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Abstract. We study the global analytic properties of the solutions of a par-
ticular family of Painlee VI equations with the parametes= y = 0,

5= % and 2r = (2u — 1) with arbitraryu, 21 ¢ Z. We introduce a class of
solutions having critical behaviour of algebraic type, and completely com-
pute the structure of the analytic continuation of these solutions in terms of
an auxiliary reflection group in the three dimensional space. The analytic
continuation is given in terms of an action of the braid group on the triples
of generators of the reflection group. We show that the finite orbits of this
action correspond to the algebraic solutions of our Paan\éwequation and

use this result to classify all of them. We prove that the algebraic solutions of
our Painlee VI equation are in one-to-one correspondence with the regular
polyhedra or star-polyhedra in the three dimensional space.

Introduction

In this paper, we study the structure of the analytic continuation of the
solutions of the following differential equation
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wherex € C andu is an arbitrary complex parameter satisfying the condi-

tion 2u & Z.
This is a particular case of the general PaigleVIl equation
PVi(«, B, v, 8), that depends on four parametersps, y, s (see [Ince]).
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PVIu is specified by the following choice of the parameters:

Qu — 1)? 1
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The general solutioly(x; ¢, ¢;) of PVl(«, B, y, 8) satisfies the following
two important properties (see [Pain]):

1) The solutiony(x; ¢, ¢y) can be analytically continued to a meromorphic
function on the universal covering @f\ {0, 1, oc}.

2) For generic values of the integration constamtsc, and of the pa-
rametersa, B, y, §, the solutiony(x; c;, ¢;) can not be expressed via
elementary or classical transcendental functions.

The former claim is the so-calleBainle\e propertyof the equation
PVi(a, B, v, 8), i.e. its solutionsy(x; ¢, C;) may have complicated singu-
larities (i.e. branch points, essential singularities etc.) only attlieal
points0, 1, co of the equation, the position of which does not depend on the
choice of the particular solution (the so-callixed singularities All the
other singularities, the position of which depend on the integration constants
(the so-callednovable singularities are poles.

All the second order ordinary differential equations of the type:

yXX = R(Xv ya yX)a

wheregR is rational iny, and meromorphic ix andy, satisfying the Painldéy
property of absence of movable critical singularities, were classified (up
to a natural equivalence relation defined by changes of the variables) by
Painle\e and Gambier (see [Pain], and [Ga]). Only six of these equations,
which are given in thdPainlewe-Gambier list,satisfy the property 2), i.e.
they can not be reduced to known differential equations for elementary and
classical special functions. The solutions to these equations define some
new functions, the so-calledainlee transcendent®Vl(«, 8, y, ) is the
most general equation of PaineeGambier list. Indeed, all the others can be
obtained from PMix, B, y, §) by a confluence procedure (see [Ince] §14.4).
The name of transcendents could be misleading; indeed, for some par-
ticular values ofcy, ¢y, «, B, y, §), the solutiony(x; ¢, ¢p) can be expressed
via classical functions. For example, Picard (see [Pic] and [Ok]) showed
that the general solution to P, 0, O, %) can be expressed via elliptic

functions, and, more recently, Hitchin [Hit] obtained the general solution
to PVI(3, —3. 3. 2) in terms of the Jacobi theta-functions (see also [Man]).
Particu?ar examples of classical solutions to PVI, that can be expressed via
hypergeometric functions, were first constructed by Lukashevich [Luk1].
A general approach to study the classical solutions of PVI was proposed by
Okamoto (see [Ok1][Ok2]). One of the main tools of this approach is the
symmetry group of PVI: the particular solutions are those being invariant

with respect to some symmetry of PVI. The symmetries act in a non trivial
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way on the space of the parametersg, y, §). Okamoto described the fun-
damental region of the action of this symmetry group and showed that all
the classical solutions known at that moment, fit into the boundary of this
fundamental region.

The theory of the classical solutions of the Paigl@guations was ex-
tensively studied in [Ai], [AMM], [BCH], [Gr1,2,3,4], [GL], [Luk1,2,3,4],
[MW], [MCB], [Ok4], [Vor], [Um2]. For PVI, the theory of classical so-
lutions was developed by Umemura and Watanabe ([Um], [Um1], [UW],
[UW1], [Wat], [NOOUY)); in particular, all the one-parameter families of
classical solutions of PVI were classified in [Wat]. Watanabe also proved
that, loosely speaking, all the other classical solutions of PVI (i.e. not
belonging to the one-parameter families) can only be given by algebraic
functions.

Examples of algebraic solutions for R¥l —1, 55, 3 — 55) for an
arbitrary integek, were found in [Hit1] in relation with the classical problem
of Poncelet polygonsk being the number of edges of the polygon. Other
examples for P\jk were constructed in [Dub]. They turn out to be related
to the group of symmetries of the regular polyhedra in the three dimensional
space. Other algebraic solutions of PVI can be extracted from the recent
paper [Seq].

There are many physical applications of particular solutions to the
Painlese equations which we do not discuss here. We only mention the
papers [Tod], [Cha], [Oku] where our PNI(or some related particular case
of PVI) appears in the problem of construction of self-dual Bianchi-type IX
Einstein metrics, and the paper [Dub] where the same equation was used to
classify the solutions of WDVV equation in2topological field theories.

The main aim of our work is to elaborate a tool to classify all the
algebraic solutions of PV equation (for the other five Painlewequations,
algebraic solutions seem to have been classified, see [KLM], [Wat1], [Mur]
and [Mur1]).

Ouridea is very close to the main idea of the classical paper of Schwartz
(see [Schw]) devoted to the classification of the algebraic solutions of the
Gauss hypergeometric equation. keét; ¢y, ¢,) be a branch of a solution of
PVI; its analytic continuation along any closed patavoiding the singular-
ities (0, 1, c0) is a new brancly(x; c{, cg) with new integration constants
c{, c’z’. Since all the singularities of the solution @\ {0, 1, co} are poles,
the result of the analytic continuation depends only on the homotopy class of
the loopy on the Riemann sphere with three punctures. As a consequence,
the structure of the analytic continuation is described by an action of the
fundamental group:

y € m(C\{0, 1, 00}), ¥ :(C1,C) — (C},Ch). (0.1)

To classify all the algebraic solutions of PairgeVl, all the finite orbits of
this action must be classified.
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Our problem differs from Schwartz’s linear analogue, because (0.1) is
not a linear representation but a non-linear action of the fundamental group.
Itis also more involved than the problem of the classification of the algebraic
solutions of the other five Painlevequations, because the PVI is the only
equation on the PainlévGambier list having a non-Abelian fundamental
group of the complement of the critical locus.

Although the main idea seems to work for the generalRV8, y, §), we
managed to completely describe the action (0.1), and to solve the problem
of the classification of the algebraic solutions, only for the particular one-
parameter family P\fL. Nevertheless, we have decided to publish these
results separately, postponing the investigation of the general case to another
paper (in an effort to keep the paper within a reasonable size, we also
postpone the study of the resonant cage 7Z, see [Ma]). One of the
motivations for the present publication is a nice geometrical interpretation
of the structure of the analytic continuation (0.1) that seems to disappear in
the general PVI equation.

We now outline the main results of the paper. We introduce a class of
solutions of PV a-priori containing all the algebraic solutions of this equa-
tion. We say that a branch of a solutig(x; c;, ¢,) hascritical behaviour of
algebraic typeijf there exist three real numbdis 14, | and three non-zero
complex numbersg, a;, a., such that

aoX'o (L4 0(x%)), as x— 0,
yxX) =11—a(1—-x"(1+0((1-x?%)), as x— 1, (0.2)
X (1+ 0(x7™), as X — oo,

wheree > 0 is small enough. We show that there exists a three-parameter
family of solutions of PV with critical behaviour of algebraic type, where

w itself is a function oflg, I, .. Of course, for an algebraic solution, the
indiceslg, 11, | must be rational.

It turns out that the three-parameter family of solutions (0.2) is closed
under the analytic continuation (0.1), if and only.ifis real (that is, alge-
braic solutions can occur only for real. One of our main results is the
parameterization of the solutions (0.2) by ordered triples of planes in the
three dimensiondtuclidean spacésee Sect. 1.4). In particular, the indices
lo, I1, | are related to the angles,, 7r1, o, between the planes:

2ri if 0<ri<3

2—2r; if %Sri<1

i =01 c0,

and the parameter is determined within the ambiguity — £u + n,
n € 7Z, by the equation:

Sin’ 7 = coS 7T + COS 7T + COF 7T oo + 2 COSAT g COSTT 1 COSTIT o
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This ambiguity on the parametgrand the one due to the reordering of the
planes can be absorbed by the symmetries ofdéscribed in Sect. 1.2.

We compute the analytic continuation (0.1) in terms of some elementary
operations on the planes. This computation leads to prove that, for an
algebraic solution to PV, the reflections in the planes must generate the
symmetry group of a regular polyhedronid. Another result of this paper
is the classification of all algebraic solutions of RVI[They are in one-to-
one correspondence, modulo the symmetries of the equations described in
Subsect. 1.2.2, with the reciprocal pairs of the three-dimensional regular
polyhedra and star-polyhedra (the description of the star-polyhedra can be
found in [Cox]). The solutions corresponding to the regular tetrahedron,
cube and icosahedron are the ones obtained in [Dub] using the theory of
polynomial Frobenius manifolds. The solutions corresponding to the regular
great icosahedron, and regular great dodecahedron are new. Our method not
only allows to classify the solutions, but also to obtain the explicit formulae,
as we do in Sect. 2.4.

The paper consists of two parts. In the first one, more algebraic, we
deduce necessary conditions for the parameters of algebraic solutions. In
the second part, more analytic, we show that the necessary conditions of the
first part are also sufficient, and we complete the classification of algebraic
solutions. In more details the paper is organized as follows.

In Sect. 1.1, we describe the main tool to obtain the above results: the
isomonodromy deformation method (see [Fuchs], [Sch] and [JMU], [ItN],
[FIN]). The Painlee VI is represented as the equation of isomonodromy
deformation of the two-dimensional auxiliary Fuchsian system

dY—<@+ Ay B )Y. (0.3)

dz \z "z-1'"z—x
Particularly, for PV, the 2x 2 matricesAq, Ay, Ay are nilpotent and

—u 0
Ao+A1+Ax=<o“ u)

The entries of the matrices; are complicated expressionsxafy, y, and
of some quadraturg’ R(x, y)dx. The monodromy matriceM,, M; and
My of (0.3) remain constant if and only if = y(x) satisfies PVI. Thus,
the branchésof the solutions to P\jL are parameterized by points of the
representation space

p: Fs— SL2,C) (0.4)

of the free group with three generators

Far~ oy (@\{o, 1x oo}) .

1 Recall that the branches of the solutions to PVI are meromorphic on the complex plane
with some branch-cuts betweenl) co.
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Particularly, solutions to PY{ are parameterized bynipotentrepresen-
tations, i.e. such thavy, M1, My have all eigenvalues equal to one. In
Sect. 1.2, we compute the structure of the analytic continuation. We prove
that this structure (0.1) is determined, up to an action of the symmetries
given in Subsect. 1.2.2, by a natural action of the braid grBgpon the
representation space (0?4Yo obtain the full list of algebraic solutions to

PVI it is necessary to classify all the finite orbits of the action of the braid
group on the representation space (0.4). Particularly, the generators of the
braid group on the subspace of unipotent representations act as follows:

B1(X1, X2, X3) =(—X1, X3 — X1 X2, X2),
Ba(X1, X2, X3) =(X3, —X2, X1 — X2X3),

where(Xy, X, X3) are suitable coordinates on the above subspace. The orbits
of this action (and of the higher dimensional analogue of it) were extensively
studied by E. Brieskorn and his school (see [Br], [Vo], [Krl]). However,

to our best knowledge, the problem of classification of finite orbits has
not been settled. We solve this classification problem in Sect. 1.3 for the
action of the braid group on the space of unipotent representations, i.e. in
the case of P\iL. This classification is achieved by using the technique
of an old paper of Gordan (see [Gor]) dealing with rational solutions to
certain trigonometric equation (see Subsect. 1.3.2). In Sect. 1.4, we recast
the action ofB3 on the space of unipotent representations into an action on
the ordered triples of reflections in three dimensional space. The gdoup
generated by the reflections remain unchanged under this action. We prove
that, for a solution to P\fL having a finite number of branches, this group
must be an irreducible finite reflection grougRA. Two proofs of this result

are given. The former is a direct consequence of the classification result
of Sect. 1.3. The latter, suggested by E. Vinberg, uses more extensively
algebraic number theory (see Subsect. 1.4.2). In this way, we reduce the
classification problem of finite branching solutions of RMéquation to

the problem of classification, modulo the action of the braid group and
modulo rotations, of ordered triples of generating reflections in the groups
of symmetries of Platonic solids. We find that such triples are in one-to-one
correspondence with the regular polyhedra or star-polyhedra considered up
to reciprocity (we do not know a direct geometrical proof of this result).

In the second part of the paper, we prove that the necessary conditions to
obtain a finite branching solution to P¥] given in terms of the monodromy
data in the former part, are indeed sufficient to have an algebraic solutions to
PVIu (as a consequence, finite branching solutions with essential singulari-
ties are excluded). Our first result is an identification of the class of solutions
parameterized by triples of reflections in tieal Euclidearspace with class
of solutions having critical behaviour of algebraic type (0.2). To this aim,
we first prove, see Sect. 2.1, that the solutigr) of the form (0.2), for
a fixed value ofx, is uniquely determined by its asymptotic behaviour near

2 Recall, see [Bir], thaB3 acts as a group of automorphisms of the free grégip
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one of the critical points, i.e. by any of the pais, lo), (a1, 1), (@, l0)-
In particular, we prove that, for an algebraic solution of RMhe indices
lo, I1, loo Must satisfy:

0<li <1, i =0,1, co.

To derive theconnection formulaestablishing the relations between these
pairs, we use (see Sect. 2.3) the properly adapted method of Jimbo (see
[Jim]). This method allows to express the monodromy data of the auxil-
iary Fuchsian system (0.3) in terms of the parametesslo), (a;,11) or

(a0, 1no). FoOr convenience of the reader, and because of some differences
between the assumptions of Jimbo’s work and ours, we give a complete
derivation of the connection formulae in Sect. 2.2. Using the results of the
Sects. 1.3 and 1.4, we complete the computation of the critical behaviour
(0.2) for all the branches of the analytic continuation of the solution (see
Sect. 2.3). The result of this computation is used in Sect. 2.4 to complete
the classification of algebraic solutions to RVand to obtain the explicit
formulae for them.

Remark 0.1. The resulting classification of the algebraic solutions of VI

is in striking similarity to the Schwartz’s classification (see [Schw]) of the
algebraic solutions of the hypergeometric equation. According to Schwartz,
the algebraic solutions of the hypergeometric equation, considered modulo
contiguity transformations, are of fifteen types (the first type consists of an
infinite sequence of solutions). The rows (2—-15) of Schwartz’s list (see, for
example, the table in Subsect. 2.7.2 of [Bat]) correspond to the triples of
generating reflections of the symmetry groups of regular polyhedra in the
three-dimensional Euclidean space (we are grateful to E. Vinberg for bring-
ing this point to our attention). The parametey, v of the hypergeometric
eqguation shown in the table are just the angles between the mirrors of the
reflections, divided byt.

According to our classification, the algebraic solutions of f2\donsid-
ered modulo symmetries, are in one-to-one correspondence to the classes of
equivalence of the triples of generating reflections in the symmetry groups
of regular polyhedra. The equivalence is defined by an action of the braid
group B3 on the triples and by orthogonal transformations. We find that in
the groupsG = W(Az) andG = W(Bg3), the symmetry groups of respec-
tively the regular tetrahedron and of the cube or regular octahedron, there
is only one equivalence class of triples of generating reflections; these are
given respectively by the row@, 3) and by(4, 5) of Schwartz’s table. In
the groupW(Hs) of symmetries of regular icosahedron or regular dodec-
ahedron, there are three equivalence classes of triples of reflections which
are given respectively by the row§, 8, 13), (11, 14, 15 and(7, 9, 10, 12
of the Schwartz’s table. They correspond to icosahedron, great icosahedron
and great dodecahedron (or to their reciprocal pairs, see [Cox]). To establish
the correspondence, we associatgtandardsystem of generating reflec-
tions to a regular polyhedron in the following way: létbe the center of the
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polyhedron,O the center of a face? a vertex of this face an@ the center

of an edge of the same face through the veReX hen the reflections with

respect to the plandsO P, HOQ andHPQ are the standard system of gen-

erators. Our five algebraic solutions correspond to the classes of equivalence

of the standard systems of generators obtained by this construction applied

to tetrahedron, cube, icosahedron, great icosahedron, great dodecahedron.
Summarizing, we see that the list of all the algebraic solutions ofPVI

is obtained by folding of the list of Schwartz modulo the action of the

braid group. This relation between the algebraic solutions ofu.P&fid

the algebraic hypergeometric functions seems to be surprising also from

the point of view of the results of Watanabe (see [Wat]) who classified all

the one-parameter families of classical solutions of @PY#ssentially, all

of them are given by hypergeometric functions). Using these results, one

can easily check that our algebraic solutions do not belong to any of the

one-parameter families of classical solutions of RVI

Remark 0.2. Another way to produce finite orbits of the action of the
braid group on the representation space (0.4) is to consider finite subgroups
p(F3) € SL(2, C). The corresponding algebraic solutions to PVl are studied
by N. Hitchin (see [Hit1], [Hit3], [Hit4]). Hitchin algebraic solutions to PVI

are related to ours by suitable symmetry transformations of PVI. Their
explicit form will be published elsewhere.

Remark 0.3. To the five algebraic solutions that we construct it actually
corresponds five infinite sequences of algebraic solutions obtained by iter-
ating the action of the symmetries described in Sect. 1.2.2 below. It would
be interesting to study the algebraic structure (determinantal forms, combi-
natorics etc, cfr. [KM], [KO], [KO1], [NOOU], [Ok5]) of these sequences.

Acknowledgementd he authors are indebted to E. Vinberg for the elegant proof of Theo-
rem 1.8 and to A. Akhmedov for the simple proof of the Algebraic Lemma, Sect. 1.4. We are
grateful to N. Hitchin for a fruitful discussion of his approach to the problem of algebraic
solutions to PVI. We thank R. Conte for drawing our attention to the classical work of
Picard (see [Pic]) and N. Woodhouse for reading carefully this paper and for giving helpful
suggestions. We thank V. Sokolov and F. Zanolin for useful discussions and the referees for
useful comments and references added.

1. Structure of analytic continuation of the solutions of PViw

1.1. Painlee VI equation as isomonodromy deformation equation

In this section we show how the P¥lequation can be reduced to the
isomonodromy deformation equation of an auxiliary Fuchsian system (see
[Sch], [IMU]); moreover we describe the parameterization, essentially due
to Schlesinger (see [Sch]), of the solutions of the f#\élquation by the
monodromy data of such Fuchsian system.
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1.1.1. An auxiliary Fuchsian system and its monodromy data.In this
subsection, we introduce an auxiliary Fuchsian system, define its mon-
odromy and connection matrices, and establish the correspondence between
monodromy matrices and coefficients of the Fuchsian system for a given
set of poles.

Let us consider the following Fuchsian system with four regular singu-
larities atuy, u,, uz andoo:

d _
d_ZY = cA’(Z)Y, Ze C\{Ul, Uo, Uz, OO} (11)

wherex(2) is a matrix-valued function:

A A A
1 + 2 + 3 ,
Z— Up Z— Uy Z— U3

A(Z) =

Aj being 2x 2 matrices independent an andu, Uy, uz being pairwise
distinct complex numbers. We assume that the matriégsatisfy the
following conditions:

AZ=0 and A = —sA; — Ay — shg = <’6 _OM> . (1.2)
Indeed, we will see in the latter part of this section that this choice corres-
ponds to the particular case RVbf the Painlee VI equation. In this paper
we consider th@on-resonantase & ¢ Z.

The solutionY(z) of the system (1.1) is a multi-valued analytic function
in the punctured Riemann sphef&{uy, u,, uz} and its multivaluedness is
described by the so-calledonodromy matrices.

Let us briefly recall the definition of the monodromy matrices of the
Fuchsian system (1.1). First, we fix a bagisy», y3 of loops in the funda-
mental group, with base point ab, of the punctured Riemann sphere

1 (E\{UL Uz, Uz, 00}, X) :

and a fundamental matrix for the system (1.1). To fix the basis of the loops,
we first perform some cuts between the singularities, namely we cut three
parallel segments; between the point at infinity and eaah the segments
7 are ordered according to the order of the pointau,, uz, asin the Fig. 1.
Takey; to be a simple closed curve starting and finishing at infinity, going
aroundu; in positive direction §; is oriented counter-clockwisey; lies
inside, while the other singular points lie outside) and not crossing the cuts
7i. Nearoco, we take every loop; close to the cutr; as in the Fig. 1.

