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Abstract.

An approach to the Schottky problem of specification of periods of holomorphic differ-
entials on Riemann surfaces (or, equivalently, specification of Jacobians among all princi-
paly polarized Abelian varieties) based on the theory of Kadomtsev - Petviashvili equation,
is discussed.

Introduction. Dispersion relations for linear and nonlinear waves.

One of the first exercises in a course of PDE is in finding particular solutions. For
linear PDE the simplest solutions can be found immediately using wellknown properties
of the exponential. For example, for linear wave (or Helmholtz) equation

utt − uxx + m2u = 0 (0.1)

one can try to find a solution of the form

u(x, t) = Aei(kx+ωt). (0.2)

Here A, k, ω are unknown parameters. After substitution in the equation one obtains a
constraint for the parameters ω, k

ω2 − k2 = m2 (0.3)

and no constraints for the amplitude A because of linearity of the equation. The solution
(0.2) is called plane wave, or one-phase solution of (0.1). The parameters A, k, ω are the
amplitude, the wave number† and the frequency of the plane wave. The equation (0.3)
thus is the dispersion relation for the plane waves. The solution is 2π

k
-periodic in x and

2π
ω

-periodic in t for real ω, k. The solution (0.2) is a complex one; to obtain a real solution
one can take the real part of (0.2).

Multiphase quasi-periodic solutions of (0.1) are linear superpositions of plane waves

u(x, t) =
∑

s

Ase
i(ksx+ωst), (0.4a)

† In more standard terminology the wave number is −k.
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As arbitrary, ω2
s − k2

s = m2. (0.4b)

Considering infinite sums (or integrals over s) for real ks, ωs one obtains a general solution
of the Cauchy problem for the equation (0.1) for appropriate functional classes of initial
data.

Nonlinear analogues of simple waves can be constructed for a wide class of PDE. A
feature of them is that also the amplitude being involved in the dispersion relation for the
nonlinear waves. To see it let us consider a nonlinear wave equation

utt − uxx + V ′(u) = 0. (0.5)

Let us assume the potential V (u) to satisfy the following condition: the equation

V (u) = E (0.6a)

has two solutions
u− = u−(E) < u+ = u+(E) (0.6b)

for some interval Emin < E < Emax. Then nonlinear simple waves have the form

u(x, t) = U(kx + ωt + φ0; E) (0.7a)

for arbitrary phase shift φ0, where the function U = U(φ; E) has the form

∫ U

u−(E)

du
√

2(E − V (u))
= I(E)φ, (0.7b)

I(E) =
1

π

∫ u+(E)

u−(E)

du
√

2(E − V (u))
(0.7c)

and the parameters ω, k, E satisfy

ω2 − k2 = I−2(E). (0.7d)

The function U(φ; E) plays the role of the exponential (U =
√

2E
m

cos φ for linear case). It is
2π-periodic in φ. So, again, the parameters ω, k have the sense of the frequency and wave
number of the nonlinear waves (0.7). Shape of the wave is determined by the amplitude
parameter E. The constraint (0.7d) for ω, k, E is nothing but nonlinear dispersion relation
for the frequency, wave number and amplitude of the nonlinear waves.

One can try to look for multiphase oscillating solutions of a nonlinear PDE of the
form (in the spatialy one-dimensional case)

u(x, t) = U(k1x + ω1t + φ10, . . . , kmx + ωmt + φm0;A) (0.8)

where the function U(φ1, . . . , φm;A) is 2π-periodic in φ1, ..., φm. The vector of parameters
A plays the role of “amplitudes”. It turns out that existence of such multiphase solutions
for sufficiently big m (probably, for m > 2; see [16] for examples of 2-phase solutions of
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a nonintegrable equation) is a feature of integrable evolutionary equations (though this
statement is still to be proved). For the KdV equation these are the famous finite-gap
(or algebraic-geometrical) solutions that were constructed in the papers of 1974 - 1976 by
S.Novikov and B.Dubrovin [1, 3-5], P.Lax [2], A.Its and V.Matveev [6], H.McKean and
P.van Moerbeke [8]. On this basis a program of constructing and investigating multiphase
solutions of nonlinear integrable systems was developed (see surveys [7, 9-12]). An ex-
tremely important step in development of this program was done by I.Krichever [13-14,
9]. He found a general approach to construct algebraic-geometrical solutions of spatialy
2-dimensional integrable systems such as the Kadomtsev - Petviashvili (KP) equation

