
PERIODIC PROBLEMS FOR THE KORTEWEG-DE VRIES 

EQUATION IN THE CLASS OF FINITE BAND POTENTIALS 

B. A. D u b r o v i n  

Introduction 

It was recently shown [I, 2] that the Korteweg-de Vries (KdV) equation ~ = 6uu' - u ~, well known 
from the theory of nonlinear waves, is closely related to the spectral theory of the Sturm-Liouville oper- 
ator L = -(d2/dx 2) + u. In case of quickly decreasing initial conditions u(x, 0) this allows us to solve the 
Cauchy problem for the KdV equation, using the well known apparatus of the inverse-scattering problem 
[3-5]. At the same time, all potentials with vanishing reflection coefficients form a set of finite-dimen- 
sional invariant manifolds for the KdV equation. It was shown in [6] that the corresponding solutions of the 
KdV equation describe interactions of a finite number of solutions of simple wave type (solitons); therefore, 
the invariant manifolds mentioned are called N-soliton solution manifolds. 

In the case of periodic problems for the KdV equation it was shown by Novikov [7] that the analog of 
N-soliton solutions is the manifold of functions u(x), such that the operator -(d2/dx 2) + u(x) has exactly N 
gaps in the spectrum (such potentials are henceforth called finite-band or N-band. It was shown in [7] 
that any stationary solution of the N-th analog KdV equation (see Theorem 2.2 below) is an N-band poten- 
tial. In the present paper we prove Novikov's hypothesis on obtaining all finite-band potentials. Besides, 
all finite-band potentials are explicitly described in the language of the theory of Abelian functions allow- 
ing complete description of the dynamics of the KdV equation and its analogs on manifolds of N-band po- 
tentials (see [8]). It should be noted that a description of finite-band potentials by the theory of Abelian 
functions, similar to that given here, was independently obtained (by somewhat different methods) by Its 
and Matveev [9]. 

We further mention the approach suggested by Marchenko [i0] for solving the periodic KdV problem, 
based on approximating the matrix elements of the translation matrix by polynomial expressions in the 
energy. This approximating process is terminated for periodic finite-band potentials; possibly, the methods 
of paper [i0] would be useful in solving the problem of approximating an arbitrary potential by finite-band 
ones. The studies of Marchenko are based on the differential equations for the time evolution of the trans- 
lation matrix, obtained by him independently of [7]. 

The first examples of finite-band potentials can be extracted from Ince's work [ii]; the potentials 
of the Lam~ equation u (x) = N (N + I) ~ (x) (here ~ (x) is the elliptic Weierstrass function) are N-band 
functions. Methods of constructing other examples of finite-band potentials were suggested by Akhiezer 
in the continual generalization of the theory of orthogonal polynomials on a system of intervals [12]. The 
idea of the method of [12] is essentially used in the present paper. Finally, the problem of describing sin- 
gle-band potentials was solved completely by Hochstadt [13]. 

We formulate the basic result of this paper. Let ~FN~ be the set of hyperelliptic Riemann surfaces 
of order N, on which a branch point is marked (let it be infinity ¢~). There exists over the space (FN~ a 
single subdivision ~J(FN)~, whose layer is the Jacobi manifold J(FN) of the surface FN, while in each layer 
a point is marked, corresponding to the divisor (~o) (it is easily seen that this point on the Jaeobi mani- 
fold is a second-order point). This manifold ~J(FN) ~ is called the full manifold of moduli of hyperelliptie 
Jacobians (with a distinguished second-order point). The set of all N-band potentials coincides with the 
manifold ~J(FN)~. At the same time the subdivision (J(I~N)~ remains invariant with respect to the action 
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of dynamic s y s t e m s ,  de te rmined  by the KdV equation and its h igher  analogs,  and the act ion of these  dy-  
namic  s y s t e m s  of the J(FN) t e rns  is given by r ec t angu la r  shea ths .  

It  should be noted that  many  re su l t s  of this p a p e r  [especial ly  the d i f ferent ia l  equations (2.12) and 
(3.9)] can be genera l i zed  without difficulty to the case  of an infinite number  of bands,  but at  the s ame  t ime  
the e f fec t iveness  of conducting potent ia ls  is los t  to a l a rge  extent. 