Now, we fix the fundamental matriX,.(z) of the system (1.1) in such
a way that

1 — L
Yo (2) = (1+0<E>> (Zol Z%) as z— oo, (1.3)
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Fig. 1. The cutsr; between the singularitieg and the oriented loopg

wherez" := €!°92 with the choice of the principal branch of the logarithm,
with the branch-cut along the common direction of the cuismy, 73.
Such a fundamental matriX,,(z) exists and, due to the non-resonance
condition, it is uniquely determined. It can be analytically continued to an
analytic function on the universal covering ©fi{us, u,, us, co}. For any

element € my (@\{ul, Uo, Uz, 00}, oo) we denote the result of the analytic

continuation ofY,,(2) along the loopy by y[Y~(2)]. Sincey[Y(2)] and
Y- (2) are two fundamental matrices in the neighborhood of infinity, they
must be related by the following relation:

)/[Yoo(z)] = Yoo(z) My

for some constant invertible 2 2 matrix M, depending only on the homo-
topy class ofy. Particularly, the matriXV,, := M, _, v~ being a simple
loop around infinity in the clock-wise direction, is given by:

_(exp2imp) 0
Moo = ( 0 eX[i—Zin;L)) : (1.4)
The resultingnonodromy representatiaa an anti-homomorphism:
m1(C\{uy, Uz, Us, 00}, 00) —  SLy(C) (L.5)
14 — M, :
M,; = My M,. (1.6)

The imagedV; := M,, of the generatorg;, i = 1, 2, 3 of the fundamental
group, are calledhe monodromy matricesf the Fuchsian system (1.1).
They generate thenonodromy group of the systeire. the image of the
representation (1.5). Moreover, due to the fact that, in our particular case,
the 4A; are nilpotent, the matricad; satisfy the following relations:

detMj) =1, Tr(Mj) =2, for i=1,2 3, @.7)
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with M; = 1if and only if A; = 0. Moreover, since the 100Q/1y»y3) ! is
homotopic toy,, the following relation holds:

Moo MsMoM; = 1. (1.8)

A simultaneous conjugatios; — D~14;D,i = 1, 2, 3 of the coefficients
A; of the Fuchsian system (1.1) by a diagonal mabiximplies the same
conjugation of the monodromy matricés, — DM, D, for anyy €
1 (E\{UL Uz, U3, 00}, 00 ).

We now recall the definition of theonnection matriced.et us assume
that M; # 1, or equivalentlyA; # 0, for everyi = 1, 2, 3. We choose the
fundamental matrice¥; (z) of the system (1.1), such that:

Yi=G (1+0@z-u))(z-u)’, as z— u, (1.9

01 . .
0 0) ,the invertible

matrix G; is defined byA; = GiJGrl, and the choice of the branch of
log(z — u;) needed in the definition of

1 log(z—u)
(Z_ui)J = <0 1 )

is similar to the one above. The fundamental matfijz) is uniquely deter-
mined up to the ambiguity:

whereJ is the Jordan normal form f;, namelyJ = <

Yi(2 = YiOR,

whereR; is any matrix commuting withJ.

Continuing, along, say, the right-hand-side of thesguthe solutionY,,
to a neighborhood afi;, we obtain another fundamental matrix around
that must be related g (z) by:

Y- (2) = Yi(2)C;i, (1.10)

for some invertible matriC;. The matrice€,, C,, C3 are callecconnection
matrices,and are related to the monodromy matrices as follows:

M; = Ctexp(27i J)C;, i=123. (1.11)

Lemma 1.1. Given three matricedvl;, Mp, M3, M; # 1 for everyi =
1, 2, 3, satisfying the relations (1.7) and (1.8), then

i) there exist three matrice€,, C,, C3 satisfying the (1.11). Moreover
they are uniquely determined by the matridds, M,, M3, up to the
ambiguityC; — R™'C;, whereR J = JR, fori = 1,2, 3.

i) If the matricesM;, M, M3 are the monodromy matrices of a Fuchsian
system of the form (1.1), then any trifile, C,, C; satisfying (1.11) can
be realized as the connection matrices of the Fuchsian system itself.
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Proof. i) By the (1.7), the monodromy matrices have all the eigenvalues
equal to one; moreover they can be reduced to the Jordan normal form
becauseM; # 1. Namely there exists a matrf3; such that:

Taking
a b \x
Ci= (o zma) G. a#0
we obtain the needed matrix. Two such matriCesndC; give the same

matrix M; if and only if ci—lc{ commutes withJ, namely if and only if

they are related bf; = R™C/. ii) Let us now assume that;, C}, C,

are the connection matrices of a Fuchsian system of the form (1.1), with
monodromy matricedl1, My, Ms; id estY.(2) = Y/(2)C{,i =1, 2, 3, for
some choice of the solutiong, Y; andY; of the form (1.9). We have

M = (C) texp2rid)C/ = Clexp27id)Ci, i=1,23.

So the matrice®R, = C{C(l must commute withl andC,, C,, C3 are the
connection matrices with respect to the new solutigrig) = Y/ (2) R.
QED

Now, we state the result about the correspondence between monodromy
data and coefficients of the Fuchsian system, for a given set of poles:

Lemma 1.2. Two Fuchsian systems (1.1) with the same paolesi, and
us, and the same value @f, coincide if and only if they have the same
monodromy matricedl,, Mo, Mg, with respect to the same basis of the

loopsya, ¥ and ya.

Proof. Let YY(2) and Y?(2) be the fundamental matrices of the form
(1.3) of the two Fuchsian systems. Let us consider the following matrix:

Y2 =Y2@2YP@2™

Y(2) is an analytic function around infinity:
1
Yz=14+0 (E) , asz— oo.

Since the monodromy matrices coincitt€z) is a single valued function on
C\{uy, Uy, uz}. Let us prove tha¥(z) is analytic also at the pointg. Due

to Lemma 1.1, we can choose the fundamental mathifeez) andY,? (2)
in such a way that

Yéol)’(z)(z) _ Yi(l)'(Z)(Z)Ci =123
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with the same connection matricEs Then near the poini;,
@ &) -1
Y@ =G? 1+ 0z—u)) [Gi (1+ (9(z—ui))] .

This proves thatY(z) is an analytic function on aiC and then, by the
Liouville theorem

Y(z) =1,
and the two Fuchsian systems must coincide.

Corollary 1.1. Two Fuchsian systems (1.1) with the same poles, and
us, and the same value of, are conjugated

AY=DAPD,  i=123

with a diagonal matrixD, if and only if their monodromy matricelmi(l)
and M®, with respect to the same basis of the loggsy, and ys, are
conjugated:

M® =D MPD, i=123

1.1.2. The isomonodromy deformations of the Fuchsian system (1.1)
and the Painlee equation PVix. We now want to deform the poles of
the Fuchsian system keeping the monodromy fixed. The theory of these
deformations is described by the following two results:

Theorem 1.1. LetM,, M;, M3 be the monodromy matrices of the Fuchsian
system:

d 0 0 0
—Y0 = < A1 s+ A2 s+ A3 0) YO, (1.12)
dz Z—Uj Z—U; Z—Uj

of the above form (1.2), with pairwise distinct polés and with respect to
some basig1, >, 3 of the loops inr; (@\{u({, ud, u3, oo}, oo). Then there

exists a neighborhood c C2 of the pointu® = (u?, ud, ud) such that, for
anyu = (ug, Uy, U3) € U, there exists a unique triplg (u), A,(U), Az(U)
of analytic matrix valued functions such that:

AU =4, 1=1,23
and the monodromy matrices of the Fuchsian system

dy_ A(z; W)Y = ("*1(“) - IC As(U)> Y
Z—U Z— Uy Z— U3

- (1.13)
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with respect to the same baSig;, y», y3 of the loops, coincide with the
given M1, My, Ms. The matrices;(u) are the solutions of the Cauchy
problem with the initial data4? for the following Schlesinger equations:

d A__[:A)i,eAaj] 8 _Z[d\n,a‘%]

— A = , 1.14
u;" T U — U au, (1.14)

i

The solutionY? (2) of (1.12) of the form (1.3) can be uniquely continued,
forz#£uji =1, 2,3, to an analytic function

Yoo(z,U), ueU,

such that
Yoo(z, U0 = Y2 (2).

This continuation is the local solution of the Cauchy problem with the initial
dataY? for the following system that is compatible to the system (1.13):

0 y_ AWy

ou; Z— U

Moreover the functionst; (U) and Y,,(z, u) can be continued analytically
to global meromorphic functions on the universal coverings of

C3\{diags := {(u1, Up, uz) € C3|u; # u;fori # j},
and
{(z,us, Uz, u3) € C*|u; £ ujfori # jandz £ uj, i = 1,23},
respectively.

The proof can be found, for example, in [Mal], [Miwa], [Sib]. We recall
the theorem of solvability of the inverse problem of the monodromy (see
[DekK], [Bol]):

Theorem 1.2. Given three arbitrary matriceM;, M,, M3, satisfying (1.7)
and an arbitrary numbey such that

B eZmM
(M3MaMp) ™ = M, = < o 2riu

and given a point® = (u?, ud, ud) € C3\{diags, for any neighborhood
of u%, there exisi(uy, uy, us) € U and a Fuchsian system

d A A A
—Y:( Lo, A2 Al )Y
dz Z—U; Z—Up Z-—Uj3

1 Observe that the basjs, y», 3 of nl(@\{ul, Up, U3, 00}, oo) varies continuously with
small variations ofus, uy, uz. This new basis is homotopic to the initial one, so we can
identify them.
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with the given monodromy matrices, with polesijnu,, us and with.A; 2 3
satisfying

Remark 1.1. Fuchsian systems of the form (1.1), with coefficiepts
satisfying (1.2), depend on four parameters, one of them beginghe
triples of the monodromy matrices satisfying (1.7) and (1.8), with of

the form (1.4), depend on four parameters too. Loosely speaking, Theo-
rems 1.1 and 1.2 claim that, not only the monodromy matrices are first
integrals for the equations of isomonodromy deformation (1.14), but they
provide a full system of first integrals for such equations. We denote
A(Ug, Uy, Uz; M1, My, M3) the solution of the Schlesinger equations locally
uniguely determined by the triple of monodromy matri¢hl, My, M3).

Allthe above arguments remain valid for a genersaPFuchsian system,
provided the non-resonance condition of the eigenvalue$; @ndA ...

Remark 1.2. We observe that the isomonodromy deformations equations
preserve the connection matriggstoo. This follows from Lemma 1.1.

1.1.3. Reduction to the PVL equation. Let us now explain, following
[JMU], how to reduce the Schlesinger equations (1.14) to theuRAgua-

tion. The Schlesinger equations are invariant with respect to the gauge
transformations of the form:

A —> D7IAD, i=1,23 foranyD diagonal matrix

First of all we have to factor out such gauge transformations; to this aim, we
introduce two coordinate®, g) on the quotient of the space of the matrices
satisfying (1.2) with respect to the equivalence relation

A~ DtAD, =123 for any D diagonal matrix ~ (1.15)
The coordinatesp, q) are defined as follows is the root of the following
linear equation:

[4(0; Uz, Uz, U3)]12 =0,
andp is given by:
p = [A(Q; Uy, U2, Ug)]11,

where A(z; ug, Uy, Ug) is given in (1.13). The matriced; are expressed
rationally in terms of the coordinatép, g) and an auxiliary coordinate
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coming from the gauge freedom (1.15)

(Ai)11 = — (Ai)22

q—u P(@) '
m{ P(q) p* +2Mq p—i—u 2(q + 2uj — JZUJ)]

g—ui
P’ (ui)’

(Ai)12 = —puk (1.16)

RO N B I 2 ﬂ 2
(Ai)21 =K 2.3P () |:P(Q)I3 +2Mq—ui P+ n7(q+2u — ZUJ):|

fori = 1,2, 3whereP(z) = (z—uy)(z—Up)(z—ug) andP'(2) = . T
Schlesinger equations in tli@, ) coordinates reduce to:

¥ P [2p+ 1 ]

U Pr(uy) q-—u

(1.17)
ap  P@p’+@q+ui =3 upp+pd— 2
- P'(up)

fori =1, 2, 3. The system of theeduced Schlesinger equatio(l17) is
invariant under the transformations of the form

u— au + b, g+ aq+hb, p|—>§, VabeC, a#0.

We introduce the following new invariant variables:

. U, — Up
- U3—U1’
1.18
_ q—Uup ( )
U3—U1,

the system (1.17), expressed in the these new variables, reduces to the PVI
equation fory(x).

Remark 1.3. The system (1.17) admits the followirgingular solutions
(see [Ok1] and [Wat]):

g=u; forsome,

and p, in the variablex, can be expressed via Gauss hypergeometric func-
tions (see [Ok1]). Moreover the monodromy group of the system (1.1)
reduces to the monodromy group of the Gauss hypergeometric equation,
namely the following lemma holds true:
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Lemma 1.3. The solutions of the full Schlesinger equations, correspond-
ing to the solutiorg = u;, for some, have the form:

A(u) =0, andforj#i Aj(u)=D(u)*A’D(),

where D(u) is a diagonal matrix depending om, and ch’ is a constant
matrix. The monodromy matrikl; of the corresponding Fuchsian system
turns out to be the identity. Conversely, if one of the monodromy matrices
M; is the identity,M; = 1, then the solution of (1.17) is singular.

Proof. The matrixA;, for g = u;, is identically 0, thanks to (1.16). Having
A = 0, M; is 1. Conversely, iiM; = 1, thenA; = 0. Solving the Schlesinger
equations (1.13), we obtaim = u;, and the equation fop is reduced to

a Gauss hypergeometric equation. QED

The singular solutions do not give any solution of the R\&quation.
All the other solutions do, via (1.18). Conversely, starting from any solution
y(x) of PVIu, we arrive at the solution:

uz—u
p= P/(Uz)y(UZ—Ul)_} 1
2P(@) © \uz—u1/ 2gq-—u

of the reduced Schlesinger equations (1.17). To obtain a solution of the full
Schlesinger equations, the functibmust be given by a quadrature:

dlogk q-—u
T ey

We conclude this section summarizing all the above results in the fol-
lowing:

Theorem 1.3. The branches of solutions of the RMtquation near a given
pointxg € C\{0, 1, oo}, are in one-to-one correspondence with the triples
of the monodromy matricell,, M,, M3 satisfying (1.7) and (1.8), with
M, of the form (1.4), none of them being equallioconsidered up to
conjugation with the same diagonal matrix.

Remark 1.4. Atriple of 2x 2 matricedMy, M, M3 € SL(2; C), considered
modulo conjugations, is a poiptof the space of representations

o: F3— SL(22;C)
of the free grougFs with three generatorg,, y», y3, specified by
Mi = p(y), 1=123
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In the general case, i.e. with the matricds and 4., not necessarily of
the form (1.2), the corresponding solutiop, ) of the reduced Schlesinger
equations will be denoted

p = p(uy, Uz, Uz; p), g = q(ug, Uz, Us; p).

It is locally uniquely specified by the representationprovided the non-
resonance condition of the eigenvaluesAgfand A ..

1.2. The structure of the analytic continuation

We parameterized branches of the solutions of PYY triples of mon-
odromy matrices. Now we show how do these parameters change with
a change of the branch in the process of analytic continuation of the so-
lutions along a path i©\{0, 1, co}. Recall that, as it follows from Theo-
rem 1.1, the solutions of PW, defined in a neighborhood of a given point
Xo € C\{0, 1, oo}, can be analytically continued to a meromorphic function
on the universal covering df\{0, 1, co} (the above mentioned Painkv
Property). The fundamental group,(C\{0, 1, co}) is non-Abelian. As
a consequence, the global structure of the analytic continuation of the solu-
tions of PVI is more involved than that of the other Paigl@guations. In
fact the solutions of PI,..., PV have at most two critical singularities and the
corresponding fundamental group is Abelian.

As a first step we introduce a parameterization of the monodromy ma-
trices.

1.2.1. The parameterization of the monodromy data.Let M;, M> and

M3 be three linear operators(; : C*> — C? satisfying (1.7). We introduce
for them a parameterization which will be useful for studying the analytic
continuation of the solutions of the P¥lequation.

Lemma 1.4. If M1, M, are such that
Tr(MiMro) # 2,

then there exists a basis {f¥ such that, in this basis, the matrices.tf;,
M5 have the form:

1 - 10
= (5 ) M= (s D). (119)

wherex; = /2 — Tr(M1M>5); whenMq, Mo are suchthal r(Mi M) = 2,
they have a common eigenvector, and then there exists a baSfssnch
that, in this basis, the matriced, M, are both upper-triangular.

Proof. Due to (1.7), there exist two non zero vectersande, such that



Painlee VI equation and reflection groups 73

We now prove that these two vectors are linearly dependent if and only
if Tr(M1 M) = 2. Indeed, if the two vectors are linearly dependent, then
we can find a vectoé, linearly independent witle; such that, in the basis
(e1, €) the matrices ofM 1, M, have the form:

_ 1 )\.1 _ 1 )VZ
Ml-(o 1)’ M2—<0 1>,
soTr(M;M,) = 2. Conversely, leTr(Mq.M5) = 2. Dueto (1.7), there exists

a Jordan basige,, €,) for the operatotM 1, M1 = <é )‘11> Requiring that

Tr(Mi M) =2, eigenMy) =1,

also the matrixM, must have the above foril, = é )”12 . Then, the

two vectorse; ande;, are linearly dependent. This proves the last statement
of the lemma.

As a consequence, Tr(M M) # 2, the two eigenvectors, and e,
are linearly independent, and in the ba@s &) the matrices oiM;, M,

have the form:
(1 x (1 0
Ml_(o 1)’ MZ_(AZ 1>’

with Tr(M;M,) = 2+ A14,. Rescaling the eigenvectofs,, e,), we obtain
the (1.19). QED

Lemma 1.5. Let My, M5, M3 satisfy also the condition (1.8) witht
given by (1.4), an@u ¢ Z. Then the following statements are true:

i) If two of the following numbers
Tr(MaMz),  Tr(MiMz), Tr(MzMz)

are equal to2, then one of the matrices &f; is equal to one.
i) If Tr(MiMz) # 2, then there exists a basis i such that, in this
basis, the matriced, M, and M3 have the form

2
_ (1 —xu (1 0 (1R —
X1 X1
(1.20)
where
Tr(MiMy) =2 — %2, Tr(MzMp) =2 — x5, Tr(MiMgz) =2 —x3,
and

X2 4 X3 4+ X5 — Xy XoXg = 4 sirf . (1.21)
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i) If two triples of matricesM;, Mz, M3 and M}, M5, Mj satisfying
(1.8), with none of them equal th have the form (1.20) with the
parameters(xy, Xz, X3) and (X, X5, X3) respectively, then these triples
are conjugated

Mi = T*M/T
with some invertible matrixt if and only if the triple(x3, X5, X3) is
equal to the triple(xy, X2, X3), up to the change of the sign of two of the
coordinates.

Proof.
i) Letus assume that
Tr(MiMo) =2, Tr(MiMsz) = 2.

Let e; ande; be the common eigenvectors of,, M, and My, M3

respectively, (see Lemma 1.4)..M, # 1, then the eigenvectors and
&3 coincide. Then we can find a linear independent vegj@uch that,
in the basigey, €) the matrices oM, M, M3 all have the form

Mi=<é Al'> =123

Tr(MgMle) = Tr(Moo) = 2.

This contradicts the assumptiop 2 Z.
i) Let us choose the basis such that, according to Lemma 1.4, the matrices
M1, M, have the form (1.19). Solving the equations

Tr(MsMy) =2 —x3, Tr(M;Ms) =2 — X3,

we arrive at the formula (1.20). The (1.21) is obtained by straightforward
computations from

Then

Tr(MzM,M;) = 2 cos ZT[L
i) The two triples of matricey, M,, M3 andMj, M5, M; are conjugated
Mi =T M/T

with some invertible matrix if and only if they are the matrices of the
same operators#( 1, M,, M3, written in different bases. Since the traces
do not depend on the choice of the basis, then

¥=x? i=123

According to the proof of Lemma 1.4, the basis, ) is uniquely
determined up to changes of sign. A change of gignr> —e; corres-
ponds to the change of sigh — —xq; then the form of the matriis
is preserved if and only if we change one of the signg,asr xs.

