CHEBYSHEV MEASURES AND THE VECTOR MEASURES WHOSE RANGE IS STRICTLY CONVEX

S. BIANCHINI, R. CERF, C. MARICONDA

Analisi Reale e Teoria della Misura, Ischia

15–19 luglio 1996

In this paper we resume the most important results that we obtained in our papers [1,2,5,6,7] concerning a broad class of measures that we defined in dealing with a bangbang control problem.

Let \mathcal{M} be the σ -algebra of the Lebesgue measurable subsets of [0,1] and $\mu : \mathcal{M} \to \mathbb{R}^n$ be a non-atomic vector measure.

A well known Theorem of Lyapunov (see [11]) states that the range of μ , defined by $\mathcal{R}(\mu) = \{\mu(E) : E \in \mathcal{M}\}$, is closed and convex or, equivalently, that given a measurable function ρ with values in [0, 1] there exists a set E in \mathcal{M} such that

(*)
$$\int_X \rho \, d\mu = \mu(E).$$

Lyapunov's Theorem has been widely applied in bang-bang control theory [10] and, more recently, in some non-convex problems of the Calculus of Variations [3]. As an example we mention the following bang-bang existence result:

Theorem 1. Let $Lx = x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_1(t)x' + a_0(t)x$ be a linear differential operator of order n and let x in $W^{n,1}([0,1])$ and ρ in $L^{\infty}([0,1])$ with values in [0,1] be such that $Lx = \rho$ a.e. in [0,1]. There exists a function y in $W^{n,1}([0,1])$ such that $Ly \in \{0,1\}$ a.e. and $y^{(k)}(0) = x^{(k)}(0), y^{(k)}(1) = x^{(k)}(1)$ for $k = 0, \ldots, n-1$.

In dealing with some minimization problems involving a function of the state x it may be useful to have some more informations on the behaviour of the new function y with respect to the prescribed x. However Lyapunov's Theorem doesn't give any information on the above set E involved on the construction of y: such a set may be as bad as one

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

wishes. For instance let T be a measurable subset of [0, 1], μ be the bidimensional measure defined by $\mu(A) = (\lambda(A), \lambda(A \cap T))$, λ being the Lebesgue measure on \mathbb{R} , and ρ be the characteristic function of T: it is easy to see that if a set E satisfies (*) then necessarily E = T. One of the main results in [5,7] is a condition on the measure under which its values can be obtained restricting the measure on the finite union of intervals.

Let ν be a positive non-atomic finite measure on X = [0, 1] and assume that $\nu(I) \neq 0$ and that $|\mu|(I) \neq 0$ for every non-trivial interval I, $|\mu|$ being the total variation of μ . We shall denote by S_n the symmetric group of order n and, for σ in S_n , by $\epsilon(\sigma)$ its sign. To the vector measure $\mu = (\mu_1, \ldots, \mu_n)$ we associate a measure det μ .

Definition. (determinant measure)

The measure det μ is the measure defined on the product space $(X^n, \mathcal{M}^{\otimes n})$ by

$$\det \mu = \sum_{\sigma \in S_n} \epsilon(\sigma) \, \mu_{\sigma(1)} \otimes \cdots \otimes \mu_{\sigma(n)}.$$

This is the only measure whose restrictions to the product sets $A_1 \times \cdots \times A_n$ satisfy $\det \mu(A_1 \times \cdots \times A_n) = \det[\mu(A_1), \cdots, \mu(A_n)].$

Let Γ_n be the set defined by $\Gamma_n = \{(\gamma_1, \dots, \gamma_n) \in \mathbb{R}^n : 0 \le \gamma_1 \le \dots \le \gamma_n \le 1\}.$

Remark. [7] Let μ be a T_{ν} -measure and A in \mathcal{M} be such that $\nu(A) > 0$. Then $\mu(A) \neq O$; in particular ν is absolutely continuous with respect to $|\mu|$. In fact assume that $\nu(A) > 0$. If μ is a T_{ν} -measure then the continuity of the map $\alpha \mapsto \nu([0, \alpha])$ allows to decompose A as a disjoint union of some non ν -negligible sets A_1, \ldots, A_n such that their product $A_1 \times \cdots \times A_n$ is contained in Γ_n . It follows that det $[\mu(A_1), \ldots, \mu(A_n)] = \det \mu(A_1 \times \cdots \times A_n) > 0$ so that the vectors $\mu(A_1), \ldots, \mu(A_n)$ are linearly independent. If $\mu(A) = O$ then $O = \mu(A) =$ $\mu(A_1) + \cdots + \mu(A_n)$, a contradiction.

