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Weakly deformed soliton lattices 

B. D u b r o v i n  

Department of Mechanics and Mathematics. Moscow State University 

Leninskiye Gory, Moscow 119899, USSR 

Introduct ion 

Soliton lattices are solutions of nonlinear evolution equations 

Ct = I ¢ ( ¢ , 0 z , . . . , ¢  (")) (0.1) 

periodic (and quasiperiodic) in the variables x and t, ¢ = (¢~), K = (K ~ ) are vector-valued 

functions (we consider here only (l+l)-equations).  These solutions have the form 

¢ ( x , t )  = ~(kx + w t  + r°;ul,...,u N) (0.2) 

where ~ = O ( r l , . . . ,  rm; u l , . . .  ,u  N) is a vector-valued function 27r- periodic in each ~-ari- 

able r l , . . . , r m ,  k = ( k l , . . . , k m )  and w = ( w l , . . . , w m )  are m-vectors of wave num- 

bers and  frequencies.  These vectors do depend on the parameters u = ( u l , . . . , u N ) ;  

k = k ( u ) , w  = w(u) .  r ° = ( r ° , . . . ,  r°~) are arbitrary numbers. For fixed values of the pa- 

rameters u = ( u l , . . . ,  u N) the formula (0.2) gives the so-called exact m-phase oscillating 

solutions of the evolution equations (0.1). 

For linear systems the one-phase oscillating solutions of (0.1) are standard exponentials 

¢ ( x , t )  = ue '(~z+~') ,~  ~(~;  u) = u~" .  (0.3) 

Here the wave-number k and frequency ~ do not depend on the amplitude u (but they 

obey a suitable dispersion relation f (k ,w)  = 0). 
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Multiphase solutions are linear superposition of the exponentials (0.3), 

m 

a--1 

u a ei(k.x+w,t+r. °). 

One-phase oscillating solutions of nonlinear evolution equations (0.1) can be found 

very often explicity. E.g., for nonlinear Klein-Gordon equation 

q t t - q x x  + V ' ( q ) =  O, (0.4) 

(V(q) is the potential) the two-dimensional family of one-phase solutions has the form 

q(x, t )  -- Q(kx + w t ; E ) ,  

x/w2 _ k2 / dQ = dr. 
~ / 2 ( E -  V(Q)  

The dispersion relation for the parameters w, k, E has the form 

(0.5) 

x/w 2 - k 2 ~ dQ = 1 

h; ] 
(0.6) 

where the integral is defined over the whole period of oscillation V(Q)  < E. 

The existence of muitiphase oscillating solutions of nonlinear evolution systems (0.1) 

is a feature of integrable systems. (These solutions can be regarded as nonlinear super- 

positions of one-phase solutions). In the theory of integrable systems rich families of 

multiphase oscillating solutions - soliton lattices (0.2) - are well-known. They were found 

and investigated in the middle of seventies [1] - [7]. Usually they are called finite-gap solu- 

tions because of its very remarkable relations with the spectral theory of finite-gap linear 

differential operators with periodic and almost periodic coefficients. They are periodic 

and quasiperiodic analogues of multisoliton solutions because they do reduce to solitons 

(for m = 1) or to multisoliton solutions (for m > 1) for special values of the parame- 

ters u l , . . . ,  u N. In the theory of solitons the general complex solutions of the form (0.2) 

are called algebraic-geometry solutions because they are given in terms of 0-functions of 

Riemann surfaces and they can be constructed using algebraic geometry techniques. 

Now let me introduce weakly deformed solitons lattices. Let e be a small parameter 

and X = ex, T = et slow variables. 

Definition.- The weakly-deformed soliton lattice is a function of the form (0.2) (for 

any fixed t) such that  the parameters u l , . . . ,  u N are smooth functions of the slow variable 

X - - E X .  
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That means that the parameters u l , . . . ,  u N are slow varying functions of the x. The 

Whitham hypothesis (1965 [21]; see also [13]- [20] ) (for m = 1) claims that the et = T- 

dependence of parameters u ~ ( X . T ) , . . . , u N ( X , T )  of a weakly-deformed soliton lattice is 

uniquely defined from a system of the form 

. . ° 

= i =  1 . . . , N  (0.7) 

(summation over repeated indices will be assumed). The matrix of coefficients (vj(u)) 

depends on the initial system (0.1) and its family of exact solutions (0.2). 

More precisely, if the function 

~o(z,t) = ¢ ( e - ' S ( X , T ) ; u ( X , T ) ) ,  

os, 
OX =k , , ( u (X ,T ) ) ,  

X = ez, T = et, 

os. =w.(u(X,T)) 

(0.s) 

is a leading term of the asymptotic oscillating solution of the system (0.1) having the form 

~(~r, t )  -- ~0(:r, t )  -I- ~ a  (.'r, t)  ~1_ ~2~2(27,1~ ) .at_... ,  (0.9) 

then the equation (0.7) holds for the parameters u a ( X , T ) , . . .  ,uN(X,T). Therefore the 

system (0.7) describes the evolution of weak deformations of the soliton lattice (0.2). From 

the formal point of view the equations (0.7) look like equations of hydrodynamic type. 

