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We start from the following elementary example. Let us consider the function

fx,t(u) =
1

4
u4 − 3tu2 − xu (1)

depending on the parameters x, t. We assume that the parameters are chosen in such a
way that the function has unique minimum at the point u = u(x, t). This happens if

t < 0 or 0 < t and |x| > 4t
√

2t. (2)

Then the minimizer satisfies the equation of motion of one-dimensional ideal fluid∗ (Rie-
mann wave equation)

ut = 6uux. (3)

It solves the Cauchy problem for (3) with the initial data

x = u3 for t = 0. (4)

The global solution of the Cauchy problem does not exist for positive t.
More generally, for any monotonically increasing function g(u) one can reduce the

solution of the Cauchy problem

x = g(u) for t = 0 (4)

for the equation (3) to minimization of the function

fx,t(u) = G(u) − 3tu2 − xu (5)

for
G′(u) = g(u).

This solution exists only up to the point of gradient catastrophe (x0, t0) where the function
(5) fails to have a unique minimum. Observe that near the point of gradient catastrophe

∗ In a more standard normalization u → −1
6
u the equation reads

ut + uux = 0.

In our normalization waves with positive magnitude u move to the left.
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the solution of the Cauchy problem (5), after an appropriate Galilean transformation, looks
like the solution of the Cauchy problem (4).

We want to extend the functions of the type (1), (5) onto certain infinite-dimensional
space in such a way that it has a unique minimum on this space. This minimum will give
us the solution of the problem of evolution of multivalued functions in the sense of [7], i.e.
the solution of the Cauchy problem (4) for the Whitham system. I recall that Whitham
system describes modulations of the parameters of fast oscillations arising in the solutions
of Korteweg - de Vries (KdV) equation

ut = 6uux − uxxx (6)

(see [13], [7] for the details).

Our infinite-dimensional space M will consist of all hyperelliptic Riemann surfaces of
all genera n ≥ 0 with real branch points u1 < u2 < . . . < u2n+1, and of their degenerations.
To be more precise, we construct M as limit of the spaces Mn, n → ∞. We construct
these spaces inductively starting from

M0 = R.

The coordinate in M0 we denote u.
Define now

Mn = M0
n ∪n

j=1 M1
n−1(j) ∪n

j=1 M2
n−1(j)

where
M0

n =
{

(u1, . . . , u2n+1) ∈ R2n+1|u1 < u2 < . . . < u2n+1

}

and any of the spaces M
1,2
n−1(j) is isomorphic to Mn−1 assumed to be already constructed.

The space M1
n−1(j) is attached to the component of the boundary of M0

n where

u2j+1 − u2j → 0;

the space M2
n−1 is attached to the component of the boundary of M0

n where

u2j − u2j−1 → 0.

Definition. A Ck-smooth functional f on M is a sequence fn(u1, . . . , u2n+1) of func-
tions defined on every Mn satisfying the following properties.

1) On the open part M0
n this is a Ck-smooth function of the variables u1 < u2 < . . . <

u2n+1.
2) Near an inner point of M1

n−1(j) this function can be represented as

fn(u1, . . . , u2n+1)

= fn−1(u1, . . . , û2j, û2j+1, . . . , u2n+1) + ǫf1
n,j(u1, . . . , û2j, û2j+1, . . . , u2n+1; v, ǫ) (7)
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for a Ck-smooth function f1
n,j of u1 < . . . < u2j−1 < v < u2j+2 < . . . < u2n+1 and ǫ > 0.

Here

v =
u2j + u2j+1

2
, ǫ =

1

4
(u2j+1 − u2j)

2. (8)

Here and below the hat above a letter means that the correspondent coordinate is omitted.
3) Near an inner point of M2

n−1(j) the function can be represented as

fn(u1, . . . , u2n+1)

= fn−1(u1, . . . , û2j−1, û2j, . . . , u2n+1) + δf2
n,j(u1, . . . , û2j−1, û2j, . . . , u2n+1; v, δ) (9)

for a Ck-smooth function f2
n,j of u1 < . . . < u2j−2 < v < u2j+1 < . . . < u2n+1 and δ > 0.

