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Abstract

We present here the iteration procedure for the determination of
free energy ǫ2-expansion using the theory of KdV - type equations. In
our approach we use the conservation laws for KdV - type equations
depending explicitly on times t1, t2, . . . to find the ǫ2-expansion of
u(x, t1, t2, . . .) after the infinite number of shifts of u(x, 0, 0, . . .) ≡ x

along t1, t2, . . . in recurrent form. The formulas for the free energy
expansion are just obtained then as a result of quite simple integration
procedure applied to un(x).

This work is devoted mainly to the calculation of low-dispersion expan-
sions of the solutions of KdV type equations and their using for calculation
of Weil-Petersson volumes of moduli spaces. More precisely we obtain a re-
current procedure for the formulas presented in [2] for such expansions and
will refer here to the papers [2] and [3] where the more detailed information
and references can be found. Our procedure is based on the quasi-classical
expansion for Schrödinger operator and uses also the times-dependent inte-
grals for KdV type equations which, as far as we know, were not mentioned
in the previous papers.

∗also L.D.Landau Institute for Theoretical Physics, Russian Acad. Sci.,
maltsev@itp.ac.ru
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We shall consider the Free Energy function of Topological String Theory
F (x, t1, t2, . . .) such that its second derivative with respect to x
u(x, t1, t2, . . .) = d2

dx2F satisfies at any t1, t2, . . . the KdV hierarchy with re-
spect to all t1, t2, . . ..

The first KdV-equation is written here in the form:

∂u

∂t2
= uux +

ǫ2

12
uxxx (1)

where ǫ is small parameter, so we can consider the ǫ2-expansion of the so-
lution u(x, t1, t2, . . .) of KdV hierarchy and after that try to get F (x, t1, t2, . . .)
by the integration with the corresponding normalizing conditions.

We shall describe now the construction which permits to obtain the ǫ2-
expansion of u(x, t1, t2, . . .) using times-dependent conservation laws
J(t1, t2, . . .) for KdV hierarchy.

It is well known that (1) can be written in the form:

∂L

∂t2
= [A2, L] (2)

L = − ǫ2

12

d2

dx2
− u(x)

6
(3)

A2 =
ǫ2

3

d3

dx3
+

1

2

(

u
d

dx
+

d

dx
u

)

(4)

Equation Lψ = k2

12
after the substitution:

iχ(x, k, ǫ) =
1

ǫ

d lnψ

dx
(5)

takes the form:

− iǫ
d

dx
χ+ χ2 = k2 + 2u(x) (6)

and using this form we can obtain the densities of conservation laws for
(1) from the formal expansion:

χ(x, k, ǫ) ∼ k +
∞
∑

n=1

χn(x, ǫ)

(2k)n
(7)
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when k → ∞. Here χ2n(x, ǫ) are full derivatives χ2n(x, ǫ) = ∂xQ2n(x, ǫ),
and χ2n+1(x, ǫ) - are densities of conservation laws, which are polynomial
expressions of u, ǫux, ǫ

2uxx, . . .

In =
∫

χ2n+1(x, ǫ)dx

We can write the higher KdV-type equations, consisting with (1), in the
Hamiltonian form:

∂u

∂tk
= ∂x

δ

δu(x)

∫

χ2n+1(x, ǫ)dx = ∂x

δ

δu(x)

1

πi

∮

(2k)2n

[
∫

χ(x, k, ǫ)dx
]

dk

(8)
Theorem 1.
Let us consider equations (8) on the functional space of rapidly decreasing

functions: u(x) → 0, |x| → ∞. Then the functional:

Jn(tn) =
∫

xu(x)dx− 4(2n− 1)tn

∫

χ2n−1(x, ǫ)dx (9)

is the conservation law for n-th KdV-equation (8), depending on the time
tn.1

Proof.
Since

∫

χ2n−1(x, ǫ)dx is the conservation law for any of equations (8), we
have:

d

dtn
Jn =

∫

x∂x

δ

δu(x)

∫

χ2n+1(y, ǫ)dydx− 4(2n− 1)
∫

χ2n−1(x, ǫ)dx =

= −
∫

dx
δ

δu(x)
In − 4(2n− 1)In−1

But as can be extracted from (6) and (7): 2

∫ δ

δu(x)
Indx ≡

∫ δ

δu(x)

1

πi
(2k)2n

[
∫

χ(y, k, ǫ)dy
]

dkdx =

1Firstly the functionals of this type were considered in [1] , where they were restricted
on the slowly modulated m-phase algebro-geometric solutions of KdV. Here we derive the
analogous formulas for any solution of KdV-type equations.