3

4
uyy = ∂x(ut −

1

4
(6uux − uxxx)). (0.9)

Multiphase solutions of this equation have the form

u(x, y, t) = U(k1x + l1y + ω1t + φ10, . . . , kmx + lmy + ωmt + φm0;A) (0.10)

for arbitrary phase shifts φ10, ..., φm0, where, as above, the function U(φ1, . . . , φm;A) is
2π-periodic in each φ1, ..., φm, and A is a vector of amplitude parameters. This function
can be expressed via multidimensional theta-functions. Theta-functions are defined by a
multiple Fourier series

θ(φ|τ) =
∑

−∞<n1,...,nm<∞

exp(πi
m

∑

p,q=1

τpqnpnq +
m

∑

p=1

inpφp), (0.11)

φ = (φ1, . . . , φm), τ = (τpq)1≤p,q≤m.

Parameters of the theta-function form a period matrix, i.e. a symmetric m × m complex
matrix τ = (τpq) with positive definite imaginary part. This is 2π-periodic in φ1, ..., φm.
It also posesses the quasi-periodicity property

θ(φ + Nτ |τ) = exp(−πi < Nτ, N > −i < N, φ >)θ(φ|τ) (0.12)

for any integer vector N = (N1, . . . , Nm), where the brackets < , > mean the Euclidean
inner product

< N, φ >=
m

∑

1

Nsφs.

The Krichever’s solutions of KP have the form (0.10) where

U = U(φ; τ) = −2∂2
k log θ(φ|τ) + c, (0.13)

∂k =
m

∑

p=1

kp
∂

∂φp
,
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c is an arbitrary constant. (This can be killed by the transformation

ωp #→ ωp −
3

2
ckp, p = 1, . . . , m

u #→ u − c.)

So the period matrix τ can be considered as the amplitude of the multiphase solutions of
KP. The main object of our investigation will be dispersion relations for these multiphase
solutions

FKP(k, l, ω, τ) = 0

where FKP(k, l, ω, τ) is a vector-valued analytic function. Explicit form of this system
of equations will be given below. It turns out that these dispersion relations for m ≥ 4
constrain also the period matrix τ . These constraints will give a solution of the classical
Schottky problem (see Section 2 below) exactly specifying period matrices of holomorphic
differentials on Riemann surfaces.

1. Dispersion relations for multiphase solutions of KP. Novikov’s conjec-
ture.

To obtain disperion relations for multiphase solutions (0.10), (0.13) let us substitute
the theta-functional formula (0.11) to the KP equation (the constant c is assumed to equal
zero). After substitution one obtains

∂2
x[(θxxxxθ − 4θxxxθx − 3θ2

xx − 4θxθt + 4θxtθ − 3θyyθ + 3θ2
y)/θ2] = 0 (1.1)

where
θ = θ(kx + ly + ωt + φ0|τ)

φ0 is an arbitrary complex vector. If the theta function is indecomposable (see below) then
the expression in the square brackets equals a constant. Let us denote this integration
constant by −8d. To reduce the obtained equality

θxxxxθ − 4θxxxθx − 3θ2
xx − 4θxθt + 4θxtθ − 3θyyθ + 3θ2

y + 8dθ2 = 0

to a finite number of dispersion relations for k, l, ω, and τ , let us introduce the theta-
functions of the second order

θ̂[p](φ|τ) =
∑

−∞<n1,...,nm<∞

exp(2πi
m

∑

q,r=1

τqr(nq +
pq

2
)(nr +

pr

2
)+

m
∑

q=1

i(nq +
pq

2
)φq). (1.2)

Here p ∈ Zm
2 , i.e. it is an arbitrary m-vector with the coordinates being equal to 0 or 1.

