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In this paper we resume the most important results that we obtained in our papers
[1,2,5,6,7] concerning a broad class of measures that we defined in dealing with a bang–
bang control problem.
Let M be the σ−algebra of the Lebesgue measurable subsets of [0, 1] and µ : M → Rn be
a non–atomic vector measure.
A well known Theorem of Lyapunov (see [11]) states that the range of µ, defined by
R(µ) = {µ(E) : E ∈ M}, is closed and convex or, equivalently, that given a measurable
function ρ with values in [0, 1] there exists a set E in M such that

(∗)
∫
X

ρ dµ = µ(E).

Lyapunov’s Theorem has been widely applied in bang–bang control theory [10] and, more
recently, in some non–convex problems of the Calculus of Variations [3].
As an example we mention the following bang–bang existence result:

Theorem 1. Let Lx = x(n)+an−1(t)x
(n−1)+ · · ·+a1(t)x

′+a0(t)x be a linear differential
operator of order n and let x in Wn,1([0, 1]) and ρ in L∞([0, 1]) with values in [0, 1] be such
that Lx = ρ a.e. in [0, 1]. There exists a function y in Wn,1([0, 1]) such that Ly ∈ {0, 1}
a.e. and y(k)(0) = x(k)(0), y(k)(1) = x(k)(1) for k = 0, . . . , n−1.

In dealing with some minimization problems involving a function of the state x it may
be useful to have some more informations on the behaviour of the new function y with
respect to the prescribed x. However Lyapunov’s Theorem doesn’t give any information
on the above set E involved on the construction of y: such a set may be as bad as one
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wishes. For instance let T be a measurable subset of [0, 1], µ be the bidimensional measure
defined by µ(A) = (λ(A), λ(A ∩ T )), λ being the Lebesgue measure on R, and ρ be the
characteristic function of T : it is easy to see that if a set E satisfies (∗) then necessarily
E = T . One of the main results in [5,7] is a condition on the measure under which its
values can be obtained restricting the measure on the finite union of intervals.

Let ν be a positive non–atomic finite measure on X = [0, 1] and assume that ν(I) 6= 0
and that |µ|(I) 6= 0 for every non–trivial interval I, |µ| being the total variation of µ. We
shall denote by Sn the symmetric group of order n and, for σ in Sn, by ε(σ) its sign. To
the vector measure µ = (µ1, . . . , µn) we associate a measure detµ.

Definition. (determinant measure)
The measure detµ is the measure defined on the product space (Xn,M⊗n) by

detµ =
∑
σ∈Sn

ε(σ)µσ(1) ⊗ · · · ⊗ µσ(n).

This is the only measure whose restrictions to the product sets A1 × · · · × An satisfy
detµ(A1 × · · · ×An) = det[µ(A1), · · · , µ(An)].

Let Γn be the set defined by Γn = {(γ1, . . . , γn) ∈ Rn : 0 ≤ γ1 ≤ · · · ≤ γn ≤ 1}.

Remark. [7] Let µ be a Tν–measure and A inM be such that ν(A) > 0. Then µ(A) 6= O; in
particular ν is absolutely continuous with respect to |µ|. In fact assume that ν(A) > 0. If
µ is a Tν–measure then the continuity of the map α 7→ ν([0, α]) allows to decompose A as a
disjoint union of some non ν–negligible sets A1, . . . , An such that their product A1×· · ·×An

is contained in Γn. It follows that det[µ(A1), . . . , µ(An)] = detµ(A1 × · · · × An) > 0 so
that the vectors µ(A1), . . . , µ(An) are linearly independent. If µ(A) = O then O = µ(A) =
µ(A1) + · · ·+ µ(An), a contradiction.

It may happen however that |µ| is not absolutely continuous with respect to ν.

Example. [2] Let n = 1 and µ, ν be two non–atomic (non–trivial) positive measures on
[0, 1] which are positive on every non trivial interval. If ν is absolutely continuous with
respect to µ then µ is a Tν–measure: in fact if ν(A) > 0 for some measurable set A then
trivially detµ(A) = µ(A) > 0. Let, for instance, µ be the Lebesgue measure on [0, 1], E be
a set such that 0 < µ(E ∩ I) < µ(I) for every non trivial interval I and ν be the measure
defined by ν(A) = µ(A ∩ E) for every measurable set A. Then ν is absolutely continuous
w.r. to µ so that µ is a Tν–measure; however µ is not absolutely continuous with respect
to ν (ν([0, 1] \ E) = 0).

Definition. The vector measure µ is a Chebyshev measure with respect to ν (or Tν–
measure) if the measure detµ satisfies

∀A ∈ M⊗n, A ⊂ Γn, ν⊗n(A) > 0 =⇒ detµ(A) > 0.
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If ν = |µ| then µ is called a Chebyshev measure (or T–measure).

