
Commun. Math. Phys. 152, 539-564 (1993) Communications in 
Mathematical 

Physics 
�9 Springer-Vedag 1993 

Geometry and Integrability 
of Topological-Antitopological Fusion 

B. Dubrovin  ~ 

I.N.F.N., Sez. di Napoli, Mostra d'Oltremare, Pad. 19, 3-80125 Napoli, Italy 
E-mail DUBROVIN@tsmi 19.sissa.it 

Received May 22, 1992 

Abstract.  Integrability of equations of topological-antitopological fusion (being pro- 
posed by Cecotti and Vafa) describing the ground state metric on a given 2D topo- 
logical field theory (TFT) model, is proved. For massive TFT models these equations 
are reduced to a universal form (being independent on the given TFT model) by 
gauge transformations. For massive perturbations of topological conformal field the- 
ory models the separatrix solutions of the equations bounded at infinity are found 
by the isomonodromy deformations method. Also it is shown that the ground state 
metric together with some part of the underlined TFT structure can be parametrized 
by pluriharmonic maps of the coupling space to the symmetric space of real positive 
definite quadratic forms. 

Introduction 

The idea of topological field theories (TFT) as solvable models without local, 
propagating degrees of freedom was proposed in [1]. In [1-4] it was shown that 
topological correlators (at tree level) in a 2D TFT model are holomorphic functions 
on moduli of the TFT model obeying an overdetermined system of nonlinear PDE 
(the equations of associativity of primary operator algebra). Integrability of these 
equations was proved in [5]. 

The problem of calculation of the ground state metric of a family of TFT was 
studied in a general situation (for both massless and massive theories) in [6]. In 
this paper a system of PDE for the ground state metric (being a Hermitian metric 
on the moduli space of TFT) was derived. The topological and "antitopological" 
(i,e. complex conjugate) correlators serve as coefficients of these PDE. This general 
construction of calculating of ground state metric was called in [6] a topological- 
antitopological fusion. The equation of the same form arises for the metric on 
moduli space of Calabi-Yau varieties [7, 8]. The Hermitian metric on the moduli 
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space in this case is the same as the Zamolodchikov metric [9] of the underly- 
ing N = 2 superconformal field theories. In this case the metric is K~hler having 
special properties. The geometry of the moduli space with this metric is called in 
[7, 8] special geometry. Thus general solutions of the equations of [6] can be called 
also generalized special geometry. Also in [6, 10, 11] a number of particular integrable 
reductions of the main equations was found. It was shown that under some symme- 
try assumption the equations of topological-antitopological fusion can be reduced 
to affine Toda equations (particularly, to Euclidean sinh-Gordon) and to some other 
integrable systems of the soliton theory. For massive perturbations of topological 
conformal field theory (TCFT) many particular reductions of the main equations 
can be solved via the Painlev6 transcendents of the third kind. More complicated 
reduction of the equations of topological-antitopological fusion was investigated 
numerically in [12]. 

The present paper can be considered as a continuation of the investigations having 
been started in [5] of the r61e of integrable systems in the TFT. The main aim of this 
paper is to prove integrability of the equations of topological-antitopological fusion 
in the general case. This integrability immediately follows from the zero-curvature 
representation of these equations depending on a spectral parameter being obtained 
in Sect. 1. 

In Sect. 2 it was proved for massive TFT models that the equations of topological- 
antitopological fusion can be reduced to a universal integrable PDE system with 
constant coefficients (i.e. not depending on the given TFT model). For models with 
two primaries this system coincides with the Euclidean sinh-Gordon. For massive 
perturbations of TCFT the ground state metric can be found from the equations 
(generalizing the Painlev6 III) of isomonodromy deformations of a linear operator 
with rational coefficients (again this operator is universal, i.e. it does not depend on 
the concrete TCFT model). The separatrix solutions of these equations satisfying at 
infinity the boundary conditions of [6] are found in Sect. 2 using Riemann boundary 
value problem machinery. 

A nice geometrical reformulation of the equations of topological-antitopological 
fusion is given in Sect. 3. It is shown that any solution of these equations determines 
a pluriharmonic map (i.e. harmonic along complex directions) of the moduli space 
of the TFT model to the symmetric space of real positive definite quadratic forms 
(in fact a loop in the space of pluriharmonic maps). Conversely, any such a map 
determines a family of topological-antitopological fusion structures on the moduli 
space together with the underlying TFT structure. Functional parameters of the 
family can be described explicitly in differential geometric terms. This relation to 
the theory of harmonic maps probably can be useful to describe possible topological- 
antitopological fusion structures "in large" (i.e. using appropriate information about 
topology of the moduli space of the TFT model). 

1. Zero-Curvature Representation for the Equations 
of Topological-Antitopological Fusion 

Let M be a complex manifold of (complex) dimension n with a nondegenerate 
holomorphic complex quadratic form 

r] = r]ab(Z)dzadzb~ det(~ab) ~A 0 (1.1) 
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and a Hermitian positive definite form 

g = gab( z, z )  d2adzb , gg-~ =- gab, det(gab) 7 k 0 (1.2) 

(the bar means complex conjugations). 

Definition 1.1. The pair r/, g is called compatible  if there exists a complex connection 
tFc Fe = /-c D = ~, ~b, a~ ~b)' where for any complex vector field X = XaO~ 

D ~ X  ~ = O~X ~ + F~b X b  , (1.3a) 

D e X  a = O~X a' , (1.3b) 

D e = D r ,  (1.3c) 

such that 

Dcrla b z Or b - Fffarld b -- I'~orld b = 0,  (1.4a) 

Dcgab =-- Ocgab -- Fdbgad = 0. (1.4b) 

Note that the equations Da~7~b = 0, Dagab = 0 follow from (1.4). 
It is clear that the connection D for a compatible pair r/, 9 is determined uniquely. 

The matr ices /7  c = (Fba) have the form 

I~c = g - l O c g ,  g = (gab)" (].5) 

It immediately follows from the definition that the tensor M = (Mb), 

.~I b ~- ggc7] cb , (T] cb) = (%b) -x (1.6) 

obeys the equations 
M ~  r = const. 1. (1.7) 

The compatible pair ~?, g is called normal ized  if 

M k T / =  1. (1.8) 

On a complex manifold with a normalized compatible pair r/, g there is a canonical 

C-linear isomorphism between the spaces of  complex tensors of  the type ql 

T q ...ip~l...~y (i.e., tensors with the components of the form k...Jq[1...[q/ - -  the notations as in [13]) 

for given p § p / +  q § ql. In other words, the operations of raising and lowering of 
indices via %5, ~Tb~b, and gab commute. The parallel transport being specified by the 
connection F respects this isomorphism. Also an anticomplex involution r acting on 
the (complexified) tangent space T M  | C = TI ,~  Q T~ is defined as follows: 

~-(x~o~ + xaO~) = M } X a o  b + M~XaO b , 

T(TI,~ = T I ,~  T(T~ = T~  

7 -2 = 1, r(Ax) = 7~r(x) for k �9 C .  

The operator r commutes with the standard complex conjugation 

T I ' 0 - - + T  0'1, X ~ X ,  

r ( X )  = r ( X ) .  

