BV SOLUTIONS OF THE SEMIDISCRETE UPWIND SCHEME

STEFANO BIANCHINI

ABSTRACT. We consider the semidiscrete upwind scheme

(0.1) u(t, z)e + %(f(u(t,x)) — f(ult,z =) =0.

We prove that if the initial data @ of (0.1) has small total variation, then the solution «¢(¢) has uniformly
bounded BV norm, independent of ¢, e. Moreover by studying the equation for a perturbation of (0.1)
we prove the Lipschitz continuous dependence of u¢(t) on the initial data.

Using a technique similar to the vanishing viscosity case, we show that as e — 0 the solution u€(t)
converges to a weak solution of the corresponding hyperbolic system,
(0.2) ug + f(u)e = 0.
Moreover this weak solution coincides with the trajectory of a Riemann Semigroup, which is uniquely
determined by the extension of Liu’s Riemann solver to general hyperbolic systems.

1. INTRODUCTION

Consider the strictly hyperbolic system of conservation laws
(1.1) u + f(u)e =0,

where u € RV, f : RY » RY smooth. The system is said to be strictly hyperbolic provided that each
Jacobian matrix A(u) = D f(u) has N distinct eigenvalues, A;(u) < ... < A, (u).
In [16] weak solutions to (1.1) are constructed under the assumption that the initial data

(1.2) u(0,z) = u(z),

has small total variation and that for each m € {1,..., N}, the m-th characteristic field is either linearly
degenerate or else it is genuinely nonlinear.

The idea in Glimm’s proof is to obtain an a priori estimate on the total variation of the approximate
solutions by introducing a wave interaction potential. In turn, the control of the total variation yields
the compactness of the family of approximate solutions, and hence the existence of a strongly convergent
subsequence in L'(R,RY). Alternative constructions of approximate solutions, based on front tracking
approximations, were subsequently developed in [9], [15].

The well posedness of the Cauchy problem was established in a series of papers [10], [12], [13]. For a
comprehensive account of the recent uniqueness and stability theory we refer to [11].

Recently in [4] it is proved that the solution u® of the parabolic system

(1.3) ur + f(u)y — €tgy =0

with initial data (1.2) converges to the unique entropy weak solution of (1.1) as ¢ — 0. This solution
depends Lipschitz continuously on the initial data @ in the L! norm and can be characterized by defining
a Riemann solver for (1.1). It turns out that this Riemann solver is the extension of Liu’s Riemann solver
for general strictly hyperbolic systems, see [2], [4], [18].

In this paper we consider a semidiscrete approximation to (1.1), obtained by discretizing only the
space variable z:

%u(t, z) + %(f(u(t, x)) — f(ult,z - e))) =0.

(1.4)
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For linear stability, we assume that Aj(u) > 0.
The solution of (1.4) is defined on the lattice R x €¢Z. In the following we shall denote by u’(t) the
value of the solution in je,

ul (t) = ult, je).
Our aim is to prove that if 4 has sufficiently small total variation, then the solution u/(¢) to (1.4) has

bounded BV norm uniformly in ¢ and e. As in the parabolic case, it is clear that the rescaling
4

(1.5) t— -, x»—>§,
€ €

leaves the total variation of the initial data @ and of the solution w7 (¢) unchanged, and (1.4) becomes
(1.6) ul + f(w?) = f(’ ™) =0,
The main result of this paper is the following theorem:

Theorem 1.1. Consider the semidiscrete upwind scheme (1.6) with initial data w/(0) = w/. Assume
that
Tot. Var.(u’) Z‘uj — w7 < 60 /4,

for some constant &g sufficiently small. Then, for some constant N, L, L', the solution to (1.6) exists
for all t € R and has uniformly bounded total variation:

(1.7) Tot.Var.(u/ (t)) < 4Ny, VteRT.

Moreover, the semigroup Syii/ = u’(t) generated by (1.6) ds Lipschitz continuous w.r.t. the M -norm:
there exist constant L, L' such that if v’ (t), 27 (t) are two solutions, then

(1.8) Z|uj(t)—zj <LZ|uJ 0) — 27 (0)| + L'|t — s].
J
Note that the continuous dependence w.r.t time follows trivially from (1.6).

Using the above estimates, it is now possible to prove that, as € — 0, the solutions u’¢ of (1.4) yield
a weak solution to (1.1). In fact, define the function u¢ by

(1.9) ut(t,r) =u (t) (- De<z < je
Since u€ solves (1.4) with initial data

1 [
u(0,x) = f/ (z)dx (j — De < x < je,
(G—1)e

I

we can write in weak form

(1.10) //RWR{ (t, )it ) + F(u(t, ))@(t’“ez_@(t’x)}dtdx

je je
+Z/ u(x) (/ so(O,y)dy> dr =0,
5 JU—1e (3—1)e

where ¢ is a smooth function with compact support. From (1.7) and the fact that by construction

lim «/(t) = lim o/,
j——o00 j——o00

it follows that, up to a subsequence, u¢ converges in L. . to a BV function u(t, z), so that passing to the
limit in (1.10) we obtain

//]RHXR{U(t’ x)oi(t, @) + f(ult, :z:))gom(t,as)}dtdx + / a(0,2)p(0, 2)dx = 0.

R
Since it is easy to check that . 4
[l 2 = el [0 = ell [
from (1.8), a simple argument shows that up to a subsequence the limit solutions of (1.1) satisfy

< L||u(0) — + L'|t —s|.

lu(®) = 2(9)]] 0.

In particular they form a Lipschitz continuous semigroup in L'.
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At this stage we must rule out the possibility that different subsequences may give rise to different
semigroups. To characterize the limit, we follow the approach of [4], i.e., we first identify the Riemann
solver compatible with the semidiscrete approximation (1.4).

Consider an initial data of the form

u- <0
1.11 0,z) =
(111) u(0,2) {U+ e

with ut — u~ sufficiently small. We will prove that when ¢ — 0, the solution u¢(¢) of (1.4) tends to a
particular self-similar function, which can be precisely described by means of the dynamics on the center
manifold of the retarded functional equation

o) [ o010+ sttg) - sote ) = 0

a'(£) =0
In [2] it is shown how to construct a Riemann Solver compatible with the semidiscrete scheme (1.4). In
particular one can show that this Riemann Solver coincides with the Riemann Solver obtained by means
of the vanishing viscosity approximations, and can be identified by saying that all jumps in the solution
u(t) satisfy Liu’s stability condition. Due to the particular choice of the initial data (1.11), one can show
using the same arguments of [4] that the whole sequence uf(t) converges to u(t).

At this point the limiting solution w(t) is identified by proving that it is a viscosity solution to

(1.13) u; + Df (w)ug = 0.

The definition of viscosity solution is given in [10], and relies on local integral estimates: in the first
estimate one compares u(t) with the solution of a local Riemann problem, while in the second estimate
one compares the solution u(t) with the with the solution to the linear system

U + Df(u(T, 5))”1 =0,

obtained by freezing the coefficients at some point u(7,&). Note that, while the weak solution to a linear
system is uniquely defined, different Riemann Solvers define different viscosity solutions. The viscosity
solution we are considering here is the one corresponding to the Riemann Solver described above.

As in [10], one can show that the semigroup trajectories corresponding to a given Riemann solver are
precisely the viscosity solution. Since we show that each limiting solution u(t) of (1.13) obtained by the
semidiscrete approximations u€(t) is a viscosity solution to (1.13), the uniqueness of the limit follows.

We prove then the following theorem:

Theorem 1.2. Ase — 0, the solution u(t) defined in (1.9) converges in L' to a unique limit u(t). This
limit coincides with the viscosity solution characterized by the Riemann solver defined in [2, 4], i.e., with
the unique Riemann solver such that each shock satisfies Liu’s stability condition. In particular, u(t)
coincides with the vanishing viscosity limit of (1.3).

The paper is organized as follows.

In Section 2 we prove some regularity estimates for the solution to (1.6). In particular, assuming that
uJ has small total variation, we prove that the £**-norm and the total variation of the time derivative
u] are of second order w.r.t. Tot.Var.(u/). Note that a trivial estimate is that the /*°-norm of u] is less
than or equal to the total variation of f(u?): our results shows that if Tot.Var.(u’) is small, then a better
estimate is

(|ui,. = O(1)Tot. Var.(u?)?.

Of course the above estimate is meaningless when Tot.Var.(u’) is large.

In Section 3 we study the properties of the center manifold of travelling profiles. In [1], using the
results for general Retarded Functional Differential Equations proved in [17], it is shown that there exists
locally an invariant manifold in C°([—1,0]; RV *1) for the equation of travelling profiles, namely

—0d'(€) + f(6(§)) — f(d(€ - 1)) 0

a'(£) =0
This manifold is n 4+ 2-dimensional and contains all the long term dynamics near a fixed point u = ug,
0 = Am(ug), where A\, (u) is the m-th eigenvalue of Df(u). In particular it contains all the small
bounded travelling profiles with speed close to that eigenvalue. We can parametrize the manifold by
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#(0), —om¢..(0), o, i.e., the value of the profile, the m-th component of the time derivative at £ = 0,
and the speed o:
(uavmao—) = ¢(5;U7Um,0),

where £ € [—1,0]. In particular we obtain the functions

70’975/(0) = Wm (u, Um,y 0)7 7G¢lm(71) = 7Tmm(u; Um,, O')a
i.e., the derivative at & = 0 (not just the m-th component) and the m-th component at £ = —1. We
show that the knowledge of the functions w,,, Tmm is equivalent to the knowledge of the center manifold.
Using a Taylor expansion, we prove some properties of the functions w, m,,,, which will be used in the
rest of the paper. We will give two examples where we can compute this center manifold explicitly.

In Section 4 we consider the problem of finding a Glimm type functional for a semidiscrete scalar
equation. The main difficulty here is that the semidiscrete scheme presents dispersion. We first prove a
general proposition which allows us to identify locally a travelling profile. The proof is heavily based on
the results of Section 3. Next we construct the Glimm type functional. As it is suggested by the results
of an example where we can compute explicitly the functional, we prove that, due the dispersion, the
weight that we assign to each wave in the interaction functional is a nonlinear function of the speed, and
not the speed itself. This nonlinear function is obtained directly from the dispersion relation.

In Section 5 we work out the decomposition results in the general case. The main difference from the
parabolic or hyperbolic case is that, to identify a wave, we must look at the solution at three consecutive
points, i.e., v/, w~!, w2, and not at the local behavior of . This implies that we cannot decompose
the solution u’ to (1.6) locally, but we must decompose it as a whole. A consequence of this fact is that,
when we write the equations satisfied by the scalar components of our decomposition, we will get a source
term which depends on all the previous waves. This means that the source in j depends on all interaction
at points k£ < j. Remember in fact that the kernel of the linearized equation moves only forward, i.e.,
the solution in k£ > j has no influence at the point j.

We can arrange the source terms in 3 categories:

(1) terms corresponding to the interaction among waves of different families. Following [5], we will
refer to these terms as transversal terms.

(2) terms corresponding to the interaction of waves of the same family. We will call them non
transversal terms.

(3) terms due to the fact that the center manifold is defined for speed close to A, (ug), so that in
some cases we cannot give the right speed. This means that the numerical diffusion of (1.6) is
greater than the drift. These terms will be called the energy terms.

In Section 6 we study the source terms arising in the decomposition, proving that they are integrable
in Rt x Z and that their integral is of the order of the total variation of u/ squared. To achieve this
result, we will introduce four functionals. The first functional is related to the transversal terms, and was
studied in [3]: this is the semidiscrete analog of the Glimm functional for waves of different families. The
other three are the semidiscrete analogs of the functionals introduced in [6], [7, 4] for studying interaction
among waves of the same family. The construction of these functionals follows the analysis of Section 4.
Using these functionals we will prove that the source terms of total variation are of the order of the total
variation squared, hence the total variation remains uniformly bounded if it is sufficiently small at ¢t = 0:

Tot.Var. (u/ (t)) < 16NTot.Var.(a/).

Again we observe that, differently from the vanishing viscosity case, we have to consider the non-
transversal and energy functionals together, i.e., the time derivative of each functional contains the
derivative of the others, multiplied by a small constant. This implies that we cannot show the decrease
of a single functional without considering it together with the other two.

In Section 7 we prove an analogous result for a perturbation of (1.6): the £* norm of a perturbation ¢
satisfies

1)l < L{icO)]]»

for some constant L depending only on the total variation of u?. A simple homotopy argument then
shows that the solutions to the semidiscrete upwind scheme (1.6) form a Lipschitz continuous semigroup:
if u(t), z(t) are two solutions of (1.6), then

Ju(t) ~ 201 < Lut0) ~ =(0)] .
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This concludes the proof of Theorem 1.1.

Finally in Section (8) we prove that the limit of u¢ defined in (1.9) coincides with the vanishing viscosity
solution. We prove that in the limit € — 0 the solution u has finite speed of propagation. Next, using the
results of [2], [4], we can identify the Riemann Solver corresponding to the limiting solution w(t). Finally
we prove that u(t) can be identified as a viscosity solution to (1.13).

This will yield a proof of Theorem 1.2.

2. REGULARITY ESTIMATES FOR SEMIDISCRETE UPWIND SCHEMES

Consider the semidiscrete upwind scheme
(2.1) ul + f (W) = fu™) =0,
where u € RY and f : RN +— RY is a smooth vector function. We assume that the Jacobian matrix
A(u) = Df(u) is strictly hyperbolic, and we order its eigenvalues \,,, m =1,..., N, as
0 < A(u) < Aau) <...<An(u).

We denote by 7, (1), Iy (u), m = 1,..., N, the right and left eigenvectors of A(u), respectively, normalized
by

- el =1 (= {3 E

Let Ky be a compact set in RY, and for § > 0 define K, as
(2.3) K= {|u-2 <6z € K} cRY.
For the semidiscrete scheme (2.1), we consider the initial condition
(2.4) W(0)=u!, jeEL

It is well known that if the initial datum is bounded, then (2.1) defines a continuous flow S; on
0>(Z,R™), at least for some interval [0,7]. In the rest of the paper we will consider solutions with small
total variation:

(2.5) Z|u3 - uj*1| <.
J

Is it clear that the assumption Aj(u) > 0 for all u € K implies that f is locally invertible, so that for §
sufficiently small we have

(2.6) Ly Z’uy t) —u 7Y t)’ < Z’ut < Lo Z‘uﬂ t) —ul = t)‘
J

Note that Ly, Ly can be chosen such that the above equation holds uniformly for any sequence w e K
satisfying (2.5). Defining v/ = u] = f(u/~!) — f(u’), in the following as a measure of the total variation
we will use the quantity

(2.7) V(u(t)) = Z\vj(t)] = Z]u{(t)\ = Z\f(uj—l(t)) — f((1))].

By (2.6), V(u) is equivalent to the sum in (2.5). In particular 4 has bounded total variation, so that the
limit for j — —oo exists: we assume that it belongs to Ky, i.e.,

(2.8) up = lim @ € K.

Jj——o00
By choosing dy sufficiently small, we set
6 > 4Ndy.

The aim of this section is to prove a regularity estimate on the solution ¢7(t) of the linearized equation
describing the evolution of a first order perturbation to (2.1),

(2.9) G =AW NI - A
= Auo) (¢ = ¢) + (AW Y) = Aluo) )77t = (A(!) = Afuo) ),
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assuming that V(u) is small. Note that a particular solution of (2.9) is u,; , so that the estimates we obtain
will be valid also for v7. The idea is that, if ||v7(¢)]|, [|¢7(0)]|, are bounded in [0, 7], then ||(7 s~ and
||¢7 — ¢771|,n are bounded and small after a small time of regularization ¢. These estimates correspond
to the parabolic estimates obtained in [4]. The approach is essentially the same, the only difference being
that here we use the Green kernel of

(2.10) ¢+ Aluo) (¢ =71 =0
instead of the standard Gaussian heat kernel.

Define the constants
(2.11) A = max Ay (u), A= min A (u) >0,

uc Ky uc Ky
and let ¢ be the following quantity:

(2.12) cimin{)\mﬂ(u) —An(2); u,z€ Ky, lu—2 <06, m=1,...,N — 1} > 0.

In the following we will need to consider derivatives of smooth functions defined in K;: we assume that
all these derivatives are bounded by a sufficiently big constant Cj.

For ug € Ky, denote by G the kernel of the linear equation (2.10), which can be easily computed by
Fourier transform (see [3]):

50 Pnltot) o () © () 5 0

(2.13) G’ (t) = — g!

