
5. The functions K_+ (g, e), g ~ G+_, can be rewritten in the form 

~+_(g,e) = [(t~ (g) --2) ~(~ (g) + 2)1 -~, 

where a unique branch of the square root is chosen from the condition: 
{Im(trg) = O, !tr g t > 2 } .  

(22) 

K±(g, e) > 0 for 
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COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS ASSOCIATED 

WITH MATRIX OPERATORS AND ABELIAN VARIETIES 

B. A. Dubrovin UDC 517.9 

This paper deals with the integration of a periodic problem for nonlinear systems as- 
sociated with matrix linear differential operators of first order by methods that generalize 
the methods of Novikov, the author, Matveev, and Its (see survey [i]). Examples of such 
systems that are of physical interest are the nonlinear Schr~dinger equation [2], the equa- 
tion of interact$on of wave packets in nonlinear media [3], and the modified Korteweg--de 
Vries equation (complex). Manakov [4] has solved the n-dimensional generalization of the 
classical Euler problem of the motion of a rigid body by using the results obtained in this 
paper (a direct verification of the independence of the integrals obtained in [4] was given 
by Mishchenko and Fomenko [5]). 

A gener~l algorithm of construction of such nonlinear systems, together with a method 
of solution of the inverse problem (in the case of rapid decrease) for the corresponding 
linear operators, was found by Zakharov and Shabat [6]. We give another algorithm that is 
more convenient for the integration of the periodic problem. The basic objects of the in- 
vestigation are matrix operators whose characteristic functions are meromorphic on a Rie- 
mann surface of finite genus. These are called finite-zone operators, and the surface it- 
self is called the spectrum. The coefficients of these operators satisfy a Hamiltonian sys- 
tem of ordinary differential equations of the type of the stationary Korteweg--de Vries (KdV) 
equations (the Novikov equations). The problem of integrating this system is thus solved 
simultaneously with the inverse problem of spectral theory, i.e., the problem of findin~ all 
the finite-zone operators with given spectrum. The basic result is that the set of finite- 
zone operators with given spectrum is (to within a factorization with respect to the action 
of a commutative group) the Jacobian variety of the corresponding Riemann surface. The 
temporal dynamics for the nonlinear partial differential equations under consideration are 
completely calculated. Explicit formulas for the coefficients of the matrix operators found 
are given in terms of 0-functions. 

The statements of the basic results in this paper were published in [7]; regarding the 
. 

ideas of the proofs, see the survey [i, Chap. 3, §2]. The particular case of two-dimensional 
matrix operators was investigated independently by Its [8] by other methods. Krichever [9, 
i0] indicated an algebraic--geometric method of construction of nonlinear systems that gen- 
eralize, in particular, the systems considered in this paper. 
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Vol. ii, No. 4, pp. 28-41, October-December, 1977. Original article submitted December 7, 1976. 
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Let F be the space of smooth complex-valued functions f(x), x = (x*, . . ., xn), of n 

variables x ~, . . ., x n such that ~0//0~ ~. = O. We use the notation ~//#x~_/, ~. Let A be the 
{ 

space of diagonal complex matrices of order n. In the space A we fix a basis of matrices 
Ak, k = i, 2, . , n, where (.4~)j ~ ~ • ~ ~6~. For each matrix A ~ A, where A = (a~6i), we set 

O//OxA = ~ a~/,~. In particular, we have [,~ = 0//0~A~. 

For each matrix A ~ A suppose that we are given a matrix function UA (x) = (u{~), i, ] = 
~,..., n, where all the matrix elements are functions in F. We consider the family of op- 
erators L A on the space of vector-valued functions F n depending on the parameter E, 

0 0 
L A = ~ x A  " q - U A - - E A - - ~  Oz A " -~QA,  A ~ A .  (1)  

We require that the operators of the family constructed form a commutative algebra L for 
any E, i.e., if A,B ~A, then 

oq/3 °Qa = [QA, Qsl. [LA, LB] = 0,(=4, Ox A Ox B (2) 

Equating the coefficients of E in Eq. (2), we get the relation [A, UB] = [B, UA], from which 
we have 

U~ = [A, V], A ~ A, (3)  

(v~) is some matrix, and for definiteness we consider that the diagonal elements where V 

of V are zero. Now, equating the free terms in Eq. (2), we get a system of n -- 2 nonlinear 
partial differential equations in the matrix V 

ov]_ [B ,  ~ v ] =  A, ~ [ oz a ] [[A, V], [B, V]], A, B ~ A. (4) 

System (4) can be rewritten in another form that is convenient for calculations, 

tZ~,p -~ ~ p ~ ' vpv~, if p =/= i ,],  -i- v~ - -  ~,  y s ~ UsV i .  vi, ~ ~ 
8 (4') 

If V is a solution of system (4), then its matrix elements, and also any expressions depend- 
ing only on V, can be regarded either as functions in F, or as functions of the single var- 

iable x = XA, where the matrix A ~A is fixed. We pass from one notation to the other 
without special mention. 

