
Euler-Lagrange equation

∑
t̃ α,p

∂h
[0]
α,p−1(v0, u0)

∂v0
= 0,

∑
t̃ α,p

∂h
[0]
α,p−1(v0, u0)

∂u0
= 0 (4.19)

with h[0]
α,p−1 = hα,p−1

∣∣
ε=0. From this equation it readily follows that

�
[0]
α,p;β,q = ∂2 log τ [0]

∂tα,p∂tβ,q
, (4.20)

and that the genus zero tau function satisfies the string equation

∑

p≥1

t̃ α,p
∂ log τ [0]

∂tα,p−1 + t̃1,0 t̃2,0 = 0. (4.21)

The proof of the above statement can be found in [5]. It was proved in [8] that such
a tau function also satisfies the genus zero Virasoro constraints given by the Virasoro
operators (1.29). The action of these operators on tau functions of the form (4.16) can
be expressed as

Lm(ε
−1 t̃, ε

∂

∂t
)τ =




∑

g≥0

ε2g−2Zg



 τ, m ≥ −1. (4.22)

The genus zero Virasoro constraints are given byZ0 = 0. We are to prove below that the
tau function of a generic solution to the extended Toda hierarchy satisfies the full genera
Virasoro constraints Zg = 0, g ≥ 0. Let us begin with the L−1 and L0 constraints.

Lemma 4.5. The tau function (4.16) satisfies the constraints

L−1(ε
−1 t̃, ε

∂

∂t
)τ = 0. L0(ε

−1 t̃, ε
∂

∂t
)τ = c0(ε) =

∑

g≥1

ε2g−2c
[g]
0 (4.23)

with a certain constant c0(ε).
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Proof. Let us apply the operator ∂2

∂tσ,k∂tρ,l
to the l.h.s. of the first equation of (4.23).

Using the definition (1.20) for the tau function and Eq. (4.12) we get

ε2 ∂2

∂tσ,k∂tρ,l




∑

p≥1

t̃ α,p
∂ log τ

∂tα,p−1 + 1

ε2 t̃
1,0 t̃2,0





= �σ,k−1;ρ,l +�σ,k;ρ,l−1 +
∑

p≥1

t̃ α,p
∂�σ,k;ρ,l
∂tα,p−1 + (

δσ,1δρ,2 + δσ,2δρ,1
)
δk,0δl,0

= �σ,k−1;ρ,l +�σ,k;ρ,l−1 +
∑

p≥1

t̃ α,p
∂�σ,k;ρ,l
∂wξ,m

∂mx

(
∂wξ

∂tα,p−1

)

+ (δσ,1δρ,2 + δσ,2δρ,1
)
δk,0δl,0

= �σ,k−1;ρ,l +�σ,k;ρ,l−1 − ∂�σ,k;ρ,l
∂v

+ (
δσ,1δρ,2 + δσ,2δρ,1

)
δk,0δl,0

= 0. (4.24)

Here the last equality is due to (2.2). On the other hand, the Euler-Lagrange equation
(4.1) implies that the l.h.s. of the first formula of (4.23) does not depend on t̃1,0 and t̃2,0,
so there exist constants c[g]

−1, c
[g]
α,p, α = 1, 2, p ≥ 0, g ≥ 1 such that

∑

p≥1

t̃ α,p
∂ log τ

∂tα,p−1 + 1

ε2 t̃
1,0 t̃2,0 =

∑

p≥1,g≥1

ε2g−2 c
[g]
α,p−1 t̃

α,p +
∑

g≥1

ε2g−2 c
[g]
−1. (4.25)

Here the vanishing of the ε−2 term in the r.h.s. of the above identity is due to (4.21).
Thus if we modify the tau function by

τ �→ τ̃ = τ e
−∑p≥0,g≥1 ε

2g−2c
[g]
α,p t̃

α,p

, (4.26)

then we obtain

L−1(ε
−1 t̃, ε

∂

∂t
) τ̃ = c−1(ε) τ̃ = (

∑

g≥1

ε2g−2 c
[g]
−1)τ̃ . (4.27)

We will prove the vanishing of the constants c[g]
α,p, c−1(ε) in a moment.

By using the formula (2.3) and a similar argument as that given in the proof of (4.24),
we can prove the validity of the following identity:

∂2

∂tσ,k∂tρ,l

(
L0τ̃

τ̃

)
= 0. (4.28)

Here

L0 = L0(ε
−1 t̃, ε

∂

∂t
).