2For the identities of this type see also [4].
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=
1

πi

∮

(2k)2n

[

2
d

d(k2)

∫

χ(y, k, ǫ)dy

]

dk = −4(2n− 1)In−1 (10)

so we have d
dtn
Jn = 0.

Theorem is proved.
Let us now consider the variational derivative of Jn with respect to u(x)

corresponding to rapidly decreasing variations δu(x), that is the variational
derivative of Euler-Lagrange type:

Ωn(x, ǫ) =
δJn

δu(x)
≡ ∂Pn

∂u
(x) − ∂

∂x

∂Pn

∂ux

(x) +
∂2

∂x2

∂Pn

∂uxx

(x) − . . . (11)

where Jn =
∫

Pn(u, ǫux, ǫ
2uxx, . . .)dx .

Theorem 2.
If we consider the n-th equation of (8) then the evolution of Ωn(x, ǫ)

satisfies the linear equation:

d

dtn
Ωn(x, ǫ) = D1

n(ǫ, u, ux, . . .)
d

dx
Ωn + . . .+D2n−1

n (ǫ, u, ux, . . .)
d2n−1

dx2n−1
Ωn =

=
2n−1
∑

s=1

Ds
n(ǫ, u, ux, . . . , u(2n−s−1)x)

ds

dxs
Ωn (12)

whereDs
n(ǫ, u, ux, . . .) are some polynomials of u, ux, uxx, . . .,

d
dtn

is full deriva-

tive with respect to tn, unx ≡ dn

dxnu(x).
Proof.
Let us consider any of equations (8) as the flux on the space (u(x)) cor-

responding to vector field:

ξ(x) = ∂x

δ

δu(x)

∫

χ2n+1(x, ǫ)dx

Since Jn is invariant function, then Ω(x, ǫ) is the invariant 1-form on
the space (u(x)). So its full Lie-derivative with respect to ξ(x) plus partial
derivative with respect to tn must be zero, that is:

∂

∂tn
Ωn(x, ǫ) +

(

LξΩn

)

(x) = 0
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where

(

LξΩn

)

(x) =
∫

ξ(y)
δ

δu(y)
Ωn(x)dy +

∫

Ωn(y)
δ

δu(x)
ξ(y)dy

and

∂

∂tn
Ωn(x, ǫ) +

∫

ξ(y)
δ

δu(y)
Ωn(x)dy ≡ dΩn(x)

dtn

The expression
∫

Ωn(y) δ
δu(x)

ξ(y)dy is the action of the linear differential

operator of type (12) on Ωn(x).
Theorem is proved.
Corollary.
If Ωn(x) = 0 at tn = 0 (and u(x) is rapidly decreasing), then Ωn(x) ≡ 0

at any tn.
There can be easily formulated the generalizations of Theorems 1 and 2

if we consider the common solution u(ǫ, x, t1, t2, . . . , tn, C1, C2, . . . , Cn) of the
system of equations:

∂u

∂tn
= Cn∂x

δ

δu(x)

∫

χ2n+1(x, ǫ)dx, n = 1, . . . , N. (13)

Then:
Theorem 1′.
The functional:

J(t1, . . . , tN , C1, . . . , CN) =
∫

xu(x)dx−
N
∑

s=1

4(2s− 1)Csts

∫

χ2s−1(x, ǫ)dx

(14)
- is the conservation law for all fluxes (13) for 1 ≤ n ≤ N , that is:

d

dtn
J(t1, . . . , tn, C1, . . . , CN) ≡ 0, 1 ≤ n ≤ N.

The proof is evident since any of ts
∫

χ2s−1(x, ǫ)dx, s 6= n at fixed ts is
the conservation law for n-th KdV-equation and all KdV-equations commute
with each other.