The complex inner product 
( X ,  Y }  = f l a b X a y  b 

(1.9a) 

(1.9b) 

(1.9c) 

(1.10a) 

(1.lOb) 

(1.11) 
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and the Hermitian scalar product 

(X, Y )  = 9ab-X-dY b (1.12) 

are related by the equation 
(X, Y) = {r(X), Y) .  (1.13) 

The operator r is antiorthogonal with respect to the inner product {, }: 

@(X), ~-(Y)) = (X, Y}. (1.14) 

It is covafiantly constant with respect to the complex connection D: 

a d D c M  ~ = OeM b -t- F;dM ~ = 0. (1.15) 

Also one should have the condition of positive definiteness 

@(X),X} > 0  for X r  (1.16) 

Proposition 1.1. All compatible normalized pairs ~, 9 with fixed ~7 are in 1-1 
correspondence with anticomplex involutions of the form (1-9)-(1-16). 

The proof is straightforward. 
An anticomplex involution ~- with the above properties also will be called 

compatible with the complex metric ~]. 
The group of holomorphic automorphisms A = (Ab(z)) of TI,~ acts on 

normalized compatible pairs as follows: 

r 1 ~-+ ATe]A, g ~-~ A t g A ,  M ~-+ A - 1 M f [ ,  (1.17a) 

F a ~ A-1F~A + A- IO~A.  (1.17b) 

The connection D for the compatible pair r/, g .is not symmetric. I f /~  = (/~b) 
is the Levi-Civita connection for the metric ~7 (i.e. /~s = / ~ ,  bc~]ab -- Oc~b -- 
F~Tdb -- F~o~a = 0) then the difference 

TCab = FCab - -  J~c b (1.18a) 

is a (12) tensor. It obeys the symmetry 

TCbrled + TCd~]cb = 0. (1.18b) 

If one of the metric r /or  9 is flat then vanishing of the tensor Ts (in fact, vanishing 
of the skew-symmetric part T[~D] = FFab] ) is equivalent to simultaneous reducibility 
via holomorphic change of coordinates of the pair 7, 9 to a constant form. Note that 
the holomorphic part of the Riemann curvature tensor of the connection FaCb vanishes: 

[Da, Db] =_ O. (1.19) 

Remark. For any anticomplex involution r in a n-dimensional complex space T there 
exists a n-dimensional r-invariant real subspace V C T such that T is isomorphic to 
the complexification of V 

~-]v = 1, T = V ~ i V .  (1.20) 

Indeed, let 
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One has 

Because of the antilinearity (1.9c) we obtain 

i V + c v - ,  i V  c V + .  

Hence V- = iV+. Putting V = V+ we obtain (1.20). If a basis of the space T is 
chosen in V then the operator ?- in this basis is represented by the unity matrix. In 
other words, any matrix M = (M b) satisfying (1.8) can be represented in the form 

M = qSg ~-1 (1.21a) 

for some complex matrix ~. The matrices of the tensors r/, g in such a basis coincide 

G = r 5 = ~ t g ~ ,  (1.21b) 

so G is a real symmetric matrix. Hence the only algebraic invariant of a normalized 
pair % 9 is the signature of the Hermitian metric 9: For the positive definite Hermitian 
metric 9 matrices of all the tensors M,  % 9 can be reduced simultaneously to the unity 
matrix (in one point of the manifold M). Globally on a quasi-Fr6benius manifold M 
the distribution of the kernels 

V = ker(1 - r)  C TI '~  (1.22a) 

determines a real n-dimensional bundle ~ '  over M such that 

5~" C T 1'0 . (1.22b) 

One has 
T 1'~ = ~ '  | C .  (1.22c) 

This bundle uniquely determines the antiinvolution r (i.e. the tensor Mb). The tensors 
r/, g specify a positive definite quadratic form on ~/'. In other words, they specify a 
section G [see (1.21b)] of the associated bundle Q(~ ' )  of positive definite quadratic 
forms on the bundle ~ ' .  

To write the equations of topological-antitopological fusion (or, equivalently, 
the generalised equations of special geometry) we need to introduce the notion of 
Fr0benius manifold (see [5]). I recall that a commutative associative algebra A with 
a unity is called FrSbenius if there is a nondegenerate invariant inner product (, } on 
A: 

(ab, c} = (a, bc}. (1.23) 

M is called a (complex) quasi-Fr6benius manifold if a structure of Fr6benius algebra 
over the ring ,Y(M) of holomorphic functions on M is fixed on the space Vect(M) of 
holomorphic vector-fields. It is assumed that the invariant inner product on Vect(M) 
is specified by a nondegenerate holomorphic quadratic form ~7 [see (1.1)]. In local 
complex coordinates the multiplication law and the inner product should read 

( X .  Y)C(z) = Xa(z)Yb(z)Ccb(Z), (1.24a) 

( X ,  Y }  = )'lab(Z) X a ( z )  Y b ( z )  , (1.24b) 

where C~b, ~ b  are holomorphic tensors on M. These satisfy the equations 

c c (1.25a) Cba ~ Cab 

s d d s 
CabCsc = CasCbc , (1.25b) 

s (1.25c) Cabc ~ Cabals c z Cacb . 
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If  e = (e a) is the unity (holomorphic) vector field then 

a c e Gab = ~5~ (1.26) 

(the Kronecker delta). 
A quasi-Fr6benius M is called a FrSbenius manifold (see [5]) if the curvature of 

the connection 

~'(~)Y = V x Y  + )~X. Y (1.27) 

vanishes identically in the spectral parameter )~. Here 27 is the Levi-Civita connection 
for r?. The complex metric r/ on a FrObenius manifold M is fiat. That means that in 
appropriate local coordinates ~ ,  c~ = 17 -. .7 r~, r /has  a constant form 

r l = r l~dt~dt  ~ , r / ~  = const. (1.28) 

The structure constants %~z(t )  in the flat coordinates can be represented in the form 

%~,r(t) = O~O~O~f(t) (1.29) 

for some function F(t), O~ = O/Ot% In a topological field theory (TFT) with n 
primary fields ~i,  . . . ,  ~Sn the tensors r / ~  and c ~ ,  r are the (tree-level) double and 

triple correlators of  the primaries respectively. The coordinates t 1, . . .7 t n are the 
coupling constants of  the perturbed TFT model, where the Lagrangian should be 
perturbed as • ~ =25 a - ~ t ~ f ~b~ (see [1-4] for details). And F(t) coincides with 
the primary free energy (at tree-level). 

The associativity conditions (1.25b) read as a system of nonlinear PDE for 
the function F(t). This system of PDE was called in [5] the Witten-Dijkgraaf- 
E. Verlinde-H. Verlinde (WDVV) system. Flatness of the connection (1.27) gives the 
zero-curvature representation ("Lax pair") depending on the spectral parameter k for 
WDVV equations. 

Particularly, a (quasi-) Fr6benius manifold M is called massive if the Fr6benius 
algebra ( c ~ ,  r?~)  is semisimple (i.e. has no nilpotents) for any t. Local structure of 
massive FrSbenius manifolds can be described using an appropriate version of the 
inverse spectral transform (see [5] and Sect. 2 below) for WDVV. 

A quasi-Fr6benius structure on M is called integrable if local coordinates 
ul ,  . . . ,  u'~ exist such that the structure tensor c = (cikj) in these coordinates does not 
depend on u. Particularly, any massive Fr6benius manifold is integrable [5]. In other 
words, canonical local coordinates u l  . . . ,  u,~ exist on a massive Fr6benius manifold 
M such that the law of the multiplication (1.24a) of  the corresponding basic vector 
fields 0~ = 0 / 0 ~  ~ has the form 

0<05 = ~0O~. (1.30) 

These coordinates are determined uniquely up to permutations and shifts. 
Let us come back to the arbitrary quasi-Fr0benius manifold (C~b(Z), %b(Z)). I am 

going to define (following [6]) special geometry structure on a given quasi-Fr6benius 
manifold. If  M is a Fr6benius manifold (i.e. a TFT model) then these special geometry 
structures on M are also called topological-antitopological fusions of  the given TFT 
model [6]. 