So there exist constants c0(ε) and bα,p(ε) such that

L0τ̃

τ̃
=
∑

α,p

bα,p(ε)t̃
α,p + c0(ε). (4.29)
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By using the commutation relation [L−1, L0] = −L−1 we obtain

L−1

[(∑
bα,p(ε)t̃

α,p + c0(ε)
)
τ̃
]

− L0 (c−1(ε) τ̃ ) = −c−1(ε)τ̃ . (4.30)

The l.h.s. of the above equality reads




∑

p≥1

bα,p−1 t̃
α,p



 τ̃ +
(∑

bα,pt̃
α,p + c0(ε)

)
L−1 τ̃ − c−1(ε)L0τ̃

=



∑

p≥1

bα,p−1 t̃
α,p



 τ̃ . (4.31)

So from (4.30) it follows that




∑

p≥1

bα,p−1 t̃
α,p



 τ̃ = −c−1(ε) τ̃ , (4.32)

from which we obtain c−1(ε) = bα,p(ε) = 0.

Now we proceed to proving the vanishing of the constants c[g]
α,p. From the above

argument we already have the identity

L−1(ε
−1 t̃, ε

∂

∂t
)

(
τ e

−∑g≥1 ε
2g−2c

[g]
α,p t̃

α,p

)
= 0.

At the genus one level we have

∑

p≥1

t̃ α,p
∂F1(w,wx)

∂tα,p−1 −
∑

p≥1

t̃ α,pc
[1]
α,p−1 = 0. (4.33)

Starting from this formula till the end of the proof of the lemma we will redenote for
the sake of brevity the arguments w0 = (v0, u0) and w0x = (v0x, u0x) of the function
F1(w0, w0x) by w = (v, u) and wx = (vx, ux).

Since τ [0] satisfies the genus zero Virasoro constraints, we can use the vanishing of
the genus zero Virasoro symmetries to obtain, as we did in [8, 9], the following formula:

∑

p≥1

t̃ α,p
∂F1(w,wx)

∂tα,p−1 = −∂F1

∂v
. (4.34)

Thus the identity (4.33) can be rewritten as

−
∑

p≥1

t̃ α,pc
[1]
α,p−1 = ∂F1

∂v
. (4.35)

By applying the operator
∑
p≥0 z

p ∂
∂tα,p

to the above identity we get
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−
∑

p≥1

c
[1]
α,p−1z

p

=
∑

p≥0

[
∂2F1

∂v∂wγ
∂x

(
∂θα,p+1

∂wγ

)
+ ∂2F1

∂v∂w
γ
x

∂2
x

(
∂θα,p+1

∂wγ

)]
zp

=
[
∂2F1

∂v∂wγ
cγσρ wρx + ∂2F1

∂v∂w
γ
x

∂x(c
γ σ
ρ wρx )+ z

∂2F1

∂v∂w
γ
x

cγσ1
ρ1
wρ1
x c

σ
σ1ρ2

wρ2
x

]
∂θα(z)

∂wσ
.

(4.36)

Here the functions θα,p = θα,p(w), cαβγ = cαβγ (w) are given by

θα,p = hα,p−1|ε=0, θα(z) =
∑

p≥0

θα,pz
p,

cαβγ = ∂3

∂wα∂wβ∂wγ
(
1

2
v2u+ eu), (4.37)

and the raising of indices in cαβγ is done by the metric (1.27), i.e. η11 = η22 = 0, η12 =
η21 = 1. In the above computation we used the horizontality of the differentials of the
functions θα(w; z) w.r.t. the deformed flat connection on MToda, i.e. the equations

∂2θα(z)

∂wβ∂wγ
= zc

ξ
βγ

∂θα(z)

∂wξ
. (4.38)

So from (4.36) we get

∂2F1

∂v∂wγ
cγσρ wρx + ∂2F1

∂v∂w
γ
x

∂x(c
γ σ
ρ wρx ) = 0,

(
∂2F1

∂v∂w
γ
x

cγσ1
ρ1
wρ1
x c

σ
σ1ρ2

wρ2
x

)
ησα = −c[1]

α,0, (4.39)

and together with (4.36) these formulae in turn yield
∑

p≥0

c[1]
α,pz

p = c
[1]
γ,0 ∂

γ θα(z). (4.40)

By differentiating both sides of the above equation w.r.t. x we get

0 = c
[1]
γ,0 c

γ
ξσ w

σ
x ∂

ξ θα(z) (4.41)

which implies
c

[1]
γ,0 = 0.

So from (4.40) we obtain
c[1]
γ,p = 0, p ≥ 1.

In a completely similar way we can prove that

c
[g]
γ,p = 0, p ≥ 0, g ≥ 2.

