ALGEBRO-GEOMETRIC POISSON BRACKETS FOR REAL FINITE-ZONE SOLUTIONS OF THE SINE-GORDON EQUATION AND THE NONLINEAR SCHRÖDINGER EQUATION

B. A. DUBROVIN AND S. P. NOVIKOV

Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korteweg-de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solutions be real require serious investigation.

I. Complex, "finite-zone" solutions of SG and NS. Poisson brackets. The SG equation $(u_{tt} - u_{xx} + \sin u = 0)$ and the NS equation $(ir_t = -r_{xx} + 2r^2q, iq_t = q_{xx} - 2q^2r)$ can be represented as commutation conditions for λ -pencils (see [2]):

$$[L, \partial_t + B] = 0,$$
(SG) $L = -\partial_x + \sqrt{\lambda} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \frac{i}{4}(u_t + u_x) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \frac{1}{16\sqrt{\lambda}} \begin{pmatrix} 0 & e^{-iu} \\ -e^{iu} & 0 \end{pmatrix},$

$$(0 - 1) = 1 \left(i(r - a) - r + a \right)$$

(NS)
$$L = \partial_x + \lambda \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} i(r-q) & r+q \\ r+q & i(q-r) \end{pmatrix}$$

In the periodic or quasiperiodic case $(\exp(iu)$ is quasiperiodic for SG) the operator L has a Bloch eigenfunction ψ which with suitable normalization is meromorphic on a Riemann surface Γ over the λ plane:

(SG)
$$y^2 = \prod_{j=0}^{2g} (\lambda - \lambda_j), \quad \lambda_0 \lambda_1 \dots \lambda_{2g} = 0;$$

(NS)
$$y^2 = \prod_{j=0}^{2g+1} (\lambda - \lambda_j).$$

The function ψ possesses poles γ_j (or zeros $\gamma_j(x)$ of the first component of ψ), $j = 0, \ldots, g$ for NS, $j = 1, \ldots, g$ for SG. These equations are Hamiltonian with standard Hamiltonians and Poisson brackets $\{\cdot, \cdot\}$, where the nonzero brackets are the following:

(SG)
$$\{u(x), \pi(x')\}_1 = \delta(x - x'), \quad \pi = u_t,$$

(NS)
$$\{r(x), q(x')\}_1 = \delta(x - x').$$

Date: Received 17/JUN/82.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35Q20, 35J10. UDC 513.835. Translated by J. R. SCHULENBERGER.

Formulas for solutions in terms of θ functions, the derivations of which differ little from the KdV case, can be found in [3] for NS and also in [4] and [5] (Theorem 1 and the example of §4) for SG. We shall not discuss them here. It is important only that these formulas have the form $F(Ux + Wt + K_0)$, where F is a complex function of g variables and U, W and K_0 are constant vectors. In the case of NS the formula of this type characterizes only the quantity rq; r and q themselves contain g + 1 periods including the "phase rotation". The vector U has the components

$$U_j = \oint_{b_j} dp, \quad \oint_{a_j} dp = 0, \quad j = 1, 2, \dots, g,$$

where $(a_1, \ldots, a_g, b_1, \ldots, b_g)$ is a canonical basis of cycles in $H_1(Y)$, $z = \lambda^{-1}$,

(NS)
$$dp = dz \left(\pm \frac{1}{z^2} + O(1) \right), \quad \sigma^* dp = -dp$$

near both infinitely distant points $\infty_{\pm} \in \Gamma$, and σ is the holomorphic involution $\sigma(\lambda, +) = (\lambda, -), \ \sigma^2 = 1;$

(SG)⁻
$$dp_{+} = dz(-1/z^{2} + O(1)), \quad z = \lambda^{-1/2} \to 0,$$
$$dp_{-} = dw(1/16w^{2} + O(1)), \quad w = \lambda^{1/2} \to 0,$$
$$dp = dp_{+} + dp_{-}, \quad \oint_{a_{j}} dp_{\pm} = 0, \quad j = 1, 2, \dots, g.$$

For SG there is the "mean density of topological charge"

$$2\pi\bar{e} = \lim_{L \to \infty} \frac{1}{L} \int_0^L u_x \, dx$$

The function $p(\lambda)$ represents the "quasimomentum" in the periodic case, i.e.,

$$\psi_{\pm}(x+T,\lambda) = \exp\{\pm ip(\lambda)T\}\psi_{\pm}(x,\lambda).$$

The coefficients of the expansion of $p(\lambda)$ are called the Hamiltonians of the "higher SG" or "higher NS":