§1 .  B a c k g r o u n d  f r o m  t h e  T h e o r y  o f  S e c o n d - O r d e r  D i f f e r e n t i a l  
O p e r a t o r s  w i t h  P e r i o d i c  C o e f f i c i e n t s  

Consider  the o p e r a t o r  L = - (d2 /dx  2) + u(x), where  u(x) is a smooth  rea l  function, per iodic  with p e r i -  
od T. In the solution space  of the equation 

Ly = Ey (1.i) 

we introduce bas i s  functions e(x, x0, E) and s(x, x 0, E) with the fol lowing ini t ial  conditions at point x0: 

c (x0) = s' (x0) = 1, c' (xo) = s (x0) ---- 0. (1.2) 

The functions c and s a r e  in tegra l  functions of  the spec t r a l  p a r a m e t e r  E. The l i nea r  t r ans la t ion  o p e r a t o r  
T is de te rmined  on the solut ions of Eq. (1.1), 

(l'y) (x) = y (x ~+ T). (1.3) 

Let  ~ij = c~ij(x0, E) be the ma t r i x  of the o p e r a t o r  ~ in the bas i s  (1.2) (i, j = 1, 2). The ma t r i x  e lements  
~ij a re ,  obviously,  in tegra l  functions of E. Bes ides ,  det (aij) = 1. Consequently,  the c h a r a c t e r i s t i c  po ly -  
nomial  of the m a t r i x  (aij) is  of the f o r m  X2-2 rk  + 1, where  r = 1/2 SP(aij), s ince the eigenvalue of the op-  
e r a t o r  T is independent of x 0 and r is a function of E only. The spec t r a l  bands a r e  de te rmined  by the con-  
di t ionlr (E)  I - 1; the e igenvalues  of the per iod ic  and ant iper iodic  p rob l ems  fo r  the ope ra to r  L a r e  found 
f r o m  the equation 1 - r2 (E)  = 0. It is well  known (see [14]) that  the in tegral  function 1 - r2(E) has only rea l  
ze ros  of o rde r  not h igher  than two. The p r e s e n c e  of doubly degenera te  ze ros  En of the function 1 - r2(E) 
co r r e sponds  to E n being degenera te  levels  of the s p e c t r u m  o f  the per iodic  (or antiperiodic)  p rob l ems  fo r  
the ope ra to r  L. T h e r e f o r e ,  the m a t r i x  of the o p e r a t o r  T(En) is ~:1 in any bas i s .  Consequently,  in this case  

oh2 (xo, En)  = o%1 (xo, E ~ )  - -  0 .  (1.4) 

Converse ly ,  if En is a s imp le  root  of the function 1 - r2(E), the m a t r i x  of the ope ra to r  T(En) is not r e -  
duced to diagonal fo rm,  i .e . ,  the ope ra to r  T(E n) has only one e igenvector .  Boundaries  of spec t r a l  bands 
a r e ,  obviously,  r e spons ib le  only for  s imple  roo ts  of 1 - r 2 ( E )  (see [14] and [7]). 

Let  us s tay  within one of the s p e c t r a l  bands.  The e igenvalues  of the opera to r  T(E) a re  then complex  
conjugate and a r e  of the f o r m  exp(+ip (E)), where  p(E) is rea l .  There fo re ,  in this case  the ope ra to r  T has  
two eigenfunetions ~±, with ¢_ = ~+. We n o r m a l i z e  the functions ¢~ by the condition 

~± (x0) = i .  (1.5) 

Such functions a r e  hencefor th  denoted by ¢±(x, x0, E) (the indices ± a r e  often omitted).  Let  X = - i ¢ ' / ¢ .  

LEMMA 1.1. The function X = X(x, E): a) is independent of the choice of the point x 0, b) is per iodic  
in x with per iod T, c) sa t i s f i e s  the equation - i x '  + )i2 + u - E  = 0, d) i ts  imag ina ry  pa r t  XI is  de t e rmined  by 
its r ea l  p a r t  XR, XI = 1/2 X R XR, and e) fo r  E we have the asympto t ic  expansion 

Z(x, E)~k- t -  ~ X~(x~) (k~= E)" (1.6) 
~=1 ( 2k)~* 

Proof ,  P a r t  a follows f r o m  the fact  that  by changing x 0 the function ¢ changes only by a constant  
fac tor .  P a r t  b follows f r o m  ¢(x + T) = eip¢(x). The asympto t ic  expansion (1.6) is  well  known (see [14]). 