Remark. A more general definition for Chebyshev measures defined in arbitrary measur-
able spaces is given in [7].

Definition. Let f = (f1, · · · , fn) be a measurable vector–valued function defined on X.
We say that f = (f1, · · · , fn) is a Chebyshev system with respect to ν (or a Tν–system) if
the determinant det[f(x1), · · · , f(xn)] is positive for ν⊗n–almost all (x1, · · · , xn) in Γn.

Chebyshev systems for continuous functions have been widely studied in Approximation
Theory [9]; our interest in them relies in the fact that they generate Chebyshev measures.

Theorem 2. Suppose µ is absolutely continuous with respect to ν. Let f = (f1, · · · , fn)
be its density function. Then µ is a Tν–measure if and only if f is a Tν–system.

Proof. For any measurable subset A of Xn the application of Fubini–Tonelli’s Theorem
yields

detµ(A) =
∑
σ∈Sn

ε(σ)
(
µσ(1) ⊗ · · · ⊗ µσ(n)

)
(A)

=

∫
A

∑
σ∈Sn

ε(σ)fσ(1)(x1) · · · fσ(n)(xn) d(ν(x1)⊗ · · · ⊗ ν(xn))

=

∫
A

det[f(x1), . . . , f(xn)] dν
⊗n(x1, . . . , xn). �

Chebyshev systems arise naturally from linear differential equations.

Example. [5] Let h ∈ Cn(R) be such that h(i)(0) = 0 for i = 0, . . . , n− 2 and h(n−1)(0)=
1. Then there exists δ > 0 such that if we set f = (h(n−1), h(n−2), . . . , h′, h) then
det[f(t1), . . . , f(tn)] > 0 for every −δ < t1 < · · · < tn < δ.

The main result in [7] is the following representation Theorem which allows, given a
function ρ, to choose a set E verifying (∗) among the finite union of intervals.

Theorem 3. Suppose µ is a Tν–measure and let ρ be a measurable function with values
in [0, 1]. There exists α = (α1, . . . , αn) in Γn satisfying

µ(Eα) =

∫
X

ρ dµ where Eα =
⋃

0≤i≤n
i odd

[
αi, αi+1

]
(αn+1 = 1).

If 0 < ρ < 1 on a ν–non negligible set then α is unique and belongs to the interior of Γn;
moreover the point

∫
X
ρ dµ belongs to the interior of R(µ).
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Actually we prove that the map θ : Γn → R(µ) defined by θ(α) = µ(Eα) for α in Γn is
a homeomorphism from Γn onto R(µ).
The fact that the characteristic function of Eα has at most n discontinuity points and that
α1 > 0 if 0 < ρ < 1 allows in [5] to apply an extension of Rolle’s theorem yielding the
following improvement of Theorem 1.

Theorem 4. Under the assumptions of Theorem 1 the function y can be chosen in such
a way that y(t) ≤ x(t) for every t in [0, 1].

A new existence result for a class of non–convex optimization problems then follows ([5]).
Chebyshev measures provide a broad class of measures whose range is strictly convex.

Theorem 5. [7] The range R(µ) of a Tν–measure is strictly convex. A point µ(E) belongs
to the boundary of R(µ) if and only if there exists γ in the boundary of Γn such that
µ(E∆Eγ) = 0. In particular O = µ(E(1,...,1)) belongs to the boundary of R(µ).

Proof of strict convexity. Let E,F in Γ be such that µ(E) 6= µ(F ): then |µ|(E∆F ) 6= 0;
let for instance |µ|(E \ F ) > 0. Then for λ in ]0, 1[ the function ρ = λχE + (1 − λ)χF is
such that 0 < ρ < 1 a.e. on E \ F . Theorem 3 implies that

∫
ρ dµ = λµ(E) + (1− λ)µ(F )

belongs to the interior of R(µ). �
We point out that γ = (γ1, . . . , γn) belongs to the boundary of Γn if and only if the

characteristic function of the set Eγ has at most n− 1 discontinuity points.
Let us recall that the range of a non–atomic vector measure is closed, convex, contains

the origin (µ(∅) = O) and is centrally symmetric (µ(X \ A) + µ(A) = µ(X)). Conversely,
if n = 2, Herz’s theorem [8] shows that a non empty, compact, centrally symmetric subset
of R2 containing the origin is the range of a bidimensional measure. We show that if such
a set is strictly convex then it is a translate of the range of a Chebyshev measure.

