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Abstract. Given a bounded autonomous vector field b : R2 → R2, we
study the uniqueness of bounded solutions to the initial value problem
for the related transport equation

∂tu + b · ∇u = 0.

Assuming that b is of class BV and it is nearly incompressible, we prove
uniqueness of weak solutions to the transport equation. The starting
point of the present work is the result which has been obtained in [10]
(where the steady nearly incompressible case is treated). Our proof is
based on splitting the equation onto a suitable partition of the plane:
this technique was introduced in [3], using the results on the structure
of level sets of Lipschitz maps obtained in [1]. Furthermore, in order to
construct the partition, we use Ambrosio’s superposition principle [4].
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1. Introduction

Let Ω denote the torus Td or the whole space Rd, d ∈ N. In this paper
we consider the continuity equation

∂tu+ div(ub) = 0 (1.1)
and the transport equation

∂tu+ b · ∇u = 0, (1.2)
for the unknown u : I×Ω→ R (where I = (0, T ), T > 0) with a given vector
field b : I×Ω→ Rd. We study the initial value problems for these equations
with the same initial condition

u(0, ·) = u0(·), (1.3)
where u0 : Ω→ R is a given scalar field.

Our aim is to investigate uniqueness of weak solutions to (1.1), (1.3) (and
to (1.2), (1.3)) under weak regularity assumptions on the vector field b.
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When b ∈ L∞(I × Ω) then (1.1) is understood in the standard sense of
distributions: u ∈ L∞(I × Ω) is called a weak solution of the continuity
equation if (1.1) holds in D ′(I ×Ω). One can prove (see e.g. [15]) that, if u
is a weak solution of (1.1), then there exists a map ũ ∈ L∞([0, T ]×Ω) such
that u(t, ·) = ũ(t, ·) for a.e. t ∈ I and t 7→ ũ(t, ·) is weakly? continuous from
[0, T ] into L∞(Ω). This allows us to prescribe an initial condition (1.3) for
a weak solution u of the continuity equation in the following sense: we say
that u(0, ·) = u0(·) holds if ũ(0, ·) = u0(·).

Definition of weak solutions of the transport equation (1.2) is slightly
more delicate. If the divergence of b is absolutely continuous with respect
to the Lebesgue measure then (1.2) can be written as

∂tu+ div(ub)− udiv b = 0,

and the latter equation can be understood in the sense of distributions (see
e.g. [16] for the details). We are interested in the case when div b is not
absolutely continuous. In this case the notion of weak solution of (1.2) can
be defined for the class of nearly incompressible vector fields.

Definition 1.1. A bounded, locally integrable vector field b : I×Ω→ Rd is
called nearly incompressible if there exists a function ρ : I × Ω → R (called
density of b) such that ln(ρ) ∈ L∞(I × Ω) and

∂tρ+ div(ρb) = 0 in D ′(I × Ω). (1.4)

Nearly incompressible vector fields were introduced in connection with
the hyperbolic conservation laws, namely, the Keyfitz-Kranzer system [19].
See e.g. [15] for the details. Using mollification one can prove that if div b ∈
L∞(I × Ω) then b is nearly incompressible. The converse implication does
not hold, so near incompressibility can be considered as a weaker version of
the assumption div b ∈ L∞(I × Ω).

Definition 1.2. Let b be a nearly incompressible vector field with density
ρ. We say that a function u ∈ L∞(I × Ω) is a (ρ–)weak solution of (1.2) if

(ρu)t + div(ρub) = 0 in D ′(I × Ω).

Thanks to Definition 1.2 one can prescribe the initial condition for a ρ–
weak solution of the transport equation similarly to the case of the continuity
equation, which we mentioned above (see [15] for the details).

Existence of weak solutions to initial value problem for transport equa-
tion with a nearly incompressible vector field can be proved by a standard
regularization argument [15]. The problem of uniqueness of weak solutions
is much more delicate. The theory of uniqueness in the non-smooth frame-
work has started with the seminal paper of R.J. DiPerna and P.-L. Lions
[16] where uniqueness was obtained as a corollary of so-called renormal-
ization property for the vector fields with Sobolev regularity. Thanks to
Definition 1.2 the renormalization property can be defined also for nearly
incompressible vector fields:

Definition 1.3. We say that a nearly incompressible vector field b with
density ρ has the renormalization property if for every ρ–weak solution
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u ∈ L∞(I × Ω) of (1.2) and for any function β ∈ C1(R) the function β(u)
also is a ρ-weak solution of (1.2), i.e. it satisfies

∂t (ρβ(u)) + div (ρβ(u)b) = 0 in D ′(I × Ω).

Nearly incompressible vector fields are related to a conjecture, made by
A. Bressan in [12]:

Conjecture 1.4 (Bressan’s compactness conjecture). Let Ω = Rd and let
bn : R × Ω → Rd, n ∈ N, be a sequence of smooth vector fields. Denote by
Φn the solutions of the ODEs

d

dt
Φn(t, x) = bn(t,Φn(t, x)),

Φn(0, x) = x.

Assume that ‖bn‖∞ + ‖∇t,xbn‖L1 is uniformly bounded and there exists a
constant C > 0 such that

C−1 ≤ det(∇xΦn(t, x)) ≤ C
for all (t, x) ∈ R × Rd and all n ∈ N. Then the sequence Φn is strongly
precompact in L1

loc.

It has been proved in [5] that Bressan’s conjecture would follow from the
next one:

Conjecture 1.5 (Renormalization conjecture). Any bounded, nearly incom-
pressible vector field b ∈ BVloc(R× Ω) has the renormalization property (in
the sense of Definition 1.3).

The renormalization property can also be generalized for the systems of
transport equations. Moreover, if η is another density of the nearly in-
compressible vector field b and b has the renormalization property with the
density ρ, then any ρ–weak solution of (1.2) is also an η–weak solution and
vice versa. In other words, the property of being a ρ–weak solution does not
depend on the choice of the density ρ provided that renormalization holds.
We refer to [15] for the details.

The problem of renormalization is also related to the chain rule problem
(see also [6, 10]). In particular, if the functions ρ, u and b were smooth,
renormalization property would be an easy corollary of the chain rule. Out
of the smooth setting, the validity of this property is a key step to get
uniqueness of weak solutions. Indeed, if we for simplicity consider Ω = Td,
then, integrating the equation above over the torus, we get

∂t

ˆ
Td

ρβ(u) dx = 0.

So if u0 = 0 then for β(y) = y2 we getˆ
Td

ρ(t, x)u2(t, x) dx = 0

for a.e. t which implies u(t, ·) = 0 for a.e. t.
Thus, uniqueness of weak solutions can be derived from the renormaliza-

tion property for b. In [16] the authors proved that renormalization property
holds under Sobolev regularity assumptions; some years later, L. Ambrosio
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[8] improved this result, showing that renormalization holds for vector fields
which are of class BV (locally in space) and have absolutely continuous di-
vergence.
Another approach giving explicit compactness estimates has been introduced
in [14], and further developed in [11, 18]: see also the references therein.

In the two dimensional autonomous case (Ω = R2, b does not depend on
time t) the problem of uniqueness is addressed in the papers [3], [1] and
[10]. Indeed, in two dimensions and for divergence-free autonomous vector
fields, renormalization theorems are available even under mild assumptions,
because of the underlying Hamiltonian structure. In [3], the authors char-
acterize the autonomous, divergence-free vector fields b on the plane such
that the Cauchy problem for the continuity equation (1.1) admits a unique
bounded weak solution for every bounded initial datum (1.3). The charac-
terization they present relies on the so called weak Sard property, which is
a (weaker) measure theoretic version of Sard’s Lemma. Since the problem
admits a Hamiltonian potential, uniqueness is proved following a strategy
based on splitting the equation on the level sets of this function, reducing
thus to a one-dimensional problem. This approach requires a preliminary
study on the structure of level sets of Lipschitz maps defined on R2, which
is carried out in the paper [1].

In [10] the steady nearly incompressible autonomous vector fields on Ω =
R2 were considered. Namely, an autonomous vector field b : R2 → R2 is
called steady nearly incompressible if it admits a steady density ρ̃, i.e.
there exists a function ρ̃, uniformly bounded from below and above by some
strictly positive constants, such that div(ρ̃b) = 0. It was proved in [10] that
any steady nearly incompressible BV vector field on R2 has the renormaliza-
tion property. In the present paper we extend this result to the non-steady
case.

Any steady nearly incompressible vector field is nearly incompressible,
but the inverse implication does not hold in general. For instance, consider
a vector field b : (0, 2) → R given by b(x) = |x − 1| − 1. If it was steady
nearly incompressible, the function ρ̃ ·b would be constant on (0, 2) and thus
ρ̃ could not be uniformly bounded from above by a positive constant. On
the other hand this vector field b is nearly incompressible: the solution to
the continuity equation ∂tρ+ ∂x(ρb) = 0 with the initial condition ρ|t=0 = 1
satisfies e−t ≤ ρ(t, x) ≤ et, as one can easily demostrate using the classical
method of characteristics, since b is Lipschitz. This simple example can be
generalized to higher dimensions.

The main result of this paper is a partial answer to the Conjecture 1.5:
Main Theorem. Suppose that Ω = T2 and b : Ω → R2 is a nearly incom-
pressible BV vector field (with density ρ). Then

(1) ∀u0 ∈ L∞(Ω) there exists a unique (ρ-)weak solution u ∈ L∞(I ×Ω)
to the transport equation (1.2) with the initial condition u|t=0 = u0.

(2) ∀u0 ∈ L∞(Ω) there exists a unique weak solution u ∈ L∞(I × Ω) to
the continuity equation (1.1) with the initial condition u|t=0 = u0.

(3) the field b has the renormalization property.
We have formulated (and will prove) our result for Ω = T2 for simplicity

only. Minor adjustments of the proofs (in particular, taking into account
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the curves with endpoints at infinity in Lemma ??, restricting to the curves
starting from bounded sets in Lemma 6.5 in order to make the integrals
finite, using more carefully that Radon measures are only locally finite on
R2 etc.) allow to prove an analogous result for Ω = R2.

We also show that if b 6= 0 a.e. then Main Theorem holds without assum-
ing BV regularity of b.

