PERIODIC PROBLEMS FOR THE KORTEWEG-DE VRIES

EQUATION IN THE CLASS OF FINITE BAND POTENTIALS

B. A. Dubrovin

Introduction

It was recently shown [1, 2] that the Korteweg-de Vries (KdV) equation $\dot{u}=6 u u^{\prime}-u^{\prime \prime \prime}$, well known from the theory of nonlinear waves, is closely related to the spectral theory of the Sturm-Liouville operator $L=-\left(d^{2} / d x^{2}\right)+u$. In case of quickly decreasing initial conditions $u(x, 0)$ this allows us to solve the Cauchy problem for the KdV equation, using the well known apparatus of the inverse-scattering problem [3-5]. At the same time, all potentials with vanishing reflection coefficients form a set of finite-dimensional invariant manifolds for the KdV equation. It was shown in [6] that the corresponding solutions of the $K d V$ equation describe interactions of a finite number of solutions of simple wave type (solitons); therefore, the invariant manifolds mentioned are called N -soliton solution manifolds.

In the case of periodic problems for the $K d V$ equation it was shown by Novikov [7] that the analog of N-soliton solutions is the manifold of functions $u(x)$, such that the operator $-\left(d^{2} / d x^{2}\right)+u(x)$ has exactly N gaps in the spectrum (such potentials are henceforth called finite-band or N-band. It was shown in [7] that any stationary solution of the N -th analog KdV equation (see Theorem 2.2 below) is an N -band potential. In the present paper we prove Novikov's hypothesis on obtaining all finite-band potentials. Besides, all finite-band potentials are explicitly described in the language of the theory of Abelian functions allowing complete description of the dynamics of the KdV equation and its analogs on manifolds of N -band potentials (see [8]). It should be noted that a description of finite-band potentials by the theory of Abelian functions, similar to that given here, was independently obtained (by somewhat different methods) by Its and Matveev [9].

We further mention the approach suggested by Marchenko [10] for solving the periodic KdV problem, based on approximating the matrix elements of the translation matrix by polynomial expressions in the energy. This approximating process is terminated for periodic finite-band potentials; possibly, the methods of paper [10] would be useful in solving the problem of approximating an arbitrary potential by finite-band ones. The studies of Marchenko are based on the differential equations for the time evolution of the translation matrix, obtained by him independently of [7].

The first examples of finite-band potentials can be extracted from Ince's work [11]; the potentials of the Lame equation $u(x)=N(N+1) \wp(x)$ (here $\gamma(x)$ is the elliptic Weierstrass function) are N-band functions. Methods of constructing other examples of finite-band potentials were suggested by Akhiezer in the continual generalization of the theory of orthogonal polynomials on a system of intervals [12]. The idea of the method of [12] is essentially used in the present paper. Finally, the problem of describing sin-gle-band potentials was solved completely by Hochstadt [13].

We formulate the basic result of this paper. Let $\left\{\Gamma_{\mathrm{N}}\right\}$ be the set of hyperelliptic Riemann surfaces of order N , on which a branch point is marked (let it be infinity ∞). There exists over the space $\left\{\Gamma_{\mathrm{N}}\right\}$ a single subdivision $\left\{J\left(\Gamma_{N}\right)\right\}$, whose layer is the Jacobi manifold $J\left(\Gamma_{N}\right)$ of the surface Γ_{N}, while in each layer a point is marked, corresponding to the divisor (∞) (it is easily seen that this point on the Jacobi manifold is a second-order point). This manifold $\left\{J\left(\Gamma_{N}\right)\right\}$ is called the full manifold of moduli of hyperelliptic Jacobians (with a distinguished second-order point). The set of all N-band potentials coincides with the manifold $\left\{J\left(\Gamma_{N}\right)\right\}$. At the same time the subdivision $\left\{J\left(\Gamma_{N}\right)\right\}$ remains invariant with respect to the action

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 9, No. 3, pp. 41-51, July-September, 1975. Original article submitted September 17, 1974.

[^0]of dynamic systems, determined by the KdV equation and its higher analogs, and the action of these dynamic systems of the $J\left(\Gamma_{N}\right)$ torus is given by rectangular sheaths.

It should be noted that many results of this paper [especially the differential equations (2.12) and (3.9)] can be generalized without difficulty to the case of an infinite number of bands, but at the same time the effectiveness of conducting potentials is lost to a large extent.
§1. Background from the Theory of Second-Order Differential
Operators with Periodic Coefficients
Consider the operator $L=-\left(d^{2} / d x^{2}\right)+u(x)$, where $u(x)$ is a smooth real function, periodic with period T. In the solution space of the equation

$$
\begin{equation*}
L y=E y \tag{1.1}
\end{equation*}
$$

we introduce basis functions $c\left(x, x_{0}, E\right)$ and $s\left(x, x_{0}, E\right)$ with the following initial conditions at point x_{0} :

$$
\begin{equation*}
c\left(x_{0}\right)=s^{\prime}\left(x_{0}\right)=1, \quad c^{\prime}\left(x_{0}\right)=s\left(x_{0}\right)=0 \tag{1.2}
\end{equation*}
$$

