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Abstract. We study the global analytic properties of the solutions of a par-
ticular family of Painlev́e VI equations with the parametersβ = γ = 0,
δ = 1

2 and 2α = (2µ−1)2 with arbitraryµ, 2µ 6∈ Z. We introduce a class of
solutions having critical behaviour of algebraic type, and completely com-
pute the structure of the analytic continuation of these solutions in terms of
an auxiliary reflection group in the three dimensional space. The analytic
continuation is given in terms of an action of the braid group on the triples
of generators of the reflection group. We show that the finite orbits of this
action correspond to the algebraic solutions of our Painlevé VI equation and
use this result to classify all of them. We prove that the algebraic solutions of
our Painlev́e VI equation are in one-to-one correspondence with the regular
polyhedra or star-polyhedra in the three dimensional space.

Introduction

In this paper, we study the structure of the analytic continuation of the
solutions of the following differential equation

yxx =1

2

(
1

y
+ 1

y− 1
+ 1

y− x

)
y2

x −
(

1

x
+ 1

x− 1
+ 1

y− x

)
yx

PVIµ

+ 1

2

y(y− 1)(y− x)

x2(x− 1)2

[
(2µ− 1)2+ x(x − 1)

(y− x)2

]
,

wherex ∈ C andµ is an arbitrary complex parameter satisfying the condi-
tion 2µ 6∈ Z.

This is a particular case of the general Painlevé VI equation
PVI(α, β, γ, δ), that depends on four parametersα, β, γ, δ (see [Ince]).
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PVIµ is specified by the following choice of the parameters:

α = (2µ− 1)2

2
, β = γ = 0 δ = 1

2
.

The general solutiony(x; c1, c2) of PVI(α, β, γ, δ) satisfies the following
two important properties (see [Pain]):

1) The solutiony(x; c1, c2) can be analytically continued to a meromorphic
function on the universal covering ofC\{0,1,∞}.

2) For generic values of the integration constantsc1, c2 and of the pa-
rametersα, β, γ, δ, the solutiony(x; c1, c2) can not be expressed via
elementary or classical transcendental functions.

The former claim is the so-calledPainlev́e propertyof the equation
PVI(α, β, γ, δ), i.e. its solutionsy(x; c1, c2) may have complicated singu-
larities (i.e. branch points, essential singularities etc.) only at thecritical
points0,1,∞ of the equation, the position of which does not depend on the
choice of the particular solution (the so-calledfixed singularities). All the
other singularities, the position of which depend on the integration constants
(the so-calledmovable singularities), are poles.

All the second order ordinary differential equations of the type:

yxx = R(x, y, yx),

whereR is rational inyx and meromorphic inx andy, satisfying the Painlev́e
property of absence of movable critical singularities, were classified (up
to a natural equivalence relation defined by changes of the variables) by
Painlev́e and Gambier (see [Pain], and [Ga]). Only six of these equations,
which are given in thePainlev́e-Gambier list,satisfy the property 2), i.e.
they can not be reduced to known differential equations for elementary and
classical special functions. The solutions to these equations define some
new functions, the so-calledPainlev́e transcendents.PVI(α, β, γ, δ) is the
most general equation of Painlevé-Gambier list. Indeed, all the others can be
obtained from PVI(α, β, γ, δ) by a confluence procedure (see [Ince] §14.4).

The name of transcendents could be misleading; indeed, for some par-
ticular values of(c1, c2, α, β, γ, δ), the solutiony(x; c1, c2) can be expressed
via classical functions. For example, Picard (see [Pic] and [Ok]) showed
that the general solution to PVI(0,0,0, 1

2) can be expressed via elliptic
functions, and, more recently, Hitchin [Hit] obtained the general solution
to PVI(1

8,−1
8,

1
8,

3
8) in terms of the Jacobi theta-functions (see also [Man]).

Particular examples of classical solutions to PVI, that can be expressed via
hypergeometric functions, were first constructed by Lukashevich [Luk1].
A general approach to study the classical solutions of PVI was proposed by
Okamoto (see [Ok1][Ok2]). One of the main tools of this approach is the
symmetry group of PVI: the particular solutions are those being invariant
with respect to some symmetry of PVI. The symmetries act in a non trivial
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way on the space of the parameters(α, β, γ, δ). Okamoto described the fun-
damental region of the action of this symmetry group and showed that all
the classical solutions known at that moment, fit into the boundary of this
fundamental region.

The theory of the classical solutions of the Painlevé equations was ex-
tensively studied in [Ai], [AMM], [BCH], [Gr1,2,3,4], [GL], [Luk1,2,3,4],
[MW], [MCB], [Ok4], [Vor], [Um2]. For PVI, the theory of classical so-
lutions was developed by Umemura and Watanabe ([Um], [Um1], [UW],
[UW1], [Wat], [NOOU]); in particular, all the one-parameter families of
classical solutions of PVI were classified in [Wat]. Watanabe also proved
that, loosely speaking, all the other classical solutions of PVI (i.e. not
belonging to the one-parameter families) can only be given by algebraic
functions.

Examples of algebraic solutions for PVI(1
8,−1

8,
1

2k2 ,
1
2 − 1

2k2 ) for an
arbitrary integerk, were found in [Hit1] in relation with the classical problem
of Poncelet polygons,k being the number of edges of the polygon. Other
examples for PVIµ were constructed in [Dub]. They turn out to be related
to the group of symmetries of the regular polyhedra in the three dimensional
space. Other algebraic solutions of PVI can be extracted from the recent
paper [Seg].

There are many physical applications of particular solutions to the
Painlev́e equations which we do not discuss here. We only mention the
papers [Tod], [Cha], [Oku] where our PVIµ (or some related particular case
of PVI) appears in the problem of construction of self-dual Bianchi-type IX
Einstein metrics, and the paper [Dub] where the same equation was used to
classify the solutions of WDVV equation in 2D-topological field theories.

The main aim of our work is to elaborate a tool to classify all the
algebraic solutions of PVIµ equation (for the other five Painlevé equations,
algebraic solutions seem to have been classified, see [KLM], [Wat1], [Mur]
and [Mur1]).

Our idea is very close to the main idea of the classical paper of Schwartz
(see [Schw]) devoted to the classification of the algebraic solutions of the
Gauss hypergeometric equation. Lety(x; c1, c2) be a branch of a solution of
PVI; its analytic continuation along any closed pathγ avoiding the singular-
ities (0,1,∞) is a new branchy(x; cγ1 , cγ2) with new integration constants
cγ1, c

γ

2 . Since all the singularities of the solution onC\{0,1,∞} are poles,
the result of the analytic continuation depends only on the homotopy class of
the loopγ on the Riemann sphere with three punctures. As a consequence,
the structure of the analytic continuation is described by an action of the
fundamental group:

γ ∈ π1
(
C\{0,1,∞}), γ : (c1, c2)→ (cγ1 , c

γ

2). (0.1)

To classify all the algebraic solutions of Painlevé VI, all the finite orbits of
this action must be classified.
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Our problem differs from Schwartz’s linear analogue, because (0.1) is
not a linear representation but a non-linear action of the fundamental group.
It is also more involved than the problem of the classification of the algebraic
solutions of the other five Painlevé equations, because the PVI is the only
equation on the Painlevé-Gambier list having a non-Abelian fundamental
group of the complement of the critical locus.

Although the main idea seems to work for the general PVI(α, β, γ, δ), we
managed to completely describe the action (0.1), and to solve the problem
of the classification of the algebraic solutions, only for the particular one-
parameter family PVIµ. Nevertheless, we have decided to publish these
results separately, postponing the investigation of the general case to another
paper (in an effort to keep the paper within a reasonable size, we also
postpone the study of the resonant case 2µ ∈ Z, see [Ma]). One of the
motivations for the present publication is a nice geometrical interpretation
of the structure of the analytic continuation (0.1) that seems to disappear in
the general PVI equation.

We now outline the main results of the paper. We introduce a class of
solutions of PVIµa-priori containing all the algebraic solutions of this equa-
tion. We say that a branch of a solutiony(x; c1, c2) hascritical behaviour of
algebraic type,if there exist three real numbersl0, l1, l∞ and three non-zero
complex numbersa0,a1,a∞, such that

y(x) =


a0xl0 (1+O(xε)) , as x→ 0,

1− a1(1− x)l1 (1+ O((1− x)ε)) , as x→ 1,

a∞x1−l∞
(
1+O(x−ε)

)
, as x→∞,

(0.2)

whereε > 0 is small enough. We show that there exists a three-parameter
family of solutions of PVIµwith critical behaviour of algebraic type, where
µ itself is a function ofl0, l1, l∞. Of course, for an algebraic solution, the
indicesl0, l1, l∞ must be rational.

It turns out that the three-parameter family of solutions (0.2) is closed
under the analytic continuation (0.1), if and only ifµ is real (that is, alge-
braic solutions can occur only for realµ). One of our main results is the
parameterization of the solutions (0.2) by ordered triples of planes in the
three dimensionalEuclidean space(see Sect. 1.4). In particular, the indices
l0, l1, l∞ are related to the anglesπr0, πr1, πr∞ between the planes:

l i =
{

2ri if 0 < ri ≤ 1
2

2− 2ri if 1
2 ≤ ri < 1

i = 0,1,∞,

and the parameterµ is determined within the ambiguityµ 7→ ±µ + n,
n ∈ Z, by the equation:

sin2πµ = cos2πr0+ cos2πr1+ cos2πr∞ + 2 cosπr0 cosπr1 cosπr∞.
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This ambiguity on the parameterµ and the one due to the reordering of the
planes can be absorbed by the symmetries of PVIµ described in Sect. 1.2.

We compute the analytic continuation (0.1) in terms of some elementary
operations on the planes. This computation leads to prove that, for an
algebraic solution to PVIµ, the reflections in the planes must generate the
symmetry group of a regular polyhedron inR3. Another result of this paper
is the classification of all algebraic solutions of PVIµ. They are in one-to-
one correspondence, modulo the symmetries of the equations described in
Subsect. 1.2.2, with the reciprocal pairs of the three-dimensional regular
polyhedra and star-polyhedra (the description of the star-polyhedra can be
found in [Cox]). The solutions corresponding to the regular tetrahedron,
cube and icosahedron are the ones obtained in [Dub] using the theory of
polynomial Frobenius manifolds. The solutions corresponding to the regular
great icosahedron, and regular great dodecahedron are new. Our method not
only allows to classify the solutions, but also to obtain the explicit formulae,
as we do in Sect. 2.4.

The paper consists of two parts. In the first one, more algebraic, we
deduce necessary conditions for the parameters of algebraic solutions. In
the second part, more analytic, we show that the necessary conditions of the
first part are also sufficient, and we complete the classification of algebraic
solutions. In more details the paper is organized as follows.

In Sect. 1.1, we describe the main tool to obtain the above results: the
isomonodromy deformation method (see [Fuchs], [Sch] and [JMU], [ItN],
[FlN]). The Painlev́e VI is represented as the equation of isomonodromy
deformation of the two-dimensional auxiliary Fuchsian system

dY

dz
=
(

A0

z
+ A1

z− 1
+ Ax

z− x

)
Y. (0.3)

Particularly, for PVIµ, the 2× 2 matricesA0, A1, Ax are nilpotent and

A0 + A1 + Ax =
(−µ 0

0 µ

)
.

The entries of the matricesAi are complicated expressions ofx, y, yx and
of some quadrature

∫
R(x, y)dx. The monodromy matricesM0, M1 and

Mx of (0.3) remain constant if and only ify = y(x) satisfies PVI. Thus,
the branches1 of the solutions to PVIµ are parameterized by points of the
representation space

ρ : F3→ SL(2,C) (0.4)

of the free group with three generators

F3 ' π1

(
C\{0,1, x,∞}

)
.

1 Recall that the branches of the solutions to PVI are meromorphic on the complex plane
with some branch-cuts between 0,1,∞.
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Particularly, solutions to PVIµ are parameterized byunipotentrepresen-
tations, i.e. such thatM0, M1, Mx have all eigenvalues equal to one. In
Sect. 1.2, we compute the structure of the analytic continuation. We prove
that this structure (0.1) is determined, up to an action of the symmetries
given in Subsect. 1.2.2, by a natural action of the braid groupB3 on the
representation space (0.4)2. To obtain the full list of algebraic solutions to
PVI it is necessary to classify all the finite orbits of the action of the braid
group on the representation space (0.4). Particularly, the generators of the
braid group on the subspace of unipotent representations act as follows:

β1(x1, x2, x3) =(−x1, x3 − x1x2, x2),

β2(x1, x2, x3) =(x3,−x2, x1 − x2x3),

where(x1, x2, x3) are suitable coordinates on the above subspace. The orbits
of this action (and of the higher dimensional analogue of it) were extensively
studied by E. Brieskorn and his school (see [Br], [Vo], [Krü]). However,
to our best knowledge, the problem of classification of finite orbits has
not been settled. We solve this classification problem in Sect. 1.3 for the
action of the braid group on the space of unipotent representations, i.e. in
the case of PVIµ. This classification is achieved by using the technique
of an old paper of Gordan (see [Gor]) dealing with rational solutions to
certain trigonometric equation (see Subsect. 1.3.2). In Sect. 1.4, we recast
the action ofB3 on the space of unipotent representations into an action on
the ordered triples of reflections in three dimensional space. The groupG
generated by the reflections remain unchanged under this action. We prove
that, for a solution to PVIµ having a finite number of branches, this group
must be an irreducible finite reflection group inR3. Two proofs of this result
are given. The former is a direct consequence of the classification result
of Sect. 1.3. The latter, suggested by E. Vinberg, uses more extensively
algebraic number theory (see Subsect. 1.4.2). In this way, we reduce the
classification problem of finite branching solutions of PVIµ equation to
the problem of classification, modulo the action of the braid group and
modulo rotations, of ordered triples of generating reflections in the groups
of symmetries of Platonic solids. We find that such triples are in one-to-one
correspondence with the regular polyhedra or star-polyhedra considered up
to reciprocity (we do not know a direct geometrical proof of this result).

In the second part of the paper, we prove that the necessary conditions to
obtain a finite branching solution to PVIµ, given in terms of the monodromy
data in the former part, are indeed sufficient to have an algebraic solutions to
PVIµ (as a consequence, finite branching solutions with essential singulari-
ties are excluded). Our first result is an identification of the class of solutions
parameterized by triples of reflections in thereal Euclideanspace with class
of solutions having critical behaviour of algebraic type (0.2). To this aim,
we first prove, see Sect. 2.1, that the solutiony(x) of the form (0.2), for
a fixed value ofµ, is uniquely determined by its asymptotic behaviour near

2 Recall, see [Bir], thatB3 acts as a group of automorphisms of the free groupF3.
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one of the critical points, i.e. by any of the pairs(a0, l0), (a1, l1), (a∞, l∞).
In particular, we prove that, for an algebraic solution of PVIµ, the indices
l0, l1, l∞ must satisfy:

0< l i ≤ 1, i = 0,1,∞.
To derive theconnection formulaeestablishing the relations between these
pairs, we use (see Sect. 2.3) the properly adapted method of Jimbo (see
[Jim]). This method allows to express the monodromy data of the auxil-
iary Fuchsian system (0.3) in terms of the parameters(a0, l0), (a1, l1) or
(a∞, l∞). For convenience of the reader, and because of some differences
between the assumptions of Jimbo’s work and ours, we give a complete
derivation of the connection formulae in Sect. 2.2. Using the results of the
Sects. 1.3 and 1.4, we complete the computation of the critical behaviour
(0.2) for all the branches of the analytic continuation of the solution (see
Sect. 2.3). The result of this computation is used in Sect. 2.4 to complete
the classification of algebraic solutions to PVIµ and to obtain the explicit
formulae for them.

Remark 0.1. The resulting classification of the algebraic solutions of PVIµ
is in striking similarity to the Schwartz’s classification (see [Schw]) of the
algebraic solutions of the hypergeometric equation. According to Schwartz,
the algebraic solutions of the hypergeometric equation, considered modulo
contiguity transformations, are of fifteen types (the first type consists of an
infinite sequence of solutions). The rows (2–15) of Schwartz’s list (see, for
example, the table in Subsect. 2.7.2 of [Bat]) correspond to the triples of
generating reflections of the symmetry groups of regular polyhedra in the
three-dimensional Euclidean space (we are grateful to E. Vinberg for bring-
ing this point to our attention). The parameterλ,µ, ν of the hypergeometric
equation shown in the table are just the angles between the mirrors of the
reflections, divided byπ.

According to our classification, the algebraic solutions of PVIµ, consid-
ered modulo symmetries, are in one-to-one correspondence to the classes of
equivalence of the triples of generating reflections in the symmetry groups
of regular polyhedra. The equivalence is defined by an action of the braid
groupB3 on the triples and by orthogonal transformations. We find that in
the groupsG = W(A3) andG = W(B3), the symmetry groups of respec-
tively the regular tetrahedron and of the cube or regular octahedron, there
is only one equivalence class of triples of generating reflections; these are
given respectively by the rows(2,3) and by(4,5) of Schwartz’s table. In
the groupW(H3) of symmetries of regular icosahedron or regular dodec-
ahedron, there are three equivalence classes of triples of reflections which
are given respectively by the rows(6,8,13), (11,14,15) and(7,9,10,12)
of the Schwartz’s table. They correspond to icosahedron, great icosahedron
and great dodecahedron (or to their reciprocal pairs, see [Cox]). To establish
the correspondence, we associate astandardsystem of generating reflec-
tions to a regular polyhedron in the following way: letH be the center of the
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polyhedron,O the center of a face,P a vertex of this face andQ the center
of an edge of the same face through the vertexP. Then the reflections with
respect to the planesHOP, HOQ andHPQ are the standard system of gen-
erators. Our five algebraic solutions correspond to the classes of equivalence
of the standard systems of generators obtained by this construction applied
to tetrahedron, cube, icosahedron, great icosahedron, great dodecahedron.

Summarizing, we see that the list of all the algebraic solutions of PVIµ
is obtained by folding of the list of Schwartz modulo the action of the
braid group. This relation between the algebraic solutions of PVIµ and
the algebraic hypergeometric functions seems to be surprising also from
the point of view of the results of Watanabe (see [Wat]) who classified all
the one-parameter families of classical solutions of PVIµ (essentially, all
of them are given by hypergeometric functions). Using these results, one
can easily check that our algebraic solutions do not belong to any of the
one-parameter families of classical solutions of PVIµ.

Remark 0.2. Another way to produce finite orbits of the action of the
braid group on the representation space (0.4) is to consider finite subgroups
ρ(F3) ⊂ SL(2,C). The corresponding algebraic solutions to PVI are studied
by N. Hitchin (see [Hit1], [Hit3], [Hit4]). Hitchin algebraic solutions to PVI
are related to ours by suitable symmetry transformations of PVI. Their
explicit form will be published elsewhere.

Remark 0.3. To the five algebraic solutions that we construct it actually
corresponds five infinite sequences of algebraic solutions obtained by iter-
ating the action of the symmetries described in Sect. 1.2.2 below. It would
be interesting to study the algebraic structure (determinantal forms, combi-
natorics etc, cfr. [KM], [KO], [KO1], [NOOU], [Ok5]) of these sequences.

AcknowledgementsThe authors are indebted to E. Vinberg for the elegant proof of Theo-
rem 1.8 and to A. Akhmedov for the simple proof of the Algebraic Lemma, Sect. 1.4. We are
grateful to N. Hitchin for a fruitful discussion of his approach to the problem of algebraic
solutions to PVI. We thank R. Conte for drawing our attention to the classical work of
Picard (see [Pic]) and N. Woodhouse for reading carefully this paper and for giving helpful
suggestions. We thank V. Sokolov and F. Zanolin for useful discussions and the referees for
useful comments and references added.

1. Structure of analytic continuation of the solutions of PVIµ

1.1. Painlev́e VI equation as isomonodromy deformation equation

In this section we show how the PVIµ equation can be reduced to the
isomonodromy deformation equation of an auxiliary Fuchsian system (see
[Sch], [JMU]); moreover we describe the parameterization, essentially due
to Schlesinger (see [Sch]), of the solutions of the PVIµ equation by the
monodromy data of such Fuchsian system.
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1.1.1. An auxiliary Fuchsian system and its monodromy data.In this
subsection, we introduce an auxiliary Fuchsian system, define its mon-
odromy and connection matrices, and establish the correspondence between
monodromy matrices and coefficients of the Fuchsian system for a given
set of poles.

Let us consider the following Fuchsian system with four regular singu-
larities atu1, u2, u3 and∞:

d

dz
Y = A(z)Y, z ∈ C\{u1,u2,u3,∞} (1.1)

whereA(z) is a matrix-valued function:

A(z) = A1

z− u1
+ A2

z− u2
+ A3

z− u3
,

Ai being 2× 2 matrices independent onz, andu1,u2,u3 being pairwise
distinct complex numbers. We assume that the matricesAi satisfy the
following conditions:

A2
i = 0 and A∞ := −A1−A2−A3 =

(
µ 0
0 −µ

)
. (1.2)

Indeed, we will see in the latter part of this section that this choice corres-
ponds to the particular case PVIµ of the Painlev́e VI equation. In this paper
we consider thenon-resonantcase 2µ 6∈ Z.

The solutionY(z) of the system (1.1) is a multi-valued analytic function
in the punctured Riemann sphereC\{u1,u2,u3} and its multivaluedness is
described by the so-calledmonodromy matrices.

Let us briefly recall the definition of the monodromy matrices of the
Fuchsian system (1.1). First, we fix a basisγ1, γ2, γ3 of loops in the funda-
mental group, with base point at∞, of the punctured Riemann sphere

π1

(
C\{u1,u2,u3,∞}, x̂

)
,

and a fundamental matrix for the system (1.1). To fix the basis of the loops,
we first perform some cuts between the singularities, namely we cut three
parallel segmentsπi between the point at infinity and eachui ; the segments
πi are ordered according to the order of the pointsu1,u2,u3, as in the Fig. 1.
Takeγi to be a simple closed curve starting and finishing at infinity, going
aroundui in positive direction (γi is oriented counter-clockwise,ui lies
inside, while the other singular points lie outside) and not crossing the cuts
πi . Near∞, we take every loopγi close to the cutπi as in the Fig. 1.

Now, we fix the fundamental matrixY∞(z) of the system (1.1) in such
a way that

Y∞(z) =
(

1+O

(
1

z

))(
z−µ 0
0 zµ

)
, as z→∞, (1.3)
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π

γ

π

γ
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γ1

1 2
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3

3

u1 u2 3
u

Fig. 1. The cutsπi between the singularitiesui and the oriented loopsγi

wherezµ := eµ logz, with the choice of the principal branch of the logarithm,
with the branch-cut along the common direction of the cutsπ1, π2, π3.
Such a fundamental matrixY∞(z) exists and, due to the non-resonance
condition, it is uniquely determined. It can be analytically continued to an
analytic function on the universal covering ofC\{u1,u2,u3,∞}. For any

elementγ ∈ π1

(
C\{u1,u2,u3,∞},∞

)
we denote the result of the analytic

continuation ofY∞(z) along the loopγ by γ [Y∞(z)]. Sinceγ [Y∞(z)] and
Y∞(z) are two fundamental matrices in the neighborhood of infinity, they
must be related by the following relation:

γ [Y∞(z)] = Y∞(z)Mγ

for some constant invertible 2× 2 matrix Mγ depending only on the homo-
topy class ofγ . Particularly, the matrixM∞ := Mγ∞ , γ∞ being a simple
loop around infinity in the clock-wise direction, is given by:

M∞ =
(

exp(2iπµ) 0
0 exp(−2iπµ)

)
. (1.4)

The resultingmonodromy representationis an anti-homomorphism:

π1
(
C\{u1,u2,u3,∞},∞

) → SL2(C)
γ 7→ Mγ

(1.5)

Mγ γ̃ = Mγ̃ Mγ . (1.6)

The imagesMi := Mγi of the generatorsγi , i = 1,2,3 of the fundamental
group, are calledthe monodromy matricesof the Fuchsian system (1.1).
They generate themonodromy group of the system,i.e. the image of the
representation (1.5). Moreover, due to the fact that, in our particular case,
theAi are nilpotent, the matricesMi satisfy the following relations:

det(Mi ) = 1, Tr(Mi ) = 2, for i = 1,2,3, (1.7)
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with Mi = 1 if and only if Ai = 0. Moreover, since the loop(γ1γ2γ3)
−1 is

homotopic toγ∞, the following relation holds:

M∞M3M2M1 = 1. (1.8)

A simultaneous conjugationAi 7→ D−1Ai D, i = 1,2,3 of the coefficients
Ai of the Fuchsian system (1.1) by a diagonal matrixD, implies the same
conjugation of the monodromy matricesMγ 7→ D−1Mγ D, for any γ ∈
π1

(
C\{u1,u2,u3,∞},∞

)
.