QED
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Remark 1.5. The matrices (1.20) have a simple geometrical meaning. Let
us consider the three-dimensional linear space with a lbasis,, e3) and
with a skew-symmetric bilinear for, -} such that

(e &} =X1, {en&}=X3 (& &}=X.

Let us consider the reflectiori®;, R,, Rs in this space, with respect to the
hyperplanes skew-orthogonal to the basic vectors:

RX) =x—{e, x}g, =123

The reflections have a one-dimensional invariant subspace, namely the ker-
nel of the bilinear form. The matrices of the reflections acting on the quotient
are the (1.20).

Definition. A triple (X1, X2, X3) is calledadmissibleif it has at most one
coordinate equal to zero. Two such triples are cadlqdivalentif they are
equal up to the change of two signs of the coordinates.

Observe that for an admissible trip{®;, x,, X3) none of the matrices
(1.20) is equal to the identity. So the admissible triples correspond to the non-
singular solutions of the reduced Schlesinger equations (1.17). Moreover,
two equivalent triples generate the same solution. We can summarize the
above results in the following:

Theorem 1.4. The branches of solutions of the RMquation near a given
pointxg € C\{0, 1, oo} are in one-to-one correspondence with the equiva-
lence classes of the admissible triples satisfying (1.21).

Proof. Starting from a solution of P\ we obtain the monodromy matrices
satisfying (1.7). None of them is equal to the identity. So the canonical
form (1.20) of M1, M5, M3 is determined uniquely up to a choice of the
admissible tripleXy, Xo, X3) within the equivalence class. Conversely, given
an admissible triplgxy, X», X3) satisfying (1.21), we obtain the matrices
M1, My, M3 of the form (1.20). The matriM3;M,M; is diagonalizable
with the eigenvalues exg-2ri 1) (here we use the non-resonance condition
2u ¢ 7). Reducing this matrix to the diagonal form

1 [exp2rip) 0
MsMoMy = T ( 5 exp(—znm)>T

we obtain the monodromy matric&$/4 T~ satisfying (1.7) and thus spec-
ifying a branch of the solution of PYil.



76 B. Dubrovin, M. Mazzocco

1.2.2. Monodromy data and symmetries of PVk. The Painlee VI
equation possesses a rich family of symmetries, i. e. transformations of
the dependent and independent varialfles), and also of the parameters,
that preserve the shape of the equation. The theory of these symmetries, and
its applications to the construction of particular solutions, was developed in
[OK], (see also [FY], [Kit], [LY], [MS], [MS1]). Here we list the symmetries
which preserve our PYil and compute their action on the monodromy data.
First of all we observe that the trivial symmetmy— 1 — u preserves
the Painlee equation, i.e. PVl = PVI(1 — u), so it maps the solutions
y(X) in themselves.
Thenwe consider the permutations of the palgal,, uz which generate
the action of the symmetric grouf on the solutiong/(x). In particular the
involution

I1 : Uy <> Ug,
produces the transformation

y
X > " y " (1.22)
and _
i2:Up < Ug,
produces the transformation
X 1—X, y=>1—y. (1.23)

Both these transformations clearly preserve the equatiopPVI
Let us compute the action of these symmetries on the monodromy
data. The only thing that changes is the basis in the fundamental group

m1(C\{u1, Uz, Uz, o0}). In fact, the cutsry, 7», 3 along which we take our
basisy1, y», y3, are ordered according to the order of the poles. Applying
the transformation, we then arrive at the new basys, y,, y3 shown in
Fig. 2.
This new basis has the following form
VI=V1 Vs=VeVaVs . VE= Ve
As a consequence the new monodromy matrices are
Mi = Ml, Mé = M2_1M3M2, Mé = Mz.

For the second transformatiop, the basis of the new loops is shown in
Fig. 3.
It has the following form

Vi=VYa Vh=Vsvavs VA=vi v vivevs.
The new monodromy matrices are

M; =Mz, M,=MsMM;%  Mj = MzMaM; M, Mg
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Fig. 3. The new basiy, y,, y5 obtained by the action f

Lemma 1.6. Inthe coordinate$xy, Xo, X3) on the space of the monodromy
matrices, the action of the symmetrigsi, is given by the formulae

i1: (X1, X2, X3) > (X3 — X1X2, —X2, X1),

20 (X1, Xz, X3) > (—Xz, —X1, X1X2 — Xa).

The proof is straightforward.

The last symmetry is more complicated because it changes the value of
the parametef, i.e. u — —pu, or equivalentlyu — 1+ u as it follows
form the fact that PMl—u1) = PVI(1 + ). This symmetry comes from
the following simultaneous conjugation of the coefficients of the Fuchsian
system:
A — XA,

o1 (0 1
sosio (0 )

ALY = —Ax.

where

Indeed,
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Using the parameterization (1.16) of the matridgs A, Az by the coor-
dinates(p, g), we arrive at the following

Lemma 1.7. The formula

g (Po(Y)? + pry’ + p2)°
Qo(Y)* + qu(Y)® + G (Y)? + Ggy' + Oa’

(1.24)

where

o =X*(x — 1)%,
P =2X(X — D)(Y — D[2u(y — ) — Y]
P2 =y(y — DIy — 1) — 4u(y — (Y — X) + 4u?(y — X)(y — X — )]
go =x*(x — 1*
q=—43x— D3y -1
G =2x2(x — D2y(y — D[3y(y — 1) + 4u’(y — ) (1 + X — 3y)]
Gs =4x(X — DY*(y — D[-y(y — 1)

— 161>y — X + 4u*(y — X3y — x — 1)]
& =Yy — D{y*(y — D + 64 Py(y — D(y — %)°

—8uPy(y — D(y— @y —x—1)

+ 16u*(y — X)[(X — D? + y(2+ 2x — 3y)]},

(1.25)

transforms solutions of PWlIto solutions of PMI—w). The class of equiv-
alence of the monodromy daix,, X,, X3) does not change under such
a symmetry.

Proof. The new monodromy matriced;, M5, M have the form
M/ =XEXMZ, i=123

Then, the canonical form (1.20) of the monodromy operators does not
change. QED

Other symmetries are superpositions of (1.24) with the trivial ore
1 — u. Using these symmetries, one can transform P¥l PVI,, with
u' = £u + nfor an arbitrary integen.

Remark 1.6. One can show that the above symmetries, and their super-
positions, exhaust all the birational transformations preserving our one-
parameter family of PVI equations. We will not do it here (see [OK]). Itis
important, however, that these symmetries preserve the class of algebraic
solutions of PVL. We will classify all the algebraic solutions modulo the
above symmetries.
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Remark 1.7. Itis not difficult to show that the denominator of the formula
(1.24) does not vanish identically for any solution of RYvith 2u ¢ Z.
Indeed, eliminatingy. andyy form the system

1 1+ 1 N 1 ) 1+ 1 N 1
yxx—2 y y—l y — X Yx X X —1 y — X Yx
1yy-Dly—x X(x = 1)

2 X2(x — 1)2 (y—x2]"

Q(yX7 y’ X’ /’L) =07

[(Z/L — 1%+

d
. s Yo Xa =07
dXQ(yX Y, X, )

whereQ is the denominator, the resultant equation

@ + 1 [xx — D] [yy — Dy —01*

never vanishes fou # 0, —3.

1.2.3. The analytic continuation of the solutions of PV and the braid
group Bs. In this subsection, we describe the procedure of the analytic
continuation in terms of an action of the braid group on the admissible
triples (X1, X2, X3) parameterizing the branches of the solutions of/P VI

According to Theorem 1.1, any solution of the Schlesinger equations
can be continued analytically from a poiai?, u9, ud) to another point
(u}, ul, u}) along a path

(Ur(D), u(t), uz(t) € C3\{diags, 0<t<1,

with
u (0 =ud, and u(l) =ul,

provided that the end-points are not the poles of the solution. The result
of the analytic continuation depends only on the homotopy class of the
path inC3\{diags. Particularly, to find all the branches of a solution near
a given poinu® = (u?, u3, ud) one has to compute the results of the analytic
continuation along any homotopy class of closed loopS3n{diags; with

the beginning and the end at the paift= (u?, uJ, ud). Let

p € m1 (C\(diags:: u°)

be an arbitrary loop. Any solution of the Schlesinger equations near the point
u® = (ud, us, u9), is uniquely determined by the monodromy matridés

M, and M3, computed in the basig;, y», y3. Continuing analytically this
solution along the loop, we arrive at another branch of the same solution
nearu®. This new branch is specified, according to Theorem 1.3, by some

new monodromy matrice?, M5 and M%, computed in the same basis
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y1, ¥2, ¥3. Our nearest goal is to compute these new matrices for any loop
B € m1(C3\{diags; u°).

The fundamental group;(C3\{diags; u®) is isomorphic to the pure
(or unpermuted) braid grouj®Ps with three strings (see [Bir]); this is a sub-
group of the full braid groupBs. The full braid group is isomorphic to the
fundamental group of the same space where the permutations are allowed:

B3~ m; (C*\{diags /Ss: ),
S; being the symmetric group acting by permutations of the coordinates
(ug, Uy, Uz). Any loop in B3 has the form
(U1(D), Uz(D), u(®) € C\[diagy,  O<t=<1,

with

U@ =u, U =u,
wherep is a permutation of1, 2, 3}. The elements of the subgrou of
pure braids are specified by the conditipr= id.

To simplify the computations we extend the procedure of the analytic
continuation to the full braid group
Mi, M, M3 > M{, M5, Mi, B e Bs = (C3\(diags /Ss; uP).

For a generic braid € B3, the new monodromy matrices describe the
superposition of the analytic continuation and of the permutation

Ui = Upq), Aj > Ap(i). (1.26)

The braid groupB3; admits a presentation with generat@isand 8, and
the defining relation

B1B2p1 = B2B1Pe.
The generatorg, andg, are shown in the Fig. 4.

’ % 3 %

3

Fig. 4. The generators of the braid gro@y

Lemma 1.8. For the generatorss;, B8, shown in the Fig. 4, the matrices
M/ have the following form:

Mfl = '\/Iz7 Mgl = MleMEl, M?ﬁjl == M37 (127)
Mfz = My, l\/lzﬂ2 = Mg, Mgz = MgMzMgl. (1.28)
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Fig. 5. The new loopg/ obtained under the action of the braid

Proof. Changing the positions of the poinig andu, by the braids;, the
basis of the loops will be deformed into the new bagisy;, y; shown in
the Fig. 5.

Thanks to the fact that we deal with isomonodromy deformations, the
monodromy matriceM! := M,, of the system (1.1) with respect to the new

basisy;, v;. v5 are the samé/;, up to the reordering:
M; =My, M,=M;, M;=Ms. (1.29)

We want to compute the monodromy matrices with respect to the old ba-
Sis y1, 2, v3. To this aim we notice the following obvious relation in the
fundamental group:

n=r. v=0)"vr vi=7vk

Using this relations and the (1.29), we immediately obtain the (1.27). Sim-
ilarly the deformation of the basis of the fundamental group corresponding
to the braidg, is shown in the Fig. 6.

Fig. 6. The new loopg/ obtained under the action of the bragl
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Here we have the permutation
Mi=M; M;=Ms M;= My,
and the relations in the fundamental group:

M=v. v2=vh 3= v

From this we obtain the (1.28). Lemma is proved. QED

The action (1.27), (1.28) of the braid group on the triples of monodromy
matrices commutes with the diagonal conjugation of them. As a conse-
guence this action not only describes the structure of the analytic contin-
uation of the solutions of the Schlesinger equations (1.14), but also of the
reduced ones (1.17). Moreover, the class of the singular solutions is closed
under this analytic continuation. In fact if some of the matribgsgs equal
to 1 then for anyg there is aj such thath = 1. As a consequence the
following lemma holds true:

Lemma 1.9. The structure of the analytic continuation of the solutions of
the PV} equation is determined by the action (1.27), (1.28) of the braid
group on the triples of monodromy matrices.

Our next step is to rewrite the action (1.27), (1.28) of the braid group
in the coordinatesgxy, Xo, X3) in the space of the monodromy data. This is
given by the following

Lemma 1.10. In the coordinategXs, X2, X3), the action (1.27), (1.28) of
the braid group is given by the formulae:

B1: (X1, X2, X3) => (—X1, X3 — X1 X2, X2),
B2 1 (X1, X2, X3) => (X3, —X2, X1 — X2X3). (1.30)

Proof. The above formulae are obtained by straightforward computations
from (1.27), (1.28) by means of the parameterization of the monodromy
matrices (1.20).

We can summarize the results of this section in the following:

Theorem 1.5. The structure of the analytic continuation of the solutions
of the PV equation is determined by the action (1.30) of the braid group
on the triples(xy, X2, X3).

Remark 1.8. It is easy to see that the braig,3,)% acts trivially on the
monodromy data. This braid is the generator of the cent@fee [Bir]).
The quotient

Bz/center>~ PSL(2; Z)

coincides with the mapping class group of the complex plane with three
punctures [Bir]. Also in the general case, the structure of analytic contin-
uation of solutions of PVI equation is described by the following natural
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actionp — p? of the mapping class group on the representation space (see
Remark 1.4)

o’ () = p(B, 1 () (1.31)
where
yekxm (E\{Ul, Uy, Ug, 00}, OO) ,
B : C\{uy, Uy, U3, 0o} — C\{u1, Uy, Ug, 00}, B(00) = 00

is a homeomorphism, and
p:F3— SLZ; C).

Our action (1.30) is obtained restricting (1.31) onto the subspace of repre-
sentations of the form (1.7). The problem of selection of finite-branching
solutions of Painle¥ VI (see below) with generic values of the param-
etersa, B, y, § can be reduced to the classification of finite orbits of the
action (1.31). The class of finite-branching solutions contains the algebraic
solutions.

1.3. Monodromy data and finite-branching solutions of the PV equa-
tion

1.3.1. A preliminary discussion on the finite-branching solutions of the
PVIu equation and their monodromy data. Here we state some neces-
sary condition for the triplegxi, Xo, X3) to generate the finite-branching
solutions.

Definition. A solutiony(x) is calledalgebraicif there exists a polynomial
in two variables such that

F(x, y(x)) = 0.

If y(x) is an algebraic (resp. finite-branching) solution then the corres-
ponding solutionp(u), g(u), u = (ug, Up, ug) of the reduced Schlesinger
equations (1.17) is also algebraic (resp. finite-branching). According to
Theorem 1.1, the solutions of the reduced Schlesinger equations (1.17) can
ramify only on the diagonalg; = u,, u; = us, Uz = U,. Analogously the
ramification points ofy(x) are allowed to lie only at,01, co.

We now characterize the monodromy data such that the corresponding
solution of the PV equation is finite-branching.

Lemma 1.11. A necessary and sufficient condition for a solution of VI

to be finite-branching is that the corresponding monodromy matrices, de-
fined up to conjugation with the same diagonal matrix, have a finite orbit
under the action of the braid group (1.27), (1.28).
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Proof. By definition, any algebraic function has afinite number of branches.
Allowing also the permutations (1.26), we still obtain a finite number of

values forM?, M5 andMZ, g € 83 up to diagonal conjugations.  QED

Corollary 1.2. An admissible triplgXxy, X2, X3) specifies an finite-branch-
ing solution of PV, with 21 ¢ 7Z, if and only if it satisfies (1.21) and its
orbit, under the action (1.30) of the braid group, is finite.

Remark 1.9. We stress that the action (1.30) preserves the relation (1.21).

In this way, the problem of the classification of all the algebraic solutions
of the PVlu reduces to the problem of the classification of all the finite orbits
of the action (1.30) under the braid group in the three dimensional space
(see [Dub], appendix F). Here we give a simple necessary condition for
a triple (x1, X2, X3) to belong to a finite orbit.

Lemma 1.12. Let(Xq, Xo, X3) be a triple belonging to a finite orbit. Then:
X = —2cosari, rieQ, 0<r<l1l i=123 (1.32)
HereQ is the set of rational numbers.

Proof. Let us prove the statement for, say, the coordixate€Consider the
transformation

2. 2
BT+ (X1, X2, X3) > (X1, X2 + X1X3 — X7X2, X3 — X1X2),

as alinear map on the plae, x3). This linear map preserves the quadratic
form

2 2
X5 + X3 — X1X2X3.

If x; = 2, we putr, = 1; otherwise we reduce the quadratic form to the
principal axes, introducing the new coordinates

B 2+ X B V2 — X
X = > L (%o — Xa), X3 = > L (%o + Xa).

In these new coordinates the preserved quadratic form becomes a sum of
squares and the transformatigfiis a rotation by the angle + 2«, where

a is such thatx; = —2cosa. To have a finite orbit ofX,, X») under the
iterations ofp2, the anglex must be a rational multiple of. In this way

the statement fox, is proved. To prove it fok, andxs we have to consider

the iterations ofs2 and 8,828, respectively. QED

Remark 1.10. Thanks to the above lemma, for the finite orbits of the braid
group, it is equivalent to deal with the tripl€s,, X, X3), or with thetrian-
gleswith angles(nry, nf,, 7r3), with x; = —2 cosrri and 0<r; < 1 (we
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may assume, changing if necessary two of the signs, that at most one of the
X; is positive). Observe that the quantity

X2 4+ X5 + X5 — X1XoX3 — 4

is greater than O if and only if the triangley, r», r3) is hyperbolic, namely

> ri < 1;itis equal to O, if and only if the triangléry, ro, r3) is flat,
namely) "ri =1, anditis less than 0 if and only if the triandlg, r, r3) is
spherical, namely_r; > 1. Thanks to (1.21), aflat triangle gives a resonant
value ofu, and it is thus forbidden.

1.3.2. Classification of the triples(xy, X2, X3) corresponding to finite-
branching solutions. We deal with the classification of all the finite orbits
of the triples(xy, X2, X3) of the form (1.32), with at mo$bner; being equal
to % According to Lemma 1.12, any point of the®g-orbits must have the
same form (1.32). This condition is crucial in the classification.

Definition. We say that an admissible trip{&;, x,, X3) is goodif for any
braid 8 € 83 one has

B(X1, Xo, X3) = ( — 2 cosar}, —2 cosarh, —2 cosnr}),

with some rational numbers€ riﬁ < 1.

Theorem 1.6. Any good triple belongs to the orbit of one of the following
five

(—2cos%,—2cosz, 2cosn) (1.33)
(—2 cosg, -2 cosg, -2 cosn) (1.34)
(—2003%,—20057;, Zcosn) (1.35)
<—2 cos%, -2 cos%, -2 cos%) , (1.36)
<—2 cos%, -2 cos%, -2 cos%) . (2.37)

All these orbits are finite and pairwise distinct. They contain all the permu-
tations of the triples (1.33), (1.34), (1.35), (1.36) and (1.37), and also the

2 This corresponds to the fact that we deal only with admissible triples.
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triples
T T T
(2 cos. 2 cos ., 2 cosg) , (1.33)
2 b4 b4
—2C0S—, —2C0S~—, —2C0S~— | , (1.34)
3 4 4

4 4 4
-2 cosé, -2 cosz, -2 cosz , | =2 cos—n, -2 cos—ﬂ, -2 cos—ﬂ ,
3 5 5 5 5 5

(1.35)

2w 2w 2 2 2 2w
<—2 cos?, -2 cos?, -2 cos%) , (—2 cosg, -2 cosg, -2 cos?> ,
(1.36)

3 2w
(—2 cos%, -2 cosg, -2 cos%) , (—2 cosg, -2 cosg, -2 cos%) ,
2 T T

(—2 coS—-, -2 cos, -2 cos§>, (1.37)

respectively, together with all their permutations.

Corollary 1.3. There are five finite orbits of the action (1.30) of the braid
group on the space of the admissible trip(&s, X,, X3) satisfying

X2+ X5 4 X3 — X1XoX3 # 4.

The lengths of the orbits (1.33), (1.34), (1.35), (1.36) and (1.37), are equal
to 4, 9, 10, 10and 18 respectively.

Remark 1.11. The action of the pure braid grougs on the above orbits
gives the same orbits for any of them but (1.34). The orbit (1.34), under the
action of the pure braid grouBs, splits into three different orbits of three
points. So thé>s-orbit (1.33) has four points, the thr&g-orbits (1.34) have

three points each, (1.35) and (1.36) have ten points each and (1.37) has
eighteen points. These orbits give rise to all the finite-branching solutions
of the PVl equation, foru is given by (1.21). The number of the points of
each orbit with respect to the action Bf coincides with the number of the
branches of the corresponding finite-branching solution.

