PERIODIC PROBLEMS FOR THE KORTEWEG — DE VRIES
EQUATION IN THE CLASS OF FINITE BAND POTENTIALS

B. A. Dubrovin

Introduction

It was recently shown [1, 2] that the Korteweg—de Vries (KdV) equation G = 6uu' —u™, well known
from the theory of nonlinear waves, is closely related to the spectral theory of the Sturm —Liouville oper-
ator L = —(d%/dx®) +u, In case of quickly decreasing initial conditions u(x, 0) this allows us to solve the
Cauchy problem for the KdV equation, using the well known apparatus of the inverse-scattering problem
[3~5]. At the same time, all potentials with vanishing reflection coefficients form a set of finite~-dimen-
sional invariant manifolds for the KdV equation., It was shown in [6] that the corresponding solutions of the
KdV equation describe interactions of a finite humber of solutions of simple wave type (solitons); therefore,
the invariant manifolds mentioned are called N-soliton solution manifolds,

In the case of periodic problems for the KdV equation it was shown by Novikov [7] that the analog of
N-soliton solutions is the manifold of functions u(x), such that the operator —(d?/ dx% + u(x) has exactly N
gaps in the spectrum (such potentials are henceforth called finite-band or N-band. It was shown in [7]
that any stationary solution of the N-th analog KdV equation (see Theorem 2.2 below) is an N-band poten-
tial. In the present paper we prove Novikov's hypothesis on obtaining all finite-band potentials. Besides,
all finite-band potentials are explicitly described in the language of the theory of Abelian functions allow-
ing complete description of the dynamics of the KAV equation and its analogs on manifolds of N-band po-
tentials (see [8]). It should be noted that a description of finite-band potentials by the theory of Abelian
functions, similar to that given here, was independently obtained (by somewhat different methods) by Its
and Matveev [9].

We further mention the approach suggested by Marchenko [10] for solving the periodic KdV problem,
based on approximating the matrix elements of the translation matrix by polynomial expressions in the
energy. This approximating process is terminated for periodic finite-band potentials; possibly, the methods
of paper [10] would be useful in solving the problem of approximating an arbitrary potential by finite-band
ones. The studies of Marchenko are based on the differential equations for the time evolution of the trans-
lation matrix, obtained by him independently of {7].

The first examples of finite-band potentials can be extracted from Ince's work [11}; the potentials
of the Lamé equation u(z) = N (¥ -+ 1) ® (z) (here ¥ (z) is the elliptic Weierstrass function) are N-band
functions. Methods of constructing other examples of finite-band potentials were suggested by Akhiezer
in the continual generalization of the theory of orthogonal polynomials on a system of intervals [12]. The
idea of the method of {12] is essentially used in the present paper. Finally, the problem of describing sin-
gle-band potentials was solved completely by Hochstadt [13].

We formulate the basic result of this paper, Let {I‘N} be the set of hyperelliptic Riemann surfaces
of order N, on which a branch point is marked (let it be infinity «). There exists over the space {FN} a
single subdivision {J (I‘N)}, whose layer is the Jacobi manifold J(T'N) of the surface I'N, while in each layer
a point is marked, corresponding to the divisor (=) (it is easily seen that this point on the Jacobi mani~
fold is a second-order point), This manifold {J (I‘N)} is called the full manifold of moduli of hyperelliptic
Jacobians (with a distinguished second-order point). The set of all N-band potentials coincides with the
manifold {J (FN)}. At the same time the subdivision {J (TN)} remains invariant with respect to the action
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of dynamic systems, determined by the KdV equation and its higher analogs, and the action of these dy-
namic systems of the J(T'N) torus is given by rectangular sheaths, ’

It should be noted that many results of this paper [especially the differential equations (2,12) and
(3.9)] can be generalized without difficulty to the case of an infinite number of bands, but at the same time
the effectiveness of conducting potentials is lost to a large extent.

