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The integrability of one-dimensional systems of hydrodynamic type (SHT) 

u~ = 5', , }  (u) u{ ,  ~ = 1 . . . . .  zv. ( l )  
J 

is assured, as was shown by S. P. Novikov [i], by their diagonalizability, i.e., the reduci- 
bility by changes of the u-coordinates of the matrix (vji(u)) to diagonal form, and the Ham- 
iltonian property: 

u~ = (u ~ (x), Ih,  ~ = l H (u) dx, (2) 

where {-, .} have the form [2] 

{u ~ (x), u s (g)} __-- g~S (u (x)) 5' (x - -  g) - -  s~PJ ~1~x° ~ (x - -  g). ( 3 )  

Here the matrix (gij) (assumed nondegenerate) defines a pseudo-Riemannian metric (with upper 
indices) of zero curvature on the u-space, Fjk i = Fjki(u) being the corresponding Levi-Civita 

connection. Thus, the integrability condition can be formulated in terms of the differential 
geometry of SHT. For such integrable systems S. P. Tsarev [3] found a generalization (for 
N _> 3) of the hodograph method which lets one "linearize" the system and thus in some sense 
"integrate" it. 

More precisely, let the system (i) in the coordinates u I ..... u N be already diagonal: 

u~, ~ = t , . . . , N ,  (4 )  

where  v i ~ v j  f o r  i # j .  Then t h e  m e t r i c  ( g i j )  in  (3 )  i s  a l s o  d i a g o n a l  in  t h e s e  c o o r d i n a t e s .  

Hence ,  u 1, . . . ,  u N i s  an o r t h o g o n a l  c u r v i l i n e a r  c o o r d i n a t e  s y s t e m  in  N - d i m e n s i o n a l  E u c l i d e a n  
o r  p s e u d o - E u c l i d e a n  s p a c e .  Any such  c o o r d i n a t e  s y s t e m  g e n e r a t e s  a f a m i l y  o f  commut ing  H a m i l -  
tonian flows of the form (4) 

u ~ i ~={u~(x), P}=w~(u)u~, i = l  . . . . .  N, (5) 

P = ~ P  (u)dx.  (6 )  

One seeks these flows from the linear system 

O#v s =  r ~  (wi - -  wj), i 4 = } ,  oi = O/Ou i, ( 7 )  

and their Hamiltonians [defining the family of conservation laws for the systems (4), (5)] 
from the linear system 

- -  - -F~jOiP = O, i ~ ] .  (8 )  

Each flow (5) commuting with (4) defines a solution of the system (4) implicitly: 

wi(u)  = v~(u) t + x, i =  t . . . . .  N ,  U =  u ( x , t ) .  ( 9 )  

In this way one gets all solutions locally. Also defined are the semi-Hamiltonians of diag- 
onal SHT (there are more of them than Hamiltonians) to which the generalized hodograph meth- 
od is applicable. All these results are due to Tsarev [3] (cf. also [4]). 
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For each class of integrable SHT, the so-called averaged systems of the theory of soli- 
tons describing the hydrodynamics of weak deformations of soliton lattices [4], the linear 
system (7), as shown by I. M. Krichever [5], has "increased integrability" and can be solved 
by the methods of algebraic geometry. Some other examples of SHT for which one can effec- 
tively find commuting flows are indicated in [6]. 

