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In this paper we resume the most important results that we obtained in our papers
[1,2,5,6,7] concerning a broad class of measures that we defined in dealing with a bang—
bang control problem.

Let M be the o—algebra of the Lebesgue measurable subsets of [0,1] and p: M — R"™ be
a non—atomic vector measure.

A well known Theorem of Lyapunov (see [11]) states that the range of p, defined by
R(p) = {u(F) : E € M}, is closed and convex or, equivalently, that given a measurable
function p with values in [0, 1] there exists a set E in M such that

(%) /X pdp = pu(E).

Lyapunov’s Theorem has been widely applied in bang—bang control theory [10] and, more
recently, in some non—convex problems of the Calculus of Variations [3].
As an example we mention the following bang—bang existence result:

Theorem 1. Let Le = 2™ +a,_1(£)z»Y 4. 4 a1 (t)z’ +ao(t)x be a linear differential
operator of order n and let x in W™([0,1]) and p in L°°([0,1]) with values in [0, 1] be such
that Lx = p a.e. in [0,1]. There exists a function y in W™1([0,1]) such that Ly € {0,1}
a.e. and y®(0) = 2®(0), y* (1) = 2®) (1) for k=0,...,n—1.

In dealing with some minimization problems involving a function of the state x it may
be useful to have some more informations on the behaviour of the new function y with
respect to the prescribed x. However Lyapunov’s Theorem doesn’t give any information
on the above set F involved on the construction of y: such a set may be as bad as one
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wishes. For instance let T' be a measurable subset of [0, 1], u be the bidimensional measure
defined by u(A) = (AM(A),A(ANT)), A being the Lebesgue measure on R, and p be the
characteristic function of T": it is easy to see that if a set E satisfies (%) then necessarily
E = T. One of the main results in [5,7] is a condition on the measure under which its
values can be obtained restricting the measure on the finite union of intervals.

Let v be a positive non—atomic finite measure on X = [0, 1] and assume that v(I) # 0
and that |u|(I) # 0 for every non—trivial interval I, |u| being the total variation of u. We
shall denote by §,, the symmetric group of order n and, for ¢ in S,,, by €(o) its sign. To
the vector measure p = (i1, ..., jtn) We associate a measure det p.

Definition. (determinant measure)
The measure det p is the measure defined on the product space (X™, M®™") by

det p = Z €<U)Mo(1)®"'®lu'o(n)'
ceS,

This is the only measure whose restrictions to the product sets A; x --- x A,, satisfy
det ﬂ(Al X X An) = det[lu(Al)’ T 7,UJ<ATL)]

Let T',, be the set defined by I'y, = {(71,.. ., ) ER?": 0 <y <+ <, < 1}

Remark. [7] Let pu be a T,—measure and A in M be such that ¥(A) > 0. Then u(A) # O; in
particular v is absolutely continuous with respect to |u|. In fact assume that v(A) > 0. If
p is a T,—measure then the continuity of the map « +— v/([0, ]) allows to decompose A as a
disjoint union of some non v—negligible sets Ay, ..., A, such that their product A; x---x A,
is contained in I',,. It follows that det[u(A1),...,u(A,)] = det u(A; x -~ x A,) > 0 so
that the vectors u(Ay), ..., u(A,) are linearly independent. If u(A) = O then O = p(A) =
p(Ay) + -+ -+ p(Ay), a contradiction.
It may happen however that |u| is not absolutely continuous with respect to v.

Example. [2] Let n = 1 and pu, v be two non—atomic (non—trivial) positive measures on
[0, 1] which are positive on every non trivial interval. If v is absolutely continuous with
respect to g then p is a T,—measure: in fact if v(A) > 0 for some measurable set A then
trivially det u(A) = u(A) > 0. Let, for instance, p be the Lebesgue measure on [0, 1], E be
a set such that 0 < u(EN1I) < p(l) for every non trivial interval I and v be the measure
defined by v(A) = u(AN E) for every measurable set A. Then v is absolutely continuous
w.r. to pu so that p is a T, —measure; however p is not absolutely continuous with respect
tov (v([0,1] \ E) =0).