Proof of Theorem 1.6.The braid group acting on the classes of triples
(X1, X2, X3), is generated by the brag{ and by the cyclic permutation:

(X1, X2, X3) > (X3, X1, X2).
As a consequence it suffices to study the operator:

(Xis Xj, X)) > (=Xi, Xj, Xk — XiXj),
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up to cyclic permutations. This transformation works on the triangles with
anglesnr;, rj, 7ty as follows:

(ri,rj,n) = (L—=ri,rj,ry, (1.38)
wherer, is such that:
COSnr, = COSnry + 2 COSnr| COSTr . (1.39)

The first step is to classify all the rational triples, rj, ri) such thatry,
defined by (1.39) is a rational number,>1 r, > 0, for every choice of
i #] #k#i,1,j, k=12, 3. Equivalently we want to classify all the
rational solutions of the following equation:

cosnry + cosn(ri +rj) + cosm(rj —rj) + cosm(1l — ry) =0,
or all the rational quadruple®1, @2, @3, ¢4) such that:
COS 2r¢; + COS 2, + COS 2tz + COS Zrgpy = 0, (1.40)
where they; are related with the; by the following relations:

Mo+r Iri —rjl 11 —r
p1="Ik/2, @2 > ¥3 5 ¢ > ( )

Such a classification is given by the following:

Lemma 1.13. The only rational solutionge:, @2, ¢3, ¢4), 0 < ¢ < 1,
considered up to permutations and up to transformatigns> 1 — ¢j, of
the equation (1.40) consist of the following non—trivial solutions:

1 11 2 1
(%’ %’5’9 @
7 17 1 1 b
(%’ %’5’9 ®)
(222} ©
77776

and of the following “trivial” ones, of three types:
(d): cos 2rgps = 0. The solutions obtained in [Cro] have the form

11 31 1 21
1
?4 bl

whereg is any rational numbeb < ¢ < 1.

1 1
d.3) : (Z,w, )w— >
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(e): cos Zrp, = 1. The solutions obtained in [Gor] have the form
111 1 1
el :(Z.2.2.0), ©@2:(z0 ——),o :
(el <3 23 ) (e2) (2 919~ 3 )

112
(e-3) . <§, g, g, O),

whereg is any rational numbed < ¢ < 1.
(f): cos 2re; +cos 2rp, = 0, cos Zrps + cos Zre,s = 0. The solutions are
obvious

=11/2 = ¢, 94 =11/2 — g3,
whereg1, @3 are two arbitrary rational numberg < ¢; < 1.

Proof. We follow the idea of Gordan [Gor] (see also [Cro]). In this proof
we use the same notations as in [Cro], except forghehich there are
calledr;. Let us recall the notations. Let = g—‘; wheredy, ng are either
positive coprime integersl > ng, or ny = 0. Let p be the largest prime
which is a divisor ofd,, do, ds3, or ds and letdy, Ik, ck, vk be the integers
such that

de = &P and ng = cdk + P,
wheres, is prime top, 0 < ¢ < p*, ¢ = 0 if I, = 0, but otherwiseg is

prime top. So
Vk Ck
= fy+
Yk = 5k —l— p'k

We assume thdf > [, > 13> 14 and define the function:

COS Zroy if c=0

and, in our case:
4

U =) gk(X).
1
As in [Cro], gk (exp(zp”')) = €0S 2rg, andU (exp(zm)) = 0. Let us
introduce the polynomial

P(x) = 14 xP7 4 x2P17L x(p-Dp
This is the minimal polynomial of exé@) with coefficients inQ, that

is such that )P (exp(i,”') = 0 and ii) P(x) is irreducible in the ring

of polynomials with rational coefficients. A stronger result was proved by
Kronecker (see [Kr]): the polynomidP(x) remains irreducible over any
extension of the forn@Q(¢y, - - - , &n), whereg is a root of the unity of the
order coprime withp. As a consequence, the following lemma holds true
(see [Gor]).
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Lemma 1.14. If we express the polynomibl(x) as a sum of polynomials
Ui (),
p|17171

U= Y U,
t=0

where U;(x) contains those terms dfi(x) of the formbx® with ¢ =
t mod(p'+~?t), then everyJ(x) is divisible byP(x).

We now apply this lemma in our case. The indices of the powess of
are:

C1, p|1 —C, C p|1—|2, p|1 - p|1—|2’
cspt e, Pt — PR, Pt Pt —capt T
If all the following conditions are satisfied:
|1,|2,|3>1, |1>|2,|3,|4, |2>|3,|4, |3>|4, |4>O,

then there are no indices equal to each othed(p'lfl) and there is no
solution of (1.40). So we have to study the cases in which one of them is
violated.

1) :l1 = 1> 1, > I3 > I4. In this case, since the degreeldfx) is
less thamp, and the degree d?(x) is p — 1, beingU(x) divisible by
P(x), we must havéJ(x) = mRX), for some constan. There are
four possibilities:

1.1) :li=l,=I3=14=1thenU(0) = 0 and P(0)=1. Them = 0 and
U(x) = 0; moreover if the sum of two (three) terms representing two
(three) of the functiong vanishes, then the sum of the two (three)
functions vanishes. As a consequence there are only the following
possibilities:

1.1.1) :g = —gj andgx = —g for some distinct, j,k,| = 1,---4. This
gives rise to the trivial case (f).

1.1.2) :g = 0forsomd =1, -- -4, this is the trivial case (d).

1.1.3) :U(x) contains only two powers of. If by, --- , by are the coeffi-
cients of one of the powerg’, then:

1 1 1 1
by +by+bs+hby=0 d —+—+—+—=0,
1+D2+b3+0,=0, an b1+b2+b3 ™
namelyb,, --- , by are the solutions of the following biquadratic

equation:
z + (b1by + bibs + bibs + bobs + bobs + b3b4)22 + bibybsbs = 0.

As a consequench; +b; = 0, by + bk = 0, b_l. + é = 0 and
é + b—lk = 0, for some distinct, j, k,| = 1,---, 4. Then this case
reduces to the trivial case (f).
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12) Iy =1,=13=1,14 = 0; thenU(0) = cos 2re,4 and thenU(x) =
cos Zrp4 P(x), whereP(x) is a polynomial withp powers ofx. Since
in U we have at most 7 powers apdanust be prime, thep can only
be equal to 23,5, 7.

1.2.1) Case = 2. Sincepisthe largest primeidy, - - - , ds, we must have
di=d =d3 =dy =2 andsy = 1. Theny, = 0, ¢, = 1 and this
provides no solution.

1.2.2) Case = 3. In this case there are the two following possibilities:

e2mf1+ eZn|f2+ eZ”'f3—c0321<p4_ 1 72n|f1+1e72mf2+1 —2mi f3
2

2 2
or
1 o Lonn 1 ons 1., 1 .. 1 ..
e 14 Zeifey “e2mifs — cos2ros = _emel “e 2 f e 2mf3.

In both the case one can show that there are no solutions. In fact, for
example, in the first case one has to solve the following equations:

2C0S Zrgp4 = cos 2t f; + cos 2t f, + cos 2t f3,
sin2rfi+sin2rf, +sin2rfz3 =0.

Using the classification of all the possible rational solution (d.1),

(d.2), (d.3) of the case (d), one can show that there are no solutions.
1.2.3) Case = 5. In this case we have:

1 1. 1 ...
eZJTI fk — = —27T| fi — _e'ZJTI f; _e:I:ZJTIfj — cos
2° 2 T3 oa
for some distinct, j, k = 1,2, 3. Thenfis 0 or$ andgs =  or
Q4 = % respectively. Following the same computations of [Cro] we
obtain the two solutions (a) and (b).
1.2.4) Case = 7. In this case we have:

1
e27'[| fl . 727'[I fl _ eZJTI f2 — 727'” f2
2 -2 2
1
— _eZm fa _ Ze
2 2

which has the following solutions:

—2rify __ — cos 27@4,

f1=f2=f320 and Q4 = or

1
fl:f2:f3:§ and (p4—

CJOlHG)lH

This gives the solution (c).

1.3) l;=Il,=1andz=14=0.ThenJ(X) = (COS 2rg3+C0S Zrp,) P(X);
again inU we have at most 5 powers and ther= 2, 3, 5. The case
p = 2 is treated as in [Cro];
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1.3.1) :Inthe cas@ = 3 either

1, 1. 1 ... 1 .
EeZm f1 + EeZm o — Ee—Zm f1 + Ee—Zm o — cos 21'(,03 + Ccos 2‘[(/)4,
or.

1. 1 : 1 . 1 ..

§e2m f1 + Ee—Zm fa — Ee—Zm f1 + EeZJTI o — cos 2T(p3 + cos 2T¢4

Inthe former case, fof, = f,, with cos 2r f, = cos 2rp3+C0S 2r@,
and this gives again the solution (b). The latter case is equivalent.
1.3.2) :Inthe cas@ = 5 one has:

1., 1 . 1. 1 .
Ee27'[| f1 — §e7271| f1 — Ee27'[| I — §e7271| I — cos 2T(p3 + cos 27(04,

which givesf, = f, =0or f; = f, = % We treat the former case
(the latter is equivalent); then cos@s + cos Zrp, = % and we can
show that this case reduces to the trivial solutions (d) and (e).

1.4) 1 =1andl, =I3 =14 = 0. In this case, as in [Cr0], there is no
solution, but the trivial one (d).

2) I, > 2,11 > 15,13, 14. This case can be treated as the analogous one
in [Cro].
This concludes the proof of Lemma 1.13. QED

We now use the above lemma to classify all the triangles which corres-
pond to good triples. Every quadruple generates twelve triangles. In fact,
given a solution(e, - - - , ¢4) we have six ways to choose the péir, ¢;)
such that

COS Zrg; + COS Zrpj = 2 cosn (i + ¢j) cosm(¢i — ¢j).

Chosen the paity;, ¢;), we have two ways for choosing, in order to
have the triangle

(201, @i + 9. loi — @jl) - (1.42)

The remainingy, is, by definition, such that the above triangle is mapped,
by the braid (1.38), to:

(loi — @il 11— ¢ — 9jl. 11— 2¢]) .

Let us analyze all the triangles generated by the solutions of the equation
(1.40), and keep thgoodones, namely the ones for which the ngwgiven
by (1.39), is rational for everi, |, k, cyclic permutation of 12, 3.

In order to do this, observe that if there exists a permutaficsuch
that the triple(r 1), r'p2), ' pz) Qives via (1.41) values apy, @2, 3 such
that there is not any rational, such thatp,, ¢», 3, @4 satisfy (1.40), then
(r1,r2,r3) is not a good triple. In fact, every permutatignis generated
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by cyclic permutations and the permutatipgy : (r1,r2,r3) — (r1,rs, r2).
Cyclic permutations are elements of the braid group, so the statement is
obvious for them. Fop,z, the statement is a trivial consequence of the fact
that the tripleqrq, ro, r3) and(ry, rs, ry) give via (1.41) the same values of

1, Y2, P3.
So we will exclude all the triangle§ 1, ro, r3) for which there exists at

least a permutation that gives rise to valueggmf ¢, ¢3) for which rational
solutionsg, of (1.40) do not exist.

Solution (a). Using (1.42), we obtain the triangles
1 1 23 11 8 1 7 17 4 7 13
15" 30" 30)° 15°5° 15/ 15" 30" 30/ 15 30" 30/°
11 11 13 11 2 1 4 2 1 117
1530730/ 15°15°5)° 5155/’ 55 15)°

1 11 13 2 1 7 113 112
3'30°30/)° 3'30°30/° 3’55/’ 3’35/

The last two points
113 112
-, = -, = 1.4
<3’ 5’ 5) <3’ 3? 5) ( 3)

belong to the orbit (1.37). The above values suitably permuted, except the
(1.43), give rise via (1.41), to the following values @, ¢», ¢3) (written
in the same order as the corresponding generating triangles)

1 5 7 1 3 7 7 19 1 7 7 1
(&)’ 12’ 2_0>’ <1_o’ 10’ %)’ (&)’ 60’ Z)’ <&)’ 20° 1_2>
(B13) (522 (R12). (o12)
60 12 20/° 10°30°10)° 15°2°10/)° "5°30/°
1 11 23 1 9 13
(2_0’ 60’ &))’ <&)’ 20° &))‘

there isn’t any rational numbery, such that any of the quadruples build with
these triples andgj is in the class described by Lemma 1.13.

Solution (b). Using (1.42), the triangles are
7 11 23 7 211 7 1 11 2 1 19
15°30°30)° 15°5°15)° 1530 30)° 15 30" 30)°
2 1 17 2 1 3 2 1 2 2 11 2
15°30°30/° 15°15'5)° 515'5)° 515°5)°

1 1 13 1 11 23 214 114
3°30°30/° 3°30°30/)° 535) 33’5/
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The last two points are equivalent to:

11 211
113 e (1.44)
3’55 335

of the orbit (1.37). As before one can show thatrif, ro, r3) is one of the
above values, except the (1.44), then there exists a permutation such that
ther, defined by (1.39) is no-more rational. In fact we obtain for example
the following values of g1, ¢, ¢3), which don't fall in the values obtained
inLemma 1.13:

11 37 3 13 2 1 5 1 3 23
<66’66’§6>’ (5’5’1§>’ (66’15’56)’ <66’Z’66>’
1 47 7 1 23 11 120 1120
(&)’&)’2_0)’ (%%%) (_0’3’>’ (_o’é’ :

123 1) (111113
60° 60" 20/’ 60" 20" 60/
Solution (c).

215 2 5 19 2 11 25 4 11 25
<77?5?>7 <?74_254_2>7 <?74_254_2>7 <?74_254_2>7
4 2 4 4 1 13 1 1 29 1 5 23
(777) Gazn) Gan) Gaw)
1114 113 124 115
(777) G73) (333) (533)

As before one can show that(ify, ro, r3) is one of the above values then
there exists a permutation such that thedefined by (1.39) is no more
rational. In fact we obtain for example the following values®f, ¢, ¢3),
which are not included in the values described by Lemma 1.13:

113 5 311 11 37 13 1 7 1
(wzn) (mrorss) (seorss) (Goizas)
14 1 37 11 1 5 23 5 29 17
(579 (maawes) (setros) (owawas)

12 0 1 8 1 119 5 1 11 4
77T ) 14°21°21)° 742 42)° 14721 21)°
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Solution (d.1).
2 3 3 11 9 11 1 1 1 19
3°20°20)° 3'20°20)° 5°20°20/)° 5°30°30/°
11 7 2 1 5 3 3 7 3 7 13
5 12°12)° 512°12)° 52020/ 5°30°30/°

1 7 13 11 11 212 112
2°30°30)° 2°30°30)° 3’55/’ 2’5°5)"

The last two points are equivalent to:

113 121
S S —— 1.4
(3’ 5 5) (2’ 5 5) (1.45)
of the orbit (1.37), which is now complete. We can again exclude all the
other values ofrq, r,, r3), with the same trick as above.

Solution (d.2). In this case we have that any of the triangles generated is
equivalent to one of the following:

(|1—2(p|, 11— 4gl 1+4<ﬂ>, (l 11— 4gl |3—4<ﬂ|>,

4 4 27 4 4

<} 11— 49| 1+4<p> <2(p 11— 4gp| |3—4<p|>

2 4 4 ) 4 0 4 ’
11 |14
(G257

where ¢ is an arbitrary rational number. The last triangle is forbidden
because it has two right angles, and the first four ones are all equivalent to
a flat triangle, so they are again forbidden because they give rise to a an
half-integer value ofx.

Solution (d.3). The generated triangles are the following:
11 1 2 1 1 122
2 = —2¢|,=, 20+ = 2
<2 3T 3) <) o 3 ‘”3)’ (2 33" ‘p)

3

3 4
11— 4<p| 1+4<p>
_|_

11 1
-, =142 20, =,1+42
(p9 4 2939 + (P> <(p’39 + (P>,
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This case must be studied carefully because we have to classify the allowed
values of the rational variablg in order that, applying the transformation
(1.38), we obtain always rational values.

Let us analyze the first triangle. It is mapped by (1.38) to a triangle
equivalent to the second one:

11, 1 12 1 2 11
g 242022042 )~ (12- 20, 2 204+ 2).
<23 ¢+3)._><3+ “3 ‘p+3) (’3 ol 3 "’+3>

(1.46)

If we apply the braid (1.38), with, = Z, rj = r, = 2¢ + 1, we have to
solve:

2 1
cos? +2cog n(2<p + §) = cosnry,

or, equivalently, forp and for the newpy:
2 1
cos? + cos 2‘[(2(,0 + §) 4+ 1+ cos Zrg, = 0.

We classify the values of the allowedising the Lemma 1.13 in the case (e).
We have six possibilities fap:

) if g« = 3, theng = 2. In this case we obtain, from (1.46), all the
points of the orbit (1.34).

i) if g = %1, theng = 0. In this case we obtain, from (1.46), all the points
of the orbit (1.33).

iii) if g« = 3,theny = . In this case we obtain, from (1.46), the following

points:

115 121

2°3'6)’ 636/
We exclude them because there exists a permutation such thet the
defined by (1.39) is no-more rational.

iv) if ¢ is free to vary, then @+ § = 3. In this case we obtain, from
(1.46), the forbidden point:

111
2°3°2)°
so we have to exclude it.
V) if ¢ = £, thenp = 5, and we obtain, from (1.46), the following two
points of the orbit (1.36):

112 222
2°3’5)"° 535)
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vi) if g = £, thenp = £, and we obtain the following two points of the

orbit (1.35):
111 121
2°3'5)° 535/

In the same way we can study all the other triangles and show that we
don’t obtain any other value but the ones described in Theorem 1.6.

Solution (e.1). The generated triangles are the following:
2 1 7 12 2 1 7
<Oa Oa é) ) <07 1_25 1_2> ) <07 Ea é) ) <§a 1_25 1_2> )
211 111 2 11\
3'3'3)°\2'33)°\34°4)"
the first four are forbidden because there exists a permutation such that the

r. defined by (1.39) is no-more rational. So we have to exclude them. The
fifth and the sixth are points of the orbit (1.33) and the last of (1.34).

Solution (e.2). The generated triangles are the following:

11 11 11 |1+ 4¢
20, =, = 1-2¢|, =, = -z 1
< (p9 29 2) ’ <| (pl’ 29 2) ’ <29 2’ 2 >’ ( ’(p’ (p) ’

11— 29| |1—2¢| 1 |14y
1 — 1-2
< Y 2 ’ 2 ’ 09 2’ 2 ’ (| (p|9(p9(p)9

I1—2¢] 1+ 2¢ 11— 2¢| |1- 29|
0 0 1-— 2
(, R . (0,0, ®), | 20, > 3 .
[1—2¢p| 14+ 2¢
<|1_2(p|7 2 5 2 7(2()07()071_()0)

They are all forbidden, the first three because they have two right angles, the
next three ones, because we can prove that necesqaaﬁilj, then the first

has two right angles, the second one giMesszr,| = 3 and the last gives

| cosnry | = 2; all the others because they are equivalent to a flat triangle.

Solution (e.3). The generated triangles are the following:
<0£E> <oi1_1> (0}§> <E}§> (%i1_1>
"15°15)7 \ 71515/ \ '5°5)° \3'5°5)" \5°15°15)°
4 2 8 411 211 222 222
<E’EE’E§)’ <§’§’§>’ (5’5’5)’ <§’§’§>’ (E’E’E)’
211 121
<§’§’§>’ (3’§’§)~

We exclude the first six because we can show that there exists a permutation
such that the, defined by (1.39) is no-more rational. The seventh and the
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eighth give two points of the orbit (1.36), the ninth and tenth two points of
the orbit (1.39) and the last two, two points of (1.39).

Solution (f). We have obtained all the points of all the orbits of Theo-
rem 1.6. To show that there are no other points we still have to examine the
case (f). Inthis case all the obtained triangles are equivalent to the following:

o1 2—@1tg¢sl 12—@1—gsl\ (o1 1 [1—¢]
2 b 4 b 4 b 2 b 2’ 2 b
@1 14—91— g3l o1 — g3l
2’ 4 ' 4 ’
Applying the transformation (1.38) to the above triangles, we find that we

have to solve fok, @3 and for the newp obtained from the (1.39), the
following three equations respectively:

(1.47)

2 —
cos:r% + cosmg; + CcosZrp +1 =0,

n|1+<,01—</33| 11— @1 — 3]

cos + cos;rf + cos 2ty = 0,

o1+ @3 13¢1 — @3]

2 cosr + cos:rf + cos Zrp = 0.

