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Abstract

We present here the iteration procedure for the determination of
free energy e?-expansion using the theory of KdV - type equations. In
our approach we use the conservation laws for KdV - type equations

depending explicitly on times t,ts,... to find the e*-expansion of
u(x,t1,ta,...) after the infinite number of shifts of u(z,0,0,...) =z
along t1,%9,... in recurrent form. The formulas for the free energy

expansion are just obtained then as a result of quite simple integration
procedure applied to u,(z).

This work is devoted mainly to the calculation of low-dispersion expan-
sions of the solutions of KdV type equations and their using for calculation
of Weil-Petersson volumes of moduli spaces. More precisely we obtain a re-
current procedure for the formulas presented in [P for such expansions and
will refer here to the papers [P]] and [B] where the more detailed information
and references can be found. Our procedure is based on the quasi-classical
expansion for Schrodinger operator and uses also the times-dependent inte-
grals for KAV type equations which, as far as we know, were not mentioned
in the previous papers.
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We shall consider the Free Energy function of Topological String Theory
F(z,t1,ta,...) such that its second derivative with respect to =x
u(x,ty,ty,...) = dd—;F satisfies at any t,ts,... the KAV hierarchy with re-
spect to all ¢1,t,, .. ..

The first KdV-equation is written here in the form:

ou €2
a, T TAUgryx 1
o, Uy + T (1)

where € is small parameter, so we can consider the e2-expansion of the so-
lution u(zx, tq,ts, . ..) of KAV hierarchy and after that try to get F'(x,t1, 1o, . ..)
by the integration with the corresponding normalizing conditions.

We shall describe now the construction which permits to obtain the €2-
expansion of w(x,ti,ts,...) using times-dependent conservation laws
J(t1,ta,...) for KAV hierarchy.

It is well known that ([l) can be written in the form:

oL
— = [Ay, L 2
at2 [ 2 ] ( )
e d*>  u(w)
TdE 6 ®)
e d 1 d d
Ay=——+=-lu—+ — 4
2= 3 drd 2<ud:c+d:c> 4)
Equation L) = % after the substitution:
1dInvy
. boe)— X
(ko) = <8 )
takes the form:
— ieix +x* = k? + 2u(x) (6)
dx

and using this form we can obtain the densities of conservation laws for
(M) from the formal expansion:

x(z, k,€) ~ k+ ij:l X(HQ(:)’HE) (7)



when k — oo. Here xa,(x, €) are full derivatives xo,(z,€) = 0,Qa,(z, €),
and xon11(z,€) - are densities of conservation laws, which are polynomial
expressions of u, €y, €U,y . . .

L, = /X2n+l($v E)dllf

We can write the higher KdV-type equations, consisting with ([l]), in the
Hamiltonian form:

ou J B o 1 on
5 = e [ xoner(w, ) = 0, Sl f2k) [ [ xta. k,e)dm} dk
(8)
Theorem 1.

Let us consider equations (f) on the functional space of rapidly decreasing
functions: u(x) — 0,|z| — co. Then the functional:

To(tn) = / zu(z)de — 4(2n — 1t / Xon1(, €)da 9)

is the conservation law for n-th KdV-equation (§), depending on the time
tnf]

Proof.

Since [ xan_1(z, €)dz is the conservation law for any of equations (§), we
have:

d o
d—thn = /xam (SU(I’) /X2n+1(y7 E)dyd.ﬁ(f - 4(271, - 1) /X2n—1(x7 E)dl’ =
— /da:il —4@2n =D,
du(z) ™" "

But as can be extracted from (f) and ([]):

/%@)LME/ ° i(%)% {/X(?J’k,e)dy} dkdz =

du(x) mi

IFirstly the functionals of this type were considered in [fl] , where they were restricted
on the slowly modulated m-phase algebro-geometric solutions of KdV. Here we derive the
analogous formulas for any solution of KdV-type equations.

