ALGEBRO-GEOMETRIC POISSON BRACKETS FOR REAL FINITE-ZONE SOLUTIONS OF THE SINE-GORDON EQUATION AND THE NONLINEAR SCHRÖDINGER EQUATION

B. A. DUBROVIN AND S. P. NOVIKOV

Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korte-weg-de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solutions be real require serious investigation.
I. Complex, "finite-zone" solutions of SG and NS. Poisson brackets. The SG equation $\left(u_{t t}-u_{x x}+\sin u=0\right)$ and the NS equation $\left(i r_{t}=-r_{x x}+2 r^{2} q\right.$, $i q_{t}=q_{x x}-2 q^{2} r$) can be represented as commutation conditions for λ-pencils (see [2]):

$$
\begin{gather*}
{\left[L, \partial_{t}+B\right]=0} \\
L=-\partial_{x}+\sqrt{\lambda}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\frac{i}{4}\left(u_{t}+u_{x}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\frac{1}{16 \sqrt{\lambda}}\left(\begin{array}{cc}
0 & e^{-i u} \\
-e^{i u} & 0
\end{array}\right), \tag{SG}\\
L=\partial_{x}+\lambda\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
i(r-q) & r+q \\
r+q & i(q-r)
\end{array}\right) .
\end{gather*}
$$

In the periodic or quasiperiodic case $(\exp (i u)$ is quasiperiodic for $S G)$ the operator L has a Bloch eigenfunction ψ which with suitable normalization is meromorphic on a Riemann surface Γ over the λ plane:

$$
\begin{gather*}
y^{2}=\prod_{j=0}^{2 g}\left(\lambda-\lambda_{j}\right), \quad \lambda_{0} \lambda_{1} \ldots \lambda_{2 g}=0 \tag{SG}\\
y^{2}=\prod_{j=0}^{2 g+1}\left(\lambda-\lambda_{j}\right) \tag{NS}
\end{gather*}
$$

The function ψ possesses poles γ_{j} (or zeros $\gamma_{j}(x)$ of the first component of ψ), $j=0, \ldots, g$ for NS, $j=1, \ldots, g$ for SG. These equations are Hamiltonian with standard Hamiltonians and Poisson brackets $\{\cdot, \cdot\}$, where the nonzero brackets are the following:

$$
\begin{gather*}
\left\{u(x), \pi\left(x^{\prime}\right)\right\}_{1}=\delta\left(x-x^{\prime}\right), \quad \pi=u_{t} \tag{SG}\\
\left\{r(x), q\left(x^{\prime}\right)\right\}_{1}=\delta\left(x-x^{\prime}\right) \tag{NS}
\end{gather*}
$$

Formulas for solutions in terms of θ functions, the derivations of which differ little from the KdV case, can be found in [3] for NS and also in [4] and [5] (Theorem 1 and the example of $\S 4$) for SG. We shall not discuss them here. It is important only that these formulas have the form $F\left(U x+W t+K_{0}\right)$, where F is a complex function of g variables and U, W and K_{0} are constant vectors. In the case of NS the formula of this type characterizes only the quantity $r q ; r$ and q themselves contain $g+1$ periods including the "phase rotation". The vector U has the components

$$
U_{j}=\oint_{b_{j}} d p, \quad \oint_{a_{j}} d p=0, \quad j=1,2, \ldots, g
$$

where $\left(a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right)$ is a canonical basis of cycles in $H_{1}(Y), z=\lambda^{-1}$,

$$
\begin{equation*}
d p=d z\left(\pm \frac{1}{z^{2}}+O(1)\right), \quad \sigma^{*} d p=-d p \tag{NS}
\end{equation*}
$$

near both infinitely distant points $\infty_{ \pm} \in \Gamma$, and σ is the holomorphic involution $\sigma(\lambda,+)=(\lambda,-), \sigma^{2}=1 ;$

$$
\begin{align*}
& d p_{+}=d z\left(-1 / z^{2}+O(1)\right), \quad z=\lambda^{-1 / 2} \rightarrow 0 \\
& d p_{-}=d w\left(1 / 16 w^{2}+O(1)\right), \quad w=\lambda^{1 / 2} \rightarrow 0 \tag{SG}
\end{align*}
$$

$$
d p=d p_{+}+d p_{-}, \quad \oint_{a_{j}} d p_{ \pm}=0, \quad j=1,2, \ldots, g
$$