We now construct a collection of commutating dynamic systems on the variety of matrices 
V that are solutions of system (4). We consider the matrix differential equation 

o~ _ IX, Q ~ ] ,  Q a  = U a  - E A  =_ [A, V] - -  EA. ( 5 )  
ox A 

LEMMA i. Equation (5) has a unique solution % ----ZB, B ~ A, in the form of a formal 
series in powers of I/E such that 

IB = B + (II,B /E) -~ (~,B /E ~) -~ • • .; (6) 

if V = O, then 

~/3 -~- B. (7) 

The matrix elements of the matrix %i,B can be expressed polynomially in terms of the 
matrix elements of the matrices V; V, i, . .., V, jr..fi_ I with constant coefficients depending on 
B. 

Definition i. The N-th KdV equation is defined to be the equation 

[A, ~r _ ~ , N + I , / 3 ]  = 0 ,  A, B ~ A, V = V (x, t), (8)  

or an arbitrary sum of these equations 

~] [A,'I ? - ~ + ~ , B ~ ]  = 0 ,  B ~ A .  ( 8 ' )  
tt~<N 
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Equation (8) [or (8')] defines a dynamic system on the variety of matrices V that are 
solutions of system (4). Equation (8) admits a commutative representation of the type of 
Lax or Novikov. We consider a matrix A = An, B(x, E) of the form 

A = BE n + k~,BE ~-~ q- . • • + ~s,~. (9) 

LEMMA 2. Equation (8) is equivalent to the commutation relation 

0 ] 0~ °QA = [h, Q.~]. (i0) LA, ~ + A :044 o<~ Ot 

The proof follows at once from relations (7). 

Representation (i0) is a commutation representation of Eq. (8) on the matrices of order 
n that depend polynomially on the parameter E (the Novikov representation; regarding the 
equivalence of the representation of Lax and that of Novikov see [I, Chap. 2]). For Eq. 
(8') it is necessary to take a sum of matrices of the form (9) as the matrix A. 

LEMMA 3. For different B, N the dynamic systems (8) commute with each other. 

Proof. It suffices to show that the operators of the form ~/3t + i commute with each 
other, i.e., if A t ~  A~,.~,  A~ : A ~ . m  and tl, t2 are the corresponding times, then we have 
the relation 

OA~ 8A~ _ [A~; A~]. (ii) 
OL. Oq 

For this, it suffices to show that if i has form (9) and V is a solution to Eq. (8), then 
~----kA, A ~ A, is a solution of the following equation: 

~ = [~,A]. (12) ~ 

This is a consequence of relations (5) and the explicit form of Eq. (8). In particular, if 
B = Ai, where (~]~ ~ 6~.6[~ and N = 2, then we get a system that is an analog of the nonlin- 
ear Schr~dinger equation. In the following we use the explicit equation 

• { { { i " { ~ ~ Ou/.8~{ (12') = ~{{- (~d)~. 

Definition 2. V is said to be a finite-zone potential for the operator L A if LA has 
for all E a characteristic vector function ~, LA~ = 0, that is meromorphic on a Riemann sur- 
face F of finite genus which covers the E plane with n sheets. The surface F is called the 
spectrum of 6perator L A. 

Below, it is sho~ that the finite-zone operators obtained within the framework of our 
construction are such that their coefficients are periodic (or conditionally periodic) and 
the corresponding characteristic f~ctions are Bloch functions, i.e., under a shift by a per- 
iod they are multiplied by a scalar (see [i]). 

Our aim is to find the stationary (i.e., independent of the time t) solutions of an 
equation of form (8) [or (8')] 

[~, %~+~, ~] : 0, B ~ A, (13) 

[~, ~ h~+~,~J:0, B~A, ~=i ..... N. (13') 
~ N  

Equations (13), (13') represent systems of partial differential equations that, using Eqs. 
(4), can be rewritten as systems of n(n- i) ordinary differential equations of order N 
each. For the integration of system (13) we use its representation of Lax type [which fol- 
lows from (i0)] on matrices that are polynomially dependent on E, 

9~ = [A, Qa], (14) 
~mA 

where the matrix i is defined by Eq. (9), and relation (14) holds for any matrix ~ ~ A. 

LE~ 4. If V is a solution of system (13) [or (13')], then operator LA is finite- 
zone for any N ~ A. 
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Proof. We consider the Riemann surface ~ of the algebraic function w = w(E) given by 
the equation 

R (w, E) = det[  w- t  -- A I =  0. (15) 

From Eq. (14) it follows that for a change in x A the matrix A remains similar to itself, 
consequently, its characteristic polynomial R(w, E) does not depend on x A. We construct a 
characteristic function ~ of operator LA, requiring that it be a characteristic vector for 
the matrix A. Such a function exists, since the operator L A and the operator of multiplica- 
tion by matrix A commute, by relation (14). Then (under a suitable normalization) its co- 
ordinates can be rationally expressed in terms of the elements of the matrix w'l -- A, i.e., 
they are algebraic functions on the Riemann surface ~ given by Eq. (15). Hence, ~ can be 
extended to a meromorphic function on the Riemann surface F\ oo. The function ~ is char- 
acteristic for all the operators in the commutative algebra L. 