We have 2m such theta-functions of the second order. Values of these theta-functions and
of their derivatives in the origin φ = 0 are called theta-constants. They are functions only
on τ . For brevity let us omit arguments of the theta-constants:

θ̂[p] ≡ θ̂[p](0|τ),
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θ̂ij [p] ≡
∂2

∂φi∂φj

θ̂[p](0|τ),

θ̂ijqr[p] ≡
∂4

∂φi∂φj∂φq∂φr
θ̂[p](0|τ).

(The theta-functions (1.2) are even functions of φ, so only derivatives of even order in the
origin could be nonzero.)

Theorem 1.[15] Dispersion relations for the multiphase solutions (0.10), (0.13) have
the form

∂4
k θ̂[p] + ∂k∂ωθ̂[p] +

3

4
∂2

l θ̂[p] + dθ̂[p] = 0 (1.3)

for arbitrary p ∈ Zm
2 .

Here
∂4

k θ̂[p] =
∑

i,j,q,r

kikjkqkr θ̂ijqr[p]

∂k∂ωθ̂[p] =
∑

i,j

kiωj θ̂ij [p]

∂2
l θ̂[p] =

∑

i,j

lilj θ̂ij [p].

The dispersion relations (1.3) are written in the form of a system of algebraic equations
for the coordinates of the vectors k, l, and ω and for an auxillary unknown variable d with
the coefficients depending on the period matrix τ . For m = 1, 2, 3 for generic matrix τ
one can solve the dispersion relations in the form

k = k(τ), l = l(τ), ω = ω(τ)

(in fact, one obtains a one-parameter family of solutions, see [15, 10, 17] and Section 3
below). This parametrization of 2-phase solutions of KP was used in [18] for constructing
physicaly realistic models of nonlinear waves on shallow water.

For m > 3 the dispersion relations are an overdeterminned system of algebraic equa-
tions for k, l, ω, d. Compatibility conditions of these overdetermined equations constrain
the “amplitude” τ . It was conjectured by S.Novikov in 1980 that these constraints exactly
specify periods of Riemann surfaces providing a solution of the classical Schottky problem.
We are coming now to the formulation of this problem.

2. Periods of Riemann surfaces. Schottky problem.

A challenge of the theory of functions of the XIXth century is the problem of moduli of
Riemann surfaces (still far from having been solved). Intuitively, the problem is to obtain
a complete “list” of pairwise inequivalent Riemann surfaces of a given genus g. For g = 0
the “list” consists only of one point: the Riemann sphere (= CP1) since any Riemann
surface of genus 0 is equivalent (biholomorphic) to the Riemann sphere. For g = 1 one
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obtains a 1-parameter family of Riemann surfaces (elliptic curves). If an elliptic curve is
represented in the Weierstrass canonical form

y2 = 4x3 − g2x − g3 (2.1)

(where g2 and g3 are complex numbers) then the combination

J =
g3
2

g3
2 − 27g2

3

(2.2)

depends only on the equivalence class of the curve. So it can serve as the parameter of
equivalence classes of elliptic curves (2.1) (in fact, any elliptic curve can be represented in
the Weierstrass form (2.1)). Another choice of the parameter is the period of the elliptic
curve

τ =

∮

b

dx

y
:

∮

a

dx

y
(2.3)

where a and b are basic cycles on the elliptic curve (i.e., on the torus) oriented in such
a way that the intersection number a ◦ b = 1. This is a complex number with positive
imaginary part Imτ > 0. Ambiguity in the choice of the basis a, b provides the following
transformation of the period τ

τ #→
Aτ + B

Cτ + D
(2.4)

A, B, C, D are integers, det

(

A B
C D

)

= 1.

