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1. Introduction

Let µ : (X,Λ) → Rn be a non–atomic vector measure. A Theorem of Lyapunov [15]

states that its range R(µ) = {µ(E) : E ∈ Λ} is closed and convex. In [5,7] the authors,

motivated from the study of some bang–bang control problems, were led to introduce

a broad class of measures, Chebyshev measures, whose range is strictly convex. Their

definition involves a signed measure detµ defined on the product space (Xn,Λ⊗n) by the

relation

∀A1, . . . , An ∈ Λ detµ(A1 × · · · ×An) = det[µ(A1), . . . , µ(An)]

(where det[u1, . . . , un] denotes the determinant of u1, . . . , un.)

In the simpler case when X = I = [0, 1] and Λ coincides with the set L of its Lebesgue

measurable subsets the measure µ is said to be Chebyshev with respect to the Lebesgue

measure λ in [0, 1] if the measure detµ is strictly positive on the non λ⊗n–negligible

subsets of Γ = {(x1, . . . , xn) ∈ Rn : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}, λ⊗n denoting the n–product

measure of λ. In the case where µ is absolutely continuous with density g with respect to λ

the above condition is equivalent to the fact that the determinant det[g(x1), . . . , g(xn)] is

strictly positive λ⊗n– a.e. in Γ i.e. that g is a Chebyshev system (or T–system, following

the terminology of [11]).

As it is shown in [7] the range R(µ) of such a measure is strictly convex and contains the

origin in its boundary. A peculiar property of a Chebyshev measure is that its range can

be described through the values that the measure assumes on the finite union of intervals.

It is well known that a compact, convex, centrally symmetric subset of R2 containing the

origin is the range of a two dimensional measure, i.e. a bidimensional zonoid (see [3]).

In [2] the authors show that every strictly convex, compact, centrally symmetric subset

of R2 (with O in its boundary) is the range of a Chebyshev measure. It is then natural

to ask whether this result can be in some way extended to greater dimensions and, more

generally, to try to characterize the measures whose ranges are strictly convex. The latter
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question was asked during a workshop to R. Schneider who answered with the following

result.

Theorem. [16] R(µ) is strictly convex if and only if for every A such that µ(A) 6= O there

exist A1, . . . , An in A such that µ(A1), . . . , µ(An) are linearly independent.

It seems difficult however to check whether or not a measure does satisfy these condi-

tions. One of the purposes of this paper is to show that the range of a measure µ is strictly

convex if and only if the density f of µ with respect to its total variation |µ| is such that

det[f(x1), . . . , f(xn)] is non zero a.e. on Xn. The latter determinant being the density of

detµ with respect to the product measure |µ|⊗n it turns out that R(µ) is strictly convex if

and only if the total variation of detµ is equivalent to |µ|⊗n. The main result is obtained

via the study of the exposed faces of R(µ); this allows also to give an alternative simple

proof of Schneider’s Theorem.

In §4 we study some applications of this characterization to Chebyshev measures. First

we show that (again considering for simplicity the case where X = I and Λ = L) µ is

a Chebyshev measure with respect to λ if and only if the measure detµ is positive and

equivalent to |µ|⊗n on Γ. We improve the main result of [2] showing that if the range of

a bidimensional measure µ is strictly convex and contains the origin in its boundary then

not only is R(µ) the range of a suitable Chebyshev measure but µ is itself a Chebyshev

measure. Finally we answer the initial question: when n > 2 there exist strictly convex

zonoids (with the origin in the boundary) that are not the range of a Chebyshev measure.

Actually the latter have a non regular boundary.

2. Extreme points and exposed points of the range of a measure

Notation. By “·” we denote the usual scalar product, ‖ · ‖ is the euclidian norm in Rn and

Sn−1 = {x ∈ Rn : ‖x‖ = 1} is the unit sphere in Rn; O is the zero vector in Rn.

In what follows X is a set and Λ is a σ− algebra of subsets of X. If ν, ν1, . . . , νm are
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measures on (X,Λ) we denote by ν1 ⊗ · · · ⊗ νm (resp. ν⊗m) the m–product measure of

ν1, . . . , νm (resp. of ν) on (Xm,Λ⊗m), where Xm = X × · · · × X (m times) and Λ⊗m

is the m–product σ–algebra of Λ. We set L1
ν(X,Rn) to be the space of the ν–integrable

functions on X with values in Rn.

In §2, §3 we assume that µ is a non–atomic vector measure on (X,Λ) with values in Rn;

we will denote by |µ| its total variation and by f the density of µ with respect to |µ|; we

recall that f belongs to L1
|µ|(X,R

n) and that ‖f‖ = 1 almost everywhere (a.e.) in X. The

range R(µ) of µ is the subset of Rn defined by R(µ) = {µ(E) : E ∈ Λ}.

Unless the contrary is expressely stated, for A,B in X by A ⊆ B we mean that B \ A is

|µ|–negligible and by A = B that A ⊆ B and B ⊆ A i.e. that |µ|(A∆B) = 0.

For K being a compact convex subset of Rn and p in Sn−1 let h(K, p) = max{p · x :

x ∈ K}; the supporting hyperplane H(K, p) with outer normal vector p is defined by

H(K, p) = {x ∈ Rn : p · x = h(K, p)}

and F (K, p) = H(K, p) ∩K is the exposed face with outer normal vector p.

We recall that a point x in K is said to be exposed if it coincides with an exposed face,

i.e. if there exists p in Sn−1 such that F (K, p) = {x}; obviously each exposed point of K

is an extreme point of K (but the converse is not true, see for instance [14]).

