QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF
CONSERVATION LAWS

STEFANO BIANCHINI AND STEFANO MODENA

ABSTRACT. For the Glimm scheme approximation u. to the solution of the system of conservation laws
in one space dimension
ut + f(u)e =0, u(0,2) = uo(z) € R",
with initial data ug with small total variation, we prove a quadratic (w.r.t. Tot.Var.(ug)) interaction
estimate, which has been used in the literature for stability and convergence results. No assumptions
on the structure of the flux f are made (apart smoothness), and this estimate is the natural extension
of the Glimm type interaction estimate for genuinely nonlinear systems.
More precisely we obtain the following results:
e a new analysis of the interaction estimates of simple waves;
e a Lagrangian representation of the derivative of the solution, i.e. a map x(¢,w) which follows the
trajectory of each wave w from its creation to its cancellation;
e the introduction of the characteristic interval and partition for couples of waves, representing the
common history of the two waves;
e a new functional Q controlling the variation in speed of the waves w.r.t. time.
This last functional is the natural extension of the Glimm functional for genuinely nonlinear systems.
The main result is that the distribution Dty (¢, w) is a measure with total mass < O(1)Tot.Var.(uo)?,
where 6 (t, w) is the speed given to the wave w by the Riemann problem at the grid point (ie, x(ie, w)),
t € [ie, (14 1)e).
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1. INTRODUCTION

Consider a hyperbolic system of conservation laws

{ ut""f(u)mzov
u(0,x) = ug(x),

where ug € BV (R,R"), f : R® — R"™ smooth (by smooth we mean at least of class C3(R",R")) and
strictly hyperbolic. We are interested in the proof of an interaction estimate, quadratic w.r.t. the total
variation of the initial data wug, which has been considered in the literature and used to prove sharp
convergence and stability results [2, 3, 13, 14]. The first estimate of the speed of convergence of the
Glimm scheme has been established in [10] for systems with characteristic fields genuinely nonlinear or
linearly degenerate.

The quadratic estimate we are concerned with, can be easily explained in the case of a front tracking
solution to (1.1) [9]. Let {t;};=1,...,.; be the times at which two wavefronts w,w’ meet; each ¢; can be an
interaction time if the wavefronts w, w’ belong to the same family and have the same sign; a cancellation
time, if w,w’ belong to the same family and have opposite sign; a transversal interaction time if w,w’
belong to different families; a non-physical interaction time if at least one among w,w’ is a non-physical
wavefront (for a precise definition see Definition 3.2 in [8]).

(1.1)

In a series of papers [3, 13, 14, 2] the following estimate has been discussed:
lo(w) — o(w’)||w]|w| 9

1.2 < O(1)Tot.Var.(ug)*“.
(12) > ST < O(1) ot Var (uo)

t; interaction

In the above formula w,w’ are the wavefronts which interact at time ¢;, o(w) (resp. o(w’)) is the speed
of the wavefront w (resp. w’) and |w| (resp. |w’|) is its strength. By O(1) we denote a constant which
depends only on the flux function f.

As it is shown in [2, 7], the proofs presented in the above papers contain glitches/missteps, which
justified the publication of a new and different proof in [7] and in [3].

In particular, the paper [7] considers the simplest case at the level of (1.1), namely the scalar case
u € R, and shows that even in this situation the analysis is already quite complicated: in fact, one
has to follow the evolution of every elementary component of a wavefront, which we call wave (see [7,
Sections 3.1 and 4.1], [8, Section 2 and Definition 3.3] or Section 4.1 below), an idea present also in [3]
extending the poineering ides of [16]. One of the conclusions of the analysis in [7] is that the functional
used to obtain the bound (1.2) is non-local in time, a situation very different from the standard Glimm
interaction analysis of hyperbolic systems of conservation laws.