However, our approach heavily relies on the assumption that d = 2 and b
is autonomous (like the previous studies in [10]). In particular, we use rep-
resentation of bounded divergence-free vector fields v in the form v = ∇⊥H
where H is a Lipschitz function. In this case the images of the integral curves
of b can be locally represented by level sets of H and we use the properties
such level sets, which are strictly two-dimensional (in higher dimensions, for
example, the level sets H−1(y) can contain triods for an open set of values
y; we refer to [1] for further details).

1.1. Structure of the paper. In Section 2 we collect the preliminary re-
sults, including Disintegration Theorem, Coarea Formula and the results
from [1] concerning the structure of the level sets of Lipschitz functions on
the plane. In particular, we introduce the notion of locally regular level set
of a Lipschitz function H : U → R, where U is an open subset of T2 (or R2).
Roughly saying, given h ∈ R the level set H−1(h) is locally regular if it is
an (at most) countable union of disjoint simple Lipschitz curves.

In Section 2 we also recall Ambrosio’s Superposition Principle. By this
Principle the measure ρ(t, ·)L 2 (where ρ is a nonnegative bounded solution
of the continuity equation (1.4)) can be represented as an image of some
measure η on the space of curves C([0, T ];T2) (which is concentrated on the
solutions of the ODE γ′ = b(γ)) under the evaluation map et : γ 7→ γ(t):

ρ(t, ·)L 2 = et#η.

In Section 3 study the matching properties of the level sets of two Lipschitz
functions H1, H2 : U → R. We prove that if ∇H1 ‖ ∇H2 a.e. then for a.e.
x the connected components of the locally regular level sets of H1 and H2,
containing x, coincide.

The proof of the Main Theorem is based on the characterization of the
divergence equation

div(ub) = µ, u : T2 → R, (1.5)
provided in Lemmas ?? and ??. (Here µ is a Radon measure on T2.) Roughly
saying, we prove that (1.5) is equivalent, to a family of equations along the
images of the integral curves of b.

Such characterization is similar to the one obtained in [10] for steady
nearly incompressible vector fields. In the latter case, since div(ρb) = 0,
there exists a Lipschitz Hamiltonian H : T2 → R such that

ρb = ∇⊥H,
where ∇⊥ = (−∂2, ∂1). This allows one to split (1.5) into an equivalent
family of equations along the level sets of H (which are, essentially, the
images of the integral curves of b).

In the general nearly incompressible case we are not able to construct a
global Hamiltonian H directly as in the case of steady density. However, for
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any simply connected bounded open set U ⊂ T2 in Section 7.1 we construct
a local Hamiltonian HU . Let us present an outline of this construction.

Let η be a measure on C([0, T ];T2) given by Superposition Principle for
the density ρ of the field b. In order to define HU , we first restrict η to the
set TU of curves which stay in U for a positive amount of time and have the
endpoints outside U . This provides us with a bounded nonnegative solution
ρU of the continuity equation

∂tρU + div(ρUb) = 0 in D ′((0, T )× T2),

such that ρ(0, x) = ρ(T, x) = 0 for a.e. x ∈ U . Hence, integrating the
continuity equation above over time t, we infer that the function

rU (x) :=
ˆ T

0
ρU (t, x) dt

solves
div(rUb) = 0

in D ′(U). Therefore in U one can construct a local Hamiltonian HU such
that

rUb = ∇⊥HU

a.e. in U .
Given the function rU and the local Hamiltonian HU , in Section 4 we

characterize the divergence equation (4.1) in terms of the level sets of HU .
The results from [10] cannot be applied directly since rU can vanish on a
set of positive measure, in contrast to the steady nearly incompressible case.
Therefore in Section 4 we adopt the methods from [3], [1] and [10] in order
to treat this particular case.

A single local Hamiltonian may be insufficient to provide a useful charac-
terization of the divergence equation, since rU may vanish on a large part of
U , or even the whole U . Therefore, in Section ?? we introduce a countable
family of local Hamiltonians HB, B ∈ B, where B is the family of open
balls with rational radii and centers having rational coordinates.

Using the matching properties, presented in Section 3, in Section ?? we
“glue together” the regular level sets of HB, B ∈ B. We construct the
labelling function f , such that the resulting curves are the level sets of f .

In Section ?? we “join” the “local” characterizations of the divergence
equation, obtained for each ball B ∈ B using the results of Section 4. And
ultimately, in Section ?? we reduce the continuity equation to the divergence
equation.

The characterization of the divergence equation, obtained in Section ??, is
based on the fact that the endpoints of the level sets of f cannot be reached
in finite time by the integral curves of b (see Lemma ??). This property
holds provided that b 6= 0 a.e. or b ∈ BV. Indeed, in both cases the integral
curves of b cannot “stick” to the set {b = 0}, i.e. cannot stay there for a
positive amount of time (see Lemma 6.5).

In order to show that the set of “sticky” curves is η-negligible, in Section 5
we establish the locality of the divergence operator: if div(ub) = µ for some
measure µ, then µ vanishes on the set of points x such that b(x) = 0, x is a
Lebesgue point of b and b is approximately differentiable in x.
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1.2. Notation. Throughout the paper, we use the following notation:
• (X, d) is a metric space;
• 1E is the characteristic function of the set E ⊂ X, defined as
1E(x) = 1 if x ∈ E and 1E(x) = 0 otherwise;
• T2 = R2/Z2 is the two dimensional torus;
• Ω denotes in general a simply connected open set in R2;
• dist(x,E) is the distance of x from the set E, defined as the infimum

of d(x, y) as y varies in E;
• B(x, r) or, equivalently, Br(x) is the open ball in Rd with radius r

and centre x; B(r) is the open ball in Rd with radius r and centre 0;
•
ffl
E f dµ denotes the average of the function f over the set E with

respect to the positive measure µ, that is 
E
f dµ := 1

µ(E)

ˆ
E
f dµ,

• µ A denotes the restriction of a measure µ on a set A.
• |µ| is the total variation of a measure µ;
• µsing the singular component of µ with respect to the Lebesgue mea-

sure;
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• L d is the Lebesgue measure on Rd and H k is the k-dimensional
Hausdorff measure;
• Lip(X) is the space of real-valued Lipschitz functions; Lipc(X) is the

space of real-valued compactly supported Lipschitz functions;
• C∞c (Ω) is the space of smooth compactly supported functions, also

called test functions;
• BV(Ω) set of functions with bounded variation;
• D ′(Ω) is the space of distributions on the open set Ω;
• Γ := C([0, T ];T2) will denote the set of continuous curves in T2;
• Γ̇ := {γ ∈ Γ : γ(t) = γ(0), ∀t ∈ [0, T ]} denotes the set of constant

curves (whose graphs are fixed points);
• Γ̃ := Γ\Γ̇ denotes the set of non-constant curves (whose graphs have

positive length);
• et : Γ→ T2 is the evaluation map at time t, i.e. et(γ) = γ(t).

Moreover, if A ⊂ T2 is a measurable set,
• ΓA :=

{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0

}
denotes the set of

curves which stay in A for a positive amount of time;
• Γ̃A := Γ̃ ∩ ΓA denotes the set of non-constant curves which stay in
A for a positive amount of time;
• Γ̇A := Γ̇∩ ΓA denotes the set of constant curves which stay in A for

a positive amount of time.
• for every s ∈ [0, T ], we denote by

ΓsA := {γ ∈ Γ : γ(s) ∈ A} ,

Γ̃sA :=
{
γ ∈ Γ̃ : γ(s) ∈ A

}
,

Γ̇sA :=
{
γ ∈ Γ̇ : γ(s) ∈ A

}
accordingly the sets of all curves, non-constant curves and constant
curves, which at time s belong to A;
• TA := {γ ∈ ΓA : γ(0) /∈ A, γ(T ) /∈ A} denotes the set of curves which

stay in A for a positive amount of time and have the endpoints out-
side A.

If A ⊆ R2 (or in T2), we denote by

Conn(A) :=
{
C ⊂ A : C is a connected component of A

}
,

Conn?(A) :=
{
C ∈ Conn(A) : H 1(C) > 0

}
,

and
A? :=

⋃
C∈Conn?(A)

C.

Given x ∈ R2 (or in T2) we denote by

connx(A)

the connected component of A which contains x.
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When the measure is not specified, it is assumed to be the Lebesgue
measure, and we often write ˆ

f(x) dx

for the integral of f with respect to L d.
Let µ be a Radon measure on a metric space X. Let Y be a metric

space and let f : X → Y be a Borel function. We denote by f#µ the image
measure of µ under the map f . In particular, for any ϕ ∈ Cc(Y ) we haveˆ

X
ϕ(f(x)) dµ(x) =

ˆ
Y
ϕ(y) d(f#µ)(y).

2. Preliminaries

2.1. Disintegration of a measure. The following well-known result can
be considered as a curvilinear analog of Fubini’s theorem (see Theorem 2.28
in [7] or for the most general statement Section 452 of [17]):

Theorem 2.1 (Disintegration). Let µ be a Radon measure on a metric space
X. Let Y be a metric space and let f : X → Y be a Borel function. Let ν
be a Radon measure on Y such that f#|µ| � ν. Then there exists a unique
measurable family of Radon measures {µy}y∈Y such that for ν-a.e. y ∈ Y
the measure µy is concentrated on the level set f−1(y) and

µ =
ˆ
y
µy dν(y),

that is, for any φ ∈ Cc(X)ˆ
X
ϕ(x) dµ(x) =

ˆ
Y

(ˆ
X
ϕ(x) dµy(x)

)
dν(y).

Definition 2.2. The family {µy}y∈Y given by Theorem 2.1 is called the
disintegration of µ with respect to f (and ν).

2.2. Coarea formula. Suppose that H is a real function on R2 (or T2).
A corollary of the coarea formula (see e.g. [7] for the general statement)
provides an additional information on the structure of the disintegration of
|∇H|L 2 with respect to H:

Lemma 2.3. Let {$h}h∈R denote the disintegration of the measure |∇H|L 2

with respect to H. Then for a.e. h ∈ R we have H 1(Eh) < ∞ and $h =
H 1 Eh, i.e. the disintegration of |∇H|L 2 with respect to H is given by

|∇H|L 2 =
ˆ
R

H 1 Eh dh.