For p in Sn−1 we introduce the following measurable subsets of X:

D+(p) = {x ∈ X : p · f(x) > 0}, D−(p) = {x ∈ X : p · f(x) <0},

D0(p) = {x ∈ X : p · f(x) = 0}.

Lyapunov’s Theorem (see for instance [15]) states that R(µ) is closed and convex. We

describe here the exposed faces of R(µ).

Proposition 2.1. Assume that p belongs to Sn−1; then h(R(µ), p) = p · µ(D+(p)) and

F (R(µ), p) = {µ(E) : E ∈ Λ, D+(p) ⊆ E ⊆ D+(p) ∪D0(p)}.
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Proof. For E in Λ we have

p · µ(E) =

∫
E

p · f(x) d|µ| =

=

∫
E∩D−(p)

p · f(x) d|µ|+
∫
E∩D+(p)

p · f(x) d|µ| ≤

≤
∫
E∩D+(p)

p · f(x) d|µ| ≤
∫
D+(p)

p · f(x) d|µ| = p · µ(D+(p)),

proving the first part of the claim. Moreover the above inequalities show that, for E in

Λ, the equality p · µ(E) = p · µ(D+(p)) holds if and only if |µ|(E ∩ D−(p)) = 0 and

E ∩D+(p) = D+(p) or, equivalently, D+(p) ⊆ E ⊆ D+(p) ∪D0(p). �

Corollary 2.2. For p in Sn−1 the exposed face F (R(µ), p) of R(µ) with outer normal

vector p is reduced to a point if and only if |µ|(D0(p)) = 0.

We recall that a compact convex subset of Rn is strictly convex if and only if each

of its exposed faces is reduced to a point. The above result yields then directly a first

characterization of the strict convexity of R(µ).

Proposition 2.3. R(µ) is strictly convex if and only if |µ|(D0(p))=0 for each p in Sn−1.

As an application we give a short alternative proof to Schneider’s characterization of

the measures whose range are strictly convex.

If {uι}ι∈I is a set of vectors in Rn we denote by <uι>ι∈I the vector space spanned by the

vectors uι. The orthogonal space of a vector space L is denoted by L⊥.

Theorem 2.4. [16] R(µ) is strictly convex if and only if for every A such that µ(A) 6= O

there exist A1, . . . , An in A such that µ(A1), . . . , µ(An) are linearly independent.

Proof. Let A be such that µ(A) 6= O and assume that the vector space

L =<µ(B) : B ∈ Λ, B ⊆ A>
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is at most (n− 1) dimensional. Then if p belongs to Sn−1 ∩ L⊥ we have

∀B ∈ Λ, B ⊆ A =⇒
∫
B

p · f(x) d|µ| = p ·
∫
B

f(x) d|µ| = p · µ(B) = 0

so that A ⊆ D0(p) and thus |µ|(D0(p)) > 0; Proposition 2.3 implies that R(µ) is not

strictly convex. Conversely if R(µ) is not strictly convex by Proposition 2.3 there exists p

in Sn−1 satisfying |µ|(D0(p)) > 0: let A ⊆ D0(p) be such that µ(A) 6= O. Then

∀B ∈ Λ, B ⊆ A =⇒ p · µ(B) =

∫
B

p · f(x) d|µ| = 0

and thus <µ(B) : B ∈ Λ, B ⊆ A>⊆<p>⊥ 6= Rn. �

The next result is traditionally obtained from a celebrated Theorem of Olech [12]; we

prove it here in an elementary way.

Proposition 2.5. Let E,F in Λ be such that µ(E) = µ(F ) is an extreme point of R(µ).

Then |µ|(E∆F ) = 0.

Proof. Assume that |µ|(E \ F ) > 0 and let A ⊆ E \ F be such that µ(A) 6= O. Set

E1 = E \ A and E2 = F ∪ A. Clearly we have µ(E1) = µ(E) − µ(A) 6= µ(E), µ(E2) =

µ(F ) + µ(A) = µ(E) + µ(A) 6= µ(E) and µ(E) = 1
2µ(E1) +

1
2µ(E2), contradicting the

extremality of µ(E). �

Corollary 2.6. Assume that the origin O is an extreme point of R(µ) and let A in Λ be

such that µ(A) = O. Then |µ|(A) = 0.

Proof. Since µ(A) = O = µ(∅) is an extreme point of R(µ) then Proposition 2.5 implies

that |µ|(A) = |µ|(A∆∅) = 0. �

As a consequence we obtain the following characterization of the exposed points ofR(µ).

Proposition 2.7. For E in Λ the point µ(E) is exposed in R(µ) if and only if there exists

p in Sn−1 such that E = D+(p) and |µ|(D0(p)) = 0.
7



Proof. Assume that |µ|(D0(p)) = 0; then by Proposition 2.1 the exposed face F (R(µ), p)

coincides with {µ(D+(p))} so that the latter is an exposed point of R(µ).

Conversely, let E in Λ be such that F (R(µ), p) = {µ(E)} for some p in Sn−1. By Corollary

2.2 necessarily we have |µ|(D0(p)) = 0 and therefore F (R(µ), p) = {µ(D+(p))} so that

µ(E) = µ(D+(p)). Since µ(E) is an exposed (and thus extreme) point of R(µ) then

Proposition 2.5 yields E = D+(p). �

Corollary 2.8. The origin is an exposed point of R(µ) if and only if there exists p in

Sn−1 such that p · f(x) < 0 a.e. on X.