§1, Background from the Theory of Second-Order Differential
Operators with Periodic Coefficients )

Consider the operator L = —(d%/dx® + u(x), where u(x) is a smooth real function, periodic with peri-
od T. In the solution space of the equation

Ly = Ey (1.1)
we introduce basis functions c(x, x; E) and s(x, xj, E) with the following initial conditions at point x;:
c(@) =5 () =1, ¢ () =s(z,) = 0. (1.2)

The functions ¢ and s are integral functions of the spectral parameter E, The linear translation operator
T is determined on the solutions of Eq. (1.1),

(Ty) (@) =y =+ 7). (1.3)

Let o = jj (xp, E) be the matrix of the operator T in the basis (1.2) (i, j =1, 2). The matrix elements

jj are, obviously, integral functions of E. Besides, det (ai]‘) = 1. Consequently, the characteristic poly-
nomial 9f the matrix (ozij) is of the form A%2—2rA + 1, where r = 1/2 Sp(ozij), since the eigenvalue of the op-
erator T is independent of x, and r is a function of E only. The spectral bands are determined by the con-
dition|[r(E)| =1; the eigenvalues of the periodic and antiperiodic problems for the operator L are found
from the equation 1-r*(E) = 0. It is well known (see [14]) that the integral function 1 — r?(E) has only real
zeros of order not higher than two. The presence of doubly degenerate zeros Ep of the function 1 -~ r’(E)
corresponds to Ep being degenerate levels of the spectrum of the periodic (or antiperiodic) problems for
the operator I, Therefore, the matrix of the operator T(Ep) is 1 in any basis. Consequently, in this case

g (Zgs En) = Qg (2o, Ep) = 0. (1.4)

Conversely, if Ep is a simple root of the function 1 — r?(E), the matrix of the operator T(Ep) is not re-
duced to diagonal form, i.e., the operator T(Ep) has only one eigenvector. Boundaries of spectral bands
are, obviously, responsible only for simple roots of 1 — r’(E) (see {141 and [7]).

Let us stay within one of the spectral bands, The eigenvalues of the operator 'f‘(E) are then complex
conjugate and are of the form exp_ﬁiip (E)), where p(E) is real. Therefore, in this case the operator T has
two eigenfunctions ¥, with ¥_ =9,, We normalize the functions ¥. by the condition

Ve (o) =1 | (L.5)
Such functions are henceforth denoted by ¥.(x, X¢, E) (the indices + are often omitted). Let x = —id'/¥,

LEMMA 1.1, The function x = x(x, E): a) is independén_t of the choice of the point xy, b) is periodic
in x with period T, c) satisfies the equation —ix' + X2 + u—E = 0, d) its imaginary part xI is determined by
its real part XR, X[ = */5 * XR/XR» and ‘) for E — « we have the asymptotic expansion

1@ B~k+ 22D g (1.6)
1 (2K)

Proof, Part a follows from the fact that by changing x, the function § changes only by a constant
factor. Part b follows from ¥(x + T) = eiP¥(x). The asymptotic expansion (1.6) is well known (see [14]).

We note that it follows from parts d and e that the function xR(x, E) has the following asymptotic
expansion for E — o

18 (@, B) ~k + 2 Xon (2)- L

COROLLARY. The following identities hold:
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x

’qj (x7 .1:0, E) = ZXI;((?_?—EE)'—)GXP {ig XR(ZJ, E)} i) (1.8)
z,, £ *
b=l op =22, (1.9)
x0T
P(E) = \ i Ejde + 2nn. (1.10)

o
LEMMA 1.2. The variational derivative of p(E) equals

dp(B) 1
du(@) ~ g B) (1.11)

Proof, If I, and L, are two operators with potentials u, and uy, respectively, and Ljy; = Eyj (i=1,
2), the following identity holds:

d
I Wy} = (@1 — wo) 1o (1.12)

Here {y;, ¥of = yi¥2 — V1¥3 is the Wronskian. Assuming y; = ¥4y, y; = ¢~ in (1,12) and integrating over the
period, we obtain
i (PP 1) (o (o) + X2 (2o)) = S (81 — ug) Y1 Pe- da. (1.13)

Xo

Transforming in (1,13) from differences to variation, we obtain (1.11),

LEMMA 1.3,

V1i—ri(f) i on{z, E)—anz, E)
e B=mm tr wmE D (1.14)

Proof, Since ¥(x, %y, E) is the eigenvector of the matrix 4 (x4s E), normalized by condition (1.5),

P (&, 2oy E) = c{x, 29, £) + ik (24, E) 5 (z, 7, E), (1.15)

. v ‘1——1‘2(E) i a1 (o, E) —_ an(zo, £ - . o sz
where E(z,, E) = ~anteo B) +5 o B . On the other hand, if follows from the defmmop of
x that the Wronskian is ]
. { (z, x4y E), (=, 9, E)} = iy (2, E). - (1.18)

Comparing (1.16) and (1.15) and taking into account part a of Lemma 1.1, we obtain (1,14).