For SG there is the "mean density of topological charge"

$$
2 \pi \bar{e}=\lim _{L \rightarrow \infty} \frac{1}{L} \int_{0}^{L} u_{x} d x
$$

The function $p(\lambda)$ represents the "quasimomentum" in the periodic case, i.e.,

$$
\psi_{ \pm}(x+T, \lambda)=\exp \{ \pm i p(\lambda) T\} \psi_{ \pm}(x, \lambda)
$$

The coefficients of the expansion of $p(\lambda)$ are called the Hamiltonians of the "higher $S G$ " or "higher $N S$ ":

$$
\begin{gather*}
p(\lambda)=\lambda+c_{0}+c_{1} / 2 \lambda+\ldots, \quad \lambda \rightarrow \infty_{+}, \mathrm{NS} ; \\
p(\lambda)= \begin{cases}\sqrt{\lambda}+2 \pi \bar{e}+c_{+}(16 \sqrt{\lambda})^{-1}+\cdots, & \lambda \rightarrow \infty \\
-(15 \sqrt{\lambda})^{-1}+\pi \bar{e}-c_{-} \sqrt{\lambda}+\cdots & \lambda \rightarrow 0\end{cases} \tag{SG}
\end{gather*}
$$

here $2 c_{0}=\int(\ln q)_{x} d x, c_{1}=-\int r q d x$ is the generator of the phase rotation and $c_{+}+c_{-}=H$ is the SG Hamiltonian, and $p(\lambda)$ is single-valued on $\hat{\Gamma}$ (see below).

The algebro-geometric Poisson brackets [1] are

$$
\left\{\lambda_{j_{1}}, \lambda_{j_{2}}\right\}=\left\{\gamma_{q_{1}}, \gamma_{q_{2}}\right\}=0
$$

Since for NS the number of indices j is equal to $g+1$, the Abel transformation linearizes the dynamics of only g complex quantities on the torus $J(\Gamma)$. There still remains the "phase variable" in the kernel of the Abel transformation. This is a typical situation for matrix systems where the number of poles γ_{j} is greater than the genus. The SG case is essentially scalar.

The analytic brackets are given by a meromorphic 1-form $Q(\lambda) d \lambda$ on Γ or on the covering $\hat{\Gamma} \rightarrow \Gamma$ which preserves the closedness of all cycles $\left(a_{j}\right)$; here

$$
\left\{Q\left(\gamma_{j}\right), \gamma_{k}\right\}=\delta_{j k}, \quad\left\{Q\left(\gamma_{j}\right), Q\left(\gamma_{k}\right)\right\}=0
$$

The bracket $\{\cdot, \cdot\}$ is said to be consistent with the $S G($ or $N S)$ dynamics if all its higher analogues are Hamiltonian.
Example 1. The standard bracket $\{\cdot, \cdot\}_{1}$ is analogous to [6] for NS and to Example 4 of [1] for SG:

$$
\begin{gather*}
Q_{1}(\lambda) d \lambda=4 i p(\lambda) \lambda^{-1} d \lambda \quad(\text { on } \hat{\Gamma}) \tag{SG}\\
Q_{1}(\lambda) d \lambda=-2 i p(\lambda) d \lambda \sim 2 i \lambda d p(\lambda)
\end{gather*}
$$