Proof. Proposition 2.7 implies that O = µ(∅) is an exposed point of R(µ) if and only if

there exists p in Sn−1 such that D+(p) = ∅ and |µ|(D0(p)) = 0. �

3. The measures whose range is strictly convex

The main result of this section stems from Corollary 2.3: it states that the range of µ is

strictly convex if and only if the vectors f(x1), . . . , f(xn) are linearly independent for a.e.

(x1, . . . , xn) in X
n. We introduce the subset ∆ of Xn defined by

∆ = {(x1, . . . , xn) ∈ Xn : det[f(x1), . . . , f(xn)] = 0}.

Theorem 3.1. R(µ) is strictly convex if and only if ∆ is |µ|⊗n–negligible.

Proof. If R(µ) is not strictly convex by Proposition 2.3 there exists p in Sn−1 such that

|µ|(D0(p)) > 0; since (D0(p))n ⊆ ∆ then we obtain |µ|⊗n(∆) ≥
[
|µ|(D0(p))

]n
> 0.

We give two proofs of the opposite implication. For each subset S ofXn and (x2, . . . , xn)

in Xn−1 let S(x2, . . . , xn) = {x1 ∈ X : (x1, . . . , xn) ∈ S} be the (x2, . . . , xn)–section of S.

First proof. We first show that the set

B = {(x1, . . . , xn) ∈ Xn : f(x1) ∈<f(x2), . . . , f(xn)>}
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is measurable. For u1, . . . , um in Rn (m ≤ n) we denote by |u1 ∧ · · · ∧ um| their Gramian

i.e. the sum of the squares of the minors of order m of the matrix (ei · uj)i,j (where (ei)i

is the standard basis in Rn); clearly u1, . . . , um are linearly dependent if and only if their

Gramian vanishes. For every non empty subset I = {i1, . . . , ik} of {2, . . . , n} let BI be the

measurable subsets of B defined by

BI = {(x1, . . . , xn) ∈ Xn : |f(x1) ∧ f(xi1) ∧ · · · ∧ f(xik)| = 0, |f(xi1) ∧ · · · ∧ f(xik)| 6= 0}

and set Z = {(x1, . . . , xn) ∈ Xn : f(x1) = · · · = f(xn) = 0}. Let x = (x1, . . . , xn) ∈ B:

then either x ∈ Z or there exists a subset I of {2, . . . , n} such that {f(xi) : i ∈ I}

is a maximal subset of linearly independent vectors among {f(xi) : i ∈ {2, . . . , n}} and

f(x1) ∈<f(xi) : i ∈ I > or, equivalently, x ∈ BI . Thus B = Z
⋃(⋃

I⊆{2,...,n}BI
)
, proving

the claim.

Fubini’s theorem gives

|µ|⊗n(∆) =

∫
Xn−1

{∫
∆(x2,...,xn)

d|µ|(x1)
}
d(|µ|(x2)⊗ · · · ⊗ |µ|(xn)).

Assume that R(µ) is strictly convex; then Proposition 2.3 yields

∀(x2, . . . , xn) ∈ Xn−1 |µ|({x1 ∈ X : f(x1) ∈<f(x2), . . . , f(xn)>}) = 0

so that if ∆1 is the (measurable) subset of ∆ defined by

∆1 = {(x1, . . . , xn) ∈ ∆ : f(x1) /∈<f(x2), . . . , f(xn)>}

from the above formula we obtain

|µ|⊗n(∆) =

∫
Xn−1

{∫
∆1(x2,...,xn)

d|µ|(x1)
}
d(|µ|(x2)⊗ · · · ⊗ |µ|(xn))

and thus Tonelli’s Theorem yields ∆ = ∆1 |µ|⊗n– a.e.. Similarly if for i in {2, . . . , n} we

put

∆i = {(x1, . . . , xn) ∈ ∆ : f(xi) /∈<f(x1), . . . , f(xi−1), f(xi+1) . . . , f(xn)>}
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the same arguments give ∆ = ∆i |µ|⊗n– a.e.. As a consequence

∆ =
n⋂
i=1

∆i |µ|⊗n– a.e..

Obviously the set
n⋂
i=1

∆i is empty; the conclusion follows.

Second proof. Let g : Xn−1 × Sn−1 −→ R be the map defined by

∀(y1, . . . , yn−1) ∈ Xn−1 ∀z ∈ Sn−1 g((y1, . . . , yn−1), z) =
n∑
i=2

(
z · f(yi)

)2

.

The function g is measurable in (y1, . . . , yn−1) and continuous in z: Corollary 6.3 in [10]

then implies that the set–valued map G : Xn−1 → P(Sn−1) defined by

G(y1, . . . , yn−1) = {z ∈ Sn−1 : g((y1, . . . , yn−1), z) = 0} =<f(y1), . . . , f(yn−1)>
⊥ ∩Sn−1

has a measurable graph: Theorem 5.7 in [10] then yields the existence of a measurable

selection p : Xn−1→ Sn−1 of G, i.e. p is measurable and p(y1, . . . , yn−1) ∈ G(y1, . . . , yn−1)

a.e. in Xn−1. For i in {1, . . . , n} let Ai be the measurable subset of Xn defined by

Ai = {(x1, . . . , xn) ∈ Xn : f(xi) · p(x1, . . . , xi−1, xi+1, . . . , xn) = 0}.

We claim that ∆ = ∪iAi (modulo |µ|⊗n).