The surface ~ covers the E plane with n sheets. We calculate its genus, considering 
for simplicity that B is a matrix in general position, i.e., that its diagonal elements are 
pairwise distinct: B = (b~Si), b~=/=b~. Then the i-th root of the characteristic polynomial 
R(w, E) has for large n the asymptotic form 

: + o ( + ) ) .  (i6) 

From this it follows, in particular, that as E ÷ = the surface F has n ordered points; we 
denote them by {I} ..... {n}. The discriminant of the polynomial R(w, E) has the form ~ =H 

~e] 

(wi--w))=6.EX'~(~-~)~ smaller terms, where ~=~(b~--bj). Hence, the surface F has Nn(n-- i) 
i#] . 

branching points, from which we get its genus p, 

Let 

p -= N n(n--i) ( n - -  I). (17) 
2 

R (w, E) -= ~ rowiE ~. (18) 
• . .  
~,~ 

Then from the definition of matrix A it follows that the coefficients rij are polynomials 
in the elements of matrices V, V ' , . . . ,  V(~) .  By Lemma 4, these polynomials are integrals 
of system (13). Among these integrals are "trivial" ones. Let ~ be the group of all diag- 
onal nonsingular matrices of order n. The group ~ acts on the matrices V as follows: 

V ~+ ~Vg -i, s ~ ~. (19) 

From the definition of system (4) it follows that the group ~ acts correctly on the solu- 
tions of this system. Further, from the uniqueness of coefficients Xi, B defined by Eqs. 
(6) and (6') it follows that these coefficients are transformed according to the law 

~,B -~ ~i,B ~-l" (20) 

T h e r e f o r e ,  ~ i s  t h e  g roup  of  s y m m e t r i e s  o f  s y s t e m  (13) [or  ( 1 3 ' ) ] .  This  g i v e s  t h e  n - -  1 
i n t e g r a l  o f  t h i s  s y s t e m .  We show below t h a t  sy s t em (13) i s  H a m i l t o n i a n .  I f  we show t h a t  
i n t e g r a l s  r i j ( V ,  V ' ,  . . . )  o f  t h i s  sy s t em a r e  i n d e p e n d e n t  and a r e  i n  i n v o l u t i o n ,  t h e n  we 
get from this the complete integrability of this system. Instead of this, we explicitly de- 
scribe the structure of the invariant varieties of this system. For each Riemann surface 
F of form (15) 

Y,~-~w~E ~ = 0 

we consider the invariant variety M F given by the intersection of the levels of the inte- 

grals rij(V, V', . . .) 

M r  = { V l h j  (V, V ' , . . .  ) = r~°~}. (21) 

.We describe the variety M F for any F. By Lemma 4, a point on the variety M~ is a finite- 
zone operator L A (for an arbitrary matrix A ~ A) with spectrum P. Therefore, the problem 
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of describing the varieties Mr is equivalent to the problem of finding all the finite-zone 
operators L A with given spectrum ~. 

THEOREM. Mr/~ = Y (F). Here MF/~ is the factor space with respect to the action of the 
group ~, J(F) is the Jacobi variety of the Riemann surface F. 

Proof. We investigate the analytic properties of the characteristic vector function 
constructed. We construct a matrix-valued function P(x, y, P), where P is a point of the 
surface F, and x (and y) is the variable XA, where the matrix ~ ~A is regarded as fixed 
[see the remark after the Eq. (4')]. Let E be different from a branching point, i.e., for 
given E the pair of operators LA = L, A has exactly n linearly independent characteristic 
functions ~ (z, E) ..... ~ (~, E). We place their coordinates in the matrix ~{ (~, E). Let ~{ (~, 
E) be the inverse matrix; it exists, since the functions ~ .... ,~ are linearly independent. 
Then, if P~F, P = (E, k), k being the number of the sheet, then we set 

~{ (~, ~, P) = ,~ (x, E ) . ~  (y, E). (22) 

This definition depends neither on the initial order of the characteristic functions ~, 
.... ~, nor on their normalization. Thus, the function ~{(z,N, P) is a single-valued func- 
tion on the Riemann surface F. We note that if 

{ Trp~'(x,y,  P), x ~  y 
G(a ' , y ,E)  = O, ~'~>y, 

then the function G(x, y, E) is Green's matrix of operator L A. We set ~(x, x, P) = g(x, P). 

LEMMA 5. Function g(x, P) has the following properties: 

a) g(x, P) gives the spectral decomposition of matrix A(x, E), i.e., g~ =g, g(z,(~,~))- 
g(z ,  (E, l ))  = 0 f o r  k 4 = l  (k and ~ a r e  t h e  numbers o f  t he  s h e e t s ) ,  Tre g ( z , P )  = 1, T r e w ( P ) g  
(x, P) = A (x, E). 

b) The matrix elements of matrix g(x, P) are algebraic functions on surface F, and 
their poles are located precisely at the branching points of F. 

c) The group of periods of function g(x, P) coincides with the group of periods of 
potential V(x). 

d) g(x, P) satisfies the equation 

Og 
0 ~  = [g' Q~l, B ~ A. (23) 

e) g(x, P) has as P ÷ {k} an expansion of the form 

g~ g~l 
g ( a : , P ) - - - - g g ~ ) q - ~  E~ "] " ' "  (24) 

where 

_~ g~o ~) A~, gl [A~, V], g.(.,~) V,~ --  ~ ~ ~ . . . .  v~v~) A~. (25) v~v~A~ + ( ~  ~ ~ 
i ~  ~ 