The functions c and s are integral functions of the spectral parameter E. The linear translation operator $\hat{\mathrm{T}}$ is determined on the solutions of Eq. (1.1),

$$
\begin{equation*}
(\hat{T} y)(x)=y(x+T) \tag{1.3}
\end{equation*}
$$

Let $\alpha_{i j}=\alpha_{i j}\left(x_{0}, E\right)$ be the matrix of the operator \hat{T} in the basis (1.2) (i, $\left.\mathbf{j}=1,2\right)$. The matrix elements $\alpha_{i j}$ are, obviously, integral functions of E. Besides, $\operatorname{det}\left(\alpha_{i j}\right)=1$. Consequently, the characteristic polynomial of the matrix $\left(\alpha_{i j}\right)$ is of the form $\lambda^{2}-2 r \lambda+1$, where $r=1 / 2 \operatorname{Sp}\left(\alpha_{i j}\right)$, since the eigenvalue of the operator \hat{T} is independent of x_{0} and r is a function of E only. The spectral bands are determined by the condition $|r(E)| \leq 1$; the eigenvalues of the periodic and antiperiodic problems for the operator L are found from the equation $1-r^{2}(E)=0$. It is well known (see [14]) that the integral function $1-r^{2}(E)$ has only real zeros of order not higher than two. The presence of doubly degenerate zeros E_{n} of the function $1-r^{2}(E)$ corresponds to E_{n} being degenerate levels of the spectrum of the periodic (or antiperiodic) problems for the operator L. Therefore, the matrix of the operator $\hat{T}\left(E_{n}\right)$ is ± 1 in any basis. Consequently, in this case

$$
\begin{equation*}
\alpha_{12}\left(x_{0}, E_{n}\right)=\alpha_{21}\left(x_{0}, E_{n}\right) \equiv 0 \tag{1.4}
\end{equation*}
$$

Conversely, if $E_{\mathfrak{n}}$ is a simple root of the function $1-r^{2}(E)$, the matrix of the operator $\hat{T}\left(E_{\mathfrak{n}}\right)$ is not reduced to diagonal form, i.e., the operator $\hat{T}\left(E_{n}\right)$ has only one eigenvector. Boundaries of spectral bands are, obviously, responsible only for simple roots of $1-r^{2}(E)$ (see [14] and [7]).

Let us stay within one of the spectral bands. The eigenvalues of the operator $\hat{T}(E)$ are then complex conjugate and are of the form $\exp (\pm i p(E))$, where $p(E)$ is real. Therefore, in this case the operator \hat{T} has two eigenfunctions $\psi_{ \pm}$, with $\psi_{-}=\bar{\psi}_{+}$. We normalize the functions $\psi_{ \pm}$by the condition

$$
\begin{equation*}
\psi_{ \pm}\left(x_{0}\right)=1 \tag{1.5}
\end{equation*}
$$

Such functions are henceforth denoted by $\psi_{ \pm}\left(x, x_{0}, E\right)$ (the indices \pm are often omitted). Let $\chi=-i \psi^{t} / \psi$.
LEMMA 1.1. The function $\chi=\chi(x, E)$: a) is independent of the choice of the point $\left.x_{0}, b\right)$ is periodic in x with period T, c) satisfies the equation $-i \chi^{\prime}+\chi^{2}+u-E=0, d$) its imaginary part χ_{I} is determined by its real part $\chi_{R}, \chi_{I}=1 / 2 \cdot \chi_{R}^{\prime} / \chi_{R}$, and e) for $E \rightarrow \infty$ we have the asymptotic expansion

$$
\begin{equation*}
\chi(x, E) \sim k+\sum_{n=1}^{\infty} \frac{\chi_{n}(x)}{(2 k)^{n}} \quad\left(k^{2}=E\right) . \tag{1.6}
\end{equation*}
$$

Proof. Part a follows from the fact that by changing x_{0} the function ψ changes only by a constant factor. Part b follows from $\psi(x+T)=\operatorname{eip} \psi(x)$. The asymptotic expansion (1.6) is well known (see [14]).

We note that it follows from parts d and e that the function $\chi_{R}(x, E)$ has the following asymptotic expansion for $E \rightarrow \infty$:

$$
\begin{equation*}
\chi_{R}(x, E) \sim k+\sum_{n=0}^{\infty} \chi_{2 n+1}(x) . \tag{1.7}
\end{equation*}
$$

COROLLARY. The following identities hold:

$$
\begin{align*}
\psi\left(x, x_{0}, E\right) & =\sqrt{\frac{\chi_{R}\left(x_{0}, E\right)}{\chi_{R}(x, E)}} \exp \left\{i \int_{x_{0}}^{x} \chi_{R}(x, E)\right\}, \tag{1.8}\\
\psi_{+} \psi_{-} & =|\psi|^{2}=\frac{\chi_{R}\left(x_{0}, E\right)}{\chi_{R}(x, E)} \tag{1.9}\\
p(E) & =\int_{x_{0}}^{x_{0}+T} \chi_{R}(x, E)_{R}^{2} d x+2 \pi n . \tag{1.10}
\end{align*}
$$

LEMMA 1.2. The variational derivative of $p(E)$ equals

$$
\begin{equation*}
\frac{\delta p(E)}{\delta u(x)}=-\frac{1}{2 \chi_{R}(x, E)} \tag{1.11}
\end{equation*}
$$

Proof. If L_{1} and L_{2} are two operators with potentials u_{1} and u_{2}, respectively, and $L_{i} y_{i}=E y_{i}(i=1$, 2), the following identity holds:

$$
\begin{equation*}
\frac{d}{d x}\left\{y_{1}, y_{2}\right\}=\left(u_{1}-u_{2}\right) y_{1} y_{2} \tag{1.12}
\end{equation*}
$$

Here $\left\{y_{1}, y_{2}\right\}=y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}$ is the Wronskian. Assuming $y_{1}=\psi_{1+}, y_{2}=\psi_{2}$ - in (1.12) and integrating over the period, we obtain

$$
\begin{equation*}
i\left(e^{i\left(p_{1}-p_{2}\right)}-1\right)\left(\chi_{1}\left(x_{0}\right)+\bar{\chi}_{2}\left(x_{0}\right)\right)=\int_{x_{0}}^{x_{0}+T}\left(u_{1}-u_{2}\right) \psi_{1+} \psi_{2-} d x . \tag{1.13}
\end{equation*}
$$

Transforming in (1.13) from differences to variation, we obtain (1.11).