Here

v =
u2j−1 + u2j

2
, δ =

[

log
4

(u2j − u2j−1)2

]

−1

. (10)

Remark. The inner part of Mn parametrizes isospectral classes of n-gap potentials
u(x) of the Sturm - Liouville operator

L = − d2

dx2
+ u(x). (11)

Any such potential is a certain quasiperiodic analytic function of x. Genericaly it has
n independent periods. The spectrum of the operator (11) in L2(−∞,∞) with a n-gap
potential consists of the segments

spectrum = [u1, u2] ∪ [u3, u4] ∪ . . . ∪ [u2n+1,∞). (12)

The isospectral class of the operator coincides with the real part of the Jacobi variety of
the hyperelliptic Riemann surface

Γn =

{

µ2 =
2n+1
∏

i=1

(λ − ui)

}

. (13)

All the potentials of the isospectral class are obtained as the restriction of a certain Abelian
function Un (the second logarithmic derivative of the theta function) onto parallel straight
lines on the Jacobi variety (see [6]):

u(x) = Un(k1x + φ0
1, . . . , knx + φ0

n; u1, . . . , u2n+1)

where Un(φ1, . . . , φn; u1, . . . , u2n+1) is a certain function 2π-periodic in each φ1, . . . , φn

depending on the pparameters u1, . . . , u2n+1, φ0
1, . . . , φ

0
n are arbitrary real phase shifts,

the wave numbers ki = ki(u1, . . . , u2n+1) are computed as certain Abelian integrals on the
Riemann surface (13). The correspondent n-gap solutions of KdV have a similar form

u(x) = Un(k1x + ω1t + φ0
1, . . . , knx + ωnt + φ0

n; u1, . . . , u2n+1) (14)
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where the frequencies ωi = ωi(u1, . . . , u2n+1) are again some Abelian integrals on (13).
The boundary components M1

n−1(j) are obtained by shrinking the j-th gap in the
spectrum. The n-gap potentials then tend to (n−1)-gap ones. The boundary components
M2

n−1(j) result from shrinking of j-th zone of the spectrum. One of the periods of the
limiting potential goes to infinity. Particularly, shrinking to points all the finite segments
of the spectrum and shifting u2n+1 to 0 we obtain in the limit n-soliton potentials of (11)
[ibid].

We construct now the basic example of a smooth functional on M . For a point in M0
n

denote dp the Abelian differentiall of the second kind on the hyperelliptic Riemann surface
(13) of the form

dp =
Pn(λ)

2
√

Rn(λ)
dλ (15a)

where

Rn(λ) =

2n+1
∏

i=1

(λ − ui) (15b)

Pn(λ) = λn + a1λ
n−1 + . . . + an (15c)

and the coefficients ak = ak(u1, . . . , u2n+1) are uniquelly determined by the normalization
conditions

∫ u2j+1

u2j

dp = 0, j = 1, . . . , n. (15d)

Remark. From the point of view of the operator (11) the diffferential dp is the density
of the states per unit length. If the potential u(x) is periodic then dp coincides with the
differential of quasimomentum (see [6]).

Proposition. For any fixed nonreal λ the function

Pn(λ)

2
√

Rn(λ)

can be extended from M0
n to a C∞-smooth functional on M .

Proof is based on the results of Section III of [8].

Example. The space M1 has two boundary components M1
0 and M2

0 . Near M1
0 one

has

dp =
dλ

2
√

λ − u
+

ǫ

8(v − u)

λ + v − 2u

(λ − v)2
√

λ − u
+ O(ǫ2). (16)

Near M2
0

dp =
dλ

2
√

λ − u
+ 2δ

v − u

(λ − v)
√

λ − u
+ O(δ2). (17)

The corrections in the r.h.s. of the last formula contain also exponentially small terms like
exp−1

δ .