We again can use Lemma 1.13 to prove that we don’t obtain any new point.
Let us show this for the first triangle

2— 2— @1 —
g,l w1+<p3|, 2= ¢1— ¢l ) (1.48)
2 4 4
We have to solve the equation
12 — ¢35 B
cos;rT + cosmg; +cos 2t +1=0. (1.49)

Using Lemma 1.13, the possible values (852!, g1, ¢) are the (e.1), (e.2)
and (e.3). Consider the case (e.l), then the possible solutions for the pair

(1, @a), are
((pl’ (03)— <2’ 3>’ 39 )9 <3’ 3>

Let us substitute these solutions in (1.48); we obtain the triangles

113 5 17 1 111
4’24’ 24)° 312 12)° 32°6)°
which are all flat, and thus forbidden. Let us now consider the case (e.2).

In this case we obtain two possibilities: eithey = 0 andg; is a free
parameter, okp; = 1 andg; is a free parameter. In both the cases the
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triangle (1.48) is flat, and thus forbidden. Let us now consider the last case
(e.3). The possible solutions for the péir, ¢3), are

(22 26 2 2 4 6 4 2 2 2
wor=(g3) (5¢) (53) (58) (53) (G5)

Substituting these values in (1.48), we obtain all flat triangles. We can repeat
the same proof for the other two triangles in (1.47). In this way we conclude
the proof of the theorem. QED

1.4. Monodromy data and reflection groups

We reformulate here the above parameterization of the monodromy data
by classes of equivalence of tripl€s:, Xo, X3) in a geometric way. Let

us consider a three-dimensional sp&tvith a basis(e, e, e3) and with

a symmetric bilinear forng-, -) given, in this basis, by the matrix

2 X1 Xa
g:= (Xl 2 X2> (150)
X3 Xo 2

namely

(6,6)=2 for =123 and
(6, &) = X1, (€,63) =X, (€1,63) = Xa.

Observe that the bilinear form (1.50) does not degenerate. Indeed,
detg = 8 — 2(xZ + X5 + X5 — X1XoX3) = 8cog mu # 0,

due to the non-resonance assumptipn7Z. The three planeg:, p,, ps
orthogonal to the basic vectofs,, €, €3) possess the following properties:

1) The normal vectors to these planes are non-isotropic(§.es) # 0).
2) None of the planes is orthogonal to the other two.

Conversely, a three-dimensional spatevith a non-degenerate sym-
metric bilinear form(-, -) and with an ordered triple of planes satisfying the
above conditions, uniquely determines the madgrof the form (1.50), and
then the monodromy data of a solution of RVI

We define three reflection®;, R;, Rs with respect to the three planes

(P1, P2, P3):

vV -V .
Rty o x— =123

(&,Xe
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These reflection have the following matrix representation in the basis
(€1, &, &3):

-1 —Xx1 —X3 1 0 0 1 0 0
Ry = 0 1 0], RR=-x1 -1 —x2], Rz= 0 1 0].
0 0 1 0 0 1 —X3 —X2 —1
5

Let us consider the grou@ c O(V, (-, -)) of the linear transformations
of V, generated by the three reflectioRs, Ry, Rs. The matrixg will
be called theGram matrix of the reflection groups. It determines the
subgroupG c OV, (-, -)) uniquely. We observe that, for an admissible
triple, the groupG is irreducible, namely there are no non-trivial subspaces
of V which are invariant with respect to all the transformation&of

We conclude that the branches of the solutions of/P¥4n be param-
eterized by group& c O (3) with a marked ordered system of generating
reflectionsR;, Ry, Rs. Let us describe what happens with the triples of
generators under the analytic continuation of the solution.

We define an action of the braid gro@y on the systems of generators
R1, Ry, Rs of the reflection groujts:

B1: (R, Re, Rg) = (Ry, Ry, Re) := (Ro, RR1 Ry, Ry),
B2 : (Ry, R, Re) = (Ry, Ro, Re) := (Ry, Rs, RsRoRy), (1.52)
whereg; , are the standard generators of the braid group. Observe that the

groups generated by the reflectiai, Ry, Rs) and(Ry, Ry, Rs)? coincide
for any 8 € 8B3. In particular the following lemma holds true:

Lemma 1.15. For any braid 8 € 83, the transformationg(R;, Ry, R3)
are reflections with respect to some planes orthogonal to some new basic

vectors(é?, €, €}). The Gram matrix with respect to the basé§, €, &)
has the form:

. )y=2 i=123

(€. 8)=x, (&.6)=x, (e.&)=x,

where(x, x5, x5) = (X1, o, X3).
Proof. It is sufficient to check the statement for the generafars For
B = pu:
di=g &=a-xe &=,
for B = Bo:
& =e, &= & =e-xe
Computing the Gram matrix we prove the lemma. QED
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1.4.1. Reflection groups and finite-branching solutions.Let us figure
outwhat are the reflection groups corresponding to the finite orbits classified
in Theorem 1.6.

Theorem 1.7. The orbit (1.33) corresponds to the groMji Az) of sym-
metries of regular tetrahedron, the orbit (1.34) corresponds to the group
W(Bs3) of symmetries of the regular octahedron, the orbits (1.35), (1.36),
(1.37) correspond to different choices of a system of generating reflections
in the groupW(Hs) of symmetries of icosahedron.

Proof. It is sufficient to find one point in each of the orbits (1.33), (1.34),
(1.35), (1.36), (1.37) that corresponds to a triple of symmetry planes of
a regular polyhedron. To this end, we associate to a regular polyhedron
a standard triple of symmetry planes using the following construction. Let
0 be the center of the polyhedron. Take a face of the polyhedron and denote
H the center of this face? a vertex andQ the center of an edge of the face
passing through the vertdX The standard triple consists of the symmetry
planes trough the poin®@PQ, OQH, OHP respectively. Let us compute

the angles between the planes of each regular polyhedron. It is convenient
to use the Schlafli symbdp, q} for regular polyhedra (see [Cox]). In these
notations, the face of the regular polyhedi{gm q} is a regularp-gon, the
vertex figure is a regular-gon. We immediately see that the angles between
the planes of the standard triple are

between OPQ and OQH

between OQH and OHP

’

between OHP and OPQ

L R IERNE

So, for the tetrahedrofB, 3} we obtain the angle$Z, Z, %), for the oc-

tahedron({3, 4} the angles(%, 3 %), for the icosahedrof3, 5} the angles
(3. %, £)- In this way, we obtain the triples (1.33), (1.34), (1.35). The re-
ciprocal polyhedra (i.e. cub@, 3} and dodecahedrof®, 3}) give the same
angles up to permutations. As we already know, the permuted triples of
(1.34) or (1.35) belong to the same orbit. So, the standard triples of cube
and dodecahedron am®s-equivalent to those of octahedron and icosahe-
dron respectively.

To obtain the last two orbits (1.36) and (1.37), we apply the above
construction of the standard triple to great icosahedron and dodecahedron
respectively. These non convex regular polyhedra both have icosahedral
symmetry (see [Cox]). Their Schlafli symbols 48 2} and{5, 2} respec-
tively. This means that the faces of these ponheoFra are regular triangles or
pentagons, but the vertex figures are pentagrams. The above computation
gives the triples (1.36) and (1.37). Again we need not consider the reciprocal
stellated polyhedra. Theorem 1.7 is proved. QED
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1.4.2. Classification of the monodromy data, second proof\We present
here another proof of Theorem 1.6, based on the idea suggested by E. B.
Vinberg. We start with the following:

Algebraic Lemma. Let(x, Yy, z) be an admissible triple of real numbers,
satisfying the inequalities:

X2+ y?+ 22 — xyz> 4, (1.53)
and
IXI, 1yl, 12 =2 (1.54)

Then there exists a brail € 83 such that the absolute value of some of
the coordinates oB(x, Y, 2) is strictly greater tharR.

Before proving the lemma, we observe that we can assume, without loss
of generality, that all the coordinates(@ vy, z) are non-zero; in fact, for any
admissible triple, there exists a brgide B3 such that all the coordinates
of (X, y, 2) are non-zero. Let us dendtg, by andb;, the following braids:

by := Bo, by(X,Y,2) = (z, =X, X — y2),
by := By BiBa, by(X,Y,2) = (=y+ Xz —X, —2),
b, := B, b,(X,y,2) = (=X, Z— XY, y).

Lemma 1.16. Let(X, Y, z) be atriple of non-zero real numbers, satisfying
0<1z, x|, lyl=2 (1.55)
and
X2+ y?+ 72 —xyz=4+c? c>0. (1.56)
Denote(X, Y, Z) := B(X, Y, 2), where

be if X<yl 2,
B=1qby if Iyl=Ixl |z,
b, it 1zl =< Ix. Iyl

Then:
min{|x'[, |Y'|, |Z]} = min{|x], |yl. |z|} (1.57)
and

X+ 1y +1Z] = x| + |yl + |2 + min{Z?, 2c}. (1.58)
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Proof. Let us prove the lemma in the case whigte< |x|, |y| andg = b,.
The other cases can be proved in the same way. If the signarad ofxy
are opposite then

Yl=lz+Ixyl =2 +7Z, X|=Ix, [Z|=IZ

and (1.57), (1.58) are proved. Let us suppose that the sigrenaf ofxy are
the same. Changing the triplg, y, z) to an equivalent one, we can assume
that all the coordinates are positive. If we prove now that

2z + 2C < Xy, (1.59)

wherec is given in (1.56), we have thay'| = |xy — z| > z+ 2c and the
lemma is proved. To prove (1.59) we find the constrained minimum of the
function xy on the domairD defined by the conditions (1.55) and (1.56).
The Lagrange function

F(X, ¥, 2) = xy — & (X* + y* + Z° — xy2),

has the local maximum at

44+c2—-22
X=y=\—Z%—7

and no minimum in the interior dD. It remains to study the values of the
functionxy on the boundary obD. If, say,z = y then the positive roat of
the equation

X2+ 277 —xZ2 =4+

is greater than 2. So the boundarizs- y andz = x are not reached for
(X, y,2) € D, and then|z| < |x]|, |y|. It remains the last boundary to be
studied. If, sayy = 2, we findx = z + c. Sincex > z, thenx = z+ cand
Xy = 2(z + c); this is the minimum of the functiory. QED

Proof of Algebraic Lemma.As observed above we can always reduce to
the case where all the coordinatesy, z) are non-zero. Put:

A(X, Y, 2) := min {xz, y2, 22, 2 X2 + y2 + 22 — xyz— 4} .
Using Lemma 1.16, we can build a brdagdsuch that the coordinates:
(X1, Y1, 21) == (X, Y, 2)
satisfy the inequalities

min{|xal, [yal, [za]} = min{|x], |yl, |z|}
IXa| 4 [yal + 22| = [X] + [y + |2 + A(X, Y. 2). (1.60)
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Since the quantity?® 4+ y? + z2 — xyz— 4 is preserved by the action of the
braid group, we obtain:

A(X1, Y1, Z1) = AKX, Y, 2).

If the absolute value of some of the coordinates, yi1, z;) is greater
than 2, the lemma in proved. Otherwise we apply again the construction of
Lemma 1.16 to the tripl€Xy, y1, z1). In this way we obtain a sequence of
braidsb,, by, bs--- such that the corresponding triples

(Xkt1s Yot 15 Zkt1) = By ks Yio Z0)
satisfy

A X1 Yot s Zer1) = AKXk, Vi Zk)-
Iterating the inequality (1.57), we obtain that

Xl + 1Yl + [zl = X[ + 1Yl + 12| + KA(X, Y, 2).

Hence, in a finite number of steps we build a triple such that the absolute
value of at least one of the coordinates in greater than 2. This concludes the
proof of Algebraic Lemma. QED

Corollary 1.4. For a finite-branching solution of PV, specified by an
admissible triplex; = —2 cos 2rrj, the value ofu must be real, the strict
inequalities

Xl <2, 1=123, (1.61)
hold true and the matrig defined in (1.50) is positive definite.

Proof. Let us prove that, for a finite-branching solution, the triple
(X1, X2, X3) must satisfy the inequality:

X2 4 X3 4 X3 — X1XoX3 < 4. (1.62)

Indeed, ifx2 + X2 + X3 — XXXz > 4, then, according to the Algebraic
Lemma the triple is not a good one. This contradicts the assumption that
the solution is algebraic. K2 + X3 + X3 — X;XXs = 4, thenpu = % +k

with k € Z. This contradicts the basic assumptiom 2 Z. Then %1.62)

is satisfied andk is a real number. Let us now prove (1.61). If one of the
coordinates, says, is such thak; = £2, then

2 2 2 2
X{ + X5 + X3 — XpXoXz = 4+ (X2 F X3)°,

and, beingx, x3 real numbers, (1.62) is violated. S, +2 for everyi.
Finally, applying the Sylvester criterion to the matgxwe prove thag is
positive definite. In fact

detG = 8 — 2(x% 4 X3 + X5 — X1XoX3) > 0,
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and for any principal minor
2 X\ _ 2
det(Xi 2) =4—x">0.
QED

Lemma 1.17. For a finite-branching solution of PV the reflection group
G acts in the Euclidean space.

The proof immediately follows from the fact that the corresponding Gram
matrix is positive definite.

Corollary 1.5. For a good triple(xy, X2, X3) and for any braidg € 83,
there exists three integer positive numbefs n/; andnj, such that:

I
(R#Rff)"” —1 for i£] i.j=123 (1.63)

Proof. If (e, &) = X1 = —2cosnar withr = % m,n € Z, thenR R, is
a rotation by the angles2". Hence:

(RIR)" = 1.

This holds true for any paiR; andR;. Moreover, for any braig € 83, the
triple B(Xq1, X2, X3) IS again good, then (1.63) is proved. QED

Corollary 1.6. The set of the solutions of the RVequation with a real
non resonant value gf and real parametersxy, X, X3) satisfying

IXil <2, 1=123,
is invariant with respect to the analytic continuation.

Proof. Applying the Sylvester criterion to the matgpdefined in (1.50), we
obtain thag is positive definite. So the reflectioRs, R,, R; can be realized

inthe Euclidean space. After atransformatign x,, x3) +— (xlﬂ, xg, xg) =
B(X1, X2, X3), the new numbergx,?, x,?, x3#) are the entries of the Gram
matrix:
BB
2 X X3
o =x 2 x|
BB
X3 X5 2
of the basige], &, &), in the same Euclidean space. Then this matrix must
be positive definite, namely? < 4 as we wanted to prove. QED



Painlee VI equation and reflection groups 105

In the latter part of this paper, we will identify the set described in Corol-
lary 1.6 with the class of solutions of P¥MIhaving asymptotic behaviour
of algebraic type. This identification leads to prove that the finite-branching
solutions are indeed algebraic and it will be crucial in the computation of
the five algebraic solutions of PMIwe have classified.

As we have just shown, a good triple

my my mg
(X1, X2, X3) = | —2cosmr—, —2cosr—, —2cosmt— |,
N1 Nz N3

corresponds to a representation of the Coxeter group generated by three
reflectionsRy, Ry, Rs satisfying

R=R=R=1 (RR)"=(RR)”=RR)®=1 (164

in the three-dimensional Euclidean space. We denote@ liye image of
this representation. Moreover, for any brg@ice B3, the matrices

(RS, RS, R)) := B(Ry, R, Ra),

satisfy the same identities (1.64), with some new integétsi5, n. We
stress that the reflection®’, R;, R, generate the same groGp

Theorem 1.8. It follows from the above property th& is an irreducible
finite Coxeter group.

Letn be the least common multiple af, n, andns. Put:
T
= 2C0S—.
¢ n
Lemma 1.18. The numbers

m
X = —2cost—, i=1,273,
i

belong to the ringK of integers of the field := Q[¢].

Recall (see [Wey]) thaiK is the normal extension @ generated by
¢ and Ky is the ring of all the algebraic integer numbersff namely it
consists of all the elemenise K satisfying an algebraic equation of the
form

XK+ ax<t+...4a =0 with aeZ.

Proof of Lemma 1.18.Letn = nym{, then

m; T 1

n;
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where

k-1
Tu(x) = cogkarccosq) = 27 1x* + 3 " 25t (1.65)
s=0

are the Tchebyscheff polynomials of the first kind (see [Bat]). Recall that
all the coefficientsays are integers, sa; = —2 cos;r';‘—ii is a polynomial

of ¢ with integer coefficients. Moreoveris a root of the monic algebraic
eqguation with integer coefficients

-1

C n

2T, <§> +2= ;”+Zansgs+2= 0.
s=0

Hence: € Ko andx = —2Tym (%) € KXo, as we wanted to prove. QED

Proof of Theorem 1.8.Fromthe formulae (1.51) itfollows that the matrices
R1, R, andR; are all defined over the same ritig, of integers ofx:

R € Mat(Xo, 3).
Moreover, these matrices are orthogonal with respegt to
R'gR =g, (1.66)
whereg is defined in (1.50). Let
I':=Gal(X, Q)
the Galois group ofK overQ, namely the group of all automorphisms
¢: K — K,
identical onQ.

For any¢ € I we denotep(R;) and¢(g) the matrices obtained frofR;
andg by the action

(X1, X2, X3) > (P(X1), P(X2), P(X3)). (1.67)
Lemma 1.19. For any¢ e I the following statements hold true:

i) detp(g) #0,
i) The matricegp(R)) are orthogonal with respect i(g).
iiiy Foranyp e 83the matricesp(R,)” satisfy the Coxeter relation (1.63).
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The proof is obvious, due to the fact that any automorphism preserves all
the algebraic relations.

From the above lemma, and from Algebraic Lemma, it follows that for
any ¢ € T, the real symmetric matrip(g) must be positive definite. We
will show that this implies that the group is finite. LetN be the order of
the Galois groug”. We construct the block-diagonal matrices

Ri € Mat(Ko,3N), =123,

as the matrices formed by 8 3 blocks on the diagonal, such that the
j-th block is ¢j(R), for ¢; € T, j = 1,2,---,N. The matricesR;

are orthogonal with respect tp that is the block-diagonal matrix having
9@, forg; e I', j = 1,2,---, N, on the diagonal blocks. We can
apply Lemma 1.19 to the matrice®; to show that they satisfy the Coxeter
relation (1.63). As a consequence we obtain a representation of our reflection
groupG into the orthogonal group

G— 0 (XM 9)
R — R;. (1.68)

By construction the matrice®; preserve the sublattice
KN € KN

of the vectors the components of which are algebraic integers of theXield

We recall (see [Wey]) that the ring(o of the algebraic integers of the
field X, is a finite-dimensional lattice. As a consequence, the image of the
representation (1.68) is a discrete subgroup of the orthogonal group. Since
g is positive definite, the orthogonal group is compact and, heacaust

be finite. The theorem is proved. QED

To complete the classification of the monodromy data related to the
finite-branching solutions it remains to classify the objects

(G, R, Ry, Ra),

whereG is one of the Coxeter groupss, Bz and Hz and (R, Ry, Rg) is

a triple of generating reflections considered modulo the action (1.52) of the
braid group. This can be done by a straightforward computation of all the
orbits of the triples of generating reflections. All of them were described
and classified by Schwartz (see the introduction). We arrive again at the
list of Theorem 1.6, where, as we already know, the triples (1.33) generate
the groupW(Ag) of the symmetries of the tetrahedron, (1.34) generate the
groupW(B;3) of the symmetries of the cube, while (1.35), (1.36) and (1.37)
correspond to three inequivalent triples of the generating reflections of the
groupW(Hs).
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2. Global structure of the solutions of Painlee VIw having critical
behaviour of algebraic type

In the former part of this paper, we found a class of solutions of PVl
invariant with respect to the analytic continuation. For them, the reflection
groupG acts in the three-dimensionBliclideanspace. Recall that the pa-
rameteru must be real, the coordinates of the admissible triptesx,, X3)
must be real and satisfy the inequality

—2<x <2 1=123.

In this latter part, we prove that this class of solutions coincides with the
class of the solutions of Pyl having critical behaviour of the algebraic

type

apX® (L + O(x%)), as x— 0,
yx) = {1—a(1-x" 1+ 0(1-x?9), as x—1, (2.1
X (L+ 0(x79)), as X — oo,

wheree > 0 is small enough, the indicég |1, |, are real and the coeffi-
cientsag, a;, a,, are some complex numbers. We compute the behaviour
of any branch of these solutions near the critical points. These results will
be used to prove that all five orbits described in the former part correspond
to algebraic solutions of PWl and to compute all the explicit formulae of
these algebraic solutions.