The lemma is proved. ��
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The following lemma represents the bihamiltonian recursion relation for the extended
Toda hierarchy in terms of its tau functions:

Lemma 4.6. The following recursion relations hold true for any q ≥ 1 for the tau
functions of generic solutions to the extended Toda hierarchy:

q (�− 1)
∂ log τ

∂t1,q
= R ∂ log τ

∂t1,q−1 − 2 (�− 1)
∂ log τ

∂t2,q−1 , (4.42)

(q + 1) (�− 1)
∂ log τ

∂t2,q
= R ∂ log τ

∂t2,q−1 , (4.43)

where the operator R is defined by

R = v(x)(�− 1)+ ε(�+ 1)
∂

∂t2,0
. (4.44)

Proof. Denote

Wβ,q := R ∂ log τ

∂tβ,q−1 − (q + µβ + 1

2
)(�− 1)

∂ log τ

∂tβ,q
− (�− 1)Rγβ

∂ log τ

∂tγ,q−1 . (4.45)

We are to prove that Wβ,q = 0 for β = 1, 2, q ≥ 1. From Lemma 2.3 and from the
bihamiltonian recursion relation (4.14) with α = 2 we obtain by a direct calculation that

(�− 1)Wβ,q = 0. (4.46)

We note that ε Wβ,q can be expressed as homogeneous differential polynomials inwi,m,
e±u, i = 1, 2,m ≥ 0 of degree q + 1

2 + µβ . Recall that the degree of such differential
polynomials is defined in (1.16). So the lemma follows from the above equation (4.46).
The lemma is proved. ��
Proof of the Main Theorem. Let us first prove that the following recursion relation holds
true:

RLmτ

τ
= (�− 1)

Lm+1τ

τ
. (4.47)

Here and below

Lm = Lm(ε
−1 t̃, ε

∂

∂t
).

From the definition of the operator R we have

R
m−1∑

k=1

k!(m− k)!

(
1

τ

∂2τ

∂t2,k−1∂t2,m−1−k

)

=
m−1∑

k=1

k!(m− k)!

[
∂

∂t2,k−1 R ∂ log τ

∂t2,m−1−k +
(

R ∂ log τ

∂t2,k−1

)
�

∂ log τ

∂t2,m−1−k

+ ∂ log τ

∂t2,k−1 R ∂ log τ

∂t2,m−1−k

]
, m ≥ 1.
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So by using the recursion relations (4.42), (4.43) we can deduce the relation (4.47) for
m ≥ 1 as follows:

RLmτ

τ
= ε2(�− 1)

m∑

k=1

k!(m+ 1 − k)!
1

τ

∂2τ

∂t2,k−1∂t2,m−k

−ε2m!(�− 1)
∂2 log τ

∂t2,m−1∂t2,0
−m!

[
ε(�− 1)

∂ log τ

∂t2,0

]
ε(�+ 1)

∂ log τ

∂t2,m−1

+
∑

k≥1

(m+ k)!

(k − 1)!
(�− 1)

[
(m+ k + 1)

(
t̃1,k

∂ log τ

∂t1,m+k+1 + t̃2,k−1 ∂ log τ

∂t2,m+k

)

+2t̃1,k
∂ log τ

∂t2,m+k

]
+ ε(m+ 1)!(�+ 1)

∂ log τ

∂t2,m

+2
∑

k≥0

(m+ k + 1)αm(k)t̃
1,k(�− 1)

∂ log τ

∂t2,m+k

+2εαm(0)v�
∂ log τ

∂t2,m−1 + 2ε2αm(0)�
∂2 log τ

∂t2,m−1∂t2,0

= (�− 1)
Lm+1τ

τ
− ε2m!(�− 1)

∂2 log τ

∂t2,m−1∂t2,0

−m!

[
ε(�− 1)

∂ log τ

∂t2,0

]
ε(�+ 1)

∂ log τ

∂t2,m−1

+ε(m+ 1)!(�+ 1)
∂ log τ

∂t2,m
− 2ε(m+ 1)!�

∂ log τ

∂t2,m

+2εαm(0)v�
∂ log τ

∂t2,m−1 + 2εαm(0)�
∂2 log τ

∂t2,m−1∂t2,0

= (�− 1)
Lm+1τ

τ
+ εm! R ∂ log τ

∂t2,m−1 − ε(m+ 1)!(�− 1)
∂ log τ

∂t2,m

= (�− 1)
Lm+1τ

τ
. (4.48)

It can be easily checked that the recursion relation (4.47) is also true for m = −1, 0.
From (4.23) and the recursion relation (4.47) we know that

(�− 1)

(
L1τ

τ

)
= 0. (4.49)

Since the function τ [0] satisfies the genus zeroVirasoro constraints, it follows from (4.16)
that

L1τ

τ
=
∑

g≥1

ε2g−2Wg(w0, w
′
0, . . . , w

(mg)

0 ). (4.50)