We now recall the definition of theconnection matrices.Let us assume
that Mi 6= 1, or equivalentlyAi 6= 0, for everyi = 1,2,3. We choose the
fundamental matricesYi (z) of the system (1.1), such that:

Yi = Gi (1+O(z− ui )) (z− ui )
J, as z→ ui , (1.9)

whereJ is the Jordan normal form ofAi , namelyJ =
(

0 1
0 0

)
, the invertible

matrix Gi is defined byAi = Gi JG−1
i , and the choice of the branch of

log(z− ui ) needed in the definition of

(z− ui )
J =

(
1 log(z− ui )
0 1

)
is similar to the one above. The fundamental matrixYi (z) is uniquely deter-
mined up to the ambiguity:

Yi (z) 7→ Yi (z)Ri ,

whereRi is any matrix commuting withJ.
Continuing, along, say, the right-hand-side of the cutπi , the solutionY∞

to a neighborhood ofui , we obtain another fundamental matrix aroundui ,
that must be related toYi (z) by:

Y∞(z) = Yi (z)Ci , (1.10)

for some invertible matrixCi . The matricesC1,C2,C3 are calledconnection
matrices,and are related to the monodromy matrices as follows:

Mi = C−1
i exp(2πi J)Ci , i = 1,2,3. (1.11)

Lemma 1.1. Given three matricesM1, M2, M3, Mi 6= 1 for everyi =
1,2,3, satisfying the relations (1.7) and (1.8), then

i) there exist three matricesC1,C2,C3 satisfying the (1.11). Moreover
they are uniquely determined by the matricesM1, M2, M3, up to the
ambiguityCi 7→ R−1

i Ci , whereRi J = JRi , for i = 1,2,3.
ii) If the matricesM1, M2, M3 are the monodromy matrices of a Fuchsian

system of the form (1.1), then any tripleC1,C2,C3 satisfying (1.11) can
be realized as the connection matrices of the Fuchsian system itself.
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Proof. i) By the (1.7), the monodromy matrices have all the eigenvalues
equal to one; moreover they can be reduced to the Jordan normal form
becauseMi 6= 1. Namely there exists a matrix̃Ci such that:

Mi = C̃−1
i

(
1 1
0 1

)
C̃i .

Taking

Ci =
(

a b
0 2πia

)
C̃i , a 6= 0,

we obtain the needed matrix. Two such matricesCi andC′i give the same
matrix Mi if and only if C−1

i C′i commutes withJ, namely if and only if
they are related byCi = R−1

i C′i . ii) Let us now assume thatC′1,C
′
2,C

′
3

are the connection matrices of a Fuchsian system of the form (1.1), with
monodromy matricesM1, M2, M3; id estY∞(z) = Y′i (z)C

′
i , i = 1,2,3, for

some choice of the solutionsY′1, Y′2 andY′3 of the form (1.9). We have

Mi = (C′i )−1 exp(2πi J)C′i = C−1
i exp(2πi J)Ci , i = 1,2,3.

So the matricesRi = C′i C
−1
i must commute withJ andC1, C2, C3 are the

connection matrices with respect to the new solutionsYi (z) = Y′i (z)Ri .
QED

Now, we state the result about the correspondence between monodromy
data and coefficients of the Fuchsian system, for a given set of poles:

Lemma 1.2. Two Fuchsian systems (1.1) with the same polesu1, u2 and
u3, and the same value ofµ, coincide if and only if they have the same
monodromy matricesM1, M2, M3, with respect to the same basis of the
loopsγ1, γ2 andγ3.

Proof. Let Y(1)∞ (z) and Y(2)∞ (z) be the fundamental matrices of the form
(1.3) of the two Fuchsian systems. Let us consider the following matrix:

Y(z) := Y(2)∞ (z)Y
(1)
∞ (z)

−1.

Y(z) is an analytic function around infinity:

Y(z) = 1+O

(
1

z

)
, asz→∞.

Since the monodromy matrices coincide,Y(z) is a single valued function on
C\{u1,u2,u3}. Let us prove thatY(z) is analytic also at the pointsui . Due
to Lemma 1.1, we can choose the fundamental matricesY(1)i (z) andY(2)i (z)
in such a way that

Y(1),(2)∞ (z) = Y(1),(2)i (z)Ci i = 1,2,3.
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with the same connection matricesCi . Then near the pointui ,

Y(z) = G(2)
i (1+O(z− ui ))

[
G(1)

i (1+ O(z− ui ))

]−1
.

This proves thatY(z) is an analytic function on allC and then, by the
Liouville theorem

Y(z) = 1,

and the two Fuchsian systems must coincide.

Corollary 1.1. Two Fuchsian systems (1.1) with the same polesu1, u2 and
u3, and the same value ofµ, are conjugated

A(1)
i = D−1A(2)

i D, i = 1,2,3,

with a diagonal matrixD, if and only if their monodromy matricesM(1)
i

and M(2)
i , with respect to the same basis of the loopsγ1, γ2 and γ3, are

conjugated:

M(1)
i = D−1M(2)

i D, i = 1,2,3.

1.1.2. The isomonodromy deformations of the Fuchsian system (1.1)
and the Painlev́e equation PVIµ. We now want to deform the poles of
the Fuchsian system keeping the monodromy fixed. The theory of these
deformations is described by the following two results:

Theorem 1.1. LetM1, M2, M3 be the monodromy matrices of the Fuchsian
system:

d

dz
Y0 =

(
A0

1

z− u0
1

+ A0
2

z− u0
2

+ A0
3

z− u0
3

)
Y0, (1.12)

of the above form (1.2), with pairwise distinct polesu0
i , and with respect to

some basisγ1, γ2, γ3 of the loops inπ1

(
C\{u0

1,u
0
2,u

0
3,∞},∞

)
. Then there

exists a neighborhoodU ⊂ C3 of the pointu0 = (u0
1,u

0
2,u

0
3) such that, for

anyu = (u1,u2,u3) ∈ U, there exists a unique tripleA1(u), A2(u), A3(u)
of analytic matrix valued functions such that:

Ai (u
0) = A0

i , i = 1,2,3,

and the monodromy matrices of the Fuchsian system

d

dz
Y = A(z;u)Y =

(
A1(u)

z− u1
+ A2(u)

z− u2
+ A3(u)

z− u3

)
Y, (1.13)
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with respect to the same basis1 γ1, γ2, γ3 of the loops, coincide with the
given M1, M2, M3. The matricesAi (u) are the solutions of the Cauchy
problem with the initial dataA0

i for the following Schlesinger equations:

∂

∂uj
Ai = [Ai ,A j ]

ui − uj
,

∂

∂ui
Ai = −

∑
j 6=i

[Ai ,A j ]
ui − uj

. (1.14)

The solutionY0∞(z) of (1.12) of the form (1.3) can be uniquely continued,
for z 6= ui i = 1,2,3, to an analytic function

Y∞(z,u), u ∈ U,

such that
Y∞(z,u0) = Y0

∞(z).
This continuation is the local solution of the Cauchy problem with the initial
dataY0∞ for the following system that is compatible to the system (1.13):

∂

∂ui
Y = −Ai (u)

z− ui
Y.

Moreover the functionsAi (u) andY∞(z,u) can be continued analytically
to global meromorphic functions on the universal coverings of

C3\{diags} := {(u1,u2,u3) ∈ C3 |ui 6= uj for i 6= j
}
,

and {
(z,u1,u2,u3) ∈ C4 |ui 6= uj for i 6= j andz 6= ui , i = 1,2,3

}
,

respectively.

The proof can be found, for example, in [Mal], [Miwa], [Sib]. We recall
the theorem of solvability of the inverse problem of the monodromy (see
[Dek], [Bol]):

Theorem 1.2. Given three arbitrary matricesM1,M2,M3, satisfying (1.7)
and an arbitrary numberµ such that

(M3M2M1)
−1 = M∞ =

(
e2πiµ

e−2πiµ

)
and given a pointu0 = (u0

1,u
0
2,u

0
3) ∈ C3\{diags}, for any neighborhoodU

of u0, there exist(u1,u2,u3) ∈ U and a Fuchsian system

d

dz
Y =

(
A1

z− u1
+ A2

z− u2
+ A3

z− u3

)
Y,

1 Observe that the basisγ1, γ2, γ3 of π1
(
C \{u1, u2,u3,∞},∞

)
varies continuously with

small variations ofu1,u2,u3. This new basis is homotopic to the initial one, so we can
identify them.
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with the given monodromy matrices, with poles inu1,u2,u3 and withA1,2,3
satisfying

A2
i = 0 and A∞ := −A1−A2−A3 =

(
µ 0
0 −µ

)
.

Remark 1.1. Fuchsian systems of the form (1.1), with coefficientsAi
satisfying (1.2), depend on four parameters, one of them beingµ. The
triples of the monodromy matrices satisfying (1.7) and (1.8), withM∞ of
the form (1.4), depend on four parameters too. Loosely speaking, Theo-
rems 1.1 and 1.2 claim that, not only the monodromy matrices are first
integrals for the equations of isomonodromy deformation (1.14), but they
provide a full system of first integrals for such equations. We denote
A(u1,u2,u3;M1,M2,M3) the solution of the Schlesinger equations locally
uniquely determined by the triple of monodromy matrices(M1,M2,M3).

All the above arguments remain valid for a general 2×2 Fuchsian system,
provided the non-resonance condition of the eigenvalues ofAi andA∞.

Remark 1.2. We observe that the isomonodromy deformations equations
preserve the connection matricesCi too. This follows from Lemma 1.1.

1.1.3. Reduction to the PVIµ equation. Let us now explain, following
[JMU], how to reduce the Schlesinger equations (1.14) to the PVIµ equa-
tion. The Schlesinger equations are invariant with respect to the gauge
transformations of the form:

Ai 7→ D−1Ai D, i = 1,2,3, for any D diagonal matrix.

First of all we have to factor out such gauge transformations; to this aim, we
introduce two coordinates(p,q) on the quotient of the space of the matrices
satisfying (1.2) with respect to the equivalence relation

Ai ∼ D−1Ai D, i = 1,2,3, for any D diagonal matrix. (1.15)

The coordinates(p,q) are defined as follows:q is the root of the following
linear equation:

[A(q;u1,u2,u3)]12 = 0,

and p is given by:

p= [A(q;u1,u2,u3)]11,

whereA(z;u1,u2,u3) is given in (1.13). The matricesAi are expressed
rationally in terms of the coordinates(p,q) and an auxiliary coordinatek,
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coming from the gauge freedom (1.15)

(Ai )11 = − (Ai )22

= q− ui

2µP′(ui )

P(q)p2+ 2µ
P(q)

q− ui
p+ µ2(q+ 2ui −

∑
j

u j )

 ,
(Ai )12 = −µk

q− ui

P′(ui )
, (1.16)

(Ai )21 = k−1 q− ui

4µ3P′(ui )

P(q)p2+ 2µ
P(q)

q− ui
p+ µ2(q+ 2ui −

∑
j

u j )

2

,

for i = 1,2,3 whereP(z) = (z−u1)(z−u2)(z−u3) andP′(z) = dP
dz . The

Schlesinger equations in the(p,q) coordinates reduce to:

∂q

∂ui
= P(q)

P′(ui )

[
2p+ 1

q− ui

]
(1.17)

∂p

∂ui
= −P′(q)p2 + (2q+ ui −∑ j u j )p+ µ(1− µ)

P′(ui )
,

for i = 1,2,3. The system of thereduced Schlesinger equations(1.17) is
invariant under the transformations of the form

ui 7→ a ui + b, q 7→ a q+ b, p 7→ p

a
, ∀a,b ∈ C, a 6= 0.

We introduce the following new invariant variables:

x = u2− u1

u3− u1
,

y = q− u1

u3− u1
;

(1.18)

the system (1.17), expressed in the these new variables, reduces to the PVIµ
equation fory(x).

Remark 1.3. The system (1.17) admits the followingsingular solutions
(see [Ok1] and [Wat]):

q ≡ ui for somei ,

and p, in the variablex, can be expressed via Gauss hypergeometric func-
tions (see [Ok1]). Moreover the monodromy group of the system (1.1)
reduces to the monodromy group of the Gauss hypergeometric equation,
namely the following lemma holds true:
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Lemma 1.3. The solutions of the full Schlesinger equations, correspond-
ing to the solutionq ≡ ui , for somei , have the form:

Ai (u) ≡ 0, and for j 6= i A j (u) = D(u)−1A0
j D(u),

where D(u) is a diagonal matrix depending onu, and A0
j is a constant

matrix. The monodromy matrixMi of the corresponding Fuchsian system
turns out to be the identity. Conversely, if one of the monodromy matrices
Mi is the identity,Mi = 1, then the solution of (1.17) is singular.

Proof. The matrixAi , for q ≡ ui , is identically 0, thanks to (1.16). Having
Ai ≡ 0, Mi is1. Conversely, ifMi = 1, thenAi ≡ 0. Solving the Schlesinger
equations (1.13), we obtainq ≡ ui , and the equation forp is reduced to
a Gauss hypergeometric equation. QED

The singular solutions do not give any solution of the PVIµ equation.
All the other solutions do, via (1.18). Conversely, starting from any solution
y(x) of PVIµ, we arrive at the solution:

q = (u3− u1)y

(
u2− u1

u3− u1

)
+ u1

p= P′(u2)

2P(q)
y′
(

u2− u1

u3− u1

)
− 1

2

1

q− u2

of the reduced Schlesinger equations (1.17). To obtain a solution of the full
Schlesinger equations, the functionk must be given by a quadrature:

∂ logk

∂ui
= (2µ− 1)

q− ui

P′(ui )
.

We conclude this section summarizing all the above results in the fol-
lowing:

Theorem 1.3. The branches of solutions of the PVIµequation near a given
point x0 ∈ C\{0,1,∞}, are in one-to-one correspondence with the triples
of the monodromy matricesM1, M2, M3 satisfying (1.7) and (1.8), with
M∞ of the form (1.4), none of them being equal to1, considered up to
conjugation with the same diagonal matrix.

Remark 1.4. A triple of 2×2 matricesM1,M2,M3 ∈ SL(2;C), considered
modulo conjugations, is a pointρ of the space of representations

ρ : F3→ SL(2;C)
of the free groupF3 with three generatorsγ1, γ2, γ3, specified by

Mi = ρ(γi), i = 1,2,3.
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In the general case, i.e. with the matricesAi andA∞ not necessarily of
the form (1.2), the corresponding solution(p,q) of the reduced Schlesinger
equations will be denoted

p= p(u1,u2,u3;ρ), q = q(u1,u2,u3;ρ).
It is locally uniquely specified by the representationρ, provided the non-
resonance condition of the eigenvalues ofAi andA∞.

1.2. The structure of the analytic continuation

We parameterized branches of the solutions of PVIµ by triples of mon-
odromy matrices. Now we show how do these parameters change with
a change of the branch in the process of analytic continuation of the so-
lutions along a path inC\{0,1,∞}. Recall that, as it follows from Theo-
rem 1.1, the solutions of PVIµ, defined in a neighborhood of a given point
x0 ∈ C\{0,1,∞}, can be analytically continued to a meromorphic function
on the universal covering ofC\{0,1,∞} (the above mentioned Painlevé
Property). The fundamental groupπ1

(
C\{0,1,∞}) is non-Abelian. As

a consequence, the global structure of the analytic continuation of the solu-
tions of PVI is more involved than that of the other Painlevé equations. In
fact the solutions of PI,..., PV have at most two critical singularities and the
corresponding fundamental group is Abelian.

As a first step we introduce a parameterization of the monodromy ma-
trices.

1.2.1. The parameterization of the monodromy data.Let M1, M2 and
M3 be three linear operatorsMi : C2→ C2 satisfying (1.7). We introduce
for them a parameterization which will be useful for studying the analytic
continuation of the solutions of the PVIµ equation.

Lemma 1.4. If M1, M2 are such that

Tr(M1M2) 6= 2,

then there exists a basis inC2 such that, in this basis, the matrices ofM1,
M2 have the form:

M1 =
(

1 −x1
0 1

)
, M2 =

(
1 0
x1 1

)
, (1.19)

wherex1 = √2− Tr(M1M2); whenM1,M2 are such thatTr(M1M2) = 2,
they have a common eigenvector, and then there exists a basis inC2 such
that, in this basis, the matricesM1, M2 are both upper-triangular.

Proof. Due to (1.7), there exist two non zero vectorse1 ande2 such that

M1e1 = e1, M2e2 = e2.
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We now prove that these two vectors are linearly dependent if and only
if Tr(M1M2) = 2. Indeed, if the two vectors are linearly dependent, then
we can find a vectore′2 linearly independent withe1 such that, in the basis
(e1,e′2) the matrices ofM1, M2 have the form:

M1 =
(

1 λ1
0 1

)
, M2 =

(
1 λ2
0 1

)
,

soTr(M1M2) = 2. Conversely, letTr(M1M2) = 2. Due to (1.7), there exists

a Jordan basis(e1,e′2) for the operatorM1, M1 =
(

1 λ1
0 1

)
. Requiring that

Tr(M1M2) = 2, eigenv(M2) = 1,

also the matrixM2 must have the above formM2 =
(

1 λ2
0 1

)
. Then, the

two vectorse1 ande2 are linearly dependent. This proves the last statement
of the lemma.

As a consequence, ifTr(M1M2) 6= 2, the two eigenvectorse1 ande2
are linearly independent, and in the basis(e1,e2) the matrices ofM1, M2
have the form:

M1 =
(

1 λ1
0 1

)
, M2 =

(
1 0
λ2 1

)
,

with Tr(M1M2) = 2+ λ1λ2. Rescaling the eigenvectors(e1,e2), we obtain
the (1.19). QED

Lemma 1.5. Let M1, M2, M3 satisfy also the condition (1.8) withM∞
given by (1.4), and2µ 6∈ Z. Then the following statements are true:

i) If two of the following numbers

Tr(M1M2), Tr(M1M3), Tr(M3M2)

are equal to2, then one of the matrices ofMi is equal to one.
ii) If Tr(M1M2) 6= 2, then there exists a basis inC2 such that, in this

basis, the matricesM1, M2 and M3 have the form

M1 =
(

1 −x1
0 1

)
, M2 =

(
1 0
x1 1

)
, M3 =

(
1+ x2x3

x1
− x2

2
x1

x2
3

x1
1− x2x3

x1

)
,

(1.20)

where

Tr(M1M2) = 2− x2
1, Tr(M3M2) = 2− x2

2, Tr(M1M3) = 2− x2
3,

and

x2
1 + x2

2 + x2
3 − x1x2x3 = 4 sin2πµ. (1.21)
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iii) If two triples of matricesM1, M2, M3 and M′1, M′2, M′3 satisfying
(1.8), with none of them equal to1, have the form (1.20) with the
parameters(x1, x2, x3) and (x′1, x

′
2, x
′
3) respectively, then these triples

are conjugated
Mi = T−1M′i T

with some invertible matrixT if and only if the triple(x′1, x
′
2, x
′
3) is

equal to the triple(x1, x2, x3), up to the change of the sign of two of the
coordinates.

Proof.
i) Let us assume that

Tr(M1M2) = 2, Tr(M1M3) = 2.

Let e1 and e3 be the common eigenvectors ofM1, M2 and M1, M3
respectively, (see Lemma 1.4). IfM1 6= 1, then the eigenvectorse1 and
e3 coincide. Then we can find a linear independent vectore′2 such that,
in the basis(e1,e′2) the matrices ofM1, M2, M3 all have the form

Mi =
(

1 λi
0 1

)
, i = 1,2,3.

Then
Tr(M3M2M1) = Tr(M∞) = 2.

This contradicts the assumption 2µ 6∈ Z.
ii) Let us choose the basis such that, according to Lemma 1.4, the matrices

M1, M2 have the form (1.19). Solving the equations

Tr(M3M2) = 2− x2
2, Tr(M1M3) = 2− x2

3,

we arrive at the formula (1.20). The (1.21) is obtained by straightforward
computations from

Tr(M3M2M1) = 2 cos 2πµ.

iii) The two triples of matricesM1, M2, M3 andM′1, M′2, M′3 are conjugated

Mi = T−1M′i T

with some invertible matrixT if and only if they are the matrices of the
same operatorsM1, M2, M3, written in different bases. Since the traces
do not depend on the choice of the basis, then

x2
i = x′i

2
, i = 1,2,3.

According to the proof of Lemma 1.4, the basis(e1,e2) is uniquely
determined up to changes of sign. A change of signe1 7→ −e1 corres-
ponds to the change of signx1 7→ −x1; then the form of the matrixM3
is preserved if and only if we change one of the signs ofx2 or x3.

QED
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Remark 1.5. The matrices (1.20) have a simple geometrical meaning. Let
us consider the three-dimensional linear space with a basis(e1,e2,e3) and
with a skew-symmetric bilinear form{·, ·} such that

{e1,e2} = x1, {e1,e3} = x3, {e2,e3} = x2.

Let us consider the reflectionsR1, R2, R3 in this space, with respect to the
hyperplanes skew-orthogonal to the basic vectors:

Ri (x) = x− {ei , x}ei , i = 1,2,3.

The reflections have a one-dimensional invariant subspace, namely the ker-
nel of the bilinear form. The matrices of the reflections acting on the quotient
are the (1.20).

Definition. A triple (x1, x2, x3) is calledadmissibleif it has at most one
coordinate equal to zero. Two such triples are calledequivalentif they are
equal up to the change of two signs of the coordinates.

Observe that for an admissible triple(x1, x2, x3) none of the matrices
(1.20) is equal to the identity. So the admissible triples correspond to the non-
singular solutions of the reduced Schlesinger equations (1.17). Moreover,
two equivalent triples generate the same solution. We can summarize the
above results in the following:

Theorem 1.4. The branches of solutions of the PVIµequation near a given
point x0 ∈ C\{0,1,∞} are in one-to-one correspondence with the equiva-
lence classes of the admissible triples satisfying (1.21).

Proof. Starting from a solution of PVIµwe obtain the monodromy matrices
satisfying (1.7). None of them is equal to the identity. So the canonical
form (1.20) of M1,M2,M3 is determined uniquely up to a choice of the
admissible triple(x1, x2, x3)within the equivalence class. Conversely, given
an admissible triple(x1, x2, x3) satisfying (1.21), we obtain the matrices
M1,M2,M3 of the form (1.20). The matrixM3M2M1 is diagonalizable
with the eigenvalues exp(±2πiµ) (here we use the non-resonance condition
2µ 6∈ Z). Reducing this matrix to the diagonal form

M3M2M1 = T−1

(
exp(2πiµ) 0

0 exp(−2πiµ)

)
T

we obtain the monodromy matricesTMi T−1 satisfying (1.7) and thus spec-
ifying a branch of the solution of PVIµ.
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1.2.2. Monodromy data and symmetries of PVIµ. The Painlev́e VI
equation possesses a rich family of symmetries, i. e. transformations of
the dependent and independent variables(y, x), and also of the parameters,
that preserve the shape of the equation. The theory of these symmetries, and
its applications to the construction of particular solutions, was developed in
[Ok], (see also [FY], [Kit], [LY], [MS], [MS1]). Here we list the symmetries
which preserve our PVIµ and compute their action on the monodromy data.

First of all we observe that the trivial symmetryµ 7→ 1− µ preserves
the Painlev́e equation, i.e. PVIµ = PVI(1− µ), so it maps the solutions
y(x) in themselves.

Then we consider the permutations of the polesu1,u2,u3 which generate
the action of the symmetric groupS3 on the solutionsy(x). In particular the
involution

i1 : u2↔ u3,

produces the transformation

x 7→ 1

x
, y 7→ y

x
, (1.22)

and
i2 : u1↔ u3,

produces the transformation

x 7→ 1− x, y 7→ 1− y. (1.23)

Both these transformations clearly preserve the equation PVIµ.
Let us compute the action of these symmetries on the monodromy

data. The only thing that changes is the basis in the fundamental group
π1(C\{u1,u2,u3,∞}). In fact, the cutsπ1, π2, π3 along which we take our
basisγ1, γ2, γ3, are ordered according to the order of the poles. Applying
the transformationi1 we then arrive at the new basisγ ′1, γ

′
2, γ
′
3 shown in

Fig. 2.
This new basis has the following form

γ ′1 = γ1, γ ′2 = γ2γ3γ
−1
2 , γ ′3 = γ2.

As a consequence the new monodromy matrices are

M′1 = M1, M′2 = M−1
2 M3M2, M′3 = M2.

For the second transformationi2, the basis of the new loops is shown in
Fig. 3.

It has the following form

γ ′1 = γ3, γ ′2 = γ−1
3 γ2γ3, γ ′3 = γ−1

3 γ−1
2 γ1γ2γ3.

The new monodromy matrices are

M′1 = M3, M′2 = M3M2M−1
3 , M′3 = M3M2M1M−1

2 M−1
3 .
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u’ u’u == 1u’u u =1

γ
,

2 3 3 2

2

1

,
γ=γ

1
3

γ
,

=
2

γ

γ
3

Fig. 2. The new basisγ ′1, γ ′2, γ ′3 obtained by the action ofi1

u’ u’u == u’u u =1 2 3 13 2

2γ
,

γ
3

,

γ
1

γ2

=
1

γ
,

3
γ

Fig. 3. The new basisγ ′1, γ ′2, γ ′3 obtained by the action ofi2

Lemma 1.6. In the coordinates(x1, x2, x3) on the space of the monodromy
matrices, the action of the symmetriesi1, i2 is given by the formulae

i1 : (x1, x2, x3) 7→ (x3 − x1x2,−x2, x1),

i2 : (x1, x2, x3) 7→ (−x2,−x1, x1x2− x3).

The proof is straightforward.

The last symmetry is more complicated because it changes the value of
the parameterµ, i.e.µ 7→ −µ, or equivalentlyµ 7→ 1+ µ as it follows
form the fact that PVI(−µ) = PVI(1+ µ). This symmetry comes from
the following simultaneous conjugation of the coefficients of the Fuchsian
system:

Ai → ΣAi Σ,

where

Σ = Σ−1 =
(

0 1
1 0

)
.