LEMMA 1.3.

$$
\begin{equation*}
\chi(x, E)=\frac{\sqrt{1-r^{2}(E)}}{\alpha_{21}(x, E)}+\frac{i}{2} \frac{\alpha_{11}(x, E)-\alpha_{22}(x, E)}{\alpha_{21}(x, E)} . \tag{1.14}
\end{equation*}
$$

Proof. Since $\psi\left(x, x_{0}, E\right)$ is the eigenvector of the matrix $\alpha_{i j}\left(x_{0}, E\right)$, normalized by condition (1.5),

$$
\begin{equation*}
\psi\left(x, x_{0}, E\right)=c\left(x, x_{0}, E\right)+i \xi\left(x_{0}, E\right) s\left(x, x_{0}, E\right) \tag{1.15}
\end{equation*}
$$

where $\xi\left(x_{0}, E\right)=\frac{\sqrt{1-r^{2}(E)}}{\alpha_{21}\left(x_{0}, E\right)}+\frac{i}{2} \frac{\alpha_{11}\left(x_{0}, E\right)-\alpha_{22}\left(x_{0}, E\right)}{\alpha_{21}\left(x_{0}, E\right)}$. On the other hand, it follows from the definition of χ that the Wronskian is

$$
\begin{equation*}
\left\{\psi\left(x, x_{0}, E\right), c\left(x, x_{0}, E\right)\right\}=i \chi\left(x_{0}, E\right) \tag{1.16}
\end{equation*}
$$

Comparing (1.16) and (1.15) and taking into account part a of Lemma 1.1, we obtain (1.14).

§2. Finite Band Potentials

Now let the potential $u(x)$ have only a finite number of spectral bands. By $\$ 1$ this is equivalent to the case where the function $1-\mathrm{r}^{2}(\mathrm{E})$ has only a finite number of simple roots (their number is, obviously, odd). Let these roots be $E_{1}, \ldots, E_{2 N+1}$ (i.e., the operator L has exactly N gaps). We point out that $\sqrt{\left[1-r^{2}(E)\right] / R(E)}$ is then, obviously, continued to an integral analytic function; all roots of this function are simple and coincide with the degenerate roots of the function $1-r^{2}(E)$. By (1.4), therefore, $\alpha_{21}(x, E)$ and $\alpha_{12}(\mathrm{x}, \mathrm{E})$ are divided by this radicand, i.e.,

$$
\begin{equation*}
\alpha_{21}(x, E)=\tilde{\alpha}_{21}(x, E) \cdot \sqrt{\frac{1-r^{2}(E)}{R(E)}} \tag{2.1}
\end{equation*}
$$

Substituting (2.1) in (1.14), we obtain $\chi_{R}(x, E)=\frac{\sqrt{R(E)}}{\widetilde{\alpha}_{21}(x, E)}$.
If $\mathrm{k}^{2}=\mathrm{E}$, at infinity $\sqrt{\mathrm{R}(\mathrm{E})}$ has the asymptotic $\mathrm{k} \cdot \mathrm{EN}$. By (1.7), therefore, the integral function $\tilde{\alpha}_{21}(x, E)$ is bound to have an asymptotic $E N$ at infinity, i.e., it is an N-th order polynomial in E. We denote this polynomial by $\tilde{\alpha}_{22}(x, E)=P(E, x)=\prod_{i=1}\left(E-\gamma_{i}(x)\right)$.

We, thus, have the following result.
THEOREM 2.1. For a finite-band potential with band boundaries $E_{1}, \ldots, E_{2 N+1}$ the function $\chi(\mathrm{x}, \mathrm{E})$, is of the form

$$
\begin{equation*}
\chi(x, E)=\left(\sqrt{R(E)}-\frac{i}{2} \frac{d P(E, x)}{d x}\right) / P(E, x) . \tag{2.2}
\end{equation*}
$$

The roots $\gamma_{i}(x)$ of the polynomial $P(E, x)$ are real and are located in gaps or on their boundaries.
Proof. It remains to prove only the assertion on the location of the roots $\gamma_{i}(x)$. It follows from the definition of P that $\gamma_{i}\left(x_{0}\right)$ are roots of the function $\alpha_{21}\left(x_{0}, E\right)$. Consequently, $E=\gamma_{i}\left(x_{0}\right)$ is an eigenvalue of the operator L at the segment $\left[x_{0}, x_{0}+T\right]$ with vanishing boundary conditions. Hence, there follows the reality of the roots $\gamma_{i}\left(x_{0}\right)$. It follows directly from the unimodularity of the matrix ($\alpha_{i j}$) that the equality $\alpha_{21}\left(x_{0}, E\right)=0$ can be satisfied only if E is in a gap or on a boundary. That $\gamma_{i}\left(x_{0}\right)$ lies exactly in one gap is obvious from alternate considerations.