(SG)
$$p(\lambda) = \lambda + c_0 + c_1/2\lambda + \dots, \quad \lambda \to \infty_+, \text{ NS};$$
$$p(\lambda) = \begin{cases} \sqrt{\lambda} + 2\pi\bar{e} + c_+(16\sqrt{\lambda})^{-1} + \dots, \quad \lambda \to \infty\\ -(15\sqrt{\lambda})^{-1} + \pi\bar{e} - c_-\sqrt{\lambda} + \dots \quad \lambda \to 0; \end{cases}$$

here $2c_0 = \int (\ln q)_x dx$, $c_1 = -\int rq dx$ is the generator of the phase rotation and $c_+ + c_- = H$ is the SG Hamiltonian, and $p(\lambda)$ is single-valued on $\hat{\Gamma}$ (see below).

The algebro-geometric Poisson brackets [1] are

$$\{\lambda_{j_1}, \lambda_{j_2}\} = \{\gamma_{q_1}, \gamma_{q_2}\} = 0.$$

Since for NS the number of indices j is equal to g + 1, the Abel transformation linearizes the dynamics of only g complex quantities on the torus $J(\Gamma)$. There still remains the "phase variable" in the kernel of the Abel transformation. This is a typical situation for matrix systems where the number of poles γ_j is greater than the genus. The SG case is essentially scalar.

The analytic brackets are given by a meromorphic 1-form $Q(\lambda) d\lambda$ on Γ or on the covering $\hat{\Gamma} \to \Gamma$ which preserves the closedness of all cycles (a_i) ; here

$$\{Q(\gamma_j), \gamma_k\} = \delta_{jk}, \quad \{Q(\gamma_j), Q(\gamma_k)\} = 0.$$

The bracket $\{\cdot, \cdot\}$ is said to be *consistent with the SG (or NS) dynamics* if all its higher analogues are Hamiltonian.

Example 1. The standard bracket $\{\cdot, \cdot\}_1$ is analogous to [6] for NS and to Example 4 of [1] for SG:

(SG)
$$Q_1(\lambda) d\lambda = 4ip(\lambda)\lambda^{-1}d\lambda$$
 (on $\hat{\Gamma}$),

(NS)
$$Q_1(\lambda) d\lambda = -2ip(\lambda)d\lambda \sim 2i\lambda dp(\lambda).$$

The annihilators of these brackets consist of the periods T_1, \ldots, T_g together with the condition $\prod \lambda_j = 0$ for SG, and of T_1, \ldots, T_{g+1} for NS.

Example 2. The Poisson bracket $\{\cdot, \cdot\}_2$ of the stationary problem

$$\sum c_j \delta H_j = 0,$$

where the H_j are Hamiltonians of the higher analogues of SG or NS. According to [7], these Poisson brackets are consistent with the SG and NS dynamics; the bracket $\{\cdot, \cdot\}_2$ is algebro-geometric and analytic in analogy to [8]:

(SG)
$$Q_2(\lambda) d\lambda = 2i \left(1 + 16 \sqrt{\prod_{\lambda_j \neq 0} \lambda_j} \right) \sqrt{\prod(\lambda - \lambda_j)} \lambda^{-2} d\lambda,$$

(NS)
$$Q_2(\lambda) d\lambda = -2i\sqrt{\prod(\lambda - \lambda_j)} d\lambda.$$

The annihilator of the bracket $\{\cdot, \cdot\}_2$ consists of the quantities (c_j) which can be expressed in one-to-one fashion in terms of the following symmetric functions of the end points of the zones:

(SG)
$$\sigma_1, \sigma_2, \dots, \sigma_{g-1}, \pm \sqrt{\sigma_{2g}}$$

(NS)
$$\sigma_1, \sigma_2, \ldots, \sigma_{g+1},$$

where $\sigma_k = \prod_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}$.

Remark. According to an analogue of Lemma 3 of [1], for brackets consistent with the SG or NS dynamics the Hamiltonians of the higher SG or NS equations are generated by the same coefficients of the expansion of $Q(\lambda)$ near the points $\lambda = \infty_+$ (NS) or $\lambda = 0, \infty$ (SG) as for the standard bracket $\{\cdot, \cdot\}_1$. All the remaining coefficients of the expansion belong to the annihilator.