Up to now all physical applications of the theory of weakly deformed soliton lattices for 

nonlinear evolution equations belong to the field of dispersive waves in nonlinear media 

without energy dissipation (see [8]-[211 ). The plan of my lectures is: 

1) Theory of integrable systems of hydrodynamic type (0.7). 

2) Their Hamiltonian formalism i.e. theory of Poisson brackets of hydrodynamic type. 

It turns out to be extremely connected with Riemannian geometry. Generalisations of 

the Poisson brackets of hydrodinamic type for multidimensional spaces are a !~  related 

to the theory of some infinite-dimensional Lie algebras. The space discretization of 

the Poisson brackets of hydrodynamic type is described in terms of r-matrices. 

3) Applications of algebraic geometry to effective integration of the integrable equations 

of hydrodynamic type. 

The lectures are based on the works of Novikov, Dubrovin, Krichever, Tsarev [22] - 

[31]. 
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1. Poisson brackets  of hydrodynamic  type.  

It is very remarkable that the class of systems of hydrodynamic type (SHT) 

u~ i j = vj(u)u x (1.1) 

is invariant under local transformations of coordinates in the target space: u ~ w(u) 
Y 

i i' awl' Ouj (1.2) ~j(U) -'-} Vj,(W) " -  Vj(U(W)) OU i 0 " - ~ "  " 

Riemannian invariants (if they exist) 

diagonal, v~ = vj6ij (then vj are characteristic velocities). 

are functionals of hydrodynamic type 

i becomes are coordinates in which the matrix vj 

All the Hamiltonians we need 

H[u] = / h(u)dx (1.3) 

(the density h(u) does not depend on derivatives u , , u , x , . . . ) .  Poisson brackets of hydro- 

dynamic type (PBHT) have the form 

{u i ( : ) ,  u i (u)}  = g~J(u(x))~'(:  - u) + b~,¢(u(x))u~(:)6(x - u) (1.4) 

(6(x) is the standard Dirac delta-function). A Hamiltonian of hydrodynamic type generates 

via PBHT Hamiltonian SHT 

02h(u) 
~ ( ~ )  = { ~ i ( ~ ) , H }  = g~k(u)o~kOui 

Example 1. Classic compressible fluid (see e.g. [32]). 

We have here three field-theoretical variables 

u' (~ )  = p(x)  

u2(x)  _ p(x) 

u 3 ( ~ ) _  ~(~) 

+b~(u)Oh(u)) 
Ouk u~. 

(~.5) 

(momentum density) 

(mass density) 

(entropy density). 

The PBHT have the following form: 

{p(x),p(y)} = 2p(x)6'(x - y) + px(x)6(x - y) 

{v(x) ,p(  ,)} = p (x )6 ' ( x  - y) 

{p(~), s(~)} = ~(~)~ ' (~  - ~) 

{p(x),pCv)} = {~(~),~(v)} = {pC~),~(y)} = o. 

(1.6) 
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The Hamiltonian has the form 

p2 
H-- [Vp 

where £(p, s) is the energy density. 

Example  2. Relativistic fluid. 

The equations of motion have the form 

+ ~ ( p , s ) ] d x  (1.7) 

OTiJ 

o ~  = o, i , j  -- 1, x ° -- t, X 1 - ~  X .  (1.8) 

Here 

(Ti~)= ( " -P ) 
- p  e - 2q 

is the energy-momentum tensor and 2q = 7"//. The unique constraint of the T ij tensor is 

the state equation 

f(,~,, :P) = O (1.9) 

where ~¢, T' are, respectively, the enery density and the pressure in the comoving frame 

(then 

(0 0) - -  _ ~  

in the comoving frame, and its trace T~ = 2q = ~" - 7'). We have here two field-theoretical 

variables u 1 --- e (energy density), u 2 - p (momentum density) and PBHT of the form 

{ p ( x ) , p ( y ) }  = {~(x) ,  ~(y)}  = 2 p ( x ) ¢ ( x  - y) + v ~ ( x ) e ( x  - y) 

{p (x ) ,  e (y)}  = 2 (e (x )  - q ( x ) ) g ' ( x  - y) + ( e -  2q)~t~(x - y). 
(1.10) 

The equations of motion (1.8) have HamiltoIfian form with the functional H = f edz  as 

Hamiltonian. 

The general structure of one-dimensional PBHT is given by the following theorem [22]. 

Theorem I. 

1) Under local transformations of the field-theoretical variables of the form u i ( x )  ---, 

w i ( x )  = w i ( u ( x ) )  (i.e. changes of coordinates u i ~ w i = w i ( u )  in the target space) 

the coefficients giJ(u)  of the PBHT (1.4) transform like a metric tensor ( with two 
ii superscripts) and the coefficients b k (u) transform like an affine connection (more pre- 

cisely, for a non-degenerate metric, det(g i1) ~ 0, one can define the Christoffel symbols 
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rik via the formula b~ j = --~"isr'J-sk and the coefficients Fjk transform like coefficients 

of an affine connection). 