From Theorem 2.1 we derive a statement, inverse to the basic theorem of [7], which we recall here. We define a set of functionals $I_{n}\{u\}$, putting

$$
\begin{equation*}
I_{n}\{u\}=\int_{T} \chi_{2 n+3}(x) d x \tag{2.3}
\end{equation*}
$$

Here $\chi_{2 n+1}(x)$ are the expansion coefficients (1.7) of the function $\chi_{\mathrm{R}}(\mathrm{x}, \mathrm{E})$ for $\mathrm{E} \rightarrow \infty$. All $\chi_{2 n+1}(x)$ are polynomials in u and their derivatives. The equation

$$
\begin{equation*}
\dot{u}=-\frac{1}{2} \frac{\partial}{\partial x} \frac{\delta}{\delta u} \sum_{n=0}^{N} c_{n} I_{n} \tag{2.4}
\end{equation*}
$$

is called the N -th analog of the KdV equation.
In particular, an ordinary differential equation of order 2 N ,

$$
\begin{equation*}
\frac{\delta}{\delta u} \sum_{n=0}^{N} c_{n} I_{n}=d \tag{2.5}
\end{equation*}
$$

is obtained to determine the stationary solutions of Eq. (2.4). It was shown in [7] that any solution of Eq. (2.5) is an N -band potential. We show the inverse theorem.

THEOREM 2.2. Let $u(x)$ be an N-band potential. Then $u(x)$ satisfies some differential equation of form (2.5)

Proof. From Eqs. (1.10), (1.11), and (2.2) we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{(2 k)^{2 n+1}} \frac{\delta I_{n-1}}{\delta u(x)}=-\frac{1}{2} \frac{P(E, x)}{\sqrt{R\left(u^{2}\right)}} \quad\left(k^{2}=E\right) \tag{2.6}
\end{equation*}
$$

From the explicit form of Eq. (2.6) we see that if $\frac{1}{2} \frac{P(X, x)}{\sqrt{R(E)}}=\stackrel{\infty}{2} \frac{\beta_{n-1}(x)}{(2 k)^{2 n+1}}$ is the Taylor expansion at an infinitely remote point, then the quantities $\beta_{V}(x), \beta_{N+1}(x), \ldots$ are linearly expressed in terms of $\beta_{-1}(x)=$ $-1, \rho_{0}(x), \ldots, \beta_{N-1}(x)$ with constant coefficients. Therefore, this statement is also valid for the series on the left-hand side of (2.6). We obtain

$$
\begin{equation*}
\frac{\delta I_{N}}{\delta u(x)}+\sum_{n=-1}^{V-1} c_{n} \frac{\delta I_{n}}{\delta u(x)}=0 \tag{2.7}
\end{equation*}
$$

Since $\delta I_{-1} / \delta u(x)=-1$, putting $c_{-1}=\mathrm{d}$ we obtain an equation of type (2.5).
Let Γ_{N} by the (hyperelliptic)Riemann surface of the function $\sqrt{\mathrm{R}(\mathrm{E})}$. By Theorem 2.1 the function $\chi(x, E)$ is a single-valued algebraic function on the surface Γ_{N}. We show that the function ψ also has a natural continuation on Γ.

THEOREM 2.3. The eigenfunction $\psi\left(x, x_{0}, E\right)$ continued to a meromorphic function on $\Gamma_{N} \backslash \infty$, has there N poles at the points $E=\gamma_{i}\left(x_{0}\right), N$ roots at the points $E=\gamma_{i}(x)$, and also an essentially singular point at infinity with an asymptotic of form $\exp \left[i k\left(x-x_{0}\right)\right]$.

Proof. We recall that by Lemma 1.3 we have

$$
\begin{equation*}
\psi\left(x, x_{0}, E\right)=c\left(x, x_{0}, E\right)+i \chi\left(x_{0}, E\right) s\left(x, x_{0}, E\right) . \tag{2.9}
\end{equation*}
$$

Since χ is algebraic on Γ_{N}, and c and s are integral functions of E, ψ is obviously continued to a singlevalued function on Γ_{N}. The poles of the function ψ can occur only where $\chi\left(x_{0}, E\right)$ can have poles, i.e., at the points $\mathrm{E}=\gamma_{\mathrm{i}}\left(\mathrm{x}_{0}\right)$. We show that ψ indeed has exactly one pole at each point $\mathrm{E}=\gamma_{\mathrm{i}}\left(\mathrm{x}_{0}\right)$. Indeed, by Eqs. (1.9) and (2.2) we have

$$
\begin{equation*}
\operatorname{norm}(\psi)=\psi\left(x,{ }_{-} x_{0}, E_{+}\right) \cdot \psi\left(x, x_{0}, E_{-}\right)=\frac{p\left(x, E^{\prime}\right)}{P^{\prime}\left(x_{0}, E^{\prime}\right)} \tag{2.10}
\end{equation*}
$$

(here E_{+}, E_{-}are two points on Γ_{N}, located on E).
It follows from (2.10) that norm (ψ) has only simple poles for $E=\gamma_{1}\left(x_{0}\right)$; therefore, ψ cannot have two poles at the point $E=\gamma_{i}\left(x_{0}\right)$. The statement on the location of roots of ψ obviously follows from Eq. (2.10).

Adopting free notation in what follows, we denote the roots and poles of the function ψ on Γ_{N} by the same symbols $\gamma_{\mathrm{i}}(\mathrm{x})$ and $\gamma_{\mathrm{i}}\left(\mathrm{x}_{0}\right)$.