2For the identities of this type see also [@]
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_ 1 (2k)*" lz

v

T /X(y, k, e)dy] dk = —4(2n — DI,  (10)
so we have %Jn =0.

Theorem is proved.

Let us now consider the variational derivative of .J,, with respect to u(z)
corresponding to rapidly decreasing variations du(x), that is the variational
derivative of Euler-Lagrange type:

_oom, o or,
ox Ou, 012 O gy

(@)—... (11

where J, = [ Py(u, €Uy, €Uyy, . . .)dx .

Theorem 2.

If we consider the n-th equation of (§) then the evolution of Q,(x,¢)
satisfies the linear equation:

d J2r—1

d—thn(a:, €) = D (e, u,ug, .. )%Qn + .o+ D e u, Uy, . )WQ" =
-1 ds
— szz:l D; (e, u, g, . .. ,u(%_s_l)m)%ﬁn (12)
where D2 (€, u, u, . ..) are some polynomials of u, Uy, Usg, - . ., %L is full deriva-

tive with respect to t,, U, = Cgc—nnu(x).

Proof.

Let us consider any of equations (f) as the flux on the space (u(z)) cor-
responding to vector field:

o
{(z) = 8xm /X2n+1(x,e)dx

Since J, is invariant function, then (z,€) is the invariant 1-form on
the space (u(z)). So its full Lie-derivative with respect to &(z) plus partial
derivative with respect to t,, must be zero, that is:

9,
a—thn(:c,e) + (Lan) () =0



where

(£62) ()= [ €0 grzOal@idy + [ uly) grsélu)iy
and
(a0 + [ ) 5Oy = T

The expression [ Q,(y) = @ (y)dy is the action of the linear differential
operator of type ([[3) on Q,(x).

Theorem is proved.

Corollary.

If Q,(z) =0 at t, = 0 (and u(x) is rapidly decreasing), then Q,(z) =0
at any ¢,.

There can be easily formulated the generalizations of Theorems 1 and 2

if we consider the common solution u(e, x, t1,ts, . . ., t,, C1,Cs, ..., C,) of the
system of equations:
ou )
o= ot [anpi(w ), n=1,... N, 13
atn 6U($) X2 +1(.§C 6) T, n ( )
Then:
Theorem 1'.

The functional:

N

J(trs. .ty Chye Ox) = /xu(m)dm — S 425 — 1)03155/;@3_1(;5, €)dz

s=1
(14)
- is the conservation law for all fluxes ([3) for 1 < n < N, that is:

d
Ej(tla---atnacla---aCN) EO, 1<n< N.

The proof is evident since any of ts [ xos_1(7, €)dz, s # n at fixed ¢ is
the conservation law for n-th KdV-equation and all KdV-equations commute
with each other.

Theorem 2'.



The coefficients Q(z) of 1-form Q: Q(z) = <%, (Euler-Lagrange deriva-

T du(z)

tive) satisfy the system of equations:

d 2n—1 ds

—Q(x, ty,...,t,) = CoD?(€,U,Ugy oy U(2—s—1)2 Qx

0t ) = X G s ) Oa)

n=1,... N, (15)

and if Q(x) is zero at t; =ty = ... =ty = 0 then it is identically zero at any
thotos .ty

It is also evident that we can add to (z) any invariant form of type

O (z) = gds%@) / Xoos1(, €)dz

(where the coefficients dg do not depend on t,ts, ...) and Theorems 2, 2’ will
remain valid.
We shall need later the invariant forms of type

Qx) =2 —u(x) + iﬁsts%@) / X2s—1(x, €)dx (16)

(where u(x) is the variational derivative of the momentum integral P =
1 Ju?(z)dz) for the investigation of asymptotic expansion of u(x) in terms of
¢? after the infinite number of shifts of the initial function u(z,0,0,...) =
along times t1, ¢, ... according to KdV equations (§).