2) In the nondegenerate case, det(g ij) ~ 0, the PBHT (1.4) satisfy skew-symmetry and 

the Jacobi identity iff the metric gij is symetric, gij = gji, and the connection b~ 1 = 

-gisF~k is the Levi-Civita connection of the metric gij (i.e. it is symmetric F~k = rlj 
and compatible with the metric gii. Vkgij  = 0) and the curvature of this connection 

vanishes. 

Corollary 

1) The unique (local) invariant of the PBHT (1.4) with a nondegenerate metric, 

det(g i/) # 0, is the signature of this metric (i.e. the number of positive and nega- 

tive coefficients in its canonical form) 

2) There exists fiat local coordinates w i = wi(u) in the target space such that the PBHT 

(1.4) have in these coordinates a constant form 

= y J '(x _ v), -~ij = -~ji = cte. (1.11) 

Nevertheless it turns out that, usually, the physical coordinates are not flat coordi- 

nates. In the example 1 the three-dimensional metric gt3 has the form 

g i j  _ p 0 . 

s 0 0 
(1.12) 

It is identically degenerate (the theory of PBHT) with degenerate metric was partially 

investigated in [33]). But for barotropic fluids, s = cte., we have only two field-theoretic 

variables u 1 = p, u 2 = p and the corresponding metric 

g~ = p 

is nondegenerate. Its signature is (1.1). 

For a relativistic fluid (see example 2 above) the two-dimensional metric 

g i j  = 2 (  pe-q e-q)p 

is non degenerate and has a signature (1,1). 
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The proof of Theorem 1 is straightforward (see [31] ). This Theorem establishes a very 

important relation between the theory of Hamiltonian SHT and differential geometry'.  In 

particular this relation is very fruitful in the theory of integrability of SHT (see section 3 

below). 

A necessary and sufficient condition for a SHT (1.1) to be Hamiltonian is given by the 

following proposition [28] . 

Lemma.  A SHT (1.1) is a Hamiltonian system iff there exists a metric giJ(u) of zero 

curvature on the target space such that 

(1.13) 

= vj,  (I.,4) 

Here V/denotes the covaxiant derivative associated with the metric (g/t) - (gij)-1. 
The proof is almost evident if one rewrites the Hamiltonian SHT (1.5) with the Harnl]- 

tonian (1.3) in the following manner: 

i i j 
u t - -  v j ( u ) u  Z - -  g i J V k V j h ( u ) u ~ "  (1.15) 

It can be shown [28] that for genetic Hamiltonian SHT the PBHT (i.e. the metric g/J) is 

uniquely defined from the relations (1.13), (1.14). 

Some generalizations. 

1) Non-homogeneous systems of hydrodynamic type 

i i j 
u t = vj(u)u x + if(u) (1.16) 

require non-homogeneous PBHT having the following form: 

{ui(x), uJ(y)} = giJ(u(x))6'(x _ y) + b~i(u(x)u~(x)g(x - y) + hii(u)6(x - y). (1.17) 

Here h i.# defines (finite-dimensional) Poisson brackets on the target space. 

Theorem ~. [23] Under the assumption of non-degeneracy, det(g/j) ~ 0, in flat coor- 

dinates w i = wi(u) the non-homogeneous PBHT (1.17) have the form 

{wi (x ) ,  wJ(y)} - "~iJr'(x _ y) + (cikJwk + cd )6 (x  -- y) (1.18) 

1 The general notion of differential geometry Poisson brackets was introduced in [23] 

(see also [311). 



30 B. Dubrovin / Weakly deformed soliton lattices 

where -~ij, ,.iS is iS ~k, Co are some constants. More precisely, c k are structure constants of a Lie 

ij is a 2-cocycle on this Lie algebra. algebra ~ with invariant inner product "~ii and c o 

On the dual apace of linear functionals of the form f ai(x)wi(x)dx + b the PB (1.18) 

defines a structure of a Lie algebra. This is a well-known Kac-Moody Lie algebra. 

2) Multidimensional space case. The corresponding PBHT have the form 

k Ouk/Oz . x = ( z ° ) ,  a = 1 , . . . , d ,  - 

(1.19) 

hiJa have zero Here we have a family of metrics gija whose symmetric metric connections "k 

curvature, a = 1 , . . . ,  d. But the simultaneous reduction of the PBHT (1.19) to a constant 

form is in general impossible. The following proposition was proved in [23]. 

Theorem 3.- In the non-degenerate case, det(g ~ja) # 0, for d >_ 2 the PBHT (1.19) in 

some coordinates w 9 = wi(u) can be reduced to a linear form 

ii , k y )  +  ,ii ,o k _ (1.20) 

i j a  , , i j a  k i j a  where Yk , s0 , "k are some constant coefficients. (They obey a complicated system of 

equations which shall not be discussed here - see [31] ). 