2.3. Structure of level sets of Lipschitz functions. Let U be a bounded,
open set in T2 (or in R2) and let f : U → R be a Lipschitz function. For any
r ∈ R, we denote by Er := f−1(r) the corresponding level set.

Theorem 2.4 ([1, Thm. 2.5], or [10, Thm. 5.4]). Suppose that f : U → R
is a Lipschitz function. For any r ∈ R, let Er := f−1(r). Then the following
statements hold for L 1-a.e. r ∈ f(U):

(1) H 1(Er) <∞ and Er is countable H 1-rectifiable;
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(2) for H 1-a.e. x ∈ Er the function f is differentiable at x with
∇f(x) 6= 0;

(3) Conn?(Er) is countable and every C ∈ Conn?(Er) is a simple (pos-
sibly closed) curve;

(4) H 1(Er \ E?r ) = 0.

Definition 2.5. We will say that the level set Er is locally regular if it
satisfies conditions (1)-(2)-(3)-(4) (or it is empty).

In these terms, the theorem above states that for a.e. r ∈ R the level set
Er is locally regular.

Let C ∈ Conn?(Er) be a connected component of some regular level set
Er. Let γ : I → T2 be an injective Lipschitz parametrization of C, where
I = R/`Z or I = (0, `) for some ` > 0 is the domain of γ. In view of
Remark 4.1) we can assume that the directions of b and ∇⊥H agree H 1-
a.e. on C. So there exists a constant $ ∈ {+1,−1} such that

b(γ(s))
|b(γ(s))| = $

γ′(s)
|γ′(s)| (2.1)

for a.e. s ∈ I.

Definition 2.6. We will say that γ is an admissible parametrization of
C if $ = +1. In the rest of the text we will consider only admissible
parametrizations of the connected components C.

2.4. Canonical disintegration of the Lebesgue measure with respect
to a Lipschitz function. Let U be a bounded open set in R2 (or T2).
Suppose that H : U → R is a Lipschitz function By Theorem 2.4 there
exists a negligible set N1 such that the level set Eh := H−1(h) is locally
regular whenever h /∈ N1. Moreover, let N2 denote the negligible set on
which the measure (H#L 2)sing is concentrated, where (H#L 2)sing is the
singular part of H#L 2 with respect to L 1. Then we set

N := N1 ∪N2 and E? := ∪h/∈NE?h (2.2)
Note that the set E? is measurable (see Appendix of [1] or [10]). Informally,
E? is the set of all “good parts” of the locally regular level sets of H.

Let S be the critical set of H, defined as the set of all x ∈ U where H is
not differentiable or ∇H(x) = 0. In view of Rademacher’s theorem we have
S = {∇H = 0} mod L 2.

Let us decompose U into a disjoint union as follows:
U = (U ∩ E?) ∪ (U \ E?) = (U ∩ E? ∩ S) ∪ (U ∩ E? \ S) ∪ (U \ E?)

By Lemma 2.3 we have ∇H = 0 a.e. on U \ E? and

L 2 (U ∩ E? \ S) =
ˆ
chH

2 Eh dh

where ch := 1/|∇H| ∈ L1(H 1 Eh).
By definition of the set E? we have H#(L 2 (U ∩E? ∩ S))� L 1 hence

by Disintegration theorem

L 2 (U ∩ E? ∩ S) =
ˆ
σh dh,
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where {σh}h∈R is the disintegration of L 2 (U ∩E? ∩S) with respect to H
and L 1.

Finally let

ζ := H#
(
L 2 (U \ E?)

)
. (2.3)

By definition of the set N the measure ζ is concentrated on N hence by
Disintegration theorem

L 2 (U \ E?) =
ˆ
κh dζ(h),

where {κh}h∈R is the disintegration of L 2 (U \E?) with respect to H and
ζ.

Bringing together the results above, we obtain

L 2 U =
ˆ (

chH
1 Eh + σh

)
dh+

ˆ
κh dζ(h), (2.4)

Definition 2.7. The expression on the right-hand side of (2.4) is called the
canonical disintegration of the Lebesgue measure L 2 U with respect to H.

Let us summarize the properties of the canonical disintegration of the
Lebesgue measure:

Lemma 2.8 ([3, Lemma 2.8]). Suppose that the canonical disintegration of
the Lebesgue measure is given by (2.4). Then

(1) ch ∈ L1(H 1 E?h), ch > 0 a.e.;
(2) ch = 1/|∇H| a.e. (w.r.t. H 1 E?h);
(3) σh is concentrated on E?h ∩ {∇H = 0};
(4) κh is concentrated on E?h ∩ {∇H = 0};
(5) ζ is concentrated on N (hence ζ ⊥ L 1).
(6) σh ⊥H 1 Eh.

The proof follows directly from Definition 2.7 and Theorem 2.4.
Finally, let us mention a covering property of the set E?:

Lemma 2.9. Let E? be the set defined in (2.2). Then

E? ⊃ {∇H 6= 0} mod L 2.

Proof. Suppose that P := {∇H 6= 0} \ E has positive measure. Then

0 <
ˆ
P
|∇H| dx =

ˆ ˆ
1P dH

1 Eh dh = 0

where the first equality is due to Coarea formula (Lemma 2.3) and the second
equality holds since 1P is zero on Eh for a.e. h. �

Note that in general E? can contain a subset of {∇H = 0} with positive
measure (see [1]). However, in the next section we show that, if H has the
so-called weak Sard property, then in fact E? = {∇H 6= 0} mod L 2.
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2.5. The weak Sard property. Let H : U → R be a Lipschitz function
and let S be the critical set of H, defined as in Section 2.4. We are interested
in the following property:
the push-forward according to f of the restriction of L 2 to S is singular
with respect to L 1, that is

H#
(
L 2 S

)
⊥ L 1.

This property clearly implies the following weak Sard property, which is used
in [3, Section 2.13]:

H#
(
L 2 (S ∩ E?)

)
⊥ L 1,

where the set E? is the union of all connected components with positive
length of all level sets of H (see (2.2)). We point out that the relevance
of the weak Sard property in the framework of transport and continuity
equation is explained is [3, Theorem 4.7].

Informally, the weak Sard property means that the “good” level sets of H
do not intersect the critical set S, apart from a negligible set. In terms of
the canonical disintegration of the Lebesgue measure, the definition of the
weak Sard property can be reformulated as follows:

Lemma 2.10. Suppose that the canonical disintegration of the Lebesgue
measure is given by (2.4). Then H has the weak Sard property if and only
if σh = 0 for a.e. h.

We refer to [3] for an example of Lipschitz function such that σh is a
Dirac delta on a non-negligible set of h. (In particular, this function does
not posess the weak Sard property.)

We conclude this section with the following corollary of Lemma 2.10 con-
cerning the covering properties of the set E? defined in (2.2):

Lemma 2.11. Suppose that H has the weak Sard property. Let E? be the
set defined in (2.2). Then

E? = {∇H 6= 0} mod L 2.

Proof. The argument is similar to Lemma 2.9. Let Q = E? \ {∇H 6= 0}.
By (2.4)

L 2(Q) =
ˆ (ˆ

Q
dσh

)
dh = 0

since by Lemma 2.10 σh = 0 for a.e. h. �

2.6. Ambrosio’s Superposition Principle. Consider the continuity equa-
tion in the form {

∂tµt + div(bµt) = 0,
µ0 = µ,

(2.5)

where [0, T ] 3 t 7→ µt is a measure valued function and b : [0, T ]× Rd → Rd
is a bounded, Borel vector field. A solution to (2.5) has to be understood
in distributional sense.



RENORMALIZATION FOR NEARLY INCOMPRESSIBLE BV VECTOR FIELDS 13

In [8], L. Ambrosio proved the Superposition Principle. According to this
principle, any nonnegative measure-valued solution to the continuity equa-
tion in fact is transported by a “probabilistic” flow of the ODE associated
with b:

Theorem 2.12 (Superposition Principle). Let b : [0, T ] × Rd → Rd be a
bounded, Borel vector field and let [0, T ] 3 t 7→ µt be a nonnegative, locally
finite, measure-valued solution of the continuity equation (2.5). Then there
exists a measurable family of probability measures {ηx}x∈Rd on Γ such that

µt =
ˆ
et#ηx dµ̄(x),

for any t ∈ (0, T ) and (e0)# ηx = δx. Moreover, ηx is concentrated on
absolutely continuous integral solutions γ of the ODE γ′ = b(γ) starting
from γ(0) = x, for µ-a.e. x ∈ Rd.

In other words, any nonnegative measure-valued solution µt of the conti-
nuity equation (2.5) can be represented as

µt = et#η, (2.6)
where η is some nonnegative measure on the space of continuous curves Γ,
which is concentrated on the integral curves of the vector field b. In terms
of Theorem 2.12 this measure η can be defined by

η =
ˆ
Rd

ηx dµ̄(x).

(I.e. the family {ηx}x∈Rd is the disintegration of η under the map e0.)
Theorem 2.12 also holds if we replace Rd with the torus T2, since any

vector field on T2 can be considered as a periodic vector field on R2.

3. Matching properties of Lipshitz functions

Suppose that in a bounded simply connected open set U in R2 (or in T2)
we have two Lipshitz functions: H1 : U → R and H2 : U → R. In this section
we study the matching properties of the locally regular level sets of H1 and
H2. Let E?i denote the set defined in (2.2) for Hi, i = 1, 2. Let Ci,x denote
the connected component of the level set H−1

i (Hi(x)), containing x.

Definition 3.1. A point x ∈ U is called a matching point of H1 and H2
in U , if the following property holds:

if x ∈ E?i then Hj is constant on Ci,x, i 6= j.

Remark 3.2. If x ∈ E?1 ∩E?2 is a matching point, then C1,x = C2,x. Indeed,
since Hj is constant on Ci,x and Ci,x is connected, it holds that Cj,x ⊃ Ci,x.
Interchanging i and j we get Ci,x = Cj,x.