One more spectral interpretation of the energy levels $E=\gamma_{i}(x)$ follows from Theorem 2.3: the discrete spectrum eigenvalue of the operator L on one of the rays $\left[x_{0}, \pm \infty\right]$ with vanishing boundary conditions, i.e., the conditional eigenvalue in the terminology of [15]. We obtain a differential equation for the conditional eigenvalues.

It follows directly from Theorem 2.3 that the function $\chi(x, E)$ also has on $\Gamma_{N} \backslash \infty$ N poles at the points $\gamma_{i}(x)$; therefore, the numerator of Eq. (2.2) vanishes for $E=\gamma_{i}(x)$ on one sheet of ΓN. Consequently, we have the system of equations

$$
\begin{equation*}
\left.P^{\prime}(E, x)\right|_{E=\gamma_{j}(x)}=2 i \sqrt{R\left(\gamma_{j}\right)} \quad(j=1, \ldots, N) \tag{2.11}
\end{equation*}
$$

[the sign in front of the root is chosen according to the sheet where the poles $\gamma_{j}(x)$ are located]. The system (2.11) is easily rewritten in form

$$
\begin{equation*}
\gamma_{j}^{\prime}=-\frac{2 i \sqrt{R\left(\gamma_{j}\right)}}{\prod_{j \neq k}\left(\gamma_{j}-\Upsilon_{k}\right)} \quad(j=1, \ldots, N) \tag{2.12}
\end{equation*}
$$

Equation (2.12) gives the law of motion of the points γ_{j} over the cycles on Γ_{N}, located over the gap. We change variables and integrate the system of Eqs. (2.12). The idea of this replacement is based on the method of [12]. We introduce on Γ_{N} a basis of cycles $a_{j}, b_{k}(j, k=1, \ldots, N)$, so that the intersecting indices have the following form:

$$
\left(a_{j}, b_{k}\right)=\delta_{j k}, \quad\left(a_{j}, a_{k}\right)=\left(b_{j}, b_{h}\right)=0
$$

Let $\omega_{1}, \ldots, \omega_{N}$ be a basis of holomorphic differentials (first-order differentials) on Γ_{N}, normalized by the condition

$$
\begin{equation*}
\oint_{a_{k}} \omega_{j}=2 \pi i \delta_{j k} . \tag{2.13}
\end{equation*}
$$

Let Ω be a second-order differential on the surface Γ_{N} with double poles at infinity, normalized by the condition

$$
\begin{equation*}
\oint_{a_{k}} \Omega=0 \quad(k=1, \ldots, N) . \tag{2.14}
\end{equation*}
$$

Let, further,

$$
\begin{equation*}
\oint_{b_{k}} \Omega=i U_{k} . \tag{2.15}
\end{equation*}
$$

We fix a mapping

$$
\begin{equation*}
A: S^{N} \Gamma_{N} \rightarrow J\left(\mathrm{\Gamma}_{N}\right) \tag{2.16}
\end{equation*}
$$

of the N-th symmetric power of Γ_{N} into its Jacobi manifold (the Abel mapping). In coordinates this mapping is written as

$$
\begin{equation*}
\left[A\left(P_{1}, \ldots, P_{N}\right)\right]_{n}=\sum_{i=1}^{N} \int_{\infty}^{P_{i}} \omega_{n} \quad(n=1, \ldots, N) \tag{2.17}
\end{equation*}
$$

Akhiezer's theorem states that for poles and roots of the functions with the properties described in Theorem 2.3 the following relation holds in the Jacobi manifold:

$$
\begin{equation*}
A\left(\gamma_{1}(x), \ldots, \gamma_{N}(x)\right)=A\left(\gamma_{1}\left(x_{0}\right), \ldots, \gamma_{N}\left(x_{0}\right)\right)+\mathbf{U} \cdot\left(x-x_{0}\right) \tag{2.18}
\end{equation*}
$$

Due to the fact that A is a birational isomorphism, Eq. (2.18) can be solved for almost all x , and the roots $\gamma_{\mathrm{i}}(\mathrm{x}), \ldots, \gamma_{\mathrm{N}}(\mathrm{x})$ can be found.

To find the potential, however, it is not necessary to explicitly solve the system of Eqs. (2.18) for $\gamma_{1}(x), \ldots, \gamma_{N}(x)$. Indeed, for $\chi(x, E)$ expansion (1.7) holds, in which $\chi_{1}(x)=-u(x)$. On the other hand, from Eq. (2.2) we have that the same coefficient equals $2 \sum \gamma_{i}(x)-\sum E_{i}$. Therefore, we obtain

$$
\begin{equation*}
u(x)=-2 \sum \Upsilon_{i}(x)+\sum E_{i} . \tag{2.19}
\end{equation*}
$$

We now compare Eqs. (2.18) and (2.19). For final formulation of the algebraic-geometric description of the manifold of finite-band potentials we define on the Jacobi manifold $J\left(\Gamma_{\mathrm{N}}\right)$ the function σ_{1},

$$
\begin{equation*}
\sigma_{1} \circ A\left(\left(Q_{1}, \sqrt{R \cdot\left(Q_{1}\right)}\right), \ldots,\left(Q_{N}, \sqrt{R\left(Q_{N}\right)}\right)\right)=Q_{1}+\ldots+Q_{N} \tag{2.20}
\end{equation*}
$$

σ_{1} is obviously an algebraic function on $\mathrm{J}\left(\Gamma_{\mathrm{N}}\right)$ (in [9] σ_{1} was explicitly expressed in terms of Riemann's θ-function). We obtain the following theorem.