Let us denote by 6"a the operators 

C~ = (Ccb(Z)). (1.31) 
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Definition 1.2 (see [6]). A compatible pair r], g (or r], M) on a quasi-Fr6benius 
manifold M determines a special geometry (or topological-antitopological fusion) 
structure on it if 

D a C  b = DbCa,  (1.32a) 

IDa, D~] = - [Ca, Cg] , (1.32b) 

where 
= M C b M .  

The normalized Hermitian metric 

(1.32c) 

c a  = (cXb(z)) ,  F a = (F:b) ,  m = M b (1.35)  

obey the conditions 

where the matrix coefficients 

MS?/= 1, (1.36a) 

M T ~ M  = (/, (1.36b) 

0~r /=  rlF k + Fs (1.36c) 

~C a = C f  ~?, (1.36d) 

for  a holomorphic symmetric nondegenerate ~l = (~l~b) are compatible identically in 
the spectral parameter )~ iff the pair ~], M is compatible with Fs as the corresponding 

~ a b d 2 a d z b  9&b d2aclzb 
-a  b gab e e 

where e ~ is the unity vector field, is called generalized Zamolodchikov metric on M. 

Remark. We have seen above that a compatible normalized pair 7, 9 (or ~], M) on 
a manifold M can be encoded by a pair (~ ' ,  G), where ~ is a real n-dimensional 
subbundle in Tt '~  and G is a section of the associated bundle Q ( ~ )  of positive 
definite quadratic forms on ~". It will be shown in Sect. 3 that the equations of special 
geometry have a nice geometric reformulation in terms of the pair (~ ' ,  G): ~" is a 
flat bundle (i.e. it admits a connection of zero curvature) and G is a pluriharmonic 
section of Q(~ ' ) .  

The equations of special geometry (together with the equations of compatibility 
of r/and M) can be written as the following overdetermined system of equations for 
the matrix-valued function M (with F of the form (1.15): 

Ob(Oa M "  ~/1) = CaMCb]~1 - MCb~/]C a . (1.33) 

It turns out that this system imposes a constraint for the quasi-FrSbenius manifold. 

Proposition 1.2. I f  eigenvalues of  some C a = (CC~b(Z)) are simple and a special ge- 
ometry structure on M exists then the quasi-Frgbenius structure (C~b(Z)) is integrable. 

The proof of this proposition will be given in Sect. 3. 
Let us obtain now a "zero-curvature representation" (depending on a spectral 

parameter) of Eq. (1.32). 

Proposition L3. The equations 

Oa~ : ,~Cc~ ~ - F a ~ .  ~ (1.34a) 

cSa~ = A-~MCaa57/~, (1.34b) 
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connection (1.4) determining a special geometry structure on the quasi-FrSbenius 
manifold. 

Note that Eq. (1.36c) provides invariance of the compatibility conditions [0~, Ob] = 
[0~, 0 b] = [0~, 0 b] = 0 with the symmetry (1.36d) and with (1.36a, b). 

Remark. Compatibility of the linear equations (1.34) can be interpreted as vanishing 
of  the curvature of the A-dependent "connection", 

D ~ ) Y  = D x Y  - AX Y ,  (1.37a) 

D ~ ) Y  = D 2 Y  - A-I~-(X �9 7-(Y)) (1.37b) 

[cf. (1.27) above]. For IAI = 1 the operation/)(~) determines a connection on M (i.e. 
it respects the complex conjugation). 

Proof. The compatibility 0k0 l = OtO ~ implies (1.32a) and the commutativity and 
associativity of the algebra (C~b(Z)). The compatibility 0kcq t = cSz0 k is equivalent to 
the equations 

OzF k = [C~, MC'z2f/] (1.38) 

and 
O~(MCzM) = [mOz2~/, F~].  (1.39) 

It is enough to show that OhM + F k M  = 0. Using M2!7/= 1 (1.39) can be rewritten 
as 

[2~/I(OkmM + F~)M, C'z] = 0. (1.40) 

Let us_prove that the operator _g/(0 k M 2 f / +  F~) M is T/-skew-symmetric. Equivalently, 
OkMM + l~k should be r/-skew-symmetric. Indeed, 

0 = O~(MT~TM) = OkMT~M + MT(~IFk + F ~ l ) M  + MTrlOkM. 

Multiplying by M t and by M from the 1.h.s and r.h.s, respectively one obtains the 
~/-skew-symmetry 

~(o~M~ + rk) + (OkM~ + Fk)T~ = O. 

Lemma.  Let ~/S be a commutative associative algebra with a unity and A : J~ ~ 
a linear operator such that 

A(ab) = aA(b) = bA(a). (1.41) 

Then A is the operator of multiplication A(a) = c~a, c~ ~ S .  

Proof. Put c~ = A(1). 

Corollary.  I f  A is a linear operator on a FrSbenius algebra satisfying (1.41) and 
being skew-symmetric w.r.t. (, } then A = O. 

From the corollary it follows that 

D~M = 0 

for the connection F~Cb . And Dar I = 0 by (1.36c). Equation (1.38) coincides with 
(1.32b). The proposition is proved. 

As a consequence of the proposition we obtain 
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T h e o r e m  1. Equation (1.32) of  topological-antitopological fusion are integrable. 1 

Remark. The system (1.32) provides no restriction (additional to (1.23), (1.36c)) for 
the invariant inner product ~7. Indeed, let us consider, for example, the quasi-FrSbenius 
structure with the operators C a of the form 

~ (1.42) Cab = (~a~ab 

(in the given coordinates). Then the invariant inner product r / should be diagonal in 
these coordinates. Any diagonal holomorphic matrix r /  determines another invariant 
inner product. The gauge transformation (1.17) with 

A = V ~  -1 (1.43) 

transforms the special geometry structure for C~v , rl to a special geometry structure 
for ~ ~/. Cab 

Example. Let us consider special geometry structures on the "trivial" FrSbenius 
manifold c~j = const., ~hj = const. In the nonnilpotent case one can consider the 
direct sum of  n copies of  the 1-dimensional Fr6benius algebra, 

k = 6~6i j rl~j = 6ij (1.44) Cij  ~ �9 

The first part (1.32a) of  the equations reads 

[F~, Cj] = [Fj, Ci] , (1.45a) 

F ~  = - F i . (1.45b) 

These can be solved in the form 

P~ = [q, C~], qT = q, (1.46) 

where the off-diagonal symmetric matrix q = (q~j) is determined uniquely. The system 
(1.32b) reads 

OiM = [C~, q] M ,  (1.47a) 

O~q = MOb2VI -- diag(MCb2~/),  (1.47b) 

where "diag" means the diagonal part of  the matrix MCb2V[. The matrix q also satisfies 
the equations 

[O~q, Cj] - [Ojq, C~] + [[q, Ci] , [q, Cj]] = 0. (1.48) 

This follows from (1.32a). The matrix M = (m?j)) satisfies the constraints 

M T M  = 1, M = M ~. (1.49) 

1 In [6, 10, 11] many antegrable reductions of (1.32) were found. Nevertheless the "Lax pair" of [6] 
(coinciding with (1.34) for A = 4-1) provides no possibility to solve the system in the general case 
using an appropriate version of the inverse spectral transform 
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Also it should be positive definite. In the coordinate form the system (1.47), (1.48) 
reads 