As usual, given two vectors a and b in R2 we write a ‖ b if a = αb or
b = αa for some real number α. The following lemma provides a sufficient
condition for H1 and H2 to match in a.e. point of U :

Lemma 3.3 (Matching). Let H1, H2 be defined as above. If ∇H1 ‖ ∇H2
a.e. on U , then there exists an L 2-negligible set X ⊂ U such that any
x ∈ U \X is a matching point of H1 and H2 in U .
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Proof. Let Xi denote the set of x ∈ U where Hi is not differentiable and let

X := {x ∈ U : ∇H1(x) ∦ ∇H2(x)} ∪X1 ∪X2.

By disintegration (2.4) with respect to Hi we have

0 = L 2(E?i ∩X) =
ˆ (ˆ

Ei,h∩X
ci,h dH

1 +
ˆ
Ei,h∩X

dσi,h

)
dh,

where Ei,h := H−1
i (h). Hence there exists an L 1-negligible set Ni such that

for any h ∈ H(E?i ) \Ni it holds that

H 1(Ei,h ∩X) = 0. (3.1)

For any admissible parametrization γ : I → U of any nontrivial connected
component C of Ei,h we have H 1 C = γ#(|γ′|L 1). Then from (3.1) it
follows that

γ′ = 0 a.e. on γ−1(X).
Hence for a.e. s ∈ I the map s 7→ Hj(γ(s)) is differentiable and, moreover,

∂sHj(γ(s)) = (∇Hj)(γ(s)) · γ′(s) = 0,

since γ′(s) ‖ (∇⊥Hi)(γ(s)) ⊥ (∇Hj)(γ(s)) for a.e. s ∈ I. Hence the map
s 7→ Hj(γ(s)) is constant on I. �

4. Characterisation of the divergence equation for steady
nearly incompressible vector fields with vanishing density

Consider a bounded simply connected open set U in R2 (or T2). Suppose
that b : U → R2 is a bounded vector field on U . Let u : U → R be a bounded
function and suppose that µ is a Radon measure on U . In this section we
study the divergence equation

div(ub) = µ (4.1)

in D ′(U) under assumption that there exists a bounded non-negative func-
tion r : U → R such that

div(rb) = 0 (4.2)
in D ′(U); since U is simply connected, there exists a Lipschitz Hamiltonian
H : U → R such that

∇⊥H(x) = r(x)b(x), for L 2-a.e. x ∈ U. (4.3)

Remark 4.1. Thanks to (2.4) we always can add to the set N (defined in
(2.2)) if necessary, an L 1-negligible set so that for any h /∈ N for H 1-a.e.
x ∈ E?h we have r(x) > 0, b(x) 6= 0 and r(x)b(x) = ∇⊥H(x).

Remark 4.2. We refer to H as the local Hamiltonian, since the function
r may vanish on a set with positive measure. Therefore different choices
of r provide, in general, different local Hamiltonians H and consequently
different information on the equation (4.1).

The “global” case when r 6= 0 a.e. in U was treated in [10]. Therefore the
goal of this section is to generalize the techniques from [10] in order to treat
the “local” case, i.e. to allow r to vanish on a set with positive measure.
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The main result of this section is characterisation of the equation (4.1)
in terms of the level sets of the Hamiltonian H. For the convenience of the
reader we present this characterisation in several lemmas.

First, we reduce the divergence equation to an equivalent family of equa-
tions along the level sets Eh of H:

Lemma 4.3. Let u, r : U → R and b : U → R2 be bounded functions. Sup-
pose that r ≥ 0 a.e. in U . Let H : U → R be a Lipschitz function such that
(4.3) holds. Suppose that the canonical disintegration of L 2 U with respect
to H is given by (2.4). Then a Radon measure µ on U satisfies (4.1) in
D ′(U) if and only if

• the disintegration of µ with respect to H has the form

µ =
ˆ
µh dh+

ˆ
νh dζ(h), (4.4)

where ζ is defined in (2.3);
• for L 1-a.e. h

div
(
uchbH

1 Eh
)

+ div(ubσh) = µh; (4.5)

• for ζ-a.e. h
div(ubκh) = νh. (4.6)

Then we show that for any locally regular level set Eh the equation (4.5)
can be split into at most countable family of the equations along the non-
trivial connected components of Eh:

Lemma 4.4. The equation (4.5) holds iff
• for any nontrivial connected component C of Eh it holds

div
(
uchbH

1 C
)

+ div(ubσh C) = µh C; (4.7)

• it holds

div(ubσh (Eh \ E?h)) = µh (Eh \ E?h). (4.8)

Then we show that (4.7) in fact can also be split into two different equa-
tions:

Lemma 4.5. Equation (4.7) holds iff

div
(
uchbH

1 C
)

= µh C, (4.9a)

div(ubσh C) = 0. (4.9b)

And finally we derive an equivalent parametric version of the equation (4.9a):

Lemma 4.6. Equation (4.9a) holds iff for any admissible parametrization
γ of C

∂s(ûĉh|b̂|) = µ̂h (4.10)
where γ#µ̂h = µh C, û = u ◦ γ, ĉh = ch ◦ γ and b̂ = b ◦ γ.

We now proceed with the proofs.
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4.1. Reduction on the level sets. First we reduce the divergence equa-
tion on the level sets of H using appropriate test functions.

Proof of Lemma 4.3. Let λs be a measure on R such that H#|µ| � L 1 +
ζ + λs, where ζ is defined as in Lemma 2.8 and λs ⊥ L 1 + ζ. Applying the
Disintegration Theorem, we have that

µ =
ˆ
µhdh+

ˆ
νhdζ(h) +

ˆ
λhdλ

s(h), (4.11)

with µh, νh, λh concentrated on {H = h}. Writing equation (4.1) in distri-
bution form we getˆ

T2
u(b · ∇φ) dx+

ˆ
φdµ = 0, ∀φ ∈ C∞c (U).

By an elementary approximation argument, it is clear that we can use as
test functions φ Lipschitz with compact support.

Using the disintegration of Lebesgue measure (2.4) and the disintegration
(4.11) we thus obtainˆ [ˆ

T2
uch(b · ∇φ) dH 1 Eh +

ˆ
T2
u(b · ∇φ) dσh

]
dh

+
ˆ ˆ

T2
u(b · ∇φ) dκh dζ(h) +

ˆ ˆ
T2
φdµh dh

+
ˆ ˆ

T2
φdνh dζ(h) +

ˆ ˆ
T2
φdλh dλ

s(h) = 0,

(4.12)

for every φ ∈ Lipc(U). In particular we can take

φ = ψ(H(x))ϕ(x), ψ ∈ C∞(R), ϕ ∈ C∞c (U),

so that we can rewrite (4.12) asˆ
ψ(h)

[ˆ
T2
uch(b · ∇ϕ) dH 1 Eh +

ˆ
T2
u(b · ∇ϕ) dσh

)
dh

+
ˆ
ψ(h)

ˆ
T2
u(b · ∇ϕ) dκh dζ(h) +

ˆ
ψ(h)

ˆ
T2
ϕdµh dh

+
ˆ
ψ(h)

ˆ
T2
ϕdνh dζ(h) +

ˆ
ψ(h)

ˆ
T2
ϕdλh dλ

s(h) = 0,

because
b · ∇φ = ψ(H(x))b · ∇ϕ(x)

for L 2-a.e. x ∈ T2.
Since the equalities above hold for all ψ ∈ C∞(R) we haveˆ [ˆ

T2
uch(b · ∇ϕ) dH 1 Eh +

ˆ
T2
u(b · ∇ϕ) dσh

]
dh+

ˆ ˆ
T2
ϕdµh dh = 0,

ˆ [ˆ
T2
u(b · ∇ϕ) dκh +

ˆ
T2
ϕdνh

]
dζ(h) = 0,

ˆ ˆ
T2
ϕdλh dλ

s(h) = 0,

which give, respectively, (4.5), (4.6) and (4.4). �
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4.2. Reduction on connected components of level sets. If K ⊂ Rd is
a compact then, in general, not any connected component C of K can be
separated from K \ C by a smooth function. However, it can be separated
by a sequence of such functions:

Lemma 4.7 (Lemma 5.3 from [10]; see also [1, Section 2.8]). If K ⊂ Rd is
compact then for any connected component C of K there exists a sequence
(φn)n∈N ⊂ C∞c (Rd) such that

(1) 0 ≤ φn ≤ 1 on Rd and φn ∈ {0, 1} on K for all n ∈ N;
(2) for any x ∈ C, we have φn(x) = 1 for every n ∈ N;
(3) for any x ∈ K \ C, we have φn(x)→ 0 as n→ +∞;
(4) for any n ∈ N, we have supp∇φn ∩K = ∅.

With the aid of this lemma we can now study the equation (4.5) on the
nontrivial connected components of the level sets. In view of Lemma 4.3 in
what follows we always assume that h /∈ N (see (2.2)).

Proof of Lemma 4.4. For any Borel set A ⊂ T2 we introduce the following
functional

ΛA(ψ) :=
ˆ
A
uch(b · ∇ψ) dH 1 Eh +

ˆ
A
u(b · ∇ψ) dσh +

ˆ
A
ψ dµh,

for all ψ ∈ C∞c (U).
Now fix a connected component C of Eh and take a sequence of functions

(φn)n∈N given by Lemma 4.7 (applied with K := Eh). By assumption, we
have that

ΛEh
(ψφn) = 0 (4.13)

for every ψ ∈ C∞c (U) and for every n. Let us pass to the limit as n→∞.
On one hand we haveˆ

ψφn dµh =
ˆ
C
ψ dµ+

ˆ
Eh\C

ψφn dµ→
ˆ
C
ψ dµ

because the second term converges to 0 since φn → 0 pointwise on Eh \ C.
On the other hand ∇(ψφn) = ψ∇φn + φn∇ψ. In the terms with φn∇ψ

we pass to the limit as above. The terms with the product ψ∇φn identically
vanish thanks to the condition (4) on φn in Lemma 4.7. Therefore, we have
that for every ψ ∈ C∞c (U)

ΛEh
(ψφn)→

ˆ
C
uch(b · ∇ψ) dH 1 +

ˆ
C
u(b · ∇ψ) dσh +

ˆ
C
ψ dµh = ΛC(ψ),

as n→ +∞. Since (4.13) holds for every n, we deduce that ΛC(ψ) = 0 and
this gives us (4.7).