THEOREM 2.4. Each potential with band boundaries $E_{1}, \ldots, E_{2 N_{+1}}$ is determined by assigning an initial point on the Jacobi manifold $J\left(\Gamma_{N}\right)$ and is a bounded function $2 \sigma_{1}+\sum_{i} E_{i}$ on the rectilinear sheet of the torus $J(\Gamma)$, protruding from this point with a normal vector U.

COROLLARY. The manifold of N -band potentials coincides with the full manifold of moduli of hyperelliptic Jacobians with second-order distinguished points.

Thus, we see that for given band boundaries a potential is obtained which is; generally speaking, conditionally periodic with N independent periods (this was first pointed out in [7]).

§3. Time Evolution of Finite-Band Potentials due to the KdV Equation and Its High Analogs

Now let $u=u(x, t)$ depend on the parameter t according to an equation of type (2.4). The operator L then also depends on the parameter t. Lax pointed out that a real skew-symmetric operator A of order $2 N+1$ with coefficients depending on u, u^{\prime}, . . ., can then be found, so that Eq. (2.4) is equivalent to the equation

$$
\begin{equation*}
L=[A, L] \tag{3.1}
\end{equation*}
$$

([2]; see also [16]). For eigenfunctions (1.1) the equation

$$
\begin{equation*}
\frac{\partial y}{\partial t}=A y+\lambda y+\mu \bar{y} \tag{3.2}
\end{equation*}
$$

holds where λ is independent of x. It was shown in [7] that the eigenvalues of the operator \hat{T}, i, e. , the functions $p(E)$, are independent of time t. Therefore, if for y one takes the function $\psi\left(x, x_{0}, E\right)$, then $\mu=0, \lambda=\lambda\left(x_{0}\right.$, $E)$. We note that the action of the operator A on the eigenfunction ψ can be represented in the form

$$
\begin{gather*}
A \psi\left(x, x_{0}, E\right)=\Lambda(x, E) \psi^{\prime}\left(x, x_{0}, E\right)+\Xi(x, E) \psi\left(x, x_{0}, E\right)= \\
=[i \Lambda(x, E) \chi(x, E)+\Xi(x, E)] \psi\left(x, x_{0}, E\right), \tag{3.3}
\end{gather*}
$$

where Λ and ${ }^{\boldsymbol{E}}$ are real functions, polynomials depending on E and on u, u^{\prime}, \ldots Taking into account the normalization (1.5), we then obtain

$$
\begin{equation*}
-\lambda\left(x_{0}, E\right)=i \Lambda\left(x_{0}, E\right) \chi\left(x_{0}, E\right)+\Xi\left(x_{0}, E\right) \tag{3.4}
\end{equation*}
$$

Differentiating Eq. (3.2) with respect to x, we have

$$
\begin{equation*}
\dot{\chi}(x, E)=[\Lambda(x, E) \chi(x, E)-i \Xi(x, E)]^{\prime}=i \lambda^{\prime}(x, E) . \tag{3.5}
\end{equation*}
$$

Using the relation $\chi_{I}=\frac{1}{2} \cdot \frac{\chi_{R}^{\prime}}{\chi_{R}}$, we obtain

$$
\begin{equation*}
\Xi(x, E)=-\frac{1}{2} \Lambda^{\prime}(x, E) . \tag{3.6}
\end{equation*}
$$

Let now the potential u be finite-band. We then obtain from (3.5) an expression for the time derivative of the polynomial $P(E, x)$,

$$
\begin{equation*}
\dot{P}=\Lambda P^{\prime}-\Lambda^{\prime} P \tag{3.7}
\end{equation*}
$$

This equality is valid for any E. Substituting $E=\gamma_{j}$ and taking into account (2.11), we have

$$
\begin{equation*}
\left.\dot{P}\right|_{E=\gamma_{j}}=2 i \Lambda\left(\gamma_{j}\right) \sqrt{R\left(\gamma_{j}\right)} \quad(j=1, \ldots, N) \tag{3,8}
\end{equation*}
$$

[the sign convention is as in (2.11) and (2.12)]. Hence,

$$
\begin{equation*}
\dot{\gamma}_{i}=-\frac{2 i \Lambda\left(\gamma_{j}\right) \sqrt{R\left(\gamma_{j}\right)}}{\prod_{k \neq j}\left(\gamma_{j}-\gamma_{k}\right)} \quad(j=1, \ldots, N) \tag{3.9}
\end{equation*}
$$

We show that the system (3.9) reduces to a system with constant coefficients by means of the Abelian mapping. In what follows we work with the KdV equation analog of standard form

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{1}{2} \frac{\partial}{\partial x} \frac{\delta I_{n}}{\partial u(x)} \tag{3.10}
\end{equation*}
$$

For $n=1$ we obtain the standard $K d V$ equation $\dot{u}=6 u u^{\prime}-u^{\prime \prime \prime}$. We denote the polynomial $\Lambda(x, E)$ for Eq. (3.10) by $\Lambda_{n}(x, E)$. We provide an explicit expression for the polynomial $\Lambda_{n}(x, E)$.