0 j<0
Using Stirling’s formula, the following estimates follow:

. . ()\mt)xmte_/\mt 1
2.14 Git)| < < ,
(2.14) max|G7(1)] < mvé“{ T(\mt) NES

. . . 2
2.15 Gi(t) - G771 (0)] < 2max|ci ()] < .
(2.15) Z (t) ()_mj‘@X| t)] < T

We have the following proposition:
Proposition 2.1. Assume that for ¢t € [0,T]
(2.16) V(u) = |ul| <ANG, <6,

J
with &g sufficiently small. Then we have the following regularity estimates:

(2.17) ||C ||£oo = \/tTHC ||£17 zj:kj(t)_cj 1 ’_ \/ﬁ”g ||€17

for 0 <t < min{T,t}, where

- A Iy
2.1 VAt+1 = —— > 1
( 8) At 16N Lo o

Proof. We will only prove the first inequality of (2.17), since the proof of the second inequality is the
same. Using Duhamel’s principle we can write the solution to (2.9) as

(2.19)

(1) =D GTEC0) + Z/Ot R - s>{(A(uk—1) — Afuo) )¢ = (A(u") - A(u0)>(k}dt
= D _GHC0) + Z/Ot (G7F1(t = 5) = GTH(t = 9)) (A(u") = Aluo) ) et

Using (2.6) we have

) _ 1 4N,
u]—u0| SZ‘uk_uk 1’ Sflgjvk‘ < L107

k<j
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so that, if Lo is sufficiently large, we conclude that

L . . 4N(5 L
(A6 = Au0) )¢ < Pl < ZRE2 e
Using the above equation in (2.19), we obtain
, 1 , 8N5 L ;
(2.20) [/ ®ll = Z== 1Ol + =7 / %H@(snws

By direct substitution, one check that

ALy
16 (0], < m”g Ol it 0 VEFI<
Note that the above inequality is meaningful only if dg < AL1 /(16 N7Ls). O

A consequence of Proposition 2.1 is the following

Corollary 2.2. Assume that V(u) < 4Ny for 0 <t < T, with T >t. Then

32NnL ; ; ; 64mL
e < =5 2012 O 220 -2 0] < =

J

(2.21) |27 (¢ o[ =(

0)][:-

fort<t<T.
In particular, if we consider v/ instead of ¢/, we obtain the estimate

(2.22) [|v7 (t)

[, = OMV(u)? =0(1)3,  t>1i

Note that a trivial estimate is of course

|07 (t)]] o <[|v7 ()] ,2 < AN,

e

but (2.22) shows that [[v7 (t)[|¢= is of the order of |[v(t)||2, if dp is small.

The regularity estimates of Corollary 2.2 are needed in the next section to prove that the total variation
of u remain sufficiently small, i.e., less than 4N¢&y. These estimates are valid for ¢ > ¢, so that we have
to consider an initial layer 0 < t < t where the total variation of the solution can increase. In the
next proposition we show that during this initial interval the total variation remains bounded if Jq is
sufficiently small.

Proposition 2.3. Assume that at t = 0 the total variation of u’ is less than or equal to §g/4. Then for
0<t<t

(2.23) 17 @)]| 0 < 2/|¢7(0)]] -

Proof. Using again the representation (2.19) we can estimate

, 4 L
1@l < 1€ O + 2/¢i|\] )| o167 ()] s

Therefore, using the a priori estimate (2.17), it follows that
1@ <

In particular the above estimate holds for v7(¢), so that the a priori assumption (2.16) is satisfied in
[0,1]. O

if 0<t<it.

0]

The above results implies that, without any loss of generality, we can set £ = 0 and assume that u’(0)
satisfies

(2:24) V(w(0)) < < Lomls

|07 (0) =o'~ 1(0) | ﬁ<@ﬁ,

eoc_

where C is a big constant.
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3. AN INVARIANT MANIFOLD OF TRAVELLING PROFILES

In [1] is proved the existence of a smooth center manifold for the retarded functional differential
equation (RFDE)

(3.1) { —0Uy, = f(u(x— 1)) — f(u(x))

Ot = 0

where u € RY and Df is strictly hyperbolic with positive eigenvalues. This manifold is defined in a small
neighborhood of the fixed point u = ug € K1 and o = A, () in the functional space C°([—1, 0] xRT; RY),
and contains all the small bounded travelling profiles of the semidiscrete scheme (2.1), taking values close
to ugp: we will denote it by C,,, with m € {1,..., N}. The aim of this section is to prove some properties
of this invariant manifold.

In [1] it is shown that the manifold C,, has dimension N + 2, and is tangent to the following linear
subspace of C?:

(32 M= {¢><s> == &5 rm(u0),0(€) = 036 € [1,0], (1, 0,0) € RN R*} .
m U0
Note that, by (3.2), M, is parametrized by the N + 2 variables

(3.3) u=¢(0), vy = <lm(u0), —Am(u0)¢’(0)>, Om,s
respectively in R, R and R. As a consequence of this tangency, the manifold C,, can be parametrized
by «(0) and the scalar quantities

Um(0) = (I (ug), ut(0)) = =0 (Im (uo), uy) and oy > 0.
This means that, given the vector v and the scalars v,,, o, with
}u — u0| < 3641, |vm’ < 364, ’crm - )\m(uo)’ < 301,
where d7 is sufficiently small, there exists a trajectory

(34) $(&) = 6(& 1, Vm, o) € CH([-1,0], RY)
such that v

B(0) =0, (1), 9/(0)) = — 22,

m
and ¢ is a solution of (3.1) with o = ,,. Note that u?(t) = ¢(j — oy,t) is then a solution of (2.1).
From the map (3.4), we can obtain two important functions: first of all, we get all the other components
of the vector uy = —0,,¢’(0). Moreover, the scalar quantity ¢/, (—1) gives the value u; ,, (—1), which allows
us to transform (3.1) into an ODE on the manifold C,,, see (3.11) below.
Let u be a travelling wave on the center manifold C,,. Denoting by v, v(-1) the time derivative of u,
and £ = —1 respectively, define the two maps:

(3.5) v = (ln(w), —omd'(0)) = Wim (U, Vi, o), o = (In(u0), —0m® (1)) = Tm (U, Vi, Oy ).
Note that all the equilibria u(x) = u, o, for |u — ug| < 361, 04, > 0 belong to Cpp,, and on the manifold
Cy, they correspond to v, = 0: as a consequence we know that v,, = 0 implies v = v(~1) = 0, and thus

(3.6) U= UmnTm (u, Upns am), vﬁ;l) = UmPm (u, U, O’m),

for some smooth functions 7, p,. The parametrization (3.3) implies that the “generalized eigenvectors”
7m are normalized by the relation

(3.7) (I (1), T (U, Uy 0 ) ) = 1.

In general, given u/, v}, and a speed o7, in the point j, we have determined the travelling profile ¢, so
that we know all the quantities u/** for all k € Z. To distinguish these quantities for the real solution
u? (t), for any given function f(u’~%, ..., u/*!), we denote by f the function evaluated on these quantities,
ie.,

F=F(o(=k), s 0(0).
Note that in particular also v/**, k € Z is determined, because of (2.1). Given a sequence u/, we will
also denote by f7 the quantity

fj = f(uj_k_la-'-vuj>7
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i.e., the function f evaluated on the points w/~*=! ... /. '

Differentiating (2.1) w.r.t. ¢, and defining as before v/ = ], we obtain

v{ + A(uj)vj - A(uj_l)f)j_l =0,
so that on a travelling profile v/ (t) = ¢(j — ont) we have

(3.8) — ol + AW )o? — AW )0 =

— oVl 7 —ovl 7+ A(ud )l 7, — A(ujfl)ﬁf;jlff;:l =0.

m,x' m m' m,x m

Projecting along I, (uo), since by (3.7) one has that (I,,(uo), 7, ) = 0, we obtain the scalar reduced
equation

—

39 oty Myhy N80 =0,
where we define
(3.10) S\m = 5\7” (u’ Ums Jm) = <lm (uo) ’ A(u)fm (u, Umy 0m)>7

and, following the above notation,

i _ _ - . . o
Nt = Am (w71 ﬁjil,am) = /\m(uﬁl,vfnﬁ(uj V) Om), Om).

»¥Ym ?rmo

We can thus reduce (3.1) on the manifold C,,,. In fact, since f is locally invertible, we can obtain TS
by

vt fu) = fuY) =0,

so that we obtain the system

Uy = UmnTm (uavm70m>
(311) —OmUmaz = Um (S\m (U(il)a UmPm s O'm)f)m - ;\m (u7 Um, Gm))
Om,x = 0

Since this is a system of ODE, we can solve it and thus reconstruct the profile. This proves that the
knowledge of the functions 7,,, p,, is equivalent to the knowledge of the center manifold C,,.

Remark 3.1. The choice of the normalization (3.7) is due to the fact that we want (3.9) to be in conser-

vation form, i.e.,

d .

Bl J_

7 Z vy, = 0.

K3
Together with the functionals introduced in the next sections, this will be an important tool for proving
the BV estimate.
In general, with other normalizations, the above inequality is not valid. If, for example, we normalize

the vectors 7, as unit length vectors as in [7, 4, 5], i.e.,

‘7:1’7'7, (u7vm70m)| = 1)

then the reduced scalar equation (3.9) is not in conservation form. This is a consequence of the fact
that the length of the piecewise linear curve «(t), whose nodes are the points w? (t) = ¢(j — omt), is not
constant in time (fig. 1). Using instead (3.7), the sum of the scalar v}, is always equal to

D 0h (D) =3 () = fn(ul) = lim f(ul) = T fon(0) = fon(u7) = fon ("),

J

i.e., it does not depend on time.

Since the vectors 7, are tangent to trajectories of (3.1), their derivatives satisfy a vector identity.
Using (3.9) and denoting by I the N x N identity matrix, (3.8) becomes

—_—

0= v}, D (=omud) + v, (=omvd, ), + (A7 = M, D)ol 7, — of (AT e = N ) =
— —_—

(03,) 2D — v (M o), — N o), 4 (A9 — N T)ud @, — o9 (A - N ).
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FIGURE 1. Motion of the line v corresponding to a travelling profile ¥

We arrive finally at the fundamental relation satisfied by the generalized eigenvalues 7,:

(3.12)  (v3,)°Di 4 vl (Ajfg'n — N, (7, + vl 7 )) — i (Afflﬁfl NN, ol )),

m- m,v m’ m,v

which, using (3.6), can be written as

(3.13) Vb DT + (AT, = N (7 + Vb)) = Bl (Aj—lffl N+ Vb))
where we define
ﬁ]m = ﬁm(uj,v#,am).

Remark 3.2. Note that the left-hand side is defined by the local values u/, v , o7 | while the right-hand

side contains quantities, for example 9.1, which are computed using the travelling profile ¢. Thus, when
we consider a solution u”, in general these quantities winll be different from the corresponding quantities
for the real solution, i.e., vJ 1 # ¢J-1.

Ezample 3.3. As an example where we can construct explicitly a center manifold of (unbounded) travelling
profiles, we consider the following system:

U{yt + A1 (U]1 — ujl;l) =
{ uit + ()\gug - <u31>2/2) - ()\gug—l _ (u{—1)2/2) =
It is easy to check that the travelling profiles with speed o7 of the first equations are exponentials:
eP —1
3

(3.14)

(3.15) ui(€) =a+b

where [ is related to o7 by the dispersion relation

o1 _ 1—eF

A1 B

In fact, for each a, b, equation (3.15) is a solution to the REFDE
—0o1u1 2 (§) +ur(§) —ui(§ —1) =0.

Moreover, if we consider (3.15) as a map from R? into C'*([—1,0],R), then this map defines a manifold
tangent for 01 — A; to the null eigenspace of the linearized system, eigenspace which is made by the
functions

(3.16)

ui1(§) = a+bg, a,b eR.
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Substituting (3.15) into the second equation we obtain

—01Ug,¢ + A2 (ug(f) —ug(€ — 1)) = (a — b/ﬁ)beﬂf(l - 6_5)/5 + %b26255(1 — 6_25)/ﬁ2.

One can check that a solution is given by the function

_ ab  eft—1 b2 1+e? 28¢ 1 ¢
(3.17) uz(f)—c+7/\2_)\17B +52<2(/\2(1+6_5)_2/\1)(e —1)—)\2_>\1(6 -1)].

The form (3.17) is quite complicated, because there are many constants which could be collected in ¢,
but we can take the limit of (3.17) when 8 — 0, i.e., 01 — A;. This means that, among all the invariant
manifold of the form

us(€) = co + 16 + cpe*,
we choose the one tangent to the null eigenspace, i.e., a center manifold of (3.14).
We now can write explicitly the generalized eigenvectors 71: with easy computations in fact we obtain

a bA (1 —eP) 1
0) = — 0) = —oyb —ob
’02( ) O'1U2,§( ) g1 )\2 _ )\1 o B ()\2 B )\1)()\2(1 +efﬁ) _ 2)\1)7

and noting that u;(0) = a, v1(0) = —o1b and using (3.16), we conclude that

T (u V1,0 ) =1y !
1\, V1,01 7)\2_)\1 1(}\2_)\1)()\2(1+e—5)_2)\1) 3
where § can be determined by (3.16) in terms of o1. Note that we have the relations

=ri(u),  T1o=01)n

V1 =0

1

Note also that the above equations are a consequence of the fact that the center manifold is tangent to
the null space of the linearized equation. For v; — 0, in fact, the travelling profile reduces to

(b(f) =u+ grl (U),

with no dependence on o;.

In the next sections we will need a precise estimate of the functions 7, p, for v, — 0, i.e., an estimate
of the Taylor expansion of C,,. We have the following proposition:

Proposition 3.4. With fized v’, vJ, and o, consider the function u € C°([—1,0],R™) given by
(3.18)

u(é) =’ _ U (eﬂ£_1> i (Tgn

/6 m UO);rgn>

% QD)\ﬁ‘nr,jn 1+e B se \2 1—eB < 656551) rl
m> )\er <2ﬁ2(1 - 67’8) (e 1) * B((l + B)€7ﬂ — 1) Ee B <lm(U0), T‘gn>2

(
() S gy (ORI ey 1)

m) T 282 (M (1 eP) - 20 B2 | (i (uo), mh)?
(”%)2 Z (B3, Drird Ml (uo), 73) (eﬁé _ 1) ri
om e M(L+eP) —2/\£,L B (I (1), 75, )3

where B is obtained by the linearized dispersion relation
Om 11— e P
Am (u?) B
If we denote by ¢ the travelling profile of (3.1) satisfying $(0) = u?, ¢'(0) = —vl, /oy, 0 = O, then

(3.20) |’¢_u’|cﬂ[—1,0] = O(Uin)s‘

(3.19)
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Proof. In Appendix A it is proved that (3.18) satisfies (3.1) up to third order in v{ , i.e.,

3

—omue + f(u(€)) = flu(€ —1)) = O(vl,)".

Moreover we have that u(0) = u’ and

(lm(u0), —omu’(0)) = vg, — %2 <lm(u0)’Z by <l$”DT1JnT$n> . <T¥L B Mﬂ >>

<lm(u0),r¥n> L(14+eB)— A,

n

—
=vl,.

Note that for o, = A, (u?), ie., 8 =0, (3.18) reduces to

© ; ving rl N <’U¥n)2< 1 DA T € 4 1 L pai g ) ri
w)=v — —§———— — ———DAr T —_—
N (L (u0), ) \ M U Y (L (o), 7))’

1 2
U ) A Drinrh,) o) N
+<)\1jﬁ> 2<lm(u0 Tm2n¢2m<)\]_)\g)<n < ( ) ¥n> m>§+§ n)

The above equations show that the manifold C,, : R"*! x RT s C°([-1,0];R"), defined by (3.18), is
tangent to the null space of the linearized operator, and moreover it satisfies

u(0) = u, —0m{lm(uo),u'(0)) = vl,.

By the center manifold theory, we can conclude that C,, approximates C,, to the second order, i.e., the
conclusion (3.20) holds. O

Remark 3.5. As noted before, the center manifold in a neighborhood of an equilibrium u = ug, o = Ay, (ug)
contains all the equilibria u = 4, 0 = A\, (@), with @ close to ug. As the proof of Proposition 3.4 shows,
the expansion (3.18) is actually tangent to the center manifold C,, in all these equilibria.