Indeed,
ΣA∞Σ = −A∞.
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Using the parameterization (1.16) of the matricesA1, A2, A3 by the coor-
dinates(p,q), we arrive at the following

Lemma 1.7. The formula

ỹ = y

(
p0(y′)2+ p1y′ + p2

)2

q0(y′)4+ q1(y′)3+ q2(y′)2+ q3y′ + q4
, (1.24)

where

p0 =x2(x − 1)2,
p1 =2x(x − 1)(y− 1)[2µ(y− x)− y]
p2 =y(y− 1)[y(y− 1)− 4µ(y− 1)(y− x)+ 4µ2(y− x)(y− x− 1)]
q0 =x4(x − 1)4

q1 =− 4x3(x − 1)3y(y− 1)

q2 =2x2(x− 1)2y(y− 1)[3y(y− 1)+ 4µ2(y− x)(1+ x− 3y)]
q3 =4x(x − 1)y2(y− 1)2[−y(y− 1)

− 16µ3(y− x)2 + 4µ2(y− x)(3y− x− 1)]
q4 =y2(y− 1)2

{
y2(y− 1)2 + 64µ3y(y− 1)(y− x)2

− 8µ2y(y− 1)(y− x)(3y− x − 1)

+ 16µ4(y− x)2[(x − 1)2+ y(2+ 2x− 3y)]},
(1.25)

transforms solutions of PVIµ to solutions of PVI(−µ). The class of equiv-
alence of the monodromy data(x1, x2, x3) does not change under such
a symmetry.

Proof. The new monodromy matricesM′1,M′2,M′3 have the form

M′i = ΣMiΣ, i = 1,2,3.

Then, the canonical form (1.20) of the monodromy operators does not
change. QED

Other symmetries are superpositions of (1.24) with the trivial oneµ→
1− µ. Using these symmetries, one can transform PVIµ to PVIµ′, with
µ′ = ±µ+ n for an arbitrary integern.

Remark 1.6. One can show that the above symmetries, and their super-
positions, exhaust all the birational transformations preserving our one-
parameter family of PVI equations. We will not do it here (see [Ok]). It is
important, however, that these symmetries preserve the class of algebraic
solutions of PVIµ. We will classify all the algebraic solutions modulo the
above symmetries.
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Remark 1.7. It is not difficult to show that the denominator of the formula
(1.24) does not vanish identically for any solution of PVIµ, with 2µ 6∈ Z.
Indeed, eliminatingyxx andyx form the system

yxx =1

2

(
1

y
+ 1

y− 1
+ 1

y− x

)
y2

x −
(

1

x
+ 1

x− 1
+ 1

y− x

)
yx

+ 1

2

y(y− 1)(y− x)

x2(x− 1)2

[
(2µ− 1)2+ x(x − 1)

(y− x)2

]
,

Q(yx, y, x, µ) =0,
d

dx
Q(yx, y, x, µ) =0,

whereQ is the denominator, the resultant equation

(2µ+ 1)4µ16 [x(x − 1)2
]4

[y(y− 1)(y− x)]4

never vanishes forµ 6= 0,−1
2.

1.2.3. The analytic continuation of the solutions of PVIµ and the braid
group B3. In this subsection, we describe the procedure of the analytic
continuation in terms of an action of the braid group on the admissible
triples(x1, x2, x3) parameterizing the branches of the solutions of PVIµ.

According to Theorem 1.1, any solution of the Schlesinger equations
can be continued analytically from a point(u0

1,u
0
2,u

0
3) to another point

(u1
1,u

1
2,u

1
3) along a path

(u1(t),u2(t),u3(t)) ∈ C3\{diags}, 0≤ t ≤ 1,

with
ui (0) = u0

i , and ui (1) = u1
i ,

provided that the end-points are not the poles of the solution. The result
of the analytic continuation depends only on the homotopy class of the
path inC3\{diags}. Particularly, to find all the branches of a solution near
a given pointu0 = (u0

1,u
0
2,u

0
3) one has to compute the results of the analytic

continuation along any homotopy class of closed loops inC3\{diags} with
the beginning and the end at the pointu0 = (u0

1,u
0
2,u

0
3). Let

β ∈ π1
(
C3\{diags}; u0)

be an arbitrary loop. Any solution of the Schlesinger equations near the point
u0 = (u0

1,u
0
2,u

0
3), is uniquely determined by the monodromy matricesM1,

M2 and M3, computed in the basisγ1, γ2, γ3. Continuing analytically this
solution along the loopβ, we arrive at another branch of the same solution
nearu0. This new branch is specified, according to Theorem 1.3, by some
new monodromy matricesMβ

1 , Mβ

2 and Mβ

3 , computed in the same basis
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γ1, γ2, γ3. Our nearest goal is to compute these new matrices for any loop
β ∈ π1(C3\{diags};u0).

The fundamental groupπ1(C3\{diags}; u0) is isomorphic to the pure
(or unpermuted) braid group,P3 with three strings (see [Bir]); this is a sub-
group of the full braid groupB3. The full braid group is isomorphic to the
fundamental group of the same space where the permutations are allowed:

B3 ' π1
(
C3\{diags}/S3; u0) ,

S3 being the symmetric group acting by permutations of the coordinates
(u1,u2,u3). Any loop inB3 has the form

(u1(t),u2(t),u3(t)) ∈ C3\{diags}, 0≤ t ≤ 1,

with
ui (0) = u0

i , ui (1) = u0
p(i),

wherep is a permutation of{1,2,3}. The elements of the subgroupP3 of
pure braids are specified by the conditionp= id.

To simplify the computations we extend the procedure of the analytic
continuation to the full braid group

M1, M2, M3 7→ Mβ

1 , Mβ

2 , Mβ

3 , β ∈ B3 = π1
(
C3\{diags}/S3; u0

)
.

For a generic braidβ ∈ B3, the new monodromy matrices describe the
superposition of the analytic continuation and of the permutation

ui 7→ up(i), Ai 7→ Ap(i). (1.26)

The braid groupB3 admits a presentation with generatorsβ1 andβ2 and
the defining relation

β1β2β1 = β2β1β2.

The generatorsβ1 andβ2 are shown in the Fig. 4.

β

u u u u u u

β

1 2 3 1 2 3

21

Fig. 4. The generators of the braid groupB3

Lemma 1.8. For the generatorsβ1, β2 shown in the Fig. 4, the matrices
Mβ

i have the following form:

Mβ1
1 = M2, Mβ1

2 = M2M1M−1
2 , Mβ1

3 = M3, (1.27)

Mβ2
1 = M1, Mβ2

2 = M3, Mβ2
3 = M3M2M−1

3 . (1.28)
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u’ u’u =2= 1u’u2 u1= 3 3

γ

γ2

,

γ
1

,
1

γ

3
γ
3

,

=

=

2γ

Fig. 5. The new loopsγ ′i obtained under the action of the braidβ1

Proof. Changing the positions of the pointsu1 andu2 by the braidβ1, the
basis of the loops will be deformed into the new basisγ ′1, γ

′
2, γ
′
3 shown in

the Fig. 5.
Thanks to the fact that we deal with isomonodromy deformations, the

monodromy matricesM′i := Mγ ′i of the system (1.1) with respect to the new
basisγ ′1, γ

′
2, γ
′
3 are the sameMi , up to the reordering:

M′1 = M2, M′2 = M1, M′3 = M3. (1.29)

We want to compute the monodromy matrices with respect to the old ba-
sis γ1, γ2, γ3. To this aim we notice the following obvious relation in the
fundamental group:

γ1 = γ ′1, γ2 = (γ ′1)−1γ ′2γ
′
1, γ3 = γ ′3.

Using this relations and the (1.29), we immediately obtain the (1.27). Sim-
ilarly the deformation of the basis of the fundamental group corresponding
to the braidβ2 is shown in the Fig. 6.

u’ u’u =2= 1u’u u = 31 3 2

2γ
,

γ3

,

γ21
γ

,
1

γ = = 3
γ

Fig. 6. The new loopsγ ′i obtained under the action of the braidβ2
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Here we have the permutation

M′1 = M1 M′2 = M3, M′3 = M2,

and the relations in the fundamental group:

γ1 = γ ′1, γ2 = γ ′2, γ3 = (γ ′2)−1γ ′3γ
′
2.

From this we obtain the (1.28). Lemma is proved. QED

The action (1.27), (1.28) of the braid group on the triples of monodromy
matrices commutes with the diagonal conjugation of them. As a conse-
quence this action not only describes the structure of the analytic contin-
uation of the solutions of the Schlesinger equations (1.14), but also of the
reduced ones (1.17). Moreover, the class of the singular solutions is closed
under this analytic continuation. In fact if some of the matricesMi is equal
to 1 then for anyβ there is aj such thatMβ

j = 1. As a consequence the
following lemma holds true:

Lemma 1.9. The structure of the analytic continuation of the solutions of
the PVIµ equation is determined by the action (1.27), (1.28) of the braid
group on the triples of monodromy matrices.

Our next step is to rewrite the action (1.27), (1.28) of the braid group
in the coordinates(x1, x2, x3) in the space of the monodromy data. This is
given by the following

Lemma 1.10. In the coordinates(x1, x2, x3), the action (1.27), (1.28) of
the braid group is given by the formulae:

β1 : (x1, x2, x3) 7→ (−x1, x3 − x1x2, x2),

β2 : (x1, x2, x3) 7→ (x3,−x2, x1− x2x3). (1.30)

Proof. The above formulae are obtained by straightforward computations
from (1.27), (1.28) by means of the parameterization of the monodromy
matrices (1.20).

We can summarize the results of this section in the following:

Theorem 1.5. The structure of the analytic continuation of the solutions
of the PVIµ equation is determined by the action (1.30) of the braid group
on the triples(x1, x2, x3).

Remark 1.8. It is easy to see that the braid(β1β2)
3 acts trivially on the

monodromy data. This braid is the generator of the center ofB3 (see [Bir]).
The quotient

B3/center' PSL(2;Z)
coincides with the mapping class group of the complex plane with three
punctures [Bir]. Also in the general case, the structure of analytic contin-
uation of solutions of PVI equation is described by the following natural
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actionρ→ ρβ of the mapping class group on the representation space (see
Remark 1.4)

ρβ(γ) = ρ(β−1
? (γ)) (1.31)

where
γ ∈ F3 ' π1

(
C\{u1,u2,u3,∞},∞

)
,

β : C\{u1,u2,u3,∞} → C\{u1,u2,u3,∞}, β(∞) = ∞
is a homeomorphism, and

ρ : F3→ SL(2;C).
Our action (1.30) is obtained restricting (1.31) onto the subspace of repre-
sentations of the form (1.7). The problem of selection of finite-branching
solutions of Painlev́e VI (see below) with generic values of the param-
etersα, β, γ, δ can be reduced to the classification of finite orbits of the
action (1.31). The class of finite-branching solutions contains the algebraic
solutions.

1.3. Monodromy data and finite-branching solutions of the PVIµequa-
tion

1.3.1. A preliminary discussion on the finite-branching solutions of the
PVIµ equation and their monodromy data. Here we state some neces-
sary condition for the triples(x1, x2, x3) to generate the finite-branching
solutions.

Definition. A solution y(x) is calledalgebraicif there exists a polynomial
in two variables such that

F(x, y(x)) ≡ 0.

If y(x) is an algebraic (resp. finite-branching) solution then the corres-
ponding solutionp(u), q(u), u = (u1,u2,u3) of the reduced Schlesinger
equations (1.17) is also algebraic (resp. finite-branching). According to
Theorem 1.1, the solutions of the reduced Schlesinger equations (1.17) can
ramify only on the diagonalsu1 = u2, u1 = u3, u3 = u2. Analogously the
ramification points ofy(x) are allowed to lie only at 0, 1, ∞.

We now characterize the monodromy data such that the corresponding
solution of the PVIµ equation is finite-branching.

Lemma 1.11. A necessary and sufficient condition for a solution of PVIµ
to be finite-branching is that the corresponding monodromy matrices, de-
fined up to conjugation with the same diagonal matrix, have a finite orbit
under the action of the braid group (1.27), (1.28).
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Proof. By definition, any algebraic function has a finite number of branches.
Allowing also the permutations (1.26), we still obtain a finite number of
values forMβ

1 , Mβ

2 andMβ

3 , β ∈ B3 up to diagonal conjugations. QED

Corollary 1.2. An admissible triple(x1, x2, x3) specifies an finite-branch-
ing solution of PVIµ, with 2µ 6∈ Z, if and only if it satisfies (1.21) and its
orbit, under the action (1.30) of the braid group, is finite.

Remark 1.9. We stress that the action (1.30) preserves the relation (1.21).

In this way, the problem of the classification of all the algebraic solutions
of the PVIµ reduces to the problem of the classification of all the finite orbits
of the action (1.30) under the braid group in the three dimensional space
(see [Dub], appendix F). Here we give a simple necessary condition for
a triple(x1, x2, x3) to belong to a finite orbit.

Lemma 1.12. Let (x1, x2, x3) be a triple belonging to a finite orbit. Then:

xi = −2 cosπri , ri ∈ Q, 0≤ ri ≤ 1, i = 1,2,3. (1.32)

HereQ is the set of rational numbers.

Proof. Let us prove the statement for, say, the coordinatex1. Consider the
transformation

β2
1 : (x1, x2, x3) 7→ (x1, x2 + x1x3− x2

1x2, x3− x1x2),

as a linear map on the plane(x2, x3). This linear map preserves the quadratic
form

x2
2 + x2

3 − x1x2x3.

If x1 = 2, we putr1 = 1; otherwise we reduce the quadratic form to the
principal axes, introducing the new coordinates

x̃2 =
√

2+ x1

2
(x2− x3), x̃3 =

√
2− x1

2
(x2+ x3).

In these new coordinates the preserved quadratic form becomes a sum of
squares and the transformationβ2

1 is a rotation by the angleπ + 2α, where
α is such thatx1 = −2 cosα. To have a finite orbit of(x̃2, x̃2) under the
iterations ofβ2

1, the angleα must be a rational multiple ofπ. In this way
the statement forx1 is proved. To prove it forx2 andx3 we have to consider
the iterations ofβ2

2 andβ−1
2 β2

1β2 respectively. QED

Remark 1.10. Thanks to the above lemma, for the finite orbits of the braid
group, it is equivalent to deal with the triples(x1, x2, x3), or with thetrian-
gleswith angles(πr1, πr2, πr3), with xi = −2 cosπri and 0≤ ri ≤ 1 (we
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may assume, changing if necessary two of the signs, that at most one of the
xi is positive). Observe that the quantity

x2
1 + x2

2 + x2
3 − x1x2x3 − 4

is greater than 0 if and only if the triangle(r1, r2, r3) is hyperbolic, namely∑
ri < 1; it is equal to 0, if and only if the triangle(r1, r2, r3) is flat,

namely
∑

ri = 1, and it is less than 0 if and only if the triangle(r1, r2, r3) is
spherical, namely

∑
ri > 1. Thanks to (1.21), a flat triangle gives a resonant

value ofµ, and it is thus forbidden.

1.3.2. Classification of the triples(x1, x2, x3) corresponding to finite-
branching solutions. We deal with the classification of all the finite orbits
of the triples(x1, x2, x3) of the form (1.32), with at most2 oneri being equal
to 1

2. According to Lemma 1.12, any point of theseB3-orbits must have the
same form (1.32). This condition is crucial in the classification.

Definition. We say that an admissible triple(x1, x2, x3) is goodif for any
braidβ ∈ B3 one has

β(x1, x2, x3) =
(− 2 cosπr β1 ,−2 cosπr β2 ,−2 cosπr β3

)
,

with some rational numbers 0≤ r βi ≤ 1.

Theorem 1.6. Any good triple belongs to the orbit of one of the following
five (

−2 cos
π

2
,−2 cos

π

3
,−2 cos

π

3

)
, (1.33)(

−2 cos
π

2
,−2 cos

π

3
,−2 cos

π

4

)
, (1.34)(

−2 cos
π

2
,−2 cos

π

3
,−2 cos

π

5

)
, (1.35)(

−2 cos
π

2
,−2 cos

π

3
,−2 cos

2π

5

)
, (1.36)(

−2 cos
π

2
,−2 cos

π

5
,−2 cos

2π

5

)
. (1.37)

All these orbits are finite and pairwise distinct. They contain all the permu-
tations of the triples (1.33), (1.34), (1.35), (1.36) and (1.37), and also the

2 This corresponds to the fact that we deal only with admissible triples.
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triples (
2 cos

π

3
, 2 cos

π

3
, 2 cos

π

3

)
, (1.33′)

(
−2 cos

2π

3
,−2 cos

π

4
,−2 cos

π

4

)
, (1.34′)

(
−2 cos

2π

3
,−2 cos

π

5
,−2 cos

π

5

)
,

(
−2 cos

4π

5
,−2 cos

4π

5
,−2 cos

4π

5

)
,

(1.35′)(
−2 cos

2π

3
,−2 cos

2π

5
,−2 cos

2π

5

)
,

(
−2 cos

2π

5
,−2 cos

2π

5
,−2 cos

2π

5

)
,

(1.36′)(
−2 cos

3π

5
,−2 cos

π

3
,−2 cos

π

5

)
,

(
−2 cos

2π

5
,−2 cos

π

3
,−2 cos

π

3

)
,(

−2 cos
2π

3
, −2 cos

π

3
,−2 cos

π

5

)
, (1.37′)

respectively, together with all their permutations.

Corollary 1.3. There are five finite orbits of the action (1.30) of the braid
group on the space of the admissible triples(x1, x2, x3) satisfying

x2
1 + x2

2 + x2
3 − x1x2x3 6= 4.

The lengths of the orbits (1.33), (1.34), (1.35), (1.36) and (1.37), are equal
to 4, 9, 10, 10 and18 respectively.

Remark 1.11. The action of the pure braid groupP3 on the above orbits
gives the same orbits for any of them but (1.34). The orbit (1.34), under the
action of the pure braid groupP3, splits into three different orbits of three
points. So theP3-orbit (1.33) has four points, the threeP3-orbits (1.34) have
three points each, (1.35) and (1.36) have ten points each and (1.37) has
eighteen points. These orbits give rise to all the finite-branching solutions
of the PVIµ equation, forµ is given by (1.21). The number of the points of
each orbit with respect to the action ofP3 coincides with the number of the
branches of the corresponding finite-branching solution.

Proof of Theorem 1.6.The braid group acting on the classes of triples
(x1, x2, x3), is generated by the braidβ1 and by the cyclic permutation:

(x1, x2, x3) 7→ (x3, x1, x2).

As a consequence it suffices to study the operator:

(xi , xj , xk) 7→ (−xi , xj , xk − xi xj ),
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up to cyclic permutations. This transformation works on the triangles with
anglesπri , πr j , πrk as follows:

(ri , r j , rk) 7→ (1− ri , r j , r
′
k), (1.38)

wherer ′k is such that:

cosπr ′k = cosπrk + 2 cosπri cosπr j . (1.39)

The first step is to classify all the rational triples(ri , r j , rk) such thatr ′k,
defined by (1.39) is a rational number, 1> r ′k > 0, for every choice of
i 6= j 6= k 6= i , i, j, k = 1,2,3. Equivalently we want to classify all the
rational solutions of the following equation:

cosπrk + cosπ(ri + r j )+ cosπ(ri − r j )+ cosπ(1− r ′k) = 0,

or all the rational quadruples(ϕ1, ϕ2, ϕ3, ϕ4) such that:

cos 2πϕ1+ cos 2πϕ2+ cos 2πϕ3+ cos 2πϕ4 = 0, (1.40)

where theϕi are related with theri by the following relations:

ϕ1 = rk/2, ϕ2 = ri + r j

2
, ϕ3 = |ri − r j |

2
, ϕ4 = |1− r ′k|

2
. (1.41)

Such a classification is given by the following:

Lemma 1.13. The only rational solutions(ϕ1, ϕ2, ϕ3, ϕ4), 0 ≤ ϕi < 1,
considered up to permutations and up to transformationsϕi → 1− ϕi , of
the equation (1.40) consist of the following non–trivial solutions:(

1

30
,

11

30
,

2

5
,

1

6

)
(a)

(
7

30
,

17

30
,

1

5
,

1

6

)
(b)(

1

7
,

2

7
,

3

7
,

1

6

)
(c)

and of the following “trivial” ones, of three types:

(d): cos 2πϕ4 = 0. The solutions obtained in [Cro] have the form

(d.1) :
(

1

3
,

1

10
,

3

10
,

1

4

)
, (d.2) :

(
ϕ, ϕ + 1

3
, ϕ + 2

3
,

1

4

)
,

(d.3) :
(

1

4
, ϕ,

∣∣∣ϕ − 1

2

∣∣∣, 1

4

)
,

whereϕ is any rational number0≤ ϕ < 1.
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(e): cos 2πϕ4 = 1. The solutions obtained in [Gor] have the form

(e.1) :
(

1

3
,

1

4
,

1

3
,0

)
, (e.2) :

(
1

2
, ϕ,

∣∣∣ϕ − 1

2

∣∣∣,0

)
,

(e.3) :
(

1

3
,

1

5
,

2

5
,0
)
,

whereϕ is any rational number0≤ ϕ < 1.
(f): cos 2πϕ1+cos 2πϕ2 = 0, cos 2πϕ3+cos 2πϕ4 = 0. The solutions are

obvious
ϕ2 = |1/2− ϕ1|, ϕ4 = |1/2− ϕ3|,

whereϕ1, ϕ3 are two arbitrary rational numbers0≤ ϕi < 1.

Proof. We follow the idea of Gordan [Gor] (see also [Cro]). In this proof
we use the same notations as in [Cro], except for theϕi which there are
calledri . Let us recall the notations. Letϕk = nk

dk
wheredk, nk are either

positive coprime integers,dk > nk, or nk = 0. Let p be the largest prime
which is a divisor ofd1, d2, d3, or d4 and letδk, lk, ck, νk be the integers
such that

dk = δk plk and nk = ckδk + νk plk,

whereδk is prime top, 0 ≤ ck < plk , ck = 0 if lk = 0, but otherwiseck is
prime top. So

ϕk = νk

δk
+ ck

plk
= fk + ck

plk
.

We assume thatl1 ≥ l2 ≥ l3 ≥ l4 and define the function:

gk(x) =
{

1
2

[
e2πi fk xck pl1−lk + e−2πi fk xpl1−ck pl1−lk

]
if ck 6= 0

cos 2πϕk if ck = 0

and, in our case:

U(x) =
4∑
1

gk(x).

As in [Cro], gk

(
exp

(
2πi
pl1

))
= cos 2πϕk andU

(
exp

(
2πi
pl1

))
= 0. Let us

introduce the polynomial

P(x) = 1+ xpl1−1 + x2pl1−1 · · · x(p−1)pl1−1
.

This is the minimal polynomial of exp
(

2πi
pl1

)
with coefficients inQ, that

is such that i)P
(

exp
(

2πi
pl1

))
= 0 and ii) P(x) is irreducible in the ring

of polynomials with rational coefficients. A stronger result was proved by
Kronecker (see [Kr]): the polynomialP(x) remains irreducible over any
extension of the formQ(ζ1, · · · , ζn), whereζi is a root of the unity of the
order coprime withp. As a consequence, the following lemma holds true
(see [Gor]).
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Lemma 1.14. If we express the polynomialU(x) as a sum of polynomials
Ut(x),

U(x) =
pl1−1−1∑

t=0

Ut(x),

where Ut(x) contains those terms ofU(x) of the form bxc with c =
t mod

(
pl1−1

)
, then everyUt(x) is divisible byP(x).

We now apply this lemma in our case. The indices of the powers ofx
are:

c1, pl1 − c1, c2 pl1−l2, pl1 − c2 pl1−l2,

c3 pl1−l3, pl1 − c3 pl1−l3, c4 pl1−l4, pl1 − c4 pl1−l4.

If all the following conditions are satisfied:

l1, l2, l3 > 1, l1 > l2, l3, l4, l2 > l3, l4, l3 > l4, l4 > 0,

then there are no indices equal to each othermod
(
pl1−1

)
and there is no

solution of (1.40). So we have to study the cases in which one of them is
violated.

1) : l1 = 1 ≥ l2 ≥ l3 ≥ l4. In this case, since the degree ofU(x) is
less thanp, and the degree ofP(x) is p− 1, beingU(x) divisible by
P(x), we must haveU(x) = m P(x), for some constantm. There are
four possibilities:

1.1) : l1 = l2 = l3 = l4 = 1 thenU(0) = 0 and P(0)=1. Thenm= 0 and
U(x) ≡ 0; moreover if the sum of two (three) terms representing two
(three) of the functionsgk vanishes, then the sum of the two (three)
functions vanishes. As a consequence there are only the following
possibilities:

1.1.1) :gi = −gj andgk = −gl for some distincti, j, k, l = 1, · · · 4. This
gives rise to the trivial case (f).

1.1.2) :gl = 0 for somel = 1, · · · 4; this is the trivial case (d).
1.1.3) :U(x) contains only two powers ofx. If b1, · · · ,b4 are the coeffi-

cients of one of the powersxc, then:

b1+ b2 + b3+ b4 = 0, and
1

b1
+ 1

b2
+ 1

b3
+ 1

b4
= 0,

namely b1, · · · ,b4 are the solutions of the following biquadratic
equation:

z4+ (b1b2+ b1b3+ b1b4+ b2b3+ b2b4+ b3b4)z
2+ b1b2b3b4 = 0.