LEMMA 3.1. The following equation holds:

$$
\begin{equation*}
\Lambda_{n}=(4 E)^{n} \frac{\delta}{\delta u}\left(I_{-1}+\frac{I_{0}}{4 E}+\cdots+\frac{I_{n-1}}{(4 E)^{n}}\right) \tag{3.11}
\end{equation*}
$$

To prove the lemma we consider the operator

$$
\begin{equation*}
A_{z}=\frac{1}{8}\left[\frac{1}{\chi_{R}(x, z)} \frac{d}{d x}-\frac{1}{2}\left(\frac{1}{\chi_{R}(x, z)}\right)^{\prime}\right] \frac{1}{L-z} \tag{3.12}
\end{equation*}
$$

(the idea of considering such an operator was suggested by Novikov).
LEMMA 3.2. The commutator of the operators A_{Z} and L is a multiplication operator on the subsequent function

$$
\begin{equation*}
\left[A_{z}, L\right]=\frac{1}{4} \frac{d}{d x}\left(\frac{1}{X_{R}(x, z)}\right)=-\frac{1}{2} \frac{d}{d x} \frac{\delta p(x)}{\delta u(x)} . \tag{3.13}
\end{equation*}
$$

Proof. We evaluate the result of this operator acting on the eigenfunctions of the operator L. We have

$$
\left[A_{z}, L\right] \psi\left(x, x_{0}, E\right)=(E-L) A_{z} \psi\left(x, x_{0}, E\right)
$$

After the calculation we obtain

$$
\left[A_{2}, L\right] \psi\left(x, x_{0}, E\right)=\frac{1}{8(E-z)}\left[-\frac{1}{2} f^{\prime \prime \prime}+2 f^{\prime}(u-E)+f u^{\prime}\right] \psi\left(x, x_{0}, E\right)
$$

where $f=1 / \chi_{R}(x, z)$. Since up to a constant factor, independent of x, f is simply $\left|\psi\left(x, x_{0}, z\right)\right|^{2}[$ see (1.9)], f satisfies the equation

$$
-\frac{1}{2} f^{\prime \prime \prime}+2 f^{\prime}(u-z)+f u^{\prime}=0
$$

which also concludes the proof.
Proof of Lemma 3.1. We expand A_{Z} in a power series in χ^{-1}, where $\chi=\sqrt{z}$,

$$
\begin{equation*}
A_{z}=\sum_{n} \frac{A_{n-1}}{(2 x)^{2 n+1}} \tag{3.14}
\end{equation*}
$$

It then follows from (3.14) and (1.11) that

$$
\begin{equation*}
\left[A_{n}, L\right]=-\frac{1}{2} \frac{d}{d x} \frac{\delta I_{n}}{\delta u(s)}, \tag{3.15}
\end{equation*}
$$

i.e., the operator A_{n} provides a Lax commutation representation for Eq. (3.10). We note that for the operator A_{Z} the corresponding function Λ_{Z} is of the form

$$
\begin{equation*}
\Lambda_{z}(x, E)=+\frac{1}{8(E-z) \chi_{R}(x, z)} . \tag{3.16}
\end{equation*}
$$

Expanding (3.16) in a series in x^{-1} and again evaluating (1.11), we obtain the assertion of the lemma.
Let Ω_{n} be a second-order differential on the surface Γ_{n} with poles of order $2 n+2$ at infinity, normalized by the condition $\oint_{\mathbf{a}_{k}} \Omega_{n}=0$. Let [see (2.14), (2.15)]

$$
\begin{equation*}
i U_{k}^{(n)}=-\oint_{b_{k}} \Omega_{n} \tag{3.17}
\end{equation*}
$$

THEOREM 3.1. For the Abelian mapping A the system (3.9) transforms into a system with constant coefficients, i.e.,

$$
\begin{equation*}
A\left(\gamma_{1}(t), \ldots, \gamma_{N}(t)\right)=A\left(\gamma_{1}\left(t_{0}\right), \ldots, \gamma_{N}\left(t_{0}\right)\right)+2^{2 n} \mathbf{U}^{(n)}\left(t-t_{0}\right) \tag{3.18}
\end{equation*}
$$

(all γ are at one x).
Proof. From (3.2) and (3.4) we obtain

$$
\begin{equation*}
\psi_{t}\left(x, x_{0}, E\right)=\frac{\varphi_{x}\left(t, t_{0}, E\right)}{\varphi_{x_{0}}\left(t, t_{0}, E\right)} \psi_{t_{0}}\left(x, x_{0}, E\right) \tag{3.19}
\end{equation*}
$$

where the function

$$
\begin{equation*}
\varphi_{x}\left(t, t_{0}, E\right)=\exp \left\{-\int_{t_{0}}^{t} \lambda_{l}(x, E) d t\right\} \tag{3.20}
\end{equation*}
$$

is, consequently, a single-valued function on Γ_{N}, meromorphic on $\Gamma_{N} \backslash \infty$, has N poles at $E=\gamma_{i}\left(x, t_{0}\right)$ and has N roots at $E=\gamma_{i}(x, t)$. We evaluate the behavior of $\varphi_{X}\left(t, t_{0}, E\right)$ at $E \rightarrow \infty$. We note that it follows directly from Eqs. (3.11), (3.4), and (1.11) that $\lambda_{t}(x, E)$ is for $E \rightarrow \infty$ of the form

$$
\begin{equation*}
\lambda_{t}(x, E) \sim 2^{2 n} i k^{2 n+1}+O\left(\frac{1}{k}\right) \quad\left(k^{2}=E\right) \tag{3.21}
\end{equation*}
$$

Therefore, the function $\varphi_{\mathrm{X}}\left(\mathrm{t}, \mathrm{t}_{0}, \mathrm{E}\right)$ has at infinity an asymptote of the form $\exp \left(-2^{2 n} i h^{2 n+1}\left(t-t_{0}\right)\right)$. Equation (3.18) is now obtained after applying the Akhiezer procedure to the function $\varphi_{X}\left(t, t_{0}, E\right)$.