In fact let x = (x1, . . . , xn) ∈ ∆: then det[f(x1) . . . , f(xn)] = 0 so that there exists i

such that f(xi) ∈< f(x1), . . . , f(xi−1), f(xi+1), . . . , f(xn) >; modulo a negligible set the

latter vector space is contained in <p(x1, . . . , xi−1, xi+1, . . . , xn)>
⊥ and thus x belongs to

Ai. Conversely let (for instance) (x1, . . . , xn) ∈ A1. Either f(x2), . . . , f(xn) are linearly

independent so that f(x1) ∈<p(x2, . . . , xn)>⊥=<f(x2), . . . , f(xn)> or f(x2), . . . , f(xn)

are linearly dependent: in both cases we obtain det[f(x1) . . . , f(xn)] = 0, proving the

claim.
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Assume that |µ|⊗n(∆) > 0: then there exists i such that |µ|⊗n(Ai) > 0; again it is not

restrictive to suppose that i = 1. Fubini’s Theorem gives

|µ|⊗n(A1) =

∫
Xn−1

{∫
A1(x2,...,xn)

d|µ|(x1)
}
d(|µ|(x2)⊗ · · · ⊗ |µ|(xn))

so that there exists (x2, . . . , xn) in Xn−1 such that |µ|(A1(x2, . . . , xn)) > 0. Now we

have A1(x2, . . . , xn) = D0(p(x2, . . . , xn)): Proposition 2.3 implies that R(µ) is not strictly

convex. �

The determinant measure detµ associated to µ = (µ1, . . . , µn) was introduced in [7]. It

seems natural to use it here.

We shall denote by Sn the symmetric group of order n and, for σ in Sn, by ε(σ) its sign.

Definition 3.2. The determinant measure of µ, denoted by detµ, is the signed measure

defined on (Xn,Λ⊗n) by

detµ =
∑
σ∈Sn

ε(σ)µσ(1) ⊗ · · · ⊗ µσ(n).

This is the only measure whose restriction to the product sets A1 × · · · × An satisfy

detµ(A1 × · · · ×An) = det[µ(A1), · · · , µ(An)].

The next result appears in the proof of [7, Th. 3.4] but is not explicitely stated.

Proposition 3.3. The function det f defined on Xn by

det f(x1, . . . , xn) = det[f(x1), . . . , f(xn)]

is the density function of detµ with respect to |µ|⊗n.

Proof. Set f = (f1, . . . , fn). For any measurable subset A of Xn the application of Fubini–
11



Tonelli’s Theorem yields

detµ(A) =
∑
σ∈Sn

ε(σ)
(
µσ(1) ⊗ · · · ⊗ µσ(n)

)
(A)

=

∫
A

∑
σ∈Sn

ε(σ)fσ(1)(x1) · · · fσ(n)(xn) d(|µ|(x1)⊗ · · · ⊗ |µ|(xn))

=

∫
A

det[f(x1), . . . , f(xn)] d|µ|⊗n(x1, . . . , xn). �

The measure detµ allows to reformulate Theorem 3.1 in terms of the behaviour of |µ|⊗n

with respect to detµ. We recall that a vector measure τ is said to be absolutely continuous

with respect to some other signed measure ξ (both defined in (X,Λ)), in symbols τ � ξ,

whenever for A in Λ the condition |ξ|(A) = 0 implies τ(A) = O. Two positive measures

τ, ξ on X are said to be equivalent if each of them is absolutely continuous with respect

to the other. We will use the fact that if τ, ξ are finite positive measures and τ � ξ then

τ is equivalent to ξ if and only if the density of τ with respect to ξ is strictly positive a.e.

on X.

Theorem 3.4. The range of µ is strictly convex if and only if |µ|⊗n is equivalent to |detµ|

(the total variation of detµ).

Proof. Proposition 3.3 together with [1, Ex. 26.10] imply that |detµ| is absolutely con-

tinuous with density |det f | with respect to |µ|⊗n. Thus the condition that |det f | does

not vanish in Xn is equivalent to the absolute continuity of |µ|⊗n with respect to |detµ|.

Theorem 3.1 yields the conclusion. �

4. Some applications to Chebyshev measures

As usual X is a set and Λ is a σ–algebra of subsets of X. We consider the following

assumption.

Assumption (A).

(A1): M = (Mi)i∈[0,1] is an increasing family of measurable sets (i.e. Mi ⊆ Mj if i < j)
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such that M0 = ∅,M1 = X and ν is a positive non–trivial bounded measure on (X,Λ)

such that the function i 7→ ν(Mi) is continuous and strictly increasing.

(A2): µ is a vector measure on (X,Λ) with values in Rn and the function i 7→ |µ|(Mi) is

continuous.

Remark. The existence of such a family implies clearly that both ν and µ are non–atomic;

conversely if these measures are non–atomic then Lyapunov’s Theorem applied to the

vector measure (ν, |µ|) yields the existence of a family (Mi)i∈[0,1] such that ν(Mi) = iν(X)

and |µ|(Mi) = i|µ|(X) for every i (see [8]) and thus satisfying the assumption (A).

The family M induces an order relation ≺
M

(or simply ≺ when no ambiguity may occur)

defined by x ≺
M
y if there exists i in [0, 1] such that x ∈Mi and y /∈Mi. By PM (or P ) we

will denote the subset of Xn defined by PM = {(x1, . . . , xn) ∈ Xn : x1 ≺
M

· · · ≺
M
xn}. We

will assume for simplicity that PM is measurable (in the general case one should replace

PM with any of its measurable coverings).

Example. If M = ([0, i])i∈[0,1] then PM = {(x1, . . . , xn) ∈ [0, 1]n : 0≤x1< · · ·<xn≤1}.

Chebyshev measures with respect to ν and M have been defined in [7]: they are vector

measures whose associated determinant measure is strictly positive on the non ν–negligible

subsets of PM.