As a consequencebi + bj = 0, bl + bk = 0, 1
bi
+ 1

bj
= 0 and

1
bl
+ 1

bk
= 0, for some distincti, j, k, l = 1, · · · ,4. Then this case

reduces to the trivial case (f).



90 B. Dubrovin, M. Mazzocco

1.2) l1 = l2 = l3 = 1, l4 = 0; thenU(0) = cos 2πϕ4 and thenU(x) =
cos 2πϕ4P(x), whereP(x) is a polynomial withp powers ofx. Since
in U we have at most 7 powers andp must be prime, thenp can only
be equal to 2,3,5,7.

1.2.1) Casep= 2. Sincep is the largest prime ind1, · · · ,d4, we must have
d1 = d2 = d3 = d4 = 2 andδk = 1. Thenνk = 0, ck = 1 and this
provides no solution.

1.2.2) Casep= 3. In this case there are the two following possibilities:

1

2
e2πi f1+ 1

2
e2πi f2+ 1

2
e2πi f3 = cos 2πϕ4 = 1

2
e−2πi f1+ 1

2
e−2πi f2+ 1

2
e−2πi f3

or

1

2
e−2πi f1+ 1

2
e2πi f2+ 1

2
e2πi f3 = cos 2πϕ4 = 1

2
e2πi f1+ 1

2
e−2πi f2+ 1

2
e−2πi f3.

In both the case one can show that there are no solutions. In fact, for
example, in the first case one has to solve the following equations:

2 cos 2πϕ4 = cos 2π f1+ cos 2π f2+ cos 2π f3,

sin 2π f1+ sin 2π f2+ sin 2π f3 = 0.

Using the classification of all the possible rational solution (d.1),
(d.2), (d.3) of the case (d), one can show that there are no solutions.

1.2.3) Casep= 5. In this case we have:

1

2
e2πi fk = 1

2
e−2πi fk = 1

2
e2πi fi + 1

2
e±2πi f j = cos 2πϕ4,

for some distincti, j, k = 1,2,3. Then fk is 0 or 1
2 andϕ4 = 1

6 or
ϕ4 = 1

3 respectively. Following the same computations of [Cro] we
obtain the two solutions (a) and (b).

1.2.4) Casep= 7. In this case we have:

1

2
e2πi f1 = 1

2
e−2πi f1 = 1

2
e2πi f2 = 1

2
e−2πi f2

= 1

2
e2πi f3 = 1

2
e−2πi f3 = cos 2πϕ4,

which has the following solutions:

f1 = f2 = f3 = 0 and ϕ4 = 1

6
or

f1 = f2 = f3 = 1

2
and ϕ4 = 1

3
.

This gives the solution (c).
1.3) l1= l2= 1 andl3= l4= 0. ThenU(x) = (cos 2πϕ3+cos 2πϕ4)P(x);

again inU we have at most 5 powers and thenp= 2,3,5. The case
p= 2 is treated as in [Cro];
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1.3.1) : In the casep= 3 either

1

2
e2πi f1 + 1

2
e2πi f2 = 1

2
e−2πi f1 + 1

2
e−2πi f2 = cos 2πϕ3+ cos 2πϕ4,

or:

1

2
e2πi f1 + 1

2
e−2πi f2 = 1

2
e−2πi f1 + 1

2
e2πi f2 = cos 2πϕ3+ cos 2πϕ4.

In the former case, forf1 = f2, with cos 2π f2 = cos 2πϕ3+cos 2πϕ4
and this gives again the solution (b). The latter case is equivalent.

1.3.2) : In the casep= 5 one has:

1

2
e2πi f1 = 1

2
e−2πi f1 = 1

2
e2πi f2 = 1

2
e−2πi f2 = cos 2πϕ3+ cos 2πϕ4,

which gives f1 = f2 = 0 or f1 = f2 = 1
2. We treat the former case

(the latter is equivalent); then cos 2πϕ3 + cos 2πϕ4 = 1
2 and we can

show that this case reduces to the trivial solutions (d) and (e).
1.4) l1 = 1 andl2 = l3 = l4 = 0. In this case, as in [Cro], there is no

solution, but the trivial one (d).
2) l1 ≥ 2, l1 ≥ l2, l3, l4. This case can be treated as the analogous one

in [Cro].

This concludes the proof of Lemma 1.13. QED

We now use the above lemma to classify all the triangles which corres-
pond to good triples. Every quadruple generates twelve triangles. In fact,
given a solution(ϕ1, · · · , ϕ4) we have six ways to choose the pair(ϕi , ϕ j )
such that

cos 2πϕi + cos 2πϕ j = 2 cosπ(ϕi + ϕ j ) cosπ(ϕi − ϕ j ).

Chosen the pair(ϕi , ϕ j ), we have two ways for choosingϕk, in order to
have the triangle (

2ϕk, ϕi + ϕ j , |ϕi − ϕ j |
)
. (1.42)

The remainingϕl is, by definition, such that the above triangle is mapped,
by the braid (1.38), to:(|ϕi − ϕ j |, |1− ϕi − ϕ j |, |1− 2ϕl |

)
.

Let us analyze all the triangles generated by the solutions of the equation
(1.40), and keep thegoodones, namely the ones for which the newr ′k, given
by (1.39), is rational for everyi, j, k, cyclic permutation of 1,2,3.

In order to do this, observe that if there exists a permutationp such
that the triple(r p(1), r p(2), r p(3)) gives via (1.41) values ofϕ1, ϕ2, ϕ3 such
that there is not any rationalϕ4 such thatϕ1, ϕ2, ϕ3, ϕ4 satisfy (1.40), then
(r1, r2, r3) is not a good triple. In fact, every permutationp is generated
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by cyclic permutations and the permutationp23 : (r1, r2, r3)→ (r1, r3, r2).
Cyclic permutations are elements of the braid group, so the statement is
obvious for them. Forp23, the statement is a trivial consequence of the fact
that the triples(r1, r2, r3) and(r1, r3, r2) give via (1.41) the same values of
ϕ1, ϕ2, ϕ3.

So we will exclude all the triangles(r1, r2, r3) for which there exists at
least a permutation that gives rise to values of(ϕ1, ϕ2, ϕ3) for which rational
solutionsϕ4 of (1.40) do not exist.

Solution (a). Using (1.42), we obtain the triangles(
1

15
,

1

30
,

23

30

)
,

(
1

15
,

1

5
,

8

15

)
,

(
1

15
,

7

30
,

17

30

)
,

(
4

15
,

7

30
,

13

30

)
,(

11

15
,

11

30
,

13

30

)
,

(
11

15
,

2

15
,

1

5

)
,

(
4

5
,

2

15
,

1

5

)
,

(
1

5
,

1

5
,

7

15

)
,(

1

3
,

11

30
,

13

30

)
,

(
2

3
,

1

30
,

7

30

)
,

(
1

3
,

1

5
,

3

5

)
,

(
1

3
,

1

3
,

2

5

)
.

The last two points (
1

3
,

1

5
,

3

5

) (
1

3
,

1

3
,

2

5

)
(1.43)

belong to the orbit (1.37). The above values suitably permuted, except the
(1.43), give rise via (1.41), to the following values of(ϕ1, ϕ2, ϕ3) (written
in the same order as the corresponding generating triangles)(

1

60
,

5

12
,

7

20

)
,

(
1

10
,

3

10
,

7

30

)
,

(
7

60
,

19

60
,

1

4

)
,

(
7

60
,

7

20
,

1

12

)
,(

11

60
,

7

12
,

3

20

)
,

(
1

10
,

13

30
,

3

10

)
,

(
1

15
,

1

2
,

3

10

)
,

(
0,

1

5
,

7

30

)
,(

1

20
,

11

60
,

23

60

)
,

(
1

60
,

9

20
,

13

60

)
.

there isn’t any rational numberϕ4 such that any of the quadruples build with
these triples andϕ4 is in the class described by Lemma 1.13.

Solution (b). Using (1.42), the triangles are(
7

15
,

11

30
,

23

30

)
,

(
7

15
,

2

5
,

11

15

)
,

(
7

15
,

1

30
,

11

30

)
,

(
2

15
,

1

30
,

19

30

)
,(

2

15
,

1

30
,

17

30

)
,

(
2

15
,

1

15
,

3

5

)
,

(
2

5
,

1

15
,

2

5

)
,

(
2

5
,

11

15
,

2

5

)
,(

1

3
,

1

30
,

13

30

)
,

(
1

3
,

11

30
,

23

30

)
,

(
2

5
,

1

3
,

4

5

)
,

(
1

3
,

1

3
,

4

5

)
.
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The last two points are equivalent to:

(
1

3
,

1

5
,

3

5

) (
2

3
,

1

3
,

1

5

)
(1.44)

of the orbit (1.37). As before one can show that if(r1, r2, r3) is one of the
above values, except the (1.44), then there exists a permutation such that
ther ′k defined by (1.39) is no-more rational. In fact we obtain for example
the following values of(ϕ1, ϕ2, ϕ3), which don’t fall in the values obtained
in Lemma 1.13:(

11

60
,

37

60
,

3

20

)
,

(
1

5
,

3

5
,

2

15

)
,

(
1

60
,

5

12
,

1

20

)
,

(
1

60
,

3

4
,

23

60

)
,(

1

60
,

47

60
,

7

20

)
,

(
1

30
,

23

30
,

11

30

)
,

(
1

30
,

2

5
,0

)
,

(
11

30
,

2

5
,0

)
,(

1

60
,

23

60
,

1

20

)
,

(
11

60
,

11

20
,

13

60

)
.

Solution (c).

(
2

7
,

1

7
,

5

7

)
,

(
2

7
,

5

42
,

19

42

)
,

(
2

7
,

11

42
,

25

42

)
,

(
4

7
,

11

42
,

25

42

)
,(

4

7
,

2

7
,

4

7

)
,

(
4

7
,

1

42
,

13

42

)
,

(
1

7
,

1

42
,

29

42

)
,

(
1

7
,

5

42
,

23

42

)
,(

1

7
,

1

7
,

4

7

)
,

(
1

3
,

1

7
,

3

7

)
,

(
1

3
,

2

7
,

4

7

)
,

(
1

3
,

1

7
,

5

7

)
.

As before one can show that if(r1, r2, r3) is one of the above values then
there exists a permutation such that ther ′k defined by (1.39) is no more
rational. In fact we obtain for example the following values of(ϕ1, ϕ2, ϕ3),
which are not included in the values described by Lemma 1.13:

(
1

14
,

1

2
,

3

14

)
,

(
5

84
,

31

84
,

1

12

)
,

(
11

84
,

37

84
,

13

84

)
,

(
11

84
,

7

12
,

1

84

)
,(

1

7
,

4

7
,0

)
,

(
1

84
,

37

84
,

11

84

)
,

(
1

84
,

5

12
,

23

84

)
,

(
5

84
,

29

84
,

17

84

)
,(

1

7
,

2

7
,0
)
,

(
1

14
,

8

21
,

1

21

)
,

(
1

7
,

19

42
,

5

42

)
,

(
1

14
,

11

21
,

4

21

)
.
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Solution (d.1).(
2

3
,

3

20
,

3

20

)
,

(
1

3
,

1

20
,

9

20

)
,

(
1

5
,

1

20
,

1

20

)
,

(
1

5
,

1

30
,

19

30

)
,(

1

5
,

1

12
,

7

12

)
,

(
2

5
,

1

12
,

5

12

)
,

(
3

5
,

3

20
,

7

20

)
,

(
3

5
,

7

30
,

13

30

)
,(

1

2
,

7

30
,

13

30

)
,

(
1

2
,

1

30
,

11

30

)
,

(
2

3
,

1

5
,

2

5

)
,

(
1

2
,

1

5
,

2

5

)
.

The last two points are equivalent to:(
1

3
,

1

5
,

3

5

) (
1

2
,

2

5
,

1

5

)
(1.45)

of the orbit (1.37), which is now complete. We can again exclude all the
other values of(r1, r2, r3), with the same trick as above.

Solution (d.2). In this case we have that any of the triangles generated is
equivalent to one of the following:(

|1− 2ϕ|, |1− 4ϕ|
4

,
1+ 4ϕ

4

)
,

(
1

2
,
|1− 4ϕ|

4
,
|3− 4ϕ|

4

)
,(

1

2
,
|1− 4ϕ|

4
,

1+ 4ϕ

4

)
,

(
2ϕ,
|1− 4ϕ|

4
,
|3− 4ϕ|

4

)
,(

1

2
,

1

2
,
|1− 4ϕ|

2

)
,

where ϕ is an arbitrary rational number. The last triangle is forbidden
because it has two right angles, and the first four ones are all equivalent to
a flat triangle, so they are again forbidden because they give rise to a an
half-integer value ofµ.

Solution (d.3). The generated triangles are the following:(
1

2
,

1

3
,2ϕ + 1

3

)
,

(∣∣∣2
3
− 2ϕ

∣∣∣, 1

3
,2ϕ + 1

3

)
,

(
1

2
,

2

3
,

2

3
+ 2ϕ

)
,(

2

3
+ 2ϕ,

2

3
,

2

3
+ 2ϕ

)
,

(
2

3
+ 2ϕ,

|1− 4ϕ|
4

,
1+ 4ϕ

4

)
,(∣∣∣2

3
− 2ϕ

∣∣∣, |1− 4ϕ|
4

,
1+ 4ϕ

4

)
,

(
1

2
,

1

3
,1+ 2ϕ

)
,

(
2ϕ,

1

3
,1+ 2ϕ

)
,(∣∣∣2

3
− 2ϕ

∣∣∣, ϕ + 1

12
, ϕ + 7

12

)
,

(
2ϕ, ϕ + 1

12
, ϕ + 7

12

)
,(

2

3
+ 2ϕ, ϕ + 5

12
, ϕ + 11

12

)
,

(
2ϕ, ϕ + 5

12
, ϕ + 11

12

)
.
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This case must be studied carefully because we have to classify the allowed
values of the rational variableϕ in order that, applying the transformation
(1.38), we obtain always rational values.

Let us analyze the first triangle. It is mapped by (1.38) to a triangle
equivalent to the second one:(

1

2
,

1

3
,2ϕ + 1

3

)
7→

(
1

3
+ 2ϕ,

2

3
,2ϕ + 1

3

)
∼
(∣∣∣2

3
− 2ϕ

∣∣∣, 1

3
,2ϕ + 1

3

)
.

(1.46)

If we apply the braid (1.38), withri = 2π
3 , r j = rk = 2ϕ + 1

3, we have to
solve:

cos
2π

3
+ 2 cos2π

(
2ϕ + 1

3

)
= cosπr ′k,

or, equivalently, forϕ and for the newϕk:

cos
2π

3
+ cos 2π

(
2ϕ + 1

3

)
+ 1+ cos 2πϕk = 0.

We classify the values of the allowedϕ using the Lemma 1.13 in the case (e).
We have six possibilities forϕ:

i) if ϕk = 1
2, thenϕ = 11

24. In this case we obtain, from (1.46), all the
points of the orbit (1.34).

ii) if ϕk = 1
4, thenϕ = 0. In this case we obtain, from (1.46), all the points

of the orbit (1.33).
iii) if ϕk = 1

2, thenϕ = 1
4. In this case we obtain, from (1.46), the following

points: (
1

2
,

1

3
,

5

6

)
,

(
1

6
,

2

3
,

1

6

)
.

We exclude them because there exists a permutation such that ther ′k
defined by (1.39) is no-more rational.

iv) if ϕk is free to vary, then 2ϕ + 1
3 = 1

2. In this case we obtain, from
(1.46), the forbidden point:(

1

2
,

1

3
,

1

2

)
,

so we have to exclude it.
v) if ϕk = 1

5, thenϕ = 1
30, and we obtain, from (1.46), the following two

points of the orbit (1.36):(
1

2
,

1

3
,

2

5

)
,

(
2

5
,

2

3
,

2

5

)
.
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vi) if ϕk = 2
5, thenϕ = 13

30, and we obtain the following two points of the
orbit (1.35): (

1

2
,

1

3
,

1

5

)
,

(
1

5
,

2

3
,

1

5

)
.

In the same way we can study all the other triangles and show that we
don’t obtain any other value but the ones described in Theorem 1.6.

Solution (e.1). The generated triangles are the following:(
0,0,

2

3

)
,

(
0,

1

12
,

7

12

)
,

(
0,

1

2
,

2

3

)
,

(
2

3
,

1

12
,

7

12

)
,(

2

3
,

1

3
,

1

3

)
,

(
1

2
,

1

3
,

1

3

)
,

(
2

3
,

1

4
,

1

4

)
;

the first four are forbidden because there exists a permutation such that the
r ′k defined by (1.39) is no-more rational. So we have to exclude them. The
fifth and the sixth are points of the orbit (1.33) and the last of (1.34).

Solution (e.2). The generated triangles are the following:(
2ϕ,

1

2
,

1

2

)
,

(
|1− 2ϕ|, 1

2
,

1

2

)
,

(
1

2
,

1

2
,
|1+ 4ϕ|

2

)
, (1, ϕ, ϕ) ,(

1,
|1− 2ϕ|

2
,
|1− 2ϕ|

2

)
,

(
0,

1

2
,
|1− 4ϕ|

2

)
, (|1− 2ϕ|, ϕ, ϕ) ,(

0,
|1− 2ϕ|

2
,

1+ 2ϕ

2

)
, (0, ϕ,1− ϕ) ,

(
2ϕ,
|1− 2ϕ|

2
,
|1− 2ϕ|

2

)
,(

|1− 2ϕ|, |1− 2ϕ|
2

,
1+ 2ϕ

2

)
, (2ϕ, ϕ,1− ϕ) .

They are all forbidden, the first three because they have two right angles, the
next three ones, because we can prove that necessarilyϕ = 1

2, then the first
has two right angles, the second one gives| cosπr ′k| = 3 and the last gives
| cosπr ′k| = 2; all the others because they are equivalent to a flat triangle.

Solution (e.3). The generated triangles are the following:(
0,

2

15
,

8

15

)
,

(
0,

1

15
,

11

15

)
,

(
0,

1

5
,

3

5

)
,

(
2

3
,

1

5
,

3

5

)
,

(
2

5
,

1

15
,

11

15

)
,(

4

5
,

2

15
,

8

15

)
,

(
4

5
,

1

5
,

1

5

)
,

(
2

3
,

1

5
,

1

5

)
,

(
2

3
,

2

5
,

2

5

)
,

(
2

5
,

2

5
,

2

5

)
,(

2

5
,

1

3
,

1

3

)
,

(
1

5
,

2

3
,

1

3

)
.

We exclude the first six because we can show that there exists a permutation
such that ther ′k defined by (1.39) is no-more rational. The seventh and the
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eighth give two points of the orbit (1.36), the ninth and tenth two points of
the orbit (1.39) and the last two, two points of (1.39).
Solution (f). We have obtained all the points of all the orbits of Theo-
rem 1.6. To show that there are no other points we still have to examine the
case (f). In this case all the obtained triangles are equivalent to the following:(

ϕ1

2
,
|2− ϕ1+ ϕ3|

4
,
|2− ϕ1− ϕ3|

4

)
,

(
ϕ1

2
,

1

2
,
|1− ϕ1|

2

)
,(

ϕ1

2
,
|4− ϕ1− ϕ3|

4
,
|ϕ1− ϕ3|

4

)
. (1.47)

Applying the transformation (1.38) to the above triangles, we find that we
have to solve forϕ1, ϕ3 and for the newϕ obtained from the (1.39), the
following three equations respectively:

cosπ
|2− ϕ3|

2
+ cosπϕ1+ cos 2πϕ + 1= 0,

cosπ
|1+ ϕ1− ϕ3|

2
+ cosπ

|1− ϕ1− ϕ3|
2

+ cos 2πϕ = 0,

2 cosπ
ϕ1+ ϕ3

4
+ cosπ

|3ϕ1− ϕ3|
4

+ cos 2πϕ = 0.

We again can use Lemma 1.13 to prove that we don’t obtain any new point.
Let us show this for the first triangle(

ϕ1

2
,
|2− ϕ1+ ϕ3|

4
,
|2− ϕ1− ϕ3|

4

)
. (1.48)

We have to solve the equation

cosπ
|2− ϕ3|

2
+ cosπϕ1+ cos 2πϕ + 1= 0. (1.49)

Using Lemma 1.13, the possible values for(
|2−ϕ3|

2 , ϕ1, ϕ) are the (e.1), (e.2)
and (e.3). Consider the case (e.1), then the possible solutions for the pair
(ϕ1, ϕ3), are

(ϕ1, ϕ3) =
(

1

2
,

2

3

)
,

(
2

3
,1

)
,

(
2

3
,

2

3

)
.

Let us substitute these solutions in (1.48); we obtain the triangles(
1

4
,

13

24
,

5

24

)
,

(
1

3
,

7

12
,

1

12

)
,

(
1

3
,

1

2
,

1

6

)
,

which are all flat, and thus forbidden. Let us now consider the case (e.2).
In this case we obtain two possibilities: eitherϕ3 = 0 andϕ1 is a free
parameter, orϕ1 = 1 andϕ1 is a free parameter. In both the cases the
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triangle (1.48) is flat, and thus forbidden. Let us now consider the last case
(e.3). The possible solutions for the pair(ϕ1, ϕ3), are

(ϕ1, ϕ3) =
(

2

5
,

2

3

)
,

(
2

3
,

6

5

)
,

(
2

5
,

2

5

)
,

(
4

5
,

6

5

)
,

(
4

5
,

2

3

)
,

(
2

3
,

2

5

)
.

Substituting these values in (1.48), we obtain all flat triangles. We can repeat
the same proof for the other two triangles in (1.47). In this way we conclude
the proof of the theorem. QED

1.4. Monodromy data and reflection groups

We reformulate here the above parameterization of the monodromy data
by classes of equivalence of triples(x1, x2, x3) in a geometric way. Let
us consider a three-dimensional spaceV with a basis(e1,e2,e3) and with
a symmetric bilinear form(·, ·) given, in this basis, by the matrix

g :=
(

2 x1 x3
x1 2 x2
x3 x2 2

)
(1.50)

namely

(ei ,ei ) = 2, for i = 1,2,3, and
(e1,e2) = x1, (e2,e3) = x2, (e1,e3) = x3.

Observe that the bilinear form (1.50) does not degenerate. Indeed,

detg= 8− 2(x2
1 + x2

2 + x2
3 − x1x2x3) = 8 cos2πµ 6= 0,

due to the non-resonance assumption 2µ 6∈ Z. The three planesp1, p2, p3
orthogonal to the basic vectors(e1,e2,e3) possess the following properties:

1) The normal vectors to these planes are non-isotropic (i.e.(ei ,ei ) 6= 0).
2) None of the planes is orthogonal to the other two.

Conversely, a three-dimensional spaceV with a non-degenerate sym-
metric bilinear form(·, ·) and with an ordered triple of planes satisfying the
above conditions, uniquely determines the matrixg of the form (1.50), and
then the monodromy data of a solution of PVIµ.

We define three reflectionsR1, R2, R3 with respect to the three planes
(p1, p2, p3):

Ri : V → V
x 7→ x − (ei , x)ei

i = 1,2,3.
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These reflection have the following matrix representation in the basis
(e1,e2,e3):

R1 =
(−1 −x1 −x3

0 1 0
0 0 1

)
, R2 =

(
1 0 0
−x1 −1 −x2

0 0 1

)
, R3 =

(
1 0 0
0 1 0
−x3 −x2 −1

)
.

(1.51)

Let us consider the groupG ⊂ O(V, (·, ·)) of the linear transformations
of V, generated by the three reflectionsR1, R2, R3. The matrix g will
be called theGram matrix of the reflection groupG. It determines the
subgroupG ⊂ O(V, (·, ·)) uniquely. We observe that, for an admissible
triple, the groupG is irreducible, namely there are no non-trivial subspaces
of V which are invariant with respect to all the transformations ofG.

We conclude that the branches of the solutions of PVIµ can be param-
eterized by groupsG ⊂ O(3) with a marked ordered system of generating
reflectionsR1, R2, R3. Let us describe what happens with the triples of
generators under the analytic continuation of the solution.

We define an action of the braid groupB3 on the systems of generators
R1, R2, R3 of the reflection groupG:

β1 : (R1, R2, R3) 7→ (R1, R2, R3)
β1 := (R2, R2R1R2, R3),

β2 : (R1, R2, R3) 7→ (R1, R2, R3)
β2 := (R1, R3, R3R2R3), (1.52)

whereβ1,2 are the standard generators of the braid group. Observe that the
groups generated by the reflections(R1, R2, R3) and(R1, R2, R3)

β coincide
for anyβ ∈ B3. In particular the following lemma holds true:

Lemma 1.15. For any braidβ ∈ B3, the transformationsβ(R1, R2, R3)
are reflections with respect to some planes orthogonal to some new basic
vectors(eβ1,e

β

2,e
β

3). The Gram matrix with respect to the basis(eβ1,e
β

2,e
β

3)
has the form:(

eβi ,e
β

i

) = 2, i = 1,2,3,(
eβ1,e

β

2

) = xβ1 ,
(
eβ2,e

β

3

) = xβ2 ,
(
eβ1,e

β

3

) = xβ3 ,

where(xβ1 , x
β

2 , x
β

3) = β(x1, x2, x3).