We note that  i t  follows f r o m  p a r t s  d and e that  the function XR(X, E) has  the following asympto t ic  
expansion fo r  E ~ oo: 

c ~  

Z,(x, E ) ~ k  + ~ Z~+x (x). (1.7) 

COROLLARY. The following identi t ies  hold: 
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LEMMA 1.2. 

V XR(%' E ) e x p { i i  Xa(x' E)} (1.8) ~p (z, zo, E) = zR(~, ~) 
xe 

,+,_ = t ,1~ = z~(~o, z )  Z,(z, E) ' (1.9) 

x~+ T 

p(E) = I ~a(x, E)id~ H- 2 n n .  (LI0) 
x$ 

The v a r i a t i o n a l  d e r i v a t i v e  of  p(E) equals  

@ (E) i 
6u(x) = 2Z~(z, ~) " (1.11) 

P roof .  If L 1 and L 2 a r e  two o p e r a t o r s  with po ten t ia l s  u 1 and u2, r e s p e c t i v e l y ,  and LiY i = Ey i (i = 1, 
2), the fo l lowing ident i ty  ho lds :  

d 
d'-~ (y]'' Y2} ~ -  (al - -  Ug) YlY2" (1.12) 

Here {Yl, Y2} = YlY2 - YlY~ is the Wronskian. Assuming Yl = ¢I+, Y2 = ~b2- in (1.12) and integrating over  the 
period,  we obtain 

m~r~- T 

Xa 

T r a n s f o r m i n g  in (1.13) f r o m  d i f f e r ences  to va r i a t i on ,  we obtain  (1.11). 

LEMMA 1.3. 

X (z, E) = V t - :  (E) ~ ~n (~, E) - ~ (x, E) 

(1.13) 

(1.14) 

P r o o L  

whe re  ~ (x0, E) = ~ r2 (E) 
ct~ (~, ~:) 

X that  the Wronsk i an  i s  

Since ~(x, x 0, E) is the e i g e n v e c t o r  of  the m a t r i x  ai j  (x0, E), n o r m a l i z e d  by condi t ion  (1.5), 

(x ,  xo,  E)  - -  c ( x ,  x o, E)  ~- i~ (xo, E)  s (x ,  xo, E ) ,  (1.15) 

i a,~ (z0. E) -- a= (z0, E) On the  o t h e r  hand,  it fo l lows f r o m  the def ini t ion of 
~ ~ (zo, ~) " 

{~ (x, xo, E), c (x, Xo, E)} = ix (xo, E). 

Comparing (1.16) and (1.15) and taking into account p a r t  a of Lemma 1.1, we obtain (1.14). 

(1.16) 

§ 2 .  F i n i t e  B a n d  P o t e n t i a l s  

Now le t  the potent ia l  u{x) have  only a f ini te  n u m b e r  of s p e c t r a l  bands .  By §1 this  is equivalent  to 
the c a s e  w h e r e  the  func t ion  t - r2(E) ha s  only a f ini te  n u m b e r  o f  s imp le  roo t s  ( their  n u m b e r  is ,  obvious ly ,  
odd). Le t  t he se  roo t s  be E1 . . . . .  E,N+t (i .e. ,  the o p e r a t o r  L ha s  exac t ly  N gaps) .  We point  out tha t  
] / [1  - -  r ~ ( E ) ] / R  (E) i s t h e n ,  obvious ly ,  con t inued  to an in t eg ra l  analyt ic  funct ion;  all  roo t s  of th i s  func t ion  
a r e  s i m p l e  and co inc ide  with the d e g e n e r a t e  roo t s  of the func t ion  1 - r2(E). By (1.4), t h e r e f o r e ,  a21(x, E) 
and al2(x, E) a r e  d iv ided by  th is  rad icand ,  i .e . ,  

~ ,  (x, E) = ~ ,  (z, ~ .  V 
t r a (E) 

R (E) " (2.1) 

VR--F~ Subst i tut ing (2.1) in (1.14), we obtain  XR(x, E) = ~ ,  (z. E) 

tf  k 2 = E ,  at  inf ini ty ~ has  the  a s y m p t o t i c  k • EN. By (1.7), t h e r e f o r e ,  the in t eg ra l  funct ion 
~21(x, E) is bound to have an  a s y m p t o t i c  EN at infini ty,  i .e . ,  it is an N- th  o r d e r  po lynomia l  in E. We d e -  

note this  po lynomia l  by a~l (x, E) = P (E, x) ---- 1-I (E - -  ~i (x))- 

We, thus ,  have the fo l lowing resu l t .  