Note that the choice of the constants in (3.18) is very delicate: in fact, if we choose other constants,
we still get an “up to third order” invariant manifold, but for 8 — 0, or equivalently o, — A, (u?), this
manifold will blowup, i.e., we are not approximating the center manifold. This is the same situation as
in Example 3.3. Note moreover that, when D\,,r,, = 0 and (l,,(uo), 7, (u?)) = 0, (3.18) reduces to

u(ﬁ)—uj—% (eﬁ§1> i :
Om B <lm(U0),7’1j—n>

vl 2 <l%, Drfnrfn> ()‘31 — /\fn) (1 + 6_5) 2p¢ eBE 1
+ | — 2 , - (e — 1) —
)z (o))" \ 282 (M (1 + e=9) — 200

which coincides in the case of Example 3.3 with (3.17), because

<127DT17‘1> = ﬁ7 ll(UO) = ll(u) = (170)7 Tl(u) = ( ’U,/(>\21— )\1) > :

A consequence of the above proposition is the following corollary:

Corollary 3.6. Consider the functions ¥, Pm of the variables (v, vl ol ), defined by (3.6) for |u/ —

’r mo m

up| < 361, |vl,| <301, |om — Am(ug)| < 381. Then the following expansions hold:

o rd
3.21) (v, v, 0m) = —F——
(3:21) 7m( ) <lm(uo),7"¥n>

; o Drinrin) j_ Al (uo),rh) 2
" > )’ ZAJ 1+e-ﬁj)—m ( <zm<uo),r;;>rm> +O)(vh,)"
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(3.22)

o : i DXy (14ePn J i 1
(W 0] o) = e Pm 4 UJ - T, +e - e Pm 4 B, e Bm >
)\ )\ 1 — 6_5771. (1 —|— /8%1) _Bm — 1 <lm(u0)’ T77L>

j J o\ -5, ; J )
+ 2 S (0, ) R A L) oy o)) )92
/\gn n#m /\g”(l + eiﬁm) - 2>\¥n <lm (’uo), ’I"¥n>

where 33, is given by

(3.23) AZJ;) _ 1= ‘Zﬁm

Remark 3.7. Note that (3.21) implies

(3.24) P (0,0, 00) = rpm (),

and

(3.25) Fomo (09,0, 0,) = — ;;p Driri) (Ai;(l " 6_1%) — A%) (rg; — (L (ug), 7"5;1>7”Z;)~
Moreover by (3.22)

(3.26) P (07,0,0,,) = e P,

Proof. From (3.18) we get

d : r
. a — o PR Tm
O'mdé-(rb(f) vm@ <lm(u0)’r-¥n>
(v ) DM, ri, s e Fm —(ePn€ — 1)ePns 4 - e_ﬁi”j gePnt L
Tm N \ (1= e ) (L+ Bh)e s —1 (L (o), 790)”
Z (. Dy (SO () e N
= Bgn ()\J (1 + e—ﬂ'm) — 2/\j ) ﬂgn <l7n(u0)7’r¥">
, ,Driri) (I (uo),73) T 13
(v ) rgr:n )\%(l + e,ﬁﬁn) — 2\ < ’T¥n>e <lm(u0)7r$'l>2 (U )

so that we obtain the expansion

W
7 &,

; T‘zn DT’j rd > . <lm(u0)’r%> .
= Um J 2 Z J Biy _ o\J N L
(Ln(uo), Th) <z o) rm> o M 1—|—e ) — 2X\,

v = —

from which (3.21) follows. Evaluating now d¢/d€ at £ = —1, we get
-1 Y ri, (’Ufn)2 DX, ri 1+ e Pn 1—e B e_'Bfann
VT =) ePm —_ . — : - : - _
(b (1), 70 ) Tm X B (1+Bh)ePm —1) (I

MN(L+ePn) =M, (2+e )1 — e Pn — vl
ML+ e=Bh) — 2\, n (L (1), i)

MU SRy

ag
m n#m

. I, Dri.ri > <lm(u0),rj> e rd 3
+ J 2 < . n B"L m N +0 J )
(vh)" > X1+ e=8) — 20 (U (0), ) ({0 ) ()

n#m
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so it follows that

Wil = i o (vh)” DN, (L4 e B B, A N S
o Noo M \1—e (L+ Bh)eoh —1 (o), 780)
12 A } i .
P ) S g gy PR M) (L) Ly (o)1) sy
Mo TN (L e ) = 2X (Ln(uo), )
This concludes the proof. O

Remark 3.8. Note that, even if the speed o is constant, in general 3/, is not. This is a consequence of
the fact that the dispersion relation depends on w’ through the eigenvalue A,,.

Ezxample 3.9. We now consider an explicit example where we can define a travelling profile manifold in
a genuinely nonlinear case. We consider the flux function f given by

flu) =e",
so that the corresponding semidiscrete scheme is
(3.27) ul e —ev’ = 0.

We now perform a change of variable analogous to the Cole-Hopf transformation: if u’ is a solution to

(3.27) with bounded total variation and satisfying u=> = 0, define the sequence z7 by
J
(3.28) w =logz’ !t —logz = 2/ =exp <— Z uk> .
k=—o00

Adding up from —oo to j, equation (3.27) yields
J ) 1 ) PP P
Oz(Z uk> —&-e“J—l:ﬁ(—ziﬁ-e*Zim“ —e Xl ),
k=—o0 " e ==
so that we conclude that the variable 27 satisfies the linear equation
(3.29) 24— =0

Conversely it is easy to verify that if 27 is a strictly positive solution of (3.29), then u’ defined by (3.28)
is a solution to (3.27). In fact

- , . . . . . .
o = zl e A e A gt
R e 231 23 il 2

By means of the transformation (3.28), we can obtain all the travelling profiles of (3.27). In fact, a
travelling profile for z is
z(&) =a+ belE,

so that the invariant manifold of travelling profiles of (3.27) is

o+ beBE—D) ¢+ BlE=1)

. = 1 — | = 1 _— R.
(3.30) o) =a+ og( pRCT ) o+ og( T ), a,B,¢e €
The quantity « is equal to ¢(—oc), and the speed is given by

s 1
(3.31) o =S

/8 )
which is the Rankine-Hugoniot condition if € > 0. Otherwise we are considering an unbounded profile,
corresponding to a rarefaction in the hyperbolic case.

We can now check in this special case the decomposition given by Proposition 3.4. We need to rewrite
the travelling profiles given by (3.30) using the coordinates ¢(0) = u?, ¢'(0) = —v/ /o and o.

Imposing the restriction that ¢(0) = u/, we obtain

—B¢
o e+1 _ et+e
(b(g) =u + IOg (E 4 eﬁ ].Og €+ 67'3@71) 9
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for € € R. Moreover the speed is given by
W €+ 1 ef—1
e+ef B 7

and )
sy = - = P
o (1+e)(1+ee*5)'
We thus keep v/, o fixed and we let vJ — 0, so that the size of the jump tends to 0. Equivalently we can
let ¢ — 0.

The speed relation implies that 5 is a function of €. In fact we have that

;08 2
— g il
p=p+e Gl rome
where ‘ _ v v
o 1- e 9B P (1 — efﬁj) (675] — 1)
ew  pi 7 Oe |y (1+pi)eh -1

We thus obtain the following expansion for ¢(&):
(&) = u? + log(l + e) — log(l + eeﬂg) + log(l + 665(5_1)) — log(l + 66_5)

(e~ 1) (e — 1) = (e — 1) (¥ 1) + O

ul + (;5’(0)65;_ !

€

2p

(T+e(l+e?)+0(1)e) — ¢/ (0)== (1 + e 7) (e** — 1) + O(1)®

-1 @02 1+4+e P

7U. / eﬁg— 2 €
=u’ + ¢/(0) 5t 62(1—6*5)( 1)" 4+ 0(1)¢?
vl P
= u —;T
’Uj 2 1+ eiﬁj Bie 2 1-— eiﬁj Bie eﬁjf -1
(%) [2(@)2(16‘”)(6 RN (e <€e T
+0(1)(vl,)°.

This computation shows that the two second order terms have different meanings: the first one is due to
the Taylor expansion of the profile, while the other gives the correction of the local dispersion relation
(3.19) to the terms 3, when passing from ¢(0) =« to ¢(&).

4. WAVE DECOMPOSITION AND THE GLIMM INTERACTION FUNCTIONAL FOR THE SCALAR CASE

Following the same approach as in the vanishing viscosity approximation [4], the next step towards a
proof of BV estimates is to use the center manifold of travelling profiles to decompose a solution u’ of
(2.1). Differently from the hyperbolic or parabolic case, however, we cannot expect to identify a travelling
profile only looking at the local information at a point j.

In the scalar parabolic case, for example, given a solution of

up + M)ty = Ugy,

a corresponding tangent travelling wave profile is found by solving the ODE

o) = u(x Uz (0
—oty + Au)uy — gy =0, { q?((xg)) _ ui(xo())) o= A(u(0)) — ua::((o))
In the hyperbolic case the Rankine-Hugoniot condition plays the same role, given the value v~ and the
jump in the m-th direction w}, — u,, at x = j.
In the semidiscrete upwind scheme, the only local information is u?, because knowing for example v/
is equivalent to knowing u/~!. Roughly speaking, since in the scalar case a travelling profile is identified
by three data (the position, the “jump” and the speed), we expect that we will need to know u/, u’~!

and u/ 2 to identify the travelling profile in = = 0.
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Consider the semidiscrete scheme for a scalar equation,
(4.1) ul + f(u?) — f(u?71) =0, ul € R.

The aim of this section is first to show how we can decompose the solution u? to (4.1) in travelling profiles
¢’, identified by the values u/, w/~!, w/=2. When this first result is achieved, a natural question is if
there is a Glimm-type functional Q(u) of the form

Qu) = Z [strenght of the wave in j} . {strenght of the wave in k} . [diﬁerence in speeds]
i<k
It is clear that in the general case, i.e., when u’/ € R, this functional is very important because we will
need it to bound the interaction among travelling profiles of the same family, see [16].
The first step is to find a way to identify the travelling wave at j. While u/ is given and v/ =
f(u/=1) — f(u?), to identify the speed of the travelling profile we recall that, by (3.5) and Corollary 3.6,
if ¢ is the travelling profile with speed ¢ such that

$(0) =, —a¢/(0) =0/, —o¢/(-1)=0""",

then we have the relation

(4.2) vl = W(uj,vj,a) = vjﬁ(uj,vj,a),
where p is a smooth function in a neighborhood of (ug, 0, f/(ug)) such that by (3.22)
(4.3) p(uw!, v, 0) = e 4 O(1)v?,
and (7 is given by the dispersion relation:

o 11— e #

J'(u?) pBi

We define o/ = 1771 /07, so that we can rewrite (4.3) as
(4.4) ol = ﬁ(ujwj,a).

We can compute the derivative of p w.r.t. ¢ when v/ = 0, obtaining

9| _ w08 _ (87
9olyy © B0 P((l+ e 1)

Note that this derivative is uniformly different from zero in a neighborhood of 3/ = 0, corresponding to
ol = f'(u?), because we have

(4.5)

)2
lim (BJ) . = -2
Bi—0 (14 B7)e= A —1
This implies that p is invertible for o close to A(ug), so that we can write the speed o as a function of
uwl, vl viTtif of = 0971 /o7 is sufficiently close to 1, i.e., 37 close to 0.
We have proved the following proposition:

Proposition 4.1. Given the three points u?, u?~', w7 =2, such that

f@™?) — fw ™)

W —ugl <361, |f(W)— fIT)| < 364, - - — 1| <36
’ | ’ ( ) ( )‘ f(ug—l) _f(uj)
for 01 sufficiently small, then there exists a unique travelling profile ¢ such that

6(0)=v,  —o¢/(0)=0v7,  —od/(-1)=1""".
Remark 4.2. Note that, since from (4.1)

v = f(ujfl) — f(uj) ~ )\(uj)(ujfl —uj),
we can state the assumptions of Proposition 4.1 as
. , , wi=2 — i1
|u7—u0|§3§1, |u]—u3_1’§3(51, -1 §3§17

i~ — I

and its conclusions as

p(0)=u!, (-1 =71, P(=2) =2
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AN

cut-off function active

FIGURE 2. Interpolation of the solution u/ with travelling profiles

This means that the travelling profile interpolates the three given points (fig. 2).

Let ¢ be the cutoff function,

1 |z — 1| < 61
(4.6) (x) = ¢ smooth connection §; < |z — 1] < 361
0 ‘(E - ].| 2 3(51

and such that |z¢(z)| < 201, « € R. A simple consequence of the above proposition is that we can always
define a travelling profile in any point j, which fits the points v/, 7!, and “tries” to fit also u/ 2.
Corollary 4.3. Given the points u?, v7, v7 =1, with
’uj - u0’ < 341, ’f(uj) - f(uj_l)‘ < 341,
there exists a unique travelling profile ¢ such that
p(0)=v/,  —o¢/(0) =1,
with speed
o=p"(uw, v, 1+ () (! —1)),
where P~ denotes the inverse function of p.

Before considering the case when o/ is far from 1, i.e., the cut-off function (4.6) is active, we want to
show how the dispersion relation (3.19) enters in the Glimm type functional. As we will see, we have
to weight the speed of the waves through a nonlinear function, which is obtained from the dispersion
relation.

As a measure of the local strength of the wave ¢, a natural choice seems to be u/ —u?~1. We will use

as a measure of the strength of the wave the time derivative of w7, i.e., v/ = ui This is due to the fact
that v/ is a particular solution of the equation for a perturbation ¢, namely

G+ 7/ ()0 = ) =0
This will help in studying the stability of the solution u, see Section 7. Note that for linear equations v’

is proportional to u? — u?~!, so that this choice will not influence the computations of the next example.
Since we can give locally the strength and the speed of a travelling profile, we may suspect that the

functional @ is
Qu) = Z|ijvk”Uj - O'k‘.

j<k
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To see the implications of this choice, we study a linear scalar equation, where the computations can be
performed explicitly.

Example 4.4. We consider the linear semidiscrete scheme,

uwl + M — M =0,

J

and we assume for simplicity that v/~ /v7 is close to 1, where as usual we define v/ = u]. In the linear

case it is easy to prove that the speed of a travelling profile is given by

ol vl —1

N n—1 n
X " logor T ioger I/
and the equation satisfied by v/¢7 is
.. PR . . - . . 'Uj72 v.j71
(4.7) (Vo) + A(v'o7) = (0?7 = Nl T (T oY) (vj—l - >

+ AZpit (g(vj_l/vj) — g(vj_2/vj_1))

_ j—2 J—1\ 2
_ 7)\21)]719"(y) (v'_l . v 4 ) ,

vJ V7

where y is an intermediate point between v7=2/vi~! and vi~1/v7. For v/=1/vi, vi=2 /1771 close to 1,
i.e., when the speeds are close to the eigenvalue A\, we have ¢’ (y) ~ ¢”(1) = —1/12. In the following we
denote by e’ (t) the right-hand side of the above equation.
We are thus considering the 2 x 2 system of equations
vI 4+ Al — Md Tt = 0
{ (vjaj)t +A(viod) = A(viTtodTh) = el(t).

If we compute the time derivative of the functional Q(t) defined as

“s) Q) = Y| (14e) — ot (190)

j<k

b

we obtain

W 5 (ko) — ot (90|
_ = VNV O — vV \UV'O
dt dtj<]C

= 22sgn<vj (vkcrk) — vk(vjaj)) </\(vj71 — vj)(vkak) — (vk))\((vjflojfl) — (vjoj)>)

i<k
+2 ngn(vj (Ukak) — P (Ujo'j)>vjek
i<k
Ji—1(k)
= 2/\2 Z sgn(vj (’UkO'k) — vk(vjaj)) (/\(vjfl - vj) (vkak) — (vk))\<(vj710jfl) — (vjaj))>
k j=ji(k)+1
+2 ngn(vj (vkok) — P (vjoj))vjek
i<k
_ 4)\22 qu;(k)—l(vkak> _ Uk(vji(k)—lo_ji(k)—l)‘ _ QAZ‘vk—l(vkak) _ vk(vk—lok—l)‘
k >0 k
+2 ngn(vj (vkak) — P (vjaj)>vjek
i<k
< —2) Z‘vk_l(vkak) — ¥ (vk_lak_l)‘ +2 ngn(vj (UkO'k) — P (vjaj)>vjek,
k j<k

where the points j;(k) are obtained by

sgn(vji (vkak) — ok (vjiaji)) -sgn(vji*l(vkok) — ok (Uji*lajifl)) = -1,
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and they are monotone decreasing with the index i. Without loss of generality we assume that the points
ji(k) are finite; the general case follows by approximation because the solution u/ is in BV.

We see that to show that the above functional is decreasing, we need to estimate e/. However e’ is
not related to the negative part of the derivative of (), because the latter is of second order w.r.t. the
quantity v7, v/~ while e’ is only first order. In fact, if we rescale v/ — v, then @ becomes v2Q, but
e+ vel. Thus we cannot expect that d@Q/dt controls the source term e’.

As in the parabolic case [8], we can relate the above functional to the area swept by the curve v(t) € R?,
obtained by connecting the points

pe (505 ) (o 35 o)

k=—o0 k=—0o0 k=—o0

Similarly to the parabolic case, we can consider another functional, the Length Functional, i.e., the length

of the line ~:
H=> V() + (vigd)?.