P r o o f .  S~nce ~ ~a a e h a r a c t e r ~ a g ~ c  v e c t o r  of  m a t r i x  A, Eq. (22) ~s f o r  x ~ y ~he ~ -  
p r e s s ~ o n  f o r  t he  p r o j e c t i o n s  o f  m a t r i x  A t h a t  ~s k n o ~  f rom l ~ n e a r  a l g e b r a .  From th~s  i t  i s  
e a s y  to  ge~ an e x p l i c i t  e q u a t i o n  e x p r e s s i n g  the  m a t r i x  g ~n te rms  of  ~he m a t r i x  A: i f  R (w, 
E) = w n @ I t  (E)w '~-~ + • • • + l~, t h e n  

w ~-1 @ atw n-2 @ . . .  + an_ 1 

g (X, P)  = 0n (~, e) /0~ ' ( 2 6 )  

where  a~ = f k @ l ~ _ ~ A + . . .  @ A ~, k = t . . . . .  n - - I .  From t h i s  e q u a t i o n  we g e t  t h e  a s s e r t i o n  of  
p a r t  b ) ,  s i n c e  t h e  d e n o m i n a t o r  of  ~R(w, E)/~w has  z e r o s  a t  t h e  b r a n c h i n g  p o i n t s  of  t h e  s u r -  
f a c e  F. The p a r t  c) a l s o  f o l l o w s  from t h e  Eq. (26 ) .  E q u a t i o n  (23) f o l l o w s  from Eq. (22) 
~nd from the  f a c t  t h a t  t h e  m a t r i x  ~ a p p e a r i n g  i n  Eq. (22) s a t i s f i e s  t h e  e q u a t i o n  O~/Oxa = 
--~Qa. Expans ion  (24) and Eq. (25) a r e  o b t a i n e d  r e c u r r e n t l y  f rom Eq. (23) a n a l o g o u s l y  to  
e x p a n s i o n s  ( 6 ) .  More p r e c i s e l y ,  
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g!~> = ~i, A~. (27) 
These  e x p a n s i o n s  c o n v e r g e ,  by p a r t  b ) .  

A n o t h e r  p r o o f  of  t h e  e x i s t e n c e  of  e x p a n s i o n s  (24) can  be  O b t a i n e d  by t h e  g e n e r a l  m e t h -  
ods  i n d i c a t e d  i n  t h e  s u r v e y  [11] of  G e l ' f a n d  and D i k i i  f o r  o b t a i n i n g  a s y m p t o t i c  e x p a n s i o n s  
f o r  r e s o l v e n t s .  

COROLLARY. F u n c t i o n s  ~ (z, P) h a v e  i n  t h e  p a r t  o f  t h e  s u r f a c e  F a t  i n f i n i t y  o n l y  
z e r o s ,  and t h e y  a r e  l o c a t e d  a s  f o l l o w s :  f o r  i ~ = l ,  ~ ( x . P )  has  a d o u b l e  z e r o  a t  t h e  p o i n t s  
P = { k } , k ~ i , ] ,  and a s i m p l e  z e r o  f o r  k = i o r  k = j ;  g ~ ( z , p )  has  a d o u b l e  z e r o  f o r  P = { ~ ,  
k ~ : { i } ,  and ~(~,{i}) ~ t .  " 

A p r o o f  o f  t h e  c o r o l l a r y  i s  o b t a i n e d  i m m e d i a t e l y  f r o m  Eq. ( 2 5 ) .  

~E~Cak 6. F u n c t i o n s  ~{(~,  U, P) h a v e  t h e  f o l l o w i n g  p r o p e r t i e s  on t h e  Riemann s u r f a c e  F: 

a)  ~ { ( x , y , P )  i s  m e r o m o r p h i c  on F \ ~ ,  and i t s  p o l e s  l i t a t  t h e  b r a n c h i n g  p o i n t s  o f  F. 

b) The d i v i s o r  o f  t h e  z e r o s  of  ~ { ( ~ , y ,  P) can  be decomposed  i n t o  t h e  sum o f  two d i v i -  
s o r s  di(y ) + dJ(x). 

c) As e ÷ {k}, ~{(~,g, P) has an asymptotic behavior of the form ~i(~, g, P)~ @i~(~,U, 
P)-exp {(z -- g)~ E}, where ~ is meromorphic in a neighborhood of point P = {k}. 

Proof. Let c(x, y, E) = (c~(x, y, E)) be the matrix solution of the equation LAC = 0 
• 

with initial condition c(y, y, E) = i (y is a fixed parameter). The matrix elements ci(x, 

y, E) are entire functions with respect to E. Considering the uniqueness of the solution, 
we have the equation 

• (x, U, P) = e (x, y, E (~)) g (U, P)- (28) 

The p a r t  a)  o f  Lemma 6 f o l l o w s  f rom Eq. (28) and t h e  p a r t  b) o f  Lemma 5 . .  The m a t r i x  P (x ,  
y, P) has rank i; its columns are the characteristic functions of the operator LA, acting 
with respect to the variable x, and they differ only by normalization, while the rows are 
the characteristic functions of the adjoint operator L~, acting with respect to y, where 
the adjoint operator L~ is defined as follows (+ denotes transposition): 

L~-- 0 
Oy Q~" (29) 

Therefore, 

x~ (,, ~, ~} _ ~ (~, P) x~ (~. ~, P} ~ (~, v) 
- does not depend on k. (30) 

Part b) of the lemma follows from (30). We prove part c). We have: 

~ In ~'{ (x, y, P) = Z (~E6{ -- Caj - a,) g (x}) - -  
$ 

g,*. (z. P) 
g~ (@, P) 

We introduce the notation 

(31) 

(it does not depend on i). 
Pi = gi (u, P), we have: 

• g| (~, v) 
x ~ ( ~ ,  e} = ~ e  - ~, (at - a,) v; (x} ~; e) 

$ 

Integrating Eq. (31) and using the initial condition 

(32) 

• ~ (~, ~, 

= 

t/  

(33) 

From expansions (25) it follows that the function xJ(x, P) has as P ÷ {k} an asymptotic be- 
havior of the form 

~ (x, P) = a~E + 0 (~). (34) 
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Part c) of Lemma 6 follows from relations (34) and (33). 