T H E O R E M  2.1. F o r  a f i n i t e -band  poten t ia l  with band bounda r i e s  E1 . . . . .  E2N+I the funct ion X(x, E), 
is of the f o r m  
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i dP(E. ~) 

The roo t s  Yi(x) of the po lynomia l  P(E,  x) a r e  r e a l  and a r e  loca ted  in gaps  o r  on t he i r  bounda r i e s .  

P roof .  It  r e m a i n s  to p rove  only the a s s e r t i o n  on the loca t ion  of  the roo t s  Yi(X). It fol lows f r o m  the 
def ini t ion of P tha t  Yi(x0) a r e  r o o t s  of  the  func t ion  a21(x0, E). Consequen t ly ,  E = Yi(x 0) is an e igenva lue  of 
the o p e r a t o r  L at the s e g m e n t  Ix0, x 0 + T] with van i sh ing  boundary  condi t ions .  Hence,  t h e r e  fol lows the 
r ea l i t y  of the r o o t s  Ti(x0). It fol lows d i r e c t l y  f r o m  the un imodu la r i t y  of the m a t r i x  (aij)  tha t  the equal i ty  
a21(x0, E) = 0 c a n  be sa t i s f i ed  only if  E is in a gap o r  on a boundary .  That  Yi(x0) l ies  exac t ly  in one gap is 
obvious  f r o m  a l t e r n a t e  c o n s i d e r a t i o n s .  

F r o m  T h e o r e m  2.1 we d e r i v e  a s t a t e m e n t ,  i n v e r s e  to the bas i c  t h e o r e m  of [7], which we r e c a l l  h e r e .  
We define a se t  of func t iona ls  In{U), put t ing 

I .  (u} = S %2n+3 (z) dx. (2.3) 
T 

H e r e  Z~=+~ (x) a r e  the expans ion  coe f f i c i en t s  (1.7) of  the funct ion XR(X, E) f o r  E --* ~.  All  ;(2~+~ (x) a r e  p o l y -  
nomia l s  in u and the i r  d e r i v a t i v e s .  The equa t ion  

N 
t 0 6 

~t = 2 Ox 6u ~ Chin (2.4) 
n=-0 

is ca l l ed  the N- th  analog of the KdV equat ion.  

In p a r t i c u l a r ,  an  o r d i n a r y  d i f fe ren t ia l  equa t ion  of  o r d e r  2N, 

N 
2  nrn=  
5u 

n-----O 
(2.5) 

is ob ta ined  to  d e t e r m i n e  the  s t a t i o n a r y  so lu t ions  of  Eq. (2.4). It was  shown in [7] that  any so lu t ion  of Eq. 
(2.5) is an  Y-band  potent ia l .  We show the i n v e r s e  t h e o r e m .  

THEOREM 2.2. Le t  u(x) be an N-band potent ia l .  Then  u(x) s a t i s f i e s  s o m e  d i f fe ren t i a l  equat ion 
of f o r m  (2.5) 

P roo f .  F r o m  Eqs .  (1.10), {1.11), and (2.2) we obta in  

~--o t 8r~:I 1 e (z, ~) E)  
(2k)O-n+l 6 u ( x ) ' =  2 I / ~ ( E )  (2.6) 

'! ~t O (,~, X) ~1 ~,~-I (X) : ~ is the T a y l o r  expans ion  at an F r o m  the expl ic i t  f o r m  of Eq. (2.6) we see  tha t  if 2 VR(~') n=0 (2~) ~+1 

infini tely r e m o t e  point ,  then  the quant i t ies  ~ (~:), ~N+~ (X), . . • a r e  l i nea r ly  e x p r e s s e d  in t e r m s  of ~_1 (x) : :  
- -  t,  ~0 (x) . . . . .  ~N-1 (x) with cons tan t  coef f i c ien t s .  T h e r e f o r e ,  this  s t a t e m e n t  is  a l so  val id  f o r  the s e r i e s  

:on the l e f t -hand  s ide  of (2.6). We obta in  

6I N (5I n 
- - -  ~ c n ~  (2.7) ~(x) F ~ : O. 

Since 6I_J6u (x) = - -  1, put t ing e-1 = d we obta in  an equat ion of type  (2.5). 