Thus from (4.49) we arrive at the formula

L1τ

τ
= c1(ε) =

∑

g≥1

ε2g−2c
[g]
1 (4.51)

for some constants c[g]
1 .
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On the other hand, by using the the commutation relation (1.28) and Eqs. (4.23) we
obtain

L−1 (Lmτ) = −(m+ 1)Lm−1τ, L0 (Lmτ) = (c0(ε)−m)Lmτ. (4.52)

These formulae can be rewritten as

L̂−1

(
Lmτ

τ

)
= −(m+ 1)

(
Lm−1τ

τ

)
, L̂0

(
Lmτ

τ

)
= −m

(
Lmτ

τ

)
. (4.53)

Here L̂−1 = L−1 − 1
ε2 t̃

1,0 t̃2,0 and L̂0 = L0 − 1
ε2

(
t̃1,0

)2
. By putting m = 1 into the

above two relations we get

L̂−1

(
L1τ

τ

)
= −2 c0(ε), L̂0

(
L1τ

τ

)
= −

(
L1τ

τ

)
. (4.54)

So from (4.51) we have c0(ε) = c1(ε) = 0, and we proved the vanishing of L0τ and
L1τ .

By using the recursion relation (4.47) with m = 1 we obtain

(�− 1)

(
L2τ

τ

)
= 0. (4.55)

Due to the same reason as the one we used to derive (4.51) we have

L2τ

τ
= c2(ε) =

∑

g≥1

ε2g−2c
[g]
2 (4.56)

for some constants c[g]
2 . So by using the second formula in (4.53) we get L2τ = 0.

Now, the Virasoro commutation relation (1.28) implies the validity of all the Virasoro
constraints

Lm

(
ε−1 t̃, ε

∂

∂t

)
τ = 0, m ≥ −1.

It remains to prove that linear action of the Virasoro operators (1.29) defines infini-
tesimal symmetries of the extended Toda hierarchy. To this end we observe that

Lm

(
ε−1(t − c(ε)), ε

∂

∂t

)
= Lm

(
ε−1t, ε

∂

∂t

)
− aα,p

∂

∂tα,p
− bα,pt

α,p − c,

where aα,p, bα,p and c are some series in ε that may also depend on m. Note that the
a series contains only nonnegative powers of ε. From the already proven Virasoro con-
straints it follows that, for any generic solution to the extended Toda hierarchy the action
of the Virasoro operators on the tau function can be recast as

Lm

(
ε−1t, ε

∂

∂t

)
τ =

(
aα,p

∂

∂tα,p
+ bα,pt

α,p + c

)
τ.

So, for a small parameter δ

τ + δ Lm

(
ε−1t, ε

∂

∂t

)
τ = eδ(bα,pt

α,p+c)eδ a
α,p ∂

∂tα,p τ +O(δ2). (4.57)
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The operator

e
δ aα,p ∂

∂tα,p

is nothing but the shift along trajectories of the hierarchy. Note that such a shift leaves
invariant the class of generic solutions. Multiplication by the exponential of a linear
function in the times for obvious reasons maps a tau function to another one for the
same solution to the hierarchy. This proves that (4.57) is again a tau function of some
solution of the extended Toda hierarchy. The theorem is proved. ��

5. The Topological Solution of the Extended Toda Hierarchy

Let us briefly recall the definition of Gromov - Witten invariants and their descendents
and the construction of Witten’s generating function (physicists call it the free energy
of the two-dimensional CP 1 topological sigma model). Denote φ1 = 1 ∈ H 0(CP 1),
φ2 = ω ∈ H 2(CP 1) the basis in the cohomology space H ∗(CP 1). The 2-form ω is
assumed to be normalized by the condition

∫

CP 1
ω = 1.

The free energy of the CP 1 topological sigma-model is a function of infinite number
of coupling parameters

t = (t1,0, t2,0, t1,1, t2,1, . . . )

and of ε defined by the following genus expansion form:

F(t; ε) =
∑

g≥0

ε2g−2Fg(t). (5.1)

The parameter ε is called here the string coupling constant, and the function Fg = Fg(t)
is called the genus g free energy which is given by

Fg =
∑ 1

m!
tα1,p1 . . . tαm,pm〈τp1(φα1) . . . τpm(φαm)〉g, (5.2)

where τp(φα) are the gravitational descendents of the primary fields φα , tα,p is the cor-
responding coupling constants, and the rational numbers 〈τp1(φα1) . . . τpm(φαm)〉g are
given by the following intersection numbers on the moduli spaces of CP 1-valued stable
curves of genus g:

〈τp1(φα1) . . . τpm(φαm)〉g
=
∑

β

qβ
∫

[M̄g,m(CP 1,β)]virt
ev∗

1φα1 ∧ ψp1
1 ∧ · · · ∧ ev∗

mφαm ∧ ψpmm . (5.3)