It may happen however that $|\mu|$ is not absolutely continuous with respect to ν .

Example. [2] Let n = 1 and μ, ν be two non-atomic (non-trivial) positive measures on [0,1] which are positive on every non trivial interval. If ν is absolutely continuous with respect to μ then μ is a T_{ν} -measure: in fact if $\nu(A) > 0$ for some measurable set A then trivially det $\mu(A) = \mu(A) > 0$. Let, for instance, μ be the Lebesgue measure on [0,1], E be a set such that $0 < \mu(E \cap I) < \mu(I)$ for every non trivial interval I and ν be the measure defined by $\nu(A) = \mu(A \cap E)$ for every measurable set A. Then ν is absolutely continuous with respect to μ so that μ is a T_{ν} -measure; however μ is not absolutely continuous with respect to ν ($\nu([0,1] \setminus E) = 0$).

Definition. The vector measure μ is a Chebyshev measure with respect to ν (or T_{ν} -measure) if the measure det μ satisfies

$$\forall A \in \mathcal{M}^{\otimes n}, \quad A \subset \Gamma_n, \qquad \nu^{\otimes n}(A) > 0 \implies \det \mu(A) > 0$$

If $\nu = |\mu|$ then μ is called a Chebyshev measure (or *T*-measure).

Remark. A more general definition for Chebyshev measures defined in arbitrary measurable spaces is given in [7].

Definition. Let $f = (f_1, \dots, f_n)$ be a measurable vector-valued function defined on X. We say that $f = (f_1, \dots, f_n)$ is a Chebyshev system with respect to ν (or a T_{ν} -system) if the determinant det $[f(x_1), \dots, f(x_n)]$ is positive for $\nu^{\otimes n}$ -almost all (x_1, \dots, x_n) in Γ_n .

Chebyshev systems for continuous functions have been widely studied in Approximation Theory [9]; our interest in them relies in the fact that they generate Chebyshev measures.

Theorem 2. Suppose μ is absolutely continuous with respect to ν . Let $f = (f_1, \dots, f_n)$ be its density function. Then μ is a T_{ν} -measure if and only if f is a T_{ν} -system.

Proof. For any measurable subset A of X^n the application of Fubini–Tonelli's Theorem yields

$$\det \mu(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) (\mu_{\sigma(1)} \otimes \dots \otimes \mu_{\sigma(n)}) (A)$$
$$= \int_A \sum_{\sigma \in S_n} \epsilon(\sigma) f_{\sigma(1)}(x_1) \cdots f_{\sigma(n)}(x_n) d(\nu(x_1) \otimes \dots \otimes \nu(x_n))$$
$$= \int_A \det[f(x_1), \dots, f(x_n)] d\nu^{\otimes n}(x_1, \dots, x_n). \quad \Box$$

Chebyshev systems arise naturally from linear differential equations.

Example. [5] Let $h \in \mathcal{C}^n(\mathbb{R})$ be such that $h^{(i)}(0) = 0$ for $i = 0, \ldots, n-2$ and $h^{(n-1)}(0) = 1$. 1. Then there exists $\delta > 0$ such that if we set $f = (h^{(n-1)}, h^{(n-2)}, \ldots, h', h)$ then $\det[f(t_1), \ldots, f(t_n)] > 0$ for every $-\delta < t_1 < \cdots < t_n < \delta$.

The main result in [7] is the following representation Theorem which allows, given a function ρ , to choose a set E verifying (*) among the finite union of intervals.