Let  r N by the  (hype re l l i p t i c )R iemann  s u r f a c e  of the funct ion ~f-R(E). By T h e o r e m  2.1 the funct ion 
×ix, E) is a s i n g l e - v a l u e d  a l g e b r a i c  funct ion  on the s u r f a c e  rN .  We show that  the funct ion ~ a l so  has  a 

na tu r a l  cont inua t ion  on rE. 

THEOREM 2.3. The e igenfunc t ion  ¢(x, x0, E) cont inued to a m e r o m o r p h i c  funct ion  on FN \ oo ,  has  
t h e r e  N po les  a t  the points  E = Yi(x0), N roo t s  at  the points  E = Yi(x), and a l so  an e s sen t i a l ly  s i ngu la r  point  
at  infinity with an a s y m p t o t i c  of f o r m  exp[ik (x - x0)]. 

P roof .  We r eca l l  tha t  by  L e m m a  1.3 we have  

~p (x, x0, E) : c (x, x0, E) + i X (x 0' E) s (x, xo, E). (2.9) 
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Since X is algebraic on F N, and c and s are integral functions of E, ~ is obviously continued to a single- 

valued function on FN. The poles of the function ¢ can occur only where X(x0, E) can have poles, i.e., at 
the points E = 7i(x0). We show that ¢ indeed has exactly one pole at each point E = 7i(x0). Indeed, by Eqs. 
(1.9) and (2.2) we have 

norm (~) = ~p (x,:x0, E+) .~  (x, x0, E_) 

(here  E+, E_ a r e  two points  on FN, loca ted  on E). 

2 ) (z, E) 
v(zo, L') (2.10) 

It fol lows f r o m  (2.10) tha t  n o r m  (9) has  only s imp le  po les  f o r  E = 7i(x0); t h e r e f o r e ,  ~ cannot  have  
two poles  at  the point  E = 7i(x0). The s t a t e m e n t  on the loca t ion  of roo t s  of ¢ obv ious ly  fol lows f r o m  Eq. 
(2.10). 

Adopting f r e e  no ta t ion  in what  fo l lows,  we denote  the r o o t s  and poles  of the funct ion ¢ on r N by the 
s a m e  s y m b o l s  Yi(x) and Yi(x0). 

One m o r e  s p e c t r a l  i n t e r p r e t a t i o n  of the e n e r g y  leve ls  E = Yi(x) fol lows f r o m  T h e o r e m  2.3: the d i s -  
c r e t e  s p e c t r u m  e igenva lue  of the o p e r a t o r  L on one of the r a y s  [x0, ~ ]  with van i sh ing  bounda ry  cond i -  
t ions ,  i .e . ,  the  condi t iona l  e igenva lue  in the t e r m i n o l o g y  of [15]. We obtain a d i f fe ren t ia l  equat ion  f o r  the 
condi t ional  e igenva lues .  

It fo l lows d i r e c t l y  f r o m  T h e o r e m  2.3 that  the func t ion  X(x, E) a lso has  on FN \ co N po les  a t  the 
points  Yi(x); t h e r e f o r e ,  the  n u m e r a t o r  of  Eq. (2.2) v a n i s h e s  f o r  E = 7i(x) on one shee t  of F N. Consequent ly ,  
we have  the s y s t e m  of  equa t ions  

P '  (E, x) I~=xj(~) = 2i V R (Tj) (j = l, . . . ,  N) (2.11) 

[the s ign  in f ron t  of  the r o o t  is c h o s e n  a c c o r d i n g  to the shee t  w h e r e  the poles  yj (x) a r e  located] .  The s y s -  
t em  (2.11) is e a s i l y  r e w r i t t e n  in f o r m  

2~ V~-~%) (] = i , . . . ,  N )  ~ = r [  (~j -- ~) (2.12) 
j~k 

Equation (2.12) gives the law of motion of the points 7j over the cycles on F N, located over the gap. We 
change variables and integrate the system of Eqs. (2.12). The idea of this replacement is based on the 
method of [12]. We introduce on r N a basis of cycles aj, bk (j, k = 1 . . . . .  N), so that the intersecting in- 
dices have the following form: 

(aj, b~) = 6j~., (aj, ak) = (b s, bh) = 0. 