Theorem 2′.
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The coefficients Ω(x) of 1-form Ω: Ω(x) = δJ
δu(x)

(Euler-Lagrange deriva-

tive) satisfy the system of equations:

d

dtn
Ω(x, t1, . . . , tn) =

2n−1
∑

s=1

CnD
s
n(ǫ, u, ux, . . . , u(2n−s−1)x)

ds

dxs
Ω(x)

n = 1, . . . , N, (15)

and if Ω(x) is zero at t1 = t2 = . . . = tN = 0 then it is identically zero at any
t1, t2, . . . , tN .

It is also evident that we can add to Ω(x) any invariant form of type

Ω′(x) =
M
∑

s=0

ds

δ

δu(x)

∫

χ2s+1(x, ǫ)dx

(where the coefficients ds do not depend on t1, t2, . . .) and Theorems 2, 2′ will
remain valid.

We shall need later the invariant forms of type

Ω(x) = x− u(x) +
∞
∑

s=1

βsts
δ

δu(x)

∫

χ2s−1(x, ǫ)dx (16)

(where u(x) is the variational derivative of the momentum integral P =
1
2

∫

u2(x)dx) for the investigation of asymptotic expansion of u(x) in terms of
ǫ2 after the infinite number of shifts of the initial function u(x, 0, 0, . . .) = x
along times t1, t2, . . . according to KdV equations (8).

All the considerations above were for rapidly decreasing functions u(x).
But as can be easily seen, the relations (12), (15) are local expressions of
u, ux, uxx, . . . , uts, uxts, uxxts, . . . where we consider Ds

n,Ω(x) (and
δ

δu(x)

∫

χ2s+1(x, ǫ)dx) just as local polynomials of u, ux, . . . ( for the last we use

just formal Euler-Lagrange expression for variational derivative in this case)
and Theorems 2, 2′ will be valid for 1-forms (11) and (16) for any global in
x solution u(x) up to the time t1, t2, . . . , tN where this global solution exists
(so if Ω(x) is identically zero at t1 = t2 = . . . = 0 it will be identically zero
in all region where we have a global solution u(x).)

Now we shall consider the following construction:
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It is well known that all KdV-type equations (8) in our case can be written
in the form:

∂u

∂tn
=

1

αn

un−1ux + ǫ2(. . .) + ǫ4(. . .) + . . . (17)

Let denote Km
n (u, ux, uxx, . . .) - the corresponding term in n-th KdV equa-

tion which has the multiplier ǫ2m, so we have

∂u

∂tn
=

1

αn

un−1ux +
n−1
∑

m=1

ǫ2mKm
n (u, ux, uxx, . . .) (18)

Let we are given the function Φ(u) which is a convergent everywhere (in
u-plane) series:

Φ(u) =
∞
∑

n=0

γnu
n (19)

We can consider the common solution of all KdV-type equations (17)
given by the relations

∂u

∂tn
= αnγn−1∂x

δ

δu(x)

∫

χ2n+1(y, ǫ)dy =

= αnγn−1∂x

δ

δu(x)

1

πi

∮

(2k)2n

[
∫

χ(y, k, ǫ)dy
]

dk (20)

up to the times t1, t2, . . ., where this global solution u(x, t1, t2, . . .) exists and
we put u(x, 0, 0, . . .) = x.

Theorem 3.
If Φ(u) =

∑

∞

n=0 γnu
n is a convergent everywhere series, then the equation

∂u

∂τ
=

∞
∑

n=1

αnγn−1∂x

δ

δu(x)

∫

χ2n+1(x, ǫ)dx (21)

can be represented as:

∂u

∂τ
= Φ(u)ux +

∞
∑

n=1

ǫ2mKm(u, ux, . . . , u(2m+1)x) (22)

where Km(u, ux, . . . , u(2m+1)x) are the polynomials of ux, uxx, . . . (contain-
ing in each term (2m+1) derivatives with respect to x) with the coefficients
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depending on u and being expressed in terms of Φ(u),Φ(1)(u),Φ(2)(u), . . .,
Φ(q)(u) ≡ dq

duq Φ(u).
Proof.
Let us remind that the KdV-hierarchy can be extracted from the Riccati

equation (6) for χ(x, ǫ, k):

−iǫ d
dx
χ+ χ2 = k2 + 2u(x)

and we use the function:

χR(x, k) ≡ k +
∞
∑

n=0

χ2n+1(x, ǫ)

(2k)2n+1
(23)

for the generation of Hamiltonian KdV-fluxes.
As was shown by B.A.Dubrovin (see [5], [6], [7]) the following relation

holds:

δ

δu(x)

∫

χR(x, ǫ, k)dx (≡ δ

δu(x)

∫

χ(x, ǫ, k)dx) =
λ

χR(x, ǫ, k)
(24)

in the class of rapidly decreasing or periodic functions u(x). So it is valid
as local relation for u, ux, . . . in any order of formal expansion of χR(x, ǫ, k)
and 1

χR(x,ǫ,k)
in terms of 1/(2k)2s+1, where we use just their local expressions

obtained from the formal equation (6) and δ
δu(x)

is just formal Euler-Lagrange

expression for derivatives of
∫

χR,(2n+1)(x, ǫ)dx with respect to u(x):

δ

δu(x)

∫

χR,(2n+1)(x, ǫ)dx =
∂χR,(2n+1)(x, ǫ)

∂u
− ∂

∂x

∂χR,(2n+1)(x, ǫ)

∂ux

+ . . .

and we have

δ

δu(x)

∫

χR,(2n+1)(x, ǫ)dx = λ

[

1

χR(x, ǫ, k)

]

2n+1

([. . .]2n+1 means here the corresponding term in the expansion).
We shall not need the value of constant λ in our case, but what is im-

portant that λ does not depend upon ǫ. This fact can be easily obtained
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from the fact that, as follows from the formal equation (6), the formulas for
χn(x, ǫ) in (7) as the expressions of u, ux, uxx, . . . differ from the analogous
formulas at ǫ = 1 just by the multiplier ǫ in any differentiation with respect
to x (as well known, ǫ can be removed from the initial KdV-equation (1) by
scaling transformation). Since the relation (24) in any order of k−1 is just
the identical equality between two polynomials of u, ux, uxx, . . . it will remain
true if we replace any differentiation with respect to x by ǫ d

dx
. It can be also

checked by the direct calculations similar to [6], [7] that here λ = 1.
So we can represent the equation (21) as:

∂u

∂τ
= λ

∞
∑

n=1

αnγn−1∂x

1

πi

∮

(2k)2n dk

χR(x, ǫ, k)

and write the closed equation for A(x, ǫ, k) ≡ 1
χR(x,ǫ,k)

1

2
ǫ2A

d2

dx2
A− 1

4
ǫ2
(

d

dx
A

)2

= 1 − (k2 + 2u(x))A2 (25)

obtained from (6) by substitution χ = χR + iχIm, where χR is real if k2 +
2u(x) ≥ 0 and coincides with the introduced above, and A = 1/χR(x, ǫ, k),
B = χIm(x, ǫ, k)/χR(x, ǫ, k).

After that we obtain the following system of equations:

∂u

∂τ
= λ

∞
∑

n=1

αnγn−1∂x

1

πi

∮

(2k)2nA(x, ǫ, k)dk

1

2
ǫ2A

d2

dx2
A− 1

4
ǫ2
(

d

dx
A

)2

= 1 − (k2 + 2u(x))A2 (26)

where 1
πi

∫

(2k)2nA(x, ǫ, k)dk is just the formal expression meaning that
we must take the n-th term in the formal expansion:

A(x, ǫ, k) ∼
∞
∑

n=0

A∗

2n+1(x, ǫ)

(2k)2n+1
, A∗

1(x, ǫ) ≡ 2,

k → ∞.
It is also possible to obtain ǫ2-expansion of A(x, ǫ, k) from the expansion

(26), which corresponds to quasi-classical limit for Schrödinger operator:
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A(x, ǫ, k) =
∞
∑

n=0

ǫ2nÂn(x, k) (27)

where Â0(x, k) = 1√
k2+2u(x)

, and

Â1(x, k) =
1

2
√

k2 + 2u(x)

[

1

4
(Â0x)

2 − 1

2
Â0Â0xx

]

,

Ân(x, k) =

=
1

2
√

k2 + 2u(x)

[

1

4

n−1
∑

s=0

(

d

dx
Âs

)(

d

dx
Ân−s−1

)

− 1

2

n−1
∑

s=0

Âs

d2

dx2
Ân−s−1

]

−

− 1

2

√

k2 + 2u(x)

[

n−1
∑

s=1

ÂsÂn−s

]

, n ≥ 2. (28)

As can be easily seen, any Ân(x, k) is the expression containing only

polynomials of u, ux, . . . divided by some odd degrees of
√

k2 + 2u(x):

Ân(x, k) =
3n
∑

q=1

D̂q
n(u, ux, . . . , u2nx)

(
√

k2 + 2u(x))2q+1
, n ≥ 1.