Here M̄g,m(CP
1, β) is the moduli space of stable curves of genus g with m markings

of the given degree β ∈ H2(CP
1; Z), evi is the evaluation map

evi : M̄g,m(CP
1, β) → CP 1

corresponding to the ith marking,ψi is the first Chern class of the tautological line bundle
over the moduli space corresponding to the ith marking. According to the divisor axiom
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[22] the dependence of the Gromov - Witten potential on the indeterminate q appears
only through the combination q et

2,0
. We will therefore omit the dependence on q in the

formulae.
Let us clarify the relationship between our theory of Virasoro symmetries of the ex-

tended Toda hierarchy and the Virasoro conjecture of T.Eguchi, K.Hori, and C.-S.Xiong
[12, 13] extended by S.Katz. Denote

ZCP 1(t; ε) := eF(t;ε)

the partition function of the CP 1 topological sigma-model. Here F(t; ε) is the gener-
ating function of the CP 1 Gromov - Witten invariants and their descendents defined
above. According to the results of A.Givental [19, 20] this partition function satisfies the
following infinite sequence of linear Virasoro constraints:

L−1ZCP 1 = ∂

∂t1,0
ZCP 1 ,

LmZCP 1 = (m+ 1)!

[
∂

∂t1,m+1 + 2κm
∂

∂t2,m

]
ZCP 1 , m ≥ 0, (5.4)

where

κm =
m+1∑

j=1

1

j
.

Here Lm are just the Virasoro operators defined in (1.29). For the particular case of
CP 1 (5.4) coincide with the Virasoro constraints conjectured in [12]. However, in their
papers Eguchi, Hori and Xiong formulated a somewhat bolder conjecture that says that
all g ≥ 1 Gromov - Witten invariants and their descendents of a smooth projective
variety can be uniquely determined by solving recursively the linear system of Virasoro
constraints. Although this conjecture seems to be too nice to be true in general (Calabi
- Yau manifolds give counterexamples to uniqueness, see [2]), in certain cases it can be
justified.

Let us give our version of the Eguchi - Hori - Xiong Virasoro constraints programme
adapted to computing Gromov - Witten invariants of CP 1.

Step 1. Computation of the genus zero Gromov -Witten potential F0(t). This can be done
in terms of the Frobenius manifold MToda as in [3, 4]. For the reader’s convenience we
recall the algorithm of computation of F0(t) in the Appendix below. Introduce functions

v0 = v0(t) := ∂2F0(t)
∂t1,0∂t2,0

,

u0 = u0(t) := ∂2F0(t)
∂t1,0∂t1,0

.

We will denote u′
0, v′

0, u′′
0, v′′

0 etc. the derivatives of these functions along t1,0.

Step 2. Eguchi - Hori - Xiong (3g − 2)-ansatz for the higher genus corrections. Look
for the g ≥ 1 terms in the genus expansion (5.1) in the form

Fg(t) = Fg(v0(t), u0(t), v′
0(t), u

′
0(t), . . . , v

(3g−2)
0 (t), u(3g−2)

0 (t)), g ≥ 1. (5.5)

The ansatz (5.5) was proved by E. Getzler in [18]. In the setup of our theory [9] of inte-
grable systems the (3g−2)-ansatz is a consequence of a deep result about quasitriviality
of tau-symmetric deformations of Poisson pencils (see Theorem 3.9.5 in [9]).
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Step 3. Virasoro Conjecture.

Part 1. The series (5.1), where F0(t) is the genus zero Gromov - Witten potential and
the terms of positive genera have the form (5.5), satisfies the Virasoro constraints (5.4).
(Clearly the (3g − 2)-ansatz is of no importance so far.)
Part 2. The degree 2g− 2 homogeneous functions Fg on the (3g− 2) jet space ofMToda
for all g ≥ 1 are uniquely determined from the Virasoro constraints (5.4) by solving
recursively systems of linear equations.

Part 1 of the Virasoro Conjecture was proved by A. Givental [19, 20]. Part 2 was
proved in the much more general framework of an arbitrary semisimple Frobenius man-
ifold in Theorem 3.10.20 of [9]. Combining these results we arrive at

Theorem 5.1. 1. The partition functionZCP 1(t; ε) of theCP 1 topological sigma-model
is uniquely determined by the Virasoro Conjecture equations.