COROLLARY. If V is periodic with respect to x with period T, then characteristic func- 
tion ~ constructed is a Bloch function, i.e., 

~ (x --k T, P) = exp [p(P)l.~(x, P), (35) 

where 

u+T 

P(P) = I Xj(~'p) ~" (36) 
I$ 

Proof. From Eq. (32) and the part c) of Lemma 5 it follows that the periods of ×J and 
the periods of V are the same. We prove that the function p(P) does not depend on j. This 
is obvious from relation (30), since the right-hand side does not change under a shift by a 
period. 

Remark. Similarly to Eq. (33), considering the dependence on y, it is easy to get the 
equation 

• 
(37) 

where 

• 

£ g ~  (L P) ~ 
%,(~, P) = - - a ~ E q -  g{ (5. p) (a s - -a i )u~(~ ) .  (38) 

$ 

Equating the right-hand sides of Eqso (33) and (37) and taking the logarithmic deriva- 
tive with respect to x of the identity obtained, we get the useful identity 

0 In g{ (x, P) = ~ (x, P) q- 7. i (x, P). 
~- (39) 

LEMMA 7. The variational derivative of functional p{V} defined by Eq. (36) has the 
form 

5~'(P) = [A,g(x,  P)]. 6V (x) (40) 

Proof. Suppose that matrix A has zero trace. We consider the two potentials: V and 
F = F -~ ~F, where only the element (~F)~ is different from zero in the matrix ~V. We take 
an arbitrary value E that is different from a branching point; let (E, i), . o, (E, n) be 
the ordered preimage of the point E on F. Let ~ = ~ (z, (~, i)) be a Bloch function for the 
potential ~, ~ = ~ (x, (E, 2)) ..... ~p~ = ~ (x, (E, ~))-- Bloch functions for the potential V. We 
consider the matrix whose first column is the vector ~ = (~i~, while the remaining ones are 
the vectors ~p~,...,~. We denote by D(x) the determinant of this matrix. We have the ob- 
vious identity 

d__ D ~ ~i ~ , dz (x) = (a~ - -  ai) 8vi(x)  ~ . r  h (x), (41) 

% 

where n~ i is the cofactor of the element ~. Let p~ = p (E, ~) for the potential V and Pi = 
p(E, i) (i = i, ., n) for the potential V. From the condition Tr A = 0 we get the con- 
dition Y'Pi = 0 (the unimodularity of the translation matrix). Integrating Eqo (41) over a 
period, we have: 

~+T 

(e?;+~',+..-+~',~ --  t) D (x) -- I (aj - -  a 0 ~p[(~) ~(~) 8vi ~ (~) d~. 
x 

To first order in ~v~, we get from this that 

~-t-T 
= - 

1~ 

(42) 

(43) 
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Equation (43), by definition (22), implies Eq. (40) on the first sheet of surface F. 

COROLLARY i. Equation (8) is Hamiltonian. 

Proof. In Eq. (8) we take B = Ak, where Ak is a basis matrix, (A~)~ = ~.~.~ ~ " We construct 
the Hamiltonian for this equation. The function XJ(x, P) has as P ÷ {k} an expansion of 
the.form 

%i (x, P) = a~E q- Q~) + ~ + . . . ,  (44) 

where coefficients Q~) and "Q~) are polynomials in V, V', .... and are determined from Eq. 
(32), considering (24) (for different j the polynomials Q~> differ by a total derivative, 
therefore, the index j is omitted). We define functional Ik,N{V} , setting 

I~, N (V} = ~ vN+~ ~ (~) ~-~- ( 4 5 )  
T 

From Eqs. (40) and (36) it then follows that 

_(k) where  ~÷~ i s  d e f i n e d  by Eq. ( 2 4 ) .  

51~, ,~ (v} (~) 
5v(x) = [A,g~+~l, (46) 

By Eq. (27), Eq. (8) is equivalent to the equation 

5Ik N 
~ - = ( a d A )  -~ - ~  , (47) 

which implies the Hamiltonian property, by the skew symmetry of operator ad A. 

COROLLARY 2. Equation (13) [or (13')] is Hamiltonian. 

Proof. By (47), these equations are the equations for the extremals for some func- 
tional I(V} that is a linear combination of the functionals Ik,N{V},therefore , they are 
Hamiltonian. 