Let  w I . . . . .  w N be a ba s i s  of h o t o m o r p h i c  d i f f e ren t i a l s  ( f i r s t - o r d e r  d i f fe ren t ia l s )  on  FN, n o r m a l i z e d  by 
the condi t ion 

(2.13) 

ak 

Let ~ be a second-order differential on the surface F N with double poles at infinity, normalized by the 
condition 

Let, f u r t h e r ,  

We fix a mapping 

~2 = 0 (k = i i , . . . ,  N). (2.14) 
a k 

2 = iU~. (2.15) 

A : SNFN --+ J (FN) 

of the N-th  s y m m e t r i c  p o w e r  of F N into i ts  J acob i  mani fo ld  (the Abel  mapping) .  
ping is wr i t t en  as 

N Pi 

IA (P~, • • . ,  P~) l~  = >~ f ~ (n = ~ , . . . ,  N).  
i = l  c~ 

(2.16) 

In coordinates this map- 

(2.17) 
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A k h i e z e r ' s  t h e o r e m  s t a t e s  tha t  f o r  po les  and roo t s  of the funct ions  with the p r o p e r t i e s  d e s c r i b e d  in T h e o -  
r e m  2.3 the  fol lowing r e l a t i on  holds  in the J a c o b i  manifo ld :  

A ('h (x) . . . . .  7N (x)) = A (,~ (x0), . . . ,  7N (xo)) -4-U'( x - -  xo). (2.18) 

Due to  the fac t  tha t  A is a b i r a t i ona l  i s o m o r p h i s m ,  Eq .  (2.18) can  be so lved  f o r  a l m o s t  all  x, and the roo t s  
Ti(x), . . . ,  TN(x) c an  be found. 

To find the potent ia l ,  however ,  it is not  n e c e s s a r y  to expl ic i t ly  so lve  the s y s t e m  of Eqs .  (2.18) f o r  
Tt(x), . . . ,  TN(X). Indeed,  f o r  X(x, E) expans ion  (1.7) holds ,  in which Xl(X) = - u ( x ) .  On the o the r  hand, f r o m  

Eq. (2.2) we have that  the  s a m e  coef f i c i en t  equa ls  2~,7t (x) - -  ~ E i  • T h e r e f o r e ,  we obta in  

(x) -=- 2 Y, ~(.) + Y,E~. (2.19) 

We now c o m p a r e  Eqs .  (2.18) and (2.19). F o r  f inal  f o r m u l a t i o n  of the a l g e b r a i c - g e o m e t r i c  de sc r i p t i on  of 
the mani fo ld  of f in i t e -band  po ten t i a l s  we def ine  on the J acob i  mani fo ld  J ( F  N) the funct ion crt, 

~ o A ((Q1, ~f~-~Q1)),..., (Qlv, ~fR (QN))) = Qt -4- ... + Q~; (2.20) 

a t is obv ious ly  an a l g e b r a i c  funct ion  on J(FN) (in [9] a t was  expl ic i t ly  e x p r e s s e d  in t e r m s  of R i e m a n n ' s  
0-function).  We obta in  the  fol lowing t h e o r e m .  

THEOREM 2.4. Each  poten t ia l  with band  bounda r i e s  E~, . . . ,  E~N+I is d e t e r m i n e d  by as s ign ing  an 
ini t ial  point  on the J a c o b i  mani fo ld  J (FN) and is a bounded func t ion  2( h ~- ~ ,Ei  on the r e c t i l i n e a r  shee t  of the 

t o rus  J ( F ) ,  p r o t r u d i n g  f r o m  this  point  with a n o r m a l  v e c t o r  U. 

COROLLARY.  The man i fo ld  of  N-band  po ten t ia l s  co inc ides  with the full mani fo ld  of  modul i  of h y p e r -  
e l l ipt ic  J a c o b i a n s  with s e c o n d - o r d e r  d i s t ingu i shed  points .  

Thus ,  we see  that  f o r  given band bounda r i e s  a po ten t ia l  is obta ined  which is ;  g e n e r a l l y  speaking,  
condi t ional ly  p e r i o d i c  with N independent  pe r i ods  (this was  f i r s t  pointed out in [7]). 