Okqij = qi~q~j , i, j ,  k distinct, (1.50a) 

Okqij = O, i r j ,  (1.50b) 
k 

Okqij = m ~ m ~ j ,  i r j ,  (1.50c) 

Okm;j = m?kq~ j , k r j ,  (1.50d) 

O~m~j = 0 (1.50e) 
h 

(one should add also the complex conjugate equations). 
In the first nontrivial case n = 2 positive definite matrices M of the form (1.49) 

can be represented in the form 

o~ o~ 

cosh~  - i s i n h ~ /  (1.51) 
M =  ct 

~ i sink 2 cosh ] 
for real c~. All the functions q.ij, m~j depend on the difference 

Z z Z 1 - -  Z 2 , 

From (1.50d) it immediately follows that 

i 
q12 ----- q21 =-  - -  ~ 0 0 ~ ,  

where 0 = O/Oz. From (1.50c) one obtains the Euclidean sinh-Gordon equation 
for ct 

00c~ = sinh c~. (1.52) 

Recently this equation (with the opposite sign) proved to be important in the theory 
of surfaces of constant mean curvature [14-16]. 

In Sect. 2 it will be shown that all special geometries on massive Fr6benius 
manifolds locally can be described by the system (1.50). 

Remark. Equations of compatibility of rational operator pencils of the form 

0 ~  = AC~ - ~,~, (1.53a) 

OV~ : / ~ - - l C ~  (1.53b) 

with n • n matrix coefficients C, C, F were studied for n > 2 in the paper [17] 
as a multicomponent generalization of the Sine-Gordon eq. (for n = 2 (1.53) gives 
[18] the Sine-Gordon equation in the light-cone variables x, y). In [19] it was shown 
that these equations are gauge equivalent to the integrable [20] equations of principal 
chiral field. The idea of this gauge equivalence is important for the constructions 
of Sect. 3. "Multidimensionalization" of the system (1.53) by adding dependence on 
higher times (i.e. isospectral deformations of (1.53)) was considered recently in [21] 
without investigating of reality constraints of the type (1.36). 
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2. Topological-Antitopological Fusions of a Massive TFT 

Let us consider in more detail topological-antitopological fusions of a given massive 
TFT. Equations (1.32) can be represented as the compatibility conditions of the linear 
system 

0 ~  = (AC~ - [Ca, V])~,  (2.1a) 

0c~ ~ = A l (MVaJ~/)~,  (2.1b) 

O~ = O/Ot% O~ = O/Ot ~, the matrix V = (V~(t ,  {-)) satisfies 

~V = v T ~ .  (2.2) 

As it was proved in [5], a canonical coordinate system ul(t), . . . ,  u~(t) locally 
exists on a massive Fr6benius manifold such that in these coordinates 

k = ~ 6 i  j (2.3a) Cij 

rhj = h~(u) 6ij (2.3b) 

for some analytic functions hi(u ) . The rotation coefficients 

@hi(u)  i r j ,  (2.4) 

Oi = 0 / 0  ui, are symmetric in i, j .  They satisfy the following integrable system of 
PDE, 

Ok ~/ij : ~/ik'Tkj , i, j ,  k are distinct, (2.5a) 

Z Ok%J = 0,  (2.5b) 
h 

~/ji = "/ij �9 (2.5c) 

The zero curvature representation of  the system (2.5) has the form [22], 

0he  = (AE k - [ E k , F ] ) r  k = 1, . . . ,  n ,  (2.6a) 

( E k ) i j  = 6 i j (S j k ,  /~ = ('Yij)" (2.6b) 

Any solution %j(u)  of the system (2.5) determines a TFT as follows. Let ~bi~,(u), 
c~ = 1, . . . ,  n, be a basis of solutions of the linear system (2.6) for A = 0. Then 

2 r/ii(u) = ~bil(u), (2.7a) 

rlc~ = Z ~bic~(u)~b~ (u) '  (2.75) 

Ot~ 
Ou i -- r  t~ = % z t  ~ , (2.7c) 

~ i a ~ i ~ i 7  (2.7d) 
%~'r(u) = ~ %1 i 

Let us do a gauge transformation of the linear problem (2.1) of the form 

~ ( u ,  g, A) = ~ b ~ ( u ) ~ ( t ,  [, A), u = u(t) (2.8a) 
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or, equivalently, 

~c~(t, {, A) = ~ E ~i~ (u)~i(u '  re, .k). (2.8b) 
i 

The functions r  were determined above. 

Proposit ion 2.1. After the substitution (2.8) the system (2.1) transforms to the follow- 
ing gauge equivalent system." 

0 ~  = (~E k - [E~, q]) ~ ,  (2.9a) 

Ok~ = t - l m E k r ' n ~ ,  (2.9b) 

k = 1, . . . ,  n, where the symmetric off-diagonal matrix q = (q{j) has the form 

q i j  = 7 i s  - -  v i j  , (2 .10a)  

where 

v J  = E r  vij , (2.10b) 
i , j  

M2 = Z (2.10c) 
i , j  

The matrix m is Hermitian, positive definite and orthogonal. 

The proof is straightforward. 
As a consequence we obtain 

Theorem 2. Equations (1.32) of  special geometry on a massive Fr6benius manifold 
are gauge equivalent to Eq. (1.50). 

Note that the system (1.50) is universal, i.e. it does not depend on the concrete 
TFT model. The gauge transformation ( 1 . 5 0 ) ~  (1.32) is determined only by the 
TFT model. So for massive models the WDVV equations for the correlators and 
the equations of topological-antitopological fusion for the ground state metric can be 
decoupled. 

Let us consider the trivial solution of  the system (1.50): 

q = 0,  m = 1. (2.11) 

This gives the following special geometry structure: 

d~2 = ~ I~.1 dCdr  y~ 6 ~ g d ~ d t  9 . (2 12) 
i 

The curvature of the corresponding connection D [see (1.4)] for the trivial solution 
vanishes identically. 

Solutions of  the system (1.50) close to the trivial one can be found form the 
linearized system. The leading approximation for the matrix m has the form 

- i ~2 i - ~2J), (2.13a) 

where 
o~ji(u , (,) = - chj(u , g) (2.13b) 

are real solutions to the linearized sinh-Gordon 

(2.13c) OOaij = o~ij . 
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Let us consider massive perturbations of  topological conformal field theory (TCFT, 
see [3]). They are described by a massive Fr6benius manifold with a one-parameter 
group of conformal automorphisms. In the flat coordinates this group acts as scaling 
transformations 

t c~ ~ c l - - q a t  ~ , (2.14a) 

where q~ are the charges of  the primary fields, ql = 0, 

1~o~3 ~ cqa +qj3--dT]o~3 �9 (2.14b) 

where d is the dimension of the model (i.e. ~7~/~ = 0 if q~ + q/~ r d), 

Co~/3.y ~-> C qc~+qp+q7 d co~/3.y . (2.14c) 

In the conformal point t = 0 the primary correlators form a graded Fr6benius algebra 
with qa as the weights of the generators. In the canonical coordinates u ~ the group 
acts in the standard way 

u ~ H cu ~ , (2.15a) 

~ij ~ c-l~/~j " (2.15b) 

The similarity reduction (2.15) of the system (2.5) describes the isomonodromy 
deformations of the linear ODE system with rational coefficients 

~ 0 ~  = ( ~ U -  [U, F])~b, (2.16a) 

U = diag(u 1, . . . ,  un) ,  (2.16b) 

/" = ('7ij (u)). (2.16c) 

The integration of the similarity reduction of (2.5), (2.15) was given in [5]. Partic- 
ularly, all the scaling dimensions q~, d are calculated as the monodromy indices of 
(2.16) in the point A = 0. For n = 3 this similarity reduction can be reduced to a 
particular case of the Painlev6-VI equation; for n > 3 this is an appropriate high 
order generalisation of  the Painlev6-VI. 