We now return to the analytic properties of the characteristic functions. Let ~ be 
the Abel mapping of the k-th symmetric power skF of the surface F into its Jacobian J(F): 

~ : S  ~ F - ~ 7 ( F ) ,  k = i ,  2 . . . .  (48) 

The mapp lng  ~1 i s  c o n s t r u c t e d  a s  f o l l o w s .  Le t  a i ,  ~. ( i ,  j = 1, . . . ,  p) be  t h e  c a n o n i c a l  
basis of cycles on the Riemann surface F (of genus Pl that have intersection indices of the 
form =~o=j----~o~j = 0, aio~1 = ~j; ~ ..... ~p is a basis of differentials of the first kind 

on P, normalized by the conditions ~-----2.~i. Let ~----.~ ~ be the matrix of periods, 
% ~ 

P 0 ~  1~ a f i x e d  p o i n t .  The Abel  mapp ing  i s  c o n s t r u c t e d  as  f o l l o w s :  

k Ps 

[ U ( P ~ , . . . ,  P~)lt = E I °'h" (48') 
~=1 p 

~ is a birational isomorphism for k equal to the genus p of the surface F. Let D w be the 

branching divisor on ~, Z the "divisor of infinity," ~.= ~,{~}. 
~=I 

LEMMA 8. a) Th~ degrees of the divisors d i and dJ (i, j = i, ., n) are equal to 
the genus p of the surface F. 

b) On the Jacobian variety J(P) we have the relation 

9.I (d, (x)) -~ ~I (d ~ (x)) = 2 (Dw) - -  ~ (2Z  - -  { i}  - -  {j})  . ( 4 9 )  

P r o o f .  The e q u a l i t y  o f  t h e  d e g r e e s  o f  d i v i s o r s  d i ( x )  and d J ( y )  i s  o b v i o u s ,  by t h e  
e q u a i  s t a n d i n g  o f  o p e r a t o r s  L A and L~. By Lemma, 6 and Lemma 5,  and a l s o  by t h e  c o r o l l a r y  
o f  . t h e  l a t t e r ,  t h e  d i v i s o r  o f  t h e . f u n c t i o n  g~i(x, P) h a s  t h e  fo rm 

d~ (x) + d ~ (x) + 22 - -  {i} - -  {1} - -  D~. (50) 
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The degree of the divisor of the poles D w is equal to Nn(n -- !) (see .above), and the degree 
J (x, P) is algebraic of the divisor 2~ -- {i} -- {j} is equal to 2(n -- i). Since function gi 

on the surface ~, the degree of divisor di(x ) + dJ(x) 
which proves, by Eq. (17), the part a) of the lemma. 
the classical theorem of Abel. 

On the Jacobian variety J(F) with coordinates ~, ., ~p 

~ (x) = ~ (d '~' (x)). (51) 

LEM)IA 9. ~ (x )  i s  a r e c t i l i n e a r  w i n d i n g  o f  t o r u s  J ( r ) ,  i . e . ,  

B (x) = ~ (y) ~- (x - -  y)Z, (52) 

where Z is a constant vector. 

Proof. We consider the function ~7(x, y, ~), defined by the equation 

is equal to Nn(n -- i) -- 2(n -- i), 
The part b) follows from Eq. (50) and 

6which does not depend on i). 

From Eqs. (25) and (32) it follows that if P ÷ {j}, 
fore, as P ÷ {j} we have 

'ri (~' ~' ' )  (5 3) 
~r ~ (x, y, p)  - ~-i (u, ~0) 

A c c o r d i n g  to  ( 3 3 ) ,  we h a v e :  

~ (x, y, P) = exp ~ %i ($, p) d~. (54) 
Y 

t h e n  %~ (~, P)  = a~E @ O (I/E). T h e r e -  

U F i ( x , y , P ) ~ e x p , a ) E ( x - - y ) ] ( i - + -  0 ( 1 ) )  , (55) 

and as P-+ {k}, k v  e l ,  

t ~  
• 

~J ÷ o(÷)) (~) 
z,~ (y~ exp l a k e  (x - -  y)] . 

~ .  
Moreover, from Eq. (53) and Lemma 6, the divisor of the function ~F ~ (x, y, P) has the form 
dJ (x) --dJ (y). From arguments of the type used in a lemma of Akhiezer (see [12] and [!, 
Chap. 2, §3]) it follows that the zeros of dJ(x) of the function ~i (x, y, P) are determined 
according to the poles of dJ(y) from Eq. (52), where the vector Z is defined as follows. 
Let ~k be the Abelian differential (of the second kind) on the surface ~ having a unique 
double pole for P = {k} and such that as P ÷ {k} 

~Q.~ --  - -  (dz/z ~) -~- 0 (z), (57) 

normalized by the conditions 

~ ,  j = l , . .  p. ~ ~ (58) =~. 

Let the vector Z k have the coordinates Z~, where 

~ 
(59) 

Then the vector Z has the coordinates ZJ= ~ akZ~. 
k=l 

COROLLARY. The configuration of the divisors di(x), dJ(x) for any x is determined to 
within a linear equivalence by the specification of one of them (e.g., d I) for x = xo. 