Proof. It is sufficient to check the statement for the generatorsβ1,2. For
β = β1:

eβ1
1 = e2, eβ1

2 = e1 − x1e2, eβ1
3 = e3,

for β = β2:

eβ2
1 = e1, eβ2

2 = e3, eβ2
3 = e2− x2e3.

Computing the Gram matrix we prove the lemma. QED
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1.4.1. Reflection groups and finite-branching solutions.Let us figure
out what are the reflection groups corresponding to the finite orbits classified
in Theorem 1.6.

Theorem 1.7. The orbit (1.33) corresponds to the groupW(A3) of sym-
metries of regular tetrahedron, the orbit (1.34) corresponds to the group
W(B3) of symmetries of the regular octahedron, the orbits (1.35), (1.36),
(1.37) correspond to different choices of a system of generating reflections
in the groupW(H3) of symmetries of icosahedron.

Proof. It is sufficient to find one point in each of the orbits (1.33), (1.34),
(1.35), (1.36), (1.37) that corresponds to a triple of symmetry planes of
a regular polyhedron. To this end, we associate to a regular polyhedron
a standard triple of symmetry planes using the following construction. Let
0 be the center of the polyhedron. Take a face of the polyhedron and denote
H the center of this face,P a vertex andQ the center of an edge of the face
passing through the vertexP. The standard triple consists of the symmetry
planes trough the pointsOPQ, OQH, OHP respectively. Let us compute
the angles between the planes of each regular polyhedron. It is convenient
to use the Schläfli symbol{p,q} for regular polyhedra (see [Cox]). In these
notations, the face of the regular polyhedron{p,q} is a regularp-gon, the
vertex figure is a regularq-gon. We immediately see that the angles between
the planes of the standard triple are

between OPQ and OQH
π

2
,

between OQH and OHP
π

p
,

between OHP and OPQ
π

q
.

So, for the tetrahedron{3,3} we obtain the angles
(
π
2 ,

π
3 ,

π
3

)
, for the oc-

tahedron{3,4} the angles
(
π
2 ,

π
3 ,

π
4

)
, for the icosahedron{3,5} the angles(

π
2 ,

π
3 ,

π
5

)
. In this way, we obtain the triples (1.33), (1.34), (1.35). The re-

ciprocal polyhedra (i.e. cube{4,3} and dodecahedron{5,3}) give the same
angles up to permutations. As we already know, the permuted triples of
(1.34) or (1.35) belong to the same orbit. So, the standard triples of cube
and dodecahedron areB3-equivalent to those of octahedron and icosahe-
dron respectively.

To obtain the last two orbits (1.36) and (1.37), we apply the above
construction of the standard triple to great icosahedron and dodecahedron
respectively. These non convex regular polyhedra both have icosahedral
symmetry (see [Cox]). Their Schläfli symbols are

{
3, 5

2

}
and

{
5, 5

2

}
respec-

tively. This means that the faces of these polyhedra are regular triangles or
pentagons, but the vertex figures are pentagrams. The above computation
gives the triples (1.36) and (1.37). Again we need not consider the reciprocal
stellated polyhedra. Theorem 1.7 is proved. QED
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1.4.2. Classification of the monodromy data, second proof.We present
here another proof of Theorem 1.6, based on the idea suggested by E. B.
Vinberg. We start with the following:

Algebraic Lemma. Let (x, y, z) be an admissible triple of real numbers,
satisfying the inequalities:

x2+ y2+ z2− xyz> 4, (1.53)

and

|x|, |y|, |z| ≤ 2. (1.54)

Then there exists a braidβ ∈ B3 such that the absolute value of some of
the coordinates ofβ(x, y, z) is strictly greater than2.

Before proving the lemma, we observe that we can assume, without loss
of generality, that all the coordinates of(x, y, z) are non-zero; in fact, for any
admissible triple, there exists a braidβ ∈ B3 such that all the coordinates
of β(x, y, z) are non-zero. Let us denotebx, by andbz the following braids:

bx := β2, bx(x, y, z) = (z,−x, x− yz),

by := β−1
2 β1β2, by(x, y, z) = (−y+ xz,−x,−z),

bz := β1, bz(x, y, z) = (−x, z− xy, y).

Lemma 1.16. Let (x, y, z) be a triple of non-zero real numbers, satisfying

0< |z|, |x|, |y| ≤ 2 (1.55)

and

x2+ y2+ z2− xyz= 4+ c2, c> 0. (1.56)

Denote(x′, y′, z′) := β(x, y, z), where

β =


bx if |x| ≤ |y|, |z|,
by if |y| ≤ |x|, |z|,
bz if |z| ≤ |x|, |y|.

Then:

min{|x′|, |y′|, |z′|} ≥ min{|x|, |y|, |z|} (1.57)

and

|x′| + |y′| + |z′| ≥ |x| + |y| + |z| +min{z2,2c}. (1.58)
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Proof. Let us prove the lemma in the case where|z| ≤ |x|, |y| andβ = bz.
The other cases can be proved in the same way. If the signs ofz and ofxy
are opposite then

|y′| = |z| + |xy| ≥ |z| + z2, |x′| = |x|, |z′| = |z|
and (1.57), (1.58) are proved. Let us suppose that the signs ofzand ofxyare
the same. Changing the triple(x, y, z) to an equivalent one, we can assume
that all the coordinates are positive. If we prove now that

2z+ 2c≤ xy, (1.59)

wherec is given in (1.56), we have that|y′| = |xy− z| ≥ z+ 2c and the
lemma is proved. To prove (1.59) we find the constrained minimum of the
function xy on the domainD defined by the conditions (1.55) and (1.56).
The Lagrange function

F(x, y, z) := xy− λ (x2+ y2+ z2− xyz
)
,

has the local maximum at

x = y =
√

4+ c2− z2

2− z
,

and no minimum in the interior ofD. It remains to study the values of the
functionxy on the boundary ofD. If, say,z= y then the positive rootx of
the equation

x2+ 2z2− xz2 = 4+ c2

is greater than 2. So the boundariesz = y andz = x are not reached for
(x, y, z) ∈ D, and then|z| < |x|, |y|. It remains the last boundary to be
studied. If, say,y = 2, we findx = z± c. Sincex ≥ z, thenx = z+ c and
xy= 2(z+ c); this is the minimum of the functionxy. QED

Proof of Algebraic Lemma.As observed above we can always reduce to
the case where all the coordinates(x, y, z) are non-zero. Put:

∆(x, y, z) := min
{

x2, y2, z2, 2
√

x2+ y2+ z2− xyz− 4
}
.

Using Lemma 1.16, we can build a braidb1 such that the coordinates:

(x1, y1, z1) := b1(x, y, z)

satisfy the inequalities

min{|x1|, |y1|, |z1|} ≥ min{|x|, |y|, |z|}
|x1| + |y1| + |z1| ≥ |x| + |y| + |z| +∆(x, y, z). (1.60)
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Since the quantityx2+ y2+ z2− xyz− 4 is preserved by the action of the
braid group, we obtain:

∆(x1, y1, z1) ≥ ∆(x, y, z).

If the absolute value of some of the coordinates(x1, y1, z1) is greater
than 2, the lemma in proved. Otherwise we apply again the construction of
Lemma 1.16 to the triple(x1, y1, z1). In this way we obtain a sequence of
braidsb1, b2, b3 · · · such that the corresponding triples

(xk+1, yk+1, zk+1) := bk+1(xk, yk, zk)

satisfy
∆(xk+1, yk+1, zk+1) ≥ ∆(xk, yk, zk).

Iterating the inequality (1.57), we obtain that

|xk| + |yk| + |zk| ≥ |x| + |y| + |z| + k∆(x, y, z).

Hence, in a finite number of steps we build a triple such that the absolute
value of at least one of the coordinates in greater than 2. This concludes the
proof of Algebraic Lemma. QED

Corollary 1.4. For a finite-branching solution of PVIµ, specified by an
admissible triplexi = −2 cos 2πri , the value ofµ must be real, the strict
inequalities

|xi | < 2, i = 1,2,3, (1.61)

hold true and the matrixg defined in (1.50) is positive definite.

Proof. Let us prove that, for a finite-branching solution, the triple
(x1, x2, x3) must satisfy the inequality:

x2
1 + x2

2 + x2
3 − x1x2x3 < 4. (1.62)

Indeed, ifx2
1 + x2

2 + x2
3 − x1x2x3 > 4, then, according to the Algebraic

Lemma the triple is not a good one. This contradicts the assumption that
the solution is algebraic. Ifx2

1 + x2
2 + x2

3 − x1x2x3 = 4, thenµ = 1
2 + k

with k ∈ Z. This contradicts the basic assumption 2µ 6∈ Z. Then (1.62)
is satisfied andµ is a real number. Let us now prove (1.61). If one of the
coordinates, sayx1, is such thatx1 = ±2, then

x2
1 + x2

2 + x2
3 − x1x2x3 = 4+ (x2 ∓ x3)

2,

and, beingx2 x3 real numbers, (1.62) is violated. So,xi 6= ±2 for everyi .
Finally, applying the Sylvester criterion to the matrixg, we prove thatg is
positive definite. In fact

detG = 8− 2(x2
1 + x2

2 + x2
3 − x1x2x3) > 0,
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and for any principal minor

det
(

2 xi
xi 2

)
= 4− x2

i > 0.

QED

Lemma 1.17. For a finite-branching solution of PVIµ the reflection group
G acts in the Euclidean space.

The proof immediately follows from the fact that the corresponding Gram
matrix is positive definite.

Corollary 1.5. For a good triple(x1, x2, x3) and for any braidβ ∈ B3,
there exists three integer positive numbersnβ12, nβ13 andnβ23 such that:

(
Rβi Rβj

)nβij = 1, for i 6= j, i, j = 1,2,3. (1.63)

Proof. If (e1,e2) = x1 = −2 cosπr with r = m
n , m,n ∈ Z, thenR1R2 is

a rotation by the angle 2π m
n . Hence:

(R1R2)
n = 1.

This holds true for any pairRi andRj . Moreover, for any braidβ ∈ B3, the
triple β(x1, x2, x3) is again good, then (1.63) is proved. QED

Corollary 1.6. The set of the solutions of the PVIµ equation with a real
non resonant value ofµ and real parameters(x1, x2, x3) satisfying

|xi | < 2, i = 1,2,3,

is invariant with respect to the analytic continuation.

Proof. Applying the Sylvester criterion to the matrixg defined in (1.50), we
obtain thatg is positive definite. So the reflectionsR1, R2, R3 can be realized
in the Euclidean space. After a transformation(x1, x2, x3) 7→ (xβ1 , x

β

2 , x
β

3 ) =
β(x1, x2, x3), the new numbers(x1

β, x2
β, x3

β) are the entries of the Gram
matrix:

gβ :=


2 xβ1 xβ3

xβ1 2 xβ2

xβ3 xβ2 2

 ,
of the basis(eβ1,e

β

2,e
β

3), in the same Euclidean space. Then this matrix must
be positive definite, namelyx2

i < 4 as we wanted to prove. QED
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In the latter part of this paper, we will identify the set described in Corol-
lary 1.6 with the class of solutions of PVIµ having asymptotic behaviour
of algebraic type. This identification leads to prove that the finite-branching
solutions are indeed algebraic and it will be crucial in the computation of
the five algebraic solutions of PVIµ we have classified.

As we have just shown, a good triple

(x1, x2, x3) =
(
−2 cosπ

m1

n1
,−2 cosπ

m2

n2
,−2 cosπ

m3

n3

)
,

corresponds to a representation of the Coxeter group generated by three
reflectionsR1, R2, R3 satisfying

R2
1 = R2

2 = R2
3 = 1, (R1R2)

n1 = (R2R3)
n2 = (R1R3)

n3 = 1, (1.64)

in the three-dimensional Euclidean space. We denoted byG the image of
this representation. Moreover, for any braidβ ∈ B3, the matrices

(Rβ1, Rβ2, Rβ3) := β(R1, R2, R3),

satisfy the same identities (1.64), with some new integersnβ1,n
β

2,n
β

3. We
stress that the reflectionsRβ1, Rβ2, Rβ3 generate the same groupG.

Theorem 1.8. It follows from the above property thatG is an irreducible
finite Coxeter group.

Let n be the least common multiple ofn1, n2 andn3. Put:

ζ = 2 cos
π

n
.

Lemma 1.18. The numbers

xi = −2 cosπ
mi

ni
, i = 1,2,3,

belong to the ringK0 of integers of the fieldK := Q[ζ].
Recall (see [Wey]) thatK is the normal extension ofQ generated by

ζ andK0 is the ring of all the algebraic integer numbers ofK, namely it
consists of all the elementsx ∈ K satisfying an algebraic equation of the
form

xk + a1xk−1 + · · · + ak = 0, with ai ∈ Z.
Proof of Lemma 1.18.Let n = ni m′i , then

cosπ
mi

ni
= Tmi m′i

(
cos

π

n

)
= Tmi m′i

(
1

2
ζ

)
,
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where

Tk(x) = cos(k arccosx) = 2k−1xk +
k−1∑
s=0

2s−1aksx
s, (1.65)

are the Tchebyscheff polynomials of the first kind (see [Bat]). Recall that
all the coefficientsaks are integers, soxi = −2 cosπ mi

ni
is a polynomial

of ζ with integer coefficients. Moreoverζ is a root of the monic algebraic
equation with integer coefficients

2Tn

(
ζ

2

)
+ 2= ζn +

n−1∑
s=0

ansζ
s+ 2= 0.

Henceζ ∈ K0 andxi = −2Tmi m′i
(
ζ

2

) ∈K0, as we wanted to prove. QED

Proof of Theorem 1.8.From the formulae (1.51) it follows that the matrices
R1, R2 andR3 are all defined over the same ringK0 of integers ofK:

Ri ∈ Mat(K0,3).

Moreover, these matrices are orthogonal with respect tog:

RT
i gRi = g, (1.66)

whereg is defined in (1.50). Let

Γ := Gal(K,Q)

the Galois group ofK overQ, namely the group of all automorphisms

φ :K →K,

identical onQ.
For anyφ ∈ Γ we denoteφ(Ri ) andφ(g) the matrices obtained fromRi

andg by the action

(x1, x2, x3) 7→ (φ(x1), φ(x2), φ(x3)). (1.67)

Lemma 1.19. For anyφ ∈ Γ the following statements hold true:

i) detφ(g) 6= 0,
ii) The matricesφ(Ri ) are orthogonal with respect toφ(g).
iii) For anyβ ∈ B3 the matricesφ(Ri )

β satisfy the Coxeter relation (1.63).
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The proof is obvious, due to the fact that any automorphism preserves all
the algebraic relations.

From the above lemma, and from Algebraic Lemma, it follows that for
anyφ ∈ Γ, the real symmetric matrixφ(g) must be positive definite. We
will show that this implies that the groupG is finite. Let N be the order of
the Galois groupΓ. We construct the block-diagonal matrices

Ri ∈ Mat(K0,3N), i = 1,2,3,

as the matrices formed by 3× 3 blocks on the diagonal, such that the
j -th block is φ j (Ri ), for φ j ∈ Γ, j = 1,2, · · · , N. The matricesRi
are orthogonal with respect toG, that is the block-diagonal matrix having
φ j (g), for φ j ∈ Γ, j = 1,2, · · · , N, on the diagonal blocks. We can
apply Lemma 1.19 to the matricesRi to show that they satisfy the Coxeter
relation (1.63). As a consequence we obtain a representation of our reflection
groupG into the orthogonal group

G→ O
(
K3N,G

)
Ri 7→Ri . (1.68)

By construction the matricesRi preserve the sublattice

K3N
0 ⊂K3N

of the vectors the components of which are algebraic integers of the fieldK.
We recall (see [Wey]) that the ringK0 of the algebraic integers of the
field K, is a finite-dimensional lattice. As a consequence, the image of the
representation (1.68) is a discrete subgroup of the orthogonal group. Since
G is positive definite, the orthogonal group is compact and, hence,G must
be finite. The theorem is proved. QED

To complete the classification of the monodromy data related to the
finite-branching solutions it remains to classify the objects

(G, R1, R2, R3),

whereG is one of the Coxeter groupsA3, B3 and H3 and(R1, R2, R3) is
a triple of generating reflections considered modulo the action (1.52) of the
braid group. This can be done by a straightforward computation of all the
orbits of the triples of generating reflections. All of them were described
and classified by Schwartz (see the introduction). We arrive again at the
list of Theorem 1.6, where, as we already know, the triples (1.33) generate
the groupW(A3) of the symmetries of the tetrahedron, (1.34) generate the
groupW(B3) of the symmetries of the cube, while (1.35), (1.36) and (1.37)
correspond to three inequivalent triples of the generating reflections of the
groupW(H3).
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2. Global structure of the solutions of Painlev́e VIµ having critical
behaviour of algebraic type

In the former part of this paper, we found a class of solutions of PVIµ
invariant with respect to the analytic continuation. For them, the reflection
groupG acts in the three-dimensionalEuclideanspace. Recall that the pa-
rameterµmust be real, the coordinates of the admissible triples(x1, x2, x3)
must be real and satisfy the inequality

−2< xi < 2, i = 1,2,3.

In this latter part, we prove that this class of solutions coincides with the
class of the solutions of PVIµ having critical behaviour of the algebraic
type

y(x) =


a0xl0 (1+O(xε)) , as x→ 0,
1− a1(1− x)l1 (1+O((1− x)ε)) , as x→ 1,
a∞x1−l∞

(
1+O(x−ε)

)
, as x→∞,

(2.1)

whereε > 0 is small enough, the indicesl0, l1, l∞ are real and the coeffi-
cientsa0, a1, a∞ are some complex numbers. We compute the behaviour
of any branch of these solutions near the critical points. These results will
be used to prove that all five orbits described in the former part correspond
to algebraic solutions of PVIµ and to compute all the explicit formulae of
these algebraic solutions.

First of all, we fix the notations. Let us choose:

u1 = 0, u2 = x, u3 = 1.

Then the Fuchsian system (1.1) reads

d

dz
Y = A(z, x)Y =

(
A1

z
+ A2

z− x
+ A3

z− 1

)
Y,

and, putting

A1 := A0, A2 := Ax, A3 := A1, A∞ = A∞,

we obtain

d

dz
Y =

(
A0

z
+ A1

z− 1
+ Ax

z− x

)
Y. (2.2)

The branch cuts inC are the same as in Sect. 1.1. We call now the basic
loopsγ0, γx, γ1. They are fixed as before, namelyγ0, γx, γ1 play the role of
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the precedingγ1, γ2, γ3 (see Fig. 1). The Schlesinger equations read:

d

dx
A0(x) = −[A0, Ax]

x
,

d

dx
A1(x) = −[A1, Ax]

x− 1
, (2.3)

d

dx
Ax(x) = [A0, Ax]

x
+ [A1, Ax]

x− 1
.

The corresponding monodromy matrices are

M0, Mx, M1,

which play the role of the precedingM1,M2,M3 respectively. We recall
that they satisfy

M∞M1MxM0 = 1, det(Mi ) = 1, Tr(Mi ) = 2, for i = 0,1, x,
(2.4)

with

M∞ =
(

exp(2iπµ) 0
0 exp(−2iπµ)

)
. (2.5)

As a consequence we change the notation also for(x1, x2, x3) which now
will be called(x0, x1, x∞) respectively.

With the above choice ofA∞, A1, Ax andA0, satisfying

detAi = 0, Tr(Ai ) = 0, i = 0,1,∞, (2.6)

the non-singular solutionA(z, x) of the Schlesinger equations turns out to
be related to the solution of PVIµ in the following way (see [JMU]):

[A(y, x)]12 = 0, iff y(x) solves PVIµ, (2.7)

wherey is not identically equal to 0,1, x.
We now state the first main theorem of this part:

Theorem 2.1. For any admissible triple(x0, x1, x∞), xi ∈ R, |xi | < 2 for
i = 0,1,∞, there exists a unique branchy(x; x0, x1, x∞) of a solution of
PVIµ, with the parameterµ satisfying the equation:

4 sin2πµ = x2
0 + x2

1 + x2
∞ − x0x1x∞, (2.8)

with the asymptotic behaviour (2.1) near the critical points0,1,∞. The
indices are given by
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l i = 1

π
arccos(cos 2πri ) =

{
2ri if 0< ri ≤ 1

2
2− 2ri if 1

2 ≤ ri < 1
i = 0,1,∞,

(2.9)

with

xi = −2 cosπri , i = 0,1,∞,
and the leading coefficientsa0,a1,a∞ are single-valued functions of the
equivalence class ofx0, x1, x∞ and ofµ. Namely, the coefficienta0, for
x0 6= 0 , is given by:

a0 = exp(−iπφ)

4(2µ + l0− 1)2
Γ2(1− l0)Γ

2(1+l0
2 )Γ(1+l0

2 + µ)Γ(1+l0
2 − µ)

Γ2(l0)Γ2(1−l0
2 )Γ(1−l0

2 + µ)Γ(1−l0
2 − µ)

(2.10)

where

exp(iπφ) =
x2

0x2
1 − 2x2

1 − 2x0x1x∞ + 2x2∞ + ix1sign(x0)

√
4− x2

0(2x∞ − x0x1)

2(x2
1 − x0x1x∞ + x2∞)

(2.11)

and forx0 = 0

a0 = x2∞
x2

1 + x2∞
. (2.12)

The coefficienta1 is given by the same formula with the substitution
(x0, x1, x∞) → (x1, x0, x0x1 − x∞), l0 7→ l1; a∞ is given by the same
formula too, after the substitution(x0, x1, x∞) 7→ (x∞,−x1, x0 − x1x∞)
and l0 7→ l∞. Conversely any solution of the PVIµ equation, with a real
value ofµ, having critical behaviour of algebraic type, can be obtained by
the above construction.

Remark 2.1. The relation (2.8) determinesµ up to the transformations

µ 7→ ±µ+ n, n ∈ Z.
According to the results of Sect. 1.2, such an ambiguity can be absorbed by
the action of a symmetry on PVIµ. Recall that these symmetries preserve
the class of the algebraic solutions.

Theorem 2.1 will be proved in Sect. 2.4.
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2.1. Local theory of the solutions of PVIµ having critical behaviour of
algebraic type

2.1.1. Local asymptotic behaviour around 0. In this section we char-
acterize the local asymptotic behaviour of the solutions of PVIµ near the
singular pointx = 0. First of all let us characterize the type of asymptotic
behaviour that can be related to the algebraic solutions.

Lemma 2.1. Let y(x) be an algebraic solution of PVIµ. Then the first term
of its Puiseux series is

y(x) ∼ a0x1−σ0 as x→ 0. (2.13)

for some constanta0 6= 0and the rational numberσ0 must satisfy0≤ σ0< 1,
with a0 6= 1 if σ0 = 0.

Proof. If y(x) is an algebraic function, then it admits an expansion in
Puiseux series around 0

y(x) =
∞∑

k=k0

akx
k
n , k0 ∈ Z, ak0 6= 0,

wheren is some natural number. As a consequence, fork0 6= 0, we have
the following relation between the orders of the first and second derivative
of y:

O(x2y′′) = O(xy′) = O(y) = O
(

x
k0
n

)
. (2.14)

We now reduce to the common denominator the PVIµ equation and collect
together all the terms of the same order in the numeratorN , using the rule
(2.14). The numerator is

N =2(y′)2x4− (y′)2x3− (y′)2x5+ 2(y′)2x2y− 2y′x3y− 2(y′)2x3y

+ 2y′′x3y+ 2y′x4y− 2(y′)2x4y− 4y′′x4y+ 2(y′)2x5y

+ 2y′′x5y− 2y′xy2− 2x2y2+ 4µx2y2− 4µ2x2y2+ xy2

+ 6y′x2y2− 3(y′)2x2y2− 2y′′x2y2− 2y′x3y2+ 6(y′)2x3y2

+ 2y′′x3y2− 2y′x4y2− 3(y′)2x4y2+ 2y′′x4y2− 2y′′x5y2

− 8µxy3+ 8µ2xy3+ 2y′xy3+ 4x2y3− 8µx2y3+ 8µ2x2y3

− 6y′x2y3+ 2y′′x2y3+ 4y′x3y3− 4y′′x3y3+ 2y′′x4y3− y4

+ 4µy4− 4µ2y4− 3xy4+ 16µxy4− 16µ2xy4− 2x2y4+ 4µx2y4

− 4µ2x2y4+ 2y5− 8µy5+ 8µ2y5+ 2xy5− 8µxy5+ 8µ2xy5

− y6+ 4µy6− 4µ2y6.
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The first term of the Puiseux series must be chosen in order to kill the lowest
term in the numerator of the PVIµ equation. Ifk0 < 0, the lowest term is

−y6+ 4µy6− 4µ2y6

which, for 2µ 6∈ Z cannot be zero for any choice ofa0 6= 0. Thenk0 cannot
be negative. Ifn ≥ k0 > 0, the lowest order term is

2x2(y′)2y− 2xy′y2− 2x2y′′y2,

which is zero for anyy = ak0x
k0
n . Fork0 > n, the lowest order term is

−x3(y′)2+ 2x3y′′y+ xy2,

which cannot be zero. Furthermore, fork0 = 0, the lowest order term in the
numeratorN is

−a4
0(a0 − 1)2(2µ− 1)2

and, due to the assumptions 2µ 6∈ Z anda0 6= 0, the only possible value of

a0 is 1. Substitutingy = 1+ a1x
k1
n , we obtain that the lowest order term in

the numeratorN is

x
2k1
n a2

1(k1/n+ 1− 2µ)(k1/n− 1+ 2µ)

that is zero, for generic values ofµ, only if a1 is 0. If µ = 1
2 ± k1

2n , we can
again repeat the procedure. The numerator will be

N̂ =− 4µ̂2ŷ2− 16µ̂2 ŷ3− 24µ̂2 ŷ4− 16µ̂2 ŷ5− 4µ̂2 ŷ6+ ŷ2x+ 8µ̂2 ŷ2x

+ 2ŷ3x + 24µ̂2 ŷ3x+ ŷ4x+ 24µ̂2 ŷ4x + 8µ̂2ŷ5x + 2ŷy′x+ 4ŷ2y′x
+ 2ŷ3y′x− ŷ2x2− 4µ̂2 ŷ2x2− 2ŷ3x2− 8µ̂2 ŷ3x2− ŷ4x2− 4µ̂2 ŷ4x2

− 6ŷy′x2− 12ŷ2y′x2− 6ŷ3y′x2− (y′)2x2− 4ŷ(y′)2x2− 3ŷ2(y′)2x2

+ 2ŷy′′x2+ 4ŷ2y′′x2+ 2ŷ3y′′x2+ 6ŷy′x3+ 10ŷ2y′x3+ 4ŷ3y′x3

+ 3(y′)2x3+ 10ŷ(y′)2x3 + 6ŷ2(y′)2x3− 6ŷy′′x3− 10ŷ2y′′x3

− 4ŷ3y′′x3− 2ŷy′x4− 2ŷ2y′x4− 3(y′)2x4− 3ŷ2(y′)2x4+ 6ŷy′′x4

+ 8ŷ2y′′x4+ 2ŷ3y′′x4+ (y′)2x5+ 2ŷ(y′)2x5− 2ŷy′′x5− 2ŷ2y′′x5

whereµ̂ = ± k1
2n and ŷ = y− 1. Substitutingŷ = a1x

k1
n , the lowest order

term in the numerator̂N is automatically zero. Now, we want to eliminate
the next lowest order term. Observe that, now

O(x2y′′) = O(xy′) = O(ŷ) = O
(

x
k1
n

)
.
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For the sake of definitness, suppose1
2 < µ ≤ 1, i.e.µ̂ = k1

2n <
1
2 (the case

µ̂ = − k1
2n is analogous). The next lowest order terms in the numeratorN̂

are

−16µ̂2 ŷ3+ 4xŷ2y′ − 4x2ŷ(y′)2+ 4x2 ŷ2y′′

+ xŷ2+ 8xµ̂2 ŷ2− 6x2ŷy′ + 3x3(y′)2− 6x3ŷy′′.