Theorem 3. Suppose μ is a T_{ν} -measure and let ρ be a measurable function with values in [0, 1]. There exists $\alpha = (\alpha_1, \ldots, \alpha_n)$ in Γ_n satisfying

$$\mu(E_{\alpha}) = \int_{X} \rho \, d\mu \quad where \quad E_{\alpha} = \bigcup_{\substack{0 \le i \le n \\ i \text{ odd}}} \left[\alpha_{i}, \alpha_{i+1} \right] \quad (\alpha_{n+1} = 1).$$

If $0 < \rho < 1$ on a ν -non negligible set then α is unique and belongs to the interior of Γ_n ; moreover the point $\int_X \rho \, d\mu$ belongs to the interior of $\mathcal{R}(\mu)$. Actually we prove that the map $\theta : \Gamma_n \to \mathcal{R}(\mu)$ defined by $\theta(\alpha) = \mu(E_\alpha)$ for α in Γ_n is a homeomorphism from Γ_n onto $\mathcal{R}(\mu)$.

The fact that the characteristic function of E_{α} has at most *n* discontinuity points and that $\alpha_1 > 0$ if $0 < \rho < 1$ allows in [5] to apply an extension of Rolle's theorem yielding the following improvement of Theorem 1.

Theorem 4. Under the assumptions of Theorem 1 the function y can be chosen in such a way that $y(t) \le x(t)$ for every t in [0, 1].

A new existence result for a class of non–convex optimization problems then follows ([5]). Chebyshev measures provide a broad class of measures whose range is strictly convex.

Theorem 5. [7] The range $\mathcal{R}(\mu)$ of a T_{ν} -measure is strictly convex. A point $\mu(E)$ belongs to the boundary of $\mathcal{R}(\mu)$ if and only if there exists γ in the boundary of Γ_n such that $\mu(E\Delta E_{\gamma}) = 0$. In particular $O = \mu(E_{(1,...,1)})$ belongs to the boundary of $\mathcal{R}(\mu)$.

Proof of strict convexity. Let E, F in Γ be such that $\mu(E) \neq \mu(F)$: then $|\mu|(E\Delta F) \neq 0$; let for instance $|\mu|(E \setminus F) > 0$. Then for λ in]0,1[the function $\rho = \lambda \chi_E + (1 - \lambda)\chi_F$ is such that $0 < \rho < 1$ a.e. on $E \setminus F$. Theorem 3 implies that $\int \rho d\mu = \lambda \mu(E) + (1 - \lambda)\mu(F)$ belongs to the interior of $\mathcal{R}(\mu)$. \Box

We point out that $\gamma = (\gamma_1, \ldots, \gamma_n)$ belongs to the boundary of Γ_n if and only if the characteristic function of the set E_{γ} has at most n-1 discontinuity points.

Let us recall that the range of a non-atomic vector measure is closed, convex, contains the origin $(\mu(\emptyset) = O)$ and is centrally symmetric $(\mu(X \setminus A) + \mu(A) = \mu(X))$. Conversely, if n = 2, Herz's theorem [8] shows that a non empty, compact, centrally symmetric subset of \mathbb{R}^2 containing the origin is the range of a bidimensional measure. We show that if such a set is strictly convex then it is a translate of the range of a Chebyshev measure.

Theorem 6. [1] Let K be a non empty, compact, centrally symmetric, strictly convex subset of \mathbb{R}^2 such that O belongs to the boundary of K. Then there exists a Chebyshev measure μ on the Borelians of [0, 1] such that $K = \mathcal{R}(\mu)$.

Sketch of the proof. Since O is an exposed point of $\mathcal{R}(\mu)$ we may assume, modulo a rotation, that $K \subset \{(x, y) : x \ge 0\}$ and that the y-axis is a supporting line to K. Let $L = \max\{x : (x, y) \in K\}, y : [0, L] \to \mathbb{R}$ be the function defined by

$$\forall x \in [0, L] \qquad y(x) = \min\{y : (x, y) \in K\}$$

and set G(x) = (x, y(x)). It is easy to prove that, the set K being symmetric,

(o)
$$K = \{G(x_2) - G(x_1) : 0 \le x_1 \le x_2 \le 1\}$$

Moreover the map y is strictly convex: therefore there exists a strictly monotonic function g such that $y(x) = \int_0^x g(t) dt$ for $x \leq L$. Let μ be the measure whose density function with

respect to the Lebesgue measure λ is f = (1, g); clearly f is a T_{λ} -system so that μ is a Chebyshev measure with respect to λ . Moreover by (\circ) we have

$$K = \{\mu(x_1, x_2) : 0 \le x_1 \le x_2 \le 1\}$$

and thus $K \subset \mathcal{R}(\mu)$. Actually it turns out easily that $K = \mathcal{R}(\mu)$. \Box

The above argument also yield a new and constructive proof of Herz's theorem.