Let us now consider the first formal equation of (26) in the form of the
formal expansion:

∂u

∂τ
= λ

∞
∑

n=1

αnγn−1∂x

1

πi

∮

(2k)2n





∞
∑

s=0

ǫ2s
3s
∑

q=0

D̂q
s(u, ux, . . . , u2sx)

(
√

k2 + 2u(x))2q+1



 dk

where D̂q
s(u, ux, . . . , u2sx) do not depend on k and formal integration

1

πi

∮

(2k)2n dk

(
√

k2 + 2u(x))2q+1

coincides here with the value of this integral.
The value

10



λ
∞
∑

n=1

αnγn−1
1

πi

∮

(2k)2n dk
√

k2 + 2u(x)

coincides by the definition with
∫

Φ(u)du because Â0(x, k) = 1/
√

k2 + 2u(x)
and the limit of every KdV-equation at ǫ→ 0 is:

∂u

∂τ
=
un−1ux

αn

so we must have ∂u
∂τ

= Φ(u)ux, ǫ = 0, and any of the values

λ
∞
∑

n=1

αnγn−1
1

πi

∮

(2k)2n dk

(
√

k2 + 2u(x))2q+1
(29)

is equal by such a way to

(−1)q

(2q − 1)!!

dq

duq

∫

Φ(u)du =
(−1)q

(2q − 1)!!
Φ(q−1)(u(x)), q ≥ 1.

Using these two equalities in the first equation of (26) we obtain the
equation (22) in the required form in any order of ǫ2 after the finite number
of steps (28).

Theorem 3 is proved.
Corollary.
If Φ(u) is such that the equation

x− u0(x, τ) + τΦ(u0(x, τ)) ≡ 0 (30)

has the unique solution for any x and 0 ≤ τ ≤ 1 then u(x, τ, ǫ) can be
represented as the formal expansion in powers of ǫ2:

u(x, τ, ǫ) = u0(x, τ) +
∞
∑

n=1

ǫ2nun(x, τ), −∞ < x <∞, 0 ≤ τ ≤ 1, (31)

where u0(x, τ) satisfies (30).
The proof is evident since we have a linear non-homogeneous evolution

equation on every un(x, τ) with the initial data un(x, 0) ≡ 0 which always
has a unique solution.
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Recurrent formulas for un(x, 1) in the ǫ2 - expansion of u(x, 1).

Theorem 4.
Let Φ(u) be a convergent everywhere series: Φ(u) =

∑

∞

n=0 γnu
n such that

the equation (30) has a unique solution for any x and 0 ≤ τ ≤ 1, then the
solution u(x) ≡ u(x, 1) of (21)

∂u

∂τ
=

∞
∑

n=1

αnγn−1∂x

δ

δu(x)

∫

χ2n+1(x)dx

(formal Euler-Lagrange derivative) with the initial data: u(x, 0) ≡ x can be
represented as the formal expansion in terms of ǫ2

u(x) = u0(x) +
∞
∑

n=1

ǫ2nun(x) (32)

where u0(x) satisfies

x− u0(x) + Φ(u0(x)) = 0 (33)

and the coefficients un(x) can be found from the recurrent formulas:

A0(x, k) =
1

√

k2 + 2u0(x)

u1(x) = u0xL̂ <
1

2
√

k2 + 2u0(x)

(

1

4
(A0x)

2 − 1

2
A0A0xx

)

>

A1(x, k) =
1

2
√

k2 + 2u0(x)

(

1

4
(A0x)

2 − 1

2
A0A0xx

)

un(x) = u0xL̂ <
1

2
√

k2 + 2u0(x)
{1

4

n−1
∑

s=0

(

d

dx
As

)(

d

dx
An−s−1

)