Differentiating L(¢) w.r.t. ¢ we have

% => ! (w‘,\(vﬂ'*l B e Y ngj)) £y Vo’ o
(v7) + (chfj)2 i\ (©9) + (vied)*

)\Z (vjvj_l —l—vjajvj_laj_l)
o T

_ 1 : ((Ujil)Q + (’Ujlo'jl)2)] + Z . vl ol - 26],
j .
+

V(@) + (v 1031)

o]
L (o)’

AZW
g )+; 1+ (o)

A simple computation shows that, for o close to A, the coeflicient in front of the terms in the first sum is

A Ly 2 A3
———55(00) = ——75
2(1+X2)“/2( ) 8(14A2)°/?

so that, in general, we cannot expect decreasing or boundedness of the length using the negative part of
the the derivative of L(t), because both coefficients are of O(1).

((1 +olo? ™) = T+ (09)2/1+ (Uj—1)2>

(7 o7 )’

T2 (140701 + /T (2T + (07!

Remark 4.5. If A < 1/4/2, then the coefficient in front of the negative part in dL/dt is greater than the
source, for o close to A. This is a consequence of the relation between ¢’ and g”.

One can rescale ¢ so that A is sufficiently small. We will show below that there is a more elegant way
to handle these source terms, and actually to make them of higher order w.r.t. |v7].

A more natural choice, at least in the linear case, is the following: consider the line ~(¢) obtained by
connecting the points

(4.9) Pl = ( uﬁ‘il >

Since the system is linear, it follows immediately that
P} 4 \P7 - \PT"L = 0.

Using the same techniques as in [8], it can be shown that the above equation implies that 4 moves in the
direction of curvature.
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FiGURE 3. Motion by curvature of the curve ~

We can write the following Length and Area Functionals:

(4.10) L(’y):Z\/(uﬂ'—uﬂ’—l)2 + (w1 — ui—2) Z\/ (v1)" + (v 1)
J
J i1 ko k=
( u?—l _qu_2 >/\ ( ugfl B uk—2 >’ 2)\2’@] k=1 ki = 1‘

i<k

w1y Qm=2%

j<k

With computation similar to the ones performed before and denoting as usual o/ = v7~! /v7, we have

Z%ng(a%wmw @I+ (@)

-y (o o)’

7 VTH (@) (1+ adai=t 4 /TH (@ Py/T+ (7 1)?)

5 SR (14 | x{[o? — 1] 561,
J

S e e Y

J

it = 1], o™ = 1] < 561 }

aj—l‘ < 36, or |aj — 1’ < 301, |ozj_1 - 1‘ > 551}7

vIpd 1 —Uj_l — il
v vi=l J |
In the previous equation we have used the fact that

(4.12) <Sgn(xl)(\/%xy) - \/1+y2> {le =1 = 581,y = 1] < 361 or |o — 1] < 351,y — 1] = 561 }

1

if 61 is sufficiently small.
We can interpret the above functional in the following way: instead of using the real speed o, we use
the quantity «, which is related to o by (see fig. 4)

g_a—l

A loga’

“

As we see from the pictures, the “weight” o/ given to the “jump” v by the dispersion relation is
greater than the real speed o when o > 1.

In the nonlinear case, following the above example, one may look for a variable w’ which is a solution
to the equation
(4.13) wf + Mw? — Nt~ =0,
and such that the local speed o7 is a function of the ratio w’/vi. Thus w’ is a function of u/, u/=1,
w2 wl = w(w, w1t u?=2). However it can be shown that such a function does not exists: this is a



BV SOLUTIONS OF SEMIDISCRETE SCHEME 21

>|Q

0=g (a)

FIGURE 4. Relation between o and «

consequence of the fact that the derivative of u/~2 depends on v/ 3, so that w’ should depend also on
w3, and so on. The proof is in Appendix B.

Remark 4.6. Of course there could be variables 2/ = z(u/,u~1,...) such that 27 and 27! satisfy the
same equation, for example using the Cole-Hopf transformation of Example 3.9.

What is proved in Appendix B is that there are no variables w’ satisfying the same equation of v7,
and such that w7 is a function of u/, w/=1,... u/~* for some k > 1, if (4.1) is nonlinear. Thus for general
semidiscrete schemes the only function with these properties is w’ = v’. This is very different from the
parabolic case, where such a function is given by (see [8])

w= f(u)y — Ugy = Us.
In the following we prove the existence of a function w’ = w’(u?,v7,a?), such that
wg + Mwd — N lyi—t = Bj(t),

with e/ (¢) integrable, and precisely
“+oo
Z/ 4 (1) dt = O(1)V(u)?.
~ Jo
j

The main idea is to use, as a measure of the speed of the travelling profile in 5, the quantity s’ given by
ol s —1

Mug)  log s

i.e., using the dispersion relation at the point

)

up = lim w?.
j——o0
The above choice will generate an error, but locally this error will be of the order of the distance of u’
from ug multiplied by 7, i.e., when summing w.r.t. j, of the order of the total variation squared of u.

Let g be the function
s—1
= > 0.
9(s) log s =
We can extend it for s < 0 to an odd function by defining g(s) = —g(—s) if s <0, with g(0) = 0. This
function is of course globally invertible, but not differentiable in 0.

The variable s7 is defined by

LosT -1 ol ANw) e —1
4.14 7Y = _ = = i
(4.14) 9(s") log s7 AMuo)  A(uo) log(e_ﬁj)’
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AU> AU g

FIGURE 5. Graph of the function oo = a(u, 0, s) given by (4.16).

where o7 is the speed of the travelling profile located in j. Recall that from the center manifold theorem
we have

o’ :ﬁ(uj,vj,aj)7
with p invertible in a neighborhood of o’ = 1. Using (3.22) and (4.14), for s/ close to 1 we obtain
f =00, M) =97 (22a(6)) + 0710 7 Auolg(7)

for some smooth function ¢. Define the cutoff function

1 ‘l‘ — 1| S (51
(4.15) Y(x) = ¢ smooth connection §; < |z — 1] < 367
0 \:v — ].| > 301

We can extend the right hand side of the above equation to an invertible function, defined on the whole
real line R and with range equal to R: in fact, for fixed u?, v7, consider the function

4.16 =gt : . J IG( w07, Muo) (1 Ty = 1)p(s?

110 o =0 (T oy = ) P A (1 (o) - D7)

It is clear that for u? sufficiently close to ug and v’ small, the function o = a7 (s?) defined in (4.16) is
invertible. In fact we have

% =1+0(1)V(w)
We can then write
(4.17) sl =g7! <(1 + W@ZJ( j)) g(aj)> +vjn<uj,vj,aj)

= h(uj,vj,ozj) + vj/-e(uj,vj,ozj).
Here  is a smooth function, defined for u/ close to ug, v/ small and depending on o/ only when ¢(s7) # 0.
In particular, when |s7 — 1| > 547, we have directly from (4.16)
sl =al — vj(j(uj,vj, /\(uo)).
In the following, with an abuse of notation, we will write
(4.18) vt :vjﬁ(uj,vj,sj),
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where p is given by (4.16). A consequence of the definition (4.17) is that v7s7 is of the order (|v’|+|vi~1),
and then it is a bounded function. We define this product to be

(4.19) wl =l
Note that in the linear case we obtain w’/ = v7~!, so that by Example 4.4 we do not have any error term
el

Assume first that v/ # 0, so that o/ is well defined and we can take the time derivative of s/. The
equation satisfied by w’ is

(4.20)
w{ + Nl — NI = vjsj + )\j_lvj_l(sj — sj_l)
8h 2 ORI . OhJ
=’ Do (vj) %—&-v]()\] Lyd=t — My J)ﬁvﬂ
+ N yi— 1( (uj,vj,aj) — h(uj_l,vj_l,oﬂ_l) + iR — vj_ll-@j_l)

+ v (mﬂ(vj) + (K + 07 kd) (W — Ml + K@g@g‘)
= N1yt (gz (uJ v 047) (aj_l — aj) + h(uj,vj,aj) — h(uj,vj,ozj_l))

where P denotes a second order polynomial in v7, v9~!, 972, We have used the following computations:

i ; pi—1 j)\J—QUJ—Q — Nyl j_l)\J—lvj—l — NoJ
vy = = v
t

vI - vI vI
= ()\3;2 — )\jfl)vj72 + )\jflvjfl(ajfl — aj) — (/\jf1 — /\j)vj*1
= M lyi—l (ozj71 - aj) + (9(1)1#‘711)]‘72 + O(l)vjflvj

h(uj_l,vj_l,aj_l) — h(uj,vj,aj_l) = (9(1)(113'_1 — uj) + (9(1)(1)34_1 — vj) =01 +O0(1)i 1

Since Oh/Ou, Oh/Ov, Ok /da are different from 0 only when o is close to 1, the polynomial P has smooth
coefficients.

We first study the terms which are of first order w.r.t. v7, v/~ or v/=2. These terms are the most
difficult to bound, because they will correspond to the Length functional, which is of first order too. As
we observed in Example 4.4, the constant in front of them should be very small. We will show now that
with the choice (4.19) this constant is of the order of the total variation.

The first order term in the right-hand side can be computed as

(4.21) N7l (gz (w0, ad) (aj—l ~ oﬂ) + k(v v, of) - h(uj,vj’aj—1)> -

OM)V(u)vi~1 (aj - aj*1>2 |s — 1|, [s771 = 1| < 56,
OV (u)vi=2 + O(L)V(u)vi=t  |sf — 1| > 5y, |71 — 1| < 36, or
|s771 — 1| > 56y, |s771 — 1] < 36

0 otherwise

In fact with easy computation or directly from figure 5 we have

S—Z(uj,vj,aj) (ajfl - aj> + h(w, v, 07) — (v 07,0l ) =
82h(uj,x)/6oz2<ozj—aj71)2 |sj—1|,|sj’1—1| < 541
(Oh(w?,a?)/0a — Oh(u?, ) /0c) (ol ™! — o) |sj71 — 1| > 541, |5j — 1| < 301
h(u?,a?71) —a/™! |77 — 1] <30y, |7 — 1] = 56,

0 otherwise
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where z denotes a point between o/, o/ ~!. It is easy to show that for all «

2
S—Z(uj, v,a)—1= O(l)(u - uo) + O, %(uj,vj, a) = O(l)(u - uo) + O,

so that, using the regularity estimates (2.22), (4.21) follows.
Using (4.16) we rewrite (4.20) as

(4.22) w] + NMw? — N7t = O(L)V(u)v? ! (s7 — sjfl)zx{‘sj -1, |sj71 -1l < 5(51}
+ O V(u) ([ + |vj*2|)x{|sj — 1| > 561|s’ 7" — 1] < 36y or viceversa}
+ P(u? 07 07 0772,
For v/ = 0, we obtain w’/ = v7~!, so that with direct computations we have
w] + Nw! — NI ™ = (W = N1l 7 g N 2072 )\j_lvj_l(h(uj_l,vj_l,aj_l) - Uj_lﬁj_l)
= 0()V(u)(jv" Y] + \vH\)X{W‘ —1] > 58 ]a 1| < 351}
+P(uj,vj,vj_1,vj_2).

Thus (4.22) is valid for all j € Z.

We now consider the form of the term P, which is by construction a second order polynomial in v7
vI~1 and v772. A simple analysis shows that P cannot contain the term (v/=2)2 because v/ =2 appears
only in the time derivative of v7~!. Thus the form of P is

Pul v, 0770772 = all(qﬂ,v)(vj)2 + a2 (u?, V)i oIt + agz(u?, v)viv? 2
+ (122(Uj, v) (vjfl)z + agg(uj, v)vj*lvjfz7

where the coefficients a(u?,v) are smooth functions depending on u/, v/, v7~! and v7~2.

For an exact travelling profile with speed o = A\(ug)g(s) independent of j, we know that w’/ = v7s, so
that w’ solves the same equation of v7, i.e., the source terms vanish, which implies that P(v7, 9971, $772) =
0. Thus we conclude that

(4.23) P(v,vj_l,vj_z) = P(v,vj_l,vj_Z) — P(v,ﬁj_l,@j_Q)
= <a12vj + ass (’Uj*l + @jfl) + (123’1A)j72) (qu — @jfl)
+ (a13v7 + aggv? ™) (072 — 5972)
+ (a1 — an) (#7)° + (a2 — a12) 07091 + (ars — deg) 09072
+ (ass — d22) (8771) + (az3 — digg) #7092
= O (V1 = o7 + O (v — )
+ O(l)vj (vj—2 _ @j—2) + O(l)vj_l (vj_2 _ @j—2>_

Define ¥/~2 as the point of the travelling profile passing through w/~!, vi~! with speed ¢7: using the
function p introduced in (3.5) of Section 3, we can write

(4.24) ¥ =0 (W 0 8, VT =0l p(W T T ),
Note that this point is different from 972 if |s/ — 1| > §;: we have the estimate
(4.25) 0772 =/ = |w (W70 ) — (w0 T ) = O(1) [ T = 0.
Using (4.16) we can then write
(VTP =017 = 0 (V1P = TR o (00— )
= iyt (ﬁ(uj_l,vj_l,sj_l) —p(u? v, Sj)) + 07 (0777 = 977?)

= O M (! =) + O (VT =97,
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P2 972) = I (72— 92) g (72 )
i1

= vivI~ 1(~(uj_17vj_1,sj_1) —ﬁ(uj_l,vj_l,sj))x{‘sj — 1’ < 5(51}

ot (2 = 52| 1] = 501, |9 — 1] <38, )
+ ol (772 = o) { |7 - 1] > 5y,
+ 07 (0772 =97 7?)

= O (! =) + O T H (T — 7T

Jrvj*l(vj*z 7@3‘72))({}5]‘ — 1| > 564, |sj*1 — 1| < 351}

S 1] =230,

F (w2 = o) |9 - 1) 2 50, |97 - 1] 2 30, ).
Using now the trivial inequality 2ab < a? + b?, P can be estimated as
(4.26) ‘P (v7, 077107 72) ’ <01 ( vj_l)g)x{‘sj — 1’ > 61}
oW () + () )x{|s ! ~ 1] = 61}
o(1)
0 (jo7=2] + [0 ) — 1] > 551
We finally show that the equation satisfied by w? is
(4.27) wl + Nw? — N7 w7 = el (1),

Vw? T — dyd 1'

1 <30 ).

where, using the estimate [v| = O(1)V?(u) of Corollary 2.2 and assuming the constant Cj sufficiently big,
the error term e (t) is bounded by

(4.28) /@] < 0V (s - sﬂ’*l)2x{|sﬂ’ —1) s -1 <581
+ 0V (o7 + 072 )x{ s = 1] = 581, s/~ = 1] < 3, or viceversa}
+O()|wlert — v~ 4+ o) (Jof [P+ o {57 - 1] 2 61}
+ o) ([0 1+ o2 )y {5 - 1] 2 61
= OO{V(u)I{(t) +I(t) + L () + 1;‘*(@}.

Remark 4.7. We can classify the various terms in e (¢) in the following categories:

(1) terms due to the approximate “dispersion” relation (4.14), i.e., due to the fact that we are using
the dispersion relation in ug and not in u/:

I (t) :V(u)’vj_1|(sj — sj_1>2x{|sj -1, ‘sj_l -1| < 551}
+V(u)(|vj71| + |vj72|)x{|sj — 1| > 5601, ‘sjfl — 1| < 307 or viceversa};

(2) terms due to the interactions among travelling profiles, i.e., due to the fact that s’ is not constant
w.r.t. j:

Ig(t) = ‘vjwj71 fwjvjfll =

wipi (5171 — 57|

(3) terms due to the cutoff function (4.15), i.e., due to the fact that there are no travelling profiles
with a speed corresponding to s7:

B = (|0 + 7 P ){ls 1] 2 0}
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As we have already observed, the first order terms are the most difficult to bound, because they correspond
to a first order functional, the Length Functional. As we will see later, the second order error terms can
be computed using second order functionals. When computing the derivative of these functionals, these
terms appear multiplied by a small constant, of the order of the total variation of u.

Remark 4.8. A simple explanation of the presence of the error terms can be obtained by looking at the
parabolic case. Consider the scalar equation

ug + f(u)y — Uge = 0.
In [8] it is proved that, defining the auxiliary function
w= f(u) — ug,

and using y = u(t, x) as the independent variable, we obtain the equation

Wy = (f(y) - w)wayv

1
~ 3 // [wy (y1) — wy (y2)|dyr dys
Y1 <y2

is decreasing. If instead of u we consider the nonlinear function z(w), we obtain the equation

z— (f(y) — w)QZyy =—(fly) - w)QZ"wi-

Going back to the original coordinates, we obtain

z(w) + f(w)z(w)y — 2(w)ge = —uggz"(w)(w/uz)i.

so that the functional

In the semidiscrete linear case, we have analogous quantities given by u, = v7, w = —ug, = v/ 71 — 07,
so that we can rewrite the last equation as
2 AN = N = T (0172 fod T — T )

Thus, the error term is due to the fact that we use an approximate dispersion relation to compute speed,
i.e., the dispersion relation evaluated at the point ug, see (4.14).