Remark. With the notations of Theorem 6, in [2] we show that if K is the range of a bidimensional measure μ then necessarily μ is a Chebyshev measure (in the generalized sense defined in [7]).

When n > 2 there is no analogue of Herz's theorem: for instance an octahedron is not the range of a measure. R. Schneider recently gave the following characterization of the measures whose range is strictly convex.

Theorem 7. [12] $\mathcal{R}(\mu)$ is strictly convex if and only if for every A such that $\mu(A) \neq O$ there exist A_1, \ldots, A_n in A such that $\mu(A_1), \ldots, \mu(A_n)$ are linearly independent.

However it seems difficult to check whether a measure satisfies this condition. In [2] we present two characterizations in terms of the Radon–Nikodym derivative f of μ with respect to the total variation $|\mu|$. We recall that $f \in L^1_{|\mu|}(X, \mathbb{R}^n)$.

Theorem 8. [2] The following equivalence holds:

- 1) $\mathcal{R}(\mu)$ is strictly convex;
- 2) For every p in $\mathbb{R}^n \setminus \{O\}$ the set $\{x \in X : p \cdot f(x) = 0\}$ is negligible;
- 3) $\det[f(x_1), \dots, f(x_n)] \neq 0$ a.e. on X^n .

Sketch of the proof. 1) \Leftrightarrow 2): a closed convex set K is strictly convex if and only if each of its exposed faces is reduced to a point. If p is a non-zero vector we define

$$D^+(p) = \{x : p \cdot f(x) > 0\}, \quad D^-(p) = \{x : p \cdot f(x) < 0\}, \quad D^0(p) = \{x : p \cdot f(x) = 0\}.$$

The support function $h(\mathcal{R}(\mu), p)$ of $\mathcal{R}(\mu)$ at p is given by

$$h(\mathcal{R}(\mu), p) = \max_{E \in \mathcal{M}} p \cdot \mu(E) = \max_{E \in \mathcal{M}} \int_{E} p \cdot f(x) \, d|\mu| =$$
$$= \int_{E \cap D^{-}(p)} p \cdot f(x) \, d|\mu| + \int_{E \cap D^{+}(p)} p \cdot f(x) \, d|\mu|$$
$$\leq \int_{E \cap D^{+}(p)} p \cdot f(x) \, d|\mu| \leq \int_{D^{+}(p)} p \cdot f(x) \, d|\mu|.$$

Moreover the above inequalities show that, for E in \mathcal{M} , the equality $p \cdot \mu(E) = p \cdot \mu(D^+(p))$ holds if and only if $D^+(p) \subset E \subset D^+(p) \cup D^0(p)$. It follows that the exposed face $F(\mathcal{R}(\mu), p)$ of outer normal vector p is given by

$$F(\mathcal{R}(\mu), p) = \{\mu(E) : D^+(p) \subset E \subset D^+(p) \cup D^0(p)\};\$$

therefore each exposed face is reduced to a point if and only if $|\mu|(D^0(p)) = 0$ for every p. 2) \Leftrightarrow 3) (for n = 2): Let $\Delta = \{(x, y) : \det[f(x), f(y)] = 0\}$. If $\mathcal{R}(\mu)$ is not strictly convex there exists p in $\mathbb{R}^2 \setminus \{O\}$ such that $|\mu|(D^0(p)) > 0$: clearly

$$D^0(p) \times D^0(p) \subset \Delta$$

so that $|\mu|^{\otimes 2}(\Delta) > 0$. Conversely let $\mathcal{R}(\mu)$ be strictly convex. If $|\mu|^{\otimes 2}(\Delta) > 0$ by Fubini– Tonelli's Theorem there exists x such that f(x) does not vanish and the x- section of Δ given by $\Delta_x = \{y : \det[f(x), f(y)] = 0\}$ is non negligible. Let p be orthogonal to f(x); clearly $\Delta_x = D^0(p)$, a contradiction. \Box

Theorem 8 yields an alternative and simple proof to Schneider's Theorem 7; it has also several applications to Chebyshev measures.