II. Conditions for real SG and NS solutions in the γ representation. The action variables. Suppose that a solution u(x,t) is real for SG or $r = \pm \bar{q}$ for NS (notation: NS_±). The most difficult question is the precise description of the location of the quantities γ_j on Γ . The case NS₊ where L is selfadjoint is an exception. In this case all $\lambda_j \in R$, $j = 0, 1, \ldots, 2g + 1$. Cycles a_j on Γ are selected which lie over the lacunae $[\lambda_{2j}, \lambda_{2j+1}], j = 0, 1, \ldots, g$. In analogy to KdV, $\gamma_j \in a_j$. We obtain the torus $T^{g+1} = (a_0 \times a_1 \times \cdots \times a_g)$. The action variables I_q conjugate to the angles $\phi_q \pmod{2\pi}$ on T^{g+1} have the form

(1)
$$I_j = \frac{1}{2\pi} \oint_{a_j} Q(\lambda, \Gamma) \, d\lambda, \quad j = 0, 1, \dots, g.$$

Since the collection of cycles a_j cuts Γ into two parts $\Gamma = \Gamma_+ \cup \Gamma_-$, we have

(2)
$$\sum_{q} I_{q} = \sum_{P_{k}} \operatorname{res}_{\lambda = P_{k}} [Q(\lambda)d\lambda], \quad P_{k} \in \Gamma_{+}$$

We shall henceforth assume that the form $Q d\lambda$ is "real" for real Γ and has a unique pole on Γ_+ at the point $\lambda = \infty_+$. Under these conditions the following result holds.

Theorem 1. Suppose that the Poisson bracket is consistent with the dynamics of all NS. Then the following assertions are true:

a) The action variables conjugate to the angles on the torus T^{g+1} have the form (1).

b) The sum $\sum_{0}^{g} I_q = \operatorname{res}_{\infty_+}[Q \, d\lambda]$ coincides with the generator of the phase transformation $r \to r e^{i\phi}$.

c) The Hamiltonians of the "higher NS" are obtained from the expansion of $Q(\lambda) d\lambda$ at $\lambda = \infty_+$ in terms of $z = \lambda^{-1}$ at the same sites as in the expansion of $Q_1(\lambda) d\lambda = 2ip d\lambda$ (and with the same coefficients). The remaining terms of the expansion belong to the annihilator.

We now proceed to the involved cases of SG and NS₋. Using the results of [9], [10] and [3], we can easily describe an admissible class of surfaces Γ :

1) The branch points come in complex conjugate pairs $(\lambda_{2j+1}, \lambda_{2j+2} = \overline{\lambda}_{2j+1})$; among them there is no real pair (NS_).

2) Part of the branch points $\lambda_0 < \lambda_1 < \cdots < \lambda_{2k-2} < \lambda_{2k-1} < \lambda_{2k} = 0$ is real and negative; the other part of the branch points $(\lambda_{2j+1}, \lambda_{2j+2} = \overline{\lambda}_{2j+1})$ comes in complex conjugate pairs, j > k (SG).

As $x \in R$ varies the zeros $\gamma_j(x)$ cover sets $M_j \in \Gamma$ containing cycles $[M_j]$ with the natural orientation; the projections of these on the λ plane are invariant under the mapping $\lambda \to \overline{\lambda}$. Let $x_\alpha \in R$, $|x_\alpha| \to \infty$ if $\alpha \to \infty$, where $\gamma_j(x_\alpha) \approx \gamma_j(x_0)$, and $\gamma_{j_\alpha}: [x_0, x_\alpha] \to M_j$.

Definition. The average "number of oscillations" is

$$m_j = \lim_{\alpha \to \infty} \frac{\deg \gamma_{j_\alpha}}{x_\alpha - x_0} \ge 0.$$

where deg $\gamma_{j_{\alpha}}$ is the torsion number in the homology group $H_1(\Gamma)$.

Lemma 1. Let a_j be the homology class of the γ -cycle $[M_j]$; then $a_{j_1} \circ a_{j_2} = 0$, and $\tau_* a_j = a_j$, where $\tau(y, \lambda) = (-\bar{y}, \bar{\lambda})$.

Using the collection (a_j) , we choose a canonical basis of cycles and normalize $dp(\lambda)$ with respect to this basis. There arises the vector $U_j = \oint_{b_j} dp$.