4



Corollary. The coefficients Ik = Ik(u1, . . . , u2n+1) of the expansion

p(λ) =
√

λ +
∞
∑

k=0

Ik

(2
√

λ)2k+1
(18)

are C∞-smooth functionals on M .

Remark. The functions Ik(u1, . . . , u2n+1) of the spectrum of a n-gap potential u(x)
are local functionals of u(x). That means that their values can be computed by averaging
certain differential polynomials (the KdV conservation laws)

Ik(u1, . . . , u2n+1) = lim
T−>∞

1

2T

∫ T

−T

Qk(u, u′, . . . , u(k−1)) dx. (19)

For example,
Q0 = −u, Q1 = −u2,

etc.

A curve on M is a continuous map of an open segment I ⊂ R

γ : I → M,

i.e., a sequence of smooth maps
γn : Dn → M0

n

defined on some open subsets of I

γn(x) = (u1(x), . . . , u2n+1(x)) , n = 0, 1, . . .

such that
Di ∩ Dj = ∅, i 6= j, ∪∞

n=0Dn = I. (20)

On the intersections of the closures of Dn∩Dn+1 the maps γn must satisfy certain boundary
conditions (see below for solutions of Whitham equations).

Let us draw such a curve on the plane as it is shown on Fig.1. We will call such a
map multivalued function, and the curve like in Fig.1 graph of the multivalued function.
We say that a multivalued function is Ck-smooth if the graph of it is a Ck-smooth plane
curve.

To formulate our main result we need to define the Whitham system. This is a
sequence of systems of the first order quasilinear evolutionary PDEs of the form

∂tui =

2n+1
∑

j=1

An, i j(u1, . . . , u2n+1)∂xuj , i = 1, . . . , 2n + 1 (21n)

defined for each n = 0, 1, . . .. For n = 0 this coincides with the Riemann wave equation
(3). For any n > 0 the system (21n) is obtained from the KdV equation by applying
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the Whitham averaging procedure [16] to the family of n-gap invariant tori (see [7]). It
describes slow modulations of the parameters u1, . . . , u2n+1 of n-gap quasiperiodic solutions
of KdV. That means that the formula

u(x, t) ≃ Un

(

ǫ−1S1(ǫx, ǫt), . . . , ǫ−1Sn(ǫx, ǫt); u1(ǫx, ǫt), . . . , u2n+1(ǫx, ǫt)
)

describes the leading term of the asymptotics with ǫ → 0 in the region |x| < ǫ−1, |t| < ǫ−1

of the oscillating solution of KdV equation with slowly varying parameters u1, . . . , u2n+1.
The small parameter ǫ measures the ratio of the period of oscillations in (14) to the charac-
teristic scale of modulations of the parameters. The phase functions S1(x, t), . . . , Sn(x, t)
are found by quadratures

dSi(x, t) = ki (u1(x, t), . . . , u2n+1(x, t))dx + ωi (u1(x, t), . . . , u2n+1(x, t))dt.

Solutions of the Whitham equations (21n) for a given n typically exist only within
certain domains of the (x, t)-plane. The main problem of the theory of Whitham equations
is to glue together these solutions for different n in order to produce a C1-smooth in the
space M depending smoothly on t. In general it is not known what are to be the boundary
conditions to glue together solutions of the systems (21n) and (21n+1) for an arbitrary n.
These boundary conditions were found for n = 0 in [1].

Particularly, if for t = 0 and all −∞ < x < ∞ such a curve sits in M0 ⊂ M and is
given by the equation

x = h(u) (22)

for some smooth monotonic function h(u) then it is called solution of the Cauchy problem
for the Whitham system (21). Conjecturally this describes the weak limit of the solutions
of the Cauchy problem (22) for the KdV equation with small dispersion (see [12] and
references therein).

The explicit construction of the Whitham system (21n) for any n can be found in [9],
[7].