Assume that μ is a T_{ν} -measure. If μ is absolutely continuous with respect to ν then, trivially, μ is a $T_{|\mu|}$ -measure. If $|\mu|$ is not absolutely continuous w.r. to ν there exists a subset A in $\mathcal{M}^{\otimes n}$ such that $|\mu|^{\otimes n}(A) > 0$ and $\nu^{\otimes n}(A) = 0$ and therefore it is not clear whether det $\mu(A) > 0$. Surprisingly Theorem 8 implies that the above inequality is satisfied.

Theorem 9. [2] Let μ be a measure on [0, 1]. The following equivalence hold:

1) μ is a Chebyshev measure with respect to some measure ν ;

- 2) det $[f(x_1), ..., f(x_n)] > 0$ $|\mu|^{\otimes n_-}$ a.e. on Γ_n ;
- 3) μ is a $T_{|\mu|}$ -measure.

Proof. The equivalence 2) \Leftrightarrow 3) follows from Theorem 2 applied for $\nu = |\mu|$ and the implication 3) \Rightarrow 1) is trivial. It remains to show that 1) \Rightarrow 3). Let μ be a T_{ν} measure. By Theorem 5 the range of μ is strictly convex; Theorem 8 then implies that

$$\det[f(x_1),\ldots,f(x_n)] \neq 0 \qquad |\mu|^{\otimes n} - \text{ a.e.}$$

Let

$$P^{-} = \{ (x_1, \dots, x_n) \in \Gamma_n : \det[f(x_1), \dots, f(x_n)] < 0 \}$$

and assume that $|\mu|^{\otimes n}(P^-) > 0$. Since, by definition

$$\det \mu(P^-) = \int_{P^-} \det[f(x_1), \dots, f(x_n)] d|\mu|^{\otimes n},$$

6

then by the continuity of $|\mu|$ with respect to the sets $[0, \alpha]$, there exists a (2n)-uple $(\alpha_1^1, \alpha_1^2, \cdots, \alpha_n^1, \alpha_n^2)$ in \mathbb{R}^{2n} such that $0 < \alpha_1^1 < \alpha_1^2 < \cdots < \alpha_n^1 < \alpha_n^2 < 1$ and

$$\det \mu(A \cup P^-) < 0, \qquad A = [\alpha_1^1, \alpha_1^2] \cup \cdots \cup [\alpha_n^1, \alpha_n^2].$$

However, ν being a positive measure, we have $\nu^{\otimes n}(A \cup P^-) \geq \nu^{\otimes n}(A) > 0$ so that $\det \mu(A \cup P^-) > 0$, a contradiction. Therefore f is a $T_{|\mu|}$ -system; Theorem 2 yields the conclusion. \Box

Theorem 8 allows to give a topological characterization of bidimensional Chebyshev measures. For μ being a two dimensional measure on [0, 1] let

$$\theta: \Gamma_2 = \{(x, y): 0 \le x \le y \le 1\} \longrightarrow \mathcal{R}(\mu)$$

be the map defined by $\theta(\alpha, \beta) = \mu([\alpha, \beta])$. We have the following converse of Theorem 3.

Theorem 10. [1] If θ induces a homeomorphism from the interior of Γ_2 onto the interior of $\mathcal{R}(\mu)$ then μ is a Chebyshev measure.

The proof of Theorem 10 is based on the fact that the assumption on θ implies the strict convexity of $\mathcal{R}(\mu)$ so that Theorem 8 gives $\det[f(x), f(y)] \neq 0$ a.e.; a degree theory argument yields the conclusion.

Finally, we give a geometrical property of the range of Chebyshev measures.