Definition 4.1. The vector measure µ is a Chebyshev measure with respect to ν and

the family M (or simply a Tν–measure or T–measure when ν = |µ|) if µ, ν,M satisfy

assumption (A) and the measure detµ verifies

∀A ∈ Λ⊗n ∩ PM, ν⊗n(A) > 0 =⇒ detµ(A) > 0.

When no ambiguity may occur we shall often omit to mention the dependence with

respect to M.
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Remark. The measure detµ is absolutely continuous with respect to |µ|⊗n; it follows then

directly from the definition that µ is a T|µ|–measure if and only if detµ is positive and

equivalent to |µ|⊗n on PM.

Remark. When n = 1 then PM = X for every family of subsets M; moreover if µ is a

signed measure then detµ = µ. Therefore µ is a Tν–measure whenever it assumes strictly

positive values on the non ν–negligible subsets of X. In particular a positive measure µ

is a Tν–measure if and only if ν � µ. It may happen however that µ is not absolutely

continuous with respect to ν. Let, for instance, µ be the Lebesgue measure on [0, 1], E a

measurable set such that 0 < µ(E ∩ I) < µ(I) for every non trivial interval I, ν be the

measure defined by ν(A) = µ(A∩E) for every measurable set A and set M = ([0, i])i∈[0,1].

Clearly ν, µ,M verify assumption (A); moreover ν is absolutely continuous with respect

to µ so that µ is a Tν–measure; however µ is not absolutely continuous with respect to ν

(ν([0, 1] \ E) = 0 whereas µ([0, 1] \ E) = 1− µ(E) > 0).

We will use the following result [7, Funny corollary 4.5].

Proposition 4.2. Let µ be a Tν–measure and A in Λ be such that µ(A) = O (the origin

in Rn); then ν(A) = 0. In particular ν is absolutely continuous with respect to |µ|.

Sketch of the proof. Assume that ν(A) > 0. If µ is a Tν–measure with respect to a

family M = (Mi)i of subsets of X then the continuity of the map i 7→ ν(Mi) allows

to decompose A as a disjoint union of some non ν–negligible sets A1, . . . , An such that

their product A1 × · · · × An is contained in PM. It follows that det[µ(A1), . . . , µ(An)] =

detµ(A1 × · · · × An) > 0 so that the vectors µ(A1), . . . , µ(An) are linearly independent.

However O = µ(A) = µ(A1) + · · ·+ µ(An), a contradiction. �

It follows that if µ is a Tν–measure then the map i 7→ |µ|(Mi) is strictly increasing.

The term “Chebyshev” arises from the well–known concept of T–system (where “T” stands

for Tchebycheff), applied in approximation theory and to moment problems in statistics,

involving continuous functions defined on intervals of R (see [11]). We recall here a slightly
14



more general definition.

Definition 4.3. [7] Let ν,M satisfy (A1). A function g in L1
ν(X,Rn) is said to be a

Chebyshev system with respect to ν and M (or simply a Tν–system) if the determinant

det[g(x1), . . . , g(xn)] is positive ν
⊗n– a.e. in PM.

Let g ∈ L1
ν(X,Rn) and µ be the measure with density function g with respect to ν.

The arguments involved in the proof of Proposition 3.3 show that det[g(x1), . . . , g(xn)] is

the density function of detµ with respect to ν⊗n. As a consequence Chebyshev systems

generate absolutely continuous Chebyshev measures.

Theorem 4.4. [7, Th. 3.4] Let µ, ν,M satisfy (A) and µ be absolutely continuous with

density g with respect to ν. Then µ is a Tν–measure if and only if g is a Tν–system.

Chebyshev systems arise naturally from linear differential equations; some of their ap-

plications to control theory and the calculus of variations where given in [5].

Example. Let h ∈ C∞(R) satisfy h(i)(0) = 0 for 0 ≤ i ≤ n−2 and h(n−1)(0) = 1.

There exists δ > 0 such that the function f = (h(n−1), h(n−2), . . . , h′, h) is a Chebyshev

system on [−δ, δ] with respect to the Lebesgue measure and the family of intervals Mi =

[−δ,−δ + 2iδ] (i ∈ [0, 1]).

We give now a remarkable example: a function with values in a half plane of R2 and

whose inverse images of lines are negligible sets generates a Chebyshev measure.

For θ in R and u in R2 \ {O} we denote by argθ u the argument of u in (θ − π, θ + π].

Proposition 4.5. Let (X,Λ, ν) be a measure space (ν being non trivial); g in L1
ν(X,R2)

be such that the set {x ∈ X : p ·g(x) = 0} is ν– negligible for every p in S1 and q ·g(x) > 0

ν– a.e. for some q in S1. Then the two dimensional measure µ defined by µ(A) =
∫
A
g dν

for every A in Λ is a Chebyshev measure (i.e. there exists a family M = (Mi)i∈[0,1] of

subsets of X with respect to which µ is a Tν–measure).
15



Proof. Let θ in R be such that q = eiθ: then if we set a = θ − π
2 , b = θ + π

2 the argument

argθ g(x) of g(x) in (θ− π, θ+ π] belongs to [a, b] for x in X \Z, for some negligible set Z.

For t in [a, b] let

Nt = {x ∈ X : argθ g(x) ≤ t}

and φ : [a, b] → R+ be the increasing map defined by φ(t) = ν(Nt) for every t in [a, b]. Our

assumption implies that for every t in R the sets {x ∈ X : argθ g(x) = t} are negligible.