All the considerations above were for rapidly decreasing functions u(x).
But as can be easily seen, the relations ([3), ([[) are local expressions of
Uy Ugy Uy - -+ Uty Ugtys Ugatys - - - Where  we  consider D2 Q(z) (and
M‘SW [ Xas+1(x, €)dz) just as local polynomials of u, u,, ... ( for the last we use
just formal Euler-Lagrange expression for variational derivative in this case)
and Theorems 2, 2’ will be valid for 1-forms ([[1) and ([[d) for any global in
x solution u(x) up to the time ¢y, ts, ..., tx where this global solution exists
(so if (x) is identically zero at t; = to = ... = 0 it will be identically zero
in all region where we have a global solution u(x).)

Now we shall consider the following construction:
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It is well known that all KdV-type equations (§) in our case can be written
in the form:

0 1
a—z = o ) ) (17)
Let denote K™ (u, tg, Uy, - - .) - the corresponding term in n-th KdV equa-
tion which has the multiplier €2, so we have

0 1 n-l1
8_;‘1 — a—nu”_lum + 3 MR (U, U, U - ) (18)

m=1
Let we are given the function ®(u) which is a convergent everywhere (in
u-plane) series:

O(u) = you” (19)
n=0
We can consider the common solution of all KdV-type equations ([[7)

given by the relations

ou 0
a—tn = Oén’yn_lamm /X2n+1(y7 €)dy -

o 1
— a1 PR | [ (ks e)dy| b 20
10 S T (2k) X(y k. e)dy (20)
up to the times ¢y, 5, . .., where this global solution u(z,ty,t,...) exists and
we put u(z,0,0,...) = x.
Theorem 3.
If (u) =300 y,u” is a convergent everywhere series, then the equation
ou & )
— = nYn— ax—/ n ,€)d 21
or nzla ot ou(z) Xant1 (2, €)dx (21)

can be represented as:

ou s
3 = O (u)u, + Z eQme(u, Uz, -+, U2m1)z) (22)
n=1
where Ky, (4, Uz, . . ., U@mt1)2) are the polynomials of t,, Ugg, . . . (contain-

ing in each term (2m+1) derivatives with respect to x) with the coefficients



depending on u and being expressed in terms of ®(u), ®M (u), @@ (u),. ..,
D (u) = LP(u).

Proof.

Let us remind that the KdV-hierarchy can be extracted from the Riccati
equation (B) for x(z,¢, k):

d
—ieﬁx +x* = k? + 2u(x)

and we use the function:

X2n 1936
oK)=k + 2}; o (23)
n=0

for the generation of Hamiltonian KdV-fluxes.
As was shown by B.A.Dubrovin (see [{, [{], [[) the following relation
holds:

A

Y )dx) = XR(:C, 67 k)

(24)

Jk)dr (= Sule

in the class of rapidly decreasing or periodic functions u(z). So it is valid
as local relation for u,u,, ... in any order of formal expansion of yg(z, €, k)
and m in terms of 1/(2k)?"!, where we use just their local expressions
obtained from the formal equation (ff) and 5 ) is just formal Euler-Lagrange

expression for derivatives of [ xr, (2n+1)(, e)da: with respect to u(x):

0 _ Oxm@nin(m,€) 0 OXp@niy)(T,€)
ou(x) /XR’@"H)(:E7 €)dz = ou ox Ou, +

and we have

5 1
- de =\ | ———
sulz) /XR7(2n+1)($7 €)dx lXR(% €, k)]2n+l

([. - -Jons1 means here the corresponding term in the expansion).
We shall not need the value of constant A in our case, but what is im-
portant that A does not depend upon e. This fact can be easily obtained



from the fact that, as follows from the formal equation (), the formulas for
Xn(z,€) in ([]) as the expressions of w, uy, Uy,, . .. differ from the analogous
formulas at € = 1 just by the multiplier € in any differentiation with respect
to x (as well known, € can be removed from the initial KdV-equation ([) by
scaling transformation). Since the relation (R4) in any order of k=1 is just
the identical equality between two polynomials of u, u,, Uy, . . . it will remain
true if we replace any differentiation with respect to x by e%. It can be also
checked by the direct calculations similar to [f], []] that here A = 1.
So we can represent the equation (R1)) as:

ou on  dk
Y v

n=1

1

and write the closed equation for A(z, e, k) = X

Loy @ 4 1o <i,4>2 1 — (B + 2u(a)) A (25)
2 da? 4 \dx
obtained from (B) by substitution x = Xg + iX7m, Where xg is real if k% +
2u(x) > 0 and coincides with the introduced above, and A = 1/xg(x,¢€, k),
B = xmm(z,6,k)/xr(x, € k).
After that we obtain the following system of equations:

)
aﬁ -~ )\nz:lan% [0, — jé (2K)2" A(z, €, k) dk
& 1,(d \°
Ze? _ = 1 _ (12 2
e Ad ;A 1€ <d:€A> 1 — (k" +2u(z))A (26)

where = [(2k)*A(x, €, k)dk is just the formal expression meaning that
we must take the n-th term in the formal expansion:

A5 (e
Afw,e k) ~ 3 W()

n=0

Al(z,e) =2,

k — oo.
It is also possible to obtain e?-expansion of A(z,¢, k) from the expansion
(B6), which corresponds to quasi-classical limit for Schrédinger operator:



Az, e, k) = i A, (x, k) (27)

n=0
where Ao(fﬁ, ]f) = \/ﬁ, and
. B 1 1,y 1. .
ile k) = 2,/k2 + 2u(z) [4(“40”0) 2A°A°“] ’
An(xa k) =
1 1"‘1<dA <dA ) 1 d ]
= — | — _As _An—s— S As An_s_
2\/k2 + 2u(x) [4;) da dax )2 ; da? 1
n—1
k2 1 2u(x) l ASA,L_S] L n>2. (28)
s=1

As can be easily seen, any A,(z, k) is the expression containing only
polynomials of u, u,, ... divided by some odd degrees of /k? + 2u(x):

i (2.k) = i ﬁg(u,um, ey Ugpg)
U & (k2 2u(x))2en

n > 1.

Let us now consider the first formal equation of (Bf) in the form of the
formal expansion:

au 3s

I RN D (U, Ugey - -+ Unsy)
E—AZQH% 10 f2k2 |:Zzz 2

n=1 k2 + 2u(x))?att

where 15‘31 (U, Uy, . . ., Usg,) do not depend on k and formal integration
1 dk
m (\/ k% 4 2u(x))?a+!

coincides here with the value of this integral.
The value
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dk

s 1
A R
2, i ) k2 + 2u(z)

coincides by the definition with [ ®(u)du because Ay(z, k) = 1/1/k? + 2u(z)
and the limit of every KdV-equation at € — 0 is:

ou  u" tu,

o ay,
so we must have 2% = ®(u)u,, €= 0, and any of the values
> 1 dk
AD Y1 — f(Qk)Q" (29)
nz::l m (\/ k2% + 2u(x))?a+!

is equal by such a way to

(1) as S
(2¢ — 1)l dus /q)(“)du T (2q - 1)!!q>(q (), 421

Using these two equalities in the first equation of (Pf) we obtain the
equation (PZ) in the required form in any order of €? after the finite number
of steps (P§).

Theorem 3 is proved.

Corollary.

If ®(u) is such that the equation

x —ug(x,7) + 7P(up(z, 7)) =0 (30)

has the unique solution for any x and 0 < 7 < 1 then u(x,7,€) can be
represented as the formal expansion in powers of €%

u(w, 7€) = up(z,7) + Y € uy(z,7), —0 <z <o0o, 0<7T<1, (31)
n=1

where ug(x, 7) satisfies (B0).

The proof is evident since we have a linear non-homogeneous evolution
equation on every u,(z,7) with the initial data u,(x,0) = 0 which always
has a unique solution.

11



Recurrent formulas for u,(z,1) in the ¢? - expansion of u(z,1).