We return to the proof of the theorem. We assign to a solution V(x) of Eq. (13) [or 
(13')] a point n on the Jacobi variety J(F), taking 

~ = ~ (d 1 (Xo)). ( 60 )  
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• (d~ (x)), A c c o r d i n g  ~o t h e  c o r o l l a r y  o f  Lemma 9, we can c o n s t r u c t  t h e  whole  c o n f i g u r a t i o n ~ . ~  ~ 
2 ( d ~ ( x ) )  f o r  any x ,  i . e . ,  we can f i n d  t h e  l o c a t i o n  o f  t h e  z e r o s  o f  t h e  f u n c t i o n  , ( x , y , P )  
for any~, y, i, j. From Lemma 9 it follows (see Eqs. (55), (56) and below) that the func- 
tions • ~ are uniquely determined by specifying ~. The functions ~(x, y, ~), hence also 
g~(x, P), can be constructed for this data to within a multiple that does not depend on P, 

i.e., for given ~ it is possible to construct a function ~(x, P) such that 

~ (x, P) = 4 (x) g~ (x, P). (61) 
Matrix~ ~(x, P) must satisfy the conditions of Lemma 5. From relation ~ = ~ we get that 
~ = ~/e~. Since ~ must satisfy an equation of form (23), ~i does not depend on x, i.e., 
~ = sge-~, where ~ = (~)~. We show that the corresponding potentials V also differ. 
Indeed, this follows, from Eqs. (25), since the matrix elements of V are principal terms of 
the expansion of g~ at infinity. Thus, by giving a point on J(P) the potential V is regen- 

erated to within the action of the group ~, i.e., the mapping 3/~/~-+$(F) is injective. 
For the proof of surjectivity we can use the explicit formulas for the potential obtained 
below. It is simpler to use dimensional arguments: Eq. (13) is a Hamiltonian system with 
Nn(n --1)/2 degrees of freedom. The integrals rij [Eq. (18)] are independent, since dim 

Mr.~N n~n--l) from the injectivity proved above. Hence, dimM~= N n(n--l) and dim 
2 2 

M v / ~  = N n ( ~ - - l )  2 ---(n--l)= the genus of the surface F = dim J(F). 

By commutativity (Lemma 3), the variety M F is invariant for dynamic systems of form 
(8). We calculate the trajectories of these systems on Mr/~ ~ ~ (~) (we recall that the 
dynamic systems of form (8) commute with the action of the group ~). 

LEMMA i0. The trajectories of dynamic system (8) on the torus J(F) are rectilinear: 
windings, i.e., 

~ (x) = N (o) + (x - -  o)W, (62) 

W being a constant vector. 

Proof. For a dynamic system of form (8) we consider the corresponding operator 

M = 0 - ~ + / ~ ,  X---- A~,h.  

From the commutation condition (ii) we have: 

OA _-- [A,/~1, i.e., [~¢I, A] = 0. 
o, 

(63) 

(64) 

Anal0gously, we have 

[M, LAI = O. (65) 

By relations (64), (65), M is a finite-zone operator with the same spectrum F; its charac- 
teristic function has the form ~ (% a, x, y, P). Let x = y (in the following we omit the de- 
pendence on x = y). For T = o we get the function g = g(r, P). The assertions of Lemma 5, 
Lemma 6 (except for part c)), and Lemma 8 for the functions ~(r, o, P) and g(~, P) are true 
automatically. We investigate the asymptotic behavior of functions ~Fi (% ~, P). Let ~----(~i). 
Then we have an equation analogous to (32) and (33), 

where 

~Fi (~, a, P) = gi (a, P) exp I ~J (~' P) d~, (66)  

$~ (~, p)  = _ ~ ,  ~,] (~, E)  s~- (~, ~) 
~ g{ (~, p) 

As P ÷ {k} t h e  f u n c t i o n  EJ(T ,  P) has  a s y m p t o t i c  b e h a v i o r  o f  t h e  form 

~ (x, p) = --5~E ~ + 0 (t). (67) 
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The function ~]" (% (L P) "F i (z. v, P) ---- has asymptotic behavior as P ÷ {j } of the form 
~i (=, P) 

and, as P ~ { k } ,  ]5  ~=k, 

~'~ (X, o, P ) -  exp [~S@ ( ~ -  x)] ( i  +O(i/E)), (68) 

@j (~,o,P)--  v!('~, e.xp[~E,~ (o'--x)] (l + O  (i/E)). (69) 
• ~ ' i  (*) 

From this, as in Lemma 9, we get Eq. (62). The vector W is computed as follows: let ~,N 
be the Abel differential (of the second kind) with unique pole of order ~ + i at the point 
P = {k}, and in a neighborhood of it 

Q~ ~ - - - - - - ~ d =  +O(z)  (70) 
' gN+l 

(z is a local parameter), normalized by the conditions 

$ ~.~ ~ =: 0, j = , 1 , . . . ,  p. (71) 
~ , =~ 

Suppose that the vector W k has coordinates W~, where 

W ~ = ~  Q,L3~' l = l , . . .  ,p. (72) 
~t 

Then W---- ~, ~V~. Lemma i0 makes it possible to construct convenient coordinates on the 
~=1 

Jacobian variety J(P). 

We derive formulas giving an explicit expression for the potential V in terms of O- 
functions. Let q be a given point on J(F). We introduce the notation: 

~(D=) = ~, • {j} = []], ~(X) = o, (73) 

~ = --~ +@--2~+ [I] +[j], ~ =~ +[i] --[I], (74) 

a~ (~) ~ ~ - 
= Z~0, z (~) , (75) ~ O0 = 0 (N --K), o=~ ~ 

0~ot~ (N) = ~W$~'z (9)' (76 )  
t 

where the vector  Wp is  d e t e ~ i n e d  by Eq, (72) fo r  ~ : 2; ~ is a Riemann func t ion  (see [13 ] ) ,  
and K is the vec tor  of Riemann constants 

p P 

' ' " .  ÷ Z (I Kj----- 2 2 
~=I a~ p# ~ j  ~ 

Let 

{ {i } Q~:, @~= "0 

"m(i 
P~( i}  Po 

k=/=L 

~k- E) , k = i, 

where ~k is determined by conditions (57), (58), and P0~F 
pearing in the definition of the Abel transform (48'). 