Definition. The vector measure p is a Chebyshev measure with respect to v (or T,—
measure) if the measure det p satisfies

VAe M®  ACT,, v®"(A) >0 = detu(4) > 0.
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If v = |p| then p is called a Chebyshev measure (or T—measure).

Remark. A more general definition for Chebyshev measures defined in arbitrary measur-
able spaces is given in [7].

Definition. Let f = (f1,---, fn) be a measurable vector—valued function defined on X.
We say that f = (f1,--, fn) is a Chebyshev system with respect to v (or a T, —system) if
the determinant det[f(z1),--- , f(z,)] is positive for v®"—almost all (z1,- -+ ,x,) in T,,.

Chebyshev systems for continuous functions have been widely studied in Approximation
Theory [9]; our interest in them relies in the fact that they generate Chebyshev measures.

Theorem 2. Suppose p is absolutely continuous with respect to v. Let f = (f1,-++, fn)
be its density function. Then u is a T,—measure if and only if f is a T, —system.

Proof. For any measurable subset A of X™ the application of Fubini—Tonelli’s Theorem
yields

det M(A) = Z 6(0-) (/’I/U(l) Q- ® ,UJU(n))(A)
0ES,

/ D €(0) foy(@1) - fomy (@n) dv(21) @ - @ V(@)

og€eS,

:Adet[f(xl),...,f(xn)]dy®”(x1,...,xn). O

Chebyshev systems arise naturally from linear differential equations.

Example. [5] Let h € C"(R) be such that A (0) =0 fori =0,...,n—2 and A(»~D(0)=
1. Then there exists § > 0 such that if we set f = (A=Y A"=2) b/ h) then
det[f(t1),..., f(tn)] > 0 for every —6 < t1 < --- < t, <.

The main result in [7] is the following representation Theorem which allows, given a
function p, to choose a set E verifying (%) among the finite union of intervals.

Theorem 3. Suppose p is a T,,~measure and let p be a measurable function with values
in [0,1]. There exists a = (aq,...,an,) in Iy, satisfying

w(Ey) :/ pdup  where E, = U [O{i,ai+1:| (pt1 =1).
X 0<i<n
i odd

If 0 < p < 1 on a v—non negligible set then « is unique and belongs to the interior of T'y,;
moreover the point fX pdu belongs to the interior of R(p).
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Actually we prove that the map 6 : I',, — R(u) defined by 0(«) = p(Ey) for a in Iy, is
a homeomorphism from I',, onto R(u).
The fact that the characteristic function of E, has at most n discontinuity points and that
a; > 01if 0 < p < 1 allows in [5] to apply an extension of Rolle’s theorem yielding the
following improvement of Theorem 1.

Theorem 4. Under the assumptions of Theorem 1 the function y can be chosen in such
a way that y(t) < z(t) for every t in [0, 1].

A new existence result for a class of non—convex optimization problems then follows ([5]).
Chebyshev measures provide a broad class of measures whose range is strictly convex.

Theorem 5. [7] The range R(p) of a T, —measure is strictly convex. A point u(E) belongs
to the boundary of R(u) if and only if there exists v in the boundary of T, such that
W(EAE,) = 0. In particular O = u(E(,.. 1)) belongs to the boundary of R(u).

Proof of strict convezity. Let E,F in I' be such that pu(E) # u(F): then |u|(EAF) # 0;
let for instance |p|(E \ F') > 0. Then for A in ]0, 1] the function p = Axg + (1 — N)xF is
such that 0 < p < 1 a.e. on E\ F. Theorem 3 implies that [ pdu = Au(E) + (1 — N\ p(F)
belongs to the interior of R(p). O

We point out that v = (7y1,...,7,) belongs to the boundary of I';, if and only if the
characteristic function of the set I, has at most n — 1 discontinuity points.