§2, Finite Band Potentials

Now let the potential u{x) have only a finite number of spectral bands, By §1 this is equivalent to
the case where the function 1 — r’(E) has only a finite number of simple roots (their number is, obviously,
odd). Let these roots be Zy, . .., Ewvyg (i.e., the operator L has exactly N gaps). We point out that
VI = (E)/R (E) is-then, obviously, continued to an integral analytic function; all roots of this function
are simple and coincide with the degenerate roots of the function 1 — r’(E). By (1.4), therefore, Oy (%, E)
and @y,(x, E) are divided by this radicand, i.e.,

o (&, E) = oy (z, E)- i:ﬁ%f)' (2.1)
Substituting (2.1) in (1.14), we obtain ya(z, E) = l{-”%.
Cor (&,

If k? = E, at infinity vR(E) has the asymptotic k - EN. By (1.7), therefore, the integral function
Qyy(%, E) is bound to have an asymptotic EN at infinity, i.e., it is an N-th order polynomial in E. We de-

note this polynomial by &y (z, E) = P (E, z) = || (E — 1: (&)

i=1
We, thus, have the following result,
THEOREM 2.1, For a finite-band potential with band boundaries E, ,..., Ey;ny the function x(x, E),

is of the form
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i dP(F z))

x@ B =(VR® — [P ). (2.2)

The roots vj(x) of the polynomial P(E, x) are real and are located in gaps or on their boundaries.

Proof, It remains to prove only the assertion on the location of the roots vi(x). It follows from the
definition of P that yj(xy) are roots of the function ay(x;, E). Consequently, E = yj(x;) is an eigenvalue of
the operator L at the segment [x;, x, + T] with vanishing boundary conditions., Hence, there follows the
reality of the roots vi(xy). It follows directly from the unimodularity of the matrix (ozi]-) that the equality
a,4(xp, E) = 0 can be satisfied only if E is in a gap or on a boundary. That vj(xy) lies exactly in one gap is
obvious from alternate considerations.

From Theorem 2,1 we derive a statement, inverse to the basic theorem of [7], which we recall here.
We define a set of functionals In{u}, putting

I.{n} = §'in+3 (x) dz. 2.3)

Here Ysn:1 (z) are the expansion coefficients (1.7) of the function xR, E) for E — «, All %sny (z) are poly-
nomials in u and their derivatives. The equation

o 1
“=—75’5EZC" " (2.4)

is called the N-th analog of the KdV equation,

In particular, an ordinary differential equation of order 2N,
6u 2 Caln=d (2.5)

is obtained to determine the stationary solutions of Eq. (2.4). It was shown in [7] that any solution of Eq.
(2.5) is an N-band potential. We show the inverse theorem,

THEOREM 2.2, Let u(x) be an N-band potential., Then u(x) satisfies some differential equation
of form (2.5)

Proof, From Egs. (1.10), (1.11), and (2.2) we obtain

o 1 4 P(E, %) .
2‘ )i éu(z) - VR (&) (> = E) (2.6)

From the explicit form of Eq. (2.6) we see that if S o) 2 m is the Taylor expansion at an
2 VR® o e

infinitely remote point, then the quantities v (), Bva (2), . .. are linearly expressed in terms of £, {2) =
—1, By(2), ..., By (¥) with constant coefficients, Therefore, this statement is also valid for the series
‘on the left-hand side of (2.6). We obtain

N—
8Ty S

s T2, e 2.7)
Since 8/_,/6u (z) = — 1, puttingc_; = d we obtain an equation of type (2.5).