We see that multidimensional P B H T  can be reduced to a non-homogeneous PBHT 

linear form. That  means that these P B H T  are the so-called Lie-Poisson brackets for some 

(infinite-dimensional) Lie-algebra. In other words, the dual space of linear functionals (let 
gi.W, o =-- O) has a natural  Lie algebra structure • 

{A ,B}  - C, A = / Ai(x)wi(x)ddx, 

C "- / Ci(x)wi(x)ddx, 

B = f Bi(x)wi(x)ddx 

A . l ~ J i o  fq l~J g l . h J i a  f ") A J  
C k  "-- , , . : v  k ~"a"-" - -  ~"Z"k  ' - 'w , -  • 

(1.21) 

The class of PBHT linear in field variables is interesting even in the case of a one- 

dimensional space d = 1. the corresponding infinite-dimensional Lie algebras and their 

central extensions of Virasoro type were investigated in [30][34]. 

3) Space discretization (only 1-dimensional case). 

It can be shown that  the correct space discretization of PBHT has the following form: 

• • i j  

{uZn,u~} - hm_n(un,um), 

h': = 0  

n, rn E Z, 
]k I > 1. (1.22) 
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Under changes of coordinates in the target space u i ~ z i (u)  the coefficients h~ / transform 

in the following way: 

ii Ozi(u)  OzJ(v) hnkq(u ' v). (1.23) 
h k (u, v) --, Oup Ovq 

i ui(ne) ,  e ~ O, realizes the PB The standard procedure of taking the continuous limit u,, = 

(1.22) as a family of non-local PB of the form 

k 

(1.24) 

ij (det(h~/(u, u) 0), It turns out [29] that  the PB of the form (1.22) for non-degenerate h k ), 

can be parametrized by Lie-Poisson groups (i.e. semi-classic limits of quantum groups). 

We give here explicit formulae only for the case of PB related to the so-called triangular 

Lie-Poisson groups (see [35]). Let r = (r ~ )  e ~ ® ~ be a solution of the classical Yang- 

Baxter equation for the Lie algebra 

[r12,r13 ] 3 I- [r12, r23 ] -1- [r13,r23 ] "-- 0 (1.25) 

(r12, rla,r23 a r e  defined in the following way: if r = ~'~ai @ bi then r 1 2  - -  ~~ai ~ bi @ 1, 

r~3 = ~ ai ® 1 ® bi, etc.) The target space for the PB (1.12) in this case coincide with the 

Lie group G with Lie algebra G. The PB is of the form 

{ ~( u .  ), ¢ (u .+  1 ) } = - r  ~ o ~ (  u .  )o~ ¢ ( u . + ,  ), 

{~ (u . ) ,  ¢ ( u . ) }  = r~[o~(u.)O~¢(~.) + a '~ (u . )O~¢(u . ) ] ,  

{~(Un),C(Um)} = 0  for Ira--hi > I. 

(1.26) 

Here ~, ¢ are arbitrary smooth functions on the group G, and 0~ (3' left and right-invariant 

vector-fields on the group G. Some special cases of PB of the form (1.26) (for dim G = 2) 

can be found in [36]. 

. Integrability of SHT 

The integrability of two-component SHT 

i i j 
u t = v j (u)ux ,  i = l . . . , N  (2.1) 

(N = 2) is wen-known: the system (2.1) can be linearized using the so-called hodograph 

transformation (u l ,u  2) ~ (x,t). This method can not be generalized for N > 3. So we 

shall consider the integrability of SHT (2.1) only for N > 3. 
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The main contribution in the theory of integrability of SHT was made by Novikov. His 

hyi)othcsis (1983) was that a Hamiltonian SHT is intcgrable if it can be diagonalized (i.e. 

there arc Rienmnn invariants for it). This hypothesis was proved by Tsarev [28] (see also 

[31] ). He also found a generalization of the hodograph method for diagonal Hamiltonian 

SHT of the form 

u~ = vi(u)u'~, i = 1 . . .  , g  (2.2) 

fin this paragraph there is no summation over repeated indices l). That  means that  the 

SHT is reduced to Riemann invariants. Tile main results are in the following theorems. 

Theorem_~. Diagonal Hamiltonian SHT are completely integrable on the subspace of 

monotonic functions u j ( x ) , . . . ,  u N (x). 

Theorem 5.- Let wl(u),  . . . w g ( u )  be arbitrary solutions of the following linear system: 

Oiwj --" Oivj (wi - wj )  (i ~ j )  (2.3) 
v i  - -  v j  

(here Oi =- O/Oui). Then, the functions u I ( z ,  t), . . . , uN(x, t) given implicitly by the system 

wi(u) = vi (u) t  + x,  i = 1 . . . , N ,  (2.4) 

are solutions of the diagonal Hamiltonian SHT (2.2). Any set of solutions u 1 (x ,  t ) , . . . ,  u N (x,  t) 
i such that u x ~ 0 can be locally obtained in such a way. 