Theorem 6. [1] Let K be a non empty, compact, centrally symmetric, strictly convex
subset of R2 such that O belongs to the boundary of K. Then there exists a Chebyshev
measure µ on the Borelians of [0, 1] such that K = R(µ).

Sketch of the proof. Since O is an exposed point ofR(µ) we may assume, modulo a rotation,
that K ⊂ {(x, y) : x ≥ 0} and that the y–axis is a supporting line to K.
Let L = max{x : (x, y) ∈ K}, y : [0, L] → R be the function defined by

∀x ∈ [0, L] y(x) = min{y : (x, y) ∈ K}

and set G(x) = (x, y(x)). It is easy to prove that, the set K being symmetric,

(◦) K = {G(x2)−G(x1) : 0 ≤ x1 ≤ x2 ≤ 1}.

Moreover the map y is strictly convex: therefore there exists a strictly monotonic function
g such that y(x) =

∫ x

0
g(t) dt for x ≤ L. Let µ be the measure whose density function with
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respect to the Lebesgue measure λ is f = (1, g); clearly f is a Tλ–system so that µ is a
Chebyshev measure with respect to λ. Moreover by (◦) we have

K = {µ(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 1}

and thus K ⊂ R(µ). Actually it turns out easily that K = R(µ). �

The above argument also yield a new and constructive proof of Herz’s theorem.

Remark. With the notations of Theorem 6, in [2] we show that if K is the range of a
bidimensional measure µ then necessarily µ is a Chebyshev measure (in the generalized
sense defined in [7]).

When n > 2 there is no analogue of Herz’s theorem: for instance an octahedron is not
the range of a measure. R. Schneider recently gave the following characterization of the
measures whose range is strictly convex.

Theorem 7. [12] R(µ) is strictly convex if and only if for every A such that µ(A) 6= O
there exist A1, . . . , An in A such that µ(A1), . . . , µ(An) are linearly independent.

However it seems difficult to check whether a measure satisfies this condition. In [2]
we present two characterizations in terms of the Radon–Nikodym derivative f of µ with
respect to the total variation |µ|. We recall that f ∈ L1

|µ|(X,Rn).

Theorem 8. [2] The following equivalence holds:

1) R(µ) is strictly convex;
2) For every p in Rn \ {O} the set {x ∈ X : p · f(x) = 0} is negligible;
3) det[f(x1), . . . , f(xn)] 6= 0 a.e. on Xn.

Sketch of the proof. 1) ⇔ 2): a closed convex set K is strictly convex if and only if each
of its exposed faces is reduced to a point. If p is a non–zero vector we define

D+(p) = {x : p · f(x) > 0}, D−(p) = {x : p · f(x) < 0}, D0(p) = {x : p · f(x) = 0}.

The support function h(R(µ), p) of R(µ) at p is given by

h(R(µ), p) = max
E∈M

p · µ(E) = max
E∈M

∫
E

p · f(x) d|µ| =

=

∫
E∩D−(p)

p · f(x) d|µ|+
∫
E∩D+(p)

p · f(x) d|µ|

≤
∫
E∩D+(p)

p · f(x) d|µ| ≤
∫
D+(p)

p · f(x) d|µ|.
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Moreover the above inequalities show that, for E in M, the equality p ·µ(E) = p ·µ(D+(p))
holds if and only if D+(p) ⊂ E ⊂ D+(p) ∪ D0(p). It follows that the exposed face
F (R(µ), p) of outer normal vector p is given by

F (R(µ), p) = {µ(E) : D+(p) ⊂ E ⊂ D+(p) ∪D0(p)};

therefore each exposed face is reduced to a point if and only if |µ|(D0(p)) = 0 for every p.
2) ⇔ 3) (for n = 2): Let ∆ = {(x, y) : det[f(x), f(y)] = 0}. If R(µ) is not strictly convex
there exists p in R2 \ {O} such that |µ|(D0(p)) > 0: clearly

D0(p)×D0(p) ⊂ ∆

so that |µ|⊗2(∆) > 0. Conversely let R(µ) be strictly convex. If |µ|⊗2(∆) > 0 by Fubini–
Tonelli’s Theorem there exists x such that f(x) does not vanish and the x− section of ∆
given by ∆x = {y : det[f(x), f(y)] = 0} is non negligible. Let p be orthogonal to f(x);
clearly ∆x = D0(p), a contradiction. �

Theorem 8 yields an alternative and simple proof to Schneider’s Theorem 7; it has also
several applications to Chebyshev measures.

Assume that µ is a Tν–measure. If µ is absolutely continuous with respect to ν then,
trivially, µ is a T|µ|–measure. If |µ| is not absolutely continuous w.r. to ν there exists

a subset A in M⊗n such that |µ|⊗n(A) > 0 and ν⊗n(A) = 0 and therefore it is not
clear whether detµ(A) > 0. Surprisingly Theorem 8 implies that the above inequality is
satisfied.