Let T'y by the (hyperelliptic)Riemann surface of the function v R(E ). By Theorem 2.1 the function
x(x, E) is a single-valued algebraic function on the surface I'y. We show that the function ¥ also has a
natural continuation on T'p.

THEOREM 2.3. The eigenfunction (x, %y, E) continued to a meromorphic function on 'y \ oo, has
there N poles at the points E = v;(%,), N roots at the points E = vi(x), and also an essentially singular point
at infinity with an asymptotic of form explik (x — xy)l.

Proof, We recall that by Lemma 1.3 we have

'47 (.’L', Zos E) = (1‘, Loy E) + ZX (xOv E) s ($7 Zos E)' (2'9)
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Since y is algebraic on I'y, and ¢ and s are integral functions of E, ¢ is obviously continued to a single-
valued function on I'N. The poles of the function ¥ can occur only where x(x;, E) can have poles, i.e., at
the points E = yi(x,). We show that ¥ indeed has exactly one pole at each point E = vi(x)). Indeed, by Egs.
(1.9} and (2.2) we have

Pz, E)

normn (IIJ) = ‘P(z’fxo’ E+)'1p (17, Lo, E-‘) = P(z0, £) (2.10)

(here E + E_ are two points on T'yp located on E).

it follows from (2,10) that norm (¥) has only simple poles for E = y;(x); therefore, ¥ cannot have
two poles at the point E = yi(x). The statement on the location of roots of ¥ obviously follows from Eq.
(2.10).

Adopting free notation in what follows, we denote the roots and poles of the function ¥ on 'y by the
same symbols v;(x) and vj(xy).

One more spectral interpretation of the energy levels E = vi(x) follows from Theorem 2.3: the dis-
crete spectrum eigenvalue of the operator L on one of the rays [xj, +~] with vanishing boundary condi-
tions, i.e., the conditional eigenvalue in the terminology of [15]. We obtain a differential equation for the
conditional eigenvalues.

It follows directly from Theorem 2,3 that the function x(x, E) also has on TI'y \ o N poles at the
points yj(x); therefore, the numerator of Eq, (2.2) vanishes for E = ¥j(x) on one sheet of I'n. Consequently,
we have the system of equations

P'(E, 2) |g=vj = 20V Ry (=1,...,N) (2.11)

[the sign in front of the root is chosen according to the sheet where the poles Yj (x) are located]. The gys-
tem (2.11) is easily rewritten in form

2% K1)

Ti=—
Ha;—1p
J#k

(] = 1, e v ey AIY). (2.12)

Equation (2.12) gives the law of motion of the points Yj over the cycles on I'y, located over the gap, We
change variables and integrate the system of Eqgs. (2.12). The idea of this replacement is based on the
method of [12]. We introduce on T'yy a basis of cycles ajs bk (G, k=1, ..., N), so that the intersecting in-
dices have the following form:

(aj, b3) = 8;r, (a4, ap) = {b;, by) = 0.

Let wys . . »» WN be a basis of holomorphic differentials (first-order differentials) on I'N, normalized by
the condition

g;(.l)j = Zniﬁik. (2'13)
%k
Let @ be a second-order differential on the surface I'y with double poles at infinity, normalized by the
condition

fo=0 @&=1,..,N). (2.14)
fx
Let, further,
%ﬁg - iU, (2.15)
k
We fix a mapping
A: STy —J (Tw) (2.16)

of the N~th symmetric power of T'y into its Jacobi manifold (the Abel mapping). In coordinates this map-
ping is written as

o

APy, « .., Pa)ln = (n=1,..., N) (2.17)

D=
g~ "9
e
B

il
&

i
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Akhijezer's theorem states that for poles and roots of the functions with the properties described in Theo~-
rem 2,3 the following relation holds in the Jacobi manifold;

A (@), - (@) =4 (1 (2 - - - Y (30)) +U-(z — o). (2.18)

Due to the fact that A is a birational isomorphism, Eq.. (2.18) can be solved for almost all x, and the roots
¥i(x), . . . YN(X) can be found,

To find the potential, however, it is not necessary to explicitly solve the system of Egs, (2.18) for
¥1(%), « . ., YN&). Indeed, for x(x, E) expansion (1.7) holds, in which x;(x) = —u(x). On the other hand, from