To eliminate them, we substitutey = 1+ a1x
k1
n + a1y

k2
n , for somek2 > k1.

The above terms give

−4a3
1

(k1

n

)2
x3k1

n +O
(

x1+2k1
n

)
that is zero if and only ofa1 = 0. So we obtain the forbidden solution
y(x) ≡ 1. So,k0 can not be zero, andy(x) satisfies (2.13) with 0< l =
k0
n ≤ 1, namely 0≤ σ0 < 1. QED

In the above lemma we have seen the expected asymptotic behaviour of
the algebraic solutions. We now state the main result of this section, which
is more general, namely it holds also for non algebraic solutions.

Theorem 2.2. For any pair of values(a0, σ0), 0 ≤ σ0 < 1, there exists
a unique branch of the solution of PVIµ, for a fixedµ, with the asymptotic
behaviour

y(x) = a0x1−σ0(1+ xε f(x)) as x→ 0, (2.15)

for someε > 0 and f(x) smooth function such thatlimx→0 f(x) = const.
In order that x1−σ0 is well defined, we have to make some cut in the

complex plane. From now on, we cut along the lineargx = ϕ for someϕ.

Remark 2.2. Theorem 2.2 can be proved also for complex values of the
indexσ0, provided that 0≤ Reσ0 < 1. For algebraic solutions the indexσ0
must be a rational number. Because of this, we consider only real indices.

2.1.2. Proof of the existence.First of all we state the existence of solutions
of the Schlesinger equations with a particular asymptotic behaviour. The
following result will play an important role also in Sect. 2.3.

Lemma 2.2 (Sato-Miwa-Jimbo). Given three constant matricesA0
i , i =

0,1, x with zero eigenvalues such thatΛ = A0
0 + A0

x has eigenvalues±σ
2 ,

0 ≤ σ < 1, and A0
1 = −Λ − A∞, in any sector ofC containing none of

the branch cuts, and sufficiently close to0, there exists a solution of the
Schlesinger equations that satisfy∣∣A1(x)− A0

1

∣∣ ≤ K |x|1−σ ′ ∣∣x−Λ(A1(x)− A0
1)x

Λ
∣∣ ≤ K |x|1−σ ′ (2.16)∣∣x−Λ A0(x)x

Λ − A0
0

∣∣ ≤ K |x|1−σ ′ ∣∣x−Λ Ax(x)x
Λ − A0

x

∣∣ ≤ K |x|1−σ ′,
(2.17)

whereK is some positive constant and1> σ ′ > σ .
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We want to show that it is possible to chooseA0,1,x andΛ such that the
corresponding solutiony(x) of the Painlev́e VI equation obtained via (2.7)
has the asymptotic behaviour (2.15). Let us consider an arbitrary constant
matrix Λ with eigenvalues±σ

2 ; let T be the diagonalising matrix ofΛ,
namely

Λ = T

(
σ
2 0
0 −σ

2

)
T−1.

Now, we chooseA0
1 = −A∞−Λ andA0

0,x such thatA0
0+ A0

x = Λ, namely

A0
0 =

1

2
Λ+ F, A0

x =
1

2
Λ− F

for some constant matrixF. Then:

T−1A0
0T =

(
σ
4 0
0 −σ

4

)
+ E, T−1A0

xT =
(
σ
4 0
0 −σ

4

)
− E,

where we can chooseE =
(

0 bσ
4−σ

4b 0

)
, for some non-zero constantb. With

this choice ofE, A0 and Ax have zero eigenvalues. Using Lemma 2.2, we
obtain that, asx→ 0:

A0,x → T

(
x
σ
2 0

0 x
−σ
2

)[(
σ
4 0
0 −σ

4

)
±
(

0 bσ
4−σ

4b 0

)](
x
−σ
2 0

0 x
σ
2

)
T−1,

and

A1→−A∞ −Λ.

Substituting such asymptotic behaviors in the relation (2.7), taking
T12, T11 6= 0 we obtain:

y(x) ∼ −T12x1−σ

4bT11
; (2.18)

we are now free to choose the arbitrary constantsb, T11, T12, σ in such
a way that− T12

4bT11
= a0, σ = σ0, for any fixeda0 andσ0.

Remark 2.3. Other existence results forσ ∈ C\{]−∞,0] ∪ [1,+∞[} can
be found in [IKSY] and [S1], [S2], [S3]. For indices with Reσ 6∈ [0,1], the
asymptotics obtained in these papers are valid in more complicated domains
near 0.
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2.1.3. Proof of the uniqueness.Now we prove that the solutiony(x),
x ∈ B(0, r), of Painlev́e VI equation such that it satisfies (2.15) for some
given constantsa0 andσ0 ∈ [0,1), is uniquely determined bya0 andσ0.
HereB(0, r) = {x∣∣|x| ≤ r, argx 6= ϕ, x 6= 0

}
.

The proof is based on the fact that Painlevé VI is equivalent to the
following reduced Schlesinger equations (1.17):

q′ = (q− 1)q+ 2p(q− 1)q(q− x)

(x− 1)x
,

p′ = −p2(x− 2q− 2xq+ 3q2)− p(2q− 1)− (1− µ)µ
(x− 1)x

,

where:

q = y, p= x(x − 1)y′ − y(y− 1)

2(y− x)y(y− 1)
, (2.19)

and the prime means the derivatived
dx We shall prove the local uniqueness

of the solutions of the Hamiltonian system with the following asymptotic
behaviour

q(x) ∼ axl + xl+ε f(x) p(x) ∼ l − 1

2a

1

xl
+ xεg(x)

xl
(2.20)

where l = 1− σ0, a = a0, ε > 0 and f(x) and g(x) are some smooth
functions inB(0, r) which tend to zero asx→ 0.

This is equivalent to show the theorem. In fact, from the uniqueness of
q it follows trivially the uniqueness ofy. The following lemma holds true:

Lemma 2.3. The estimates (2.20) on the asymptotic behaviour of
(q(x), p(x)) are a consequence of (2.15).

Proof. Sinceq = y, the assertion ony is obvious due to the hypothesis
(2.15). Concerningp, we use its definition

p= x(x− 1)y′ − y(y− 1)

2(y− x)y(y− 1)

and by a straightforward computation we show (2.20) forp. QED

We now distinguish two cases: 0< l < 1, andl = 1. Let us consider
the former case; it is convenient to introduce the new variables(q̃, p̃)

q̃ = y

xl
p̃= xl p;

which have a similar asymptotic behaviour

q̃(x) = a+ xε f(x) p̃(x) = l − 1

2a
+ xεg(x), (2.21)
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and the equations of the motion become

q̃′ = fq( p̃, q̃, x, x
l ),

p̃′ = f p( p̃, q̃, x, x
l ), (2.22)

with

fq = −q̃(l − 1− 2p̃q̃)

x
− q̃(1+ 2p̃q̃)

x1−l

+ q̃(1+ 4p̃q̃)− 2x−l p̃q̃− xl q̃2(1+ 2p̃q̃)

1− x
,

and

f p = p̃(l − 1− 2p̃q̃)

x
+ µ− µ

2+ 2p̃q̃+ 3p̃2q̃2

x1−l

+
p̃2

xl − p̃(1+ 4p̃q̃)+ xl(µ− µ2+ 2p̃q̃+ 3p̃2q̃2)

1− x
.

We want to prove the uniqueness of the solution(q̃, p̃) of (2.22), satisfying
(2.21) forx ∈ B(0, r), in the ball|| p̃− l−1

2a ||, ||q̃−a|| ≤ Cr , for a constant
Cr vanishing when the radiusr → 0. Here|| f || = supB(0,r) | f(x)|. Let
us suppose that there are two solutions(q̃1, p̃1) and(q̃2, p̃2) of the system

(2.22), satisfying (2.21). Then, if we defineX =
(

q̃1− q̃2
p̃1 − p̃2

)
, we obtain, as

a consequence of (2.21), that the following limits exist

lim
|x|→0, arg(x)=ϑ

X(i)(x)

|x|ε = 0, i = 1, 2, (2.23)

for some 0< ε, X(i) being the i-th component ofX. Moreover,X satisfies
the following

X′ =
 [1−l+2p̃1(q̃1+q̃2)](q̃1−q̃2)+2q̃2

2( p̃1− p̃2)

x + ∆Q1
x1−l + ∆Q2

xl +∆Q3

[l−1−2q̃2( p̃1+ p̃2)]( p̃1− p̃2)−2p̃2
1(q̃1−q̃2)

x + ∆P1
x1−l + ∆P2

xl +∆P3

 ,
where

∆Qi = Qi (q̃1, p̃1, x)− Qi (q̃2, p̃2, x), and
∆Pi = Pi (q̃1, p̃1, x)− Pi (q̃2, p̃2, x),

Q1 = q̃(1+ 2p̃q̃), Q2 = −2p̃q̃, Q3 = q̃(1+4p̃q̃)−2x1−l p̃q̃−xl q̃2(1+2p̃q̃)
1−x , P1 =

µ− µ2+ 2p̃q̃+ 3p̃2q̃2, P2 = p̃2, P3 = p2x1−l− p̃(1+4p̃q̃)+xl (µ−µ2+2p̃q̃+3p̃2q̃2)

1−x .
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We want to prove that, under the hypothesis (2.23),X ≡ 0 (this is equiva-
lent to prove our theorem). Performing the constant linear transformation
X = T Z, where

T =
(

1 0
1−l
2a2

1
2a2

)
,

we obtain

Z′ =
 [1−l+2p̃1(q̃1+q̃2)](q̃1−q̃2)+2q̃2

2( p̃1− p̃2)

x + ∆Q1
x1−l + ∆Q2

xl +∆Q3

2a2G( p̃1, p̃2,q̃1,q̃2)
x + 2a2∆P1+(l−1)∆Q1

x1−l + 2a2∆P2+(l−1)∆Q2
xl + 2a2∆P3+ (l − 1)∆Q3


(2.24)

where

G( p̃1, p̃2, q̃1, q̃2) =[l − 1− 2q̃2( p̃1 + p̃2)]( p̃1 − p̃2)− 2p̃2
1(q̃1− q̃2)}

+ (l − 1){[1− l + 2p̃1(q̃1 + q̃2)](q̃1− q̃2)

+ 2q̃2
2( p̃1 − p̃2),

and, from (2.23):

lim
|x|→0, arg(x)=ϑ

Z(i)(x)

|x|ε = 0, i = 1, 2. (2.25)

In order to prove thatZ ≡ 0, we fix any direction in the complex plane
arg(x) = ϑ for some fixedϑ, and we consider the real variablet = |x|.
Then we define:

V(i)(t) := |Z(i)(x)|.
We want to prove that the assumptionV(i)(t0) 6= 0 for somet0 > 0 leads
to a contradiction. To this aim we prove a differential inequality for the
right derivativeD+V(i) of V(i)(t). Since D+V(i) ≤ |Z(i)′ |, to obtain such
a differential inequality it is enough to estimate from above the modulus of
the components of the right-hand-side of (2.24). To this aim we notice that
all the polynomialsQi , Pi have the form:

Qi =
3∑

k,n=0

ai
k,n p̃nq̃k, Pi =

3∑
k,n=0

bi
k,n p̃nq̃k,

with ak,n(x), bk,n(x) regular functionsx ∈ B(0, r). As a consequence, we
obtain, in the ball|| p̃− l−1

2a ||, ||q̃− a|| ≤ Cr , the estimates:

|∆Qi |, |∆Pi | ≤ ci
1|Z(1)| + ci

2|Z(2)| (2.26)
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for some positive constantsci
1, c

i
2. In fact

|∆Qi | =
∣∣∑

k,n

ak,n[q̃k
1( p̃

n
1 − p̃n

2)+ p̃n
2(q̃

k
1 − q̃k

2)]
∣∣

≤
 ∑

k=0,1,2

C(1)k
r (||ak,1|| + 2C(2)

r ||ak,2||)
 · | p̃1− p̃2|

+
 ∑

n=0,1,2,3

C(2)n
r (||a1,n|| + 2C(1)

r ||a2,n|| + 3C(1)2
r ||a3,n||)

 · |q̃1− q̃2|,

whereC(1)
r = Cr + 2|a| andC(2)

r = Cr + 1−l
|a| . We obtain (2.26) observing

that |q̃1 − q̃2|, | p̃1 − p̃2| are related to|Z(1)|, |Z(2)| by the constant linear
transformationT.

For the terms of orderO( 1
x) in (2.24) we have:

|[1− l + 2p̃1(q̃1+ q̃2)](q̃1 − q̃2)+ 2q̃2
2( p̃1 − p̃2)|

|x|
≤ | − (1− l)(q̃1− q̃2)+ 2a2( p̃1− p̃2)|

|x|
+ C(3)

r |q̃1 − q̃2|
|x1−ε| + C(4)

r | p̃1 − p̃2|
|x1−ε| , (2.27)

and

1

x
|2a2{[l − 1− 2q̃2( p̃1 + p̃2)]( p̃1 − p̃2)− 2p̃2

1(q̃1 − q̃2)}
+ (l − 1){[1− l + 2p̃1(q̃1+ q̃2)] · (q̃1 − q̃2)+ 2q̃2

2( p̃1 − p̃2)}|
≤ C(5)

r

|x1−ε| |q̃1 − q̃2| + C(6)
r

|x1−ε| | p̃1 − p̃2|, (2.28)

for some positive constantsC(3)
r , ...,C(6)

r . Let us prove (2.27):

|[1− l + 2p̃1(q̃1+ q̃2)](q̃1− q̃2)+ 2q̃2
2( p̃1− p̃2)|

|x|
≤ | − (1− l)(q̃1 − q̃2)+ 2a2( p̃1− p̃2)|

|x|
+
∣∣2a g1(x)+ l−1

a ( f1(x)+ f2(x))+ xεg1(x)( f1(x)+ f2(x))
∣∣

|x1−ε| |q̃1− q̃2|

+
∣∣2 f 2

2 (x)x
ε + 4a f2(x)

∣∣
|x1−ε| | p̃1− p̃2|

≤ | − (1− l)(q̃1 − q̃2)+ 2a2( p̃1− p̃2)|
|x| + C(3)r

|x1−ε| |q̃1− q̃2| + C(4)r

|x1−ε| | p̃1− p̃2|,
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for some positive constantsC(3)
r andC(4)

r . The proof of (2.28) is analogous.
From the estimates (2.26), (2.27), (2.28), we obtain:( |Z(1)′ |
|Z(2)′ |

)
≤
(

1

|x|
(

0 1
0 0

)
+ A1

|x1−l | +
A2

|xl | +
A3

|x1−ε| + A4

)( |Z(1)|
|Z(2)|

)
(2.29)

for some constant matricesA1, A2, A3 andA4 (Here we mean≤ component
by component). Finally, choosing̃l = max{1− ε,1− l, l}, we obtain from
(2.29): (

D+,tV(1)

D+,tV(2)

)
≤
(

1

t

(
0 1
0 0

)
+ Ã

tl̃
+ A4

)(
V(1)

V(2)

)
, (2.30)

where Ã= A1+ A2+ A3 andD+,t is the right derivative w.r.t.t.
We perform the following change of variablet1−l̃ = z. The differential

inequality forV in the new variablez is

D+,zV ≤
(

1

z

(
0 1
0 0

)
1

1− l̃
+ A(z)

)
V, with A(z) = Ã

1− l̃
+ A4

1− l̃
z

l̃
1−l̃ ,

whereD+,z is the right derivative w.r.t.z. To show thatZ = 0 we use the
following:

Comparison Theorem. Let us consider the following systems ofn first
order ODEs in the real variablez ∈ (0,a], for somea> 0:

D+V(i) ≤ F(i)(z,V), V(i)(x0) = V(i)
0 , i = 1, ..,n (2.31)

dU(i)

dz
= F(i)(z,U), U(i)(x0) = U(i)

0 , i = 1, ..,n (2.32)

whereF(i)(z,U) are continuous functions inz ∈ (0,a], ||U − U0|| < b,
non-decreasing inU(i). If V(i)

0 ≥ U(i)
0 , for i = 1, ..n, thenV(i)(z) ≥ U(i)(z),

for every0< z≤ z0, i = 1, ..n.

For the proof see [Lak].
We now apply Comparison Theorem to show that the assumption

Z(t0) 6= 0 for somet0 > 0 leads to a contradiction. Observe that by
definition l̃ ≥ 1, thenV satisfies (2.31) withV(i)

0 > 0 andF linear in V
given by:

F(z,V) =
(

1

z

(
0 1
0 0

)
1

1− l̃
+ Ã

1− l̃
+ A4

1− l̃
z

)
V. (2.33)

By Comparison Theorem, for any solution of (2.32) withU(i)(z0) = V(i)
0 ,

and F(z,U) of the form (2.33), we haveV(i)(z) ≥ U(i)(z), for every 0<
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z ≤ z0, i = 1,2. Moreover by standard arguments it is possible to takeU
in such a way thatU(i)(z) ≥ 0 and to continue the functionsU, V to z= 0
preserving the relation:

0≤ U(i)(z) ≤ V(i)(z).

Thus, by (2.25) we obtain thatU must satisfy

lim
z→0

U(i)(z)

z
ε

(1−l̃)

= 0, i = 1, 2. (2.34)

Now, we use the following lemma:

Lemma 2.4. The only solutionU of (2.32) withF(z,U) given by (2.33)
satisfying (2.34) isU ≡ 0,

Proof. Any non-zero solution of (2.32) withF(z,U) of the form (2.33) is
given by

U(z) = T(z)z

0 1
1−l̃

0 0


(2.35)

whereT(z) is a homomorphic matrix function,T(z) =
(

1 0
0 1

)
+ O(z).

Now it is obvious that (2.35) does not satisfy (2.34). ThusU ≡ 0, as we
wanted to prove. QED

Using the above lemma, we obtainU(i)
0 = V(i)

0 = 0, that contradicts the
assumptionV(i)

0 6= 0. This concludes the proof of the uniqueness in the case
0< l < 1.

Let us briefly explain how to prove the uniqueness in the casel = 1.
Since the procedure is essentially the same as before, we shall skip the
details. First of all we introduce the new variables(q̃, p̃):

q̃(x) = q(x)

x
∼ a+ xε f(x) p̃(x) = p(x)− µ(1− µ) ∼ xεg(x)

which satisfy the equations of the motion:

q̃′ = Q1(q̃, p̃)+ 1

x− 1
Q2(q̃, p̃)

p̃′ = − p̃

x
+ P1(q̃, p̃)+ 1

x− 1
P2(q̃, p̃)

where Q1(q̃, p̃) = 2(µ − µ2 + p̃)(q̃ − 1)q̃2, Q2(q̃, p̃) = q̃(q̃ − 1)[1+
(2µ(1−µ)+2p̃)(q̃−1)], P1(q̃, p̃) = (µ−µ2+ p̃)2(2−3q̃)q̃−µ(1−µ),
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andP2(q̃, p̃) = p̃+ (µ−µ2+ p̃)2(4q̃−3q̃2−1)−2(µ−µ2+ p̃)q̃. Then,
if we defineX as before we obtain

X ′ =
(

∆Q1+ ∆Q2
x−1

− p̃1− p̃2
x +∆P1+ ∆P2

x−1

)
that gives rise to the differential inequality:

|X ′| ≤
((

0 0
0 1

)
1

|x| + A1+ A2

|x− 1|
)
|X|

for some constant matricesA1 andA2. ObviouslyX satisfies (2.23) with any

0< ε < 1. Again we apply Comparison Theorem toV :=
( |X(1)|
|X(2)|

)
along

any fixed direction on the complex plane. We takex such thatarg(x) = ϑ
for some fixedϑ and definet = |x|. V satisfies (2.31) with:

F(t,V) =
(

1

t

(
0 0
0 1

)
+ A1+ A2

t − 1

)
V.

If V(i)
0 > 0 then, thanks to Comparison Theorem, it is possible to take

a solutionU of (2.32), withU(i)
0 = V(i)

0 , i = 1,2, such that

0≤ U(i)(t) ≤ V(i)(t),

thusU(i) satisfies (2.34). The general solution of (2.32) is

U = U0

((
1 0
0 t

)
+ O(t2)

)
that satisfies (2.34) iffU0 = 0, namelyU ≡ 0 that is absurd. This concludes
the proof of the uniqueness. QED

2.1.4. Asymptotic behaviour of the solutions of the Schlesinger equa-
tions. An important corollary to Theorem 2.2 is the following:

Theorem 2.3. The solutions of the Schlesinger equationsA0,1,x(x) corres-
ponding to the solution of Painlevé VI equation with asymptotic behaviour
(2.15) must satisfy the relations (2.16) and (2.17).

Proof. Let us consider the solutiony(x) of Painlev́e VI equation with
asymptotic behaviour (2.15) and let us suppose that the corresponding so-
lution of the Schlesinger equationsA0,1,x(x) does not satisfy the relations
(2.16) and (2.17). As shown in the lemma 2.2, for any constant matri-
ces A0

0,1,x, Λ such thatΛ = A0
0 + A0

x has eigenvalues±σ
2 , σ ∈ [0,1[,

and A0
1 = −Λ − A∞, there exists a solution̂A0,1,x(x) of the Schlesinger

equations that satisfy the relations (2.16) and (2.17). Now, as shown in
Sect. 2.2, we can chooseA0

0,1,x in order that the corresponding solution
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ŷ(x) of Painlev́e VI equation has exactly the asymptotic behaviour (2.15).
Due to the uniqueness proved in Theorem 2.2, we have thaty(x) = ŷ(x),
namely A0,1,x = Â0,1,x up to conjugation by a constant diagonal matrix.
This contradiction proves the theorem. QED

2.1.5. Asymptotic behaviour of the PVIµ solution near 1 and∞. We
now state the analogues of Theorem 2.2 for the local asymptotic behaviour
of the solutions of (PVI) near the singular pointsx = 1,∞:

Theorem 2.2’. For any pair of values(a1, σ1), σ1 ∈ [0,1[, there exists
a unique branch of the solution of (PVI) with the asymptotic behaviour

y(x) ∼ 1− a1(1− x)1−σ1 (1+O ((1− x)ε)) as x→ 1, (2.36)

for someε > 0.

The proof of this theorem is analogous to the proof of Theorem 1, namely
one can state the analogous of the Lemma 2.2 replacingx 7→ 1− x, and
then choose suitablyΛ, A0

0,1,x. The uniqueness is proved in the same way
as the casex 7→ 0.

Theorem 2.2”. For any pair of values(a∞, σ∞), σ∞ ∈ [0,1[, there exists
a unique branch of the solution of (PVI) with the asymptotic behaviour

y(x) ∼ a∞xσ∞
(
1+O

(
(x−ε

))
as x→∞, (2.37)

for someε > 0.