Let us recall that the range of a non—atomic vector measure is closed, convex, contains
the origin (u(0) = O) and is centrally symmetric (u(X \ A) + p(A) = pu(X)). Conversely,
if n = 2, Herz’s theorem [8] shows that a non empty, compact, centrally symmetric subset
of R? containing the origin is the range of a bidimensional measure. We show that if such
a set is strictly convex then it is a translate of the range of a Chebyshev measure.

Theorem 6. [1] Let K be a non empty, compact, centrally symmetric, strictly convex
subset of R? such that O belongs to the boundary of K. Then there exists a Chebyshev
measure p on the Borelians of [0,1] such that K = R(u).

Sketch of the proof. Since O is an exposed point of R(x) we may assume, modulo a rotation,
that K C {(z,y) : x > 0} and that the y—axis is a supporting line to K.
Let L = max{z : (z,y) € K}, y:[0,L] — R be the function defined by

Vo € [0, L] y(x) =min{y : (z,y) € K}
and set G(x) = (z,y(x)). It is easy to prove that, the set K being symmetric,
(O) K:{G<$2)—G($1) 0< 1 <20 < 1}

Moreover the ma,p y is strictly convex: therefore there exists a strictly monotonic function
g such that y(z fo t)dt for ¢ < L. Let p be the measure whose density function with
4



respect to the Lebesgue measure A is f = (1,¢); clearly f is a Th—system so that p is a
Chebyshev measure with respect to A\. Moreover by (o) we have

K ={p(r1,22): 0 <z <29 <1}

and thus K C R(u). Actually it turns out easily that K = R(u). O
The above argument also yield a new and constructive proof of Herz’s theorem.

Remark. With the notations of Theorem 6, in [2] we show that if K is the range of a
bidimensional measure p then necessarily p is a Chebyshev measure (in the generalized
sense defined in [7]).

When n > 2 there is no analogue of Herz’s theorem: for instance an octahedron is not
the range of a measure. R. Schneider recently gave the following characterization of the
measures whose range is strictly convex.

Theorem 7. [12] R(u) is strictly convex if and only if for every A such that u(A) # O
there exist Ay, ..., A, in A such that p(Ay),...,u(A,) are linearly independent.

However it seems difficult to check whether a measure satisfies this condition. In [2]
we present two characterizations in terms of the Radon—Nikodym derivative f of p with
respect to the total variation |u|. We recall that f € L|1“|(X, R™).

Theorem 8. (2] The following equivalence holds:

1) R(u) is strictly convex;
2) For every p in R™ \ {O} the set {x € X : p- f(x) = 0} is negligible;
3) det[f(z1),..., f(zn)] #0 a.e. on X™.

Sketch of the proof. 1) < 2): a closed convex set K is strictly convex if and only if each
of its exposed faces is reduced to a point. If p is a non—zero vector we define

DY(p)={z:p- f(x) >0}, D (p)={z:p-f(x) <0}, D%p)={z:p-f(z)=0}.

The support function A(R(u),p) of R(u) at p is given by

EeM EeM

- / p- @) dlul + / p- f(x)dlul
END~(p) END*(p)

< . dlp| < . dlp.
<[ sl < [, p i

h(R(u),p) = max p- u(E) = max Ep-f(w) dlpf =



Moreover the above inequalities show that, for F in M, the equality p-u(E) = p-u(D*(p))
holds if and only if DT (p) € E C D*(p) U D°(p). It follows that the exposed face
F(R(u),p) of outer normal vector p is given by

F(R(w),p) ={u(E): D*(p) C EC D*(p) uD’(p)};

therefore each exposed face is reduced to a point if and only if |u|(D°(p)) = 0 for every p.
2) & 3) (for n = 2): Let A = {(z,y) : det[f(z), f(y)] = 0}. If R(p) is not strictly convex
there exists p in R? \ {O} such that |u|(D°(p)) > 0: clearly

D(p) x D°(p) C A

so that [1|®2(A) > 0. Conversely let R(u) be strictly convex. If |u|®2(A) > 0 by Fubini—
Tonelli’s Theorem there exists x such that f(x) does not vanish and the z— section of A
given by A, = {y : det[f(x), f(y)] = 0} is non negligible. Let p be orthogonal to f(z);
clearly A, = D°(p), a contradiction. [

Theorem 8 yields an alternative and simple proof to Schneider’s Theorem 7; it has also
several applications to Chebyshev measures.