2. It coincides with the tau function τCP 1 of a particular solution to the extended Toda
hierarchy (1.2)

ZCP 1(t; ε) = τCP 1(t; ε) (5.6)

specified by the following choice of the shift parameters cα,p(ε) and the initial point
v̄, ū:

cα,p(ε) = δα1 δ
p
1 , v̄ = ū = 0. (5.7)

The choice (5.7) selects the solution satisfying the string equation

∑

p≥1

tα,p
∂F

∂tα,p−1 + 1

ε2 t
1,0 t2,0 = ∂F

∂t1,0
. (5.8)

Proof. As it was shown in Sect. 3.10.7 of [9], from validity of the Virasoro constraints
for the sum �F of all g ≥ 1 corrections to the Gromov - Witten potential represented
via the (3g − 2)-ansatz,

�F :=
∑

g≥1

ε2 gFg(v, u; vx, ux, . . . , v(3g−2), u(3g−2)),

the loop equation below (cf. Example 3.10.27 in [9]) follows:

∑

r≥0

(
∂�F
∂v(r)

∂rx
v − λ

D
− 2

∂�F
∂u(r)

∂rx
1

D

)

+
∑

r≥1

r∑

k=1

(
r

k

)
∂k−1
x

1√
D

(
∂�F
∂v(r)

∂r−k+1
x

v − λ√
D

− 2
∂�F
∂u(r)

∂r−k+1
x

1√
D

)

= D−3eu
(

4 eu + (v − λ)2
)
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+
∑

k,l

ε2

4

[
−
(

∂2�F
∂v(k)∂v(l)

+ ∂�F
∂v(k)

∂�F
∂v(l)

)
∂k+1
x

v − λ√
D
∂l+1
x

v − λ√
D

+4

(
∂2�F

∂v(k)∂u(l)
+ ∂�F
∂v(k)

∂�F
∂u(l)

)
∂k+1
x

v − λ√
D
∂l+1
x

1√
D

−4

(
∂2�F

∂u(k)∂u(l)
+ ∂�F
∂u(k)

∂�F
∂u(l)

)
∂k+1
x

1√
D
∂l+1
x

1√
D

]

−ε
2

2

∑

k

{
∂�F
∂v(k)

∂k+1
x eu

4 eu(v − λ)u′ − [(v − λ)2 + 4 eu] v′

D3

+∂�F
∂u(k)

∂k+1
x eu

4 (v − λ) v′ − [(v − λ)2 + 4 eu] u′

D3

}
, (5.9)

where
D = (v − λ)2 − 4 eu.

Here λ is an arbitrary complex parameter. Expanding the loop equation near λ = ∞
reproduces the Virasoro constraints for �F . The proof of existence and uniqueness of
the solution to this equation is based on expanding the loop equation near zeroes

u± = v ± 2eu/2

ofD (these are the canonical coordinates on the Frobenius manifoldMToda). The unique-
ness of the solution to the loop equation proves the first part of the theorem.

To prove the second part we use the following arguments. From [4, 15, 11, 14] we
already know that

τ [0](t) := F0(t)

is the tau function of the dispersionless extended Toda hierarchy. This solution is speci-
fied by the shift parameters and the leading term (5.7).

The transformation

log τ [0] �→ log τ [0] +�F =: ε2 log τ (5.10)

maps dispersionless tau functions to tau functions of the full hierarchy associated with
the semisimple Frobenius manifold MToda. The full hierarchy is uniquely determined
for the given semisimple Frobenius manifold by the following properties:

– bihamiltonian structure satisfying certain nondegeneracy conditions;
– tau symmetry that provides existence of a tau function for a generic solution;
– invariance with respect to the linear action of the Virasoro operators Lm, m ≥ −1

onto the tau functions.

As we explained in the Introduction, the first two properties are met by the extended
Toda hierarchy due to results of [1]. The last property ofVirasoro invariance is established
in the present paper. This implies that the full hierarchy associated with the Frobenius
manifold MToda coincides with the extended Toda hierarchy. Therefore the transfor-
mation (5.10) maps the tau function τ [0] of an arbitrary solution of the dispersionless
hierarchy to the tau function τ of a solution of the full extended Toda hierarchy. Taking
τ [0] = F0 one obtains τ = ZCP 1 . The theorem is proved. ��
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Clearly the theorem covers Corollaries 1.2 and 1.3 formulated in the Introduction.
To illustrate the algorithm of computation of the genus expansion (5.1) for CP 1 let

us write down the first two terms of the expansion. The formulae become simpler when
written in the canonical coordinates

u± = v0 ± 2e
u0
2 .

Genus 1:

F1 = 1

24
log u′

+u
′
− − 1

12
log

u+ − u−
4

.