Let me briefly comment on these theorems. What does complete integrability of a 

diagonal Hamiltonian SHT mean? It means that a suitable infinite-dimensional analogue 

of Liouville Theorem holds for such systems. First of all it can be shown that  there is a 

sufficiently rich family of conservation laws of this system with pairwise commuting inte- 

grals of motion. All of them have a hydrodynamic form I[u] = f P (u )dx .  And the words 

sufficiently rich mean that any tangent vector to a level surface of all these commuting 

integrals of motion can be represented as a linear combinations of their skew-gradients. 

Algorithms for finding integrals of motion for diagonal Hamiltonian SHT will be given 

below. 

Let us proceed now to the proof of Theorem 5. The crucial point is the following 

proposition. 

Lemma. The metric g~J of tile PBHT associated to diagonal SHT with pairwise dif- 

ferent characteristic velocities vi y~ vj in the coordinates u 1 , . . . , u  N is also diagonal ." 
gij = gi~ii 
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Proof. It is obvious from the symmetry (1.13). Using the second symmetry (1.14) 

it can be shown that the system (2.3) is compatible (i.e. its general solution depends 

on N arbitrary functions of one variable). We omit the details. It is more important to 

emphasize that any solution of the system (2.3) defines a commuting flow of the form 

Usi .... W i ( u ) u i  i - -  1 . . . , N  (2.5) 

for the initial SHT (2.2): 
(ui)t  i = ( u , ) , .  

We see that these commuting flows also are diagonal SHT. It can be shown that they are 

Hamiltonian SHT whose Hamiltonians were found in the previous Theorem 4. It also can 

be shown that (2.3), (2.5) is a general description of commuting flows for (2.2). To achieve 

the proof of Theorem 5 one needs to check up that the solutions of the system (2.4) satisfy 

(2.2). This proof is straightforward. 

From the previous lemma and Theorem 1 we can get a very important conclusion: 

the theory of integrable systems of hydrodynamic type is closely related to the classical 

theory of N-orthogonal system8 of curvilinear coordinates. Every N-orthogonal system of 

coordinates (i.e. diagonal metric of zero curvature -not necessarily positive definite) gives 

rise to a family of integrable SHT, their integrals and commuting flows. I shall give now 

the explicit algorithm. 

Let 
N 

i---1 

(2.6) 

be a diagonal N-dimensional metric, ai = 4-1, (not necessarily having zero curvature). Let 

us introduce the so-called Darboux coefficients (or rotation coefficients) 

Ojhi i j.  (2 .7)  
[3ij = h i '  

From the definition (2.7) we also have • 

Ojhi = [3~jhj. 

The compatibility equations of (2.8) have the following form: 

(2.8) 

Ok~ij = ~ik~kj, k ~ i , j .  (2.9) 
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Then, in order to define characteristic velocities wl(u) , . . . ,  wN(u) of commuting flows of 

the form (2.5) one needs to solve the system 

= 

wi  =-- h i w i .  

(2.10a) 

(2.10b) 

and similarly the solutions of the system 

Ojpi  = t3jipj 

Pi = h ? l O i  P 

(2.11a) 

(2.11b) 

are needed for the definition of the densities of the integrals I = f P(u)dx. The flows (2.5), 

(2.10a), (2.10b) will be a Harniltonian SHT iff the metric (2.6) has zero curvature. 

Remark 1.- If the curvature of the diagonal metric (2.6) is not zero, the diagonal SHT 

(2.5), (2.10a), (2.10b) is not a Hamiltonian system. But it has a rich family of commuting 

flows (2.5), (2.10a), (2.10b) and integrals (2.11a), (2.11b). It can be shown that such 

systems can also be linearized using the techniques of the proof of Theorem 5. (In [28] 

such SHT were called semi-Hamiltonian systems). 

Remark 2.- For the so-called Egoroff metrics the rotation coefficients satisfy one more 

equation 

Ok~ij  -- O. (2.12) 
k 

Such metrics have zero curvature if the rotation coefficients satisfy the condition 

~j i  --" o'io'jl3ij. (2.13) 

The system of the non-linear equation (2.9), (2.13) is well-known in the theory of solitons 

[42]. It can be obtained from the system of equations of motion of the N-dimensional 

rigid body (see details in [7]). The most important application of this observation is the 

construction of self-similar solutions of SHT using the modern theory of Painleve-type 

equations. It should be noted that the Hamiltonian structure of the equations of motion 

of weakly deformed soliton lattices for integrable equations is defined by Ergoroff metrics 

(see below). 

It is not trivial to complete the program of Theorem 5 for interesting cases of SHT. 

Example. Benny equations [37]. 
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They describe one dimensional waves in weakly non-linear stratified fluids without 

dissipation: 
n 

Uit Jr" UiUiz Jr" ( ~ - ~  ~ i ) z  "-- 0 
i--1 

rti ̀  Jr (Uir l i ) z  - -  0 

i =  1 , . . . , n .  (2.14) 

Here N = 2n and the PBHT in the variables ui,  Tli have constant form 

{ U i ( X ) , T I j ( y ) }  --" ~ i j~ t (X  -- y ) ,  (2.15) 

while the other PB vanish. The Hamiltonian is 

H = ~ [ yiu i "4-(Z ~i)2]dx" (2.16) 

In order too find Pdemann invariants of Benny equations let us consider the algebraic curve 

Et 

T/i 
f(A, /.t) -'- A "4- _ _  ~ ui + A / ~ -  O. (2.17) 

i=l  

Let ( ) ~ p , l . t p ) , p  - -  1, . . .  ,2n be the branching points of this curve in the A-plane. 

means that ) h , . . . ,  A2p are roots of the equation 

That 

OF 71i 
0A = 1 - Z (ui + A) 2 = 0. (2.18) 

It turns out [38] that ~ul,... ,  #2n are Riemann invariants for Benny equations, i.e. 