How should one single out the class of "strongly integrable" Hamiltonian SHT in the 
framework of their differential geometry? In the present note we propose a solution (pos- 
sibly one of several possible ones) of this problem. 

i. Let 

N 

ds2  ~ E 2 ., ~= s~h~ (u)du~-, N~3, (10) 

be a diagonal (pseudo-)Riemannian metric, the numbers ¢i = il define its signature. The 
quantities 

? t j  #Jh~/'hi' ~ ] '  (ii) 

a r e  c a l l e d  t h e  r o t a t i o n  c o e f f i c i e n t s  o f  t h e  m e t r i c  ( i 0 )  [ 7 ] .  We s a y  t h a t  (10)  i s  a m e t r i c  
o f  Ego rov  t y p e  ( c f .  [7 ,  8 ] ) ,  i f  t h e  f o l l o w i n g  r e l a t i o n s  h o l d  f o r  i t :  

7ji -- eieJ?ij. (12)  

R i e m a n n i a n  m e t r i c s  o f  t h i s  fo rm a r o s e  in  t h e  t h e o r y  o f  o r t h o g o n a l  c u r v i l i n e a r  c o o r d i n a t e  
s y s t e m s  o f  a number  o f  1 9 - t h  c e n t u r y  g e o m e t e r s .  Darboux  p r o p o s e d  t o  c a l l  them Egorov  s y s -  
t ems  in  h o n o r  o f  D. F. E g o r o v  who g a v e  t h e  mos t  c o m p l e t e  a c c o u n t  [8] o f  t h e  t h e o r y  o f  s u c h  
m e t r i c s .  

A s s e r t i o n  1 ( c f .  [ 8 ] ) .  A m e t r i c  o f  Egorov  t y p e  has  z e r o  c u r v a t u r e  i f  and o n l y  i f  

07~ i = 0 (14)  

N 

for all i # j, where ~ = ~, O i. 

Remark. Egorov metrics are ~otential, i.e., can be represented in the form 

g~ (u) = &V (u), ( 1 5 )  

where  V(u)  i s  a ( p o t e n t i a l )  f u n c t i o n .  C o n v e r s e l y ,  b e i n g  Ego rov  f o l l o w s  f rom t h e  c u r v a t u r e  
being zero and potentiality. Another equivalent definition of Egorov metrics: these are 
diagonal metrics of zero curvature, invariant with respect to a one-parameter group of trans- 
formations acting nonidentically along each axis. The symmetry (12) corresponds to a choice 
of coordinates u ~, ..., u N, for which the action of the indicated group can be written in 
the form 

u i ~ u  ~@T,  i =  t . . . . .  N. 

AsSertion 2 (cf. [9]). The commuting flows (5) and conservation laws (6) corresponding 
to a Egorov metric of zero curvature can be found from the following linear systems: 

Oj~i = TU~j, ] : ~ i ,  for ~i ~ hitvi, (16) 

07~i = ~j~ji, ]=#:i, for OiP = h ~ .  (17) 

Both assertions can be verified by easy calculations. 

We note that the Lame coefficients h i = ~i themselves can be sought ~rom (16). 

Remark i. If the curvature of a Egorov metric is nonzero but (13) holds, then the oper- 
ation (3) does not define the Poisson brackets. Nevertheless, the system (16) defines a 
family of commuting diagonal flows (5) which will be semi-Hamiltonian systems [9] and the 
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system (17) defines the family of their general conservation laws. Actually, such semi= 
Hamiltonian systems were studied in [i0] (although the author of this paper was apparently 
not acquainted with Tsarev [9]). The symmetry (12) is inessential for semi-Hamiltonianness. 

Remark 2. If an Egorov metric satisfies the following condition 

O h m = O ,  i =  t . . . . .  N ,  (18)  

which is stronger than (14), then the correspondence between conservation laws and commuting 
Hamiltonian flows acquires the particularly simple form 

i 
us = {u ~ (x), P}=gi~O~OPu~; i = 1 . . . . .  N ,  (19)  

where  t h e  d e n s i t y  P o f  t h e  c o n s e r v a t i o n  law P s a t i s f i e s  ( 1 7 ) .  Hence ,  one s e e k s  t h e  c o r r e -  
s p o n d i n g  s o l u t i o n s  (9 )  o f  t h e  o r i g i n a l  s y s t e m  (4)  f rom t h e  f o l l o w i n g  " e n v e l o p i n g  e q u a t i o n s . "  