Since the dispersion relation is not constant, it is easy to show that if we choose w’/ = v7~!, the source
term e’ (t) is only a second order polynomial in v/, /=1, v=2. However this polynomial does not vanish
on travelling profiles, because s/ = o7 is a function of w7 and is not constant. This implies that w/ = v7s7
does not satisfy the same equation of 7.

We introduce the Energy Functional. Let 8 be the function

0 |z — 1] < 46,/5
(4.29) 6(x) = { smooth connection 44;/5 < |z —1] <
1 |£L' — 1| Z 51

We multiply
vj + /\(uj)vj — )\(ujfl)vjfl =0,

by v767 = v76(s’), so that we obtain the equation
(4.30) S ()0) + ¥ @)~ N = () ()]
P

J—1 . o . , o
_ A 0'(s) (w/o! 7t —w M) + 5 ' (s7)v’ e’ (t).

The sum w.r.t. j of (4.30) yields the equation

(4.31) Z(,\j (v7)09 Aj—1vjvj—19j) _ %Z()\j (v7)207 — 2XI~1pi 199 4 Aj—l(vjﬂ)zgjﬂ)

j
diz v7) 9]—1—2—9/ (W=t —w/ ™t —|—Z 9/’1}]6].
i

l\.’)\»—l
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We write the left-hand side of (4.31) as

(4.32) %(Aj (vj)29j — 2N T hylgdThgd 4 Nt (vj_1)29j_1)

B -t 2. 1, - RCTPEID Vi

5 (7 =) (VN () (0171)? (071 — 69).

As a consequence of (4.16), we have the series of inequalities
viT1

— —1
vJ

) ) . 4 . 1 .
6 > (\sﬂ —1| - 0(1)V(u))9J > (551 - ou)vm)) 0 > S0t
if the total variation of u is sufficiently small, and thus we obtain

1oy, o e o 1o Al 20
TV =) > X (o) > LIV XN ()

The last inequality follows from the estimate (2.22). _
Note that the term M ~1(v3=1)2(97 — 7=1) in (4.32) is equal to 0 when |s/ — 1|, |71 — 1] are greater
than 6;. We can then write

N-1 o ) , N1

7(1}]—1)2’0]—1 _ 93| _ (vj—1)2|9j—1 _ Gj‘x{|sj _ 1| < 551}

i—1
+ %(Uj,1)2|9j71 _ 1|X{|Sj _ 1| > 551’ |Sj71 _ 1| < 351}
1—|—1051

IN

107 oo =t {7 1] < 5

+ 5)971(11]7 )2x{|sj - 1| > 501, |5j71 - 1’ < 351}.

where we used the inequality |0(z) — 0(y)| < ||0'||=|z — y| and, by assuming V(u) sufficiently small,

pi—1

vJ

- 1‘ <106 if |s? — 1] < 56y.

We finally can estimate (4.32) as

1+ 1051

1ja J=1dyi=1gi J—1(,i—1\4gi—1 /\jilj i—1\2pj
5 (V)0 =20 11 VT () ) = S (0 — oY)
1
2

||9/||Lm>\j*1‘wjvj*1 _ ijjfll _

Observe that

2
(v — Uj71)2x{|vjfl/vj BT 51/2} > %(|Uj|2 N |Uj71’2>x{|vjfl/vj 1> 51/2}’
so that we obtain finally

j—1
Ai6 53((vﬂ')2+ (vﬂ'*l)Q)ej < -

gZ(vj)QGj + LIS 561 ||9'|’Loo)\j71’wjvj71 — vjwjfl‘

N =

SV ]l - 1] = 50, |8H_1\<351}

+Z*II9’HLW

wol= — w1y

7H9’||Loo|v]ejlo
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Recalling (4.28), the above equation becomes thus

4.33) (1 -01)V(u)? )Z(W P+ o) < —oq diz W0y D) R
O
+O(1)V(u)? Z(wfl; o2 )x{|s? 1] = 50, |51 - 1] <301

+ o<1>v<u>2z(|wl; + |vjf2;)x{ysj —1] <35, ]9 — 1] > 551},

where we have used Corollary 2.2. The same corollary yields the estimate
(4.34) S (07) % < Z ()% < [|v]] Z|vﬂ| < O(1)V3(u),
J

and finally

(4.35) Z/ B(t) < ;/Ot(lv“|2+ [ [*)o7a
0 1>§|vj<0)|2 romy / i~ o1
| o = {0 17— 1 < 56, Y
+ 0<1)V<u)2;/0t(lvj‘1< + o2 {5’ = 1] = 501,
+0<1>v<u>22 / t(|vj*1| o2 {57 1] <361, 5771 — 1] > 56y bt

< CoV(u +COZ/ V +IJ()}dt,

S 1| < 30, fat

where as usual Cy denotes a big constant.
We now compute the derivatives of the Length and Area functionals for the line v obtained by con-
necting the points

J J J
- (030t 0) = (e 3wt
Following Example 4.4, define the two functionals

(4.36) L(t) = iz \/ (v7)2 + (wj)z, Q(t) ) Z‘wﬂ —w vj‘

Note that by regularity estimates (2.21) we have

(4.37) L(t) = O(I)V(u),
Q) = 2 J;J (w’ — vj)vk - (wk - vk)v]‘

< sl =ollallvll, = 0@WVP(w),

[>~1 =
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because s/ — o/ = O(1)V(u). With computation similar to the one given in Example 4.4, one gets
(4.38)

1 . 102
CLLS _lz/\jfl ’UJ ‘(Sj_sj )
dt A< 1+(Sj)2<1+5j5j—1+\/1+(Sj)2\/1+(5j—1)2

— %Z)\j_léllvj_lul + ‘Sj_ly)x{|sj — 1‘ > 501, |sj_1 — 1’ < 347 or Viceversa}
—

Ly 0hwd) (0

+Azj:<y(w,wa‘)|’( e’(t) >>

- (1 - O(l)V(u)) ZF( ) +0(1) Z 213
‘é?li(twwuzjj 213

where we used (4.12).
In a similar way, we obtain

dQ< 1

dt — A

< _ % Z (1) + OMV(w)* Y H (1) + OMV(w) Y IH(1)

Integrating in [0, ¢] (4.38), (4.39), we thus obtain the system

)X{j : }sj — 1|, |sj71 — 1| < 5(51}

IN

IN

(4.39) Pt

Vi — ™ le’JrO E ej

%: /O H(s)ds < Co V(u)+§j: /0 Ig(s)ds+§j: /0 I(s)ds
(4.40) Z/o I(s)ds < Cp Vg(u)—FV(u)QZ/O If(s)ds—l—V(u)Z/() I} (s)ds
ZJ:/O Hdt < G V3(u)+V(u)2;/0 If(s)ds—i—;/o/lg(s)ds

It is now easy to verify that, if the total variation of  is sufficiently small, system (4.40) has a bounded
solution such that

(4.41) Z/ E(t) < 2CV(u Z/ I (t) < 402V (u) Z/ I(t) < TC3V(u)?,

so we conclude that
—+oo
(4.42) > / le?(t)]dt < CoV?(u)
—~ Jo
J

Remark 4.9. Note that a similar result can be obtained if we assume that the characteristic speed A(u)
is strictly less than 1/v/2. However, this method does not require any rescaling, and we have a smaller
source term, because in the other case it can be proved only that

+oo
Z/O |/ (1)|dt < O(1)V(w).

As we will show later, in the vector case we have to add to e/ another term, due to interaction among
waves of different families. It is interesting to note here that this term will have the same order of
magnitude as e’ (t).
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5. DECOMPOSITION IN TERMS OF TRAVELLING PROFILES

In this section we will decompose the vector ut € RY as a sum of N vectors —o7, ¢?
travelling profile for (2.1) with speed o7 :

(5.1) ul = Z —Um¢%7m(t) = Zvﬁ,ﬁm (w, Vs o).

m

J s
.o Where ¢f is a

Note that from _ , _
v+ f(W!) = f(' ) =0,

f(u™) Z F(ht) = £(eh)-
As suggested in the previous section, the idea is to ﬁnd the speeds o; by trying to fit also
F72) = f(w? ™) Zf on?) = f(oh )

we have also

As Proposition 4.1 of Section 4, this can be achieved only when the two jumps ¢/, — ¢J—1, ¢pi—1 — pJ—2
are of the same order.

An important property of the decomposition (5.1) is that the speed cannot be given looking at the
solution locally: to identify the N travelling profiles in u{, we need actually N + 2N conditions, i.e.,
the vectors u/, ut' and ufl
ufn_ ;, which, on the other hand, depends on the solution at the point u/; 2. As we will see later on, a
consequence of this fact in that the evolution of the travelling profile depends on all the previous travelling
profiles in k = j,5 — 1,.... It is not surprising then that we will have non-local interaction terms, but a
travelling profile located in j will interact with all the waves from —oo to j. However, this interaction is
exponentially decreasing as |j — k| — oo, i.e., when the distance of the profiles increases.

From Section 3, we know that for a travelling profile ¢ of the m-th family, with ¢(0) = w and

(I (up),¢'(0)) = —v,n /o and with speed o, the quantities —o¢’(0) and —o¢’(—1) are given by

—0¢'(0) = v = vy T (U, U, 0), —0¢!(—1) =Y = vﬁ;l)]ﬁm(gb(—l),vﬁ;;l,a).
Moreover, by equation (3.22) of Corollary 3.6, we have the relation

(=1)

(5.2) v:};ﬂ fﬁm(u,vm,a) =e Pm 4 (vm) qm(u ,vﬁn,afn),

. Thus, in some sense, the speed of one wave will depend on the value of

where (,, is given by the local dispersion relation
A e Bm
Am(U) Brm

From (5.2), if vy, is sufficiently small and oy / Uy, is sufficiently close to 1, then the function pm 1n (5 2)

is invertible, so that we can obtain (,, and thus the speed ¢ as a function of u, v, and 043 = vm / Uy -
Following (4.4), we will write

(5.3) o =P (U, vm, v (- /vm) = P (U, Uy ).
Recalling Corollary 4.3, we prove the following lemma:
Lemma 5.1. Let v/, v?, j € Z be given, with
|Uj—U0| < 301, ‘Uj| < 301,

where 8, is sufficiently small. Then there exists a unique decomposition of v/ such that, for all j € Z,
(5.4) v = Zv%?m (W, v, 7)),

m
where o, is given by

(5.5) 0 = Bt (0, 00y L (0 00, (0 0, = 1))
¥ being the cutoff function defined in (4.6).
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o) fu)

fu 2y g i}

frn (W) i

FIGURE 6. Decomposition of v/ in the vectors case.

Remark 5.2. With the above decomposition, when v/ = ui = f(uw/™1) — f(u?), we are trying to fit the

vector u], with the n scalar components v7 , using a nonlir_lear map given by the functions 7,, and p,,!.
Assume first that for j, j — 1, m = 1,..., N the ratio ad, = v} 1 /v is sufficiently close to 1 and that

ol = o)1 and let ¢y, be the travelling profile defined by the quantities ¢(0) = u?, (L, (ug), —07,¢'(0)) =

v} and o, given by (5.5). Then from Lemma 5.1 we obtain

(5.6) Z —0mdm(—1) = va{lfm (ujfl,vf;l, om) =071, vl =l p(u! vl 07),
m

m

or equivalently that
Note that the identity

is always verified, see fig. 6.

On the other hand, when one «,, is not close to 1, so that v7 ! cannot be computed using p,,, or
o), # ol-1 then (5.6) is not verified. In these regions we are just fitting f(u’) and flui=h).

Note moreover that we decompose the sequence u’ as a whole. Of course we can consider only the
points v/, v/t w2, and decompose the vectors v7, v/~ as

& 6= b od)
vt = 3wk T, (wh vl od)

where we are computing o7, using again (5.5) and we define u/~! by

v+ f(W?) = f(wh ) = 0.
However in this case the decomposition of v/ ~! will have two different scalar components: the components
vJ:~1 computed using (5.7) at the point j and the components v/! using (5.7) at the point j — 1. In

general these components are different, so that the analysis of the source terms is more complicated.

We now give the proof of Lemma 5.1.

Proof. Fixed u/, we consider the map w defined in (5.4) as a map from £>°(Z,RY) to £>°(Z,RN):

N(EHE TR
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with o given by (5.5). With easy computations we have that
(5.8)

= max

)1

» -
E 7= (uo) + v, ™+ vfnrﬁn -
m7v7n

m

( Ood  pi~1 dol
J

: j 1
OW)([[0 -+ |17 = o]l ) < 5.

IN

m m m 1
o0 (w2 aul T ol
avgn ('Ugn)z avgn Um) } ’

which together with w(0) = 0, implies that Dw is very close to identity, hence invertible, if §; is sufficiently

small. Moreover we have

(5.9) [|w <2,

Tl )

in a neighborhood of v/ = 0. A similar computation proves that
, . , 1, .
(5.10) ”w({vgn}) - ({%})H < 05 YJu] < 5l
£1 m,j

and that, for v/ sufficiently small,

(5.11) [|w <2.

e e

From Corollary 2.2, the assumption (2.24) and estimates (5.9), (5.11) we obtain

Corollary 5.3. Assume now that v/ (t) is a solution to (2.1) and that v/ = f(u/=1) — f(ul).

moreover that in [0,T] the sequence u’(t) satisfies

S0l S0l = Sl - o) <o

Then the following estimates hold:

(5.12) [0, (0|0 <00, [[od(®)]| e < ZW ) — vl ()] < O(1)d3,

fort € [0,T].
We can now compute the equation satisfied by the components v/, . Differentiating
up + f(w!) — f@ ™) =0
w.r.t. time and substituting (5.4) we obtain

1,5

E J=1,3 J
) Umtma]rma'

) ,3
E J J J 7=J J
Vg t (7’ —|—vm7"mv+v
m

+ E vl vl (Dp, 7)) rj o+ E vl vl DF 7 4 E vl AT E vi AT =0
m

m,n

Assume
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which can be rewritten as

(5.13)
. o - ) S opLd
5 (e Ko = Mol ) (7 i + 05 B2 )
— ’ o,

Z Lot yj-2 -2\ 9Pm' T
J J— J—ap)—a ) Im &)
+ U’H’L( m t + /\'rn Um )‘m Um, ) j—1 T’m#f
v

Z[vﬁ,ll<Ajlfﬁnl M- Y7, +vfnrﬁnv)) fvfn(Ajff;lfS\j (7, +vﬁnr¥nv)) — (v) Drﬁnrfn}

m
R N/ ) B N 2 /) P
- van {(Ainvfn — N, tol, 1)—;’; + (Nl — Nl 2)7’1’}7_1 — ) Dp VI |
m m
- Z vl vl [DTJ 7 + (Dpr, JTJ)TJ ]
m#n
=7 (1).

When the solution consists of exactly one travelling profile, the speed is constant and moreover there is
only one component different form 0, let us say vJ,. Moreover by the definition of A/, we know that v,
satisfies the scalar equation

vl Ml = Nl =0,

J
m,t*

As in Sectlon 4, in the following we denote by = the quantities defined by the travelling profiles in
j. For example ¢/ is the time derivative ¢, :(—1) of the travelling profile ¢ defined by ¢(0) = u/,
(Lm(ug), —¢'(0)) = vJ, and speed o7,. We will also denote by ¥J.-2 the quantity related to the travelling
profile in w/ =1, vJ—! but with speed o7, . Note that as in (4.25) of Section 4 we have

(5.14) W22 = 0(1) (vl = e + o1 Z|vﬁl|

because —ov!, . =v

Taking the derivative w.r.t. time of (5.3) we get a relation among the partial derivatives of ;!
. , <o\ Op b =TS N , 3—171
(5.15) 0=, Dp; i, + (ML oi! — Myl P (N 2ed? - Myter ) P
3vm 6'Um

We recall also the identity (3.12), namely

ol 1(AJ Ll 1—/\7 YL+ ol 7 )):vf;l(Ajffn—;\j (72, + v, 7 ))—I—( 1)’ DFd 7

m° m,v m°m,v m’m?

A

where A3=1, 71 )\J are computed at the point @/! given by
(5.16) ohi (W)~ f@ ) =0 = alt =, + ().

Observe that the right-hand side of (5.13) is a second order polynomial in vJ,, vi~!
follows from the estimates

(5.17) Fon (w0, v 0) = O(l)vfn, S\m(u, vf,l,a) = O(l)vfn,

» Ymo

and vJ-2. This

the last one being a consequence of the first.
We will collect the terms in the right hand side of (5.13) as the sum of three types of terms:

(1) terms due to the fact that there are more waves in j and j — 1:
1 i—1, j—1
vl vl vl vt A VA m #n.

Note that these terms will represent the interaction among waves of different families. Following
[5], we will refer to these terms as transversal terms.

(2) terms arising because we do not have an exact travelling profile of the m-th family, i.e., the m-th
speed associated with the solution at the point j is different from the speed associated at the
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point j — 1. Observing that vJ,, vJ-1 and vi~2 are of the same order when the cutoff function
(4.6) is different from 0, we can write this term as

v oir (od, — 03 ).