~p, = ~ p ( m , . . . ,  mp~p~), p -- l , . . . , 2 n .  (2.19) 

For diagonal entries gpp of the associated metric defining a PBHT in/1p-Coordinates, the 

following formula holds 2: 

gpp Res ( OF )-1 (2.20) ---- ~-~ • 

A = A o  

The general solution of equations (2.3) for commuting flows is not known up to now. 

2 Tsarev; private communication 
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. S o l i t o n  l a t t i c ce s  and  average  o f  P o i s s o n  bracket s .  

Let us define here the procedure [22] of averaging any field-theoretic PB over invariant 

tori. 

We have: 

1) A local field-theoretic PB of the form 

{¢~(~1, ¢~(v)} ,  = ~ B ~ ( ¢ ( ~ ) ,  ¢(~1, . . .1  ~(~(~ - v). 
$ 

(3.~) 

(The sum is finite and its coefficients depend on a finite number of derivatives). 

2) N pairwise commuting local field-theoretical functionals I1[C],...IN[C]: 

f pi(c,C' , . . . )dx , {Ii,IJ}¢~=O. (3.2) I'[¢] = 

3) A N-dimensional family of m-dimensional tori which are invariant for the flows of 

the Hamiltonian Ii[C] : 

C(x) = O(kx + r°;u ' , . . . ,uN) .  (3.3) 

• = O(r , , . . . , rm;u ' , . . . , u  N) is a 27r-periodic in each ra, k = (kl , . . . ,k ,~) = k(u) and r ° 

is an arbitrary m-vector .  The parameters ul , . . . ,  u N, are chosen in such a manner that 

Ii[C(x) = ¢(kx + r°; u)] = u i, i = 1 , . . . , N .  (3.4) 

Then we define a PBHT on the phase space of the fields uI (X) , . . . , uN(X)  of the form 

{ui(X),ul(Y)}, ,  = giJ(u(X))5'(X - Y) + b i k J ( u ) u k x ( X ) ~ ( X  -- Y) (3.5) 

-the so-called averaged over invariant tori (3.3) PB (3.1). Let us define the coefficients A~J 

via the following formula: 

{pi(C(x) 'C'(x)"") 'Pi(C(Y)'C'(Y)"")}* = E A~i(C(x)'C'(x)"")*(8)(x- Y)" (3.6) 
8 

From commutativity {Ii,IJ}¢, = 0 we have 
, , # ,  • 

AoJCC(x), C ' (x) , . . . )  = ~}zoiJ(c,. . .).  

Let us define for any polynomial P(¢(y) ,  C'(Y),...) the averaged function 

_ _ f 
P -  P(u) = (2~) - ~  P(¢(r;u),(kO~)¢(~-;~),...)dmr 

(3.7) 

(3.s) 
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(averaging over invariant tori (3.3)). Finally we define the coefficients of averaged PBHT 

(3.5) via the following formulae: 

ii O__O_.Oi j (3.9) giJ(u) = A T ,  b k ( u ) =  Ou k . ,  . 

Theorem 6.- Under the conditions given above the formulae (3.5) with gij and b~ j given 

by (3.9) define PBHT.  

This Theorem was found in [22]; for its proof see ref. [31]. 

Theorem 7.- Let us now assume that  the { , }, -PB are nondegenerate, N = 2m, ~nd 

that  the invariant tori (3.3) are Liouville tori. It means that  there exist action variables 

J1 , - . . ,  Jm which are canonically conjugated to angular variables r l , . . . ,  rm. Then: 

1) The metric giJ(u) of the form (3.9) is nondegerate. 

2) The variables k l , . . . ,  kin, J 1 , . . . ,  J,~ give flat coordinates for { ,  } , -  PBHT: 

{ki(X), Jj(Y)}u =~ij~t(X - Y), 

{ k i ( X ) , k j ( Y ) } .  = { J i ( X ) , J j ( Y ) } .  = 0 
(3.~o) 

For Lagrangian system of evolution equations this Theorem can be deduced from Haves 

results [18]. For the case of degenerate PB (3.1) the formulation of the Theorem 7 is 

slightly changed -see [22]. 

Let us now consider a Hamiltonian system whose Hamiltonian is one of the integrals 

I i (e.g. H = 11). 