Clearly φ(a) = 0 and φ(b) = ν(X). Moreover the family of sets (Nt)t∈[a,b] being increasing

it follows that φ is continuous and therefore φ([a, b]) = [0, ν(X)]. Let ψ : [0, ν(X)] −→ [a, b]

be a right inverse of φ and set, for every i in [0, 1], Mi = Nψ(iν(X)). The definition of ψ

then implies that ν(Mi) = φ(ψ(iν(X))) = iν(X) so that the map i 7→ ν(Mi) is continuous

and strictly increasing. The absolute continuity of µ with respect to ν yields the continuity

of i 7→ |µ|(Mi) and thus ν, µ,M fulfil assumption (A). For x1, x2 in X the relation x1 ≺
M
x2

here implies that there exists t in [a, b] such that argθ g(x1) ≤ t and argθ g(x2) > t. Since

b − a = π it follows that if x1, x2 are not in Z then det[g(x1), g(x2)] > 0. Hence this

latter condition is fulfilled for ν⊗2– almost every couple (x1, x2) belonging to the set PM

associated to M and therefore g is a Tν–system. Theorem 4.4 yields the conclusion. �

The main result of [7] states that given a positive measure ν and a prescribed increasing

family of sets M = (Mi)i the range {µ(E), E ∈ Λ} of a n–dimensional Tν–measure µ with

respect to M can be described through the values that it assumes on the finite unions of

(at most n) sets of the form Mj \Mi. Let Γ be the subset of Rn defined by

Γ = {(γ1, . . . , γn) ∈ Rn : 0 ≤ γ1 ≤ · · · ≤ γn ≤ 1}.

Representation theorem 4.6. [7] Suppose µ is a Tν–measure with respect to the family

M = (Mi)i∈[0,1] and let ρ be a measurable function such that 0 ≤ ρ ≤ 1 a.e.. There

exists α = (α1, . . . , αn) in Γ satisfying

µ(Eα) =

∫
X

ρ dµ where Eα =
⋃

1≤i≤n
i odd

(
Mαi+1

\Mαi

)
(αn+1 = 1).
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If 0 < ρ < 1 on a ν–non negligible set then α is unique, it belongs to the interior of Γ and

µ(Eα) lies in the interior of R(µ).

Remark. We recall that Lyapunov’s Theorem [15] states that there exists a set E in Λ

such that
∫
X
ρ dµ = µ(E); the improvement here is that the set E can be chosen among a

family of “nice” sets. We refer to [6] for some comments about this fact and to [5] for an

application of this result to the bang–bang principle in control theory.

Chebyshev measures are considered here in connection with §2, §3 because they repre-

sent a broad class of measures whose range is strictly convex.

Theorem 4.7. [7, Th. 5.3] The range R(µ) of a Tν–measure µ is strictly convex. The

boundary points of R(µ) admit a unique representation modulo |µ|; moreover a point µ(E)

belongs to the boundary of R(µ) if and only if there exists γ in the boundary of Γ such that

|µ|(E∆Eγ) = 0. In particular O = µ(∅) = µ(E(1,...,1)) belongs to the boundary of R(µ).

Proof of strict convexity. Let E,F in Γ be such that µ(E) 6= µ(F ): then |µ|(E∆F ) 6= 0;

let for instance |µ|(E \ F ) > 0. Then for λ in (0, 1) the function ρ = λχE + (1 − λ)χF is

such that 0 < ρ < 1 a.e. on E \F . Theorem 4.6 implies that
∫
ρ dµ = λµ(E)+(1−λ)µ(F )

belongs to the interior of R(µ). �

In what follows we shall denote by µ a n–dimensional vector measure and by f the

density of µ with respect to its total variation |µ|.

Assume that µ is a Tν–measure with respect to a family M of subsets of X. If µ is

absolutely continuous with respect to ν then, trivially, µ is a T|µ|–measure; it follows from

Theorem 4.4 that det[f(x1), . . . , f(xn)] > 0 |µ|⊗n–a.e. on PM. Otherwise, if µ is not

absolutely continuous with respect to ν, it does not seem clear at all from the definition

4.1 whether the above conclusion still holds. Certainly, by Proposition 4.2, ν is absolutely

continuous with respect to |µ|; however one might think that there exists a ν⊗n– negligible

(but not |µ|⊗n–negligible) subset A in PM such that detµ(A) ≤ 0. The next result shows
17



that this pathology does not occur; its proof is based on the fact that a Tν–measure has a

strictly convex range and on our characterization of the measures having this property.

Theorem 4.8. Let µ be a Tν–measure (with respect to a family M). Then µ is a T|µ|–

measure (with respect to M).

Proof. By Theorem 4.7 the range of µ is strictly convex; Theorem 3.1 then implies that

det[f(x1), . . . , f(xn)] 6= 0 |µ|⊗n− a.e.

Let

P−
M = {

(
x1, . . . , xn

)
∈ PM : det[f(x1), . . . , f(xn)] < 0}

and assume that |µ|⊗n(P−
M) > 0. Since, by definition

detµ(P−
M) =

∫
P−

M

det[f(x1), . . . , f(xn)]d|µ|⊗n,

then by the continuity of |µ| with respect to the sets Mi, there exists a (2n)–uple

(
α1
1, α

2
1, · · · , α1

n, α
2
n

)
∈ R2n

such that

0 < α1
1 < α2

1 < · · · < α1
n < α2

n < 1

and

detµ
(
P−
M ∪

(
Mα2

1
\Mα1

1

)
× · · · ×

(
Mα2

n
\Mα1

n

))
< 0.