First of all, we fix the notations. Let us choose:

Uuy=0, u=xUuz=1

Then the Fuchsian system (1.1) reads

d AL A A
—Y:A(z,x)Y:(Tl—lr I 3>Y,

dz z—X z-—1
and, putting
e%gl = AOa ‘A)Z = AXa ‘A)S = Alv e>%OO = AOO?

we obtain

dy_ <@+ A A )Y. (2.2)

dz z z—1 z-—X

The branch cuts i€ are the same as in Sect. 1.1. We call now the basic
loopsyo, ¥x, v1. They are fixed as before, namely, yx, y1 play the role of
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the preceding/, y», y3 (see Fig. 1). The Schlesinger equations read:

d _ [AOa AX]

&Ao(x) i

d _ [Ala AX]

g a0 ===, (2.3)
d LA Ad | [AL A

d_XAX(X) =T x T Tx—1

The corresponding monodromy matrices are
MO’ MX, Ml’

which play the role of the precedinli, My, M3 respectively. We recall
that they satisfy

MMM My =1, detM) =1, Tr(M) =2, fori=0,1,x,
(2.4)

with

exp(2mu) 0
Moo = < 0 exrx—Ziym)>' (2.5

As a consequence we change the notation als@xforx,, X3) which now
will be called(Xg, X1, X)) respectively.
With the above choice of\,,, A1, Ax and A, satisfying
detA =0, Tr(A)=0, i=01 c0, (2.6)

the non-singular solutiod\(z, xX) of the Schlesinger equations turns out to
be related to the solution of PMIin the following way (see [JMU]):

[AlY, X)]12 =0, iff y(x) solves PV, 2.7)

wherey is not identically equal to L, x.
We now state the first main theorem of this part:

Theorem 2.1. For any admissible triplé€Xg, X1, Xs0), Xi € R, [Xj| < 2 for
i = 0,1, oo, there exists a unigue brangh(x; Xo, X1, X»o) Of @ solution of
PVIuw, with the parametep satisfying the equation:

ASirf 7t = X5 + X2 + X2 — XoX1Xoo, (2.8)

with the asymptotic behaviour (2.1) near the critical poifitd, co. The
indices are given by
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1 e if 0<ri<3 .
I,_;arccos{cos%r,)_{z_2ri i %Sri _1 i =0,1, o0,
(2.9)
with
X; = —2 cosnr;, i =0,1, oo,

and the leading coefficients, a;, a,, are single-valued functions of the
equivalence class ofy, X1, X and of u. Namely, the coefficierdy, for
Xo # 0, is given by:

exp(—ing) T2(L— Il (FOT (e + w5 — p)

T 42 t1o— D2 T(gr2a(GR)rER + (L — )
(2.10)

where

explimg) =

X2X2 — 2X2 — 2XgX1 X0 + 2X2, + iX1SIQN(Xg) (/4 — X2(2Xse — X0X1)
0™ 1 00 0

2(X2 — XoX1Xo0 + X2))
(2.11)

and forxg =0

X2
= o 2.12
ag V) (2.12)

The coefficienta; is given by the same formula with the substitution
(X0, X1, Xo0) —> (X1, X0, XoX1 — Xs0), lo = l1; a5 IS given by the same
formula too, after the substitutiofXg, X1, Xoo) > (Xeos —X1, Xo — X1Xs0)
andlp — l.. Conversely any solution of the PVEquation, with a real
value ofu, having critical behaviour of algebraic type, can be obtained by
the above construction.

Remark 2.1. The relation (2.8) determings up to the transformations

U= Etu+n  nez.
According to the results of Sect. 1.2, such an ambiguity can be absorbed by
the action of a symmetry on PMI Recall that these symmetries preserve

the class of the algebraic solutions.

Theorem 2.1 will be proved in Sect. 2.4.
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2.1. Local theory of the solutions of PV} having critical behaviour of
algebraic type

2.1.1. Local asymptotic behaviour around 0. In this section we char-
acterize the local asymptotic behaviour of the solutions of Pkéar the
singular pointx = 0. First of all let us characterize the type of asymptotic
behaviour that can be related to the algebraic solutions.

Lemma 2.1. Lety(x) be an algebraic solution of PYil. Then the first term
of its Puiseux series is

y(X) ~ agx}™ as x — 0. (2.13)

for some constardy # 0and the rational number, must satisfY) < og < 1,
withag # 1if og = 0.

Proof. If y(x) is an algebraic function, then it admits an expansion in
Puiseux series around 0

yoo = axr,  kee€Z ~ ag #0.
k=ko

wheren is some natural number. As a consequencekdog 0, we have
the following relation between the orders of the first and second derivative
of y:

OOy = OxY) = O(Y) = O (x?) . (2.14)

We now reduce to the common denominator the/pP¥tjuation and collect
together all the terms of the same order in the numetatpusing the rule
(2.14). The numerator is

N =2(y)2x* = (¥)*x% — (v)2° + 2(y)*x%y — 2y'x3y — 2(y)*Cy
+ 2y"x3y + 2y'xty — 2(y) 2y — 4y'x*y + 2(y) x5y
F2Y50y = 2YXy — 2Oy + 4wy’ — APy + XY
+ 6y X2y — 3(Y)?X°Y? — 2y"x%y? — 2y'x%y? 4 B(Y) XY
+ 2y'x3y? — 2y'x*y? — 3(y)2x*y? 4 2y'x*y? — 2y'x5y?
— 8uxy® 4 8u’xy® + 2y'’xy® + 4x%y® — 8ux?y® + 8u’x?y?
~ 650y + 230y 4 Ay XY — Ay O+ 29X — o
+ 4uy* — 4pPy* — 3xy* + 16uxyt — 16u2xy* — 2x2y* + 4ux?y?
— AuPxPY* 4+ 2y° — Buy® + 8u?y® + 2xy° — Buxy® + 8u’xy®
_ y6—|—4;Ly6 . 4M2y6‘
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The first term of the Puiseux series must be chosen in order to kill the lowest
term in the numerator of the P)Mlequation. Ifky < 0, the lowest term is

—Y® + 4uy® — 4pyP

which, for 24 ¢ Z cannot be zero for any choice af # 0. Thenky cannot
be negative. Ih > kg > 0, the lowest order term is

2C(Y)%y — 2y y* - 22Y'Y?,
which is zero for anyy = akox%. Forkg > n, the lowest order term is

—3(Y)? 4+ 2°Y"y + Xy,
which cannot_ be zero. Furthermore, kgr= 0, the lowest order term in the
numeratory is
—85(a0 — 1)*(2u — 1)?
and, due to the assumptiong Z 7Z andag # 0, the only possible value of

. o k . .
ao is 1. Substitutingy = 1 + a;x , we obtain that the lowest order term in
the numeratowy is

2k
X7 @2(ky/n + 1 — 2u) (k/n — 1+ 200)

K we can

that is zero, for generic values pf only if &, is 0. If u = 2 + &,

again repeat the procedure. The numerator will be

~

N = —4p29% — 160°9° — 24p29" — 160°9° — 40%9° + 9°X + 829X
+ 29°x + 24;12y3x + 94X 4 24029°X + 812Y°X + 29y X + 492y'x
+ 2%y — 9PX% — ARP YK — 29°X — A293X2 — 9 — 42y
— 69YX? — 120°y'x* — 69°Y'X* — (Y)*X* — 49(Y)*X* — 3§ (y) X2
+ 29Y'X% 4+ 49%y'x? + 29°Y/x% + eyyx3 + 1097y'x3 + 49°y'x3
+3(y)%%° + 109(Y)°X° + 692(y)*x® — 69y'x* — 10y%y'x°
— 49%y"x® — 29yx* — 297y'x* — 3(y)*x* — 32 (Y) X" + 69y'x*
+897Y'x* + 29°y/x* + (y)2X° + 29(y)*X° — 29Y'x° — 297y"X°
whereji = i% andy = y — 1. Substitutingy = alxkﬁl, the lowest order

term in the numerata# is automatically zero. Now, we want to eliminate
the next lowest order term. Observe that, now

00y = 0(xy) = 0(9) = 0 (x7).
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For the sake of definitness, suppdse: 11 < 1,i.e.ii = & < 1 (the case

= —‘2‘—; is analogous). The next lowest order terms in the numet&tor
are

—16079° + Ax9?Y — 4x*Y(Y)? + 4297y
+ x9% + 8x129% — 6x%9Y + 33 (Y)? — 6x39y’.

To eliminate them, we substitute= 1+ alkal + alkuz, for somek, > kj.
The above terms give
kin2 Lk k
_aa3( M 33 1+232
() F +o(xe7H)
that is zero if and only oy = 0. So we obtain the forbidden solution
y(x) = 1. So,kg can not be zero, ang(x) satisfies (2.13) with O< | =
2 <1, namely 0< oo < 1. QED
In the above lemma we have seen the expected asymptotic behaviour of

the algebraic solutions. We now state the main result of this section, which
is more general, namely it holds also for non algebraic solutions.

Theorem 2.2. For any pair of valueSag, 0p), 0 < og < 1, there exists
a unique branch of the solution of P¥|for a fixedu, with the asymptotic
behaviour

y(X) = agx} ™01+ x* f(x)) as x — 0, (2.15)

for somes > 0 and f(x) smooth function such thim,_,o f(x) = const
In order thatx!~“° is well defined, we have to make some cut in the
complex plane. From now on, we cut along the Emgx = ¢ for somep.

Remark 2.2. Theorem 2.2 can be proved also for complex values of the
indexog, provided that O< Reog < 1. For algebraic solutions the index
must be a rational number. Because of this, we consider only real indices.

2.1.2. Proofofthe existence.First of all we state the existence of solutions
of the Schlesinger equations with a particular asymptotic behaviour. The
following result will play an important role also in Sect. 2.3.

Lemma 2.2 (Sato-Miwa-Jimbo). Given three constant matrice&?, i =

0, 1, x with zero eigenvalues such that= AS + A2 has eigenvalues-2,
0<o <1 and A‘f = —A — A, in any sector ofC containing none of

the branch cuts, and sufficiently close@pthere exists a solution of the
Schlesinger equations that satisfy

[ A0 — A < KIXP XA (A0 — ADXY| < KIx7 (2.16)

XA Ag0X™ — A < KIx[P™ X A Axt — A < K|x[*7,
(2.17)

whereK is some positive constant add> ¢’ > o.
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We want to show that it is possible to choo&g; x and A such that the
corresponding solutiog(x) of the Painlee VI equation obtained via (2.7)
has the asymptotic behaviour (2.15). Let us consider an arbitrary constant
matrix A with eigenvaluest%; let T be the diagonalising matrix o,

namely
A=T <g _Og> T
2

Now, we choose\] = —A,, — A andA§, such thatA) + A = A, namely
1 1
0 0
=ZA+F  Al=ZA-F
AO 2 + X 2
for some constant matrik. Then:
TIAJT = i %) e AT (2 %) €
= 0 _% k) X —_ O _% )

bo
where we can choode = 9, 6 , for some non-zero constant With
)
this choice ofE, Ay and A have zero eigenvalues. Using Lemma 2.2, we

obtain that, ax — 0:
Xz 0 2 0 0 X7 0\e_1
4 4
o (o 2|6 %)=(3 )05 &)

and

N

A1—>—AOO—A

Substituting such asymptotic behaviors in the relation (2.7), taking
T2, T11 # 0 we obtain:

Tioxt—o _
4bTy,

y(xX) ~ — (2.18)
we are now free to choose the arbitrary constdmt3;,, Tio, o in such

a way that— 4ng§1 = ay, 0 = 0y, for any fixeday andoy.

Remark 2.3. Other existence results fore C\{] — oo, 0]U[1, +oo[} can

be found in [IKSY] and [S1], [S2], [S3]. For indices with kRe¢ [0, 1], the
asymptotics obtained in these papers are valid in more complicated domains
near 0.
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2.1.3. Proof of the uniqueness.Now we prove that the solutiog(x),
x € B(0,r), of Painlee VI equation such that it satisfies (2.15) for some
given constantsy andog € [0, 1), is uniquely determined bgp and op.
HereB(0,r) = {x||x| <r, argx # ¢, x # 0}.

The proof is based on the fact that Pai@eVl is equivalent to the
following reduced Schlesinger equations (1.17):

, _@—=1qg+2p(q—1)a(q — x)
N (X — 1)x ’

q

p__—ﬁu—Zq—&q+w%—qu—D—wl—mM
N (X — 1)x ’

where:

_ XX =Dy —yy—-1
=Y P Ty oy -1
and the prime means the derivatiggWe shall prove the local uniqueness

of the solutions of the Hamiltonian system with the following asymptotic
behaviour

, (2.19)

—11 xfg(x)
2a x X!
wherel = 1 — 0g, @ = ay, ¢ > 0 and f(x) and g(x) are some smooth
functions in8 (0, r) which tend to zero ags — 0.

This is equivalent to show the theorem. In fact, from the uniqueness of
g it follows trivially the uniqueness o§. The following lemma holds true:

qx) ~ ax + x*¢ f(x) p(X) ~ | (2.20)

Lemma 2.3. The estimates (2.20) on the asymptotic behaviour of
(g(x), p(x)) are a consequence of (2.15).

Proof. Sinceq = vy, the assertion oly is obvious due to the hypothesis
(2.15). Concerningp, we use its definition

_Xx=Dy —yy—-D
2y —x)y(y—1)
and by a straightforward computation we show (2.20)dor QED

We now distinguish two cases: 9| < 1, andl = 1. Let us consider
the former case; it is convenient to introduce the new variatgjep)
<Y
q= X P=Xp;

which have a similar asymptotic behaviour

A0 =a+xf(x) P = —— + X9, (2.21)
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and the equations of the motion become

q = fq(p, g, %, X)
P = fu(P, 4. x,x), (2.22)
with
f_ —qd -1-2p9 qa+2pqg)
a— - 1
X X
n d(1+4pa) — 2x7'pq — x'6°(1 + 2p4)
1-x '
and
¢ _p-1-2pG) pu—p®+20G+ 30
p= + 1
X X
— P(L+4pd) + X (u — 1® + 2pq + 3p°G)
1-x ’
We want to prove the uniqueness of the soluti@np) of (2.22), satisfying
(2.21) forx € B(0, r), in the ball||p || [I§—al| < C;,foraconstant
C, vanishing when the radius — 0 Here||f|| = supﬂ(o,,)|f(x)| Let

us suppose that there are two solutiégs p;) and (@, p,) of the system
(2.22), satisfying (2.21). Then, if we defide= gi B %2) we obtain, as
a consequence of (2.21), that the following limits exist
@)
im XP(X)
Ix|—0, argx)=0 |X|¢

-0, i=12 (2.23)

for some 0< ¢, X® being the i-th component of. Moreover,X satisfies
the following

11421 (G1+02) ] (G1—G2)+203 (P1— P
y ([ P10 25 (P1—P2) | AQu AQz n AQg)

X X

_1— —Bo)—2p2(61 —
[1—1—2G>(P1+P2)1(P1— P2) —2P7(G1—G2) + APy + AP2 + AP

3 xI-T

where
AQ = Qi(Gy, Pr, X) — Qi(G2, P2, X), and
AP = P (G1, P1, X) — P (G2, P2, X),
Q= a0+ 26, Q2 = 20, Qs - A0 DR AT, py —

1-l 2 252
— 12+ 2P + 3PP Py = PR, Py = B2 ptap by +2r5q+3r5q>
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We want to prove that, under the hypothesis (2.X3% 0 (this is equiva-
lent to prove our theorem). Performing the constant linear transformation

X =TZ,where
1 0
T= (1_—| A)v
2a2 2a?
we obtain

1-14+2 +i +2
o [ p1(G1 Q2)J(Q1 G2) qz(Dl P2) + A%IL + AQ2 + AQs
2a%G(py, P2 G1.G2) + 232AP1+(| -1)AQy + 232AP2+(| -1)AQy + 2a2Ap3 +(0 -1AQ;

(2.24)

where

G(Py, Pz, 1, G) =[1 — 1 — 2G(P1 + P)1(Pr — P2) — 2P5(Gh — G)}
+ (= D{[1 -1+ 2p:(01 + G)1(G1 — o)
+ 205(PL — P2).
and, from (2.23):
ZM(x)
Ix|—0, argx)=0 |X|¢

—0, i=12 (2.25)

In order to prove thaZ = 0, we fix any direction in the complex plane
arg(x) = 9 for some fixed¥, and we consider the real variakile= |x|.
Then we define:

VOt =120 x)].

We want to prove that the assumptivi (to) # O for somet, > 0 leads

to a contradiction. To this aim we prove a differential inequality for the
right derivative D_.V® of V¥ (t). SinceD,V® < |ZV'|, to obtain such

a differential inequality it is enough to estimate from above the modulus of
the components of the right-hand-side of (2.24). To this aim we notice that
all the polynomialQ;, P, have the form:

3 3
Q=> a0 P=> b,
k,n=0 k,n=0

with a n(X), bin(X) regular functionsx € 8(0,r). As a consequence, we
obtain, in the ball| p— 32||, [I§ —al| < C;, the estimates:

IAQi|, |APR| < |ZP| + ¢,z (2.26)
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for some positive constant, ¢,. In fact

IAQ =] ) anla (P} — P5) + P — ab)]|

k.n

f[ > Cﬁ”kmak,ln+zc§2’||ak,z||>}-|m— Pl
k=0,1,2

n 2 ~ ~
+[ Y Cc®"(lagnll + 2CPagall +3CP ||a3,n||>} |Gy — Gl
n=0,1,2,3

whereCY = C, + 2Ja] andC®? = C, + . We obtain (2.26) observing

that |G, — G|, |P1 — Po| are related tQZ<1)| |Z®@| by the constant linear
transformationr .
For the terms of orde@()—l() in (2.24) we have:

11— 1+ 2p1(Gh + G)1(G1 — G) + 265(P1 — Po)|

X|
| — (L= 1)(G1 — G) + 23%(Pp1 — Po)l
X|
CP1G1 — G| , C¥|PL— Pl
2.27
|Xl—s| |Xl—s| ’ ( )

and
1
;|2a2{[l —1—20(P1+ P2)1(P1 — P2) — 2P%(Gh — Go))
+ (= DL =1+ 2p1(G + GR)] - (Go — o) + 263(P1 — P2}

C<5> ceo
01 — Gl + lxl’_€| |P1 — Pal, (2.28)

= x|
for some positive constan&®, ..., C(®. Let us prove (2.27):

11— 1+ 2P(G1 + G2)1(G — G) + 2G5(P1 — P2)|

[X]
| — (1= 1)(G1 — G2) + 282%(Pr — Po)
[X]
|2a a0 + SH(F10 + F2000) + x° g1 (f1(x) + fz(X))| _ &)
x|
|2f2(0)x¢ + 4a fz(x)|
— P2

X1

| — (1= 1)(Gh — Go) + 28%(P1 — o)
x| +

(3) r(4)
— 2l + ——1P1 — Pl
Qo |Xl_g||pl P2
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for some positive constan@&® andC®. The proof of (2.28) is analogous.
From the estimates (2.26), (2.27), (2.28), we obtain:

|z 1/01 At A As 1ZD)]
<|z<2>/| =\ \o o) e F i i T A iz

(2.29)
for some constant matricés, Az, Az andA,4 (Here we mearc component
by component). Finally, choosing= max{1 — ¢, 1 — I, 1}, we obtain from

(2.29):

D, V® 1/0 1\ A v
< DI’:V(2)> = <? (O O) + t_' +A4> (V(2)> ) (2.30)

where A= A; 4+ A, + Az andD, . is the right derivative w.r.t..

We perform the following change of variabie™ = z. The differential
inequality forV in the new variablez is

1/0 1\ 1 . A Ay T
D..V<|= —— + A2 |V, with A2 = =~ + = 71T,
e —<z<0 0)1—| ()) @ 1—17 1-]

whereD, ; is the right derivative w.r.tz. To show thaZ = 0 we use the
following:

Comparison Theorem. Let us consider the following systemsrofirst
order ODEs in the real variable € (0, a], for somea > 0:

D+V(i) < F(i)(Z, V), V(i)(Xo) = Vg), i=1.,n (2.31)
du® , . - )
- =F'@V, VW=, i=1..n (2.32)

where F¥(z, U) are continuous functions im € (0, al, ||U — Uo|| < b,
non-decreasing iV ®. If Vi) > UY, fori = 1, ..n, thenV®(2) > UD(2),
forevery0 < z < z,i =1, ..n.

For the proof see [Lak].