Genus 2:

242 F2 = 4 u′′+
3
(u+ − u−)
5 u′+

4 − 4 u′′−
3
(u+ − u−)
5 u′−

4 − u′′+ u′′−
4 u′+ u′−

+ 3 u′′+
4 u′+

3

[
1

2
u′′

+ u
′
− − 7

5
u′′′

+ (u+ − u−)
]

+ 3 u′′−
4 u′−

3

[
1

2
u′′

− u
′
+ + 7

5
u′′′

− (u+ − u−)
]

+ 1

4 u′+
2

[
33

10
u′′

+
2 − 9

10
u′′′

+ u
′
− + 1

10
u′′

+ u
′′
− + uIV+ (u+ − u−)

]

+ 1

4 u′−
2

[
33

10
u′′

−
2 − 9

10
u′′′

− u
′
+ + 1

10
u′′

+ u
′′
− − uIV− (u+ − u−)

]

− 1

4 u′+

(
17

5
u′′′

+ + 1

2
u′′′

−

)
− 1

4 u′−

(
17

5
u′′′

− + 1

2
u′′′

+

)

− 1

10 (u+ − u−)2

(
u′+

3

u′−
+ u

′−
3

u′+

)

− 1

(u+ − u−)2

(
u′

+
2 − 11

5
u′

+ u
′
− + u′

−
2
)

+u
′′+ − u′′−
u+ − u−

(
u′−

5 u′+
+ u′+

5 u′−
+ 1

)
. (5.11)

Remark 1. In [16], Getzler proved that, under the assumption of the recursion relation
(4.43), validity of the Virasoro constraints for τCP 1 is equivalent to (4.42). In his proof a
recursion relation of the form (4.47) was used. The recursion (4.43) for τCP 1 was proved
in [24] on the subspace {t1,k = 0, k > 1} of the large phase space of all couplings. Using
this result Getzler also proved (4.42) and (4.43) under the assumption of the Virasoro
constraints for τCP 1 . He did not consider connections between recursion relations and
Virasoro constraints for other solutions to the extended Toda hierarchy. Our Corollary
1.3 shows that the recursion relations (4.42), (4.43) for τCP 1 follow directly from validity
of the Virasoro constraints.

Remark 2. In [25] A. Okounkov and R. Pandharipande proved that the Gromov - Witten
potential of the equivariant GW invariants of CP 1 and their descendents is the loga-
rithm of the tau function of the 2D Toda hierarchy of K. Ueno and K. Takasaki [27]. The
tau function of [25] depends on an additional small parameter t . The non-equivariant
limit corresponds to t → 0. It would be interesting to derive the Lax representation of
the extended Toda lattice by applying a suitable limiting procedure to that of the 2D
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Toda hierarchy of [27]. An interesting construction, due to Getzler [17] of a nontrivial
reduction of the 2D Toda hierarchy depending on the parameter t (it was called the equi-
variant Toda lattice) could give a clue to such a limiting procedure. We plan to study the
relationships between 2D and extended Toda hierarchies in a subsequent publication.

Appendix. Genus Zero Gromov-Witten Potential of CP 1

To compute the genus zero Gromov-Witten potential F0(t) according to the general
scheme of [3, 4] one is to perform the following computations (cf. Sects. 3.6.2, 3.6.10
of [9]).

1. Compute the functions θα,p(v, u) as the coefficients of expansion of the following
series:

θ1(v, u; z) =
∑

p≥0

θ1,p(v, u)z
p

= −2 ezv
(
K0(2ze

1
2 u)+ (log z+ γ )I0(2ze

1
2 u)

)

= −2ez v
∑

m≥0

(γ − 1

2
u+ ψ(m+ 1))emu

z2m

(m!)2
, (A.12)

θ2(v, u; z) =
∑

p≥0

θ2,p(v, u)z
p

= z−1 ezv I0(2ze
1
2 u)− z−1 = z−1




∑

m≥0

emu+z v
z2m

(m!)2
− 1



 . (A.13)

Here γ denotes Euler’s constant, ψ(z) stands for the digamma function, K0(x) and
I0(x) are modified Bessel functions.

2. Compute the functions�[0]
α,p;β,q(v, u) as the coefficients of the following generating

series
∑

p,q≥0

�
[0]
α,p;β,q(v, u)z

pwq

= 1

z+ w

[
∂θα(v, u; z)

∂v

∂θβ(v, u;w)
∂u

+ ∂θα(v, u; z)
∂u

∂θβ(v, u;w)
∂v

− ηαβ

]
.

(A.14)

3. Define the functions v(t), u(t) as the unique solution of the system

v =
∑

tβ,q
∂θβ,q

∂u
,

u =
∑

tβ,q
∂θβ,q

∂v
(A.15)

having the expansion

v(t) = t1,0 + o(t),

u(t) = t2,0 + o(t).
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4. The genus zero Gromov - Witten potential of CP 1 is given by

F0(t) = 1

2

∑
t̃ α,pt̃β,q�

[0]
α,p;β,q(v(t), u(t)). (A.16)

Here

t̃ α,p =
{
t1,1 − 1, α = 1, p = 1
tα,p, otherwise.