Eq. (2.2) we have that the same coefficient equals 2}y, (x) — DE; . Therefore, we obtain

u(2) =— 2 7: (@) + D Ei. (2.19)

We now compare Eqs, (2.18) and (2.19). For final formulation of the algebraic-geometric description of
the manifold of finite-band potentials we define on the Jacobi manifold J(T'y) the function Oy

010 A((Qu VE(QD), - @n, VR@) = C1 + - + On; (2.20)

o, is obviously an algebraic function on J(T'N) (in [9] 0y was explicitly expressed in terms of Riemann's
f-function), We obtain the following theorem,

THEOREM 2.4, Each potential with band boundaries E,, ..., E:ny is determined by assigning an
initial point on the Jacobi manifold J(I'yN) and is a bounded function 20, 4 ZE,-' on the rectilinear sheet of the

torus J(I') , protruding from this point with a normal vector U,

COROLLARY, The manifold of N-band potentials coincides with the full manifold of moduli of hyper-
elliptic Jacobians with second-order distinguished points.

Thus, we see that for given band boundaries a potential is obtained which is, generally speaking,

conditionally periodic with N independent periods (this was first pointed out in {7]).

§3, Time Evolution of Finite-Band Potentials due to the KdV
Equation and Its High Analogs

Now let u = u(x, t) depend on the parameter t according to an equation of type (2.4). The operator L
then also depends on the parameter t. Lax pointed out that a real skew-symmetric operator A of order
2N + 1 with coefficients depending onu, u', . .., can then be found, so that Eq. (2.4) is equivalent to the
equation

L=14,L] (3.1)
(21; see also [16]). For eigenfunctions (1.1) the equation

Y = Ay +ry+ug (3.2)

holds where A is independent of x, It was shown in [7]that the eigenvalues of the operator T, i.e., the functions
p(E), are independent of time t, Therefore, if for y one takes the function ¥(x, %, E), then u = 0, A = A(xy,
E). We note that the action of the operator A on the eigenfunction ¢ can be repre_sented in the form

Ay (2, o, E) = A (7, E) Y’ (2, 20 E) +-E (2, E) ¥ (2, 2, E) =
=1[iA (.’l, E) b4 (.’I:, E) -+ ) ('7"7 E)] 11)1(.7:, Loy E)v (3-3)
where A and = are real functions, polynomials depending on E and on u, u', . . .. Taking into account the
normalization (1,5), we then obtain
— A (zgs E) = i A (2, E) ¥, (%0 E) + B (20, E). (3.4)
Differentiating Eq. (3.2) with respect to x, we have
% (2, E) = [A(z, E) (#, E) — iE (&, B)] = i\’ (z, E). (3.5)

Using the relation ¥, = % . %’1, we obtain
R
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8 (s, B) = — = A (z, B). (3.6)

Let now the potential u be finite-band. We then obtain from (3.5) an expression for the time deriva-
tive of the polynomial P(E, x),

P=AP —AP. (3.7)
This equality is valid for any E. Substituting E = Yj and taking into account (2.11), we have
Plomy;=2A()VR @) (=1 .- N (3.8)

[the sign convention is as in (2.11) and (2.12)]. Hence,

MA@ VED
H (Ti _Tk)
Kot

We show that the system (3.9) reduces to a system with constant coefficients by means of the Abelian map-

ping. In what follows we work with the KdV equation analog of standard form

(] = 1v R N)' (3.9)

i=

o1 0 ol
ot

(3.10)

For n = 1 we obtain the standard KdV equation i = 6uu' — u™, We denote the polynomial A(x, E) for Eq.
(3.10) by Ap(x, E). We provide an explicit expression for the polynomial Ap(x, E).

LEMMA 3,1. The following equation holds:

n & Iy I,_
An = (4E) T;(I—1+4—E+ cee 4 (4E);). (3.11)

To prove the lemma we consider the operator
A=t] 1t 4 1/ 1 \NT_1
278 [xR(x,z) dx 2 (xR(x,z))]L—z (3.12)

(the idea of considering such an operator was suggested by Novikov).