The annihilators of these brackets consist of the periods T_{1}, \ldots, T_{g} together with the condition $\prod \lambda_{j}=0$ for SG, and of T_{1}, \ldots, T_{g+1} for NS.
Example 2. The Poisson bracket $\{\cdot, \cdot\}_{2}$ of the stationary problem

$$
\sum c_{j} \delta H_{j}=0
$$

where the H_{j} are Hamiltonians of the higher analogues of SG or NS. According to [7], these Poisson brackets are consistent with the SG and NS dynamics; the bracket $\{\cdot, \cdot\}_{2}$ is algebro-geometric and analytic in analogy to [8]:

$$
\begin{align*}
Q_{2}(\lambda) d \lambda= & 2 i\left(1+16 \sqrt{\prod_{\lambda_{j} \neq 0} \lambda_{j}}\right) \sqrt{\prod\left(\lambda-\lambda_{j}\right)} \lambda^{-2} d \lambda, \tag{SG}\\
& Q_{2}(\lambda) d \lambda=-2 i \sqrt{\prod\left(\lambda-\lambda_{j}\right)} d \lambda . \tag{NS}
\end{align*}
$$

The annihilator of the bracket $\{\cdot, \cdot\}_{2}$ consists of the quantities $\left(c_{j}\right)$ which can be expressed in one-to-one fashion in terms of the following symmetric functions of the end points of the zones:

$$
\begin{gather*}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{g-1}, \pm \sqrt{\sigma_{2 g}} \tag{SG}\\
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{g+1} \tag{NS}
\end{gather*}
$$

where $\sigma_{k}=\prod_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}}$.
Remark. According to an analogue of Lemma 3 of [1], for brackets consistent with the SG or NS dynamics the Hamiltonians of the higher SG or NS equations are generated by the same coefficients of the expansion of $Q(\lambda)$ near the points $\lambda=\infty_{+}$ (NS) or $\lambda=0, \infty(\mathrm{SG})$ as for the standard bracket $\{\cdot, \cdot\}_{1}$. All the remaining coefficients of the expansion belong to the annihilator.
II. Conditions for real SG and NS solutions in the γ representation. The action variables. Suppose that a solution $u(x, t)$ is real for SG or $r= \pm \bar{q}$ for NS (notation: $\mathrm{NS}_{ \pm}$). The most difficult question is the precise description of the location of the quantities γ_{j} on Γ. The case NS_{+}where L is selfadjoint is an exception. In this case all $\lambda_{j} \in R, j=0,1, \ldots, 2 g+1$. Cycles a_{j} on Γ are selected which lie over the lacunae $\left[\lambda_{2 j}, \lambda_{2 j+1}\right], j=0,1, \ldots, g$. In analogy to $\mathrm{KdV}, \gamma_{j} \in a_{j}$. We obtain the torus $T^{g+1}=\left(a_{0} \times a_{1} \times \cdots \times a_{g}\right)$. The action variables I_{q} conjugate to the angles $\phi_{q}(\bmod 2 \pi)$ on T^{g+1} have the form

$$
\begin{equation*}
I_{j}=\frac{1}{2 \pi} \oint_{a_{j}} Q(\lambda, \Gamma) d \lambda, \quad j=0,1, \ldots, g . \tag{1}
\end{equation*}
$$

Since the collection of cycles a_{j} cuts Γ into two parts $\Gamma=\Gamma_{+} \cup \Gamma_{-}$, we have

$$
\begin{equation*}
\sum_{q} I_{q}=\sum_{P_{k}} \operatorname{res}_{\lambda=P_{k}}^{\operatorname{res}}[Q(\lambda) d \lambda], \quad P_{k} \in \Gamma_{+} . \tag{2}
\end{equation*}
$$

We shall henceforth assume that the form $Q d \lambda$ is "real" for real Γ and has a unique pole on Γ_{+}at the point $\lambda=\infty_{+}$. Under these conditions the following result holds.
Theorem 1. Suppose that the Poisson bracket is consistent with the dynamics of all NS. Then the following assertions are true:
a) The action variables conjugate to the angles on the torus T^{g+1} have the form (1).
b) The sum $\sum_{0}^{g} I_{q}=\operatorname{res}_{\infty_{+}}[Q d \lambda]$ coincides with the generator of the phase transformation $r \rightarrow r e^{i \phi}$.
c) The Hamiltonians of the "higher NS" are obtained from the expansion of $Q(\lambda) d \lambda$ at $\lambda=\infty_{+}$in terms of $z=\lambda^{-1}$ at the same sites as in the expansion of $Q_{1}(\lambda) d \lambda=2 i p d \lambda$ (and with the same coefficients). The remaining terms of the expansion belong to the annihilator.

