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The concept of differential-geometric Poisson brackets (DGPB) was introduced in [i] in 
connection with an investigation of the properties of Poisson brackets of hydrodynamic type 
[2] and their generalizations. Recall that homogeneous DGPBs of m-th order on a phase space 
of fields u i @),i = i ..... N,x ~ ~ (in this note we confine attention to the spatially one- 
dimensional case), taking values in a manifold~ N, are defined by 

{u ~ (z), -J (u)} = y, ~ (~ (~), ~, (~) ..... ~) (~)) a (~-~) (z- ~), 
k=~ (i) 

where the coefficients G~ are graded-homogeneous polynomials of u, d', ..., u(k) of degree 
k, where by definition deg u (£) = ~, i = O, I, .... (The standard properties of brackets - 
bilinearity, skew symmetry, Leibniz and Jacobiidentities - are implied.) Under local trans- 
formations of the field variables 

~ ~ ) -  ~ ( u  ~)),~ = ~ . . . . .  ~, (2) 
determined by changes of local coordinates u i ~.vi(u) on J6 N, the class of brackets of type 
(i) remains invariant, with the coefficients G~ 3 understood as "differential-geometric ob- 
jects of order.k," so that, for example, G~J - ij • • N i~  i j  ~ • ffi G O (u) ls a metric on J6 , ~ =r s (u)u~ ..defines 
a connection on the same manifold, and so on. The conditions for the coefficients G~3 that 
imply skew symmetry and the Jacobi identity may also be phrased in differential-geometric 
language. A general DGPB is a sum of homogeneous brackets of different orders. For a sur- 
vey of results in the theory of DGPSs and its applications see [3]. 

In this note we describe a discrete variant of DGPBs, where the continuous variables 
x, y are replaced by discrete variables ~,, ~ z . The phase space is the set of sequences 
.u~= {u~} ~N, n ~ Z A DGPB on a (homogeneous) integer lattice is defined by 

i~, ~ ~ =gm-,(sm, s,), (3) 
i 3 -  where gk =0 for Ikl > M. The brackets (3) are invariant under local ~ransforma~ions 

i ~ ~ 
.~-~. (%), .ez. (4) 

analogous to (2), under which the coefficients transform as 

• . av¢(u ') ~ ( u " )  _ , 

~ (~', . . )  - ~-.---j#- o~--- ~ -  ~p {~ , ~.). ( s ) 

In the "continuous limit" exemplified by u~ = ui(n~), where ~ ÷ 0 is the lattice spacing, 
the bracket (3) defines a DGPB on the spa?e of (nonlocal) fields, which depends on e: 

M . 

{.' (=). .~ (y)}.-- ~, .q{.'(~ .~(p)}a= y, g~(.(x), .(~))~(x-v-~). (6) 
q=~ ~ - - M  

The lowest-order term {ui(x), uJ(y)} m in the series (6), where {ui(x), uJ(Y)}k~0 for k < m, 
defines a homogeneous DGPB of order m. 

We confine attention to the case M = 1 (£he case M = 0 is trivial; the general case 
M > 0 is reduced to M = 1 by consolidation of the lattice). In this case the DGPB is defined 
by a pair of matrices 

g~ (u, ~) ~ g~ (~, ~), ~ (~, u) ~ ~ (~). ~7)  

We s h a l l  assume t h a t  t h e  f o l l o w i n g  n o n d e g e n e r a c y  c o n d i t i o n  h o l d s :  
, ,  

~ g', ~u, ~ ~ o. .. ( 8  ~ 
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It turns out that the manifold .~sis then (locally) endowed with a Hamilton-Lie grodp struc- 
ture (see [4]), .~N= G . Recall [4] that a Hamilton-Lie group with Lie algebra L = L(G) 
is locally defined by a Lie algebra structure on the dual space L ~, provided that the struc- 
ture is compatible with L, i.e., the structure constant tensor ]~ ~ Hom (L, L ® ~.> is a 1-co- 
cycle on L. We shall say that a Hamilton-Lie group C is admissible if: 

i) there are two Lie algebra structures on L ~, say L~ and L~, both compatible with L~ 

2) there are mtually dual Lie algebra homomorphisms ri: L~ ~ L, i = i, 2, rs = r~ +, 
i.e., if r i = (r~8), i = i, 2, then r~ ~ = r~ 

3) the st~cture constants f~ and f~ of the Lie algebras L~ and L~ define cohomologous 
cocycles 

-'~- + (9) 

where h~ = ~ is a matrix and c~y the structure const~ts of L; 

4) the matrix hUB satisfies the equation 

~ah~hvV + h a ~ c ~  + ha~h~V~ ~ h ~  ~ ~ h ~  ~ ~ h  p~ ~ -  ~ -  ~ = . ~ -  - ~ - - ~  • ( I 0 )  

A ~ m i l t o n - L i e  group w i l l  be c a l l e d  s t r o n ~ l y  a ~ i s s i b l ~  i f  r ~ t  x = r~  i s  an i s o ~ o ~ p h i s s .  
Such an o b j e c t  i s  l o c a l l y  d e f i n e d  by a L i e  a l ~ e b r a  L and a n o n s i n ~ l a r  m a t r i x  r = ( r a g )  s a t i s -  
f y i n g  th~ above c o n d i t i o n s .  