o, ( o p  (u) - tOH (~) - -  xOX (u)) = O, i = i ,  . . . .  N ,  (20) 

where  H i s  t h e  d e n s i t y  o f  t h e  H a m i l t o n i a n  s y s t e m  ( 4 ) ,  I ( u )  i s  t h e  d e n s i t y  o f  t h e  momentum 
[ t h e  g e n e r a t o r  o f  t r a n s l a t i o n s  in  r e l a t i o n  t o  t h e  b r a c k e t  ( 3 ) ] .  [By t h e  way,  t h e  f u n c t i o n  
V(u)  = 3 I ( u )  i s  i n  t h i s  c a s e  t h e  p o t e n t i a l  (15)  o f  t h e  m e t r i c  g i i ] "  

2. Our b a s i c  o b s e r v a t i o n  i s  t h e  f a c t  t h a t  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 3 ) ,  (14)  f o r  t h e  
r o t a t i o n  c o e f f i c i e n t s  o f  E g o r o v  m e t r i c s  o f  z e r o  c u r v a t u r e  i s  an i n t e g r a b l e  s y s t e m  o f  t h e  
t h e o r y  o f  s o l i t o n s  ( i t  was g i v e n ,  f o r  e x a m p l e ,  in  [ 1 1 ] ) ,  and (12)  i s  t h e  r e d u c t i o n  r e l a t i o n  
f o r  t h i s  s y s t e m .  T h i s  s y s t e m  a c t u a l l y  r e d u c e s  t o  t h e  f o l l o w i n g  (1 + 1 ) - d i m e n s i o n a l  one :  
t h e  r e s t r i c t i o n  o f  t h e  v a r i a b l e s  Y i j ( u )  t o  any  p l a n e  u i = a i x  + b i t  s a t i s f i e s  t h e  f o l l o w i n g  

s y s t e m  o f  e q u a t i o n s  o f  t h e  p r o b l e m  o f  N-waves  [12]  (where  one u s u a l l y  s u b s t i t u t e s  x ,  t ~ + i x ,  
i t )  

[A, F~] - -  [B, r~l = [[A, r] ,  [B, r]], 

A = diag (a ~ . . . . .  aN), B = diag (b ~ . . . . .  bN), F = (?~i) (21)  

with the additional reduction 

[ m  F = 0, ~T = J F ] ,  ] = diag (el . . . . .  eN). (22)  

(14)  can  be r e p r e s e n t e d  in  t h e  fo rm o f  c o m p a t i b i l i t y  c o n d i t i o n s  o f  l i n e a r  The system (13), 
equations 

0j~i = ? ~ j ,  ] :~ i, (23 )  

~ = E~i, i = t . . . . .  , N ,  ( 2 3 ' )  

(X being the spectral parameter). The first of these equations coincides with (16). The 
system (17) for the conservation laws is adjoint to (23). The system (13) is also integrable 
[even without the symmetry condition (12)]. It is obtained by multidimensionalization a la 
Zakharov-Shabat of equations (13), (14). 

Based on these observations we make the following 

Definition. A diagonal Hamiltonian SHT is said to be strongly integrable if the metric 
(i0) associated with its Hamiltonian structure is a metric of Egorov type. 

It is clear by virtue of what was said above that in the theory of strongly integrable 
SHT powerful methods of the theory of solitons such as the method of the Riemann problem 
(applied to the system (12)-(14) cf. [12]), the algebro-geometric method (for the system 
(12)-(14) cf. [13-15]), etc., can be applied. 