Theorem 4.
Let ®(u) be a convergent everywhere series: ®(u) = 3% ,y,u" such that

the equation (BQ) has a unique solution for any = and 0 < 7 < 1, then the
solution u(x) = u(x,1) of (1)

> )
- ;an’yn—laxm/x2n+l(x)dx

(formal Euler-Lagrange derivative) with the initial data: u(z,0) = x can be
represented as the formal expansion in terms of €2

u(z) = up(z) + i_o:l ", (7) (32)

where ug(z) satisfies

x —up(x) + P(up(x)) =0 (33)
and the coefficients u,(x) can be found from the recurrent formulas:
Aol k) = ————
k2 + 2ug(x)
up(x) = UOxf/ < L (1(A0m>2 - lAOAOmm> >
2/ k2 + 2ug(z) \4 2

1

1 1
_ (Ag)? = =ApA )
2. /k2 + 2uo () <4 Oe Tl

. 1 11 /d d
Un () = uge L < {- <—A8> <—An_8_ ) —
" 2 /k2 + 2up(x) 4 s;) dx dx 1

1n1 d2
——ZAd2An w1 — (K + 2ug(@ ZAAn —

) ; ws () <§ ASAH_Z_S>} > n>2 (34)

12



1 12 d d
e = s ) 15 (i) () -

lnl d2
5 2 AvgAns = (4 2ule ZAAn —

— S U\ 5 — un(m) n
222:1 Z()(QASA"_Z_S% (k2 + 2up(x))? =2 (33)

where all A, (z, k) have the form

A (SL’ k?) _ 3Zn Dg(UOaUOxa--qu@n)x) (36)
) = ( k2 + 2u0(at))2‘1+1

and L is the linear operator acting on the functions of k so that:

- 1

(Let us note here that A,(z,k) can be obtained from the introduced
previously A%(z, k) if we substitute the function u(x) in the form (B])) in all
the expressions for A%(x,k).)

Proof.
Let us change the first equation of () by the equation Q(x) =0 at 7 =1,
where ((z) is of the form ([§) which is identically zero at t; =ty = ... =0

(u(x,0,0,...) =x)

> 4]
Qx) =2 —u(x) + 32:31 ﬁsm /ng_l(:z, €)dx. (39)
It is not very difficult to check using ([[4) that for 7 = 1 the coefficients
Bn, corresponding to the flux (BI) can be expressed in terms of introduced
in ([7) and (I9) o, and 7, by formula
ﬂn = _4<2n - 1>O‘n7n—17
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and, as follows from ([0) a,, = (—1)"(n + 1)!/4™n(2n — 1)!!
According to the formula (P4) we can write this equation in the form:

v (e, + 3 A FoR Ak, k= 0 (40)
=i
where (3, are such that:
s 1 dk
ABp— ¢ (2k)*" 2 ———e = D(up(2)) (41)
nz=:1 T j{ k? + 2ug(z) "

for any wug(z) so that at e = 0 we obtain formula (B3).
As can be easily shown using the formal representation (f{) (just like as
in Theorem 3) 2(z) can be represented as a formal series on €, which at any

power of €2 is just a local expression of u, g, Uy, . . ., having the form:
Q(SL’) = Z 62SN(U, Ugy - - - 7u(2s)x) (42)
s=0
where N(u, Uy, . . ., U(2s),) are polynomials of uy, g, . . . containing 2s deriva-

tives with respect to x, with the coefficients depending on ®(u), @M (u),. ..

This means that the formal series (f{]) in any order of €* is convergent
everywhere (as the sum of differentiations of convergent everywhere series
(A1) ) and can be expressed in the appropriate form ([2).

It is evident from this fact that at any finite order of € Q(z) satisfies
to linear differential equation of finite order like (IJ) according to n-th KdV
equation, since it is so for any finite sum (BY), and from Theorem 3 we can
conclude that it is also so for the evolution with respect to 7.