These terms correspond to the interaction of waves of the same family. We will call them non
transversal terms.

(3) terms due to the cut-off function in (5.5). These terms are second order terms and will contain
the factor

These will be the cutoff (or energy) terms.

Using (3.12), the first three terms of the source 77 can be rewritten as

(5.18) Z[v{nl(/ﬁlf — N, +vfnrfnv)) — vl (Ajffn — N, (7, +vfnrgm)) - (%)%f{ﬁﬁ]

m

= S (T - N ) ) - S (A - N+ i)

St — o) (AR N () ) + S e A (- )

m

O (N = N ) (P 4+ vhh) + O S el i
m m¥#n

where the transversal terms arise because
AW/ — A1) =A (fl (Zvﬁnfﬁn + f(u)>> — A(f Yl 7+ f(u) ) Z |vg]-
m n#m
Using the estimates

ATVt N ol 7Y = O(1)ud, + O(1)vi

m° m,v

p—

F = (Pl o) — (o) ) (o) — (@ e o))
= O()vi, (ot — ot ) +O) (v, " =00 1) +0(1) D Joil,
n#Em
Nt = Nt = 0l (od, — ol ) + O (vl — 3+ 0(1) Y e,
n#m
the above term can be bounded by
(5.19) OW) (g, | + [, ) vl b = 00+ 0wl o, — ol )
+0(1) Z [vl vl |+ 0(1) Z v, ||vi |-

Using the center manifold expansion (3.18), it is possible to obtain a more precise estimate of the energy
terms. This is shown in Appendix C.

Finally, we can use (5.15) to estimate the term which is in front of 77, ,,
in 77(t) in (5.13). Note that this term is basically due to the fact that the speed o/, changes in time due
to interactions: these interactions occur either with waves of different families, or with wave of the same

family. The latter is the case when the speed o7, is different from o7 1.

i.e., the second summation
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With some computations and recalling the definition of ¥7~2, one obtains

~ . . ~717 j ~ .
o [ Ot = 371 ) (g = 20 ?) o, D
Um 'Um
= o [ at = M) i (gt = e+ (R - M)
Vi, Vi,
5—1.J 5—1.J = = ~ . . = 7 . .
S (ag:j . Z“;?_f) ((Ai{l . [T Ao Vil (Pl ug,;l))
+v ] gpjlf ((A] 2A$n 2 5“3‘7172@37:2) (Agn Q’Ugn 2 5‘%21}3;2))

i—1

— O (v3 "t — 03Y) + Ol (o, — ohi ) + O 2 (v32 — 572
Um

0 i o ) + o) Y (o] + Juf ),
vm n#m

because dp;, 17 /v, Op, 17 JOvi 1 are of order 1/v),, and we have used the estimates

N Vot = Nl = O(1) (it — 637 + Ol (o3t — 03 ) + 0(1) 3 [l
n#Em

N 20072 = Mool 2 = 0(1) (vt = o) +0(1) Y (}vg;| + yvgl—lD’
n#m
XZ;;QOj_Z — X%‘zv#_Q = Am (uj T T (T e S am)vj Y= vl o)
—Am (uj_g, vi—2, Uf;Q)vfn_Q
= O(l)vf;l(af,l—l — ol 7))+ (9(1)(1)2‘,:2 — f)j_Q)
+ Ol i 2 (0l 2 — ol ) Z lod =t
n#m
Note that in the last one we have used Am (u?,0,07.) = A (u).
We can rewrite the term vi2 — ©-2 as
oot = (ol ol Tl ol ) ) o (B e o) = vl o))
= (vi;2 —9%) + Ol Mol —al),

where with a slight abuse of notation we have written 92 = v ~1p(u/ =1 vi~=1 5J-1). Since we have the
estimate

Pono = O(1)v],,
we can write finally

(5.20) W (1) = 0) Y (Joh| + [od ] ) [0 = 947 + 0(1) ) D lehr i = 22

m

(’)(I)Z‘vﬁﬁvfgl(aﬁ;l )+ oa Z‘vﬂ Wil 2 — ol Y|
+O(1) Y [ohl(Joh] + 037 1).-
m#n
Using Lemma 5.1, we can write

(5.21) vl Ml = Nl = W (1),
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where, by (5.9) and Corollary 5.3,

CAT CrAC)

62 lablo] < OWmes {3 (1l ) - ok

+ > ol (] + i) p < O(1)d;
n#p

for ¢t € [0, 7). This implies that the RFDE (5.21) with source term w?, (t) is well defined. Moreover, using
(5.11), we have

(5.23) >l (0) go<1)z(|v [+ o) ot = 857+ 001 wa Yol = ol)]
+0) D ol(logl + 1oy~ t) < O(1)6;.

n#p,j

As a consequence, to prove that the ¢! norm of v/, is uniformly bounded is equivalent to proving that
the quantities

+oo
Z/ [l | (v | + [vl~t])dt, Z/ ’vj vl (od! an)‘dt,

m#n

Sl et - o3
0
m

are bounded. We now give the idea of the proof.

We assume £ = 0, and that the estimates of Corollary 2.2 hold. Suppose that in the time interval [0, T
the ¢! norm of the components v? is less than 28g: this is true if ¢ is small because of (5.23). Then, if 25,
is sufficiently small, u?(t) takes values in a neighborhood of ug and is of bounded total variation. Using
standard techniques, we can extend the solution u to the interval [T, T + §t], where d¢t depends only on
dp. Let T be the first time such that

(5.24) Z/ |wJ ‘dxdt (250) ,

where C is a big constant.
We conclude that

> [vh ()] < 260

J
if 69 < 1/(4Cp). This implies that the solution u remains in Ky and satisfies

u) < Yo | |7, | < ANG,

and all the a priori estimates are verified.
In the following section we will prove that the condition |[v?]|p1 < 200 implies that

T R )
Z/O 9" (t, ) |dadt < C(280)",
J

contradicting our assumption. Thus the source term will always have ¢!-norm in less than 4Cy63 in
R* x Z, and the solution can be prolonged up to 4+oco with uniformly bounded total variation.
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6. ESTIMATES OF THE SOURCE TERMS

As we saw in the previous section, to prove the BV estimate we must prove that the terms
(ol + ot Des =0 [l (1wl + 103 7M)s m#m,

are integrable in RT x Z and their integrals are of the order of V(u)2. We recall that by definition

’vjvj ! 03 ! —al)l,

o, = vl (v, vl 0l).

We will now study separately the different terms.

6.1. Transversal terms. We first prove the following Lemma [3].

Lemma 6.1. Consider the following 2 x 2 semidiscrete system

61) { Ao+ MO - N0

I
o

j—1
4 4
2, + M54 - M 0BT = 0
and assume that
(6.2) 0<XNt)<L<L+c<Nit)<+oo VjeZ,
where ¢ is defined in (2.12). Then the following estimate holds:
1 . ,
(©3) ) |l < (S0 (Sleton).
J J
Proof. Note that the maximum principle for each equation of system (6.1) implies that
|20, ()], + M, O]20,(O] = M O] )] <0, m=1,2.

Consider now the functional

(6.4) Qt) = Q(=1(t) ZP (G = BA®)]20)],
where the weight function is defined by
o f1je-(14¢/L) <o
(65) p(j) = { e ety
1/c J=0

With some computations we have

@: ;P(j (|21| |Zz|+|zl||22|)

< 3 PG (AL M) 5] o (1 25k )
jik
= S (MPG =k +1) = (A + M) PG = k) + AP — k= 1)) []]|24]
jok
1 eNi—k=1¢ / ¢ N N
=2 2 (+g) (e I - 3D A
j—k<-1 J
< =D Al
J
Integrating in ¢ we obtain (6.3). O

It is now very easy prove that the terms vl vJ, vJ vJ-1 are bounded. In fact, using the same functional
Q@ and (5.24), one obtains

d : j 1 . .
ﬁjzk:P(J_k)’vgnHUs’ < _ZJ,:‘U;"HU%Hc%oZ(’“an’W% 1

J
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P 7

FIGURE 7. Weight function P and crossing of solutions.

CRLLARES YIS E D M CARIE))
gk ;

where P is given by (6.5) and L = max A,,,, m < n, so that
2
(6.6) Z/ o] (Jod + et )t < 2 (50 + C(200)°) < 2 (260"

Remark 6.2. Note that @ and P are the semidiscrete version of the hyperbolic interaction potential for
different families, introduced by Glimm [16], and of the parabolic transversal functional [5].

As in the parabolic case, we can interpret the weight function P in the following way (see fig. 7).
Assume that 2J(0) = 6,5, 28(0) = 6,z. Then the functional Q becomes

Qt=0)=P(j - k) = {1;2 (1+¢/L)

<k
j>

Byl

If j > k, i.e., the slower solution z; starts in front of the faster z,, the functional Q is constant, which
means that the two solutions will cross each other, no matter how apart they start at ¢ = 0.

Conversely, if j < k, then the numerical diffusion will make the solution interact, but only at an
exponentially decaying rate. Note that due to dispersion, the decay rate depends on the speed through
the constant L. Observe finally that the right hand side of (6.3) can be interpreted as the expected
number of crossings of two particles whose probability distribution is given by 27 (t), 23 (¢) [14].

A method based on Fourier transform to compute the weight function P is explained in [3].

6.2. Non transversal terms. In this section we repeat the computation of the scalar case studied in
Section 4 to bound the non transversal terms

(1ol + o371 ) o = 24

We recall that from the results of Section 5, we can define the variable s/, by
(6.7)

j—1
Um

‘U] vl (ot afn)‘.

1 g(sgn) 'Uj ~ uj ’Uj ” Sj _ 3.7
v <1+w<szn><xm<u>—Am<uo>>/xm<uo>>+ i (17 o 10) (14 (9(65,) = (1))

where ¢y, is defined in (5.2). The function ¢ is the standard cut-off function, defined in (4.15). Note that
by assuming &g sufficiently small, we have

. o
J =11 <39 if 1] < 26;.
hotsan [ i<
Moreover we can assume that |sJ — 1| > 361/5 if |[vf ! /vi — 1| > 461/5.

For m =1,..., N, we define the variable w/, as

(63) Wiy = 0dshy = v (0,000, 00) + (01,) i (0, 03,01,

» Ymo
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where h,,, is given by

(69) (e = ( (1 220 ) ) g )

and &, is a smooth function.

Repeating the computations of Section 4 or using equation (D.12) of appendix D, we find that the
equation satisfied by wJ, is

(6.10)

wfmt + N owl, — Nt = O(l)V(u)vf;l(sfn — sfn_l)Qx{b%

-1 <56 )

O(1)V(u) (|v] U4 wir2))x {|sj — 1| > 56y, |si7t — 1] < 36, or viceversa}
OM)|vguwiy = vy wiy | + O(W)[vf, Ml = vl 2wy |

O(
O(

(( )2+ (wirh) )X{|s£n—1|2351/5}+(9(1)((v$;1)2+(vﬂ;z)z)x{hi{l—1’2351/5}

D) Y [ohllod |+ 0wy, + 01wy,
n#Em

)
)
1)
)

=0(1) V(u)Ifym(t) +Ig,m(t) + Ig)m( IJ 1 )+ Z ’v Hv ’ +wl +wit
n#Em

= el (1)

In the above equation we have used the notation of Remark 4.7.
We now can rewrite the non transversal source terms as

(6.11) (loda| =+ Jodi ) e = 037 | < O (v + o *)x{ st = 1] = 381/5

(6.12) ‘v] v (ol - %1)‘ < O(U‘”%”fﬁ_l(sfﬁ - Szn_l)‘

+OW)(Jof| + [od ) = 827+ 0(1) 3 [vda] o
n#m
We introduce the three non transversal functionals which are needed to bound the source terms in wy,,

3 J
and in wl,.

6.3. Energy Functional. Let ¢ be the cutoff function defined as

0 |z — 1] < 61/5
(6.13) 0(z) = ¢ smooth connection 6&1/5 < |z — 1| < 2§, /5
1 |z — 1] > 26,/5

Multiplying (5.21) by v#,64, = vJ,0(s},) and taking the sum w.r.t. j we obtain the equation
(6.14)

5 (M (0200 — X v 08, ) = 7 (M (02) 000 — 20 et 00 + M ()00
J J

ZUJ ga +Z>‘] 10’vaJ L i~ i) +Z 9/1}36 JngJvaj
J

With the same computation of the scalar case we can write the left hand side as

%(W%)Qeg = 2N Mol 0+ N (vl ) ) = f&l)ﬁ(( 0+ (o)) o,

+ (’)(1))11171)34_1 - vjwj_l‘ + O(l)(vj_l)Qx{’sj —1| =56, |/ —1 < 361},

Q“Q‘

1
2
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so that we obtain

(6.15) 6%ZI§7m(t)§5fZ(|vﬂ Y2 4 [vd| )ej <-0(1 diz 01 101 Zzgm
J J J
ZI{m+O 2> [l [|oi !

Jm#Em
+O(1)V(u) Z'w’j"‘ +0(1 )V(u)22|w{n’1|‘

6.4. Length functional. Consider the functional

(6.16) Ln(t) =3/ (vh)* + (wh)?.

We have
; dL
1) Z |v HU] 1’—|—(9 Z‘wfn’—k@ Z‘oﬂ 1‘
jn#Em

6.5. Area functional. Consider the functional
(615) Qu = 5 |ohywk, — byl
j<k
We obtain that
dQm

(6.19) Zj:I;m(t)g - 0= + 01y ZI{MHQ Zzgm
w) Z |vm||vffl|+(9 (u Z|wm
jim#Am j

U)Z|wf;1‘.
J

Using (6.15), (6.17), (6.19) and the assumption (5.24), we obtain that if Cy is sufficiently large

zj:/o ydt < Co 60+2j:/0 Ig(t)dt+zj:/0 Ti(t)dt

T T T
zj: /0 Ti(t)dt Co <5g’+5§; /O I{(t)dt+60; /0 Ig(t)dt)
zj:/o Hdt < Co 58(u)+582j:/0 I{(t)dt+zj:/0 7 (t)dt

so that if dg is sufficiently small,
(6.20) Z/ ds = 2Cy0, Z/ ds = 4C253, Z/ ds = 7C253.

In particular, using (6.11), (6.12), we have

(6.21) Z/O ]ej(t)]dt,Z/o i, ()] dt < C(260)*

if C is sufficiently big. The above inequality proves that ||[v, ||, is always below 2dy. Note that we obtain
an estimate on the source term for w,, which is of the order of 62 too.
This concludes the proof of the BV bounds for the solution u”.

IN

IN
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7. STABILITY ESTIMATES
Consider the equation for a perturbation ¢/ of the solution u/,
(7.1) ¢+ AW — AW =0

Without any loss of generality, we assume that [[((0)[[sn = do/4. Thus, by the results of Section 2, at
time ¢ we have

= ]
(7:2) IO <5 1D szw - 7D < 05

As before we set ¢ = 0 and we assume that estimates (7.2) hold. We decompose (7 as
(7.3) ZC] P (U 08, 03

so that by Lemma 5.1 we have the estimates

(7.4) 1CL O], <00, (0 ||KMSZ\<J —¢7H0)] £ 0(1)83

Remark 7.1. We note that, differently from the vanishing viscosity case, here the natural decomposition
of the perturbation h using the generalized eigenvectors of v gives integral terms, at least for a fixed time
T. The main difference is that in the vanishing viscosity case we cannot control the space derivatives of
the vectors 7,,, while here the spatial discretization removes this problem.