Let the metric (i0) of Egorov type of zero curvature have the self-similarity Example. 
property 

g~i(ku)  = k-2~gii(u), k > 0 ,  i =  t . . . . .  N. 
(24) 

We show that such metrics are defined (for fixed s) by giving a finite number of parameters 
[equal to N2(N + 1)/2]. Indeed the rotation coefficients Xij of such metrics define a self- 
similar solution of the system (12)-(14) 
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V~j (ku)  = k-~v~j (u).  (25) 

F o r  t h e  c o n s t r u c t i o n  o f  s u c h  s o l u t i o n s  ( i n  t h e  s e c t o r  u ~ < . . .  < uN; i n  o t h e r  s e c t o r s  a n a -  
l o g o u s l y )  we u s e  t h e  m e t h o d  o f  t h e  R i e m a n n  p r o b l e m .  

A s s e r t i o n  3.  L e t  u z < u 2 < . . .  < u N. L e t  ~ ( u ,  ~) = ( ~ i j ( u ,  ~ ) )  - (N x N ) - m a t r i x - v a l u e d  

function, analytic in ~ for Re ~ # 0, which is a solution of the following Riemann problem: 

tF (u, it) + O) = ~F (u, iO - -  O) G, 

qr (u, - - i  D -~ O) = vir (u, - - i p  - -  O) J G T J ,  
( 2 6 )  

p > O, G be a constant, lower-triangular complex matrix with ones on the main diagonal, sat- 
isfying 

CG = E ( 2 7 )  

(the dash denotes the complex conjugate, E is the identity matrix), normalized by asymptotics 
of the form 

(u, %) exp (--%U) = E + F/% + o (%-1), %_+ ~ ,  U = diag (U 1 . . . . .  UN).  (28) 

Then the matrix F = (Tij) defined by (28) is real and satisfies the system (12)-(14). The 

metric gii with condition (24) can be reconstructed in terms of the solution of the Riemann 
problem with the help of the Meilin transform 

N i~o 

j=l --wo 

( 2 9 )  

where cl, ..., c N are arbitrary real constants. In this way one gets all metrics of Egorov 
type curvature zero satisfying (24). 

The proof of this assertion is obtained by analogy with [16]. 

We note that all self-similar solutions corresponding to strongly integrabie SHT with 
any exponent of self-similarity can also be constructed (and studied) with the help of the 
formulas of assertion 3: if for the original system (4) 

v~ (ku) =- k-Pvi (u), ( 3 0 )  

then its self-similar solutions with exponent of self-similarity y, 

have the form 

u ~ (x,  t) = tw- 'U~  (xt+V), (31) 

t (a~Xq-l- - tbjh~-l - -xc7 ~'-l) W ~ ( u , h ) d k ~ O ,  i -~ - t  . . . .  , ~ ,  
j = 1 - i ~  (32) 

where 

r = s + p ,  q = s + p ( l + y ) / y ,  (33) 

t h e  r e a l  c o n s t a n t s  b t  . . . .  , b N a r e  d e f i n e d  by t h e  s y s t e m  ( 4 ) ,  ( 3 0 )  a n a l o g o u s l y  t o  ( 2 9 ) ,  t h e  
real constants a I .... , a N are arbitrary. Cf. [12, 4] on applications of self-similar solu- 
tions of SHT. 

Remark. For N = 3 and (el, e2, s3) = (+, -, +) self-similar solutions of the system 
(12)-(14) are found from the system 

(zPl)' = --P~P3, 

P2 = --P~Pl, 
((z - -  1) P3)' = P~P2, 

(34) 
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where 

~ = p~ (z ) / (u  ~ - u~), ~ = - p ,  ( z ) / ( ~  ~ - ~ ) ,  

z = ( u '  - u ' ) / @  - u ' )  
(35) 

The order of this system is lowered to two with the help of the integral 

(zp~) 2 - -  p~ + [(z -- 1) ps] 2 ~ R 2. (36) 

As shown in [17], the second order system obtained reduces to the sixth Painleve equation 
(PVI) with parameters depending on R. 