In order to get (4.8), it is enough to observe that E?h is a countable union
of connected component C, therefore (from the previous step) we deduce
thatˆ
E?

h

uch(b ·∇ψ) dH 1 +
ˆ
E?

h

u(b ·∇ψ) dσh+
ˆ
E?

h

ψ dµh = 0, ∀ψ ∈ C∞c (U).

Hence

ΛEh\E?
h

=
ˆ
E?

h
\Eh

uch(b·∇ψ) dH 1+
ˆ
E?

h
\Eh

u(b·∇ψ) dσh+
ˆ
E?

h
\Eh

ψ dµh = 0,
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for every ψ ∈ C∞c (U). Remembering that H 1(E?h \ Eh) = 0 by Theorem
2.4 we get (4.8) and this concludes the proof.

The converse implication can be easily obtained by summing the equations
(4.7) and (4.8). �

Before proving Lemma 4.5 we need to prove Lemma 4.6, i.e. establish the
parametric version of the equation (4.9a). The proof of Lemma 4.6 we be
based on the following result (we refer to [1, Section 7] for its proof):

Lemma 4.8 (Density lemma). Let a ∈ L1(I) and µ a Radon measure on
I, where I = R/`Z or I = (0, `) for some ` > 0. Suppose that γ : I → Ω is
an injective Lipschitz function such that γ′ 6= 0 a.e. on I and γ(0, `) ⊂ Ω.
Consider the functional

Λ(φ) :=
ˆ
I
φ′a dt+

ˆ
I
φdµ, ∀φ ∈ Lipc(I).

If Λ(ϕ ◦ γ) = 0 for any ϕ ∈ C∞c (Ω) then Λ(φ) = 0 for any φ ∈ Lipc(I).

Proof of Lemma 4.6. Let us recall a corollary from Area formula: if γ : I →
T2 is an injective Lipschitz parametrization of C then

H 1 C = γ#
(
|γ′|L 1

)
.

Using this formula the distributional version of (4.9a),ˆ
C
uchb · ∇φdH 1 C +

ˆ
C
φdµh = 0, ∀φ ∈ C∞c (U),

can be written asˆ
I
u(γ(s))ch(γ(s))b(γ(s)) · (∇φ)(γ(s))|γ′(s)| ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0

where µ̂h is defined by µ̂h :=
(
γ−1)

# µh.
Using (2.1) we can write the equation above asˆ
I
u(γ(s))ch(γ(s))γ′(s)(∇φ)(γ(s))|b(γ(s))| ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0,

which reads asˆ
I
û(s)ĉh(s)|b̂(s)|∂s(φ(γ(s))) ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0.

Since the equation above holds for any φ ∈ C∞c (U) it remains to apply
Lemma 4.8. �

Finally, let us turn to the proof of Lemma 4.5.

Proof of Lemma 4.5. This proof would be fairly easy in the case when γ is
a straight line. Roughly saying, in this case (4.7) would read asˆ
u(x)ch(x)b(x)ψ′(x) dx+

ˆ
u(x)ch(x)b(x)ψ′(x) dσh(x)+

ˆ
ψ(x) dµ(x) = 0,

ψ ∈ C∞0 (R). Since σh is concentrated on a L 1-negligible set S, any φ ∈ C1
0

can be approximated in C0-norm with a sequence of C1-functions φn having
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0-derivative on S. Consequently, φ′n converge to φ′ weak* in L∞ as n→∞.
Then, substituting ψ = φn and passing to the limit as n→∞ we getˆ

u(x)ch(x)b(x)φ′(x) dx+
ˆ
φ(x) dµ(x) = 0.

Hence the only technicality here is to repeat this argument on a curve.
Let Λ(φ) := M(φ) +N(φ), where

M(φ) :=
ˆ
C
uch(b · ∇φ) dH 1 +

ˆ
C
φdµh

and
N(φ) :=

ˆ
C
ub · ∇φdσh

for every φ ∈ C∞c (U).
Fix a test function φ: we are going to “perturb” φ in such a way that

N(φ) becomes arbitrarily small and M(φ) remains almost unchanged. Since
Λ(φ) = 0 we will obtain that |M(φ)| < ε and this will imply that M(φ) =
N(φ) = 0.

By Lemma 2.8, we have σh ⊥ H 1 C therefore there exists a H 1-
negligible set S ⊂ C such that σh is concentrated on S. Moreover, by inner
regularity, for every n ∈ N, we can find a compact K ⊂ S such that

σh(S \K) < 1
n
.

Using the fact that H 1(K) = 0, for every n ∈ N, we can find countably
many open balls {Brj (zj)}j∈N which cover K and whose radii rj satisfy∑

j∈N
rj <

1
n
.

Furthermore, by compactness, we can extract from {Brj (zj)}l∈N a finite
subcovering, {Brj (zj)} with j = 1, . . . , ν where ν = ν(n) ∈ N (we stress
that ν depends on n).

For every j ∈ {1, . . . , ν}, let

P j,ni := (zj,i − rj , zj,i + rj)

denote the projection of Brj (zj) onto the xi-axis, with i = 1, 2. Since P j,ni
is an open interval we can find a smooth function ψj,ni : R→ R such that

ψj,ni (ξ) =
{

0 ξ ∈ P j,ni ,

1 dist(ξ, ∂P j,ni ) > 2ri,

and 0 ≤ ψj,ni ≤ 1 for every ξ ∈ R. Now we consider the product ψni :=
ψ1,n
i ψ2,n

i · · ·ψ
ν,n
i and we define the functions χni : R→ R as

χni (ξ) :=
ˆ ξ

0
ψni (w) dw

for i = 1, 2 and n ∈ N. Now we set χn(x) := (χn1 (x), χn2 (x)) and φn := φ◦χn.
Since ‖χn − id‖∞ ≤ 4

∑
i ri ≤ 4

n we deduce that φn → φ uniformly in C
because

|φn(x)− φ(x)| ≤ ‖∇φ‖∞‖χn − id‖∞ → 0
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as n→ +∞.
Let us now take an admissible parametrization of C, γ : I → R, and let

us introduce the functions φ̂n := φn ◦ γ. Using for instance the density
of C1 functions in L1(I), we can actually show that ∂sφ̂n ⇀? ∂sφ̂ in weak?
topology of L∞. Passing to the parametrization as in the proof of Lemma 4.6
we get ˆ

C
uch(b · ∇φn) dH 1 =

ˆ
I
ûĉhb̂ ∂sφ̂n ds,

where we denote by ·̂ the composition with γ.
Using weak? convergence, we obtain thatˆ

C
uch(b · ∇φn) dH 1 →

ˆ
C
uch(b · ∇φ) dH 1.

On the other hand, by uniform convergence, we immediately getˆ
φn dµh →

ˆ
φdµh,

as n→ +∞. In particular, we have that M(φn)→M(φ).
Now observe that ∇φn = 0 on K by construction, hence we get

N(φn) ≤
ˆ
S\K
|ub||∇φn|dσh ≤ ‖ub‖∞‖∇φ‖∞

1
n
→ 0

and this implies that N(φ) = 0. Therefore, 0 = Λ(φ) = M(φ), which
concludes the proof. �

5. Locality of the divergence

In this section we prove that the if div(ub) is a measure, then it is 0 on
the set

M :=
{
x ∈ T2 : b(x) = 0, x ∈ Db and ∇apprb(x) = 0

}
, (5.1)

where Db is the set of approximate differentiability points and ∇apprb is
the approximate differential, according to Definition [7, Def. 3.70]. For
shortness, we will call this property locality of the divergence.

Let U be an open set in Rd (or in Td), d ∈ N. The main result of this
section is the following

Proposition 5.1. u ∈ L∞(U) and suppose that div(ub) = λ in the sense of
distributions, where λ is a Radon measure on U . Then |λ| M = 0.

Note that we do not assume any weak differentiability of u or ub, so the
conclusion of Proposition 5.1 does not follow immediately from the stan-
dard locality properties of the approximate derivative (see e.g. [7], Proposi-
tion 3.73).

The proof is based on Besicovitch-Vitali covering Lemma ([7, Thm. 2.19])
and uses some basic facts about the trace properties of L∞ vector fields
whose divergence is a measure (we refer to [13, 9] or [15]). In particular, we
recall the following Theorem (for the proof, see [15, Prop 7.10]):



RENORMALIZATION FOR NEARLY INCOMPRESSIBLE BV VECTOR FIELDS 21

Theorem 5.2 (Fubini’s Theorem for traces). Let Ω ⊂ Rd be an open set and
B ∈ L∞loc(Ω,Rd) be a vector field whose distributional divergence divB =: µ
is a Radon measure with locally finite variation in Ω. Let F ∈ C1(Ω). Then
for a.e. t ∈ R we have

Tr(B, ∂{F > t}) = B · ν H d−1-a.e. on Ω ∩ ∂{F > t}, (5.2)

where ν denotes the exterior unit normal to ∂{F > t} and the distribution
Tr(B, ∂Ω′) is defined by

〈Tr(B, ∂Ω′), φ〉 :=
ˆ

Ω′
φdµ+

ˆ
Ω′
∇φ ·B dx, ∀φ ∈ C∞c (Ω).

for every open subset Ω′ ⊂ Ω with C1 boundary.

Furthermore, we will use the following elementary

Lemma 5.3. Let G : Rd → R be a bounded, Borel function. For every r > 0
there exists a set of positive measure of real numbers s = s(r) ∈ [r, 2r] such
that ˆ

∂Bs(r)

|G(x)| dH d−1(x) ≤ 1
r

ˆ
B2r

|G(y)| dy.

Proof of Proposition 5.1. Fix an arbitrary x ∈ M . For brevity let Br :=
Br(x). By (5.2) with F (y) := |x− y|2, there exists an L 1-negligible set Nx

such that for any positive number r /∈ Nx we have

|λ(Br)| =
∣∣∣∣∣
ˆ
∂Br

ub · ν dH d−1
∣∣∣∣∣ ≤ C

ˆ
∂Br

|b| dH d−1,

where ν denotes the exterior unit normal to ∂Br. By Lemma 5.3

C

ˆ
∂Br

|b| dH d−1 ≤ C

r

ˆ
B2r

|b(x)| dx = o(rd)

because, by definition of M , we have
ffl
Br
|b| dx = o(r). Therefore

|λ(Br)| = o(rd). (5.3)

Fix ε > 0. By (5.3) for any x ∈ M there exists δx > 0 such that for any
positive number r < δx such that r /∈ Nx we have

|λ(Br(x))| ≤ εrd. (5.4)

Let S ⊂M be an arbitrary bounded subset.
By regularity of λ, there exists a bounded open set O ⊃ S such that

|λ|(O \S) < ε. Hence, for any x ∈ S there exists ρx > 0 such that B(x, r) ⊂
O for any positive number r < ρx. Consequently

F :=
{
B(x, r) : x ∈ S, r < min(ρx, δx), r /∈ Nx

}
is a fine covering of S.