In the second paper [8] the authors study how the same estimate can be proved in the presence of
waves of different families. For this aim, the most simple situation is considered, namely the Temple-class
triangular system (see [17] for the definition of Temple class systems)

{ Ut+f(uvv)x =0,

Ve — Uy =0,
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with % > —1, so that local uniform hyperbolicity is satisfied. The main novelties introduced in the proof
of this case are:

(1) the definition of an effective flux function, which contains all the information about the “convex-
ity /concavity” of each characteristic family, [3, Section 3.4];
(2) a new choice of the weights for couple of waves, which take into account the presence of the

wavefronts of the other family, [3, Section 4.2];
(3) the construction of a tree at each interaction: this tree describes the past history of all the waves
involved in the interaction from the time of their last splitting, [3, Section 4.3].

The assumption on the triangular structure of the system allows to reduce the analysis to a non au-

tonomous scalar PDE
0
we + (%(w,v))wl =0,

for some smooth (C3-)function f such that % > —1, thus granting several simplifications.

Aim of this paper is to complete the proof of (1.2) in the general case. Even if a similar analysis can
be done for wavefront tracking approximations, we choose to prove the quadratic estimate (1.2) in the
case of the Glimm approximation scheme for two reasons.

First it is mathematically simpler.

On one hand, in fact, it requires the introduction of the quadratic amount of interaction for two merging
Riemann problems (Definition 3.1), a new quantity not appeared before in the literature: we need this
quantity because the Glimm restarting procedure merges Riemann problems at each time step, while
wavefront tracking considers only binary interactions. The quadratic amount of interaction is interesting
by itself.

On the other hand, once the analysis of two merging Riemann problems has been studied, the scheme
proceeds flawlessly, because one does not need to study the various Riemann solver (accurate, approximate
and brute, [1]).

Secondly, it is the original situation studied in [3], with the aim of obtaining an explicit rate of
convergence for the Glimm scheme. With the result proved here, Theorem 1 of [3] can be made entirely
rigorous.

After this brief introduction, we now present the main result of the paper.

1.1. Main result. Consider a general system of conservation laws
(1.3) ur + f(u)e =0,

where f : Q C R® — R” is a smooth function (at least C?), defined on a neighborhood € of @ € R?,
satisfying the strict hyperbolicity assumption, i.e. for any u € ), the Jacobian matrix A(u) := D f(u) has
n real distinct eigenvalues A\ (u) < -+ < A, (u). Together with (1.3) we consider the initial datum

(1.4) u(0,2) := up(z) € BV(R).
As usual, denote by {ri}r ({Ix}x) the basis of right (left) eigenvalues, normalized by

1, k=h,

Ire(u)] = 1, <lk(u>»rh(“)>:{o k # h.

W.lo.g. we assume % = 0 and {Az(u)} C [0,1]. Since we will consider only solutions with small total
variation, taking values in a relatively compact neighborhood of the origin, we can also assume that all
the derivatives of f are bounded on 2 and that there exist constant Ag, ..., A, such that

(1.5) 0< Ap1 < Ae(u) < A <1, foranyueQ, k=1,...,n.

When the initial datum has the particular form

uk x>0,
u(0,2) = {uR z <0

the Cauchy problem (1.3)-(1.4) is called the Riemann problem (RP) (uX,u®).
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Let (u®, u™), (uM, u®) be two Riemann problems with a common state u*, and consider the Riemann
problem (u,uft). It is well known (see [, 11], or Section 2.1) that if [uM — u®|, [uf* — uM| < 1, then
one can solve the three Riemann problems as follows:
uM:T;ZO~-~OT51/1uL, uR:T:,TZO---OTsl/l/uM, uR:T:HO---OTSIIuL,
where foreachk =1,...,n, s}, s/,s, € Rand (s,u) — Tfu is the map which at each left state u associates
the right state T*u such that the Riemann problem (u,T¥u) has an entropy admissible solution made
only by wavefronts with total strength |s| belonging to the k-th family. This Lipschitz curve is called k-th
admissible curve and it is parameterized such that s is equal to the total variation of the k-waves solving
the Riemann problem (u, T*u). We will also use the notation T (u).