LEMMA 3.2, The commutator of the operators Ay and L is a multiplication operator on the subse-
quent function

14 1\ _ 1 d dp
(4., leTE(XR(z,z))——TE ou (z) ° (3.13)

Proof. We evaluate the result of this operator acting on the eigenfunctions of the operator L. We
have

[4,, LIy (z, 2o, E) = (E — L) 4,9 (x, 7, E).
After the calculation we obtain

(e, LIV @, 20, B) = gy |~ 1"+ (= B+ 1] ¥ (2, 20, B),

where f = 1/xR(X, z). Since up to a constant factor, independent of x, f is simply |¥(x, %, z) % [see (1.9)],
f satisfies the equation

Y @A =0,

which also concludes the proof,

Proof of Lemma 3,1, We expand Ay in a power series in »~!, where % = vz,

A
A, === (3.14)

" (2%)2n+1

It then follows from (3.14) and (1.11) that
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1 d 61.,,
[u L] = =5 37 sugey - (3.15)

i.e., the operator Ap provides a Lax commutation representation for Eq. (3.10), We note that for the oper-

ator Ay the corresponding function A4 is of the form

1

A‘z (x, E) = + 8———(E— z) XR (.t, z) . (3.16)

Expanding (3.16) in a series in »™! and again evaluating (1.11), we obtain the assertion of the lemma.
Let &y be a second-order differential on the surface I'y with poles of order 2n + 2 at infinity, nor-
malized by the condition fﬁﬂn= 0. Let [see (2.14), (2.15)]
a

iU = —?S Q, - (3.17)
THEOREM 3.1, For the Abelian mapping A the system (3.9) transforms into a system with constant

coefficients, i,e.,

A (Yl (t)’ oo YN (t)) :A (Yl (to)s vy YN (to))—:l‘ 22” Um (t - to) (3'18)
(all v are at one x).

Proof, From (3.2) and (3.4) we obtain

> . (1o, E) -
v Vi (2, o, E) = —:T;:——E)—‘Pt.(z, zy, E), (3.19)
where the function
t
P (s tor E) = exp {_S M (2, E) dt} (3.20)
to

is, consequently, a single-valued function on T'y, meromorphic on I'y \ oo, has N poles at E = vj(x, t;) and
has N roots at E = yj(x, t). We evaluate the behavior of ¢x(t, t;,, E) at E — =, We note that it follows di-
rectly from Egs, (3.11), (3.4), and (1.11) that At(x, E) is for E — « of the form

M@, B)~ 2"k 1 0(4) (8= E). (3.21)

Therefore, the function ¢x(t, ty, E) has at infinity an asymptote of the form exp (— 2%k (f — 1,)) . Equa-
tion (3,18) is now obtained after applying the Akhiezer procedure to the function ¢x(t, ty, E).

Thus, the point coordinates on the Jacobi manifold J(T') are natural angular variables for the Hamil-
tonian KAV equation (see [17]).

COROLLARY. To identify the full manifold of moduli of hyperelliptic Jacobians of distinguished
second-order points with the solution space of equations of type (2.5), obtained by comparing the results of
[7] with the results of §2 of the present paper, the tori of J(TN) transform into the invariant tori of the
fully integrable Hamiltonian systems (2.5), explicitly evaluated in {7].

A discussion of the algebraic-geometric conclusions obtained by such comparison is given in [18].

Theorem 3.1 now allows a complete solution of the Cauchy problem for the KdV equation for finite-
band initial conditions. Several specific calculations related to the two-band case are discussed in {19].

Note, As was shown in the Vancouver International Mathematical Congress, simultaneously with
Novikov's paper [7] Lax's paper appeared [20], in which it was also shown (though by other methods) that
stationary periodic solutions of high analog KdV [see Eq. (2.5)] are finite-band potentials. Unlike [7], Lax's
proof is not effective and does not allow one to obtain the totally integrable equations (2.5). The class of
almost periodic finite-band potentials is not discussed in Lax's paper. The proof of the hypothesis, for-
mulated by Lax at the end of [20], is contained in Theorem 2 of the author's paper [8] (see also Theorem
2.2 of the present paper).
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