We now apply Comparison Theorem to show that the assumption
Z(to) # 0O for somety > O leads to a contradiction. Observe that by
definitionl > 1, thenV satisfies (2.31) With/é') > 0 andF linear inV
given by:

1/0 1\ 1 A Ay
F(z,V)=<E<O 0)1_r+1_r+1_rz)v' (2.33)

By Comparison Theorem, for any solution of (2.32) wilH (zg) = Vg),
and F(z, U) of the form (2.33), we hav?/ V' (z) > UM (2), for every 0<
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z < 7o, i = 1, 2. Moreover by standard arguments it is possible to take
in such a way that)’(z) > 0 and to continue the functions, Vtoz=0
preserving the relation:

U2 <vi(2).
Thus, by (2.25) we obtain that must satisfy
lim U(I)(Z)

z—0 Z(l |)

-0, i=12 (2.34)

Now, we use the following lemma:

Lemma 2.4. The only solutiond of (2.32) withF(z, U) given by (2.33)
satisfying (2.34) i&J = 0,

Proof. Any non-zero solution of (2.32) witk(z, U) of the form (2.33) is
given by

o )
1—
U@z =Tzz\9 © (2.35)
. . . . 10
where T(z) is a homomorphic matrix functionl(z) = o 1) T O(2).
Now it is obvious that (2.35) does not satisfy (2.34). Thus= 0, as we
wanted to prove. QED

Using the above lemma, we obtdily’ = V' = 0, that contradicts the

assumptior\/g) # 0. This concludes the proof of the uniqueness in the case
0<Il <1

Let us briefly explain how to prove the uniqueness in the tasel.
Since the procedure is essentially the same as before, we shall skip the
details. First of all we introduce the new variablés p):

ax) = q( X ~a+x fx) P = px) — u(l—pw) ~ xgx)

which satisfy the equations of the motion:

1
q =Qu(q, p)+ H_Qz(q, p)

~/__E ~ o~ l ~ o~

where Q1(G, P) = 2(1 — u? + PG — DF, Q2(q, p) = GG — D[1 +
u - +2p)(@A@— D], Pu(@, P) = (— >+ P2 -39 g — (1~ w),
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andP(q, p) = P+ (u — u?+ P)?(4q — 362 — 1) — 2(u — u?+ P)q. Then,
if we defineX as before we obtain

X/: B AQ1+§TQ]?
Bl AP+ AR

that gives rise to the differential inequality:

0 0\ 1 A
X'l < — +A X
"‘((01>wr+ f*w—lo"

for some constant matricds andA,. ObviouslyX satisfies (2.23) with any
XD
X
any fixed direction on the complex plane. We taksuch thatarg(x) = ¢
for some fixed? and defindg = |x|. V satisfies (2.31) with:

1 A
F(t, V) = (f (8 i’) +ALF _21> V.

If V§ > 0 then, thanks to Comparison Theorem, it is possible to take
a solutionU of (2.32), withUy’ = V{’,i = 1, 2, such that

0 < ¢ < 1. Again we apply Comparison TheoremMo= along

0<UY® < VO,

thusU® satisfies (2.34). The general solution of (2.32) is

om0

that satisfies (2.34) ity = 0, namelylU = 0 that is absurd. This concludes
the proof of the uniqueness. QED

2.1.4. Asymptotic behaviour of the solutions of the Schlesinger equa-
tions. Animportant corollary to Theorem 2.2 is the following:

Theorem 2.3. The solutions of the Schlesinger equatidag «(x) corres-
ponding to the solution of Painlew| equation with asymptotic behaviour
(2.15) must satisfy the relations (2.16) and (2.17).

Proof. Let us consider the solutiog(x) of Painlee VI equation with
asymptotic behaviour (2.15) and let us suppose that the corresponding so-
lution of the Schlesinger equatiols 1 x(X) does not satisfy the relations
(2.16) and (2.17). As shown in the lemma 2.2, for any constant matri-
cesAj ., A such thatA = AJ + A has eigenvaluet$, o € [0, 1,

and Ag’ = —A — A, there exists a solutiovﬁo,l,x(x) of the Schlesinger
equations that satisfy the relations (2.16) and (2.17). Now, as shown in
Sect. 2.2, we can choos&) ,  in order that the corresponding solution
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Y(x) of Painlee VI equation has exactly the asymptotic behaviour (2.15).
Due to the uniqueness proved in Theorem 2.2, we haveythat= y(x),

namely Ag1x = Ao’l,x up to conjugation by a constant diagonal matrix.
This contradiction proves the theorem. QED

2.1.5. Asymptotic behaviour of the PV solution near1 and co. We
now state the analogues of Theorem 2.2 for the local asymptotic behaviour
of the solutions of (PVI) near the singular poimts= 1, co:

Theorem 2.2’. For any pair of values(as, 01), o1 € [0, 1], there exists
a unique branch of the solution of (PVI) with the asymptotic behaviour

yx) ~ 1l—a(1—xYr1+0(@1-x°) as x—1, (2.36)
for somes > 0.

The proof of this theorem is analogous to the proof of Theorem 1, namely
one can state the analogous of the Lemma 2.2 replacirg 1 — X, and
then choose suitably, A7, ,. The uniqueness is proved in the same way
as the case — 0.

Theorem 2.2”. For any pair of valuega.,, o), 0 € [0, 1[, there exists
a unique branch of the solution of (PVI) with the asymptotic behaviour

Y(X) ~ @oX™ (1+ 0 ((x™°)) as x — oo, (2.37)
for somes > 0.

The proof of uniqueness is analogous to the one of Theorem 2.2. The proof
of existence follows the same strategy as the one of Theorem 2.2, but with
a different formulation of the Lemma 2.2:

Lemma2.2’. Given some constant matrice%']o, i = 0,1, x with zero
eigenvalues such that = AS + A has eigenvalue2,0 < o < 1,in any

sector ofC containing none of the branch cuts, and sufficiently clossto
there exists a solution of the Schlesinger equations satisfying:

XA Ag()x A — A2 < K|x|
X (X A)x A — AY) x7A| < K|x|7 7t (2.38)
|x2xA% Ag 1 (X)X Aex—A — A0 < K|x|” 2, (2.39)
whereK is some positive constant add> ¢’ > o.

Proof. Let us consider the Schlesinger equations (2.3) and perform the
change of variable = % Moreover we put:

A (X) = xR A () xPe;



Painlee VI equation and reflection groups 123

Then we can apply Lemma 2.2 to the system:

d . [Ao, Adl

— An(R) = —

dXAO( ) 0

d . [Ac Al

&Ax(?)—— =1

d ;oo (A Al [AGA]
&Al(?)— 2 + -1

and obtain the estimates (2.38) and (2.39). QED

2.2. The local asymptotic behaviour and the monodromy group of the
Fuchsian system

In this section we relate the local asymptotic behaviour of the solytixn

of PVIu to the monodromy data of the associated Fuchsian system (2.2). We
essentially follow the same strategy of [Jim], even if we have to introduce
some more tricks due to the fact that our matriégs , have eigenvalues

all equal to zero. The main result of this section is the following:

Theorem 2.4. For the solutiony(x) of PV, such thaty(x) ~ agx*=?°(1+
O(x%)), 0 < og < 1, the monodromy matrices of the Fuchsian system (2.2)
have the form

M; = — .
SINmT Y
cosmog — €7 —2erimo i ZWaston) gjn 100
. <2eim?oc sin n(ﬂoonrao) sin ﬂ(ﬁoczfﬂo) _ cosnog+ o >
(2.40)
-1 _ —i ei?'mo -1 25700 S|r12 %
CMC™ = sinmog <—§e'””0 sin? % 1 — g im0 (241)
L —h (o1 —2ssin? TP
CMOC = SianO'O §S|n2 % 1 _ e—lnoo (242)

whered, = 2u and:

s 1 2u+ool?(L+o)l?(1—Prd+pu—rd—p—2
r 4802 — 0o M2(1—0)l2(1+ P+ pu+ Prd—pu+ %)

(2.43)
with an arbitrary complex number # 0 and the matrixC is:
Sin (o0 —00) r Sin T(Poo+00)
= <; sin n(ﬁ%—i—oo) sin n(ﬁoczgoo) . (2-44)
r
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In the case wherey = 0 the monodromy matrices of the Fuchsian system
(2.2) have the form

1 e i ﬂoc ij.l.e—inﬂ%c
My = B ( i 70 doo izt | (2.45)
cosZl= \ —L sin? Zo=gm 3 s
Mo — 1—istanZl= —ism exp(ir %2) sectl=
Lssir? 2= exp(—in %) secty= 1+istanZi= ’
(2.46)
—i(1 -9 tan™= —i(1 - 9w explin %) sec™ge
= G ) sm2 T exp(—im %) sec” e 1+i(1—s)tan7”9oo
T 2 2
(2.47)
wheres = ag.

The main idea to prove this theorem is that, due to Theorem 2.3, the
solutions of the Schlesinger equations corresponding to the Bdlution
with the asymptotic behaviour (2.15) must satisfy the relations (2.16) and
(2.17). Using these relations, we obtain the monodromy matrices of the
Fuchsian system (2.2) via the ones of two simpler systems, given in the
following two lemmas (see [SMJ] and [Jim]):

Lemma 2.5. Under the hypotheses (2.16), (2.17), the limit of the funda-
mental solution of the system (2.2), normalized at infiliityy .o Yoo (Z, X)

= Y(2), exists, forz € C\{By U By U B; U By}, Bo, By, B; and By,
being balls aroundd, x, 1 and oo respectively. This limiY satisfies the

differential equation:
d. A AN -
—Y = L)y by
dz <2_1+ z) ()

and it has the following behaviour near the singularitieq bf

Y(z) = (1+ (9(%)) 7% 75

=14+0@)2"C z—0 (2.48)
=G 1+0z-1))z-1)"C, z—1

where J; is the Jordan normal forms ofd, G; LGt = A, A, =

<‘6 0M>' HereCo, C; are the connection matrices of the system.
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Remark 2.4. Observe that the matri€, is uniquely determined by the
conditions (2.48).

Lemma 2.6. Under the hypotheses (2.16), (2.17), the limit of the funda-
mental solution of the system (2.2), normalized around,
limy_oXx2Y(xz xX) = Y(2)Co exists forz € C\{By U By U B; U By}.

It satisfies the system

dy [ AL AN\ )
—VY = X —21Y: )y
dz (z 173 ) ’ (%)
and it has the following behaviour near the singularities b
- 1
Y(2) = <1+ (9<E>> 2 Z— o0
= Gy (1+ 0(2)) 2°C, z—0
=G (1+0z-1)@z-1"C z—>1

where Jo; are the Jordan normal forms 0A8’X, Go‘l are such that
Go1d.1Go1 = A} - We denot&, ; the connection matrices of the system
().

As we have seen above, the matrices of the two systems have the fol-
lowing form:

0 1 0 1 0
A0:§A+F’ AXZEA_F’ A1=—AOO—A,

for some constant matrik, and forA andT such that

A=T (g Og> T (2.49)
-2
Using the relations (2.6), we have that
0
F = T <—o‘ 6) T_17 (250)
b

for some parameteb. As a consequence the systeg) and () are
determined, up to diagonal conjugation, by the four entries of the niktrix
and byb.

Now, we explain how to compute the monodromy matrices of the original
system (2.2) knowing the ones of the systaihs and (). Later we will
show how to compute the matricég , ; and the monodromy matrices of

(2) and(Y).
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Lemma 2.7. Let Mo, M1, Mo, = My, be the monodromy matrices of the
system($) with respect to the fundamental matitkand the basig), =
YoYx. Y1 iN 1y (E\{O, 1, oo}). Let Mo, My, My, = exp(—2ni A) be the
monodromy matrices of the syst&if) with respect to the fundamental

matrix Y and the basign, 71 = . Then the monodromy matrices of the
original system (2.2) are given by the formulae:

Mo = Co*MoCo, My = Cy*M1Co, My = My, (2.51)
whereC, is defined by (2.48).
Proof. By the definition ofY, the system¥) is obtained by merging of

the singularities 0 ang of the system (2.2). We can choose the Iggpo
be homotopic tagyy, with P not crossing a balBy (see Fig. 7).

Fig. 7. The paths/x andyp merge together as — 0. The homotopy class gbyx remains
unchanged

As a consequence we obtain a relation between the monodromy matrices
of the system (2.2) and the ones of the systé&h

Moo - Moo»
My =M,
Mo = My M.

Similarly, by the definition ol the system(¥) is obtained by the merging
(see Fig. 8) of the singularities = % andz = oo of the system folY'(Z):

d A A
—Y/:(@Jr Lo+ X)Y/.
Z/
X

dz zZ—-: 7Z-1

So, in the basi¥, the monodromy matrices 6E) have the following form:
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Fig. 8. The paths/; andy., merge together as — 0. The homotopy class 6f = y1y
coincides with the one afyy) ™t

The lemma is proved. QED

Now we want to compute the monodromy matriddsand M; and the
connection matrixCo. To this aim we have to solve the systes) and
(2), namely we have to determirie andb. Forog # 0, this can be done
introducing a suitable gauge transformatiorY@indY such that the systems

(£) and () are equivalent to a Gauss equation. The ease 0 will be
treated later.

2.2.1. Reduction to the Gauss equationFirst of all let us notice that both

the systemg3) and () have similar form. We want to reduce them, via

a suitable gauge transformation and a appropriate choice of the parameters
a, B, y, to systems of the form:

d Bo B1
—VY B
5 @By (z to 7

) Y(z, . B,7) (2.52)

where By, B; are some constant matrices with eigenvalues 4, 0 and

y —a— B —1, Orespectively an@y + By = — <g 2)

Lemma 2.8. For o # B, the system (2.52) is uniquely determined, up to
a diagonal conjugation

Bo— T 'BeT, B;— T7'B;T, with T= (é ,9) r#0. (2.53)
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The entriesbi? and bﬁ of the matricesBy and B, respectively, are given by
the formulae

bO_a()/—l—,B) 0 Bly —1—a) bl aly —1—a)
v p—a T B—a = 1T e

(2.54)
or, = PV =17 oo g o ZePrm1m A mlm e

(B — a)?
(2.55)

The system (2.52) can be solved using the Gauss hypergeometric func-
tion. So, we can compute its connection matrices via the Kummer relations
(see [Luke]) of the hypergeometric functions.

Lemma 2.9. The solutions of (2.52) have the forvh= <y1>’ with y;

Y2
being an arbitrary solution of the following Gauss equation:
z(1-2y{+[c—(@+b+1)z]yy—aby =0 (2.56)
wherea=«o, b=+ 1, c =y andy, given by:
4, B-« d
— - —1— 2.57
Ye(2) =172 {Z(z ) ;1@ (2.57)
—-p-1
+ [az+ M} yl(Z)}
B—«
(-
wherer = —ﬁ(y_ﬁ_lf).

Proof. After the gauge transformation:
Yz . p.y) = 21— 2*hUz . B, ).
one obtains from (2.52) the following Riemann equationupr

u’ + l+bgl_bg2+ l+bil_b%2 A —bcl)lbgz 1=0
1 - z—1 Lo 2z-1)2 '

Now u, is related with the solutiolyg of the Gauss equaf[ion (2.56),_with
a= —bg% —bi, b = 1—03,—bl, c=1-bd — b, via the relation

u; = z P1(1 — 2)~Puys. As a consequence, thanks to (2.54), (2.55), we
obtain thaty; = yc anda=«a + 1,b=,c= y. y, itis given by:

bi, . bl biy | bl
(B ) =i (B )
that gives the equation (2.57). QED
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To reduce the system&) and (¥) to the system (2.52) we need to
diagonalize the matrice&? + A = — A, andA respectively and to perform
a suitable gauge transform. We need to introduce some notations. Denote

Ca %Y the connection matrices of the system (2.52). The matidgesare
the Jordan normal forms dBg; and the matrlcessg"fy are such that

-1
Gyt Joa (Gaﬂ ”) = Byg:. Then for the asymptotic behaviour of an
appropriate fundamental matri(z, «, 8, y) of the system (2.52) we have

Y(Z,Ot,,B,)/)=<1+(9( )) <O 'B> Z— 00

Gy (1+ 0(2) Z°Cy P z—0
G A+ 0@z-1)@z-Dnrct? 21

Some further remarks on the notations: from now on all the quantities with
the hat are referred to the systel) and all the quantities with the tilde
to the system’¥). When we don'’t put any hat or tilde, the formulae are
true for both the systems. In other words, they hold true for the generic
system (2.52); substituting all the quantities with the corresponding hat or
tilde ones, the formulae hold true for the systeths or (£) respectively.

We now choose the values @f 8, y in relation with the eigenvalues of
the matrices of the systeni€) and(X). Namely, for(X) we take

Voo — A Voo R
&= % g _PYetoo o g (2.58)
2 2
and for(X) we take:
~ 0o - oo -
= ——, = —, =1 2.59
a > P= % (2.59)

With this choice of the values @f, 8, y, one has:

. _(l—y 0\ = (01 . = (01
w=('o7 ) w8 0) w=a=(00)

Now we can reduce the systerts) and (%) to the system (2.52) via the
following gauge transformations:

V=27YzaB.9). V=G "Yza By, (2.60)

whereGy"7 is such that

&+ B apy(—a O app\—1
A—=251d = G (0 _B>(G0 )L,
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As a consequence the connection matrices of (2.52) are related to the ones
of () and(X) by the following formulae:

G =GHP7 G =C¥P7 Gy =GiPickhY (2.61)
< &.B.9 ~a.B.7 < @By (~a.B. 7\ -1
Go1 = Gy "7 Gg 17, Cor=Co17(Gy"7) . (2.62)

2.2.2. Local behaviour of the solution of (2.52).The solutions of (2.56)
around the singular points, 0, co are known and one can compuye

by (2.57). In this way one obtains the local behaviour of the fundamental
solutionY for z — 0, 1, oo, and one can compute the connection matrices
by the Kummer relations (which are the connection formulae for the hyper-
geometric equation). The difference w.r.t. the situation of [Jim] is that in
our case the Gauss equation is degenerate, namely:

A ~

t—a—-b=0, t—a—-b=0, ct=1

So, we have to consider the logarithmic solutions of the Gauss equation
aroundz = 1 for both the systemgs) and (3), and aroundz = O for
(2); moreover, we shall use the extension of the Kummer relations to this
logarithmic case (see [Nor)).

In what follows we denoté&(a, b, ¢, z) the hypergeometric function and
with g(a, b, z) its logarithmic counterpart fazr = 1, namely:

b
Fab,c 2 = Z (i),lz((:)sk z,

g@ b,z = Z (a)k(b)k Z[Inz+y@+Kk + y(b+k — 2y (k+ 1],

k=0

with the branch-cutarg(z)| < = (see Fig. 9). Here/ is the logarithmic
derivative of the gamma function, and the expressions of the parameters
a, b, cviaa, B, y are given in the Lemma 2.9.

m@)

Re(2)

Fig. 9. The branch cufargz)| < n
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Fundamental solution neaso. Sincea — b # 0, the solutions of (2.56)
aroundoo are not logarithmic. We obtain

_ 1 —afz PN 1
v _(ZQF(a’_ﬁ’“_ﬁ’E) mF(ﬁﬂLl’l—“’ﬁ—aﬂLZz))
0o —a—1
—aBz 1 — 1
r(ﬁ_(z)(ﬁ_a_l)F(a+171_ﬁ7a_/3+25 E) z ﬂF(ﬁ,a,IB—a, E)

Yoo~<1+(9(%>) z(% 2> Z 5 co.

. (exp(2ria) 0
The monodromy arounco is < 0 exp(2i ﬂ))'

Fundamental solution neat. Sincec — a — b = 0, the solutions are
logarithmic:

Fla,6+1,1,1-2 rg(e,+1,11-2
T \lFe+181L1-2 ge+1811-2 )

Forz— 1

(0 o
Vi~ G 1-2\0 O
with
Gof <1 () + ¥+ p) — 2w<1>])
L7\ y@+ e +yB -2y )

The monodromy around 1 (sé Zfr).

Fundamental solution nedr. We have to distinguish the ca(sﬁ), where
the solutions of (2.56) around 0 are not logarithmic, and the Casavhere
¢ = 1 and the solutions are logarithmic.

For (%) one has

Yo = p& . R . A . R
—f(ﬁﬂ_&)z‘“‘ﬁF(l—ﬁ, —a,1-a—-B2) LFa+LBa+B+12

. (—%z—&—f‘F(—B,l—&,l—&—B,z> fﬁf%&F(&,Ble,&JrBJrl,Z))
B—a

Forz — 0 it behaves like
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where

The monodromy around 0 (Sexp(—Zig(& +8) 1),

For (%) one has

v _( Fal1-al2 Fg@ 1—a, 1,2
= \-iF@+1-a.12 -g@+1-a12)

for z— 0 it behaves like
(0 o
YNO ~ Gg z 00
with

Gl — ( 1 v —a) + (@ — 2¢(D)] ) .

—Y(1+a) — ¥(—a) +2¢(1)

(@]

=

The monodromy around O (sé ij).