−

−1

2

n−1
∑

s=0

As

d2

dx2
An−s−1 − (k2 + 2u0(x))

n−1
∑

s=1

AsAn−s−

− 2
n−1
∑

z=1

uz(x)

(

n−z
∑

s=0

AsAn−z−s

)

} > , n ≥ 2 (34)
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An(x, k) =
1

2
√

k2 + 2u0(x)
{1

4

n−1
∑

s=0

(

d

dx
As

)(

d

dx
An−s−1

)

−

−1

2

n−1
∑

s=0

As

d2

dx2
An−s−1 − (k2 + 2u0(x))

n−1
∑

s=1

AsAn−s−

− 2
n−1
∑

z=1

uz(x)

(

n−z
∑

s=0

AsAn−z−s

)

} − un(x)

(
√

k2 + 2u0(x))3
, n ≥ 2 (35)

where all An(x, k) have the form

An(x, k) =
3n
∑

q=1

Dq
n(u0, u0x, . . . , u0(2n)x)

(
√

k2 + 2u0(x))2q+1
(36)

and L̂ is the linear operator acting on the functions of k so that:

L̂ <
1

√

k2 + 2u0(x)
>= Φ(u0(x)) (37)

L̂ <
1

(
√

k2 + 2u0(x))2q+1
>=

(−1)q

(2q − 1)!!
Φ(q)(u0(x)) , q ≥ 1. (38)

(Let us note here that An(x, k) can be obtained from the introduced
previously A∗

s(x, k) if we substitute the function u(x) in the form (31) in all
the expressions for A∗

s(x, k).)
Proof.
Let us change the first equation of (26) by the equation Ω(x) ≡ 0 at τ = 1,

where Ω(x) is of the form (16) which is identically zero at t1 = t2 = . . . = 0
(u(x, 0, 0, . . .) = x)

Ω(x) = x− u(x) +
∞
∑

s=1

βs

δ

δu(x)

∫

χ2s−1(x, ǫ)dx. (39)

It is not very difficult to check using (14) that for τ = 1 the coefficients
βn, corresponding to the flux (21) can be expressed in terms of introduced
in (17) and (19) αn and γn by formula

βn = −4(2n− 1)αnγn−1,
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and, as follows from (10) αn = (−1)n(n + 1)!/4nn(2n− 1)!!
According to the formula (24) we can write this equation in the form:

x− u(x, ǫ) +
∞
∑

n=0

λβn

1

πi

∮

(2k)2n−2A(x, k, ǫ)dk = 0 (40)

where βn are such that:

∞
∑

n=1

λβn

1

πi

∮

(2k)2n−2 dk
√

k2 + 2u0(x)
≡ Φ(u0(x)) (41)

for any u0(x) so that at ǫ = 0 we obtain formula (33).
As can be easily shown using the formal representation (40) (just like as

in Theorem 3) Ω(x) can be represented as a formal series on ǫ2, which at any
power of ǫ2 is just a local expression of u, ux, uxx, . . ., having the form:

Ω(x) =
∞
∑

s=0

ǫ2sN(u, ux, . . . , u(2s)x) (42)

where N(u, ux, . . . , u(2s)x) are polynomials of ux, uxx, . . . containing 2s deriva-
tives with respect to x, with the coefficients depending on Φ(u),Φ(1)(u), . . .
. This means that the formal series (40) in any order of ǫ2 is convergent
everywhere (as the sum of differentiations of convergent everywhere series
(41) ) and can be expressed in the appropriate form (42).

It is evident from this fact that at any finite order of ǫ2 Ω(x) satisfies
to linear differential equation of finite order like (12) according to n-th KdV
equation, since it is so for any finite sum (39), and from Theorem 3 we can
conclude that it is also so for the evolution with respect to τ .

So that, we can use the local equality Ω(x) ≡ 0, where Ω(x) is local
expression of u, ux, . . ., in any order of ǫ2 for u(x) in the form (32) at τ = 1
if u(x, τ) is a formal global asymptotic solution of (21) for 0 ≤ τ ≤ 1.