§ 3 .  T i m e  E v o l u t i o n  o f  F i n i t e - B a n d  P o t e n t i a l s  d u e  t o  t h e  K d V  
E q u a t i o n  a n d  I t s  H i g h  A n a l o g s  

Now let  u = u(x, t) depend on the p a r a m e t e r  t a c c o r d i n g  to an equat ion  of type  (2.4). The o p e r a t o r  L 
then  a l so  depends on the p a r a m e t e r  t. Lax  pointed  out  tha t  a r e a l  s k e w - s y m m e t r i c  o p e r a t o r  A of o r d e r  
2N + 1 with coef f ic ien t s  depending on u, u '  . . . .  , c a n  then  be found, so  tha t  Eq. (2.4) is equivalent  to the 
equat ion 

L = [A, L] (3.1) 

([2]; s ee  a l so  [16]). F o r  e igenfunct ions  (1.1) the equa t ion  

Oy ~- = Ay -4- ~Y -~ ~g (3.2) 

holds  w h e r e  X is independent  of x. It was  shown in [7] tha t  the e igenva lues  of the o p e r a t o r  ~ ,  i .e . ,  the funct ions  
p(E), a r e  independent  of t ime  t. T h e r e f o r e ,  if f o r  y one t akes  the funct ion ¢(x, x0, E), then ~ = 0, )~ = Mx0, 
E). We note tha t  the ac t ion  of  the o p e r a t o r  A on the  e igenfunct ion  ~b can be r e p r e s e n t e d  in the f o r m  

A~p (x, x0, E) = A (x, E) , '  (x, z0, E) + ~ (z, E ) ,  (x, x0, E) = 
= [i A (x, E) X (x, E) + .~ (x, E)] ~ (x ,  Xo, E), (3.3) 

w h e r e  A and Z a r e  r e a l  func t ions ,  po lynomia l s  depending on E and on u, u ' , . . . .  Taking into account  the 
n o r m a l i z a t i o n  (1.5), we then  obta in  

- -  ~ (x0, E) : i A (x0, E) ~ (xo, E) A- E (Xo, E). (3 .4)  

Diffe ren t ia t ing  Eq. (3.2) with r e s p e c t t o  x, we have 

(z,E) = [A(z, E) X(x, E ) - - i~  (x, E)I' = iE' (z, E). (3.5) 

Using the r e l a t i on  ~r = -ff " ~-R' we obta in  
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A' (x, E). (z, E) = - y (3.6) 

Let now the potent ia l  u be  finite-band. We then obtain f r o m  (3.5) an e x p r e s s i o n  fo r  the t ime  d e r i v a -  
t ive  of the polynomia l  P(E, x), 

I) = A P' -- A'P. (3.7) 

This equality is valid for any E. Substituting E = Tj and taking into account (2.11), we have 

P[E=~j = 2iA(T~) V-R (Ti) ( ] =  l, . . . ,  N) (3.8) 

[the sign convention is as in (2.11) and (2.12)]. Hence, 

~ i =  --  2iA (Ti) VR- (TJ) (] ---- i , . . . ,  N). (3.9) 

We show that the sys tem (3.9) reduces  to a sys t em with constant  coefficients by means of the Abelian map-  
ping. In what follows we work with the KdV equation analog of s tandard fo rm 

Ou t 0 6I  n 
c3t 2 Oz ,~u (x) " (3.10) 

For  n = 1 we obtain the s tandard KdV equation h = 6uu' - u ' .  We denote the polynomial  A(x, E) for  Eq. 
(3.10) by An(x, E). We provide an explicit express ion  for  the polynomial  An(x, E). 

LEMMA 3.1. The following equation holds: 

6 [ Io In -1  
A .  = ( 4 E ) "  w , + + . . . + (3.11) (4E) n i. 

To prove the l emma we cons ider  the opera to r  

, , 
Az = "XR (x, z) dx 2 L - - z  (3.12) 

(the idea of considering such an opera to r  was suggested by Novikov). 

The commuta to r  of the opera tors  Az and L is a multiplication ope ra to r  on the subse-  LEMMA 3.2. 
quent function 

Proof. 
have 

[Az, L] = -4- ~ = 2 dx 6u (x) " (3.13) 

We evaluate the resul t  of this ope ra to r  acting on the eigenfunctions of the opera to r  L. We 

[Az, LI lp (x, x0, E) = (E -- L) Az ~P (x, xo, E). 

After  the calculation we obtain 

l [ - -  -~- f n  + 2/'  (u /u'] , (x, E), [Az, L] ~p (x, z0, E ) - - - - ~  -- E)-}- x0, 

w h e r e f  = 1/XR(X, z). Since up to a constant  factor ,  independent of x , f  is s imply [¢(x, x0, z) 12 [see (1.9)], 
f sat isf ies  the equation 

i t "  + 21' (u - -  z) + lu' = 0, 2 

which also concludes the proof.  