We now proceed to the involved cases of SG and NS_. Using the results of [9], [10] and [3], we can easily describe an admissible class of surfaces Γ :

1) The branch points come in complex conjugate pairs $\left(\lambda_{2 j+1}, \lambda_{2 j+2}=\bar{\lambda}_{2 j+1}\right)$; among them there is no real pair (NS_{-}).
2) Part of the branch points $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{2 k-2}<\lambda_{2 k-1}<\lambda_{2 k}=0$ is real and negative; the other part of the branch points $\left(\lambda_{2 j+1}, \lambda_{2 j+2}=\bar{\lambda}_{2 j+1}\right)$ comes in complex conjugate pairs, $j>k$ (SG).

As $x \in R$ varies the zeros $\gamma_{j}(x)$ cover sets $M_{j} \in \Gamma$ containing cycles $\left[M_{j}\right]$ with the natural orientation; the projections of these on the λ plane are invariant under the mapping $\lambda \rightarrow \bar{\lambda}$. Let $x_{\alpha} \in R,\left|x_{\alpha}\right| \rightarrow \infty$ if $\alpha \rightarrow \infty$, where $\gamma_{j}\left(x_{\alpha}\right) \approx \gamma_{j}\left(x_{0}\right)$, and $\gamma_{j_{\alpha}}:\left[x_{0}, x_{\alpha}\right] \rightarrow M_{j}$.
Definition. The average "number of oscillations" is

$$
m_{j}=\lim _{\alpha \rightarrow \infty} \frac{\operatorname{deg} \gamma_{j_{\alpha}}}{x_{\alpha}-x_{0}} \geq 0
$$

where $\operatorname{deg} \gamma_{j_{\alpha}}$ is the torsion number in the homology group $H_{1}(\Gamma)$.
Lemma 1. Let a_{j} be the homology class of the γ-cycle $\left[M_{j}\right]$; then $a_{j_{1}} \circ a_{j_{2}}=0$, and $\tau_{*} a_{j}=a_{j}$, where $\tau(y, \lambda)=(-\bar{y}, \bar{\lambda})$.

Using the collection $\left(a_{j}\right)$, we choose a canonical basis of cycles and normalize $d p(\lambda)$ with respect to this basis. There arises the vector $U_{j}=\oint_{b_{j}} d p$.

Lemma 2. $2 \pi m_{j}=U_{j}>0$.
We introduce the "natural" numeration of the cycles $a_{q}^{\prime}=a_{j}, q=q(j)$, where $\cdots<m_{q-1}<m<\cdots$. The following results can be proved.

Theorem 2. The homology classes a_{q} possess representations which are curves M_{q}^{\prime} without self-intersections having the properties that their projections N_{q}^{\prime} onto the λ plane are without self-intersections and do not intersect pairwise, and that they are invariant under the mapping $\lambda \rightarrow \bar{\lambda}$. In the case of $S G$ the curves $N_{q(j)}^{\prime}$ are closed for $1 \leq j \leq k$, and they intersect the semiaxis $(0, \infty)$ once at points μ_{q} and the segment $\left[\lambda_{2 j-2}, \lambda_{2 j-1}\right]$; they intersect the real axis nowhere else; the curves $N_{q(j)}^{\prime}$ for $j>k$ and all N_{q}^{\prime} for $N S_{-}$terminate at the branch points $\lambda_{2 j-1}, \lambda_{2 j}$, and intersect the real axis once at points μ_{q} of the semiaxis $(0, \infty)$. Here $0<\cdots<$ $\mu_{q-1}<\mu_{q}<\cdots$ under the natural ordering of $q(j)$. The subgroup of the group $H_{1}(\Gamma, Z)$ generated by the cycles $\left(a_{q}\right)$ does not depend on the ordering. A basis of
γ-cycles $\left[M_{q}^{\prime}\right] \in H_{1}(\Gamma)$ is uniquely determined by these properties with the condition $U_{q} \geq 0$. There is the formula for the average density of topological charge