So that, we can use the local equality (z) = 0, where Q(x) is local
expression of u, Uy, . .., in any order of € for u(z) in the form (B2) at 7 = 1
if u(z, 7) is a formal global asymptotic solution of (2]]) for 0 < 7 < 1.

Now let us introduce linear operator L acting on functions of £ by the
formula:

A

L<ah)>=3 Aﬂn% j{ (2k)272G (k) dk

By the definition:
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- 1
L < ——— >= ®(ug(x))
k2 + 2ug(x)
and it can be easily seen that

: 1 _ (=

L < >= @D (yy(z))
(/K2 + 2ug(z))2e+ (2¢ — D!
where ®@ (u) = L @ (u), for ¢ > 1.
By the substitution of expansions
1 - 2n
Az, k) = ——+ > € Ap(z, k)

k? + 2ug(x)  n=1
and

u(z, €) = ug(x) + Z My, (2

in the system

2
—€2Ad A— Lo <£

2
1 _ 2 2
SA- e dmA) =1 — (K + 2u(x)) A%,

z—u(z,e)+ L < Az, k,e) >=0
(that is un(z) = L < An(x,k) > ), it is easy to obtain (B4) and (BH) for u,
and A,, where we used the fact that

. 1
I < >= —0W (uy(z))

(1\/ k% 4 2up(z))?

and that view (B3) @M (ug(z)) =1 — E‘
Formulas (Bf) for A, are evident from the recurrent formulas (B3).
Theorem 4 is proved.

As can be easily seen from (BJ), all @ (ug(z)) can be expressed in terms
of up(x) and its derivatives using formula ®@+Y (yy(x)) = ui L) (yg(x))
and so it can be easily seen that we can represent u,(x) in the form:

15



N(n) US [ T U XXTy * *
) = 3 Dl ) (43)
s=1 Ox

where U? (Uozz, Uozzz, - - -) are polynomials containing (2n+ s) differentiations
with respect to x in each term.

All the functions w,(z),n > 1 (see [B]) are full double derivatives with
respect to x of the functions F),(x), where Fj(x) = (1/24)1In(uo,) and all
F,(x),n > 2 have the same form as ({3):

N(n)—2 pg
Ra) = 3 st m

The condition ([4) fixes here uniquely the integration constants in the de-
termination of F,(z), such that

d2
The values F,(x) in the form (f[4) are necessary for the calculations of
Weil-Petersson volumes of moduli spaces and it is quite easy to propose an
algorithm for determination of F,,(x) using u,(z) in the form (£3). Namely
we define the algorithm of integration of the expression ([iJ) provided that it
is the full derivative with respect to x in the following way:
since D™ 'u,, must have the same form

N(n)—1

D_lun _ Z 'Un(UOxx, Uozzzs - - ) (45)
s=1 (UO:L‘)S

where v are polynomials (containing (2n+s—1) differentiations with respect

to 2 in each term), it is easy to define the highest term v¥ ™~ (ug.s, Uozaas - - -)

from ([3) as

N(n)-1 _ Urjzv(n)(uou'cxa Uozzxs - - )

which must be polynomial of wgzs, Uozes, - - - if u,(x) is the full derivative of

(E3).

(%
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The rest of () without the highest term

N(nz)_2 Ufl (UOmma Uozzzs - - )
s=1 (qu)s

is the integral of the value

UN®m (N1 VO s (g e, <) (0T,
un(x) - Z
s=1

(1) N ) - (tge) N1 - ()" - (tgg) N1

and we can repeat the same procedure for vﬁlv (")_2(u0m, Uozzzes - - -) and so on.
The last step must give identically zero for the corresponding rest of sum ([3)
for u,(x) - full derivative of the expression (i) and so we shall obtain quite
simple formulas for v; in terms of U and their derivative. Applying this
procedure twice to any u,(z) in the form (f£J) we shall obtain the required
form ([[4) for the functions F,(z).

The second author (A.Ya.M.) thanks INTAS (grant INTAS 96-0770) and
RFBR (grant 97-01-00281) for partial financial support.
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