Let us consider now topological-antitopological fusions of a massive perturbation 
of TCFT. It is natural to assume a special geometry structure on a scaling invariant 
Fr6benius manifold to be covariant with respect to the group (2.14), c = expir  In 
the massive case the similarity reduction of the system (1.50) is obtained by adding 
the equations 

n 

~ ( u k Ok  -- ukOl~)q i j  = --  qi j  , (2.17a) 
k=l  

n 

Z (ukOk - f~kOk)m;J = 0. (2.17b) 
h=l  

The system (1.50), (2.17) can be reduced to a system of ODE of the order n(n  - 1). 
For n = 2 this is equivalent to the similarity reduction of the sinh-Gordon equation 
(1.52) (i.e. to a particular case of the Painlev6-III equation [23]. For n > 2 the system 
(1.50), (2.17) can be considered as a high-order generalisation of the Painlev6-III. 

Lemma.  The similarity reduction (2.17) of  the system (1.50) is equivalent to the 
compatibility conditions o f  the linear problem (2.9) and of  the linear differential 
equation in 

~ 0 ~  = [~U - [U, q] - ~ - I m U - ~ ]  ~.  (2.18) 
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Here U has the form (2.16b), q = (qij). 

Proof. Equation (2.18) is nothing but the similarity equation for the function ~ = 
~(u, ~2, •) of  the form 

[~(ukOk -- ~2k0k) -- )~0~] ~ = 0. (2.19) 

Compatibility of (2.19) with (2.9) is equivalent to the similarity equations (2.17). 
Lemma is proved. 

Corol lary.  The system (1.50), (2.17) gives the isomonodromy deformations of the 
linear operator (2.18). 

Isomonodromy deformations of  linear operators of  the form (2.18) (for n > 2 
without any constraints of the type (1.36)) were described in [24]. Generic self-similar 
solutions of  (1.50), (2.17) can be found easily using an appropriate Riemann boundary 
value problem (see [23]). Here we study more thoroughly the massive case. Semi- 
classical arguments of [6] for topological-antitopological fusion of Landau-Ginsburg 
models give rise to specification of n(n - 1)/2-dimensional subfamily of separatrix 
solutions of (1.50), (2.17). As it follows from the formulae of Appendix B of [6] for 
such models the special geometry structure should trivialize for ]u I ~ oc: 

q---~0, m - + l  for l u l - + e c .  (2.20) 

Asymptotics of these solutions for large u can be found by solving the similarity 
reduction of the Helmholtz equation (2.13c). This gives 

�9 / 

m~j ~= ~ij ~- ~#~jKo(2lu - u J l ) ,  (2.21a) 

where 
Ply = -- P i j  (2.21b) 

are some real constants, Ko(X ) is the Bessel function (i.e. the solution of the modified 
Bessel equation 

1 yf  = 
y" + - - y 0 (2.22) 

X 

vanishing for x -+ oc). Let us construct these separatrix solutions. 
To do it we formulate the following Riemann boundary value problem: to find 

n x n matrix-valued functions ~+(u,  ~2, .~) and ~P_(u, ~2, .~) analytic in .~ in the half- 
planes Re .~ > 0 and Re ~ < 0 resp. satisfying the following boundary conditions on 
the imaginary axis (here g > 0): 

~_ (u, ~, i~) = ~ + (u, (z, i~) S , (2.23a) 

~P_(u, ~t, --iQ) -= ~+(u ,  (~, i ~ ) S  T , (2.23b) 

where S = (Spq) is a complex n x n matrix satisfying the following conditions: 

S,9 = 1, (2.24a) 

Spp = 1, .Spq = 0 for 7r ~ Ogpq < 27r, (2.24b) 

where 
(Ypq = arg(u p - %q) , 0 ~ O~pq < 2 7 r .  (2.24c) 

The functions ko• should obey the following normalization condition: 

~__(u,~2, A ) e x p [ - . k U - A  ~C]---+I for ,k---~oc. (2.25) 
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Proposi t ion 2.2. For sufficiently large [u] there exists a unique solution of the above 
Riemann b.v.p. The matrix 

M = lim kO• ~2, X ) e x p [ - A U  - .~-10] (2.26) 
A-+0 

satisfies Eqs. (1.33) (for the Fr6benius manifold (1.44)) being a regular function for 
these large [ul, and M ---+ 1 for u --~ oc. 

Note 2 that the solution M depends exactly on n(n - 1)/2 parameters (i.e. on the 
Stokes matrix S). For generic self-similar solutions of (2.9) the eigenfunction has a 
jump also on a unit circle. 

Proof. Let 
~P• g, A) e x p [ - A U  - A- l ( ; ]  = ~:~ (u, ~, A). 

For the functions kb• ~2, A) the Riemann b.v.p. (2.23) reads 

~ ( u ,  ~, +io) = ~+(u, ~, • ~, •  

where the matrices S•  ~, A) = (gipq(U, ~2, A)) have the form 

g+q(u, ~2, A) = exp[A(u p - u q) + A-I(~. p - •q)] Spq, 

g~q(U, ~2, A) = exp[A(u p - u q) @ A - I ( ~  p - ~ q ) ]  8qp. 

These matrices tend exponentially to 1 when ]u] --+ oc because of (2.24). The b.v.p. 
(2.23) is equivalent to the singular integral equation for the function gS+ 

1 gt+(u, g, ( )  [1 - S+(u,  ~2, ()] 

0 

~+(u"g 'C)[1-s- (u ' fL '~)]dC] (2.27) 

--ioo 

For lul --+ oc the kernel of  this equation vanishes exponentially. This proves existence 
and uniqueness of the solution. 

The piecewise analytic function ~ = (~+, ~_)  satisfies the following identities: 

~ ( A ) g t r ( - A )  = 1, (2.28) 

~(X -1)  = kT/~P(k), (2.29) 

where M is defined in (2.26). This gives 

M r  M = 1, M* = M .  (2.30) 

The logarithmic derivatives 

0hk~ ' k0 -1  , C~kk~. ~ - 1  , .~0Xkrt ' t / t - 1  

are analytic in A c C, A r 0, A r oc. Investigation of the analytic properties of  these 
gives rise to infer that they are rational functions in A. This immediately proves that 

2 I acknowledge A. Its for explaining me how one can specify the separatrix solutions of sinh-Gordon 
in the framework of the isomonodromy deformations approach 
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k~ is an eigenfunction of the linear problems (2.9) and (2.18), where M has the form 
(2.26), and the matrix V is determined by the formula 

V ( u ,  ~2) = lim A[1 - ~P(u, ~2, A)exp(-AU - A-If2] .  (2.31) 
)~---+ c ~  

I recall (see Proposition 1.3 above) that compatibility of (2.9), (2.18) implies that M 
satisfies Eqs. (1.50), (2.17). The proposition is proved. 