Now let us introduce linear operator L̂ acting on functions of k by the
formula:

L̂ < G(k) >=
∞
∑

n=1

λβn

1

πi

∮

(2k)2n−2G(k)dk

By the definition:

14



L̂ <
1

√

k2 + 2u0(x)
>≡ Φ(u0(x))

and it can be easily seen that

L̂ <
1

(
√

k2 + 2u0(x))2q+1
>=

(−1)q

(2q − 1)!!
Φ(q)(u0(x))

where Φ(q)(u) ≡ dq

duq Φ(u), for q ≥ 1.
By the substitution of expansions

A(x, k, ǫ) =
1

√

k2 + 2u0(x)
+

∞
∑

n=1

ǫ2nAn(x, k)

and

u(x, ǫ) = u0(x) +
∞
∑

n=1

ǫ2nun(x)

in the system

1

2
ǫ2A

d2

dx2
A− 1

4
ǫ2
(

d

dx
A

)2

= 1 − (k2 + 2u(x))A2,

x− u(x, ǫ) + L̂ < A(x, k, ǫ) >= 0

(that is un(x) = L̂ < An(x, k) > ), it is easy to obtain (34) and (35) for un

and An, where we used the fact that

L̂ <
1

(
√

k2 + 2u0(x))3
>= −Φ(1)(u0(x))

and that view (33) Φ(1)(u0(x)) = 1 − 1
u0x

.
Formulas (36) for An are evident from the recurrent formulas (35).
Theorem 4 is proved.

As can be easily seen from (33), all Φ(q)(u0(x)) can be expressed in terms
of u0(x) and its derivatives using formula Φ(q+1)(u0(x)) = 1

u0x

d
dx

Φ(q)(u0(x))
and so it can be easily seen that we can represent un(x) in the form:
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un(x) =
N(n)
∑

s=1

Us
n(u0xx, u0xxx, . . .)

(u0x)s
(43)

where Us
n(u0xx, u0xxx, . . .) are polynomials containing (2n+s) differentiations

with respect to x in each term.
All the functions un(x), n ≥ 1 (see [2]) are full double derivatives with

respect to x of the functions Fn(x), where F1(x) = (1/24) ln(u0x) and all
Fn(x), n ≥ 2 have the same form as (43):

Fn(x) =
N(n)−2
∑

s=1

f s
n(u0xx, u0xxx, . . .)

(u0x)s
(44)

The condition (44) fixes here uniquely the integration constants in the de-
termination of Fn(x), such that

un(x) =
d2

dx2
Fn(x)

The values Fn(x) in the form (44) are necessary for the calculations of
Weil-Petersson volumes of moduli spaces and it is quite easy to propose an
algorithm for determination of Fn(x) using un(x) in the form (43). Namely
we define the algorithm of integration of the expression (43) provided that it
is the full derivative with respect to x in the following way:

since D−1un must have the same form

D−1un =
N(n)−1
∑

s=1

vs
n(u0xx, u0xxx, . . .)

(u0x)s
(45)

where vs
n are polynomials (containing (2n+s−1) differentiations with respect

to x in each term), it is easy to define the highest term vN(n)−1
n (u0xx, u0xxx, . . .)

from (43) as

vN(n)−1
n =

UN(n)
n (u0xx, u0xxx, . . .)

(N(n) − 1)u0xx

which must be polynomial of u0xx, u0xxx, . . . if un(x) is the full derivative of
(45).
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The rest of (45) without the highest term

N(n)−2
∑

s=1

vs
n(u0xx, u0xxx, . . .)

(u0x)s

is the integral of the value

un(x) −
UN(n)

n

(u0x)N(n)
− (vN(n)−1

n )x

(u0x)N(n)−1
=

N(n)−1
∑

s=1

Us
n(u0xx, u0xxx, . . .)

(u0x)s
− (vN(n)−1

n )x

(u0x)N(n)−1

and we can repeat the same procedure for vN(n)−2
n (u0xx, u0xxx, . . .) and so on.

The last step must give identically zero for the corresponding rest of sum (43)
for un(x) - full derivative of the expression (45) and so we shall obtain quite
simple formulas for vs

n in terms of Um
n and their derivative. Applying this

procedure twice to any un(x) in the form (43) we shall obtain the required
form (44) for the functions Fn(x).

The second author (A.Ya.M.) thanks INTAS (grant INTAS 96-0770) and
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