Thus, the point coordinates on the Jacobi manifold $J\left(\Gamma_{N}\right)$ are natural angular variables for the Hamiltonian KdV equation (see [17]).

COROLLARY. To identify the full manifold of moduli of hyperelliptic Jacobians of distinguished second-order points with the solution space of equations of type (2.5), obtained by comparing the results of [7] with the results of $\S 2$ of the present paper, the tori of $J\left(\Gamma_{\mathrm{N}}\right)$ transform into the invariant tori of the fully integrable Hamiltonian systems (2.5), explicitly evaluated in [7].

A discussion of the algebraic-geometric conclusions obtained by such comparison is given in [18].
Theorem 3.1 now allows a complete solution of the Cauchy problem for the KdV equation for finiteband initial conditions. Several specific calculations related to the two-band case are discussed in [19].

Note. As was shown in the Vancouver International Mathematical Congress, simultaneously with Novikov's paper [7] Lax's paper appeared [20], in which it was also shown (though by other methods) that stationary periodic solutions of high analog KdV [see Eq. (2.5)] are finite-band potentials. Unlike [7], Lax's proof is not effective and does not allow one to obtain the totally integrable equations (2.5). The class of almost periodic finite-band potentials is not discussed in Lax's paper. The proof of the hypothesis, formulated by Lax at the end of [20], is contained in Theorem 2 of the author's paper [8] (see also Theorem 2.2 of the present paper).

LITERATURE CITED

1. C. Gardner, J. Green, M. Kruskal, and R. Miura, "A method for solving the Korteweg - de Vries equation," Phys. Rev. Lett., 19, 1095-1098 (1967).
2. P. Lax, "Integrals of nonlinear equations of evolution and solitary waves," Comm. Pure Appl. Math., 21, No. 2, 467-490 (1968).
3. I. M. Gel'fand and B. M. Levitan, "The determination of a differential equation by its spectral function," Izv. Akad. Nauk SSSR, Ser. Matem., 15, 309-360 (1951).
4. V. A. Marchenko, "Some problems of the theory of one-dimensional differential operators. I," Tr. Mosk. Matem., Ob-va, 1, 327-420 (1952).
5. L. D. Faddeev, "S-matrix properties of the one-dimensional Schrödinger equation," Tr. Matem. V. A. Steklov Inst., 73, 314-336 (1964).
6. V. E. Zakharov, "Kinetic equation for solitons," Zh. Éksp. Teor. Fiz., 60, No. 3, 993-1000 (1971).
7. S. P. Novikov, "Periodic problem for the Korteweg - de Vries equation. I," Funktsional'. Analiz i Ego Prilozhen., 8, No. 3, 54-66 (1974).
8. B. A. Dubrovin, "Inverse-scattering problem for periodic finite-band potentials," Funktsional'. Analiz i Ego Prilozhen., 9 , No. 1, 65-66 (1975).
9. A. R. Its and V. B. Matveev, "Hill operators with a finite number of gaps," Funktsional Analiz i Ego Prilozhen. 9, No. 1, 69-70 (1975).
10. V. A. Marchenko, "The periodic Korteweg-de Vries problem," Dokl. Akad. Nauk SSSR, 217, No. 2, 276-279 (1974).
11. E. L. Ince, "Further investigations into the periodic Lamé functions," Proc. Roy. Soc. Edinburgh, 60, 83-99 (1940).
12. N. I. Akhiezer, "Continual analog of orthogonal polynomials on a system of intervals," Dokl. Akad. Nauk SSSR, 141, No. 2, 263-266 (1971).
13. H. Hochstadt, "On the determination of a Hill's equation from its spectrum," Arch. Rat. Mech. and Anal., 19, No. 5, 353-362 (1965).
14. E. C. Titchmarsh, Eigenfunction Expansion Associated with Second-Order Differential Equations, Oxford University Press (1958).
15. A. B. Shabat, "Potentials with vanishing reflection coefficients," in: Dynamics of Continuous Media, No. 5, Novosibirsk (1970), pp. 130-156.
16. R. Miura, C. Gardner, and M. Kruskal, "Korteweg-de Vries equation and generalizations," J. Math. Phys., 9, 1202-1209 (1968).
17. V. A. Zakharov and L. D. Faddeev, "The Korteweg - de Vries equations, a completely integrable Hamiltonian system," Funktsional'. Analiz i Ego Prilozhen., 5, No. 4, 18-27 (1971).
18. B. A. Dubrovin and S. P. Novikov, "Periodic problem for the Korteweg-de Vries and Sturm-Liouville equations; their connection with algebraic geometry," Dokl. Akad. Nauk SSSR, 219, No. 3, 19-22 (1974).
19. B. A. Dubrovin and S. P. Novikov, "Periodic and conditionally periodic analogs of many-soliton solutions of the KdV equation," Zh. Éksp. Teor. Fiz., 12, 2131-2144 (1974).
20. P. Lax, "Periodic solutions of the KdV equations," Lectures in Appl. Math., 15, 85-96 (1974).

[^0]: ©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