Proposition. Let $\mu = (\mu_1, \ldots, \mu_n)$ be a Chebyshev measure and $n \ge 3$. Then the boundary $\partial \mathcal{R}(\mu)$ of $\mathcal{R}(\mu)$ is not a (n-1) dimensional \mathcal{C}^1 -manifold.

Sketch of the proof. Assume for simplicity that $|\mu|$ is the Lebesgue measure and that n = 3; it is not restrictive to assume that μ is a Chebyshev measure in [0, 1] with respect to the intervals. For every α in [0, 1[let $\lambda_{\alpha} : [0, 1-\alpha] \to \mathbb{R}^3$ be the curve defined by

$$\forall t \in [0, 1 - \alpha]: \qquad \lambda_{\alpha}(t) = \mu([\alpha, \alpha + t]).$$

The characteristic function of $[\alpha, \alpha + t]$ has at most two discontinuity points; since n > 2Theorem 5 implies that $\mu([\alpha, \alpha + t]) = \lambda_{\alpha}(t)$ belongs to $\partial \mathcal{R}(\mu)$ for every t.

Remark that $\lambda_{\alpha}(0) = 0$: if we assume that $\partial \mathcal{R}(\mu)$ is regular then at every Lebesgue point α of f the vector $f(\alpha) = \lim_{t \to 0^+} \frac{\mu([\alpha, \alpha + t])}{|\mu|([\alpha, \alpha + t])}$ belongs to the tangent plane to $\partial \mathcal{R}(\mu)$ at O; therefore if α, β, γ are Lebesgue points of f we have $\det[f(\alpha), f(\beta), f(\gamma)] = 0$. However μ is a Chebyshev measure and thus $\det[f(\alpha), f(\beta), f(\gamma)] \neq 0$ a.e.; a contradiction. \Box

It follows that Theorem 6 cannot be generalized in higher dimensions: for instance it is well known that a ball in \mathbb{R}^n containing the origin is the range of a non-atomic measure; however the latter Proposition shows that, if n > 2, it is not the range of some Chebyshev measure.

References

- S. Bianchini, R. Cerf, C. Mariconda, Two dimensional zonoids and Chebyshev measures, J. Math. Anal. Appl. 211 (1997), 512–526.
- [2] S. Bianchini, C. Mariconda, *The vector measures whose range is strictly convex*, Preprint of the University of Padoua (1996).
- [3] A. Cellina, G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. Henri Poincaré 7 (1990), 97–106.
- [4] R. Cerf, C. Mariconda, On bang-bang solutions of a control system, S.I.A.M. J. Control Optim. 33 (1995), 554–567.
- R. Cerf, C. Mariconda, Oriented measures with continuous densities and the bang-bang principle, J. Funct. Anal. 126 (1994), 476–505.
- [6] R. Cerf, C. Mariconda, Oriented measures, J. Math. Anal. Appl. 197 (1996), 925–944.
- [7] R. Cerf, C. Mariconda, *Chebyshev measures*, Proc. Amer. Math. Soc. **125** (1997), 3321–3329.
- [8] C.S. Herz, A class of negative definite functions, Proc. Amer. Math. Soc. 14 (1963), 670–676.
- [9] S. Karlin W.J. Studden, *Tchebycheff systems: with applications in analysis and statistics*, Pure and applied mathematics, John Wiley & Sons, New York, 1966.
- [10] C. Olech, The Lyapunov theorem: its extensions and applications, Methods of Nonconvex Analysis (A. Cellina, eds.), vol. 1446, Springer-Verlag, Berlin, 1989, pp. 84–103.
- [11] W. Rudin, Functional Analysis, Mc Graw-Hill, New York, 1991.
- [12] R. Schneider, *Measures in convex geometry*, Rend. Istit. Mat. Univ. Trieste (1996) (to appear).

S. BIANCHINI, S.I.S.S.A., VIA BEIRUT 2/4, 34013 TRIESTE, ITALY

R. Cerf, Université de Paris Sud, Mathématique, bât. 425, 91405 Orsay Cedex, France

C. Mariconda, Dipartimento di Matematica Pura e Applicata, via Belzoni 7, 35100 Padova, Italy

E-mail address:

bianchin@sissa.it, Raphael.Cerf@math.u-psud.fr, maricond@math.unipd.it