Calculation of the parameters #ij in the asymptotics (2.21) via the Stokes matrix S 
will be given in the next publication. The problem of global behaviour of the solutions 
of (1.50), (2.17) looks more complicated (note that the Riemann b.v.p. (2.23) should 
be redefined when some of the arguments of u p - uq  pass through the real axis). To 
do it in the first nontrivial case N = 2 one should use the connection formulae of 
[25]. 

3. Topological-Antitopological Fusions and Pluriharmonic Maps 

It is wellknown that harmonic functions are the solutions G = G ( u ,  ~ )  of the equation 

OOG = O. 

Pluriharmonic functions (or vector-functions) G ( z ,  2), z = (z 1, . . . ,  z*~), are defined 
as solutions of the overdetermined system 

OkOzG = O, k ,  1 = 1, . . . ,  n .  

Equivalently, the restriction of G onto any holomorphic curve z k = z k ( u ) ,  k = 

1, . . . ,  n should be holomorphic. 
Also for any complex manifold M and a real Riemannian manifold Q the class of 

pluriharmonic maps 

G : M  -~ Q 

is well-defined. Particularly, pluriharmonic maps of a compact complex manifold M 
to compact Lie groups Q were studied recently [26, 27]. They proved to have many 
nice features of harmonic maps of Riemann surfaces to a compact Lie group (see [15, 
28, 291). 

In this section it will be shown that any solution of Eqs. (1.32) of topological- 
antitopological fusion on a quasi-Fr6benius manifold M locally determines a plurihar- 
monic map of M to the symmetric space Q = G l ( n ) / O ( n )  of n x n positive definite 
quadratic forms (in fact, even a loop in the space of pluriharmonic maps M -+ Q). 
Conversely, it will be shown that, under some additional assumptions, a pluriharmonic 
map M --+ Q determines a family of quasi-FrSbenius structures together with a special 
geometry structure on given M. Globally instead of pluriharmonic maps G : M  -~ Q 
one has to consider pluriharmonic sections G : M  --+ Q ( Y )  of the bundle of positive 
definite quadratic forms on a real n-dimensional flat subbundle ~" C TI '~  (see 
Sect. 1 above). 

Let us fix a solution of the system (1.32). Let ~ = #~(z, 2) be the fundamental 
matrix of the system (1.34) for ), = exp ip  for some real F being normalized by the 
condition 

= ~ / ~ .  (3.1) 



Geometry and Integrability of Topological-Antitopological Fusion 555 

It is easy to see that such a normalization is compatible with (1.34). More than that, it 
can be done simultaneously for any qo so ~ is a periodic function of ~. Equivalently, 
the matrix M is factorized as 

M = ~ - 1 .  (3.2) 

The condition M = M t is equivalent to reality of the symmetric matrix 

G = ~bTr]~. (3.3) 

Starting from this point we will consider only special geometries with positive 
definite Hermitian products 9 = (gc~b)" Then 

G = ~tg~5 (3.4) 

is a matrix of a real positive definite quadratic form. We obtain therefore (locally in 
M) a map (depending on the parameter ~) 

G = G~(z, 2):M ---+ Q,  (3.5) 

where Q = Gl(n)/O(n) is the symmetric space of real positive definite quadratic 
forms. It will be proved below that this map is pluriharmonic. 

Let us analyze now the global properties of the construction. 
The matrix ~/i normalized as in (3.1) is determined uniquely up to the transforma- 

tions 
~ ~!iS (3.6) 

for an arbitrary real nondegenerate matrix S. We obtain therefore an isomorphism 
between the holomorphic tangent bundle TI,~ and the complexification of some 
n-dimensional real bundle ~" c TI '~  on M, 

: ~" | C --+ TI '~  (3.7) 

Indeed, the columns of the matrix ~ = (ss~) under holomorphic changes of coordinates 
transform as holomorphic tangent vectors. In the intersection of two coordinate charts 

(z a) and (z a') the matrices ( ~ )  and ( ~ )  are related by the transformation (3.6) with 
a constant real 5". This gives the construction of the real bundle ~ ' .  This isomorphism 
transforms the antiinvolution ~- (with the matrix M) to the identity map on ~ ' ,  and 
the complex and Hermitian quadratic forms ss*~], ~*g coincide on Y (i.e., they 
have the same real symmetric matrix G). We obtain that globally the formula (3.3) 
determines a section of the bundle Q ( Y )  of positive definite quadratic forms on the 
real n-dimensional subbundle ~" = ker(~- - 1) C Tt '~ From the construction of 
the bundle Y it immediately follows 

Proposition 3.1. For any solution Eqs. (1.32) of topological-antitopological fusion the 
bundle ~" = ker(~- - 1) C TI '~  is flat (i.e. it admits a connection of zero curvature). 

Particularly, on a simply-connected M the bundle ~" is trivial. So G is a map of 
M to the symmetric space Q. For non-simply-connected M G is an automorphic map 
with respect to some linear representation 

7c1(M) --+ Gl(n) (3.8) 

(twisted pluriharmonic map [31]). 
Let us come back to pluriharmonic maps. The group Gl(n) acts transitively on Q 

as follows: 
G ~ ST"GS, S c Gl(n). (3.9) 
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The stationary subgroup is isomorphic to O(n). The invariant metric on Q has the 
form 

tr(G-l dGG- l  dG) . (3.10) 

A map G = G(z, ~) : M -+ Q is called pluriharmonic if the functional 

tr(G-l OGG-l OG)dudg (3.11) 

has extremum for any holomorphic curve 

z k = z k ( u ) ,  

0 = O / O u ,  

Particularly, representing 

/~ = 1, . . . ,  n ,  (3.12) 

0 : o/o . 

G = exp ctG 

1 
where c~ = - log det G, det G = 1, one obtains 

n 

tr(G-IOGG-lOG) = lOoz/2 + t r (O-1OOG-lc~O) .  

Hence log de tG is a pluriharmonic function (cf. [6]). The matrix G determines a 
pluriharmonic map to the irreducible symmetric space Q = SL(n) /SO(n) .  

The function G(z, 5) should obey an overdetermined system of equations. This 
system can be rewritten in a simple form using matrix-valued currents 

A k = G - 1 0 k G ,  As = G-10k G = Ak,  (3.13) 

OkA z - OzA k = [Al, Ak] ,  (3.14a) 
1 

0zA k = ~ [Ak, At] .  (3.14b) 

This system will be investigated thoroughly below. Pluriharmonicity for sections of 
Q ( ~ ' )  is determined in a similar way. 

The main claim of this section is 

T he o rem 3. Let ~ = ~(z, 2) be the fundamental matrix of solutions of the system 
(1.34) for )~ = e x p i ~  normalized by the condition (1.3). Then G = #T~7# is a 
pluriharmonic section of the bundle Q(~'). Conversely, let ~/" be any flat real n- 
dimensional bundle on M satisfying (1.22b, c) and G a pluriharmonic section of 
Q(Y').  If  some of the operators A k = G-lOnG are semisimple (i.e. it has a simple 
spectrum) then the pluriharmonic map G : M  -+ Q (being defined locally) induces 
on M a family of integrable massive quasi-Frgbenius structures together with special 
geometry structures. All these quasi-Frgbenius structures have the same canonical 
coordinates (1.30) with an arbitrary diagonal in these coordinates holomorphic tensor 
r I as the invariant inner product. Fixation of this tensor r 1 specifies uniquely the quasi- 
FrObenius and special geometry structure on M. 