Theorem 9. [2] Let µ be a measure on [0, 1]. The following equivalence hold:

1) µ is a Chebyshev measure with respect to some measure ν;

2) det[f(x1), . . . , f(xn)] > 0 |µ|⊗n– a.e. on Γn;

3) µ is a T|µ|–measure.

Proof. The equivalence 2) ⇔ 3) follows from Theorem 2 applied for ν = |µ| and the
implication 3) ⇒ 1) is trivial. It remains to show that 1) ⇒ 3). Let µ be a Tν measure.
By Theorem 5 the range of µ is strictly convex; Theorem 8 then implies that

det[f(x1), . . . , f(xn)] 6= 0 |µ|⊗n− a.e.

Let
P− = {

(
x1, . . . , xn

)
∈ Γn : det[f(x1), . . . , f(xn)] < 0}

and assume that |µ|⊗n(P−) > 0. Since, by definition

detµ(P−) =

∫
P−

det[f(x1), . . . , f(xn)]d|µ|⊗n,
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then by the continuity of |µ| with respect to the sets [0, α], there exists a (2n)–uple(
α1
1, α

2
1, · · · , α1

n, α
2
n

)
in R2n such that 0 < α1

1 < α2
1 < · · · < α1

n < α2
n < 1 and

detµ(A ∪ P−) < 0, A = [α1
1, α

2
1] ∪ · · · ∪ [α1

n, α
2
n].

However, ν being a positive measure, we have ν⊗n(A ∪ P−) ≥ ν⊗n(A) > 0 so that
detµ(A ∪ P−) > 0, a contradiction. Therefore f is a T|µ|–system; Theorem 2 yields
the conclusion. �

Theorem 8 allows to give a topological characterization of bidimensional Chebyshev
measures. For µ being a two dimensional measure on [0, 1] let

θ : Γ2 = {(x, y) : 0 ≤ x ≤ y ≤ 1} −→ R(µ)

be the map defined by θ(α, β) = µ([α, β]). We have the following converse of Theorem 3.

Theorem 10. [1] If θ induces a homeomorphism from the interior of Γ2 onto the interior
of R(µ) then µ is a Chebyshev measure.

The proof of Theorem 10 is based on the fact that the assumption on θ implies the
strict convexity of R(µ) so that Theorem 8 gives det[f(x), f(y)] 6= 0 a.e.; a degree theory
argument yields the conclusion.

Finally, we give a geometrical property of the range of Chebyshev measures.

Proposition. Let µ = (µ1, . . . , µn) be a Chebyshev measure and n ≥ 3. Then the bound-
ary ∂R(µ) of R(µ) is not a (n−1) dimensional C1–manifold.

Sketch of the proof. Assume for simplicity that |µ| is the Lebesgue measure and that n = 3;
it is not restrictive to assume that µ is a Chebyshev measure in [0, 1] with respect to the
intervals. For every α in [0, 1[ let λα : [0, 1−α] → R3 be the curve defined by

∀t ∈ [0, 1−α] : λα(t) = µ([α, α+ t]).

The characteristic function of [α, α + t] has at most two discontinuity points; since n > 2
Theorem 5 implies that µ([α, α+ t]) = λα(t) belongs to ∂R(µ) for every t.
Remark that λα(0) = 0: if we assume that ∂R(µ) is regular then at every Lebesgue point

α of f the vector f(α) = lim
t→0+

µ([α, α+ t])

|µ|([α, α+ t])
belongs to the tangent plane to ∂R(µ) at O;

therefore if α, β, γ are Lebesgue points of f we have det[f(α), f(β), f(γ)] = 0. However µ
is a Chebyshev measure and thus det[f(α), f(β), f(γ)] 6= 0 a.e.; a contradiction. �

It follows that Theorem 6 cannot be generalized in higher dimensions: for instance it is
well known that a ball in Rn containing the origin is the range of a non–atomic measure;
however the latter Proposition shows that, if n>2, it is not the range of some Chebyshev
measure.

7



References

[1] S. Bianchini, R. Cerf, C. Mariconda, Two dimensional zonoids and Chebyshev measures, J. Math.

Anal. Appl. 211 (1997), 512–526.
[2] S. Bianchini, C. Mariconda, The vector measures whose range is strictly convex, Preprint of the

University of Padoua (1996).
[3] A. Cellina, G. Colombo, On a classical problem of the calculus of variations without convexity as-

sumptions, Ann. Inst. Henri Poincaré 7 (1990), 97–106.
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