The proof of uniqueness is analogous to the one of Theorem 2.2. The proof
of existence follows the same strategy as the one of Theorem 2.2, but with
a different formulation of the Lemma 2.2:

Lemma 2.2’. Given some constant matricesA0
i , i = 0,1, x with zero

eigenvalues such thatΛ = A0
0+ A0

t has eigenvalues±σ
2 , 0≤ σ < 1, in any

sector ofC containing none of the branch cuts, and sufficiently close to∞,
there exists a solution of the Schlesinger equations satisfying:∣∣xA∞ Ax(x)x

−A∞ − A0
1

∣∣ ≤ K |x|σ ′−1∣∣xΛ
(
xA∞Ax(x)x

−A∞ − A0
1

)
x−Λ

∣∣ ≤ K |x|σ ′−1 (2.38)∣∣xΛxA∞ A0,1(x)x
−A∞x−Λ − A0

x

∣∣ ≤ K |x|σ ′−1, (2.39)

whereK is some positive constant and1> σ ′ > σ .

Proof. Let us consider the Schlesinger equations (2.3) and perform the
change of variablex = 1

x̂ . Moreover we put:

Ai (x) := x−A∞ Âi (x)x
A∞;
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Then we can apply Lemma 2.2 to the system:

d

dx̂
Â0(x̂) = −[Â0, Â1]

x̂
,

d

dx̂
Âx(x̂) = −[Âx, Â1]

x̂− 1
,

d

dx̂
Â1(x̂) = [Â0, Â1]

x̂
+ [Âx, Â1]

x̂− 1
,

and obtain the estimates (2.38) and (2.39). QED

2.2. The local asymptotic behaviour and the monodromy group of the
Fuchsian system

In this section we relate the local asymptotic behaviour of the solutiony(x)
of PVIµ to the monodromy data of the associated Fuchsian system (2.2). We
essentially follow the same strategy of [Jim], even if we have to introduce
some more tricks due to the fact that our matricesA0

0,1,x have eigenvalues
all equal to zero. The main result of this section is the following:

Theorem 2.4. For the solutiony(x) of PVIµ, such thaty(x) ∼ a0x1−σ0(1+
O(xε)), 0< σ0 < 1, the monodromy matrices of the Fuchsian system (2.2)
have the form

M1 = −i

sinπϑ∞
·

·
(

cosπσ0− e−iπϑ∞ −2e−iπϑ∞ sin π(ϑ∞+σ0)

2 sin π(ϑ∞−σ0)

2
2eiπϑ∞ sin π(ϑ∞+σ0)

2 sin π(ϑ∞−σ0)

2 − cosπσ0+ eiπϑ∞

)
(2.40)

CMxC
−1 = −i

sinπσ0

(
eiπσ0 − 1 2seiπσ0 sin2 πσ0

2−2
se−iπσ0 sin2 πσ0

2 1− e−iπσ0

)
(2.41)

CM0C
−1 = −i

sinπσ0

(
eiπσ0 − 1 −2ssin2 πσ0

2
2
s sin2 πσ0

2 1− e−iπσ0

)
(2.42)

whereϑ∞ = 2µ and:

s

r
= 1

4a0

2µ+ σ0

2µ− σ0

Γ2(1+ σ0)Γ
2(1− σ0

2 )Γ(1+ µ− σ0
2 )Γ(1− µ− σ0

2 )

Γ2(1− σ0)Γ2(1+ σ0
2 )Γ(1+ µ+ σ0

2 )Γ(1− µ+ σ0
2 )

(2.43)

with an arbitrary complex numberr 6= 0 and the matrixC is:

C =
(

sin π(ϑ∞−σ0)

2 r sin π(ϑ∞+σ0)

2
1
r sin π(ϑ∞+σ0)

2 sin π(ϑ∞−σ0)

2

)
. (2.44)
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In the case whereσ0 = 0 the monodromy matrices of the Fuchsian system
(2.2) have the form

M1 = 1

cosπϑ∞2

(
e−iπ ϑ∞2 iπe−iπ ϑ∞2

− i
π

sin2 πϑ∞
2 eiπ ϑ∞2 eiπ ϑ∞2

)
, (2.45)

M0 =
(

1− is tanπϑ∞2 −isπ exp(iπ ϑ∞2 ) secπϑ∞2
i
π

ssin2 πϑ∞
2 exp(−iπ ϑ∞2 ) secπϑ∞2 1+ is tanπϑ∞2

)
,

(2.46)

Mx =
(

1− i(1− s) tanπϑ∞2 −i(1− s)π exp(iπ ϑ∞2 ) secπϑ∞2
i
π
(1− s) sin2 πϑ∞

2 exp(−iπ ϑ∞2 ) secπϑ∞2 1+ i(1− s) tanπϑ∞2

)
,

(2.47)

wheres= a0.

The main idea to prove this theorem is that, due to Theorem 2.3, the
solutions of the Schlesinger equations corresponding to the PVIµ solution
with the asymptotic behaviour (2.15) must satisfy the relations (2.16) and
(2.17). Using these relations, we obtain the monodromy matrices of the
Fuchsian system (2.2) via the ones of two simpler systems, given in the
following two lemmas (see [SMJ] and [Jim]):

Lemma 2.5. Under the hypotheses (2.16), (2.17), the limit of the funda-
mental solution of the system (2.2), normalized at infinity,limx→0 Y∞(z, x)
= Ŷ(z), exists, forz ∈ C\{B0 ∪ Bx ∪ B1 ∪ B∞}, B0, Bx, B1 and B∞
being balls around0, x, 1 and∞ respectively. This limitŶ satisfies the
differential equation:

d

dz
Ŷ =

(
A0

1

z− 1
+ Λ

z

)
Ŷ; (Σ̂)

and it has the following behaviour near the singularities of(Σ̂)

Ŷ(z) =
(

1+O
(1

z

))
z−A∞ z→∞

= (1+O(z)) zΛĈ0 z→ 0 (2.48)

= Ĝ1 (1+O(z− 1)) (z− 1)J1Ĉ1 z→ 1

where J1 is the Jordan normal forms ofA0
1, Ĝ1J1Ĝ−1

1 = A0
1, A∞ =(

µ 0
0 −µ

)
. HereĈ0, Ĉ1 are the connection matrices of the system(Σ̂).
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Remark 2.4. Observe that the matrix̂C0 is uniquely determined by the
conditions (2.48).

Lemma 2.6. Under the hypotheses (2.16), (2.17), the limit of the funda-
mental solution of the system (2.2), normalized around∞,
limx→0 x−ΛY(xz, x) = Ỹ(z)Ĉ0 exists forz ∈ C\{B0 ∪ Bx ∪ B1 ∪ B∞}.
It satisfies the system

d

dz
Ỹ =

(
A0

x

z− 1
+ A0

0

z

)
Ỹ; (Σ̃)

and it has the following behaviour near the singularities of(Σ̃)

Ỹ(z) =
(

1+O
(1

z

))
zΛ z→∞

= G̃0 (1+O(z)) zJ0C̃0 z→ 0

= G̃1 (1+O(z− 1)) (z− 1)J1C̃1 z→ 1

where J0,1 are the Jordan normal forms ofA0
0,x, G̃0,1 are such that

G̃0,1J0,1G̃−1
0,1 = A0

0,x. We denoteC̃0,1 the connection matrices of the system
(Σ̃).

As we have seen above, the matrices of the two systems have the fol-
lowing form:

A0
0 =

1

2
Λ+ F, A0

x =
1

2
Λ− F, A0

1 = −A∞ −Λ,

for some constant matrixF, and forΛ andT such that

Λ = T

(
σ
2 0
0 −σ

2

)
T−1. (2.49)

Using the relations (2.6), we have that

F = T

(
0 bσ

4−σ
4b 0

)
T−1, (2.50)

for some parameterb. As a consequence the systems(Σ̂) and (Σ̃) are
determined, up to diagonal conjugation, by the four entries of the matrixT
and byb.

Now, we explain how to compute the monodromy matrices of the original
system (2.2) knowing the ones of the systems(Σ̂) and(Σ̃). Later we will
show how to compute the matricesA0

0,x,1 and the monodromy matrices of

(Σ̂) and(Σ̃).
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Lemma 2.7. Let M̂0, M̂1, M̂∞ = M∞ be the monodromy matrices of the
system(Σ̂) with respect to the fundamental matrix̂Y and the basiŝγ0 =
γ0γx, γ1 in π1

(
C\{0,1,∞}

)
. Let M̃0, M̃1, M̃∞ = exp(−2πiΛ) be the

monodromy matrices of the system(Σ̃) with respect to the fundamental
matrix Ỹ and the basis̃γ0, γ̃1 = γx. Then the monodromy matrices of the
original system (2.2) are given by the formulae:

M0 = Ĉ−1
0 M̃0Ĉ0, Mx = Ĉ−1

0 M̃1Ĉ0, M1 = M̂1, (2.51)

whereĈ0 is defined by (2.48).

Proof. By the definition ofŶ, the system(Σ̂) is obtained by merging of
the singularities 0 andx of the system (2.2). We can choose the loopγ̂0 to
be homotopic toγ0γx, with γ̂0 not crossing a ballB0 (see Fig. 7).

xo 1

γ

γ γ
0 x

1

Fig. 7. The pathsγx andγ0 merge together asx→ 0. The homotopy class ofγ0γx remains
unchanged

As a consequence we obtain a relation between the monodromy matrices
of the system (2.2) and the ones of the system(Σ̂)

M̂∞ =M∞,

M̂1 =M1,

M̂0 =MxM0.

Similarly, by the definition ofỸ the system(Σ̃) is obtained by the merging
(see Fig. 8) of the singularitiesz′ = 1

x andz′ = ∞ of the system forY′(z′):

d

dz′
Y′ =

(
A0

z′
+ A1

z′ − 1
x

+ Ax

z′ − 1

)
Y′.

So, in the basis̃Y, the monodromy matrices of(Σ̃) have the following form:
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0 1
∼γ

1/x

γ
1

Fig. 8. The pathsγ1 andγ∞ merge together asx→ 0. The homotopy class of̃γ ≡ γ1γ∞
coincides with the one of(γ0γx)

−1

M̃∞ = Ĉ0M∞M1Ĉ−1
0

M̃1 = Ĉ0MxĈ
−1
0 ,

M̃0 = Ĉ0M0Ĉ−1
0 .

The lemma is proved. QED

Now we want to compute the monodromy matricesM̂i andM̃i and the
connection matrixĈ0. To this aim we have to solve the systems(Σ̂) and
(Σ̃), namely we have to determineT andb. For σ0 6= 0, this can be done
introducing a suitable gauge transformation ofŶ andỸ such that the systems
(Σ̂) and(Σ̃) are equivalent to a Gauss equation. The caseσ0 = 0 will be
treated later.

2.2.1. Reduction to the Gauss equation.First of all let us notice that both
the systems(Σ̂) and(Σ̃) have similar form. We want to reduce them, via
a suitable gauge transformation and a appropriate choice of the parameters
α, β, γ , to systems of the form:

d

dz
Y(z, α, β, γ) =

(
B0

z
+ B1

z− 1

)
Y(z, α, β, γ) (2.52)

where B0, B1 are some constant matrices with eigenvalues 1− γ, 0 and

γ − α− β − 1, 0 respectively andB0+ B1 = −
(
α 0
0 β

)
.

Lemma 2.8. For α 6= β, the system (2.52) is uniquely determined, up to
a diagonal conjugation

B0→ T−1B0T, B1→ T−1B1T, with T =
(

1 0
0 r

)
, r 6= 0. (2.53)
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The entriesb0
ij andb1

ij of the matricesB0 and B1 respectively, are given by
the formulae

b0
11 =

α(γ − 1− β)
β − α , b0

22 =
−β(γ − 1− α)

β − α , b1
11 =
−α(γ − 1− α)

β − α ,

(2.54)

b1
22 =

β(γ − 1− β)
β − α , b0

12b
0
21 = b1

12b
1
21 =
−αβ(γ − 1− β)(γ − 1− α)

(β − α)2 .

(2.55)

The system (2.52) can be solved using the Gauss hypergeometric func-
tion. So, we can compute its connection matrices via the Kummer relations
(see [Luke]) of the hypergeometric functions.

Lemma 2.9. The solutions of (2.52) have the formY =
(

y1
y2

)
, with y1

being an arbitrary solution of the following Gauss equation:

z(1− z)y′′1 + [c− (a+ b+ 1)z]y′1− a by1 = 0 (2.56)

wherea= α, b= β + 1, c= γ and y2 given by:

y2(z) = r−1 β − α
β(γ − β − 1)

{
z(z− 1)

d

dz
y1(z) (2.57)

+
[
αz+ α(γ − β − 1)

β − α
]

y1(z)

}
wherer = − (β−α)b0

12
β(γ−β−1).

Proof. After the gauge transformation:

Y(z, α, β, γ) = zb0
11(1− z)b

1
11U(z, α, β, γ),

one obtains from (2.52) the following Riemann equation foru1

u′′1 +
[

1+ b0
11− b0

22

z
+ 1+ b1

11− b1
22

z− 1

]
u′1−

b0
11b

0
22

z2(z− 1)2
u1 = 0.

Now u1 is related with the solutionyG of the Gauss equation (2.56), with
a = −b0

11− b1
11, b = 1− b0

22− b1
22, c = 1− b0

11 − b0
22, via the relation

u1 = z−b0
11(1− z)−b1

11yG. As a consequence, thanks to (2.54), (2.55), we
obtain thaty1 = yG anda= α+ 1, b= β, c= γ . y2 it is given by:(

b0
12

z
+ b1

12

z− 1

)
y2 = y′1−

(
b0

11

z
+ b1

11

z− 1

)
y1

that gives the equation (2.57). QED
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To reduce the systems(Σ̂) and (Σ̃) to the system (2.52) we need to
diagonalize the matricesA0

1+Λ = −A∞ andΛ respectively and to perform
a suitable gauge transform. We need to introduce some notations. Denote
Cα,β,γ

0,1 the connection matrices of the system (2.52). The matricesJ0,1 are

the Jordan normal forms ofB0,1 and the matricesGα,β,γ

0,1 are such that

Gα,β,γ

0,1 J0,1

(
Gα,β,γ

0,1

)−1 = B0,1. Then for the asymptotic behaviour of an

appropriate fundamental matrixY(z, α, β, γ) of the system (2.52) we have

Y(z, α, β, γ) =
(

1+O
(1

z

))
z
−
(
α 0
0 β

)
z→∞

= Gα,β,γ

0 (1+O(z)) zJ0Cα,β,γ

0 z→ 0

= Gα,β,γ

1 (1+O(z− 1)) (z− 1)J1Cα,β,γ

1 z→ 1.

Some further remarks on the notations: from now on all the quantities with
the hat are referred to the system(Σ̂) and all the quantities with the tilde
to the system(Σ̃). When we don’t put any hat or tilde, the formulae are
true for both the systems. In other words, they hold true for the generic
system (2.52); substituting all the quantities with the corresponding hat or
tilde ones, the formulae hold true for the systems(Σ̂) or (Σ̃) respectively.

We now choose the values ofα, β, γ in relation with the eigenvalues of
the matrices of the systems(Σ̂) and(Σ̃). Namely, for(Σ̂) we take

α̂ = ϑ∞ − σ0

2
, β̂ = −ϑ∞ + σ0

2
, γ̂ = 1− σ0, (2.58)

and for(Σ̃) we take:

α̃ = −σ0

2
, β̃ = σ0

2
, γ̃ = 1. (2.59)

With this choice of the values ofα, β, γ , one has:

Ĵ0 =
(

1− γ 0
0 0

)
, J̃0 =

(
0 1
0 0

)
, Ĵ1 = J̃1 =

(
0 1
0 0

)
.

Now we can reduce the systems(Σ̂) and(Σ̃) to the system (2.52) via the
following gauge transformations:

Ŷ = z
α̂+β̂

2 Y(z, α̂, β̂, γ̂ ), Ỹ = Gα̂,β̂,γ̂

0 Y(z, α̃, β̃, γ̃ ), (2.60)

whereGα̂,β̂,γ̂

0 is such that

Λ− α̂+ β̂
2

Id = Gα̂,β̂,γ̂

0

(−α̃ 0
0 −β̃

)
(Gα̂,β̂,γ̂

0 )−1.
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As a consequence the connection matrices of (2.52) are related to the ones
of (Σ̂) and(Σ̃) by the following formulae:

Ĝ1 = Gα̂,β̂,γ̂

1 , Ĉ1 = Cα̂,β̂,γ̂

1 , Ĉ0 = Gα̂,β̂,γ̂

0 Cα̂,β̂,γ̂

0 (2.61)

G̃0,1 = Gα̂,β̂,γ̂

0 Gα̃,β̃,γ̃

0,1 , C̃0,1 = Cα̃,β̃,γ̃

0,1

(
Gα̂,β̂,γ̂

0

)−1
. (2.62)

2.2.2. Local behaviour of the solution of (2.52).The solutions of (2.56)
around the singular points 0,1,∞ are known and one can computey2
by (2.57). In this way one obtains the local behaviour of the fundamental
solutionY for z→ 0,1,∞, and one can compute the connection matrices
by the Kummer relations (which are the connection formulae for the hyper-
geometric equation). The difference w.r.t. the situation of [Jim] is that in
our case the Gauss equation is degenerate, namely:

ĉ− â− b̂= 0, c̃− ã− b̃= 0, c̃= 1.

So, we have to consider the logarithmic solutions of the Gauss equation
aroundz = 1 for both the systems(Σ̂) and (Σ̃), and aroundz = 0 for
(Σ̃); moreover, we shall use the extension of the Kummer relations to this
logarithmic case (see [Nor]).

In what follows we denoteF(a,b, c, z) the hypergeometric function and
with g(a,b, z) its logarithmic counterpart forc= 1, namely:

F(a,b, c, z) =
∞∑

k=0

(a)k(b)k
k!(c)k zk,

g(a,b, z) =
∞∑

k=0

(a)k(b)k
k! zk[ln z+ ψ(a+ k)+ ψ(b+ k)− 2ψ(k+ 1)],

with the branch-cut|arg(z)| < π (see Fig. 9). Hereψ is the logarithmic
derivative of the gamma function, and the expressions of the parameters
a,b, c via α, β, γ are given in the Lemma 2.9.

Re(z)

Im(z)

Fig. 9. The branch cut|arg(z)| < π
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Fundamental solution near∞. Sincea− b 6= 0, the solutions of (2.56)
around∞ are not logarithmic. We obtain

Y∞ =
 z−αF

(
α,−β, α − β, 1

z

) −αβ z−β−1r
(β−α)(β−α+1) F

(
β + 1,1− α, β − α+ 2, 1

z

)
−αβ z−α−1

r(β−α)(β−α−1) F
(
α+ 1,1− β, α − β + 2, 1

z

)
z−βF

(
β, α, β − α, 1

z

)


Y∞ ∼
(

1+O
(1

z

))
z
−
(
α 0
0 β

)
, z→∞.

The monodromy around∞ is

(
exp(2πiα) 0

0 exp(2πiβ)

)
.

Fundamental solution near1. Sincec − a − b = 0, the solutions are
logarithmic:

Y1 =
(

F(α, β + 1,1,1− z) r g(α, β + 1,1,1− z)
1
r F(α+ 1, β,1,1− z) g(α+ 1, β,1,1− z)

)
.

For z→ 1

Y1 ∼ Gα,β

1 (1− z)

(
0 1
0 0

)
,

with

Gα,β

1 =
(

1 r [ψ(α)+ ψ(1+ β)− 2ψ(1)]
1
r ψ(1+ α)+ ψ(β)− 2ψ(1)

)
.

The monodromy around 1 is

(
1 2iπr
0 1

)
.

Fundamental solution near0. We have to distinguish the case(Σ̂), where
the solutions of (2.56) around 0 are not logarithmic, and the case(Σ̃), where
c= 1 and the solutions are logarithmic.

For (Σ̂) one has

Ŷ0 =
 − α̂

β̂−α̂z−α̂−β̂F(−β̂,1− α̂,1− α̂− β̂, z) r̂ β̂

β̂−α̂ F(α̂, β̂ + 1, α̂ + β̂ + 1, z)

− β̂

r̂ (β̂−α̂)z
−α̂−β̂F(1− β̂,−α̂,1− α̂ − β̂, z) α̂

β̂−α̂ F(α̂ + 1, β̂, α̂ + β̂ + 1, z)

 .

For z→ 0 it behaves like

Ŷ0 ∼ Gα̂,β̂

0 z

−α̂− β̂ 0
0 0


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where

Gα̂,β̂

0 =
1

β̂ − α̂

(
−α̂ r̂ β̂

− β̂

r̂ α̂

)
.

The monodromy around 0 is

(
exp(−2iπ(α̂+ β̂) 0

0 1

)
.

For (Σ̃) one has

Ỹ0 =
(

F(α̃,1− α̃,1, z) r̃ g(α̃,1− α̃,1, z)
−1

r̃ F(α̃+ 1,−α̃,1, z) −g(α̃+ 1,−α̃,1, z)

)
,

for z→ 0 it behaves like

Ỹ0 ∼ Gα̃
0 z

(
0 1
0 0

)

with

Gα̃
0 =

(
1 r̃ [ψ(1− α̃)+ ψ(α̃)− 2ψ(1)]
−1

r̃ −ψ(1+ α̃)− ψ(−α̃)+ 2ψ(1)

)
.

The monodromy around 0 is
(

1 2iπr̃
0 1

)
.

2.2.3. Connection formulae. In order to compute the connection matrices
we writeY∞ in the form:

Y∞ =
(

exp(−iπα)U(α, β + 1, z) −αβ exp(−iπ(β+1))r
(β−α)(β−α+1) U(β + 1, α, z)

−αβ exp(−iπ(α+1))
r(β−α)(β−α−1) U(α+ 1, β, z) exp(−iπβ)U(β, α+ 1, z)

)

whereU(a,b, z) := (z−1eiπ
)−a

F(a,1− b,1+ a− b, 1
z). For z such that

|arg(z)| < 2π, there are the following connection formulae:

U(a,b, z)
∣∣
z→1 =

−exp(iπa)Γ(1+ a− b)

Γ(a)Γ(1− b)

{[iπ + ψ(1− b)

− ψ(b)]F(a,b,1,1− z)+ g(a,b,1,1− z)
}
,

U(a,1− a, z)
∣∣
z→0 =

−Γ(2a)

Γ(a)2
{[−iπ + ψ(a)

− ψ(1− a)]F(a,1− a,1, z)+ g(a,1− a,1, z)
}
,
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U(a,b, z)
∣∣
z→0 =

Γ(1+ a− b)Γ(1− a− b)

Γ(1− b)2
F(a,b,a+ b, z)

+ Γ(1+ a− b)Γ(a+ b− 1)

Γ(a)2
·

· z1−a−bF(1− b,1− a,2− a− b, z).

Using these relations we obtain the analytic continuation ofY∞ around 0
and 1, and by the definition of the connection matrices

Y∞
∣∣
z→0,1 = Y0,1C

α,β,γ

0,1 ,

we obtain, by straightforward computations

Cα̂,β̂

0 =
 exp(iπβ̂)Γ(α̂+β̂)Γ(α̂−β̂+1)

Γ(α̂)Γ(1+α̂) −r̂ exp(−iπα̂)Γ(α̂+β̂)Γ(1−α̂+β̂)
Γ(β̂)Γ(1+β̂)

1
r̂

exp(−iπα̂)Γ(−α̂−β̂)Γ(α̂−β̂+1)
Γ(1−β̂)Γ(−β̂) −exp(−iπβ̂)Γ(−α̂−β̂)Γ(1−α̂+β̂)

Γ(−α̂)Γ(1−α̂)

 ,

Cα̂,β̂

1 =
− Γ(α̂−β̂)

Γ(α̂)Γ(−β̂) [iπ + π cot(πα̂)] − Γ(−α̂+β̂)
Γ(−α̂)Γ(β̂) [iπ + π cot(πβ̂)]

−1
r̂

Γ(α̂−β̂)
Γ(α̂)Γ(−β̂) − Γ(−α̂+β̂)

Γ(−α̂)Γ(β̂)

 ,
(2.63)

Cα̃0 =
(

Γ(2α̃)
Γ2(α̃)

exp(−iπα̃)[iπ + π cot(πα̃)] r̃ Γ(−2α̃)
Γ2(−α̃) exp(iπα̃)[π cot(πα̂)− iπ]

−1
r̃

Γ(2α̃)
Γ2(α̃)

exp(−iπα̃) Γ(−2α̃)
Γ2(−α̃) exp(iπα̃)

)
,

(2.64)

Cα̃
1 =

(
−Γ(2α̃)

Γ2(α̃)
[iπ − π cot(πα̃)] −r̃ Γ(−2α̃)

Γ2(−α̃) [π cot(πα̂)+ iπ]
−1

r̃
Γ(2α̃)
Γ2(α̃)

−Γ(−2α̃)
Γ2(−α̃)

)
.

Now we have to compute the monodromy matrices in the basisY∞. Using
the formulae (2.51), (2.61) and (2.62) we have

M1 =
(
Cα̂,β̂

1

)−1
(

1 2πi r̂
0 1

)
Cα̂,β̂

1 ,

M0,x =
(
Cα̂,β̂

0

)−1(
Cα̃

0,1

)−1
(

1 2πi r̃
0 1

)
Cα̃

0,1C
α̂,β̂

0 .

Now we put

r̂ = −exp[−iπ(α̂− β̂)]Γ(α̂ − β̂)Γ(β̂)Γ(−α̂)
Γ(β̂ − α̂)Γ(−β̂)Γ(α̂) r
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and

r̃ = exp(−2iπα̃)Γ(2α̃)Γ(−α̃)2
Γ(−2α̃)Γ(α̃)2

s̃.