(78) 

is the reference origin ap- 
Further, let 
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~(~) = { {~} 

, ~  (1 .%~-~) ,  ~_-~. 
P~lk}  "p°  ' 

(79) 

Then for the dependence of the potential V on the variables x~, 
lowing expression (where ~0 =.. =x~ = 0): 

• , x n we have the fol- 

i where ~oj are 

a 
X -- ~In 

Proof. 

• ~ , _~ ( ~ %  + ~ + l id  
~'~ ( ~ , . . . ,  ~ )  = ,~1-[ ~ p ~  ((~i ~' - ~))x~l ~(~z~ + - - ~  [q~ ' 

constants that are independent of x and are connected by the relations 

• 

i = ~ ( n ~ + ~  , , p ~ i , ] ,  
mi 

' ~ [ ~ ( [ ~ ] + ~ ) ~ ( [ / ] + ~ ) . ] ~  co~i = =' = 0 (U] + n~) 0 ([fl ~~ X 

_ [ ln~([/] + ~)]  ~ O~ ~([il+~,) } ~%+[i])(~+ [~]) + ~ )  P~i)+ 2 ( ~ - - ~ ° ) + @  g~[il+n~)j + ~ l n  =~([il+n~., . 

From ~ d e n t ~ y  (39) and e x p a n s i o n s  (25) ~t  f o l l o w s  t h a t  as  P ~ {~} 

(80) 

(81) 

( 8 2 )  

~ (~, ~)+ ~(~, ~)= (~i~ ÷ o ( 4 ) .  \ ~ i  ] 

On t h e  o t h e r  hand ,  f rom Eq. (54) i t  f o l l o w s  tha~ 

o In ~F ~ (x, y, P). ~ (x, P) = ~ 

Similarly, 

~ In ~F~ (x, y, P), ~ ( y , P ) = ~  ~ 

(83) 

(84) 

(84') 

where the function ~'N~ (x, y, P) = ~ (x,y, P)/g~ (x, P) has divisor dj (y) -- dj (x) and exponential 
asymptotic behavior at infinity. The functions ~ and ~7 are determined uniquely with 
regard to normalization by giving a.point ~ on J(F) (see the proof of the theorem). Their 
expression in terms of 0-functions is as follows: 

p • 

• ~<~,o,~t oxp [x~ (I ~ ~'~ ~ ÷ ~ ÷ ~ i ~ " ) ÷ ~  
= - -  ~ ]] g ( g ( p ) + n  ~) ~([~l + ~ z ~  + n ~) 

Po 
P 

0 " ~(~(~ ~VzS~?~ +,~ 

, (85) 

(85') 

where k = i, ., n. Considering (83), (84), and (84'), we get Eq. (80) from the Eqs. 
(85) and (85'i. Equation (81) follows from Eqs. (4') and Eq. (80). Equation (82) follows 
from Eq. (12'). 

The inclusion of the temporal dynamics is carried out from Lemma i0 with the aid of 
the substitution D ~+N ~ t.V¢, where the vector W is defined by Eq. (72). 
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STABILITY OF EQUILIBRIUM IN A POTENTIAL FIELD 

V. P. Palamodov UDC 531.32+517.55 

We consider the motion described by the equation 

~ (t) = - ~'  ( z  ( t ) ) ,  x ~ n ~ ,  (1.)  

w h e r e  u '  = g r a d  u ,  i n  a n e i g h b o r h o o d  o f  t h e  c r i t i c a l  p o i n t  x = 0 o f  t h e  p o t e n t i a l  f u n c t i o n .  
Position x = 0 is stable if this point is a strict local minimum of the function u. We in- 
vestigate the opposite case: point x = 0 is not even a nonstrict minimum, i.e., set U- = 
{z: ~(x)<u(0)) is not empty and its closure contains this point.* If we assume only infi- 
nite differentiability of the potential, then stability is possible, as is shown by the fol- 
lowing example (Painlev~) : u (~ = exp (-- I x I -I ) sin (I x I-I). Here U- is a sequence of spheri- 
cal shells with radii converging to zero. 

We show that under quite weak restrictions on the potential function it is possible to 
guarantee instability of the equilibrium and to estimate the rate of deviation of the tra- 
jectory in dependence on the magnitude of an initial perturbation (Theorem 2).* In the case 
of planar motion (n = 2) these restrictions can be made minimal. 

THEOREM i. Let n = 2, and suppose that point 0 is not a nonstrict minimum of function 
u. Position x = 0 is unstable if one of the following conditions holds: 

A) function u(xl, x2) can be expanded in a convergent power series in x~ and x2 in a 
neighborhood of zero; 

*The author thanks V. I. Arnol'd and N. N. Kolesnikov, who called his attention to this 
problem. 
*Apparently, this problem was first considered by Appel (Rational Mechanics, Vol. 2). 
Chetaev proved instability for the case of a homogeneous potential function [7]. 
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