In particular, the Hamiltonian formalism of the Wheezem equations (cf. [4]) describing 
the hydrodynamics of weak deformations of cnoidal waves for the Korteweg-de Vries (KdV) 
equation obtained by averaging (according to [2]) the Gardner-Zakharov-Faddeev brackets in 
diagonal variables u I < u 2 < u 3 (Riemannian invariants for the Wheezem equations) is de- 
scribed by a metric (i0) of Egorov type of signature (+, -, +) satisfying (18) and (24) with 
s = 0 (cf. [9]). It has the form 

h~ =- / ( z ) /  ] /  2 ( l  - -  z) ,  h~ = (/ (z) + z - -  l ) /  ]/  2z ( l  - -  z), 
h~ = ( / -  t ) / l / ~  ( 3 7 )  

where z is as in (35) and the function f can be expressed in terms of complete elliptic in- 
tegrals 

/ (z) = E (~/K (F~- (3S) 

The corresponding solution of (34) has the form 

p l  = - - h ~ / z  V - ~  P2 = - - h 2 / ~  r~ ,  P3 = - - h J ( z  - -  t)  I f 2  ( 3 9 )  

and satisfies (36) with R = 1/2. The formulas (39) define a solution of the PVI equation by 
virtue of [17] which can be extracted from [18]. In this case a solution of the Riemann 
problem (26)-(28) can be constructed with the help of the results of Krichever [5]. Some 
particular solutions of (23) with % = 0 are constructed in [9] also using the Egorov proper- 
ties of the metric (37). 

3__~. The KdV equation for n > i averaged over n-zoned solutions is also strongly inte- 
grable in our sense. The diagonal variables u I < u 2 < ... < u ~n+1 (denoted by r I ..... 
r2n+l in [4]) are branch points of the corresponding Riemann surface of genus n (cf., e.g., 
[4] for the form of the system in these variables). 

Assertion 4. The metric which is diagonal in the variables u l, ..., u 2n+I giving the 
Gardner-Zakharov-Faddeev bracket averaged over n-zoned solutions of the KdV is a Egorov 
metric of curvature zero of signature (+, -, + ..... -, +). 

Proof. For the metric indicated it is easy to get 

[ dp ]3 
g~i--BesL~=ui d ~ J  d~, i~---I . . . . .  2 n + l .  ( 4 0 )  

H e r e  p = p(%;  u 1 . . . .  , u 2n+1)  i s  t h e  " q u a s i m o m e n t u m , "  i . e . ,  a n  A b e l i a n  i n t e g r a l  o f  t h e  s e c -  
ond  k i n d  on a t w o - s h e e t e d  R i e m a n n  s u r f a c e  w i t h  b r a n c h  p o i n t s  X = u 1, . . . ,  ~ = u 2n+z h a v i n g  
a unique pole at the point X = ~ with principal part 

p = F ' ~  - -  u° /2  F ~  ~- O (~-~/2) ( 4 1 )  

a n d  r e a l  p e r i o d s  o v e r  a l l  c y c l e s  ( t h e  f u n c t i o n  p ( k ;  u 1 . . . . .  u =n+~)  i s  u n i q u e l y  d e t e r m i n e d  
b y  t h e s e  c o n d i t i o n s ;  i n  p a r t i c u l a r ,  u ° = u ° ( u  1 . . . .  , u 2 n + ~ ) ) .  I t  f o l l o w s  f r o m  ( 4 0 )  t h a t  t h e  
metric Zgiidui2 has the indicated signature and potential: 

~ = O~ u°. ( 4 2 )  

It has zero curvature by virtue of [2]. Hence, it is Egorov. 
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Apparently the strong integrability and self-similarity of systems obtained by averaging 
equations of the theory of solitons should arise as a result of "averaging" groups of sym- 
metries (of the type of Galilean transformations and scale transformations) of the original 
equations. If this conjecture is valid, then such averaged systems have universality by vir- 
tue of Assertion 3 (above), i.e., form the corresponding finite-parameter family. We analyze 
this question in a subsequent paper. 

The author thanks A. V. Kitaev for indicating [17] to him. 
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