In this way we immediately obtain the formula (2.40) forM1 and it turns
out that

Cα̂,β̂

0 = Dα̂,β̂ · C
whereC is given in the formula (2.44) and

Dα̂,β̂ :=
(

exp(iπβ)Γ(β̂+α̂)Γ(1−β̂+α̂)
α̂Γ(α̂)2 sinπα̂ 0

0 − exp(−iπβ)Γ(−β̂−α̂)Γ(1+β̂−α̂)
Γ(1−α̂)Γ(−α̂) sinπα̂

)
.

As a consequence, one has

CM0,xC
−1 = (Dα̂,β̂)−1(Cα̃

0,1)
−1

(
1 2πi r̃
0 1

)
Cα̃

0,1Dα̂,β̂.

By straightforward computations one can easily check that, for

s̃= −exp(2iπβ)Γ(β̂ + α̂)Γ(1− β̂ + α̂)Γ(1− α̂)Γ(−α̂)
Γ(−β̂ − α̂)Γ(1+ β̂ − α̂)α̂Γ(α̂)2 s

i.e. for

r̃

r̂
= − Γ(1− σ0)

2Γ(σ0
2 )

2

Γ(1+ σ0)2Γ(−σ0
2 )

2

Γ
(
1+ ϑ∞+σ0

2

)
Γ
(
1+ −ϑ∞+σ0

2

)
Γ
(
1+ ϑ∞−σ0

2

)
Γ
(
1− ϑ∞+σ0

2

) s

r
,

the formulae (2.41), (2.42) hold true.
To conclude the proof we have to prove the relation (2.43), namely we

want to prove that̃rr̂ = − 1
4a0

2µ+σ0
2µ−σ0

. To this aim we compute the matrices

A0
0,1,x andΛ and then the asymptotic behaviour ofy in terms ofσ0 andr̃ .

To compute the matricesA0
0,1,x andΛ we observe that, thanks to the gauges

(2.60),

A0
1 = B̂1, Λ = B̂0+ α̂+ β̂

2
1, A0

0,x = Gα̂,β̂

0 B̃0,1
(
Gα̂,β̂

0

)−1
.

First of all one has to compute theB0,1:

B0 = Gα,β,γ

0 J0
(
Gα,β,γ

0

)−1
, B1 = Gα,β,γ

1 J1
(
Gα,β,γ

1

)−1

then

B̂0 = 1

β̂ − α̂
(
α2 −r̂ α̂β
α̂β

r̂ −β̂2

)
, B̂1 = α̂β̂

β̂ − α̂
(−1 r̂
−1

r̂ 1

)
,
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and

B̃1 = α̃

2

(−1 r̃
−1

r̃ 1

)
, B̃0 = − α̃

2

(
1 r̃
−1

r̃ −1

)
.

It is then obvious that, referring to (2.49) and (2.50),b = r̃ , T = Gα̂,β̂

0 .
Using the formula (2.18),

y(x) ∼ − r̂ (σ0+ 2µ)

4r̃ (2µ− σ0)
x1−σ0.

This proves the formula (2.43) and concludes the proof of the theorem, in
the caseσ0 6= 0.

For completeness we write here the result for the matricesA0
0,1,x andΛ:

Λ= 1

4ϑ∞

(
−ϑ∞2− σ2

0 (−ϑ∞2+ σ2
0)r̂

−σ2
0+ϑ∞2

r̂ ϑ∞2+ σ2
0

)
, A0

1 =
ϑ∞2− σ2

0

4ϑ∞

(−1 r̂
−1

r̂ 1

)
,

A0
0 = 1

8θ

 θ2−σ2
0

2

(
r̃
r̂ + r̂

r̃

)− θ2− σ2
0

1
r̂

(
− (θ−σ0)

2r̂
2r̃ − (θ+σ0)

2r̃
2r̂ + θ2− σ2

0

)
r̂
(
(θ−σ0)

2r̃
2r̂ + (θ+σ0)

2r̂
2r̃ + σ2

0 − θ2
)

− θ2−σ2
0

2

(
r̃
r̂ + r̂

r̃

)+ θ2+ σ2
0


A0

x = 1
8ϑ∞

 σ2
0−ϑ∞2

2

(
r̃
r̂ + r̂

r̃

)− ϑ∞2− σ2
0

1
r̂

(
(ϑ∞−σ0)

2r̂
2r̃ + (ϑ∞+σ0)

2r̃
2r̂ + ϑ∞2− σ2

0

)
r̂
(
− (ϑ∞−σ0)

2r̃
2r̂ − (ϑ∞+σ0)

2r̂
2r̃ + σ2

0 − ϑ∞2
)

ϑ∞2−σ2
0

2

(
r̃
r̂ + r̂

r̃

)+ ϑ∞2+ σ2
0

 .
2.2.4. Caseσ0 = 0. In this case the solution of the system(Σ̂) has loga-
rithmic behaviour around 0. Moreover, as seen before, it has a logarithmic
behaviour around 1. For this system we can use all the formulae derived for
(Σ̃), substitutingα̃ by α̂. The treatment of the(Σ̃), is even easier. Indeed
in this caseΛ has zero eigenvalues and it is straightforward to solve the
system (2.52) exactly. In fact in this case we have

B̃0+ B̃1 =
(

0 1
0 0

)
, detB̃i = TrB̃i = 0, i = 0,1.

Then the matrices̃B0 and B̃1 are uniquely determined up to an arbitrary
parameters:

B̃0 =
(

0 s
0 0

)
, B̃1 =

(
0 1− s
0 0

)
,
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and we can solve the differential equation (2.52) explicitly:

Ỹ =
(

1 s log z+ (1− s) log(z− 1)
0 1

)
.

The solutionỸ has the following asymptotic behaviour near the singular
points:

Ỹ =
(

1+O

(
1

z

))
zJ, as z→∞,

= G̃0 (1+ O(z)) zJC̃0, as z→ 0,

= G̃1 (1+ O(z− 1)) (z− 1)JC̃1 as z→ 1,

whereJ =
(

0 1
0 0

)
. It’s easy to verify that

C̃0 =
(

1 0
0 s

)
, C̃1 =

(
1 0
0 1− s

)
, G̃0 =

(
1 0
0 1

s

)
, G̃1 =

(
1 0
0 1

1−s

)
.

As a consequence the monodromy matrices of the system (2.52) are

M̃0 =
(

1 2πis
0 1

)
, M̃1 =

(
1 2πi(1− s)
0 1

)
. (2.65)

The corresponding monodromy matrices of the full system (2.2) are given
by:

M1 = (Cα̂
1)
−1

(
1 2iπr̂
0 1

)
Cα̂

1, and M0,x = (Cα̂
0)
−1M̃0,1C

α̂
0,

where

Cα̂
0 =

(
πΓ(2α̂)

Γ2(α̂) sinπα̂
r̂ πΓ(−2α̂)

Γ2(−α̂) sinπα̂

−1
r̂

Γ(2α̂) exp(−iπα̂)
Γ2(α̂)

Γ(−2α̂) exp(iπα̂)
Γ2(−α̂)

)
,

and

Cα̂
1 =

(
πΓ(2α̂) exp(−iπα̂)

Γ2(α̂) sinπα̂ −r̂ πΓ(−2α̂) exp(iπα̂)
Γ2(−α̂) sinπα̂

−1
r̂

Γ(2α̂)
Γ2(α̂)

−Γ(−2α̂)
Γ2(−α̂)

)
.

We observe that

Ĉα̂
0,1 = C0,1Dα̂,

where

Dα̂ =
(
πΓ(2α̂) exp(−iπα̂)

Γ(α̂)2 sinπα̂
0

0 −Γ(−2α̂)
Γ(−α̂)2

)
,
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and

C0 =
(

exp(iπα̂) −r̂π
sinπα̂− sinπα̂

πr̂ −exp(iπα̂)

)
, C1 =

(
1 r̂π exp(iπα̂)

sinπα̂− sinπα̂ exp(iπα̂)
πr̂ 1

)
.

We can factor out the diagonal matrixDα̂ in (2.65), and takêr = 1. In
this way, we obtain the formulae (2.45), (2.46), (2.47). The asymptotic
behaviour ofy(x) can be computed as before. Forσ0 = 0 we obtain:

y ∼ a0x for a0 = s 6= 1.

This concludes the proof of the theorem.

2.2.5. The asymptotic behaviour near1,∞ and the monodromy data.
We can prove the analogue of Theorem 2.2 near 1 and∞. Namely, for any
pair of values(a1, σ1) there exists a unique branch of the solution of PVIµ
with the asymptotic behaviour

y(x) ∼ 1− a1x1−σ1 as x→ 1. (2.66)

It is possible to parameterize the monodromy matrices as in Theorem 2.2
substitutingσ0 with σ1 and M0 with M1 and vice-versa. Analogously, for
any pair of values(a∞, σ∞) there exists a unique branch of the solution of
(PVI) with the asymptotic behaviour

y(x) ∼ a∞xσ∞ as x→∞, (2.67)

and it is possible to parameterize the monodromy matrices as before, sub-
stitutingσ0 with σ∞ and applying the braidβ2 to the monodromy matrices.

2.3. From the local asymptotic behaviour to the global one

In this section we prove Theorem 2.1 which gives the asymptotic behaviour
of the branches of the solutions in terms of the triplets(x0, x1, x∞).

Lemma 2.10. For the solutiony(0)(x) of PVIµ behaving as

y(0)(x) = a0x1−σ0 (1+O(xε)) as x→ 0,

with 0≤ σ0 < 1 anda0 6= 0, a0 6= 1 for σ0 = 0, the canonical form (1.20)
of the monodromy matricesM(0)

0 ,M(0)
x ,M(0)

1 given by (2.42), (2.41), (2.40),
or (2.46), (2.47), (2.45) forσ0 = 0, is the following:

M0 =
(

1 −x(0)0
0 1

)
, Mx =

(
1 0

x(0)0 1

)
, M1 =

1+ x(0)1 x(0)∞
x(0)0

− (x(0)1 )2

x(0)0

(x(0)∞ )2
x(0)0

1− x(0)1 x(0)∞
x(0)0

 ,
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where the triple(x(0)0 , x(0)1 , x(0)∞ ) is defined, up to equivalence, by the follow-
ing formulae, forσ0 6= 0:

x(0)0 = −2 sin
πσ0

2
,

x(0)1 = −
√

2(cosπσ0− cos 2πµ)
sin πφ

2

sin πσ0
2

, (2.68)

x(0)∞ = −
√

2(cosπσ0− cos 2πµ)
cosπ(σ0+φ)

2

sin πσ0
2

,

with φ given by

eiπφ = 1

4a0

σ0+ 2µ

σ0− 2µ

Γ(1+ σ0)
2Γ(1− σ0

2 )
2Γ(1+ µ− σ0

2 )Γ(1− µ− σ0
2 )

Γ(1− σ0)2Γ(1+ σ0
2 )

2Γ(1+ µ+ σ0
2 )Γ(1− µ+ σ0

2 )
,

(2.69)

and forσ0 = 0:

x(0)0 = 0,

x(0)1 = −| sinπµ|√1− a0 (2.70)

x(0)∞ = −| sinπµ|√a0.

The proof of this lemma can be obtained by straightforward computa-
tions, using the algorithm of Lemma 1.5. Similar formulae for the parameters
(x(1)0 , x(1)1 , x(1)∞ ) and(x(∞)0 , x(∞)1 , x(∞)∞ ) can be obtained respectively starting
from a solutiony(1)(x) of PVIµ behaving as

y(1)(x) = 1− a1(1− x)1−σ1 (1+O(1− x)ε) as x→ 1,

or from another solutiony(∞)(x) of PVIµ behaving as

y(∞)(x) = a∞xσ∞
(

1+O
( 1

xε

))
as x→∞.

So, given an admissible triple(x0, x1, x∞), with xi ∈ R, |xi | < 2 for
i = 0,1,∞, we choose the parametersµ, (a0, σ0), (a1, σ1) and(a∞, σ∞)
in such a way that (2.8) is satisfied and

x(0)i = x(1)i = x(∞)i = xi , for i = 0,1,∞.
Using the explicit formulae (2.68), (2.69) forx0 6= 0, we derive the
expressions (2.10), (2.11). Similarly, using (2.70) forx0 = 0 we de-
rive the expression (2.12). In the same way, we derive the analogous
expressions for(a1, σ1) and (a∞, σ∞). The three corresponding branches
y(0)(x), y(1)(x), y(∞)(x) of solutions of PVIµ, with µ given by (2.8) must
coincide. In fact, the associated auxiliary Fuchsian systems have the same,
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modulo diagonal conjugation, monodromy matrices. This proves the ex-
istence of a solution of PVIµ with the asymptotic behaviour (2.1), with
the indices given by (2.9) and the coefficients specified as above, for any
admissible triple(x0, x1, x∞), with xi ∈ R, |xi | < 2 for i = 0,1,∞. The
uniqueness of such a branch follows from Theorem 1.3.

Conversely, for any such a solution we obtain an admissible triple
(x0, x1, x∞) = (x(0)0 , x(0)1 , x(0)∞ ) = (x(1)0 , x(1)1 , x(1)∞ ) = (x(∞)0 , x(∞)1 , x(∞)∞ ),
using the formulae (2.68), (2.69) or (2.70) and their analogies. Let us prove
that the numbers(x0, x1, x∞) are real and satisfy|xi | < 2 for i = 0,1,∞.
Indeed, from the definition of the parameters, it follows:

(x(0)0 )2 = 4 sin2πσ0, (x
(1)
1 )2 = 4 sin2πσ1, (x

(∞)
∞ )2 = 4 sin2πσ∞.

This proves that our construction covers, for realµ, all the solutions of
PVIµ with critical behaviour of algebraic type.

Finally, using Corollary 1.5, we infer that the class of solutions of PVIµ,
with real µ, having critical behaviour of algebraic type is invariant with
respect to the analytic continuation. The law of transformation of the critical
indicesl0, l1, l∞ of the expansions (2.1), is described by Theorem 1.5.

2.4. The complete list of algebraic solutions

We summarize the results of this paper in the following

Classification Theorem. Any algebraic solution of the equation PVIµ
with 2µ 6∈ Z is equivalent, in the sense of symmetries (1.22), (1.23), (1.24)
to one of the five solutions(A3), (B3), (H3), (H3)

′, (H3)
′′ below.

We already know that the classes of equivalent algebraic solutions are
labelled by the five regular polyhedra and star-polyhedra in the three-
dimensional space. We will construct representatives in these classes for
the following values of the parameterµ

µ = −1

4
, −1

3
, −2

5
, −1

5
, −1

3
.

The corresponding algebraic solutions will have 4, 3, 10, 10, 18 branches
respectively. Recall that these are the lengths of the orbits (1.33), (1.34),
(1.35), (1.36), (1.37) respectively with respect to the action of the pure braid
group (see Remark 1.11 above). We give now the explicit formulae for the
solutions with brief explanations of the derivations of them.

Tetrahedron. We have(x0, x1, x∞) = (−1,0,−1), thenµ = −1
4 and

y = (s− 1)2(1+ 3s)(9s2 − 5)2

(1+ s)(25− 207s2 + 1539s4 + 243s6)
,

x = (s− 1)3(1+ 3s)

(s+ 1)3(1− 3s)
. (A3)
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(We present the solution in the parametric form). The monodromy ma-
trices, in the canonical form (1.20), are:

M0 =
(

1 1
0 1

)
Mx =

(
1 0
−1 1

)
M1 =

(
1 0
1 1

)
.

This solution was found in [Dub]1 in the implicit form

y = 1

ω2− ω1

(
4− 19t

6t + 4
− ω1

)
x = ω3− ω1

ω2− ω1
,

whereω1,2,3 are roots of the following

ω3− ω2− (9t + 1)ω− 27

8
t2 − 7t + 1= 0. (2.71)

To reduce this implicit form to the above one, we have to solve the cubic
equation (2.71) with the substitution:

t = 32(1− 18s2+ 81s4)

27(1+ 9s2 + 27s4 + 27s6)
.

Then the three roots of (2.71) are:

ω1 = 13− 66s2 − 27s4

3(1+ 3s2)2
,

ω2,3 = −5+ 42s2 ± 144s3 + 27s4

3(1+ 3s2)2
.

Cube. We have(x0, x1, x∞) = (−1,0,−√2) andµ = −1
3. The solu-

tion

y = (2− s)2(1+ s)(s2− 3)2

(2+ s)(5s4 − 10s2 + 9)
,

x = (2− s)2(1+ s)

(2+ s)2(1− s)
, (B3)

was obtained in [Dub]. The canonical form for the monodromy matrices
is:

M0 =
(

1 1
0 1

)
Mx =

(
1 0
−1 1

)
M1 =

(
1 0
−2 1

)
.

1 N. Hitchin (see [Hit4]) obtained independently another algebraic solution to PVI that is
related to our by a symmetry transformation.
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Coxeter group W(H3), of symmetries of icosahedron. We have three
possible choices of the point(x0, x1, x∞) which lead to three different
solutions.

Icosahedron. The orbit (1.35) corresponds to the standard triple of
reflections for the icosahedron.(x0, x1, x∞) = (0,−1,−1+√5

2 ), then
µ = −2

5 and

y = (s− 1)2(1+ 3s)2(−1+ 4s+ s2)(7− 108s2 + 314s4 − 588s6 + 119s8)2

(1+ s)3(−1+ 3s)P(s)

x = (−1+ s)5 (1+ 3s)3
(−1+ 4s+ s2

)
(1+ s)5 (−1+ 3s)3

(−1− 4s+ s2
) ,

(H3)

with

P(s) = 49− 2133s2 + 34308s4 − 259044s6 + 1642878s8

− 7616646s10+ 13758708s12+ 5963724s14

− 719271s16+ 42483s18.

The canonical form for the monodromy matrices is:

M0 =
(

1 1
0 1

)
Mx =

(
1 0
−1 1

)
M1 =

(
1 0

−3−√5
2 1

)
.

The above solution was already obtained in [Dub] in the implicit form

y = 1

ω2− ω1

(
1+ 10t − 62t2 − 20t3 − 272t4

12t3 + 36t2 + 1
− ω1

)
x = ω3− ω1

ω2− ω1
,

whereω1,2,3 are roots of the following

ω3− (10t + 1)ω2− (180t3 + 120t2 + 1)ω− 216t5

− 920t4 − 20t3 − 80t2 + 10t + 1= 0. (2.72)

The above explicit formula can be obtained solving (2.72) in the form:

t = (1− 4s− s2)(−1− 4s+ s2)(−1+ 5s2)

(1+ 3s2)3

ω1 = 25− 585s2+ 3530s4− 6690s6− 3955s8+ 507s10(
1+ 3s2

)5
ω2 = −7+ 215s2− 1910s4− 4096s5+ 5150s6+ 20480s7 + 6125s8 − 357s10(

1+ 3s2
)5

ω3 = −7+ 215s2− 1910s4+ 4096s5+ 5150s6− 20480s7 + 6125s8 − 357s10(
1+ 3s2

)5
.
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The last two solutions for the orbits (1.36) and (1.37), with the icosa-
hedral symmetry are new. They correspond to great icosahedron and great
dodecahedron respectively. To compute them we use the following algo-
rithm. The leading terms of the Puiseux expansions near the ramification
points 0,1,∞ of each branch can be computed by the formulae (2.9), (2.10),
(2.11) and (2.12). From this the genus of the algebraic curveF(y, x) = 0 is
easily computed. Namely, the genus of (1.36) is 0 and the genus of (1.37)
is 1. Since the symmetries of PVIµ preserve the indicesl0, l1, l∞ (up to
permutations), they preserve the genus too.

We observe that the appearance of genus 1 in the last solution related
to the great dodecahedron could seem less surprising if we recall that the
topology of this immersed two-dimensional surface is different from the top-
ology of all the other polyhedra and star-polyhedra. In fact, this is a surface
of genus 4, while all the others have genus 0 (see [Cox]).

Knowing the leading terms, we can compute any term of the Puiseux ex-
pansions of any branch of the solutions near the ramification points 0,1,∞
(recall that, due to the Painlevé property, the algebraic curveF(y, x) = 0
defining the algebraic solution does not have other ramification points).
This computation is easily obtained by direct substitution of the Puiseux
expansion with known leading term in the PVIµ equation. The equations
F(y, x) = 0 defining the algebraic solutions are polynomial iny of degree
equal to the number of branches. The coefficientsFn(x) of the termyn are
elementary symmetric functions of the branches. Such functions must be
rational functions inx (see, e.g., [Spr]). The Laurent expansions of them
can be easily computed using the Puiseux expansions of the branches. From
these Laurent expansions, we are able to reconstruct the rational elementary
symmetric functions and thus the equationsF(y, x) = 0 defining the alge-
braic solutions. The computations (done with the help of Mathematica and
Maple) are simplified by using the invariance of the two algebraic curves
with respect to the symmetries (1.22), (1.23).

Let us now list the last two solutions.

Great Icosahedron. (x0, x1, x∞) = (−1,0, 1−√5
2 ), thenµ = −1

5 and

y = (−1+ s)4 (1+ 3s)2
(−1+ 4s+ s2

) (
3− 30s2 + 11s4

)2

(1+ s) (−1+ 3s)
(
1+ 3s2

)
P(s)

,

x = (−1+ s)5 (1+ 3s)3
(−1+ 4s+ s2

)
(1+ s)5 (−1+ 3s)3

(−1− 4s+ s2
) . (H3)′

with

P(s) = 9− 342s2 + 4855s4 − 28852s6

+ 63015s8 − 1942s10+ 121s12.
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The canonical form for the monodromy matrices is

M0 =
(

1 1
0 1

)
Mx =

(
1 0
−1 1

)
M1 =

(
1 0

−3+√5
2 1

)
.

Great Dodecahedron. (x0, x1, x∞) = (−1,−1, 1−√5
2 ), µ = −1

3. The
canonical form for the monodromy matrices is

M0 =
(

1 1
0 1

)
Mx =

(
1 0
−1 1

)
M1 =

(
3−√5

2 1
−3+√5

2
1+√5

2

)
.

This is the most complicated solution and we will briefly explain how
did we obtain it. As we already said, it is an algebraic function with 18
branches. It has two branch points of order 5, two of order 3 and two
regular branches, over every ramification point 0,1,∞. The branches
y1(x), · · · , y18(x) nearx = 0 have the form:

yk(x) = e
2πik

5

(
7

13

)2

6
−2
5 x

4
5 +O(x), k = 1, · · · ,5

yk+5(x) = e
2πik

5
6

4
5

192
x

2
5 +O(x

4
5 ), k = 1, · · · ,5

y10+k(x) = e
2πik

3
2

2
3

18

1+ i
√

15

4
x

2
3 +O(x), k = 1, · · · ,3

y13+k(x) = e
2πik

3
2

2
3

18

1− i
√

15

4
x

2
3 +O(x), k = 1, · · · ,3

y17,18(x) = 3±√5

6
x+O(x2).

The Puiseux expansions nearx = 1 andx = ∞ can be obtained from
these formulae applying the symmetries (1.22) and (1.23) respectively.
Using these formulae, one can compute any term of the Puiseux expan-
sions of all the branches. Due to computer difficulties, at the moment,
we do not manage to produce the explicit elliptic parameterization of the
algebraic curve. The explicit form of the algebraic curveF(x, y) = 0 of
degree 36 inx and 18 iny is given in the preprint version of this paper,
math/9806056.

Remark 2.5. Plots of the algebraic solutions(A3), (B3), (H3), (H ′3), can
be obtained using Mathematica.
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[Br] E. Brieskorn, Automorphic sets and braids and singularities, Braids (Proceedings
of the Summer Conference at Santa Cruz, CA, 1986), Contemp. Math.78, 45–115

[Cha] S. Chakravarty, A class of integrable conformally self-dual metrics, Classical
Quantum Gravity11 (1994) no. 1, L1–L6

[Cox] H.S.M. Coxeter, Regular Polytopes, Macmillan Company New York (1963)
[Cro] W.J.R. Crosby, Problems and Solutions, Monthly Amer. Math. (1946) 104–107
[Dek] W. Dekkers, The Matrix of a Connection having Regular Singularities on a Vector

Bundle of Rank 2 onP1(C ), Springer Lect. Notes Math.712(1979) 33–43
[Dub] B. Dubrovin, Geometry of 2D Topological Field Theories, Springer Lect. Notes

Math.1620(1995) 120–348
[FlN] H. Flashka, A.C. Newell, Monodromy and Spectrum Preserving Deformations,

Comm. Math. Phys.76 (1980) 67–116
[FY] A.S. Fokas, Y.C. Yortsos, The transformation properties of the sixth Painlevé
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Diff. Eqns.18 (1982) 317–326
[Hit] N.J. Hitchin, Twistor Spaces, Einstein Metrics and Isomonodromic Deformations,

J. Differential Geometry42, no.1 (1995) 30–112
[Hit1] N.J. Hitchin, Poncelet Polygons and the Painlevé Transcendents, Geometry and
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(1967) 771–780
[Luk4] N.A. Lukashevich, The solutions of Painlevé fifth equation, Differ. Uravn.6(1970)
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139(1995) 37–65

[Mur1] Y. Murata, Rational Solutions of the Second and Fourth Painlevé equations, Funk.
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2 (1995) p. 53–89

[Wey] H. Weyl, Algebraic Theory of Numbers, Ann. Math. Stud.1, Princeton University
Press (1940)