We are interested in studying how much the speed of the wavefronts of the two incoming Riemann
problems can change after the collision. More precisely, for each family k, writing for brevity (formula

(1.11))
I(s) = [min{s, 0}, max{s,0}] \ {0},

let us denote by

the speed function of the wavefronts of the k-th family for

L M)
)

/. 3 3
7y Msk) = (Ar-1,45) the Riemann problem (u”,u

v I Q Q the speed function of the wavefronts of the k-th family for
ok + s, + 1) = (Ae-1, k) the Riemann problem (u™, u®),

the speed function of the wavefronts of the k-th family for

the Riemann problem (u”, u?).

(o7 I(Sk) — (/A\k_l,j\k)
and consider the L'-norm of the speed difference between the waves of the Riemann problems (ur,us),
(upr,ur) and the outgoing waves of (uy,ug):

||(U;€U0g) 70”"“ 1 ’ 7 if S;CS;C/ Z 0
AUk(UL,UM,uR) = / . L (I(sj,+s3)N1(sk)) o ’
1k 2 %) = okl sy rogprnony I 55% <0,

where o}, U o/ is the function obtained by piecing together o}, o/, while o}, A o}/ is the restriction of oy,
to I(sj, + s) if [s},| = [si] or oy/Li(s +sy) in the other case, see formulas (1.12), (1.13).

Now consider a right continuous e-approximate solution constructed by the Glimm scheme (see Section
2.3); by simplicity, for any grid point (ie, me) denote by

Aoy (ie, me) = Aoy, (ub™ 1 = hm=1 gy hm)

the change in speed of the k-th wavefronts at the grid point (ie, me) arriving from points (ic, (m — 1)e),
((i = De, (m — 1)e), where u?" := u(je,re). The main result of this paper is that the sum over all grid
points of the change in speed is bounded by a quantity which depends only on the flux f and the total
variation of the initial datum and does not depend on €. More precisely, the theorem we prove is the
following.

Theorem 1.1. It holds

+oo
(1.6) > > Aoy(ie, me) < O(1)Tot. Var. (ug; R)?,

i=1 mez
where O(1) is a quantity which depends only on the flux f.

We explicitly notice that Acgy is the wariation of the speed of the waves when joining two Riemann
problems.

The proof of Theorem 1.1 follows a classical approach used in hyperbolic system of conservation laws
in one space dimension.
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We first prove a local estimate. For the couple of Riemann problems (u”,u), (u™,uf?), we define
the quantity
A(UL, ’U,]\/I7 UR) = Atlrarls(uL7 ’U,M, ’U,R)

1.7 " .
o 30 (At M ) A (M ) A (M ) )
h=1

which we will call the global amount of interaction of the two merging RPs (u®,u™), (uM, u®). Three
of the terms in the r.h.s. of (1.7) have already been introduced in the literature, namely

Atens (yl oM ) s the transversal amount of interaction (see [12] and Definition 2.5);

asane(yl y™ yR) is the amount of cancellation of the h-th family (see Definition 2.8);

Asubic (L M uBY s the cubic amount of interaction of the h-th family (see [4] and Definition 2.6).

The term A?luadr(uL ;uM uft)) which we will call the quadratic amount of interaction of the h-th family
(see Definition 3.1), is introduced for the first time here.
The local estimate we will prove is the following: for all k =1,...,n,

(1.8) Aoy (uf u™ uf) < O()A(ul, u™, u®).

This is done in Section 3, Theorem 3.3.

Next we show a global estimate, based on a new interaction potential. For any grid point (ie, me)
define

A(ie, me) = A(ub™m 1 yimbmT g hm)
as the amount of interaction at the grid point (ie,me), and similarly let A"*S(ie, me), ASP2(ie, me),
AP (e me), AM (je me) be the transversal amount of interaction, amount of cancellation, cubic

amount of interaction at the grid point (ie, me), respectively.
We will introduce a new interaction potential Y with the following properties:

(1) it is uniformly bounded at time ¢t = 0: in fact,

T (0) < O(1)Tot.Var. (ug; R)?;
(2) it is constant on time intervals [(i — 1)e, i€);
(3) at any time e, it decreases at least of >, A(ie, me).