Let us now consider the functional

fx,t,c2,...,c2N+1,g = xI0 + 3tI1 −
2N+1
∑

k=2

ckIk −
∫

spectrum

Φ(λ)dp(λ) (23)

where the functionals Ik are defined from the expansion (18), c2, . . . , c2N+1 are arbitrary
real constants, c2N+1 > 0, and the function Φ(λ) is parametrized by another function g(u)
via the formula

Φ(λ) =
4

π

∫

∞

λ

g(u)√
u − λ

du. (24)

We assume that the function g(u) rapidly decrease at infinity. From Proposition it follows
that (23) is a C∞-smooth functional on M depending on the parameters x, t, c2, . . . , c2N+1,
g(u) (we will often keep explicitly only the dependence of the functional on the parameters
x, t).
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Theorem. 1) The minimizer of the functional (23) is a C1-smooth multivalued func-
tion of x that also depends C1-smoothly on the parameters t, c2, . . . , c2N+1.

2) For those values of the parameters when the minimizer (u1(x, t), . . . , u2n+1(x, t))
belongs to M0

n it satisfies the n-th Whitham system (21n).
3) Let us assume that the minimizer of the functional (23) for t = 0 and g = 0 belongs

to M0. Then for sufficiently small function g(u) the minimizer is a solution of the Cauchy
problem

x =

[

2N+1
∑

k=2

2k (2k − 1)!!

k!
ckuk + g(u)

]

t=0

(25)

(assuming monotonicity of the r.h.s.) for the Whitham equations.

We will call (23) functionals of the Peierls - Fröhlich type. Properties of such func-
tionals studied in [3, 4, 11] play an important role in the proof of Theorem.

Conjecture. The curve γ(x, t) given by the minimizer of the functional of the Peierls
- Fröhlich type describes the weak limit of the solutions of the Cauchy problem (25) for the
KdV equation with small dispersion.

It would be interesting to compare our variational principle for the Whitham system
with the maximization problem of Lax and Levermore describing the weak limit of the
Cauchy problem.

Remark. The dependence of the minimizer on the parameters ck is governed by
the equations of Whitham hierarchy. The latter is obtained by application of the aver-
aging procedure to the KdV hierarchy. See [5] where a variational principle for solving
Whitham-type hierarchies was proposed in a more general setting of hierarchies arising in
2D topological field theories.

Example. Let us study minima of the functional

fx,t = xI0 + 3tI1 −
1

20
I3. (26)

Restriction of the functional onto M0 has the form (1). Thus the minimizer

x + 6ut = u3 (27)

of the restriction solves the Riemann wave equation (i.e., the Whitham equation for n = 0).
Let us find for which x, t the solution of (27) is also minimal along the directions transversal
to M0 ⊂ M .

First we consider embedding M0 as the component M1
0 of the boundary of the space

M1. In other words, we study what happens with the functional (26) when a small gap of
the width 2

√
ǫ opens in the spectrum near the point v for some v > u. From the formula

(16) one obtains

fx,t = −xu − 3tu2 +
1

4
u4
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+ǫ
−30tu + u3 + 5x + 60tv + 2u2v + 8uv2 − 16v3

u − v
+ O(ǫ2). (28)

Near the minimizer (27) the coefficient in front of ǫ can be rewritten in the form

1

5

(

3u2 + 4uv + 8v2 − 30t
)

. (29)

It can be easily seen that for
x < −12

√
3t3/2

the polynomial (29) takes positive values for an arbitrary v. So for these x near the point
(27) the value of the functional (26) increases when a small gap opens at any place of the
spectrum (recall that ǫ > 0). On the curve

x = −12
√

3t3/2

from (27) we find

u = −2
√

3t.

The polynomial (29) then has a double root

v =
1

2

√
3t.

For
x > −12

√
3t3/2

the polynomial (29) has real roots v, so fx,t does not have minimum at (27) for these
values of (x, t). The minimizer moves into the inner part of M1. That means that for
x = −12

√
3t3/2 a small gap opens in the spectrum around the point −1

2

√
3t.