¢t(x) = {g ,  ¢(x)}¢.) (3.11) 

It has a family of solutions of a form 

¢(z ,  t) = ¢(  kz + ~ t  + r°; u ' , . . . ,  u N ), - -w(u )  (3.12) 

-soliton lattices or m-phase oscillating solution. Let us look for slow deformations of these 

solutions as an asymptotic (in a small parameter e) solution of the form 

¢~(x, t) = ¢(e-' S ( u ( X ,  T)); u ' ( X ,  T), . . . , u N (X ,  T)) + O(e). (3.13) 

Here X = ex, T = et, S = ( S , , . . .  , S , , )  = S ( u ( X , T ) ) ,  

S x  = k ( u ( X , T ) ) , S r  = ( w ( u ( X , T ) ) .  (3.14) 
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(The weak limit with e ---, 0 of the leading term for [ex[ < <  1, IEtl < <  1 coincides with the 

exact solution: it is clear from the expansion S(X ,  T) = So + ekx + ewt + . . .  ::~ 

 (So + + . . .  + 

E 

Theorem 8. [22] The dependence of the parameters u 1 

can be defined from the following Hamiltonian SHT: 

" 
UiT(X) = {H, ,,, 

(Here H(u) = u I = I[¢1 in our coordinates). 

u N , . . . ,  on the slow variables 

= / H(u)dX.  (3.15) 

Example.- The nonlinear Klein-Gordon equation (0.4) is a Hamiltonian system with 

standard PB 

{q(x),p(y)} = 6(x - y) p = qt (3.16) 

and Hamiltonian 
H__/I 2 [~(p + q~) + V(q)]dx. (3.17) 

Here we have two commuting integrals 

I "  
u I = I  1 = H ,  u 2 = I  2 = P = ] p q z d x .  

The one-phase soliton lattice has the form given by (0.5) and (0.6). 

averaged PB has the form 

u 2 u' - A )  
( g i j ) _ _  2 U 1 - -  A U 2 ' 

(3.18) 

The metric of the 

A = V(q). (3.19) 

The Hamiltonian equations (0.5) and (0.6) of weak deformations of soliton lattice coincide 

with the equations (1.8) of the relativistic fluid. The state equation (1.9) has the following 

form: 

P(£) =- E -  F ( £ ) F ' ( £ ) - ' ,  f v/2(E- v(Q))dQ. F( E) = '2~r (3.20) 

(The relation of the averaged non-linear Klein-Gordon equation with relativistic hydrody- 

namic was observed by Maslov t14] without any discussion af the Hamiltonian structure). 

Other examples of averaged PBHT can be found in [31]. 

It is very important to notice that in physical coordinates u l , . . . , u  N the averaged 

PBHT (3.10), have non-constant coefficients (3.9). But these coordinates have another 
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differential geometry description. We say that u l , . . . ,  u N are Liouville coordinates for the 

PBHT (3.10) if there exists a matrix 7iJ(u)  that 

giJ  ( u ) - -  "~iJ ( u ) "4" ~fJi ( u ),  b ikJ (u) - . -  O " f i J ( u )  
Ou k (3.21) 

They are strongly - Liouville coordinates if these properties still hold after any combination 

of the following procedures: 

1) affine transformations u i ---* ~i = a~uJ + b i. 

2) restriction to any part  of coordinates: if ( i l , . . .  , i p ; j l , . . .  , jp )  is any partition of 

the set (1,2,..., N)(p + q = N),  then the matrix 

. ° 

~ k l ( u i t  , . . . , u it' ) -"  ")"t"/(U)ltti ,  , . . . , u in=y i zed  (3.22) 

again defines via formulae of the type (3.21) a PBHT on the space of the fields 

It was observed in [31] that according with the construction of Theorem 6 the coor- 

dinates u l , . . . ,  u N (3.4) are strongly Liouville coordinates for the averaged PBHT (3.10), 

with coefficients (3.9). It imposes a very strong restriction on the geometry induced on 

the space of parameters of invariant tori (3.3). 

4. D e f o r m a t i o n s  o f  so l i ton latt ices  for integrable equat ions  

Integrable equations of the theory of solitons have rich families of soliton lattices of the 

form (3.3). Such periodic and quasi-periodic solutions can be found and investigated using 

methods of algebraic geometry of Riemann surfaces. It turns out [24][39] that  algebraic 

geometry is also very efficient to describe weak deformations of these solutions. 

I shall explain the main idea for the example of the Korteweg de Vries (KdV) equation 

et -- 6¢¢z - e zxz- (4.1) 

Its m-phase solutions (m = 1, 2 , . . . )  are defined by the following construction. 