~ 0 ~ .  ~ y  DgPB on a l a t t i c e  o f  t ~ e  (3)  w i th  H = i ,  s a t i s f y i n g  ( 8 ) ,  i s  l o c a l l y  de-  
f i n e d  by a s t r o n g l y  a ~ i s s i b l e  ~ m i l t o n - L i e  group G, r t h rough  t h e  f o ~ u l a s :  

{~ (~), ~ (..+~)} = - - r ~ t ~  ( ~ ) ~  ( . ~ ) ,  ( i ! )  

{~ (~), ~ (~)} = {¢ (~), ~ ( ~ ) b  + ~ = s ~  ( ~ ) a ~  (~), 

{¢ (~), $ (..)} = 0 f o r  ] ~ - n I > i .  
_ 

~ e r e  9, ~ a r e  any smooth f ~ c t i o n s  on G, ~a and ~ ' a  a r e  l e f t -  and r i g h t - i n v a r i a n t  v e c t o r  
f i ~ i d s  on G, r e s p e c t i v e l y ,  which c o i n c i d e  a t  t h e  i d e n t i t y ,  {,}~ i s  a group P o i s s o n  b r a c k e t  
on G, d e f i n e d  by t h e  L i e  a l g e b r a  L~ as in  [~ ] .  For  ~ y  a ~ i s s i b l e  ~ i l t o n - L i e  g roup ,  f o r -  
~ l a  ( i i )  a l s o  d e f i n e s  a DGPB on t h e  l a t t i c e ,  but  t h e  l a t t e r  does  no t  n e c e s s a r i l y  s a t i s f y  
t h e  nondeg~neracy  c o n d i t i o n .  

Note t h a t  a ~ P B  on a l a t t i c e  w i t h  t h e  nondegene racy  c o n d i t i o n  m i q u e l y  d e t e r m i n e s  t he  
group G ( l o c a l l y ) ,  but  c o r r e s p o n d s  t o  an e n t i r e  f s i l y  o f  m t r i e e s  r a ~ ( u )  = gaS(u ,  u ) .  

E x ~ p l a  0. I f  G i s  an a b a l i a n  g roup ,  th~  b r a c k e t  ( i i )  i s  c o n s i s t .  

E x ~ p l e  i .  For  a s imple  2 - d i m e n s i o n a l  n o n a b e l i ~  group G, r ~ y  be any n o n s i n g u l a r  
~ t r i x .  We o b t a i n e d  t h e  f o l l o w i n g  f m i l y  o f  b r a c k e t s :  

°If: 0> i i , , ~=(x,y), v=(x',p'), (12) 
g~J(~,v)= 0 -~-~ d x' -~--y 

h ~j (3 = ~J (-, ~-- ~' (", ~), o = ~ i. 
• 

if 
la b \ /o o\ 
~ d)--~O 2) ' formula (12) yields the second Hamilton structure for a Toda system [5,. 

(This. example is due to V. P. Cherkashin.) 

Example 2. Let ra8 be a skew-symmetric matrix satisfying ~he classical Yang-Baxter 
equation on the Lie algebra L = L(G) (see, e.g., [4]). It defines a DGPB on a lattice, 

{~(".),~(",+#} =--r~O=~(".)O~$(",+~, (13) 
{~ (-.),, (-)) = ~ (~ (..) ~,~ (-.) + oi~ ~ ~, (-.~. 

This bracket satisfies the nondegeneracy condition (8) if det r u8 # 0 (such Lie algebras are 
known as quasi-Frobenius algebras [6]). The bracket (13) (more precisely, its transformed 
version (6)) is in fact the same as that occurring in [7] in the context of solution of a 
problem in quantization of a current algebra. 
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SUM REGIONS OF WEAKLY CONVERGENT SERIES 

V. M. Kadets UDC 517.982 

~ m 

Let X be a Banach space. The set SR(~xk) of all x ~ X to which for some permutation ~ 
1 

the rearrangement :5,(~) converges is called the sum region of the series ~ Simi- 
;~----'I I 

larly, the set of all those elements to which the series ~, xz~(~ ) can converge weakly is 
k=1 

called the weak sum region, WSR ~). It is well known (Steinitz's theorem [i]) that, for 

a series in a finite-dimensional space, the sum region, and hence also the weak sum region, 
is a linear set, i.e., with any two distinct points it also contains the segment joining.. 
them. It has been shown [2] that in every infinite-dimensional Banach space there are series 
with nonlinear sum regions. At the same time, no one has succeeded in constructing an example 
of a series in a Hilbert space, let us say, for which the weak sum region is nonlinear. The" 
difficulty revolves around the fact that the weak topology is much closer in character to 
the topology of a finite-dimensional space than the strong topology is. In this note we con- 
struct an example of a series with a nonlinear weak sum region, and, using the techniques 
of [2] and [3], we establish the existence of similar series in every infinite-dimensional 
Banach space. 

THEOREM. 

such that 

In a Hilbert space there exist a series ~zx and two points a and b in SR(Ez k) 
~=I 

a-~.b . 
~ ~ ~0~ (E z~). 

Proof. We index an orthonormal basis in the Hilbert space Z~ in the following way: 

eO~ ~*1~ 1~ ~'t~ 1~ £ ~  I~ ¢$~ 1~ " • -~ eS~ i~  el~ 1~ • • -~ ~4~ 8~ ~ I~ " • • 

We choose the constant 1/2 < ~ < ~/2. We construct the vectors Xi,k, k ~ 2 i-~, ~N, with 
the following properties: 

~) ~ 1 ~ 1  = eO~ 

i 
b) zx+~. ~-x - 2 xk, ~ + akeX. "' 

i 
Z~+I, ~ = ~ Z~, ~ -- a~, .) 

where a k is such that 

I 
c ) ~'k+1, ,~I ~ = 0 xk+1, ~ a = ~ a x~,. i. 

/ i ~-i 
Then for any indices k, j, n, j ~ n, we have Iz~.~=k~- ] ; z~,=z~+A~,_, d-z~+1.,=; <z: ~..n><0; 

and the vectors {xk,j} are linearly independent. Because i/(2e) < I, we ha.re that 
~m ~,~.~ = 0. 
~-*~ 
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