Substituting in (7.1) we obtain

T L » iy 8p_1]
5 G+ 2 oD+ D95 + 3 Gt (oo + 70 )

-1, . L . . .
+§XJ 3&02?4+§:%A@W%—§:qﬂAmFUﬁf:Q

m

Using (3.12) and (5.15), after some computations one gets

(7.5) Y (Chs + MG = N )7,

ovl, vl ! v
+Z(j_1(Aj_1~j_1—5\j_l(fj —i—vﬁnrfnv) ZCJ (AJ 1gi = -1 — N l(rj +v%1r£nv))

+ZAJ NG o, = Gl ), + 01w <>+0(1)wfn‘1(t>.

o Op- Y Pp= LI\ = - ) Op- Y =5 . - .
=N ¢, [( Pm = OPm > (M todt = N ti =) + 87““?_1 (N 26072 = M2l 2)
m

As in Section 5, we get the following estimates:

71,‘ 71,‘ — —
7 [(f"f’m,ﬂf"ij)(xw@z;leanlvz;l)@plw a1 - N i)

m' m,o j j—1
OVin, Ovin,

=0()¢, (v%_l — f)fn_l) +0(1)¢, (vj 2 2) + 0 vl v~ 1(07 afn_l)

.
(1
+ Ol v (oh = o)+ 0(1) D |G (Joal + 047
n#m
= O)¢, (vl " =0l ") + O, (0% = 537%) + O()Gvdvl (sh, — 50, )

+ O o2 (st = i) + 01 D |Gl (Joh] + i),
n#m
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—

. o ~ s . o "l ~/_\1 TR )
G (AT R = N+ 0 ) ) = G (AT = N (0 ) )

it [(Aa‘lfg‘nl SN ) ) — (A X (7, + o ))}

j "myu

+ (@ — o) + Gl — o)) o (A = N 47
=0(1) > Gl + OM)G, (o3 — o) + O (o =03

n#m

+ O ok — o) + O (Gt — o)

m m

= 0(1) Y Gl + 000G (st — st st — 1 < 361} + OIG {1/ > 381}

n#m

+OM)G (vt = 051) + O (vi ' = 00,7) + O (Ghvl ™ = G o).

m

We thus obtain the following equation for the component ¢J :

(16) Gt M — MGt = o) S (162 + 16871) (I + o) + 001) S Jcivd ™ — ¢

n

n#p n
+0() S |Gvi (s — 557 Ish = 1] <301} + o) Y ail [ { i — 1] > 361}
+OM) Y |G (™ =57 [+ 0 Y| (e 9|+ 0 Y[ (er - 7))
+O() Y] (e w2 — w0 )|+ 0(1) Y [ch (et — wind )|

+0(1)) |wh(t)] +0(1) D _|wi ' ()]

n n

Further computations allow us to write
Gt (55— s s — 1] < 360} = (¢l — Gl ][, — 1] < 351
s (Gt = G eix{ |5 — 1] < 361
= O() (G wh, = Ghwl ) + O (vl = G o),
(ot x{ st = 1] > 301} = |Gt {5t = 1] > 861, 67 /G — 1 < 201
ot ], — 1] > 301, ¢/ — 1] > 201},
G (0372 = 5372) = G (03 — i B (w9 0l 03 ) + G (v (0 v ) — )

- é“ﬁ Gt (b = ol B o ol )X |G /G — 1] <401 /5 )

G (e ol Bl G — 1] > 4015 + O ok — o)
G,

= S (ol =l Pl ) [ G — 1

T A2 -1 < 451/5}
+ ﬁ"'l I (v =l B (0ol ol O |GG — 1] < 401/5, GG = 1] > 401/5 )

G (vh = vl B ol ol )X [G G — 1] > 461/5
+ O (5 — st ) [sh, — 1] < 360} + OG0l X |5, — 1] > 36,
+0() Y [chllvd| + 0 (vt = o),
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Go(od t = 00) = G (vl — @f;:l)x{\ca‘l/czg ~1| < 451/5}

(ol = ol g - 1] 2 401 /5

Gt = o) = 0 (o = o {6 /6 — 1] < 461/5)
+ Gt = o I - 1] = 400 /5,
Note that
G (vh = ol I /e 1] < 481/5)
= (Ghoit = G i[5 = 1 2 00, |67/ — 1] <481/5)
+ oG s — 1] > 61, /G - 1] < 481/,
and, if &y is sufficiently small so that |s/ — 1| > &; implies [vi ! /v — 1| > 94,/10, that
(T.7) |G o — Gt st — 1 2 81,6 /¢ — 1] < 46175}
> (G o — Gt ]l vl = 1] = 901/10,

= o5 (16 vl + 1 Gl

G /G — 1] <481/5)

(Gt = G e s = 1] = 300, |G /G = 1] < 201} > O - (|6 o + [odi ).

Using the trivial estimate 2ab < a? + b2, we can thus rewrite (7.6) as

(7.8)
o MGl = MG = 0 XS (6l + 1) (fedl + )
n#p
O YJGed ! = A+ 0) Y e = Gl 4+ 0() Y| - M

G (vhw) ™ — vl )

+oM)> +om>°
+0(1) Y Jwh] +0) 3o (6l + [ P )x{Iei /6 = 1] = 401/}

G (e w2 = ol )|

+0) Y Jwl [+ oM > (167 + 162 )l 2 /e - 1] = 481/5)

+0(1) Z(|v¥;!2 + yvz—lf)x{\vg;—l/vg —1| > 451/5}
+0(1) Z(m—lﬁ + yvg;—2|2)x{|ug;—2/@g;1 —1| > 44, /5}

= 1, (1).

As in the previous section, we assume that

(79) > [ la < &(25)”
—~Jo
j

for 7 € [0,7] and let T be the first time that equality holds. The above equation implies that

> 16 1)] < 26
7
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if 6o < 1/4C. We will prove that as a consequence of |¢7,| < 20, we obtain that
T
(7.10) Z/ | (1] dt < C(260)°,
~Jo
j

which yields a contradiction. Thus (7.9) holds for all 7 > 0. As a consequence one gets (2 ()|l <
260 = 8||¢Z,(0)]|¢1, which implies that for any perturbation ¢

(7.11) <@ 2 < LI[CO)]],x
for some constant L. A standard homotopy argument yields
[u) = (O] < L][u(0) = v/ (0)]

for any solutions u, u'. This proves that the semigroup generated by the semidiscrete upwind scheme
(2.1) is Lipschitz continuous w.r.t. the ¢*-norm.

In the remainder of this section we establish a priori bounds on all the source terms in (7.8), thus
proving (7.10).

7.1. Transversal terms. Using the results of Section 6.1, we obtain

(7.12) Z/ (Il + 1627 (Joa] + [oi7] ) de < 0(1)63.
—Jo
J

7.2. Non transversal terms. We now introduce a variable which contains informations about the speed
of the perturbation. As in Section 4 and in Section 6.2, we define

(713) 7h (u gm7C] 1/4] ) +vj Hm(ujvvmv - I/CJ)

where h,, is defined in (6.9) and g is the function g(s) = (s — 1)/logs. The function % is the standard
cut-off function, defined in (4.15). Define

(7.14) U = Chsty = Gl (0,00, G /Gh) + Ghvhim (0, 00, G /G).-
Using the computation in appendix D, we obtain
(7.15)

G N NN = O V()T (- cg;;l)Qx{|gg;1 — 1], it =1 < 551}
+ @(1)V(U)(|Cj_l| + |Cj_2 ) {‘Cfn — 1‘ > 551‘§j_1 — 1| < 367 or Viceversa}
OM)| Gl = ¢ ol |+ 0| Gwl = G twl, | + O)[¢ Mol 2 = 2ol

2o () + (@) e {lsh -1 = B+ o () + (vzﬁf)x{w iz 2
om((6)* + @) { s -1/ = 51} () + @ x i -1 = %
DD b l[GH 4+ 0, (1) + Oy (1) + O(1)wi, (t)

= Cy {wwﬂm A T+ T+ T + D 0BG+ 1l (8) + e (8) + wm}

+ Cof Gkt = ¢ b + |Gl = G M| + G Mol = ol |} = @),

We have used the notation of Remark 4.7. Note that, if the total variation of u? is sufficiently small, we
can write the energy terms in (7.8) as

m16) (6] + |l /e - 1) = 65} < (16 + 16 )]l - 1] = 3615}
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We now introduce the non transversal functionals for the perturbation h. Note that, by means of the
functional

(7.17) Que = _[vanbt = vl thk,

i<k

, ch_z‘wj h’“ 1_ 21—1]11:,”

we have immediately the estimates
T T
(7.18) S [ it = G e 3 [ it Gl e < 0%,
- 0 . 0
J J

7.3. Energy estimates. Multiplying (7.8) by (67 = ¢76(¢7) and repeating the computations of Section
6.3, we obtain

(7.19) 6%Zj§7m(t) < 5gz<‘%—1‘2+’¢ | )eg <-0(1)— Z(Ca )%601, + 0(1 ngm
+0(1 ZmeJro( V() Z o]l

J,n#Em

+01)V(C) ZW | +01)V(¢)? Z|wj_1|
)? Z|u¥n| +0(1 ZWn Y.
J

7.4. Length functional. Consider the functional

(7.20) L) =\ (Gh(®)* + (1),
With the computations of Section 6.4 we obtain
; d
(7.21) S Tt < - <>%+O )3 F + O T T
J
D D (Gl 1| +0( Z|w | +0(1 ZW 'l
jn#Em

Z!uml +0(1 Zlu

7.5. Area functional. Consider the functional
1 , .
(7.22) Q(t) = 5 Y | Chtin = Gt
i<k
With the computations of Section 6.5 we obtain

(7.2 D)< ()‘%’”w (O T + OOV S T
O D [Ghllvi 1\+0 MZ!WM
jn#Em 7

+OMV(u) > |wi | ++0(1) D || +O0M) > |t
J J J

Using (6.15), (6.17) and (6.19), we obtain

CUIEDY / ds= 0. Y [ Hu@as =005, ¥ [ B0 -0,

so that, by means of (6.20), (6.21), (7.16), we get

T
(7.25) Z/ |ufn(s)‘ds <4082
—~Jo
j
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This proves the stability estimate (7.11), and concludes the proof of Theorem 1.1.

8. THE HYPERBOLIC LIMIT OF THE SEMIDISCRETE SCHEME

In this section we prove that the limit as e — 0 of (1.4) exists and it coincides with the trajectory
of a Riemann Semigroup. The trajectories of this semigroup can be uniquely characterized as Viscosity
Solutions.

By means of the rescaling ¢t — €t, x — ex, and using the conclusions of Theorem 1.1, we have obtained
the following results. The solution u/€ to the semidiscrete equation

. 1 . .
(81) uj + ()~ f ) =0
satisfies the uniform bound on BV norm:

®32) Do ) < V) <

if V(u’/) < 69/4. Moreover, from Section 7, it follows that

(8.3) [u?<(t) — 2<()|] < L][u?(0) — v7<(0)]| ..
We define the function u¢ by
(8.4) ut(t,x) =u(t)  (j—De<z < je

where u/ is the solution of (8.1) with initial data

(8.5) u?(0) = a(je), @ € BV, w right continuous, lim @(z) = ug € K.

li
Tr— — 00
Since we have

ol = ol Sl ) — = 0)] = (),
J

up to a subsequence we can show that the limit as € — 0 of u* exists and it defines a Lipschitz continuous
semigroup S on a domain of functions with sufficiently small BV norm.

Note that in principle different subsequences could converge to different semigroups. To prove unique-
ness of the limit, we use the definition of Viscosity Solution.

As a first step we prove that the limiting semigroup S has a finite speed of propagation. In fact,
directly from (7.1) we have

(8.6) 7], = (/171 A ™) = (16, Aw)e?) < [l (1] + 1677
If at t = 0 we have |[¢7(0)] < e/, then we obtain
oe’t Tt = ||A||LOC (1+e)e”™™ if o=5= HAHLOQ (1+e),
so that |h7(t)| < e7*=*. When rescaling we conclude that
o <o (-T27) it o) <,
so that the function defined as

(8.7) C(ta) = ¢ (1) if (j—De<a < je

satisfies the bound
—ot
CE(t, )] < exp (—x d ) if
€
Consider now two solutions u?€, 29¢. A simple homotopy argument shows that
|lus(t, ) — 2°(t, 2)| < [Ju(0) — z(O)HLWexp (—

Passing to the limit we obtain

(8.8) lu(t,z) — 2°(t,z)| =0, x>at if |u(0,2)—=2(0,2)] =0, =>0.

€) — ot

(0, 2)] < e7™/e.

T — ot

) if |u(0,2) —2(0,2)| =0, >0.
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This proves that the speed of propagation of a perturbation is less than . Note that trivially this speed
is greater or equal to 0, because the Green kernel (2.13) has support in j > 0. This concludes the proof
of finite speed propagation.

A particular solution of the limiting semigroup is the trajectory of S with initial data

(0, z) = {“ 20

ut >0

with v, u* in Ko, [u~ —u™| small. For this special initial data there is a general technique to determine
which is the limiting solution by studying the evolution equation on the center manifold (3.11). In [2] it
is shown that this limit does not depend on the approximating sequence, and coincides with the Riemann
Solver constructed by the vanishing viscosity limit. This Riemann Solver can be uniquely determined by
requiring that each jump in the solution S;@ satisfies Liu’s stability condition [18].

The final step in proving uniqueness is to prove that any limit of a convergent subsequence is a Viscosity
Solution to

Uy + f(u)'p =0

in the sense of [10] In fact it follows that any trajectory is a trajectory of the semigroup S, i.e., the limit
does not depend on the subsequence.

We recall that a Viscosity Solution of a quasilinear hyperbolic system

(8.9) ug + A(u)u, =0

is defined as follows.

Let u(t,z) be a BV function w.r.t. x. Given a point (7,&), denote by Ut

) the solution to the
(usT,€)

Riemann problem

lim u(r,y) x<¢
(8.10) u(r,x) = V7S
lim u(r,y) =>¢
y—E+
This solution is obtained by the Riemann solver defined in [2], i.e., it is the unique limit of u¢(¢) with the
special initial data (8.10).
We denote by U(bu;T@ the solution to the linear system

(8.11) uy + Au(t,€))uy =0,

with initial data u(7,x).
A Viscosity Solution to (8.9) is now a function u(t, ) satisfying the integral estimates:
(i) At every point (7,§), for some 5’ > 0

1 [E&ThE

(8.12) ’u(T +hyx) - U

Fir) (7 )| do =0,

im —
h—0+ h &—hp
(ii) There are constant C, 8 < 8/ such that for every a < £ < b
1

8.13
( ) hi%h h

b—hj3
/ ’U(T +h,x) — UFu;T,E)(T + h,:z:)‘dx < C’V(u;]a,b[)?
a+hp

For an account of viscosity solution of hyperbolic systems we refer to [10].
At this point, using the same technique of [4], one can prove the following Lemma:

Lemma 8.1. Let S : D x [0,00[— D be a semigroup of solutions, constructed as the limit of a sequence
Sem of the semidiscrete scheme (8.1) and defined on a domain D C Ly of functions with small total
variation. Let u: [0, T] — D be Lipschitz continuous w.r.t. time, i.c.,

(8.14) ||u(t)—u(s)||L1 < L|t — 3]
for some constant L and all s,t € [0,T]. Then
(8.15) u(t) = Spu(0) for allt € [0,T]

if and only if u is a viscosity solution of (8.9).
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In particular Syu is a viscosity solution to (8.9).
What remains to be proved is that the whole family of semidiscrete approximations converges to a
unique limit, i.e.,

(8.16) 613(1)5r Siu = 84,

where the limit holds over all real values of € and not only along a particular sequence {e,,}. If (8.16)
fails, we can find @, 7 and two different sequences €,,, €, — 0 such that

(8.17) lim S0 # lim S;mv.
m—roo m—roo
By extracting further subsequences, we can assume that the limits
lim S;™u = Su, lim S;mu = Sju
m—0o0 m— o0

exist in L1, for all t > 0 and % € D. By the analysis in Section 13 in [4], both S and &’ are semigroups
of vanishing viscosity solutions. In particular, the necessity part of Lemma 8.1 implies that the map
t — v(t) = S0 is a viscosity solution of (8.9), while the sufficiency part implies v(¢t) = S{v(0) for all
t > 0. But this is in contradiction with (8.17), hence (8.16) must hold.

This concludes the proof of uniqueness of the limit.
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APPENDIX A. COMPUTATION OF THE APPROXIMATED MANIFOLD
The travelling profile is a solution to the RFDE
—omue + f(u(€)) — f(u(é—1)) =0.
We look for an expansion of the form
u(€) =’ + ea(€) + €*b(€) + O(1)€’.

Substituting this into the equation we obtain
o (e () + 2 (€)) + A(u) (e(al€) — al — 1)) + E(b(€) — b(¢ ~ 1))
€ :
+ S DA() (a(g) © a(€) — a6 — 1) @ al€ — 1)) +O(1)é = 0.

At first order in € we get the equation
efE—1

(A1) ~ond(€) + A7) (a6 —ale~1)) =0 = a6 = 5 —rn(),
where
Om —e B

The second order in € gives

(A3) —amb(€) + A(w?) (b(€) — b(E — 1)) + %DA(uj)rfn ®r, (w:Zuj) (6255(1 +ef) - 2eﬁf)) —0.