Proof  of Lemma 3.1. We expand Az in a power ser ies  in 4 -1, where ~¢ = ~f~, 

Az = ~ An-q 
(2×)~n+1 " (3.14) 

It then follows f rom (3.14) and (1.11) that 
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[ A , . L ] =  l d 5I,~ 
2 dx 5u(~') ' (3.15) 

i .e . ,  the ope ra to r  An provides  a Lax commutat ion represen ta t ion  for  Eq. (3.10). 
a tor  Az the cor responding  function Az is of the fo rm  

t 
A~ (x, E) = -~ 8(E-- z) xR (~, z)" (3.16) 

Expanding (3.16) in a s e r i e s  in ~- I  and again evaluating (1.11), we obtain the a s se r t ion  of the 1emma. 

Let  ~n be a s e c o n d - o r d e r  d i f ferent ia l  on the sur face  r n with poles of o r d e r  2n + 2 at infinity, nor -  

mal ized  by the condition ~ g~, = 0. Let  [see (2.14), (2.15)] 
a k 

THEOREM 3.1. 
coeff icients ,  i .e. ,  

(all ~ are  at one x ) .  

Proof. 

We note that fo r  the oper -  

iV~ ") = - -  ~ D.~. (3.17) 

Fo r  the Abelian mapping A the sys tem (3.9) t r a n s f o r m s  into a sys t em with constant  

A (7, (t) . . . . .  7N (t)) = A (7~ (to), . . . ,  7N (to)) ÷ 2 2~ U(=) (t - -  to) (3.18) 

F r o m  (3.2) and (3.4) we obtain 

where the function 

cp x if ,  to, E)  
~t (x, Xo, E) ~ ~x, (t, to, E) $,.(x, x0, E), (3.19) 

~ ( t ,  t0, E ) =  exp(--  i Xt(x, E)dt} 
tt 

(3.20) 

is,  consequently,  a s ingle-valued function on F N, meromorph ie  on rN \ oo, has N poles at E = Ti(x, to) and 
has N roots  at E = 7i(x, t). We evaluate the behavior  of ~0x(t~ to, E) at E - -  ~o. We note that it  follows di-  
r ec t ly  f rom Eqs. (3.11), (3.4), and (1.11) that  •t(x, E) is fo r  E --* ~o of the fo rm 

~t(x,E)~22'*~k~'~+~-.}-O(i)  (k~= E). (3.21) 

There fore ,  the function ~0x(t, to, E) h a s  at infinity an asymptote  of the fo rm exp (-- 22'qk ~+1 (t - -  to)) .  Equa- 
tion (3.18} is now obtained af te r  applying the Akhiezer  p rocedure  to the function ~x(t, t 0, E). 

Thus, the point coordinates  on the Jacobi  manifold J( rN)  a re  natural  angular  var iables  fo r  the Hamil-  
tonian KdV equation (see [17]). 

COROLLARY. To identify the full manifold of moduli of hyperel l ip t ic  Jacobians of distinguished 
s e c o n d - o r d e r  points with the solut ion space  of equations of type (2.5), obtained by comparing the resul ts  of 
[7] with the resu l t s  of §2 of the p re sen t  paper ,  the to r i  of j (FN) t r a n s f o r m  into the invariant  to r i  of the 
fully integrable Hamiltonian sys t ems  (2.5}, explici t ly evaluated in [7]. 

A discuss ion of the a lgeb ra i c -geomet r i c  conclusions obtained by such compar i son  is given in [18]. 

Theorem 3.1 now allows a complete  solution of the Cauchy problem for  the KdV equation for  f ini te-  
band initial conditions. Severa l  specif ic  calculat ions re la ted  to the two-band case  a re  d iscussed  in [19]. 

Note. As was shown in the Vancouver  Internat ional  Mathematical  Congress ,  s imul taneously  with 
Novikov's paper  [7] Lax ' s  pape r  appeared [20], in which it was also shown (though by o ther  methods) that 
s ta t ionary  per iodic  solutions of high analog KdV [see Eq, (2.5}] a re  f ini te-band potentials.  Unlike [7], Lax 's  
proof  is not effective and does not allow one to obtain the total ly integrable equations (2.5}. The class  of 
a lmos t  per iodic  f ini te-band potentials  is not d i scussed  in Lax's  paper .  The proof  of the hypothesis ,  f o r -  
mulated by Lax at the end of [20], is contained in Theo rem 2 of the author ' s  paper  [8] (see also Theorem 
2.2 of the p resen t  paper) .  
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