Hence we can apply Besicovitch-Vitali covering Lemma ([7, Thm. 2.19]):
there exists a countable disjoint subfamily {Bi}i∈N ⊂ F such that

|λ|
(
S \

⋃
i

Bi

)
= 0.
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On the other hand, since
⋃
iBi ⊂ O by construction, we have

|λ|
(⋃

i

Bi \ S
)
< ε.

Using (5.4), since the balls Bi are disjoint, we have

λ

(⋃
i

Bi

)
=
∑
i

λ(Bi) ≤ εL 2
(⋃

i

Bi

)
.

Hence

λ(S) = λ

(⋃
i

Bi

)
− λ

(⋃
i

Bi \ S
)
→ 0

as ε ↓ 0. Hence λ S = 0 and, by arbitrariness of S ⊂M , λ M = 0. �

6. Global properties of nearly incompressible vector fields

Suppose that b : T2 → R2 is bounded nearly incompressible vector field
with density ρ : [0, T ]× T2 → R. By Definition 1.1 and Theorem 2.12 there
exists a measure η on Γ such that

ρ(t, ·)L 2 = et#η. (6.1)

6.1. Comparison between L 2 and η. In this section we study the rela-
tion between η and L 2. Namely, we prove that a set A ⊂ T2 is L 2-negligible
if and only if the set of curves which stay in A for a positive amount of time
is η-negligible. We also show that A is L 2-negligible if and only if for any
s ∈ [0, T ] the set of curves which pass through A at time s is η-negligible.

Lemma 6.1. Let A ⊂ T2 be a measurable set. Then L 2(A) = 0 if and only
if η(ΓA) = 0 where

ΓA :=
{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0

}
.

Proof. Let us prove first that L 2(A) = 0 implies η(ΓA) = 0. We de-
note by ρA the density such that ρA(t, ·)L 2 = et# (η ΓA) and rA(x) :=´ T

0 ρA(t, x) dt. We have, using Fubini,

0 = L 2(A) = rAL 2(A) =
ˆ T

0

ˆ
Γ
1A(x)ρA(t, x) dx dt

=
ˆ T

0

ˆ
Γ
1A(γ(t)) dη(γ) dt

=
ˆ

Γ

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

L 1({t ∈ [0, T ] : γ(t) ∈ A}
)
dη(γ),

hence, L 1({t ∈ [0, T ] : γ(t) ∈ A}) = 0 for η-a.e. γ ∈ ΓA.
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For the opposite direction, using that ρ is uniformly bounded from below
by 1/C, we get

T

C
L 2(A) = T

C

ˆ
1A(x) dx = 1

C

ˆ T

0

ˆ
1A(x) dx dt

≤
ˆ T

0

ˆ
1A(x)ρ(t, x) dx dt

=
ˆ T

0

ˆ
Γ
1A(γ(t)) dη(γ) dt

=
ˆ

Γ

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

L 1({t ∈ [0, T ] : γ(t) ∈ A}) dη(γ) = 0. �

Lemma 6.2. We have L 2(A) = 0 if and only if η(ΓsA) = 0 for every
s ∈ [0, T ].

Proof. For direct implication

0 = L 2(A) =
ˆ
1A(x)ρ(s, x) dx

=
ˆ

Γ
1A(γ(s)) dη(γ)

=
ˆ

Γs
A

1A(γ(s)) dη(γ) = η(ΓsA).

For the opposite direction,
1
C

L 2(A) = 1
C

ˆ
1A(x) dx

≤
ˆ
1A(x)ρ(s, x) dx

=
ˆ

Γ
1A(γ(s)) dη(γ)

=
ˆ

Γs
A

1A(γ(s)) dη(γ) = η(ΓsA) = 0. �

6.2. Properties of “sticky” integral curves. In general the integral
curves of b may “stick” to the set

Z := {b = 0}, (6.2)
i.e. stay in Z for a positive amount of time. In this section show that if

Z = M mod L 2, (6.3)
where the set M is defined in (5.1), then the set of nonconstant integral
curves which “stick” to Z is η-negligible.

The condition (6.3) is satisfied for some weakly differentiable vector fields.
In particular,
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Lemma 6.3. If b ∈ BV(T2) then (6.3) holds.

Proof. Since b ∈ BV(T2), b is approximately differentiable a.e. on T2 (see
e.g. Theorem 3.83 from [7]), ∇apprb(x) exists for a.e. x ∈ Z. Moreover, by
locality of the derivative of b (see e.g. Proposition 3.92(a) from [7]) it holds
that ∇apprb(x) = 0 for L 2-a.e. x ∈ Z. �

Remark 6.4. Equality (6.3) also holds for any bounded b whose divergence
and curl are measures. Indeed, any such b is approximately differentiable
a.e., see [2]. Furthermore, using locality property stated in [7, Prop. 3.73 -
Rem. 3.93], we have that at every Lebesgue point x of the set {b = 0} at
which b is approximate differentiable we also have ∇apprb(x) = 0.

Recall the notation introduced in Section 1.2: consider the set of non-
constant curves which stay in Z for a positive amount of time

Γ̃Z := Γ̃ ∩ ΓZ
and the set of non-constant curves intersecting Z (at least) at time s

Γ̃sZ :=
{
γ ∈ Γ̃ : γ(s) ∈ Z

}
.

Using Proposition 5.1, we are able to prove that these sets are η-negligible,
i.e. the non-constant integral curves of b do not stay in Z for a positive
amount of time:

Lemma 6.5. Suppose that (6.3) holds. Then:
• η(Γ̃sZ) = 0 for a.e. s ∈ [0, T ];
• η(Γ̃Z) = 0.

Proof. Let us define g : Γ→ R by

g(γ) :=
ˆ T

0
1Z(γ(s)) ds. (6.4)

By the definition of Γ̃Z we have g(γ) > 0 for η-a.e. γ ∈ Γ̃Z . Hence

η(Γ̃Z) = 0 ⇔ Ig :=
ˆ

Γ̃Z

g(γ) dη(γ) = 0 (6.5)

By Fubini’s theorem

Ig =
ˆ T

0

ˆ
Γ̃Z

1Z(γ(s)) dη(γ) ds

Since
´

Γ̃Z
1Z(γ(s)) ds ≤

´
Γ̃ 1Z(γ(s)) ds = η(Γ̃sZ) it holds that

Ig ≤
ˆ T

0
η(Γ̃sZ) ds.

Therefore it remains to prove that η(Γ̃sZ) = 0 for a.e. s ∈ [0, T ].
Since et#(η Γ̃sZ)� et#η � L 2 there exists a non-negative Borel function

ρsZ : [0, T ]× T2 → R such that

ρsZ(t, ·)L 2 = et#(η Γ̃sZ).

(In fact 0 ≤ ρsZ(t, x) ≤ ρ(t, x) for a.e. (t, x) ∈ [0, T ]× T2.)
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It is easy to see that ρsZ solves the continuity equation
∂tρ

s
Z + div(ρsZb) = 0.

For a.e. t ∈ [0, T ] and a.e. s ∈ [0, T ], integrating in time on [s, t], we get

div
(
b

ˆ t

s
ρZ(τ, ·)dτ

)
= (ρZ(t, ·)− ρZ(s, ·))L 2. (6.6)

By Proposition 5.1, we have(
ρZ(t, ·)− ρZ(s, ·)

)
L 2 M = 0, (6.7)

hence, in view of (6.3), it holds that ρZ(t, x) = ρZ(s, x) for a.e. x ∈ Z.
Let us fix s ∈ [0, T ] such that (6.6) and (6.7) hold for a.e. t ∈ [0, T ].
Integrating (6.6) over T2 we obtain conservation of the total mass:ˆ

T2
ρsZ(t, x) dx =

ˆ
T2
ρsZ(s, x) dx.

Hence by (6.7) for a.e. t ∈ [0, T ] we haveˆ
T2
1T2\Z(x)ρsZ(t, x) dx =

ˆ
T2
1T2\Z(x)ρsZ(s, x) dx. (6.8)

By definition of ρsZ , since 1Γ̃s
Z

(γ) = 1Z(γ(s)), we have
ˆ
T2
1T2\Z(x)ρsZ(s, x) dx =

ˆ
1T2\Z(γ(s))1Z(γ(s)) dη(γ) = 0.

Consequently, by (6.8), for a.e. t ∈ [0, T ] it holds thatˆ
Γ̃s

Z

1T2\Z(γ(t)) dη(γ) = 0

We have thus proved that 1Z(γ(t)) = 1 for a.e. t ∈ [0, T ] for η-a.e. γ ∈ Γ̃sZ .
If γ(t) ∈ Z for a.e. t ∈ [0, T ] then b(γ(t)) = 0 for a.e. t and hence the
graph of γ is a fixed point, i.e. γ ∈ Γ̇. But Γ̃sZ ⊂ Γ̃ = Γ \ Γ̇. Therefore
η(ΓsZ) = 0. �

7. Local properties of nearly incompressible vector fields

As in the previous Section, let b : T2 → R2 be an bounded nearly incom-
pressible vector field with density ρ : [0, T ] × T2 → R. Let η be a measure
on Γ given by (2.6). Consider a simply connected open set U ⊂ T2.

7.1. Construction of the local Hamiltonian. In this section we use η to
construct in U the local steady density rU such that div(rUb) = 0 in D ′(U)
and the local Hamiltonian HU : U → R such that ∇⊥HU = rUb a.e. in U .
Recall the notation introduced in Section 1.2:

TU :=
{
γ ∈ Γ: L 1(γ−1(U)) > 0, γ(0) /∈ U, γ(T ) /∈ U

}
is the set of the curves which stay in U for a positive amount of time and
have the endpoints outside U .