1. Parameters  rl  < r2 < . . .  < r2m+l. It is useful to represent them as branching 

points of the two-sheeted Riemann surface 

2m+1 
= H - (4..0) 

i--1 
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2. We need two Abelian differentials on the surface (4.2) 

@ = P(A) dA, 
2~/1-I(~ - ~) 

P(A) = P(A;r l , . . . , r2m+l)  = A m + a l A  m-1 + . . - + a m  

(4.3a) 

(4.3b) 

Q(~) d~, 
~q = 2 j I l ( ~  - ~,) 

Q(A) -- Q(A;r l , . . . , r2m+l )  =12 A m+l + b0A m + . . .  + bin, 

(4.4a) 

b0 = - 6  ~ ~i (4.4b) 

Here the coefficients aj = a j ( r l , . . . ,  r2m+l), bj = b j ( r l , . . . , r 2m+l )  are uniquely de- 

fined by the parameters r l , . . . ,  r2m+l from the normalization conditions 

r2k+t /r2k+l 
dp = dq = O, 

• I r 2 k  J r 2 k  

k = 1 . . . , m .  (4.5) 

3. The (2m + 1)-dimensional family of invariant m-tori of the KdV equation is given 

via the following formula: 

¢(x, t ) = - 2 0 2 1 o g O ( k x  +wt  + r ° ; r l , . . . , r 2m+l )  + c. (4.6) 

Here 0 ( r ; r l , . . .  ,r2m+l) is the theta-function of the Riemann surface (4.2) (see definition, 

e.g., in [40] ). Vectors k = ( r l , . . . , r 2 m + l ) ,  and w = w(r l , . . . , r2m+l )  are given via the 

/ r 2 a  

k, = 2 dp, 
J r l  

r 2 a  

w = 2 dq, a = 1 , . . . ,  m. (4.7) 
J F I  

formulae 

The constant c has the form [42] 

trt /r2a+l 
(4.8) 

. /  

The solutions (4.6) reduce to muitisoliton solutions in the limiting case r2i ~ r2i-1, i = 

1,...,///. 
4. The KdV equation has an infinite series of conservation laws (Kruskal integrals) 

i 0 =  / C d z ,  1 1 = ! / ¢ 2 d x ,  12-- H = / [ ½ ¢ 2 +  Ca]dx,.. " (4.9) 

They commute under Gardner-Zakharov-Faddeev PB 

{¢(x),  ¢(u)} = ~'(x - y). (4.10) 
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The integral 12 is a Hamiltonian of the KdV equation. 

5. The equations of weak deformations of the solutions (4.6) can be represented in the 

following form [39]. 

OTdp(,k ) = Ox dq( ,k ) (4.11) 

(for an elementary proof see ref. [31] ). Here ,~ is an arbitrary parameter. From (4.11) it 

follows that  Riemann invariants for the equation of weak deformations are: 

t i t  -- v i ( r i ; r l , . . . , r2m+l)r ix ,  

Q ( r i ; r l , . . .  , r2m+l) 
Vi - -  P ( r i ; r l , . . . , V 2 m + l ) '  

i = 1 , . . . , 2 m  + 1. 

(4.12a) 

(4.12b) 

6. Let 

dr = R( A; r l , . . .  ,r2m+l)dA (4.13) 

be an arbitrary piecewise-analytic differential on the Pdemann surface with a prescribed 

jump on the real axis. This differential is uniquely defined by this jump and by the 

parameters ( r l , . . . ,  r2m+l) from the normalization conditions of the type (4.5). 

Theorem 9. [24] The general solution r / =  r i (X ,T) ,  i = 1 , . . . , 2 m  + 1, of the equa- 

tions (4.12)of weak deformations of soliton lattices (4.6) is given implicitly by the following 

formula 

(Xdp  + Tdq - dr)x=r, = 0, i = 1 , . . .  ,2m + 1. (4.14) 

(The jump of the differential dr is a functional parameter of the general solution). 

Sketch of proof. Let us consider the differential 

fl = X dp + Tdq - dr (4.15) 

and its derivatives 

Orft = dq + (XOTdp + TOrdq - 0Tdr) ------ dq + ill.  

Oxfl = dp + (XOxdp + TOxdq - Oxdr) -- dp + ft2. 

(4.16) 

(4.17) 

Let us show that the differentials fll and f12 vanish. They have no jump on the real axis 

because the jump of dr is fixed (i.e. it does not depend on X, T). Neither they have 

singularities at infinity A = c~ (because the differentials dp, dq have fixed singularities of 

the form 1 } 
dp + 

dq =6(V~" + O(A -3/2))dA, 

,k - ,  co. (4.18) 
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They have no singularities at the branching points A = ri. It holds from (4.14). Hence the 

differentials Q1 and Q2 are everywhere holomorphic on the Riemann surface (4.2). But 

they have zero periods of the type (4.5) and therefore they vanish (see any textbook on 

Riemann surfaces). 

The compatibility condition of these equations coincides with (4.11). 

We have shown that the solution of (4.14) satisfies (4.11). In order to prove the 

converse assertion wc need to construct a piecewise-analytic differential dr starting from 

an arbitrary solution of equations (4.11). Let us construct the differential f~ via the formula 

f ( dq ) dT= f ( dp) dX. (4.19) 

This is possible because of (4.11). The differential is analytic outside the real axis and it 

has a jump on the trajectories of the branching points ri = ri(X, T). It is easy to show 

that this differential has the form (4.15) and satisfies (4.14). The Theorem is then proved. 

Analytic solutions of the Gurevitch-Pitayevskii problem [10] -[42] about the dispersive 

an~dogue of shock-waves were obtained in ref.[41] by using this Theorem. 
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