(A.17)

Let us write the first few terms of the expansion of the resulting genus zero Gromov -
Witten potential. For simplicity we denote

tp := t1,p, sp := t2,p, p ≥ 0.

The potential is expanded in powers of tp, sp and in es0 . The powers of the exponential
separate the intersection numbers on the moduli spaces M̄0,m(CP

1, β) for different β.
Thus, the terms without exponential correspond to β = 0 etc. In our expansion we
collect the intersection numbers up to degree β = 3 and up to m ≤ 4 punctures. We
also restrict the potential onto the subspace of couplings tα,p with p ≤ 3. The maximal
number of descendents is restricted to three.

F0 = t20 s0

2!
+ t20 t1 s0

2!
+ t30 s1

3!
+ t30 t2 s0

3!
+ t40 s2

4!
+ t20 t

2
1 s0

2!

+2
t30 t1 s1

3!
+ t40 t3 s0

4!
+ t50 s3

5!
+ 3

t30 t1 t2 s0

3!
+ 3

t40 t2 s1

4!
+ 3

t40 t1 s2

4!

+es0
[

1 − 2 t1 + 2
t21

2!
− 2 t0t2 + t1s0 + t0s1 − 2

t0
2 t3

2!

−2
t1

2 s0

2!
+ t0 t2 s0 + t0

2 s2

2!
− 2

t0
2 t1 t3

2!
− t0 t1 t2 s0 + t0

2 t3 s0

2!

+2
t1

2 s0
2

(2!)2
− t0

2 t2 s1

2!
+ t0 t1 s0 s1 + t0

2 s1
2

2!
+ t0

2 t1 s2

2!
+ t0

3 s3

3!

]

+e2s0

[
−3

4
t3 + 1

4
s2 + 5

4

t2
2

2!
+ 3

4
t1 t3 + 1

4
t3 s0 − 3

4
t2 s1 + 1

2

s1
2

2!

−1

4
t1 s2 + 1

4
t0 s3 + 2 t0 t2 t3 − 3

2

t2
2 s0

2!
− 3

2
t1 t3 s0 − 2 t0 t3 s1

+1

2
t2 s0 s1 − t0 t2 s2 + 1

2
t1 s0 s2 + t0 s1 s2 + 2 t0 t1 t2 t3 + 4

t0
2 t3

2

(2!)2

+ t1 t2
2 s0

2!
− 3 t0 t2 t3 s0 + t2

2 s0
2

(2!)2
+ t1 t3 s0

2

2!
+ t0 t2

2 s1

2!

−2 t0 t1 t3 s1 − t1 t2 s0 s1 + t0 t3 s0 s1 − 2
t0 t2 s1

2

2!
+ t1 s0 s1

2

2!

+3
t0 s1

3

3!
− t0 t1 t2 s2 − 3

t0
2 t3 s2

2!
+ t0 t2 s0 s2 + t0 t1 s1 s2

+2
t0

2 s2
2

(2!)2
− t0

2 t2 s3

2!
+ t0 t1 s0 s3

2
+ 3

2

t0
2 s1 s3

2!

]
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+e3s0

[
50

27

t3
2

2!
− 7

9
t3 s2 + 1

3

s2
2

2!
− 2

9
t2 s3 + 1

6
s1 s3 − 2

t2
2 t3

2!
− 14

9

t3
2 s0

2!

+2 t2 t3 s1 − 2
t3 s1

2

2!
+ t2

2 s2

2!
+ 1

3
t3 s0 s2 − t2 s1 s2 + s1

2 s2

2!
− t0 t3 s3

+1

6
t2 s0 s3 + 1

2
t0 s2 s3 − 4

t0 t2 t3
2

2!
+ 5

t2
2 t3 s0

2!
+ 4

t1 t3
2 s0

2!
+ 2

3

t3
2 s0

2

(2!)2

+8
t0 t3

2 s1

2!
− 3 t2 t3 s0 s1 + t3 s0 s1

2

2!
+ 3 t0 t2 t3 s2 − 2

t2
2 s0 s2

2!

−2 t1 t3 s0 s2 − 5 t0 t3 s1 s2 + t2 s0 s1 s2 − 2
t0 t2 s2

2

2!
+ t1 s0 s2

2

2!

+3
t0 s1 s2

2

2!
+ t0 t2

2 s3

2!
− t0 t1 t3 s3 − 1

2
t1 t2 s0 s3 + 1

2
t0 t3 s0 s3

−3

2
t0 t2 s1 s3 + 1

2
t1 s0 s1 s3 + 2

t0 s1
2 s3

2!
+ 1

2
t0 t1 s2 s3 + t0

2 s3
2

(2!)2

]
.
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