Therefore the family of all elliptic curves can be represented as a quotient of the upper
half plane H over the action (2.4) of the modular group M1 = SL(2,Z)/(±1).

For higher genera g > 1 the moduli space of Riemann surfaces has the complex
dimension 3g − 3 (see, e.g. [19]). Periods of a Riemann surface R of any genus g > 0
are natural parameters uniquely specifying the class of biholomorphic equivalence of the
surface. These periods are defined as follows.

Let us fix a symplectic basis a1, ..., ag, b1, ..., bg ∈ H1(R,Z) of cycles on the surface
R. That means that the intersection numbers of these cycles have the following canonical
form

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij .

Here δij is the Kronecker delta. The basis of cycles ai, bj uniquely specifies a basis of
holomorphic differentials (Abelian differentials of the first kind) on the surface R Ω1, ...,
Ωg such that

∮

ai

Ωj = δij . (2.5)

The period matrix τ = (τij) of the surface R (with respect to the symplectic basis ai, bj)
has the form

τij =

∮

bi

Ωj , i, j = 1, . . . , g. (2.6)
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It is a symmetric matrix with positive definite imaginary part. For g = 1 it coincides with
(2.3).

A change of the symplectic basis ai, bj implies the following transformation of the
period matrix

τ #→ τ̃ = (Aτ + B)(Cτ + D)−1 (2.7a)
(

A B
C D

)

∈ Sp(g,Z) = {

(

A B
C D

)

|

(

AT CT

BT DT

) (

0 1
−1 0

) (

A B
C D

)

=

(

0 1
−1 0

)

}.

(2.7b)
According to the classical Torelli’s theorem (see [19]) the class of (biholomorphic) equiva-
lence of a Riemann surface R is uniquely determined by the class of equivalence (2.7) of
the period matrix of the surface.

Remark. Using periods of a Riemann surface R as the parameters of the theta-
function (0.11) (here m = g) one obtains the theta-function of the Riemann surface R. This
is a very important special function associated with a Riemann surface both in algebro-
geometrical calculations (see, e.g. [20]) and in application to nonlinear equations (see
the next section). The above Novikov’s conjecture means that only theta-functions of
Riemann surfaces occur in the multiphase solutions of nonlinear equations (particularly, of
KP). The advantage of KP (and, more generaly, of any 2+1 integrable system) is that the
theta-function of arbitrary Riemann surface gives a multiphase solution of the equation.
Multiphase solutions of a given 1+1 integrable system (like KdV) are expressed via more
particular classes of theta-functions of Riemann surfaces represented as coverings of the
Riemann sphere with fixed number of sheets. So dispersion relations of none of the 1+1
integrable systems can be used for specification of period matrices of all the family of
Riemann surfaces.

Let us consider the family of all g × g symmetric matrices τ with positive definite
imaginary part. They form Siegel upper half plane Hg. The Siegel modular group Mg =
Sp(g,Z)/(±1) acts on the Siegel upper half plane by the transformations (2.7) (see [21]).
Theta-functions θ(φ|τ) and θ(φ̃|τ̃), where φ̃ = φ(Cτ +D)−1, for equivalent matrices τ and
τ̃ coincide up to a shift of the argument and multiplication by exponential of a quadratic
form of φ (see [21] for the explicit formula of the transformation law).

A matrix τ ∈ Hg is called decomposable if it is equivalent to a block-diagonal matrix

τ̃ =

(

τ
′

0
0 τ

′′

)

.

The correspondent theta-function is factorized to a product of theta-functions with less
than g arguments. The period matrices of a Riemann surface always is indecomposable
[19].

We are ready now to formulate the Schottky problem [31]. The periods of Riemann
surfaces of a given genus g determine the period map

Moduli space of Riemann surfaces of genus g → Hg/Mg.