Let us consider now behaviour of fx,t near M0 = M2
0 ⊂ M1 (a point v of discrete

spectrum is added). From the formula (17) one obtains

fx,t − xu − 3u2t +
1

4
u4 +

8

35
δ(v − u)

×
[

−70tu + 5u3 − 35x − 140tv + 6u2v + 8uv2 + 16v3
]

+ O(δ2). (30)

As above, near the point (27) one can rewrite the coefficient in front of δ as

8

35
(v − u)2

[

30u2 + 24uv + 16v2 − 140t
]

. (31)

Again, it can be easily shown that for

x >
4

3

√

5

3
t3/2
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the solution (27) is minimal along the directions transversal to M0 = M2
0 ⊂ M1 (the

polynomial (31) has no real roots v < u). The stability of the minimizer fails starting from

x =
4

3

√

5

3
t3/2

For this value of x a point of discrete spectrum borns at

v = −3

2

√

5

3
t

(then u = 2
√

5
3 t). For smaller x this point inflates into a zone of the spectrum of a one-gap

potential.
The restriction of the functional (26) onto M1 can be written as the function

fx,t(u1, u2, u3) =
c4

5184
+

c2 g2

72
+

3 g2
2

140
− c g3

15
− c3 η

108 ω
− c η g2

15 ω

+
4 η g3

35 ω
− c2 t

12
− g2 t +

2 c η t

ω
− c x

6
+

2 η x

ω
(32)

Here η = η(g2, g3), ω = ω(g2, g3) are the standard functions (see [2]) defined for the elliptic
curve

w2 = 4z3 − g2z − g3 (33)

for arbitrary parameters g2, g3, c satisfying

g2
2 − 27g2

3 > 0

and
ui =

c

6
− ei, i = 1, 2, 3

where e1 > e2 > e3 are the roots of the polynomial in the r.h.s. of (33). From our Theorem
and results of Potemin [14] it follows that for any positive t and

−12
√

3 <
x

t3/2
<

4

3

√

5

3
(34)

the function (32) has a unique minimum on M1. It can be shown that the minimizer is
stable also in the transversal directions w.r.t. various embeddings of M1 as components of
the boundary M2. As a consequence we conclude that, for any sufficiently small function
g(u) the minimizer of the functional (26) for any x, t belongs to M1 or to the boundary of
it. Recall that, according to the theorem, the minimizer gives the solution of the Cauchy
problem for Whitham system with the initial data

x = u3 + g(u) (35)
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for t = 0.

The solution of the Cauchy problem

x = u3 for t = 0

for Whitham system was first studied by Gurevich and Pitaevski in 1973-74 in their papers
[10] on dispersive analogue of shock waves. They found this solution numerically. Ana-
lytically this solution was found in [14]. In numerical experiments Avilov, Krichever, and
Novikov [1] discovered remarkable stability of the solution of Gurevich and Pitaevski w.r.t.
small perturbations g(u). Our variational formulation of the Whitham system provides a
simple explanation of this stability.

Remark. In a recent paper [15] Fey Rey Tian proved that the solution of the Cauchy
problem (35) globally belongs to M1 not only for small g(u) under an additional assumption
that the monotonically increasing function u3 + g(u) has only one inflection point.

10



References.

[1] V.V.Avilov, S.P.Novikov, Evolution of Whitham zone in KdV theory, Sov. Phys.

Dokl. 32 (1987) 366 - 368; V.V. Avilov, I.M.Krichever, S.P.Novikov, Evolution of the
Whitham zone in the Korteweg - de Vries theory, ibid. 564 - 566.
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[3] E.D.Belokolos, Peierls - Fröhlich problem and potentials with finite number of gaps.

I, II, Theor. Math. Phys. 45 (1980) 1022 - 1026; 48 (1981) 604 - 610.
[4] S.A.Brazovski, I.E.Dzyaloshinski, I.M.Krichever, Discrete Peierls - Fröhlich models
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