Particularly, if the diagonal tensor ~ satisfies in the canonical coordinates the 
system (2.5) (the so-called Egoroff  metric) then the above construction gives all 
the Fr6benius manifold structures on M with marked atlas of canonical coordinates 
together with the topological-antitopological fusions of them. 

Proof. Let 
= ~ x .  (3.15) 
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After this gauge transform one obtains from (1.34) 

Ak 
Okx - X,  4+1 

A~ 
o~x- (--1 x, 

where 

It is easy to see that 

(3.16a) 

(3.16b) 

A k = G- IOkG (3.20) 

for G = ~sTr/~. Compatibility of (3.16) (identically in the spectral parameter 4) reads 

[Ak, A l] = OzA k - OkA z = 0, (3.21a) 
1 OzAk = ~ [A~, A[]. (3.21b) 

Hence the function G(z, 2) is pluriharmonic. 

To prove the converse statement one needs first to prove 

Lemma.  Any solution of  (3.14) satisfies also (3.21). 

For the case of pluriharmonic maps to a compact Lie group such a statement was 
proved in [27]. 

Proof  Compatibility conditions of (3.14) imply 

[A~, [Ap, Aq]] = 0 (3.22) 

for any p, q, k. Let us prove that [Ap, Aq] = 0 follows from these equations. Let 
us consider G as a Euclidean structure in a n-dimensional real vector space V. The 
operators A~, A~ act in V | C. Let us introduce a positive Hennitian inner product 
in V | C by the formula 

(v, w) = G x j~r  w J (3.23) 

(I recall that this is ~ ' 9  - see (3.4)). One has 

A~, = A~. (3.24) 

Let us order anyhow pairs c~ = (p, q), p < q, and let 

~/~ = lap, Aq], a = (p, q). (3.25) 

It follows from (3.22), (3.24) that 

[ J ~ ,  ~ ]  = 0. (3.26) 

Particularly, the operators ~ are normal. Let us reduce the operator ~ t  to a diagonal 
form in an orthonormal basis: 

.A~ = diag(A~ O, A(lh 

~ diag(~l), -(1) . . . .  , A ~ ) ,  

A k = 2qS-tCk~, (3.17) 

A~ = Ak, (3.18) 

C - 1  
A = (3.19) 

C + I  
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If ~ 2  (a (2)) then the equality [~/~2, ~/~]  = 0 reads ~ ,  IJ 

(~?) ~(1).  (2) = o .  - -  A j  ) a i j  

Therefore 

[~1 ,  ~ 2 ]  = 0.  

Let us diagonalize these two operators simultaneously. By induction we can reduce 
simultaneously to a diagonal form in an orthonormal basis all the operators [Ap, Aq]. 

Let V ~ C V | C be a maximal subspace where all the operators [Ap, Aq] (and, 
therefore, [A~, Aa]) are scalars. Because of (3.22) V ~ is invariant with respect to 
all A k. Then [Ap, Aq]lV, = 0 since the trace of a commutator vanishes. Hence 
all the eigenvalues of all [Ap, Aq] vanish. Again using their normality we obtain 
[Ap, Aq] = 0. The lemma is proved. 

Note that the above semisimplicity assumption has not been used in this proof. 
As it has been proved pluriharmonicity of a map M ---+ Q is equivalent to 

compatibility of the system (3.16). Hence Eqs. (3.14) of pluriharmonic maps to the 
symmetric space Q are integrable 3. 

Now I'll  try to explain the geometric idea of the final part of the proof before 
proceeding to the calculations. For simplicity let me consider the problem locally (so 
all the bundles will be trivial). 

Let V be an n-dimensional real vector space. The pull-back of the Levi-Civita 
connection on Q (for the invariant metric (3.10)) determines a complex connection 
V k, V~ on the trivial bundle M x V | C (the formula (3.37) below). The operator 

d~ = d ~ V ~  (3.27) 

satisfies d~ 2 = 0 and, therefore, it determines on M • V | C a structure of the 
holomorphic vector bundle ~" • C. The commuting operators A~ act on Y | C. 
They appear to be holomorphic sections of the bundle 

E = T,~'~ | E n d ( ~  | C). (3.28) 

The commutativity (3.14a) can be rewritten in the form 

A A A = 0, (3.29) 

where 
A = Akdz k (3.30) 

is the section of E. Also the matrix-valued 1-form A is closed. Such a pair (E, A) 
was called a Higgs bundle in [31]. It is very important that in our case there is a 
Euclidean scalar product on M • V (being specified by the matrix G). It proves to 
be holomorphic with respect to d~. So it determines a holomorphic nondegenerate 
quadratic form ( , )  on Y • C being invariant for the operators A k. We obtain therefore 
a holomorphic family of commuting operators being symmetric with respect to a 
holomorphic inner product (, }. This looks so similar to the deformation of Fr6benius 
algebras! To complete the construction one needs to identify ~/" | C and Tl '~  (i.e. 
to construct an isomorphism ~ - see (3.7)). Here the semisimplicity assumption is 

3 General solution of these equations can be obtained using the ideas of [30] 
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essential. We construct locally a basis of  holomorphic sections vl, . . . ,  v~ of ~" • C 
and such a coordinate system u 1, . . . ,  u ~ on M that 

A v  k = dukvk (3.31) 

(no summation over the repeated indices here!). The isomorphism we need is 
constructed then as follows 

v~ ~ O/Ou ~: . (3.32) 

Let us proceed now to the detailed proof. 
Let w = a~dz  ~ be a 1-form such that 

A~v = cokv (3.33) 

for some common eigenvector v = J ( z ,  2). The genericity assumption provides 
existence of n linearly independent forms a~ 1, . . . ,  a~ ~ being the "weights" (3.33) 
of the commutative algebra A 1 , . . . ,  A s. Let Vl, . . .  , v~ be the corresponding 
eigenvectors. Let 

(v, w) = G I j v Z w  J (3.34) 

be a symmetric nondegenerate inner product in V (and in V | C). The operators 
AI,  . . . ,  A~ are symmetric with respect to this inner product. The standard conse- 
quence of this fact is that 

@1,v J) = 0  for I t  J ,  (3.35) 

(v f, vi) r o. (3.36) 

Let us prove that all the weights w are holomorphic forms on M. Indeed, 

i [Ak, A[]v + (A k - cJ~)Slv - O y k v .  0 = 8~(Akv - wkv) = 

Multiplying by v one obtains 

1 (V, [Ak, A l lY}  : O. 

The next step: to prove that the weights are closed forms. The proof: 

Oz(Akv) - O~(Alv) = ( O l ~  - Ok~z)v + c~Ozv - ~zOkv.  

After scalar multiplication by v one obtains 

(Oyk - Ok~l) {v, v} = O. 

It is convenient to introduce the connection in the trivial bundle M x V, 

1 1 
V k v  = Okv + ~ A k v  , V~v  = O~v + ~ A~v , (3.37) 

(the pull-back of the Levi-Civita connection on Q). It is compatible with the scalar 
product (3.34): 

oh (v, ~ / = / V k v ,  ~) + (v, % ~ ) ,  

for any vectors v, w. 
Let us prove that the eigenvectors can be normalized in such a way that 

Vs = 0 (3.38) 
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(i.e. that they are holomorphic sections of  9"  | C w.r.t. (3.37)). Indeed, if v, v '  are 
two eigenvectors with the eigenvalues co, J ,  then from 

1 [A~, A J v  + (A k - cuk)c0lv 0 = O l ( A k v  --  cokv  ) = 

after multiplication by v ~ one obtains 

, 1 A l ~ }  = O. (~k - c~k) (v' ,  Ozv + 

Hence 
V[V -~- f[v 

for some functions ff. It is easy to se that the 1-form f [ d 2 1  is closed. After 
renormalisation of v we obtain (3.38). 