2.2.3. Connection formulae. In order to compute the connection matrices
we write Y, in the form:

v _ [ ew-iroUe p+12  EERELERIUE+ e 2)
o\ EseretlU@+ 1,82 exp—inpUB a+12)

whereU(a, b, 2) := (2 %¢") *F@a, 1 —b,1+a— b, ). Forz such that
larg(z)| < 2m, there are the following connection formulae:

_—expira)l'(1+a—b)

U@b,2)|, = T@rA—b {limr +v¥(@1-b)
—y(]IF@ b 1,1-2+g@b, 1 1-2},
—T(2 .
U@ l-a 2|, , =%{[—In +v(@

—-y(1-alF@al-alz+g@l-alz},
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Fl+a—br@d—a-—b)

U@b. 2|, ,= NEE Fa b,a+b,2)
rl+a—br@+b-1)
I'(a)2

.z PRl b 1—-a2—a—b,2).

Using these relations we obtain the analytic continuatioiY,gfaround 0
and 1, and by the definition of the connection matrices

Yo1Co17,

YOO}Z—>01

we obtain, by straightforward computations

A explin )@+ r@—p+1) o= iT&)T(@+B)r(d—a+p)
C&,ﬁ _ r@ra+a) LB (1+p)
0 7| 1exp—ind®)(—a—Br@—p+1) _ exp—izp)r(—a—pPra—-a+p)
f (- (—p) I'(=&)r(l1-a)
(G ,3) r< a+/5>
cih _ T@rCH [imr + 7 cot(z@)] e [im+m COt(JT,B)]
1 _1_r@-p D(—a+p) ’
Fr@r-p IRV EIN)

(2.63)

@) - i
—1L2D ey —jza) Eg;_zg; explind)

F T2(@)
(2.64)

o (”2@ exp(—iz@)lim + 7 cotw@)] el explind)[x cot(rd) — in])

I2(a) -
1T(28) ['(—2&)

Cl = 1
f T2(&) )

(_ L@ (i 7 _ 7 cot(r )] —”;g(*_z‘i‘; [ cot(w@) + In])

Now we have to compute the monodromy matrices in the basidJsing
the formulae (2.51), (2.61) and (2.62) we have

apy-1(1 2mif &, B
M1=(Clﬂ)l<0 1)Clﬁ’

&‘A — & — 1 27Tr & &,A
Mox = (C5”) 1( 6.1) ' <o ]f )Co,lco ’

Now we put

—exp—in(@— B)Ir@ — AT (B (= &
INCEENNCTNNE)

f=
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and
exp(—2in&)(2a)T(—a)? _
[(—2a)[(&)2

In this way we immediately obtain the formula (2.40) fdr and it turns
out that

f=

cgf=D*.C
whereC is given in the formula (2.44) and
. explinp) L (B+a T (1—B+d) 0
D%F .— ar(&)?sinma A .
) 0 —exp—inp(=p-)F(1+p-&) |
[ (1—&)(—@&) sinté

As a consequence, one has
— &.B\— q \— 1 27if & &.B
CMoxC ™t = (D*#)~1(C§ (0 1 ) C§ D"
By straightforward computations one can easily check that, for

_expRap)r(B+ar1L—B+ara - OI(=a)

§= A ’
M(—B—ard+p—aara?
i.e. for
r__ T-o0?M(3)° (14 gm)r(Ly 5 s
f ra+ (70)21"(_%)2 F(l + @)F(l _ 1900;0—0) P

the formulae (2.41), (2.42) hold true.

To conclude the proof we have to prove the relation (2.43), namely we
want to prove that = —ﬁgﬁfjg. To this aim we compute the matrices
A3, and A and then the asymptotic behaviouryoin terms ofoo andr.

To compute the matrice&l , , andA we observe that, thanks to the gauges

(2.60),

. G+ B

Ad =B, A =B+ > 1, Ay = Gg’ﬁ E30,1((33"%_1'

First of all one has to compute thg ;:

BO = Gg'ﬂ’y\]o (Gg,ﬁ,y)—]-’ Bl = G‘;’ﬁ'y\]l (Gi’ﬂ’y)_l

. 1 (o —fa . ap (-1 °f
- (0 ) m-(T))
B—a\FT P B—a& \~F

then
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~ a (-1 7 ~ a1 7
B1=— By= —— .
=2y w25 )

It is then obvious that, referring to (2.49) and (2.50)= 7, T = Gg’f’.
Using the formula (2.18),
_ f (o0 + 210) x1-00.

Y g 2= o)
This proves the formula (2.43) and concludes the proof of the theorem, in

the caserg # 0.
For completeness we write here the result for the matiggs, andA:

1 (—ﬁwz—ag (—0w2+a§)f> 0 _ D’ =8 <_1 r)
) P 1 )

= — _g2 oc2 =
4o, | 2 9oe? + 08 1T 4w, -7 1

and

0?—of (v | ¢t 2 2
A8_1 22(F+F)_29 — 0y
T | 1(_-0* _ 6+to¥ | g2 _ 2

f ( o x  T0°—0%

2f

SR+ 402403

2 2
p(Egelt | Croo®t | 52 92)

{72719 2 .
9 Vo (T4 FY _ 9 2_ 52
A0 — L Z (r+r) 2’900 )
X T 89 1 ( Weo—00)“f (Footop)T 2_ 2
F ( 2r + 2F + Voo Jo)

(Pse—00% _ (Foet00)?f 2 2
f(‘ 2 = +‘70_1900>

19002—02
2 0(; + rg) +19002+‘7§

2.2.4. Caserp = 0. In this case the solution of the systéi) has loga-
rithmic behaviour around 0. Moreover, as seen before, it has a logarithmic
behaviour around 1. For this system we can use all the formulae derived for
(%), substitutinga by &. The treatment of théX), is even easier. Indeed

in this caseA has zero eigenvalues and it is straightforward to solve the
system (2.52) exactly. In fact in this case we have

BO+|§1=<8 é) detB = TrB =0, =0 1

Then the matrice€3, and B, are uniquely determined up to an arbitrary

parametes:
5 0 s 5 0 1-s
B°=(o 0>, Bl:(o o>’
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and we can solve the differential equation (2.52) explicitly:

v_ (L slogz+1-9logz—1)
=10 1 .

The solutionY has the following asymptotic behaviour near the singular

points:
- 1 3
Y=(14+0 E z, as Z— 00,
= Go(1+ 0(2)) 2°C,, as z—0,
=G,1+0z-1)(z-1'C, as z—1,
o 1\ . .
whereJ = <0 0). It's easy to verify that

. 10 < 1 0 ~ 1 0) ~ <1 0 )
Co= , Ci= , Go= , G1= 1 ).
0 <0 S) 1 <0 1- S) 0 <0 % 1 0 1-s
As a consequence the monodromy matrices of the system (2.52) are

~ 1 2rtis ~ 1 27i(1—s
N = (o A ) Ny — (0 < )>. (2.65)

The corresponding monodromy matrices of the full system (2.2) are given
by:

G — 1 2ixnf & a\—1p\7 &
M; = (CY) l( n) & and Mgy = (C§)*Mo1C§,

0o 1
where
7(2&) f_al(=20)
Ccé — I'2(&) siné 2(—a) sinwé
0 7\ _1r@aexp—iré) I'(—26) expind) |’
f I2(&) 2(—@&)
and

1T (28) _ (=24
f T2(q) 2(—a&)

7(2&) exp(—in@) _f 7 T(—24&) explind@)
C& . ( I'2(@) siné 2(—&) sinra )
1=

We observe that
Cé,=coD%,
where

—I'(—2&)
0 I'(—a&)?

7T(24) exp—inQ) 0
D% — [(&)2sinré



Painlee VI equation and reflection groups 137

and

PP —fr frrexplind)
= (PP g Y. O (i
—sinté& PPN ’ —sinma Ta .
o T OXNiTd) — 7 1

We can factor out the diagonal matr® in (2.65), and také = 1. In
this way, we obtain the formulae (2.45), (2.46), (2.47). The asymptotic
behaviour ofy(x) can be computed as before. Fegr= 0 we obtain:

y ~ agX for ap=s#1
This concludes the proof of the theorem.
2.2.5. The asymptotic behaviour neafl, co and the monodromy data.
We can prove the analogue of Theorem 2.2 near Icanfilamely, for any

pair of values(a;, o1) there exists a unique branch of the solution of RVI
with the asymptotic behaviour

yx) ~ 1—axt™t as x — 1 (2.66)

It is possible to parameterize the monodromy matrices as in Theorem 2.2
substitutingog with o7 and Mg with M; and vice-versa. Analogously, for
any pair of valuega.., 0,) there exists a unique branch of the solution of
(PVI) with the asymptotic behaviour

Y(X) ~ 8,xX°®  as X — 0o, (2.67)

and it is possible to parameterize the monodromy matrices as before, sub-
stituting o with o, and applying the brai@, to the monodromy matrices.
2.3. From the local asymptotic behaviour to the global one

In this section we prove Theorem 2.1 which gives the asymptotic behaviour
of the branches of the solutions in terms of the triplets X1, Xs0)-

Lemma 2.10. For the solutiony@(x) of PVIu behaving as
yO(x) = apx!™ (1+ O(x°)) as X — 0,

with 0 < o9 < 1andag # 0, ag # 1 for og = 0, the canonical form (1.20)
of the monodromy matriced”, M, M. given by (2.42), (2.41), (2.40),
or (2.46), (2.47), (2.45) fosp = 0, is the following:

0,0 0
X0 O x0)2

Mo = <0 10 ) My = (X<0) 1>, M; = 0,2 x50 |

();050) 1- X(()O)
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where the tripleix)”, x\?, x9) is defined, up to equivalence, by the follow-

ing formulae, forog # O:

0 _ . TTOg
Xy =—2 sm7,
. inZ
x? = —\/2(cosnoy — cos 2rp) o o (2.68)
2
Sﬂ(ﬂo+¢)
0 2
x9 = —/2(cosmoo — cos 2t i) SpTo
2

with ¢ given by
1 oo+2uTd+ 00’ T(1— ) rA+p—Drd—pn—2)

e = 43900 — 2. T(1 —00)’T(L+ )T+ p+ P —pu+ %)’
(2.69)
and forog = O:
X2 =0,
x? = —|sinmuly/1 - a (2.70)
X9 = —|sinul/a.

The proof of this lemma can be obtained by straightforward computa-

tions, using the algorithm of Lemma 1.5. Similar formulae for the parameters
(x5, xP, x©y and (x>, x{°”, x()) can be obtained respectively starting

from a solutiony® (x) of PVIu behaving as
Yy =1—a1—-x" " 1+01-x° as x— 1,

or from another solutiory™ (x) of PVIu behaving as

1
YO (X) = X <1+ (9(?)> as X — oo.

So, given an admissible tripl€xg, X1, Xs), With X; € R, |x| < 2 for
i = 0,1, oo, we choose the parameters (ag, 09), (a1, 01) and (8, 00)
in such a way that (2.8) is satisfied and

©)

X0 = x®

=x =x, for i=01 0.

Using the explicit formulae (2.68), (2.69) fo, # 0, we derive the
expressions (2.10), (2.11). Similarly, using (2.70) for = 0 we de-

rive the expression (2.12). In the same way, we derive the analogous
expressions foras, o1) and (a., 0~). The three corresponding branches
yOx), yP(x), y©(x) of solutions of PVL, with 1« given by (2.8) must

coincide. In fact, the associated auxiliary Fuchsian systems have the same,
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modulo diagonal conjugation, monodromy matrices. This proves the ex-
istence of a solution of PVl with the asymptotic behaviour (2.1), with
the indices given by (2.9) and the coefficients specified as above, for any
admissible triple(Xg, X1, Xs0), With Xj € R, |Xj| < 2 fori = 0,1, co. The
unigueness of such a branch follows from Theorem 1.3.

Conversely, for any such a solution we obtain an admissible triple
(XOa X1, Xoo) — (X(()0)7X§_0)7X(0)) — (X(l) X;_l),X(l)) (X(OO) (00) X(oo))
using the formulae (2.68), (2.69) or (2 70) and their analogles Let us prove
that the numbergxg, X1, X») are real and satisfix;| < 2 fori = 0, 1, oc.
Indeed, from the definition of the parameters, it follows:

(X2 = 4sirf wop, (x\M)? = 4sirf oy, (xX)? = 4irf 10,

This proves that our construction covers, for rgalall the solutions of
PVIu with critical behaviour of algebraic type.

Finally, using Corollary 1.5, we infer that the class of solutions of i2VI
with real «, having critical behaviour of algebraic type is invariant with
respect to the analytic continuation. The law of transformation of the critical
indiceslg, |1, |, Of the expansions (2.1), is described by Theorem 1.5.

2.4. The complete list of algebraic solutions
We summarize the results of this paper in the following

Classification Theorem. Any algebraic solution of the equation RVI
with 21 ¢ 7 is equivalent, in the sense of symmetries (1.22), (1.23), (1.24)
to one of the five solutionsAz), (Bs), (H3), (Hs)’, (H3)” below.

We already know that the classes of equivalent algebraic solutions are
labelled by the five regular polyhedra and star-polyhedra in the three-
dimensional space. We will construct representatives in these classes for
the following values of the parameter

1 1 2 1 1
=72 "3 "5 5 73
The corresponding algebraic solutions will have 4, 3, 10, 10, 18 branches
respectively. Recall that these are the lengths of the orbits (1.33), (1.34),
(1.35), (1.36), (1.37) respectively with respect to the action of the pure braid
group (see Remark 1.11 above). We give now the explicit formulae for the
solutions with brief explanations of the derivations of them.

Tetrahedron.  We have(Xg, X1, Xs) = (=1, 0, —1), thenu = —%1 and

(s— 1)%(1 + 39)(9s? — 5)
(1+9)(25— 2072 + 153%* + 2435)’
_ (s—131+3y
T (s+1)3(1-39)°

y:

(As)
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(We present the solution in the parametric form). The monodromy ma-
trices, in the canonical form (1.20), are:

11 1 0 10
o= (o 1) (A9 m-( )
This solution was found in [Dub]jin the implicit form

_ 1 4—1%
y_a)g—wl 6t + 4 @1

w3 — w1
X =

w2 — (Ul,
wherew; ; 3 are roots of the following
3 2 27 2
a)—a)—(gt—i—l)a)—gt —7t+1=0. (2.71)

To reduce this implicit form to the above one, we have to solve the cubic
equation (2.71) with the substitution:

32(1 — 185% + 81s%)

T 27(1+ 97 + 278 + 275)
Then the three roots of (2.71) are:
13— 668> — 275
w1 =
! 3(1+32)2
| —5+4428 £1448 + 275"
®23 = 3(1+ 392)2

Cube. We have(Xo, X1, Xx) = (—1,0, —v/2) andu = —2. The solu-
tion
_ (2-9%(149(°—3)?
T 2+95s-102+ 9’
_(2-9%(1+9
2+ 9%1-9’

(Bs)

was obtained in [Dub]. The canonical form for the monodromy matrices

is:
11 1 0 1 0
wo=(o 1) M= (9 mi=(% 1)

1 N. Hitchin (see [Hit4]) obtained independently another algebraic solution to PVI that is
related to our by a symmetry transformation.
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Coxeter group W (H3), of symmetries of icosahedron. We have three
possible choices of the poinig, X1, Xs) Which lead to three different
solutions.

Icosahedron. The orbit (1.35) corresponds to the standard triple of

reflections for the icosahedroiixg, X1, Xs) = (0, —1, —%), then

n=—%and

(5= D2(1+39%(—1+ 45+ s))(7 — 1085° + 314" — 58&° + 11%°)2
y= 11931+ 39P©
(Ha3)

. (—14+9°(1+39)° (-1+4s+)
C (1+9°(-1+39° (—1-4s5+ )

with
P(s) = 49— 2133 + 3430&" — 259044° + 1642878
— 7616646 + 13758708 + 5963724
— 719275 + 4248318
The canonical form for the monodromy matrices is:

11 1 0 1 0
(3 ) (49 me(ha D)
2

The above solution was already obtained in [Dub] in the implicit form
1 <1+10t—622—20t3—272t4 )

wr — w1 123+36t2+1
w3 — w1

X = s
w2 — w1

wherew; » 3 are roots of the following

w® — (10t + Dw? — (1803 + 1202 + Do — 216°
— 920" — 203 — 80t + 10t +1=0. (2.72)
The above explicit formula can be obtained solving (2.72) in the form:

(— (1-4s—8°)(—1—4s+ %) (—1+55)

(1+ 3s?)3
25— 5855” + 3530s* — 6690s® — 3955s® + 5075!?
e (1+32)°
_ —7+2155° — 1910s* — 40965° + 5150s° + 20480s’ + 6125s° — 35750
2= (1+32)°
wam 21F 2155 — 1910s" + 40965 4 5150s° — 20480s’ + 6125s® — 357s'°

(1+3)°.
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The last two solutions for the orbits (1.36) and (1.37), with the icosa-
hedral symmetry are new. They correspond to great icosahedron and great
dodecahedron respectively. To compute them we use the following algo-
rithm. The leading terms of the Puiseux expansions near the ramification
points Q 1, oo of each branch can be computed by the formulae (2.9), (2.10),
(2.11) and (2.12). From this the genus of the algebraic chfyex) = 0 is
easily computed. Namely, the genus of (1.36) is 0 and the genus of (1.37)
is 1. Since the symmetries of P¥Ipreserve the indicely, |1, 15, (up to
permutations), they preserve the genus too.

We observe that the appearance of genus 1 in the last solution related
to the great dodecahedron could seem less surprising if we recall that the
topology of thisimmersed two-dimensional surface is different from the top-
ology of all the other polyhedra and star-polyhedra. In fact, this is a surface
of genus 4, while all the others have genus 0 (see [Cox]).

Knowing the leading terms, we can compute any term of the Puiseux ex-
pansions of any branch of the solutions near the ramification paiits0
(recall that, due to the Painleproperty, the algebraic cunfy, x) = 0
defining the algebraic solution does not have other ramification points).
This computation is easily obtained by direct substitution of the Puiseux
expansion with known leading term in the RVequation. The equations
F(y, x) = 0 defining the algebraic solutions are polynomialiof degree
equal to the number of branches. The coefficidqts}) of the termy” are
elementary symmetric functions of the branches. Such functions must be
rational functions inx (see, e.g., [Spr]). The Laurent expansions of them
can be easily computed using the Puiseux expansions of the branches. From
these Laurent expansions, we are able to reconstruct the rational elementary
symmetric functions and thus the equatidf(y, X) = 0 defining the alge-
braic solutions. The computations (done with the help of Mathematica and
Maple) are simplified by using the invariance of the two algebraic curves
with respect to the symmetries (1.22), (1.23).

Let us now list the last two solutions.

Great Icosahedron. (Xg, X1, Xso) = (—1, 0, %5), theny = —1 and

(—1+ 9% (14392 (~1+ 45+ ) (3—308% + 115%)°

B (1+9) (-1+39) (1+3%) P(y
. (—1+9°(1+39)° (—1+4s+5?)
C (1+9°(-1+39° (-1-4s+ )

’

(Ha)

with

P(s) = 9 — 342s? + 4855s* — 28852s°
+630158° — 1942510 + 12152
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The canonical form for the monodromy matrices is

11 1 0 1 0
B (3 ()
2

Great Dodecahedron. (Xo, X1, Xoo) = (=1, —1, =8y 1 = —1.The
canonical form for the monodromy matrices is

11 1 0 =5 1
MO - <0 1) Mx - <_1 1) Ml - (3§£ 1+£/§) .

This is the most complicated solution and we will briefly explain how

did we obtain it. As we already said, it is an algebraic function with 18

branches. It has two branch points of order 5, two of order 3 and two
regular branches, over every ramification poini,G. The branches

y1(X), - - -, Y1g(X) nearx = 0 have the form:
i 7\% _
Y(x) = % (fs) 6% X + O(%), k=1---,5
i 65
Yiers(X) = e%kéx% +oxd), K=1l....5
2mk23 1+|\/ 5 2
Yiotk(X) = €3 B 4 X3 + 0(x), k=1,---,3
2rik 281 RV, 5
= — K=1 ...
Yiz1k(X) =€ 3 TR + O (x), .3
3+.5
Y17.18(X) = 5 X+ O(x?).

The Puiseux expansions neare= 1 andx = oo can be obtained from
these formulae applying the symmetries (1.22) and (1.23) respectively.
Using these formulae, one can compute any term of the Puiseux expan-
sions of all the branches. Due to computer difficulties, at the moment,
we do not manage to produce the explicit elliptic parameterization of the
algebraic curve. The explicit form of the algebraic cuRe, y) = 0 of
degree 36 irx and 18 iny is given in the preprint version of this paper,
math/9806056.

Remark 2.5. Plots of the algebraic solutionAz), (Bs), (Hz), (H3), can
be obtained using Mathematica.
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