Using now the relation

(A4) DA(uw!)rl, @rd, + A(W)Drirl = (DX rl)rl + X Drlri
we obtain
, o , DM ri n=m
A5 . DA(u)r] 7Y = eme o
(A.5) < m DA(w?)r, ®Tm> {()\ﬁn — N, Drirly n#m
Projecting (A.3) on I,,(u’/) we obtain
— bl (€) + N (b (€) = b (€ — 1)) = ——" (DN, 7)) (€256 (1 + e7P) — 265¢),
Tl () + X, (b (€) = bra(€ = 1) = =5 (DN, ) (2514 ¢77) = 2%)
so that a solution has the form
1 AN 1+e B 2
A6 b (&) = —— (DNrd ) = —————— (7 — 1
(A.6) (€)= 57 mrm)mﬁ(l_e_ﬁ)Q(e )

1 S\ Om 1
5 PR S e (4 - 09)

— o <ln(uj),D’rm(uj)’rm(uj)> <lm(uo),7“%> 6ﬁ§ —1
mg% An (W) (1 +e=8) — 2M, <zm(u0),r§n>< B >

Projecting on I7, n # m, we have

— bl + N, (b (€) = ba(6 — 1)) = = (Ai;—Az;)<l£;,Drz;rz;l>(e”5(1+e—f*) —2eﬁf),

Y
which admits the solution
. N A ) 14+e b
(A7) ba(&) = (B, Drdyrd, ) S (N, = M) —— ¢ _ 1
< >Am ( ) 25(%(1 —e28) —2X, (1 - e*ﬁ)) ( )
DT L (e,
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Finally, using (A.1), (A.2), (A.6) and (A.7) we obtain
(A.8)

J oy e h ) —e B )
bE) = DA, rd, ( 1+ (e —1)° + 1 o (5665 — (e — 1)/5)> P (07)

M, \282(1—eP) B((1+B)e

()\n(uj) — /\m(uj)) (1 + e‘ﬁ) 08¢ efs — 1 .
+ Lo(u?), D1y (0 )1 (u?) et —1) — rn(u?)
,;,f ) (252 (Anw) (1 4+ €78) = 22 (w1)) ( )~

., (I (u Drm (W) r (u?) ) (I (o), 73) (P& —1 T (u?)
> (w) (1 +e=F) — 2\, ( B )<lm(uo),rm(uf)>'

Choosing now
i
Om{lm (U0), T (w))

€ — _
we obtain (3.18).

APPENDIX B. NON EXISTENCE OF A GOOD VARIABLE ’LU‘7 DEPENDING ON THE SPEED O'j AND

SATISFYING (4.13)
Let w/ = w(u?, v/~ u/=?) satisfy
wl 4+ M )yw? — Nt~ = 0.
This implies that
w (f(uw! 1) = f(u?)) + o’ (f(u/72) = f(u/7))
+ dgw’ (f(uj_3) — f(uj_z)) = N7 = N,

2 w73, In particular choosing v/ = w/~! = w/2 =z, w3 = y, we obtain

Osw(z, z,7)(f(y) — f(2)) = M2)w(z,2,y) — N)w(z,z,2),

for all w/, w1, ui—

so that we have
fly) = f(=)
ANz)
In a similar way, if v/ = v/ ~! =z, w2 =y, w3 = 2, we conclude that
Oaw(z, z,y)(f(y) — f(2)) + dsw(z,2,y)(f(2) = f(y) = Mz)w(z,y, 2) — Mz)w(z,z,y),
so that using (B.1) we have

(B.1) w(z,z,y) =w(z,z,z) + dsw(zx, , )

(B2  wley2) = wlz,z,y) + dulz, z,y)L

= w(z,z,y) + 52w($7$7y)f

It follows that AY)A(2)
Yy z
(e, ,2) = (o, .0)

and that

Dow(z, y, =) = dyw(z, z,y) + Ongw(, x, )L
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If now = = y we obtain

N(z) f(2) = f(=)

Oow(z,x,z) = w(x,z,x) + O3w(z, x, )

so that we can write

(B.3) w(z,y,z) = a(z) + c(x)W

Ay) f(z) = fy)

Az)  Mz)

We have defined the quantities a(x) = w(z,z,x), b(x) = dw(x,z,x), ¢(x) = dzw(x,z,x). Using now
w =z, w ' =uw 2 =43 =y, we obtain

ovw(@,y,y) (f(y) — f(@) = Xw(y,y.y) — Mz)w(z,y,y),
so that, taking the x derivative for x = y we conclude
N(@)w(x,z,2) =0 = a(z) =0,
since we are assuming that A’ ## 0. The two above equations give
dru(eyy) _ Ma)
w(@,y,y)  fle) = fy)
so that w(z,y,y) = k(f(x) — f(y)). Using (B.3), we obtain the relation
/ 2
(70 - 5) = (eto) + () LTy o T (JWSE)
This implies that c(z) = 0, so we conclude finally that w/ = k(f(uw/~1) — f(u’)) = kv’.

Note that a basic assumption is that A’ # 0, otherwise there are infinite functions w due to linearity.
Note moreover that the same proof holds for functions of the form w(u?, ..., uw/ ).

+¢(2)

APPENDIX C. COMPUTATION OF THE TERMS DUE TO WRONG SPEED CHOICE
Let s(vl,,vJ1) be the function
(C1) (vl ) = g (AT = N ([ + o))
= o (Ao (07 007 00 = (o (10), AT (7 V) )-
Note that we can write
o (AT N Aol ) )~ (A R A (R v ) = s (o ol ) = (0h 0071),

i—1 ; j ; TR S
where v7~" is a function of v},. We compute the expansion of s near v, = v/~ =0.
The first derivatives of s are

(%j — W DA @ (AT TN, vl ) ol VAT DR (AN T (R, 0l )
m
= 03 (I (), DATTR @ (A7) T (7, + 00y 0) ) (o + V)
= b (L o). A7 DR AT T (o ) ) (Pl o+ o)
- vg'n_l <lm(u0)a Aj_lfgn_l> (Qfgnﬂ) + Ugrz":znmv) :
B = A ) — () A ) ) ()
Um

where we used the relation
oI —1

90T (A7) (7 A+ v )
Um

m' m,v
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We obtain with easy computation

0s

ovl,

—0, Os

) —1
v=0 avgn

=—Alr] + <lm(uo),Ajrfn>7“f;T =0.

v=0

Computing now the second derivatives for v}, = vJ-! = 0 and using the estimates (3.25), one gets

2
6js i o,
(3vm) o
O%s i Nl ; ; P
BT,y DA ® (&) ADr (A7)
= (bun(0), DAY, @ (A7) ™" rdy + ATDr (A7)0 )y = 2N T
J )\j 4
=(1+ePm : n : " Al ),
(1+e );(A;L(Hreﬁin)_%gn) (rg (Im(uo), 7} )r )
_Ps = 2497 — 2l (uo), AT, \rd
(31}%_1)2 o m,v m\%0/, m/Tm

N .
f7§: n no_ n\,.j
- <A2(14—e—6%)-—2A?1> (15 = (o). 7573 ).

i
Using the same computations we obtain
323(1)%1,17%{1)

(9vh)’

8?s 02s  0piTt 02s (a@g;1>2 ds 9201

(8@,7”)2 v, 009, ovl, (3@%1)2 Him i1 (avgn)Q

v=0

J bV, )
2¢ ™ Pm < . m . ) (7”—‘ — (lm (uo), v} )7} )
Y J g m |
Z \ (L +efm) =20,
so that we can write

(C.2) S(Uﬁn,vﬂ'gl) - s(vﬁ'n,@ﬁ;l)

= (v =i ) (b - i) 32 (20? - A?)Qi?ggwn)an/xi) (7 = ntuo )

J#i

+o)(lo] + o)) (s — i)
2APAT

= (vh o) (ol — i) 2 (2 TN = Ngeo /&-) (7 = (im0}, 75973,

J#i

+O)(Jofa] + o)) (s — i)

APPENDIX D. COMPUTATION OF THE EQUATION SATISFIED BY Lfn

Let ¢J, be the solution to the equation

(D.1) e AW 0 00 )G = MW T ol o h TG = gl (1)

r mo m

Following the computations of Section 4, define implicitly now the variable ¢/, by
(D.2)

j—1
Cin ;o

9(sh)
<7Jn :Bm -

g*1 - -

(Uo))/)\m(uo)> + V) Gm (uﬂ',vfnw\(uo)(l + (9(3,) — 1)1/)(;’7;1))),
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where Gy, is defined in (6.7) and ¢ is the cutoff function (4.6). Let ¢/, be the function
(D.3) = Chsin
) Moo= A (u . . . L
=Gt (14 200 ) 058 ) + Gl (41,07, 54)
Am (UO)

= Gl (w07, B8,) + GrviRim (w07, 87,).

As in the scalar case, one has the estimate [¢7,] < |¢Z| + [¢Z71].
We now compute the equation satisfied by ¢/, under the assumption that ¢ > 0, i.e., [¢J, — 1| < 346,

and (7 is bounded. One can check that the following computations are valid even if ¢ = 0, i.e.,
= (371 + ¢ vl Kl . Following Section 4 we have

(D4) o+ Nty = NN = G N (6 ) O,
ORI . QW L. ) - OW
—J m QJj J qyJ m J (N L= N\ gd m
m (‘35 ﬂt + Cmvm au + Cm( m vm mvm) avgn

4Gl (b () 4 (o it ) (N7 = M00,) o )
4G (o (0 0 ) — P (003, B31) ] — o i)
+ 0, + 01w,
e (Oh, . . g o
=N <aﬁ(u9,v¥mﬁfn) (857 = B) + h(wd v, B2) = (w0, B0 1))
+ Qo7 o Tl GG ) + O, + O
+O(L)wy, (1),
where ) denotes a second order polynomial in v, (. We have used the following computations:
Cvjn_l _ ¢ N2 - N B Cj—l;\gn_lcgn_l__ N.¢, 1 Cvjﬁ__luj
Gl G " G G "
= (M2 = AT NG (B = 8h) — (T = ALt
+O0M)pd, + pit (because ¢, is bounded)
= NGB = 8) F Ol a2+ o) Y el 6
n

+

c&%=%(

+ Ol G+ 0() Y _[wn|ch + Oy + 1l
h(w ' ol BN — (W), B = O(1) (W —u?) + O(1) (vl —vl,)
=0(1) ) |vi| + 0l .

Since dh/Ou, Oh/Ov, Ok /OB are different from 0 only when 37 is close to 1, then the polynomial @ has
certainly smooth coefficients. Moreover it is easy to check that @ is linear in (.
We first study the terms which are of first order w.r.t. v, (. As in Section 4 we have

D5 N (g’Z(uﬂ‘,vzﬂ,ﬂﬁn) (B3 = 30.) + h(w vi,, 5,) - h(uﬂ‘,vzg,ﬁznl)) =

ouW)ci (8- #i) lh - 1 st — 1] <56y
OMV(u)¢h 2+ OMV(w)i " [sh, — 1] = 561, |41 — 1| < 36, or

|37t — 1] > 56y, it — 1] < 36
0 otherwise
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Using (D.2) we rewrite (D.4) as

(D6) o+ Nty = N e = OOV sk = ol ) X ls = 1 [t =1 < 581
+ OOV (G + 16 2)x{ |67 = 1] > 501]¢ ™ — 1] < 361 or viceversa)
+Q(ul v v TR G G G + O, + O + O(1)wh, (8),

We now consider the form of the term @, linear in (,:

2
(D.7) QW 0,Cm) = D Crm¥i T Y Z LA A ChES

T1,7‘2:O n;ﬁm T1,T2= 0

where the coefficients ¢, d are smooth functions depending on u?, v and (.

If ¢ is proportional to v and v is an exact travelling profile, then w = p = 0 and the right hand side
of (D.6) is equal to zero. Note that this implies also that ¢/, = ¢J=1 = s/ where s/, is defined in (6.7).
Denote by (=1, (/=2 the quantities
(D.8) Gt = b (W) 0 0h), G = G B (@77 80 o).

Observe that, if ¢ < ¢y, from (D.2) it follows that
(D.9) Gt = B (W 0h A (w0)g(s3))s G = G B (@77 00,7 A (o) g(3,) ) -
Since Q(u?,9,(m) = 0, we can write

Q(uj7U7Cm) = Q(uj7U7Cm) _Q(uj 0 ém)

2
— E _ A J—T1/j—r2 E —T1/j—T2 NJ—T1 I
- (CTl T2 CTl 372 ) m Cm + CTl T2 m C U C )
r1,72=0 r1,m2=0

§ § J—T1 ] T2
+ drlrgvn

n#mr1,r2=0
= O, (¢ =G + o), (vi =371 + O(1) (vi, 1 — o310
+ OV, (72 = O +0M)E, (0372 = 63,7%) + O(1) (vi, 12 — 0370 E2)
+O1) (v 2 = 0l 20T + 0() (vl 2T — 6072

2
ODDED DN gl |[chall!

n#mry,r2=0

Using similar computation to that in Section 4 and following a similar approach to the vanishing viscosity
case [4], we estimate the above terms as

(Gt - <

o
UmnCin ~ — Vi Cin

+ it - e

‘gﬂ (vt — 807 ‘ <o) (&,) {\gﬂ e 1) > 451/5}
+0)((v3)" + @i )] Jei o — 1] = 981/10}
+OM)|uf, Gt = vl 1G] /61,
where we used the computation 2ab < a2 4 b% and, for [(771/¢i, — 1| < 46, /5, [vi 1 /vl — 1] > 94, /10,
(D.10) Bt = G| = O Gl |+ O] o] = O (vhi = 37 .
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j—1,5—1 _ ~j—17j—1
LA CAE K A

< [on (@t = G|+ i = o
< O (G =&
it = od ) I - 1] > 65}
+0<1>\<vj Gl -1 < 46/5)
o) ((vh)" + (3 )x{ Jod ol — 1] = 481/}
1)(( 20"+ () )l /6 = 1] = 3015
)

o(
O]t = vl ¢l /.
o, (72 = )| < [ (@t = G m o+ [oda (G2 = G (i ol ol )|
+ ‘%Cﬁ{l(ﬁm(u] Lol ol ) = (@ 8 %)
<O, (G - &)
O (G? = G o™ vl o ) p{ odi o = 1] < 80}
oGt {62/t = 1] < 401 /5,Jod /ot — 1] 2 61}
OW)|vi| (162 + 16 ) G2 /et = 1] = 481/5, v vl = 1] = o1
o)

D) Y [l + 0 (vt = o3|
n#m

OW)|ohi (o8 — ot {62 /G = 1] < 481/5, ol o — 1| < 61}
\vzn Gr 1—<ﬂn )
0ol (62 = G pl o ) e ok — 1] < 61

+ 0 ((v4)” + ) x{loi /b — 1] = 61

+om (@ + @ )l -1 2 40,5}

+ ()| vk, = vh G| + O G M, — wi G| + 0(1) Y Jod|Gi

n#m

where, for vl /vl — 1| < 1, we have used the computation

(D) G (o — o) = O (oG = ol ') + Ol "G (5 — st

(1) (0 "Gl = G od) (L4 [shal) + O (¢ st — vl sh )

@)
O) (v G = G ) + O (G wh, = Chwl ),

55
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G (w22 = 03] < |6 (i = ol B (w0l )|
|G o B e ) = 6 B 6 o)
< O (wh = i e i i ) Il /6 — 1) < 6
oW ((6h)” + () x{ e /ch — 1] = a1}
o) (k)" + (05" ){ |od 2 oi = 1] = 461/5}
0| (vt = o37") | + 0|t = G,

U%Cin_l (ﬁm(uj_lv rUZn_la UZn_l) - ﬁm(ﬁj_lv ﬁ%z_lv Ugn)) )7

+

i—1,j—2  ~j—17j—2
oh G - 0 <

G - G|+ |t - o)
< O], (G - &)

et —a dlarart -1l z 6
+o)art @i = o) {la g -1l = 6
+O)|¢h (it - o),

Grleg? = G < oGt = G|+ et @it - 6|
< O)|ui (¢ = &) e{ Jodi ot 1| < 00}
+ Ol ub{ |65/ = 1] < 401/5, o oy — 1] = 61
+ O (16 + I {6 6 — 1] = 46,
G e = ol B i )|+ o) S Jeal |6

n#m

+ 0|6 it = o) | + 0| v ok — i)

ot v 1] 2 60)

G2oi® = G200 < G2l = G B ol |+ [ B ol B — G|

< [Gh2on = G B el B+ )| (it = )|

+ O |G ol ()2 = (@ 657 h) )| + O (it = &7
G2l = G el + 0ol (G - )|

+OW)¢h (it = o)+ omart (i = o)l e — 1l = 6
+ O v (B = (@ 6 00)) |

IN
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We finally obtain the equation for ¢ :
12)

4 Nty = N M = OOV (5 =<7 ][ = 1] [ = 1] < 501

(1]

2]
(3]
[4]
[5]

6
[7]

(8]

[9]
[10]
(11]
(12]
(13]
(14]

[15]
[16]

[17]
(18]

+O0M)V(u)(|¢ ) + |Cﬁ;2|)x{|§fn —1| > 501|¢), " — 1] <361 or Viceversa}
O(l)}(gnvﬁ;l— i |+0 |§J w] 1 anl |_|_@ |C J 2,UJ 1|

+om)((h)*+ (05))x {\51 )3 }w()((%1)2+(%2)2)X{|Sgl 1> 351}
o ()" + (@ )x{lsh 112 351} om((6 ) + @) e { it 1= %
0 [0 167 + O le) + Oy 1) + O(1)e (1),
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