However, ν being a positive measure, we have

ν⊗n
(
P−
M∪

(
Mα2

1
\Mα1

1

)
×· · ·×

(
Mα2

n
\Mα1

n

))
≥ ν⊗n

((
Mα2

1
\Mα1

1

)
×· · ·×

(
Mα2

n
\Mα1

n

))
> 0,

a contradiction. Therefore f is a T–system; Theorem 4.4 yields the conclusion. �

Remark. The above result shows that, in Definition 4.1, the auxiliary positive measure ν

can be omitted: in dealing only with T–measures, as we do in the rest of the paper, there
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is undoubtly a gain of clarity. However in the applications ([5]) it happens that ν and M

are given a priori and that µ is defined through a density function g in L1
ν(X,Rn): the

easiest way to see if µ is a Chebyshev measure is then to check whether g is a Tν–system.

Theorem 4.7 states that the range of a Chebyshev measure is strictly convex and that

the origin O belongs to the boundary of its range. It is well known that each compact,

convex, centrally symmetric subset of R2 is the range of a two dimensional measure [2, 3]

i.e. a zonoid. Conversely, in [2, Theorem 2] the authors show that, in R2, each strictly

convex zonoid (with O in its boundary) is the range of a Chebyshev measure. The results

obtained in §2, §3 allow us to give a much stronger result: the bidimensional Chebyshev

measures are exactly those measures whose range satisfies the above geometrical properties.

Let µ : (X,Λ) → R2 be a non–atomic bidimensional measure and, as usual, let f be the

density of µ with respect to |µ|.

Theorem 4.9. Assume that µ is a bidimensional measure whose range R(µ) is strictly

convex and contains the origin in its boundary. Then there exists a family of sets with

respect to which µ is a Chebyshev measure. Moreover there exists θ in R such that for

every measurable function ρ with values in [0, 1] there exist α, β in R satisfying∫
X

ρ(x) dµ = µ
(
{x ∈ X : α ≤ argθ f(x) ≤ β}

)
.

Proof. By Corollary 2.8 there exists q in S1 such that q · f(x) > 0 a.e. on X and, by

Proposition 2.3, the sets {x ∈ X : p · f(x) = 0} are negligible for every p in S1. The

application of Proposition 4.5 with (|µ|, f) instead of (ν, g) yields the existence of a family

M = (Mi)i of subsets of X with respect to which µ is a Chebyshev measure. Furthermore

the proof of Proposition 4.5 shows that there exists θ in R such that for every i we have

Mi = {x ∈ X : argθ f(x) ≤ ξi} for some ξi in (θ − π, θ + π]: the conclusion follows from

the representation theorem 4.6. �

Let µ be a vector measure on (X,Λ), E be in Λ and let µE be the vector measure

defined by µE(B) = µ(E \ B) − µ(E ∩ B) for every B in Λ. It is easy to verify (see [3,
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Lemma 1.3]) that the range R(µE) of µE is a translate of the range of µ; more precisely

we have that R(µE) = R(µ)− µ(E) = {x− µ(E) : x ∈ R(µ)}. The next characterization

of the bidimensional strictly convex zonoids in R2 follows then directly.

Corollary 4.10. Let µ be a measure on (X,Λ) with values on R2. The range of µ is

strictly convex if and only if there exists a subset E in Λ such µE is a Chebyshev measure.

Proof. If there exists E in Λ such that µE is a Chebyshev measure then by Theorem 4.7

the range of µE is strictly convex. Thus each of its translates, in particular the range of

µ, is strictly convex too. Conversely assume that the range of µ is strictly convex. Let E

be such that µ(E) belongs to the boundary of R(µ). Then the origin lies in the boundary

of the translate R(µ) − µ(E). The latter set is the range of µE and is strictly convex: it

follows from Theorem 4.9 that µE is a T–measure. �

Our next result shows that, when n > 2, the boundary of the range of a n–dimensional

Chebyshev measures is not regular. In particular Theorem 4.9 cannot be extended to

greater dimensions: a measure whose range is a ball (it exists, see for instance [13]) is

certainly not the range of some Chebyshev measure.

Proposition 4.11. Let µ = (µ1, . . . , µn) be a T–measure and n ≥ 3. Then the boundary

of R(µ) is not a (n−1)–dimensional C1–manifold.

We need the following Lemma, whose proof is postponed at the end of the paper.

Lemma 4.12. Let µ be a T–measure with respect to an increasing family (Mα)α∈[0,1] of

subsets of X. Then there exists a vector measure µ̃ on the Lebesgue σ–algebra of [0, 1] such

that µ̃ is a T–measure with respect to the intervals ([0, α])α∈[0,1] and R(µ) = R(µ̃).

Proof of Proposition 4.11. By Lemma 4.12 it is not restrictive to suppose that µ is a

Chebyshev measure on [0, 1] with respect to the intervals ([0, x])x∈[0,1]. Fix x in [0, 1) and

let λx : [0, 1−x] → Rn be the curve defined by

∀t ∈ [0, 1−x] : λx(t) = µ([x, x+ t]).
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Since n ≥ 3 and χ[x,x+t] has at most two discontinuity points Theorem 4.7 implies that the

set Γx = λx([0, 1−x]) is entirely contained in the boundary ∂R(µ) of R(µ). Remark further

that the origin O = λx(0) belongs to Γx. Assume that ∂R(µ) is a manifold of class C1 and

let p be a unit normal vector to the tangent plane Π of ∂R(µ) at the origin. For every

point q of R(µ), the distance from q to the plane Π is the absolute value of q · p; therefore

lim
q→0

q∈∂R(µ)

q · p
‖q‖

= 0. Since, by Proposition 4.2, µ(I) 6= O for every non trivial interval I

it follows that lim
t→0

µ([x, x+ t]) · p
‖µ([x, x+ t])‖

= 0 and therefore, recalling that ‖µ(A)‖ ≤ |µ|(A) for

every measurable set A, lim
t→0

µ([x, x+ t])

|µ|([x, x+ t])
· p = 0. Since, by [17], lim

t→0

µ([x, x+ t])

|µ|([x, x+ t])
= f(x)

a.e. in [0, 1] we obtain that D0(p) = {x ∈ [0, 1] : f(x) · p = 0} = [0, 1] (|µ|– a.e.).