$$
\begin{equation*}
\bar{e}=\sum_{j \leq k} \sigma_{j} m_{j}=(2 \pi)^{-1} \sum_{j \leq k} \sigma_{j} U_{j} ; \quad \sigma_{j}= \pm 1, \quad j=1,2, \ldots, k, \tag{3}
\end{equation*}
$$

where the signs depend on the "index" $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right), \sigma_{j}= \pm 1, j=1, \ldots, k$, of the connected components of real solutions for given Γ (see Theorem 3). For NS_{-} there are no real branch points and $\sum_{0}^{g} a_{j}=0$.

Using [11] and [12], we can prove the following assertion.
Theorem 3. 1) For the $S G$ equation with $k=0$ and $N S_{-}$there is only one real torus for given branch points-"the spectrum" of the operator L.
2) For $S G$ with $k \neq 0$ there are 2^{k} connected components numbered by collections $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right), \sigma_{j}= \pm 1, j=1, \ldots, k$, with the collections of γ-cycles

$$
\left(M_{1}^{\sigma_{1}}, M_{2}^{\sigma_{2}}, \ldots, M_{j}^{\sigma_{j}}, \ldots, M_{k}^{\sigma_{k}}, M_{k+1}, \ldots, M_{g}\right)=M(\sigma),
$$

where $M_{j}^{-}=\tau\left(M_{j}^{+}\right)$and τ is the anti-involution $\tau(y, \lambda)=(-\bar{y}, \bar{\lambda})$. For $j \leq k$ the anti-involution τ reverses the direction of the projection N_{j}^{\prime} and changes the sign of m_{j} in (3).
3) To each component with index σ there corresponds a collection of covering γ cycles $\hat{M}(\sigma)=\left(\hat{M}_{1}^{\sigma_{1}}, \ldots, \hat{M}_{k}^{\sigma_{k}}, \hat{M}_{k+1}, \ldots, \hat{M}_{g}\right)$ on $\hat{\Gamma}$ which jointly form part of the boundary of one of the copies of Γ in $\hat{\Gamma}$ (we recall that the surface $\hat{\Gamma}$ is glued together from an infinite number of copies of Γ cut along the cycles a_{j}). Suppose that σ^{\prime} is obtained from σ by changing only one sign with index $j\left(\sigma_{j}=+1 \rightarrow \sigma_{j}^{\prime}=-1\right)$. Then the collection $\hat{M}\left(\sigma^{\prime}\right)$ is obtained from $\hat{M}(\sigma)$ by superposition of the operation τ on the cycle \hat{M}_{j}^{+}(the curve \hat{M}_{j}^{+}is replaced by the curve \hat{M}_{j}^{-}homologous to it on $\hat{\Gamma}$ which covers the curve $\left.M_{j}^{-}=\tau\left(M_{j}^{+}\right)\right)$and the shift of all γ-cycles by the monodromy transformation $\kappa_{j}: \hat{\Gamma} \rightarrow \hat{\Gamma}$ corresponding to the cycle $b_{q(j)}$:

$$
\hat{M}\left(\sigma^{\prime}\right)=\kappa_{j}\left(\hat{M}_{1}^{\sigma_{1}}, \hat{M}_{2}^{\sigma_{2}}, \ldots, \tau \hat{M}_{j}^{\sigma_{j}}, \ldots, \hat{M}_{k}^{\sigma_{k}}, \ldots, \hat{M}_{g}\right)
$$

Corollary 1. If the form $Q d \lambda$ is meromorphic on Γ with poles only at $\lambda=0, \infty$, then the action variables of distinct components $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right), \sigma^{\prime}=\left(\sigma_{1}^{\prime}, \ldots, \sigma_{k}^{\prime}\right)$ differ for those j where $\sigma_{j} \neq \sigma_{j}^{\prime}$:

$$
I_{q(j)}(\sigma)-I_{q(j)}\left(\sigma^{\prime}\right)=\frac{1}{2}\left(\sigma_{j}-\sigma_{j}^{\prime}\right) \underset{\lambda=0}{\operatorname{res}}[Q d \lambda] .
$$