The Torelli theorem provides this map to be injective (in fact, being an analytic embedding
of the complex varieties: see [19]). For g = 1, 2, 3 the image of the period map is an open
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dense subset in Hg/Mg (the completion is empty for g = 1 and coincides with the sublocus
of decomposable matrices τ for m = 2, 3). For g > 3 the dimension 3g − 3 of the moduli
space of Riemann surfaces is less than the dimension g(g + 1)/2 of the Siegel upper half
plane. The Schottky problem reads: to specify the image of the period map for g > 3,
i.e. to find a system of g(g + 1)/2 − (3g − 3) equations for unknowns τij ∈ Hg specifying
periods of Riemann surfaces.

The above Novikov’s conjecture can be reformulated as follows: the dispersion rela-
tions (1.3) for multiphase solutions of KP as equations for τ for g = m > 3 exactly specify
periods of Riemann surfaces.

The main motivation for this conjecture was the Krichever’s construction of algebro-
geometric solutions of the KP equation given in the next section.

3. Krichever’s multiphase solutions of KP.

Let us come back in more details to the multiphase solutions of KP. In fact in [13] it
was constructed a family of the multiphase solutions (0.10), (0.13) where the period matrix
τ is just the period matrix of a Riemann surface and components of the wave numbers and
frequency vectors are certain Abelian integrals on the Riemann surface. More precisely,
let R be a Riemann surface of genus g with a marked point ∞ ∈ R, and with a local
parameter z on R near this point such that z(∞) = 0, and with a marked symplectic basis
of cycles ai, bj . Then for the Krichever’s multiphase solutions (0.10), (0.13) m = g, τ is
the period matrix of the surface R,

kj =

∮

bj

η(1) (3.1a)

lj =

∮

bj

η(2) (3.1b)

ωj =

∮

bj

η(3) (3.1c)

where η(q) are the normalized

∮

aj

η(q) = 0, j = 1, . . . , g,

Abelian differentials of the second kind with a pole only at ∞ with the principal parts

η(q) = d(z−q) + regular terms, q = 1, 2, 3.

Theorem 2. [13] For an arbitrary Riemann surface R of genus g with a marked point
∞ and with a marked local parameter z near this point and with a marked symplectic basis
ai, bj the formulae (0.10), (0.13), (2.6), (3.1) with m = g determine a multiphase solution
of the KP equation.

Remark. We consider here complex multiphase solutions of KP being meromorphic
functions of complex variables φ1, ..., φm. One should impose certain reality constraints
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for the data R, ∞, z and for the phase shift φ0 to obtain real smooth multiphase solutions
of the two real modifications of KP: the equations KP1 (coinciding with (0.9)) and KP2
(this can be obtained from (0.9) by the substitution y #→ iy). The reality constraints were
obtained in [10, 22] (for periodic multiphase solutions also in [23]). In [23] it was proved
that the multiphase double periodic (in x, y) solutions of the KP2 form a dense subset in
the space of all double periodic solutions of this equation.

It turns out that the solution does not depend on a choice of the symplectic basis of
cycles. A change of the local parameter

z #→ a1z + a2z
2 + a3z

3 + . . .

reads as the following transformation of the solution

x #→ a1x + 2a2y + 3a3t

y #→ a2
1y + 3a1a2t

t #→ a3
1t

u #→ ua−2
1 + 2(a2

2 − a1a3)a
−2
1

(so u transforms like a projective connection on the Riemann surface).

4. KP equation and Schottky problem.

Let us come back to the Novikov’s conjecture (see the end of Section 2 above). The
system (1.3) has trivial solutions where the theta-function is a decomposable one. To get
rid of these solutions let us impose the following nondegeneracy condition for the theta-
function: the matrix of theta-constants

(θ̂11[p], θ̂12[p], . . . , θ̂mm[p], θ̂[p])

(the matrix has m(m+1)
2 + 1 columns and 2m lines enumerated by the vectors p ∈ Zm) has

maximal rank = m(m+1)
2 + 1. The nondegeneracy condition holds for period matrices of

Riemann surfaces [17]. We will consider solutions of the system (1.3) only satisfying the
nondegeneracy condition.