Lemma 2. $2\pi m_j = U_j > 0.$

We introduce the "natural" numeration of the cycles $a'_q = a_j$, q = q(j), where $\cdots < m_{q-1} < m < \cdots$. The following results can be proved.

Theorem 2. The homology classes a_q possess representations which are curves M'_q without self-intersections having the properties that their projections N'_q onto the λ plane are without self-intersections and do not intersect pairwise, and that they are invariant under the mapping $\lambda \to \overline{\lambda}$. In the case of SG the curves $N'_{q(j)}$ are closed for $1 \leq j \leq k$, and they intersect the semiaxis $(0,\infty)$ once at points μ_q and the segment $[\lambda_{2j-2}, \lambda_{2j-1}]$; they intersect the real axis nowhere else; the curves $N'_{q(j)}$ for j > k and all N'_q for NS_- terminate at the branch points $\lambda_{2j-1}, \lambda_{2j}$, and intersect the real axis once at points μ_q of the semiaxis $(0,\infty)$. Here $0 < \cdots < \mu_{q-1} < \mu_q < \cdots$ under the natural ordering of q(j). The subgroup of the group $H_1(\Gamma, Z)$ generated by the cycles (a_q) does not depend on the ordering. A basis of

 γ -cycles $[M'_q] \in H_1(\Gamma)$ is uniquely determined by these properties with the condition $U_q \geq 0$. There is the formula for the average density of topological charge

(3)
$$\bar{e} = \sum_{j \le k} \sigma_j m_j = (2\pi)^{-1} \sum_{j \le k} \sigma_j U_j; \quad \sigma_j = \pm 1, \quad j = 1, 2, \dots, k,$$

where the signs depend on the "index" $\sigma = (\sigma_1, \ldots, \sigma_k), \sigma_j = \pm 1, j = 1, \ldots, k$, of the connected components of real solutions for given Γ (see Theorem 3). For NS₋ there are no real branch points and $\sum_{0}^{g} a_j = 0$.

Using [11] and [12], we can prove the following assertion.

Theorem 3. 1) For the SG equation with k = 0 and NS₋ there is only one real torus for given branch points—"the spectrum" of the operator L.

2) For SG with $k \neq 0$ there are 2^k connected components numbered by collections $\sigma = (\sigma_1, \ldots, \sigma_k), \sigma_j = \pm 1, j = 1, \ldots, k$, with the collections of γ -cycles

 $(M_1^{\sigma_1}, M_2^{\sigma_2}, \dots, M_i^{\sigma_j}, \dots, M_k^{\sigma_k}, M_{k+1}, \dots, M_g) = M(\sigma),$

where $M_j^- = \tau(M_j^+)$ and τ is the anti-involution $\tau(y, \lambda) = (-\bar{y}, \bar{\lambda})$. For $j \leq k$ the anti-involution τ reverses the direction of the projection N'_j and changes the sign of m_j in (3).

3) To each component with index σ there corresponds a collection of covering γ cycles $\hat{M}(\sigma) = (\hat{M}_1^{\sigma_1}, \ldots, \hat{M}_k^{\sigma_k}, \hat{M}_{k+1}, \ldots, \hat{M}_g)$ on $\hat{\Gamma}$ which jointly form part of the boundary of one of the copies of Γ in $\hat{\Gamma}$ (we recall that the surface $\hat{\Gamma}$ is glued together from an infinite number of copies of Γ cut along the cycles a_j). Suppose that σ' is obtained from σ by changing only one sign with index j ($\sigma_j = +1 \rightarrow \sigma'_j = -1$). Then the collection $\hat{M}(\sigma')$ is obtained from $\hat{M}(\sigma)$ by superposition of the operation τ on the cycle \hat{M}_j^+ (the curve \hat{M}_j^+ is replaced by the curve \hat{M}_j^- homologous to it on $\hat{\Gamma}$ which covers the curve $M_j^- = \tau(M_j^+)$) and the shift of all γ -cycles by the monodromy transformation $\kappa_j : \hat{\Gamma} \rightarrow \hat{\Gamma}$ corresponding to the cycle $b_{q(j)}$:

$$\hat{M}(\sigma') = \kappa_j(\hat{M}_1^{\sigma_1}, \hat{M}_2^{\sigma_2}, \dots, \tau \hat{M}_j^{\sigma_j}, \dots, \hat{M}_k^{\sigma_k}, \dots, \hat{M}_g).$$