It is fairly easy to see that Points (1), (2), (3) above, together with inequality (1.8), imply Theorem 1.1.

The potential T is constructed as follows. We define a functional ¢t — (¢), constant in the time inter-
vals [(i — 1)e,ie) and bounded by O(1)Tot.Var.(ug; R)? at t = 0, which satisfies the following inequality
(see Theorem 6.3):

Qie) —Q((i —1)e) < — Z Z A4 (e me) + O(1)Tot. Var. (ug; R) Z A(ie, me)

meZ h=1 meZ
= —(1 - O(1)Tot.Var.(ug; R)) Z ZAquadr(is,me)
(1.9) mez h=1
+ O(1)Tot. Var.(ug; R) Y A" (ig, me)
meZ
+ O(1)Tot. Var.(ug; R) Y~ > (A;;W(ia, me) + A5 (e, ma)).
meZh=1
It is well known (see [12], [4] and Section 2.4) that there exists a uniformly bounded, decreasing potential

Q*""1(t) such that at each time ie

(110) Y [A“"“’S(ie,me) +> (Afﬁ“(z‘e, me) + Afbubic(ia,me))} < QMY ((1 — 1)g) — QX" (de).

meZ h=1
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Hence, it is straightforward to see from (1.9), (1.10) that we can find a constant C' big enough, such that
the potential

T(t) := Q(t) + CQ""(¢t)
satisfies Properties (1)-(3) above, provided that Tot.Var.(ug; R) < 1.

Remark 1.2. In the paper [16], for genuinely nonlinear or linearly degenerate systems, the author proves
an estimate, analogous to (1.6), on the change in speed of a suitable partition of the elementary waves of
the Riemann problem at each grid point. This discrete partition is needed in order to group rarefaction
waves into finitely many packets, which are then traced in time.

A first extension of this idea is in [3], where due to the generic flux f one has also to partition the shock
waves.

The construction presented in this paper is thus different in two main aspects. First, our partition is
continuous, i.e. the variable w, indexing the wave, varies in a subset of the real numbers, while in all the
previous cases it is contained in a discrete set.

Secondly, the quadratic estimate of [16, Lemma 3.2-(iii)] is much easier due to the decrease of the original
Glimm functional (which is quadratic w.r.t. the total variation), while in our case one of the main points
is precisely the construction of a quadratic decreasing functional.

Notice also that without Theorem 1.1, one cannot show the convergence of the Glimm scheme to the
entropic solution when the sampling sequence ¥;, ¢ € N, is equidistributed.

1.2. Structure of the paper. The paper is organized as follows.

In Section 2 we recall some preliminary results, already present in the literature, which we will use
thoroughly in the paper.

In Section 2.1 we show how an entropic self-similar solution to the Riemann problem (u”, u®) is con-
structed, focusing our attention especially on the proof of the existence of the elementary curves of a fixed
family. Even if the main ideas are similar to the standard proof found in the literature (see for instance
[6]), we need to use a slightly different distance among elementary curves, see (2.7): this because we need
sharper estimate on the variation of speed.

In Section 2.2 we recall the definitions of some quantities which in some sense measure how strong is the
interaction between two contiguous Riemann problems which are merging and we present some related
results: these quantities are the transversal amount of interaction (Definition 2.5), the cubic amount
of interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8).

In Section 2.3 we review how a family of approximate solutions {u.(t,z)}c>0, to the Cauchy problem
(1.3)-(1.4) is constructed by means of the Glimm scheme.

Finally in Section 2.4 we recall the definitions of some already known functionals, which provide a
uniform-in-time bound on the spatial total variation of the approximate solution u..

Section 3 is devoted to prove the local part of the proof of Theorem 1.1, as explained in Section 1.1.
In particular we will consider two contiguous Riemann problems (u%,u), (u?,u®) which are merging,
producing the Riemann problem (u,uf*) and we will introduce a global amount of interaction A, which
bounds

(1) the L°°-distance between the u-component of the elementary curves before and after the inter-
action;

(2) the L'-distance between the speed of the wavefronts before and after the interaction, i.e. the
o-component of the elementary curves;

(3) the L!-distance between the second derivatives of the reduced fluxes, before and after the inter-
action.