Assume that p is a T,—measure. If p is absolutely continuous with respect to v then,
trivially, p is a 7}, —measure. If |u| is not absolutely continuous w.r. to v there exists
a subset A in M®" such that |[u|®"(A) > 0 and v®"(A) = 0 and therefore it is not
clear whether det 4(A) > 0. Surprisingly Theorem 8 implies that the above inequality is
satisfied.

Theorem 9. [2] Let p be a measure on [0,1]. The following equivalence hold:
1) u is a Chebyshev measure with respect to some measure v;
2) det[f(z1),..., f(xn)] >0 |u|®" a.e. onTy;
3) p is a ), ~measure.

Proof. The equivalence 2) < 3) follows from Theorem 2 applied for v = |u| and the
implication 3) = 1) is trivial. It remains to show that 1) = 3). Let u be a T, measure.
By Theorem 5 the range of u is strictly convex; Theorem 8 then implies that

det[f(z1),..., fza)] 0 [u*"— ae.

Let
P~ ={(z1,...,3,) €Ty : det[f(z1),..., f(z,)] < 0}

and assume that |u|®"(P~) > 0. Since, by definition

detu(P) = [ detl(an).... ol
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then by the continuity of |u| with respect to the sets [0, ], there exists a (2n)-uple

(oz%,oz%,--~ ,a,}wai) in R?" such that 0 < of < a2 <--- < al <a? <1 and

det y(AU P7) <0, A=[af,3]U---Ulal,a?].

However, v being a positive measure, we have v®*(A U P~) > v®"*(A) > 0 so that
det u(A U P7) > 0, a contradiction. Therefore f is a Tj,-system; Theorem 2 yields
the conclusion. [J

Theorem 8 allows to give a topological characterization of bidimensional Chebyshev
measures. For p being a two dimensional measure on [0, 1] let

0:Ty={(z,y):0<x<y<1} — R(p

be the map defined by 6(«, 8) = u([e, 5]). We have the following converse of Theorem 3.

Theorem 10. [1] If 6 induces a homeomorphism from the interior of Ty onto the interior
of R(u) then p is a Chebyshev measure.

The proof of Theorem 10 is based on the fact that the assumption on € implies the
strict convexity of R(u) so that Theorem 8 gives det[f(z), f(y)] # 0 a.e.; a degree theory
argument yields the conclusion.

Finally, we give a geometrical property of the range of Chebyshev measures.

Proposition. Let p = (p1,..., 1) be a Chebyshev measure and n > 3. Then the bound-
ary OR (1) of R(u) is not a (n—1) dimensional C—manifold.

Sketch of the proof. Assume for simplicity that |u| is the Lebesgue measure and that n = 3;
it is not restrictive to assume that p is a Chebyshev measure in [0, 1] with respect to the
intervals. For every « in [0, 1] let A, : [0,1—a] — R3 be the curve defined by

Vte [0,1—q]: Aa(t) = p([o, a4 t]).

The characteristic function of [a, o + t] has at most two discontinuity points; since n > 2

Theorem 5 implies that p([o, o + t]) = Ao () belongs to OR(u) for every t.

Remark that A\, (0) = 0: if we assume that OR(u) is regular then at every Lebesgue point

a of f the vector f(a) = lim oot t)
t=0+ |pf (lo, o + 2])

therefore if a, 3, are Lebesgue points of f we have det[f(«), f(5), f(7)] = 0. However u

is a Chebyshev measure and thus det[f(a), f(5), f(7)] # 0 a.e.; a contradiction. [

belongs to the tangent plane to OR(u) at O;

It follows that Theorem 6 cannot be generalized in higher dimensions: for instance it is
well known that a ball in R™ containing the origin is the range of a non—atomic measure;
however the latter Proposition shows that, if n>2, it is not the range of some Chebyshev
measure.
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