Consider the measure
ηU := η TU (7.1)

and define the local density ρU by
ρU (t, ·)L 2 = (et)#ηU . (7.2)
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Indeed, since ηU � η we also have et#ηU � et#η � L 2.
Finally, we define the local steady density

rU (x) :=
ˆ T

0
ρU (t, x)dt, x ∈ U. (7.3)

Lemma 7.1. It holds div(rUb) = 0 in D ′(U).

Proof. For any φ ∈ C∞c (U) we haveˆ
U
rUb(x) · ∇φ(x)dx =

ˆ
U

ˆ T

0
ρU (t, x)b(x) · ∇φ(x) dt dx

=
ˆ T

0

ˆ
TU

b(γ(t)) · (∇φ)(γ(t)) dηU dt

=
ˆ T

0

ˆ
TU

γ̇(t) · (∇φ)(γ(t)) dηU dt

=
ˆ T

0

ˆ
TU

d

dt
φ(γ(t)) dηU dt

=
ˆ

TU

[
φ(γ(T ))− φ(γ(0))

]
dηU = 0.

because for ηU -a.e. γ ∈ TU , γ(0) /∈ U , γ(T ) /∈ U . �

In the remaining part of this section we are going to show that the images
of the integral curves of b, having the endpoints outside U , are contained in
the locally regular level sets of HU , up to an η-negligible set.

Let H : T2 → R be an extension of HU to the whole T2 (using standard
theorems for the extension of Lipschitz maps).

Lemma 7.2. Let t1, t2 ∈ [0, T ] and set T := {γ : γ ((t1, t2)) ⊂ U}. Then
η-a.e. γ ∈ T the map (t1, t2) 3 t 7→ H(γ(t)) is a constant function.

Proof. Let (%ε)ε be the standard family of convolution kernels in R2. We
set Hε(x) := H ? %ε(x) for any x ∈ U .

For every t ∈ [t1, t2] define

I(t) :=
ˆ

T
|H(γ(t))−H(γ(0))|dη(γ)

and we will prove I ≡ 0.
First note that I is positive because the integrand is non-negative and η

is positive. On the other hand,

I(t) ≤
ˆ

T
|H(γ(t))−Hε(γ(t))|dη(γ)︸ ︷︷ ︸

Iε
1

+
ˆ

T
|Hε(γ(t))−Hε(γ(0))|dη(γ)︸ ︷︷ ︸

Iε
2

+
ˆ

T
|Hε(γ(0))−H(γ(0))|dη(γ)︸ ︷︷ ︸

Iε
3

.

Now for a.e. x ∈ T2 we have Hε(x)→ H(x): henceˆ
T
|Hε(γ(t))−H(γ(t))| dη(γ) ≤

ˆ
U
|Hε(x)−H(x)|ρ(t, x)dx→ 0
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as ε→ 0. Therefore, we can infer that

Iε1 → 0, Iε3 → 0

as ε ↓ 0.
Let us study Iε2 . We have

Iε2(t) ≤
ˆ

T

ˆ t

t1

|∂sHε(γ(s))| ds dη(γ)

=
ˆ

T

ˆ t

t1

|∇Hε(γ(s)) · b(γ(s))| ds dη(γ)

=
ˆ t

t1

ˆ
|∇Hε(x) · b(x)| d(et#η T)(x) ds

≤
ˆ T

0

ˆ
|∇Hε(x) · b(x)|ρT(t, x) dx ds

=
ˆ
|∇Hε(x) · b(x)|rT(x) dx→

ˆ
|∇H(x) · b(x)|rT(x) dx = 0

where we have used ∇Hε(x)→ ∇H(x) for a.e. x. In the end, we have that
Iε2 → 0 as ε ↓ 0 and this concludes the proof. �

We now improve Lemma 7.2, showing that ηU -a.e. γ is contained in locally
regular level sets of HU . Actually, we prove a slightly stronger statement:

Lemma 7.3. Suppose that N ⊂ R is L 1-negligible. Then there exists an
ηU -negligible set N ⊂ Γ such that for any γ ∈ TU \ N it holds that

γ([0, T ]) ∩ U ⊂ E?U \H−1(N).

Proof. Using Lemma 7.2, we can remove an ηU -negligible set of trajectories
along which HU is not constant.

Let E := E?U \H−1(N) and Ec := U \ E. We claim that ηU -a.e. γ ∈ TU
has the following property:

for a.e. t ∈ γ−1(U) if γ(t) /∈ E then b(γ(t)) = 0. (7.4)

Assuming this claim is proved, consider any connected component C of
γ([0, T ]) ∩ U . Since H 1(C) > 0 there exists I ⊂ γ−1(C) with L 1(I) > 0
such that b(γ(t)) 6= 0 for a.e. t ∈ I. Hence by (7.4) for a.e. t ∈ I we have
γ(t) ∈ E. Consequently there exists a point x ∈ C such that x ∈ E. By
definition of E?U ⊃ E the level set H−1

U (HU (x)) is locally regular. But HU

is constant on C, hence C ⊂ H−1
U (HU (x)) ⊂ E.

It remains to prove the claim (7.4).
By Coarea Formula (see Lemma 2.3), |∇H|L 2 Ec = 0, i.e.

ˆ
1Ec(x)|∇H(x)| dx = 0.
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Since ∇H = rUb
⊥ in U and rU ≥ 0 (since ρU > 0), we have

0 =
ˆ
1Ec(x)|rU (x)b(x)| dx

=
ˆ ˆ T

0
1Ec(x)ρU (t, x)|b(x)| dx dt

=
ˆ T

0

ˆ
1Ec(γ(t))|b(γ(t))| dη(γ) dt,

where in the last equality we used (6.1). Hence, by Fubini’s theorem,
ˆ T

0
1Ec(γ(t))|b(γ(t))| dt = 0

for η-a.e. γ. This implies (7.4). �

7.2. Weak Sard property of a local Hamiltonian. In this section, in the
context of Section 4, we study the local Hamiltonian H under the following
additional assumptions:

(1) b is nearly incompressible;
(2) either b ∈ BV (U) or b 6= 0 a.e. in U .

We show that under these assumptions the Hamiltonian H has the weak
Sard property.

Since S = {∇H = 0} mod L 2 and ∇H = rb mod L 2, for a.e. x ∈ S
either b(x) = 0 or r(x) = 0. But if b is nearly incompressible, we are able to
prove that for a.e. x ∈ E? ∩ S it holds that b(x) = 0. Consequently r can
vanish only on a negligible subset of E? ∩ S ∩ {b 6= 0}. This can be viewed
as a partial weak Sard property:

Lemma 7.4. Let r : U → R and b : U → R2 be bounded functions. Suppose
that r ≥ 0 a.e. in U . Let H : U → R be a Lipschitz function such that (4.3)
holds. Suppose that the canonical disintegration of L 2 U with respect to H
is given by (2.4). If b is nearly incompressible then for a.e. h the measure
σh is actually concentrated on Eh ∩ {b = 0}.

In other words, for nearly incompressible vector fields for a.e. h the
measure σh is concentrated not only on S ∩ Eh, but on S ∩ Eh ∩ {b = 0}.

Proof. Since b is nearly incompressible the function m(t, x) :=
´ T

0 ρ(τ, x) dτ ,
where ρ is the density of b, solves

div(mb) = ρ(T, ·)− ρ(0, ·) (7.5)

in D ′(U). (Here ρ(T, ·) and ρ(0, ·), strictly saying, are weak* limits in L∞

of ρ(t, ·) as t→ T and t→ 0 respectively.)
Applying Lemmas 4.3, 4.4, 4.5 with u = m, from (4.9b) we obtain

div(mbσh C) = 0. (7.6)

By the definition of near incompressibility m > 0 a.e. in U . Let

V := {b 6= 0, r = 0} ∩ E?. (7.7)

denote the subset of {b 6= 0} ∩ E? where r vanishes.
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In view of (7.6), applying Lemmas 4.5, 4.4 and 4.3 for u = 1V ·m, we get
div(1Vm) = 0

in D ′(U). Consequently
div(r̃b) = 0 (7.8)

in D ′(U), where
r̃ := r +m1V .

In view of (7.8) we can construct a Lipshitz function H̃ : U → R such that

∇⊥H̃(x) = r̃(x)b(x), for L 2-a.e. x ∈ U. (7.9)

Since ∇H ‖ ∇H̃ a.e. in U , by Matching Lemma 3.3 for a.e. L 2-a.e.
x ∈ E? ∩ Ẽ? we have Cx = C̃x, where Cx and C̃x are respectively the
connected components of H−1(H(x)) and H̃−1(H̃(x)), containing x. Let M
denote the set of all x ∈ E? ∩ Ẽ? such that Cx = C̃x.

By definition M ⊂ E?. Let us prove that E? ⊂M mod L 2.
Consider the canonical disintegrations of the Lebesgue measure (on E?

and Ẽ?) with respect to H and H̃:

L 2 E? =
ˆ

(chH 1 E?h + σh) dh,

L 2 Ẽ? =
ˆ

(c̃hH 1 Ẽ?h + σ̃h) dh,
(7.10)

where σh is concentrated on S and σ̃h is concentrated on S̃.
Suppose that L 2(P ) > 0, where P := E? \M . Then there exist a subset

I ⊂ R with positive measure such that
H 1(E?h ∩ P ) + σh(E?h ∩ P ) > 0 (7.11)

for all h ∈ I.
Fix h ∈ I and consider C ∈ Conn?(Eh). Suppose that P ∩ C 6= C. Then

some point of C belongs to M . But then C ⊂ Ẽ? and therefore C ⊂M .
Hence for any C ∈ Conn?(Eh) either C ⊂ P or C ∩ P = ∅. Then (7.11)

implies that there exists a connected component C ∈ Conn?(Eh) such that
C ⊂ P and H 1(C) > 0. Hence H 1(E?h ∩ P ) > 0 for all h ∈ I and,
consequently, ˆ

P
|∇H̃| dx ≥

ˆ
P
|∇H| dx > 0

where the first inequality holds since |∇H̃| ≥ |∇H| and the second inequality
follows from disintegration (7.10).