The system of dispersion relations is invariant with respect to the action of the group
of changes of local parameter z

k #→ λk (4.1a)

l #→ ±(λ2l + 2αλk) (4.1b)

ω #→ λ3ω + 3λ2αl + 3λα2k (4.1c)

d #→ λ4d, τ #→ τ (4.1d)

and also with respect to the following action of the Siegel modular group (2.7)

τ #→ (Aτ + B)(Cτ + D)−1 (4.2a)
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k #→ kM−1, where M = Cτ + D, (4.2b)

l #→ lM−1 (4.2c)

ω #→ ωM−1 +
1

3
{k, k}kM−1, where {x, y} = xM−1CyT (4.2d)

d #→ d +
3

8
{l, l}−

1

2
{k, ω}−

3

4
{k, k}2. (4.2e)

Hence eliminating the variables k, l, ω, d from the dispersion relations we obtain a system
of equations (for m > 3) for the matrix τ being invariant with respect to the action of the
modular group (i.e. if the system (1.3) is compatible for a period matrix τ then it will be
compatible for any matrix τ̃ being equivalent (2.7) to τ). So the compatibility conditions
of the system (1.3) specify a sublocus

Xm ⊂ Hm/Mm.

Due to the Theorem 2 this sublocus contains period matrices of Riemann surfaces of genus
g = m.

The first test of the Novikov’s conjecture was done in [17]: it was shown that the
irreducible component of Xm containing period matrices of Riemann surfaces consists only
of period matrices of Riemann surfaces. Even this statement sounds surprising. Indeed,
from the construction of the Section 3 it follows that for a given τ = period matrix of a
Riemann surface the system (1.3) is more than compatible: it has a one-parameter family
of solutions due to ambiguity in the choice of the marked point ∞ on the Riemann surface.
So the crucial point to prove the Novikov’s conjecture is to prove that from compatibility
of (1.3) it follows that (1.3) has a one-parameter family of solutions k = k(τ, ε), l = l(τ, ε),
ω = ω(τ, ε). If we identify the parameter ε with the z-coordinate of the displaced marked
point ∞ #→ ∞′, ε = z(∞′), then the coefficients of the expansion

k(τ, ε) = k +
ε

2
k(2) +

ε2

2
k(3) + . . .

are periods of the normalized Abelian differentials of the second kind with poles at ∞,

k(q)
i = cq

∮

bi

η(q), i = 1, . . . , g

(for certain constants cq). One has k(2) = l, k(3) = ω, other vectors k(q) are the frequencies
of the multiphase solutions of the same form (0.10), (0.13) to the q-th equation of the KP
hierarchy. Thus one needs to prove that any theta-function solution (0.10), (0.13) of KP
can be extended to a solution of all the KP hierarchy.

The final step in proof of Novikov’s conjecture was obtained by T.Shiota who proved
that Xm has no extra irreducible components:

Theorem 3.[24] An indecomposable theta-function gives a multiphase solution (0.10),
(0.13) of the KP equation iff it is the theta-function of a Riemann surface.

10



Because of limits of the paper we have no possibility to discuss here this remarkable
theorem. Another proof of the Novikov’s conjecture was obtained by E.Arbarello and C.De
Concini [25].

Conclusion.

Investigating of dispertion relations of other integrable differential equations [26-28,
32-38] turned out to be fruitful for the algebraic geometry of Abelian varieties (e.g., Prym
varieties [28]) as well as for the theory and applications of integrable systems. An approach
to calculation parameters of real multiphase solutions of KP based on the classical theory
of Schottky uniformization of Riemann surfaces and Burnside series was proposed in [29].
Recently it was found [30] that periods of Riemann surfaces with fixed number of sheets
and fixed ramification at infinity as functions of moduli of these Riemann surfaces are
themselves solutions of certain integrable systems arising in topological field theory. But
this stuff, probably, should be a part of the next decade history of the soliton theory.
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