However the set R(µ) is strictly convex: Proposition 2.3 then implies that |µ|(D0(p)) = 0,

a contradiction. �

Proof of Lemma 4.12. Let µ = (µ1, . . . , µn) and, for each i in {1, . . . , n}, let µi = µ+
i −µ−

i

be the Jordan decomposition of µi. Let gi : [0, 1] → R be the bounded variation function

defined by

gi(α) = µ+
i (Mα)− µ−

i (Mα)

and let µ̃i be the Lebesgue-Stieltjes measure generated by gi. Clearly µ̃ is regular and if

we set µ̃ = (µ̃1, . . . , µ̃n) the continuity of the functions gi yields

∀α, β ∈ [0, 1], α ≤ β µ̃([α, β]) = µ̃((α, β]) = µ̃([α, β)) = µ̃((α, β)) = µ(Mβ \Mα).

We show now that µ̃ is a T–measure with respect to M̃ = ([0, i])i∈[0,1].

Notice first that µ being a T|µ|–measure then by Proposition 4.2 for every α < β in [0, 1] we

have µ(Mβ \Mα) 6= O. Therefore |µ̃|([α, β]) ≥ |µ̃([α, β])| = |µ(Mβ \Mα)| > 0. Moreover

it is clear that |µ̃| ≤ |µ|. It follows that µ̃, |µ̃|,M̃ satisfy assumption (A). We recall that

in this case the set PM̃ associated to M̃ is given by PM̃ = {(x1, . . . , xn) ∈ [0, 1]n : 0≤x1<

· · ·<xn≤1}.
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Let A ⊆ PM̃ be such that |µ̃|⊗n(A) > 0. The measure |µ̃|⊗n being regular and PM̃ being

open in [0, 1]n there exists a Gδ subset E of PM̃ such that A ⊆ E and |µ̃|⊗n(E \ A) = 0.

We may assume that

E =

∞⋂
m=1

Vm

where (Vm)m∈N are open subsets of PM̃ and V1 ⊇ · · · ⊇ Vm ⊇ Vm+1 ⊇ · · · .

Moreover we can choose the sets Vm such that for each m in N

Vm =
∞⋃
k=1

Ikm,1 × · · · × Ikm,n

where the Ikm,i are subintervals of [0, 1] satisfying sup Ikm,i ≤ inf Ikm,i+1 and

(
Ikm,1 × · · · × Ikm,n

)⋂(
I lm,1 × · · · × I lm,n

)
= ∅ if k 6= l.

If αkm,j = inf Ikm,j , β
k
m,j = sup Ikm,j , we define Jkm,j =Mβk

m,j
\Mαk

m,j
and we set

G =
∞⋂
m=1

( ∞⋃
k=1

Jkm,1 × · · · × Jkm,n

)
.

Clearly G is a subset of P . Moreover, by definition of Jkm,i,

|µ|⊗n(G) = lim
m→∞

( ∞∑
k=1

|µ|
(
Jkm,1

)
· · · |µ|

(
Jkm,n

))

= lim
m→∞

( ∞∑
k=1

|µ̃|
(
Ikm,1

)
· · · |µ̃|

(
Ikm,n

))

= |µ̃|⊗n
( ∞⋂
m=1

( ∞⋃
k=1

Ikm,1 × · · · × Ikm,n
))

= |µ̃|⊗n(E) = |µ̃|⊗n(A)

so that |µ|⊗n(G) > 0: the measure µ being T|µ| we deduce that detµ(G) > 0.
22



Let σ =
(
σ1, . . . , σn

)
be a permutation of 1, . . . , n. We have

(
µσ1 ⊗ · · · ⊗ µσn

)
(G) = lim

m→∞

( ∞∑
k=1

µσ1

(
Jkm,1

)
· · ·µσn

(
Jkm,n

))

= lim
m→∞

( ∞∑
k=1

µ̃σ1

(
Ikm,1

)
· · · µ̃σn

(
Ikm,n

))
=

(
µ̃σ1 ⊗ · · · ⊗ µ̃σn

)
(E);

moreover |µ̃σ1 ⊗ · · · ⊗ µ̃σn | ≤ |µ̃|⊗n and thus

(
µ̃σ1 ⊗ · · · ⊗ µ̃σn

)
(E) =

(
µ̃σ1 ⊗ · · · ⊗ µ̃σn

)
(A).

As a consequence (
µσ1

⊗ · · · ⊗ µσn

)
(G) =

(
µ̃σ1

⊗ · · · ⊗ µ̃σn

)
(A)

so that

det µ̃(A) = detµ(G) > 0

and thus µ̃ is a Chebyshev measure.

Finally Theorem 4.6 applied to the T–measures µ and µ̃ gives

R(µ) =
{
µ
( ⋃
1≤i≤n
i odd

(
Mαi+1 \Mαi

))
: (α1, . . . , αn) ∈ Γ

}
(αn+1 = 1)

=
{
µ̃
( ⋃
1≤i≤n
i odd

(αi, αi+1]
)
: (α1, . . . , αn) ∈ Γ

}
= R(µ̃). �
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