Therefore we can find a set Q ⊂ P such that ∇H̃ 6= 0 a.e. on Q. But
then by coarea formula (Lemma 2.3) a.e. x ∈ Q belongs to Ẽ?. Hence
L 2(Q ∩M) > 0. Then by contradiction we have L 2(E? \M) = 0.

To complete the proof of the lemma it remains to restrict the disintegra-
tion of L 2 Ẽ? to M and compare it with the disintegration of L 2 E. For
any x ∈ M we have Cx = C̃x = C, and ch > 0 and c̃h > 0 on C a.e. w.r.t
H 1. Hence by definition of V we have ch = c̃h a.e. on C. Therefore from
(7.10), for a.e. h we obtain that chH 1 (E?h ∩M) = c̃hH

1 (Ẽ?h ∩M) and
consequently

σh E? = σ̃h E?.
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Since σ̃h is concentrated on {b = 0} (for a.e. h) we conclude that σh also is
concentrated on {b = 0} for a.e. h.

By (7.7) and (7.10) this actually means that L 2(V ) = 0, so eventually
r̃ = r a.e. and therefore H = H̃ (up to an additive constant). �

Lemma 7.5. Suppose that the assumptions of Lemma 7.4 hold and, in
addition, either b 6= 0 a.e. in U , or b ∈ BV (U). Then the Hamiltonian H
has the weak Sard property.

Proof. First of all, σh in the canonical disintegration (2.4) is concentrated
on {b = 0} for a.e. h by Lemma 7.4.

Hence, when b 6= 0 a.e., there is nothing to prove: H#L 2 {b = 0} will
be zero.

When b vanishes on a set with positive measure, but has BV regularity,
this lemma can be proved using minor modifications of the proof of [10,
Theorem 8.4]. Indeed, since b ∈ BV (U), it is approximately differentiable
a.e. and then H#L 2 {b = 0} ⊥ L 1. By comparing two disintegrations of
L 2 {b = 0} we conclude that σh is concentrated on {b 6= 0} for a.e. h. �

8. new stuff

Let us consider the countable covering B of T2 given by

B :=
{
B(x, r) : x ∈ Q2, r ∈ Q+

}
.

For each ball B ∈ B and rational numbers s, t ∈ Q ∩ (0, T ) such that s < t
let

TB,s,t :=
{
γ ∈ ΓB : L 1(γ−1(B)) > 0, γ(s) /∈ B, γ(t) /∈ B

}
.

For each B ∈ B, s ∈ Q ∩ (0, T ), t ∈ Q ∩ (s, T ) restricting η to TB,s,t, we
construct the local Hamiltonian HB,s,t as in Section 7.1.

Lemma 8.1. There exists an η-negligible set N ⊂ Γ such that any integral
curve γ ∈ Γ̃ \N of the vector field b has the following properties:

(1) for any B ∈ B
• the Hamiltonian HB is constant along each connected compo-

nent of γ([0, T ]) ∩B;
• if γ ∈ TB,s,t then each connected component of γ([s, t]) ∩ B is

contained in a regular level set of HB;
(2) for any τ ∈ (0, T ) there exist a ball B ∈ B, s ∈ Q ∩ (0, T ) and

t ∈ Q ∩ (τ, T ) such that γ ∈ TB,s,t;
(3) there exists Tγ ∈ (0, T ] such that [0, Tγ ] 3 t 7→ γ(t) is a simple

(possibly closed) curve.

Proof. First of all, using Lemma 6.5 we can remove a negligible set of integral
curves of b which stay in the set {b = 0} for a positive amount of time.
Applying Lemmas 7.2 and 7.3 countably many times (for each ball B ∈ B
and all rationals s ∈ Q∩ (0, T ) and t ∈ Q∩ (s, T )) we obtain the set N ⊂ Γ
such that the first property holds.

Next, for any τ ∈ (0, T ) there exists s ∈ Q ∩ (0, τ) such that γ(s) 6=
γ(τ). (Otherwise, since γ is an integral curve of b, it would have to stay
in {b = 0} for a positive amount of time). Similarly there exists t ∈ (s, T )
such that γ(t) 6= γ(τ). Then for any ball B ∈ B with sufficiently small
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radius, containing γ(τ) and not containing γ(s) and γ(t) it clearly holds
that γ ∈ TB,s,t.

Let us prove that γ([0, T ]) cannot contain a triod. By contradiction,
suppose that x is a vertex of some triod contained in γ([0, T ]). Then there
exists τ ∈ (0, T ) such that x = γ(τ). By the second property we can find
rational numbers s, t ∈ Q ∩ (0, T ) such that τ ∈ (s, t) and hence γ ∈ TB,s,t.
Hence x is contained in some connected component C of Hs,t,B. But Hs,t,B

is constant along each connected component of B ∩ γ([0, T ]) and γ([0, T ])
contains a triod with the vertex x ∈ B. Hence C contains a triod. This is
not possible since C is a regular level set.

Let T1 > 0 be such that γ(T1) = γ(0). Since γ([0, T ]) does not con-
tain triods it follows that γ([T1, T ]) ⊂ γ([0, T1]) and hence H 1(γ([0, T ])) ≤
H 1(γ([0, T1])). Let Tγ := inf{T1 > 0: γ(T1) = γ(0)} ∪ {T}. Since γ([0, T ])
has positive length, it holds that Tγ > 0. �

Lemma 8.2. If u solves the transport equation
∂t(ρu) + div(ρub) = 0

with the initial condition u(0, ·) then [0, T ] 3 t 7→ u(t, γ(t)) is constant for
η-a.e. γ.
Proof. It is clear that for any γ ∈ Γ̇ it holds that [0, T ] 3 t 7→ u(t, γ(t)) is
constant. Hence it is sufficient to consider only Γ̃.

Let N be the set given by Lemma 8.1. Let γ ∈ Γ̃ \N .
Consider some σ ∈ Q ∩ (0, T ) and θ ∈ Q ∩ (σ, T ). Let C be a connected

component of some regular level set of HB,σ,θ.
Disintegrating the transport equation along the level sets of HB,σ,θ we get

∂t(ûĉh|b̂|) + ∂s(ûĉh|b̂|) = 0.
(we can remove an η-negligible set of curves which pass through the reg-

ular level sets along which this equation does not hold.)
Hence for any s ∈ [0, T ] such that γ(s) ∈ C there exists δ > 0 such that

u(t, γ(t)) = u(s, γ(s))
for any t ∈ (s− δ, s+ δ) ∩ [0, T ].

(γ without loss of generality starts from the set Eσ,θ,B for some σ, θ,B)
Covering the compact [0, T ] with finitely many open intervals we conclude.

�

Lemma 8.3. If [0, T ] 3 t 7→ u(t, γ(t)) is constant for η-a.e. γ, then u solves
the transport equation with the initial condition u(0, ·).
Proof. If ϕ = ϕ(t, x) is a smooth test function which vanishes at T thenˆ

(ρuϕt + ρub∇ϕ) dx dt+
ˆ
ρ(0, x)u(0, x)ϕ(0, x) dx

=
ˆ
u(t, γ(t))∂tϕ(t, γ(t)) dη(γ) dt+

ˆ
u(0, γ(0))ϕ(0, γ(0)) dη(γ)

=
ˆ
u(0, γ(0))∂tϕ(t, γ(t)) dη(γ) dt+

ˆ
u(0, γ(0))ϕ(0, γ(0)) dη(γ)

= −
ˆ
u(0, γ(0))ϕ(0, γ(0)) dη(γ) +

ˆ
u(0, γ(0))ϕ(0, γ(0)) dη(γ) = 0.
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�

Proposition 8.4. if u solves transport then renormalization.

Proof. Since u solve transport, by Lemma 8.2 the function t 7→ u(t, γ(t)) is
constant for η-a.e. γ.

Then for any β ∈ C1(R) the function t 7→ β(u(t, γ(t))) is constant for
η-a.e. γ. Hence by Lemma 8.3 the function β(u) solves transport. �

8.1. Covering property of the regular level sets. Let
Ê := ∪B,s,tE?B,s,t. (8.1)

The following covering property is a global analog of Lemma 2.9:

Lemma 8.5. It holds that E ⊃ {b 6= 0} mod L 2.

Proof. Since E ⊃ Ê mod L 2 it is sufficient to prove that Ê ⊃ {b 6= 0}
mod L 2. Let P := {b 6= 0} \ Ê. Then for any B ∈ B it holds that
P ⊂ {∇HB = 0} mod L 2. Since b 6= 0 on P and ∇H⊥ = rBb it holds that
rB = 0 a.e. on P for all B ∈ B. Then for any B ∈ B

0 =
ˆ
P∩B

rB dx

=
ˆ T

0

ˆ
1P∩B(x)ρB(t, x) dx dt

=
ˆ

Γ̃

ˆ T

0
1P∩B(γ(t)) dη(γ) dt,

hence η-a.e. γ ∈ Γ̃ spends zero amount of time in P ∩B. Since B is arbitrary
and B is countable, we can generalize this claim to the whole set P :ˆ

Γ̃

ˆ T

0
1P (γ(t)) dt dη(γ) = 0. (8.2)

By near incompressibility

L 2(P ) ≤ C

ˆ T

0

ˆ
1P (x)ρ(t, x) dx dt

= C

ˆ T

0

ˆ
Γ̇∪Γ̃

1P (γ(t)) dη(γ) dt

(∗)= C

ˆ T

0

ˆ
Γ̇
1P (γ(t)) dη(γ) dt

(∗∗)= C

ˆ T

0

ˆ
Γ̇
1P (γ(t))1{b=0}(γ(t)) dη(γ) dt

≤ C

ˆ T

0

ˆ
1P (γ(t))1{b=0}(γ(t)) dη(γ) dt

≤ C

ˆ T

0

ˆ
1P (x)1{b=0}(x)ρ(t, x) dx dt

(∗∗∗)= 0,
where
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• (*) holds by (8.2),
• (**) holds because 1{b=0}(γ(t)) = 0 for any t ∈ [0, T ] and any γ ∈ Γ̇,
• (***) holds because P and {b = 0} are disjoint. �

Remark 8.6. If we always have WSP then actually E = {b 6= 0} since on
each EB,s,t it holds that b 6= 0 a.e.
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