This is done in Theorem 3.3.

In Section 3.1 we introduce the first novelty of the paper, i.e. the notion of quadratic amount of interaction
Azuadr for waves belonging to the k-th characteristic family. Adding this new functional to the classical
transversal amount of interaction, cubic amount of interaction and amount of cancellation we obtain the
total amount of interaction, Definition 3.2.

The important fact about the total amount of interaction is that it bounds the variation of the elementary
curves when two Riemann problems are merged, Theorem 3.3 of Section 3.2. The proof of Theorem 3.3 is
given in the next three subsections. In Section 3.2.1 we prove some basic estimates related to translations
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of the starting point of the curve which solves a Riemann problem and to changes of the length of such a
curve; in Section 3.2.2 we consider the situation in which each of the two incoming Riemann problems is
solved by a wavefront of a single family k; in Section 3.2.3 we conclude the proof of Theorem 3.3, piecing
together the analysis of the previous two cases.

In Section 4 we define the notion of Lagrangian representation of an approximate solution u. (Section
4.1) obtained by the Glimm scheme to the Cauchy problem (1.3)-(1.4), and we explicitly construct a
Lagrangian representation satisfying some useful additional properties (Section 4.2). In the final Section
4.3 we introduce some notions related to the Lagrangian representation; in particular, the notion of
effective flux £5%(t) of the k-th family at time t will have a major role in the next sections.

Starting with Section 5 we enter in the heart of our construction.

In Section 5.1 we define an equivalence relation on the waves of the k-th characteristic family, which
allows to work only with finitely many equivalence classes instead of a continuum of waves.

In Section 5.2 we introduce the notion of characteristic interval of waves Z(f,w, w’) for any couple of waves
w,w’: roughly speaking, the idea is that the waves outside this interval are not essential in computing
the strength of the interaction of w,w’. In order to define this interval, we introduce the notion of pair
of waves (w,w") which have already interacted and pair of waves (w,w’) which have never interacted at
time t.

In Section 5.3 we give a partition P (%, w, w’) of this interval: the elements of this partition are waves with
the same past history, from the moment in which one of them is created.

Now we have all the tools we need to define the functional Qy for kK = 1,...,n and to prove that it

satisfies the inequality (1.9), thus obtaining the global part of the proof of Theorem 1.1. This is done in
the final Section 6.
In Section 6.1 we give the definition of Qy, using the intervals Z(f,w,w’) and their partitions P (¢, w,w’).
The idea is to adopt the form of the analogous functional  introduced first in [7] and then further
developed in [8]: it is an integral among all couples of waves w,w’ of a weight qi(¢,w,w’) obtained
(roughly speaking) by

, difference in speed of w,w’ for the Riemann problem in Z(¢,w,w’) with the flux £
qr(t, w,w') ~ : ; :
length of the interval Z(¢, w,w’)

The precise form is slightly more complicated, in order to minimize the oscillations of q in time.
In Section 6.2 we state the main theorem of this last part of the paper, i.e. inequality (1.9) and we give
a sketch of its proof, which will be written down in all its details in the next subsections.
In Sections 6.3, we first study the increase of Q for couples of waves one of which has been created at
the time of interaction. The main result (Proposition 6.4) is that this increase is controlled by the total
amount of interaction times the total variation of the solution.
In Section 6.4, we study how the weight varies for couple of waves which are not interacting at the given
time, and again in Theorem 6.5 we prove that it is controlled by the total amount of interaction times
the total variation of the solution.
Finally in Section 6.5, Theorem 6.5 computes the decaying part of the functional, due to couple of waves
which are involved in the same Riemann problem: it turns out that the decay is exactly Azuadr (plus
the total amount of interaction times the total variation of the solution), and this concludes the proof of
Theorem 1.1.

We conclude the paper with Appendix A, where we collect some elementary results on convex envelopes
and secant lines used throughout the paper.