Corollary 2. For the standard bracket $\{\cdot, \cdot\}$, the form $Q_{1} d \lambda=4 i p d \lambda / \lambda$ is meromorphic on $\hat{\Gamma}\left(\kappa_{j} p(\lambda)=p(\lambda)+U_{j}\right) ;$ passage from the component $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ to the component $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \ldots, \sigma_{k}^{\prime}\right)$ implies the change of action variables

$$
I_{q(s)}(\sigma)=\frac{1}{2 \pi} \oint_{\hat{M}_{s}(\sigma)} Q_{1} d \lambda \rightarrow I_{q(s)}\left(\sigma^{\prime}\right)=\frac{1}{2 \pi} \oint_{\hat{M}_{s}\left(\sigma^{\prime}\right)} Q_{1} d \lambda,
$$

where

$$
\begin{gathered}
I_{q(s)}\left(\sigma^{\prime}\right)=I_{q(s)}, \quad s>k, \\
I_{q(s)}\left(\sigma^{\prime}\right)=I_{q(s)}+8 \pi\left[\sum_{s=1}^{k} m_{s} \frac{\sigma_{s} \sigma_{j}-\sigma_{s}^{\prime} \sigma_{j}^{\prime}}{2}\right], \quad j \leq k .
\end{gathered}
$$

Remark 1. In a recent preprint [13] the action variables for $\mathrm{SG}, k=0, g=2$, are actually indicated in a certain integral basis of the group of a-cycles which is defined without using the natural numeration.

Remark 2. In the recent paper [14], where effective conditions for real SG solutions are obtained expressed in terms of θ functions, a random basis of a-cycles was used. For applications it is natural to use the canonical basis of a-cycles found here in which the structure of the formulas is considerably simplified.

References

[1] A. P. Veselov and S. P. Novikov, Dokl. Akad. Nauk SSSR 266 (1982), 533; English transl. in Soviet Math. Dokl. 26 (1982).
[2] V. E. Zaharov et al. (S. P. Novikov, editor), Theory of solitons, "Nauka", Moscow, 1980. (Russian)
[3] A. R. Its, Vestnik Leningrad. Univ. 1976, no. 7 (Ser. Mat. Meh. Astr. vyp. 2), 39; English transl. in Vestnik Leningrad Univ. Math. 9 (1981).
[4] V. A. [V. O.] Kozel and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1976, 878. (Russian)
[5] B. A. Dubrovin, I. M. Kričever and S. P. Novikov, Dokl. Akad. Nauk SSSR 229 (1976), 15; English transl. in Soviet Math. Dokl. 17 (1976).
[6] H. Flaschka and D. W. McLaughlin, Progr. Theoret. Phys. 55 (1976), 438.
[7] O. I. Bogojavlenskiǐ and S. P. Novikov, Funkcional. Anal. i Priložen. 10 (1976), no. 1, 9; English transl. in Functional Anal. Appl. 10 (1976).
[8] S. I. Al'ber, Comm. Pure Appl. Math. 34 (1981), 259.
[9] H. P. McKean, Comm. Pure Appl. Math. 34 (1981), 197.
[10] A. R. Its and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1976, 965. (Russian)
[11] I. V. Čerednik, Dokl. Akad. Nauk SSSR 252 (1980), 1104; English transl. in Soviet Phys. Dokl. 25 (1980).
[12] B. A. Dubrovin, Dokl. Akad. Nauk SSSR 265 (1982), 789; English transl. in Soviet Math. Dokl. 26 (1982).
[13] M. G. Forest and D. W. McLaughlin, Modulations of sinh-Gordon and sine-Gordon wavetrains, Preprint, 1982.
[14] B. A. Dubrovin and S. M. Natanzon, Funktional. Anal. i Priložen. 16 (1982), no. 1, 27; English transl. in Functional Anal. Appl. 16 (1982).

Landau Institute of Theoretical Physics, Cernogolovka, Moscow District