Corollary 1. If the form $Q d\lambda$ is meromorphic on Γ with poles only at $\lambda = 0, \infty$, then the action variables of distinct components $\sigma = (\sigma_1, \ldots, \sigma_k), \sigma' = (\sigma'_1, \ldots, \sigma'_k)$ differ for those j where $\sigma_j \neq \sigma'_j$:

$$I_{q(j)}(\sigma) - I_{q(j)}(\sigma') = \frac{1}{2}(\sigma_j - \sigma'_j) \operatorname{res}_{\lambda=0}[Q \, d\lambda].$$

Corollary 2. For the standard bracket $\{\cdot, \cdot\}$, the form $Q_1 d\lambda = 4ip d\lambda/\lambda$ is meromorphic on $\hat{\Gamma}$ ($\kappa_j p(\lambda) = p(\lambda) + U_j$); passage from the component $\sigma = (\sigma_1, \ldots, \sigma_k)$ to the component $\sigma' = (\sigma'_1, \ldots, \sigma'_k)$ implies the change of action variables

$$I_{q(s)}(\sigma) = \frac{1}{2\pi} \oint_{\hat{M}_s(\sigma)} Q_1 \, d\lambda \to I_{q(s)}(\sigma') = \frac{1}{2\pi} \oint_{\hat{M}_s(\sigma')} Q_1 \, d\lambda,$$

where

$$I_{q(s)}(\sigma') = I_{q(s)}, \quad s > k,$$

$$I_{q(s)}(\sigma') = I_{q(s)} + 8\pi \left[\sum_{s=1}^{k} m_s \frac{\sigma_s \sigma_j - \sigma'_s \sigma'_j}{2}\right], \quad j \le k.$$

Remark 1. In a recent preprint [13] the action variables for SG, k = 0, g = 2, are actually indicated in a certain integral basis of the group of *a*-cycles which is defined without using the natural numeration.

Remark 2. In the recent paper [14], where effective conditions for real SG solutions are obtained expressed in terms of θ functions, a random basis of *a*-cycles was used. For applications it is natural to use the canonical basis of *a*-cycles found here in which the structure of the formulas is considerably simplified.

References

- A. P. Veselov and S. P. Novikov, Dokl. Akad. Nauk SSSR 266 (1982), 533; English transl. in Soviet Math. Dokl. 26 (1982).
- [2] V. E. Zaharov et al. (S. P. Novikov, editor), *Theory of solitons*, "Nauka", Moscow, 1980. (Russian)
- [3] A. R. Its, Vestnik Leningrad. Univ. 1976, no. 7 (Ser. Mat. Meh. Astr. vyp. 2), 39; English transl. in Vestnik Leningrad Univ. Math. 9 (1981).
- [4] V. A. [V. O.] Kozel and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1976, 878. (Russian)
- [5] B. A. Dubrovin, I. M. Kričever and S. P. Novikov, Dokl. Akad. Nauk SSSR 229 (1976), 15; English transl. in Soviet Math. Dokl. 17 (1976).
- [6] H. Flaschka and D. W. McLaughlin, Progr. Theoret. Phys. 55 (1976), 438.
- [7] O. I. Bogojavlenskiĭ and S. P. Novikov, Funkcional. Anal. i Priložen. 10 (1976), no. 1, 9; English transl. in Functional Anal. Appl. 10 (1976).
- [8] S. I. Al'ber, Comm. Pure Appl. Math. 34 (1981), 259.
- [9] H. P. McKean, Comm. Pure Appl. Math. 34 (1981), 197.
- [10] A. R. Its and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1976, 965. (Russian)
- [11] I. V. Čerednik, Dokl. Akad. Nauk SSSR **252** (1980), 1104; English transl. in Soviet Phys.
- Dokl. 25 (1980).
 [12] B. A. Dubrovin, Dokl. Akad. Nauk SSSR 265 (1982), 789; English transl. in Soviet Math. Dokl. 26 (1982).
- [13] M. G. Forest and D. W. McLaughlin, Modulations of sinh-Gordon and sine-Gordon wavetrains, Preprint, 1982.
- [14] B. A. Dubrovin and S. M. Natanzon, Funktional. Anal. i Priložen. 16 (1982), no. 1, 27; English transl. in Functional Anal. Appl. 16 (1982).

LANDAU INSTITUTE OF THEORETICAL PHYSICS, CERNOGOLOVKA, MOSCOW DISTRICT