The norms (v, v) of  the normalized eigenvectors are holomorphic functions: 

0 l@,v} : 2(V[v,v} : O. 

Let Vl, . . . ,  V n be any normalized basis of the eigenvectors (3.33). Let 

~ i j  = (v~, v j }  (3.39) 

(a diagonal holomorphic matrix). Then we put 

= �9 (3.40) 

where the coordinates of the eigenvectors Vl, . . . ,  v,~ are written as the columns of 
the matrix ~. One has 

where 

G = 4~T~/~5, (3.41a) 

A k = 2qs-1Ck~5 (3.41b) 

2C k = diag(cu~, . . . ,  c~k)~. (3.42) 

To define the connection F let us represent the covariant derivatives Vkv ~ as linear 
combinations of the basis vectors 

V ~ v ~  = F J i v  j . (3.43) 

The connection I~i  is compatible with ~ij a s  it follows from the definition. It is easy 
to see that after the gauge transformation 

and the substitution (3.41)-(3.43) the linear problem (3.16) transforms to (1.34), where 

We are to prove only that the operators C k determine a closed algebra with a unity. 
Indeed, since the forms w i are closed, they have the form 

co i = 2 d u  ~ (3.44) 

for some functions u ~. In the coordinates u 1, . . . ,  u n the operators C i become the 
matrix unities 

(Ci) ~ = 6[6ip. (3.45) 

This completes the proof of the theorem. 
Note that Proposition 1.2 follows from (3.45). 
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Appendix. WDVV Equations for Massive TFT Models 
and Correlators of the Impenetrable Bose Gas 

After the main body of this paper was written I was informed by Cecotti that he also 
obtained (in a joint work with Vafa) the universal form (1.50), (2.17) of the equations 
of topological-antitopological fusion in TCFT for the particular case of topological 
minimal models. In the derivation [32] Cecotti and Vafa also used the canonical 
coordinates (2.3) coinciding [5] for the case of minimal models with critical values of 
Landau-Ginsburg superpotential. Moreover, they observed [32] that these equations 
coincide 4 with the equations [33] for multipoint correlators in 2D Ising model. 

In this appendix I will show that the equations [34] for multipoint correlators in the 
impenetrable Bose gas (as functions of distances) are in close relation with WDVV 
equations (written in the canonical coordinates (2.3)) for a massive TFT model with 
even number of primaries. 

I recall that the Hamiltonian of the one-dimensional non-relativistic Bose gas [35] 
has the form 

+oo  

H = / (Ozr162 + ~ + ~ + ~  - hO+r (A.1) 

- - 0 0  

where r r are canonical Bose fields, [r  = ~5(z- z'), h is a 
chemical potential. For the case of impenetrable bosons the coupling constant is 
c = +oc. The mean value of an operator ~ at temperature T > 0 is defined in a 
standard way 

{G}T = tr((C~ exp(- H/T)) /tr(exp(- H/T)) . (A.2) 

Multi-point correlators are defined as the mean values of the product of the operators 
+ + (zi) ,  ~(z~) for different real zi, zj: 

{O+(z+)... O+(z +) O(Zl). . .  O(Z~))T = TN/2GN(X +, x- ,  t) (A.3) 

for some function G N of the variables 

x •  x ~ = z i v F f ,  i=  1 , . . . , N ,  
t = h/T.  (A.4) 

This function can be represented in the form [34] 

GN(x +, x - ,  t) = (1/4)N( - 1) [(N+i)/2] H sign(x~ -- x +) sign(x~- -- x~-) 
j < k  

x d~t (Vz~(x , t, t~))A(x, t, t~))l~_s . (A.5) 
7 r  

Here dNet (Vim) means determinant of the N x N minor of the form 1 _< l < N, 

N + 1 _< m _< 2N. The real functions Vz~(x , t, t~) and A(x, t, e;) are determined in 
terms of the linear integral operator 

j 2N e+(A)e~(#) 
( K f ) ( A ) =  ~ ( -1)m 2 ~ C ~  f(#)d#, (A.6) 

rr~=1 

4 I acknowledge S. Cecotti for his explanation of the intrinsic physical reasons of this coincidence 
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where 
e~(~)  = 0 X / ~  e x p ( + i A x ~ ) ,  (a.7)  

0(~) is the Fermi weight 

0(A) = [1 + exp(A 2 - 0]  -1 (A.8) 

(dependence of 0(A) on t and of e~(A) on x, t is suppressed in the formulae). Namely, 

Vlm(X,t  , ~;) = ( - 1 ) z e  f e ? ( # ) f + ( # ) d > ,  (A.9) 

--(2<3 

where the functions f ~ ( > )  (depending also on x, t, ec) are determined by the formulae 

+ (A. 10a) f+~2 - e;K f,+ = e,~ , 

f ;  - e;K*S~ = e L . (A.10b) 

The function A(x ,  t, ~), 
A(x, t, n) = det(l - ~;K). (A.11) 

The functions Vim obey the following integrable system of PDE [34]: 

0kVl~ = �89 VzkVk~ , k 5k m,  l ,  (A.12a) 

2N 

Z 0kVzm = 0,  (a .12b) 
k--I 

Vl~ = (-1)z+mVz,~, (A.12c) 

Z Vmm = 0 (A. 12d) 

as functions of the 2N-component  vector x = (x + , x - )  = (xl, . . .  , X2N ), O k = 
0 /0x~ .  Equations containing the "time" derivative are [ibid] 

odoz  - o.~) vz.~ + (a:~ - z .~ )  vt,~ + (Oy .~ .~  - o~vzz) vz.~ 
1 

+ 2 Z (VzpOtVp ~ - VpmOtVzp ) = 0.  (A.13) 
p~l,m 

Dependence of the determinant (A.11) on x,  t is specified by the equations 

1 Vm m (A. 14a) 0 m log A = - ~ 

2N 

_ I ~ Z ( O t V l m ) ( O t V m t ) .  (a .  14b) a t log A = i Z x.~OtV~.~ + a 
m--1 

After substitution 

Vim = ( -  1)l'TZm, (A.15a) 

x z = 2(-1)Zu z , (A.15b) 

one immediately obtains that the t-independent part (A.12) of the system for the 
off-diagonal part of the matrix V coincides with the system (2.5) for n = 2 N  (i.e. 
with WDVV eqs. in the canonical coordinates uZ). The functions V,~,~ and log A are 
determined by the off-diagonal terms Vz~ from Eqs. (A.12) and (A.14). 
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We obtain that mul t ipoint  correlators of  the impenetrable  Bose-gas determine a 
two-parameter  family of mass ive  T F T  models  (depending on t and e;) with even 
number  of primaries.  The zero-temperature l imit  of  these correlators can be expressed 
via Painlev6 transcendents  of the fifth k ind  (for N = 1) and their high-order 
generalisat ions [36]. It is interest ing that this l imit  does not  coincide with TCFT,  
where all the correlators are g iven in terms of  the Painlevd-VI t ranscendents  and their 
high-order generalisations.  

Acknowledgements. I am acknowledged to S. Cecotti for explanation of some important points of 
the paper [6]. I wish to thank A. Its for help in using the isomonodromy deformations method. I am 
grateful to E. Witten for bringing my attention to the papers [31]; this was useful for giving Sect. 3 
its final shape. 
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