1.3. Notations.
e For any s € R, define
if s >
(1.11) 1(s) = { (008 i 20,
[s,0) if s <O.

e Let X be any set and let f:I(s") - X, g: ¢ +1(s") = X;
— if §'s” > 0 and f(s') = g(s'), define

(1.12) gl = X (U@ =00y e e s + 157

{ﬂm if 2 € I(s"),
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— if §'s” < 0, define

x) if || > |s"|, v € I(s' + s")
1.13 Ag:I(s+5) = X, A g)(z) = ut ’ ’
(1.13) fog:ls+s) L0 =g o) ]| < |s"], 2 € I(s' + )
e For a continuous real valued function f, we denote its convex envelope in the interval [a,b] as
oy

e Given a totally ordered set (A, <), we define a partial pre-ordering on 24 setting, for any I,.J C A,
I < J if and only if for any a € I,b € J it holds a < b.

We will also write I < J if either I < J or I = J, i.e. we add the diagonal to the relation, making
it a partial ordering.

e The L* norm of a map g : [a,b] — R™ will be denoted either by ||g[[cc or by [|g]|ze([a,p)), if We
want to stress the domain of g; similar notation for the L'-norm.

e Given a C!' map ¢g: R — R and an interval I C R, possibly made by a single point, let us define
the Rankine-Hugoniot speed

g(supJ) — g(inf I)
a’h(g,I) — sup I — inf [

, if I is not a singleton,

d—g(I), if I is a singleton.
u

2. PRELIMINARY RESULTS

In this section we recall some preliminary results, already present in the literature, which we will use
in the next sections.

In Section 2.1 we show how an entropic self-similar solution to the Riemann problem (u®, uf) is
constructed, focusing our attention especially on the proof of the existence of the elementary curves of
a fixed family. Even if the main ideas are similar to the standard proof found in the literature (see for
instance [0]), we need to use a slightly different distance among elementary curves, see (2.7): this because
we need sharper estimate on the variation of speed.

In Section 2.2 we recall the definitions of some quantities which in some sense measure how strong is
the interaction between two contiguous Riemann problems which are joining and we present some related
results: these quantities are the transversal amount of interaction (Definition 2.5), the cubic amount
of interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8).

In Section 2.3 we review how a family of approximate solutions {u.(¢,x)}c>0, to the Cauchy problem
(1.3)-(1.4) is constructed by means of the Glimm scheme.

Finally in Section 2.4 we recall the definitions of some already known functionals, which provide a
uniform-in-time bound on the spatial total variation of the approximate solution u..

2.1. Entropic self-similar solution to the Riemann problem. We describe here the method devel-

oped in [6], with some minimal variations, to construct a solution to the Riemann problem (uf,u%), i.e.
the system (1.3) together with the initial datum
L
U x>0
2.1 u(0,x) = ’ -
(2.1) (0,2 {uR’ e

provided that [uf —u”| is small enough. First we present the algorithm used to build the solution to the
Riemann problem (u, u) and then we focus our attention on the construction of the elementary curves
of a fixed family.

2.1.1. Algorithm for solving the Riemann problem. The following proposition holds.

Proposition 2.1. For all 63 > 0 there exists 0 < §; < &2 such that for any u”, u® € B(0,6,) the Riemann
problem (1.3), (2.1) admits a unique, self-similar, right continuous, vanishing viscosity solution, taking
values in B(0,d2).
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Sketch of the proof. Step 1. For any index k € {1,...,n}, through a Center Manifold technique, one can
find a neighborhood of the point (0,0, A;(0)) of the form

Dy, = {(u, v, 0%) ER" x Rx R | |u| < p, |vi| < p, o — Ae(0)] < p}
for some p > 0 (depending only on f) and a smooth vector field

Tk :'Dk—>Rn, Fkak(u,’Uk,O'k),
satisfying
. ory,
(2.2) Tr(u, 0,0%) = r(u), af'k(u,vk,ak) < O(1)|vl-

We will call 7, the k-generalized eigenvector. The characterization of 7 is that
Dy > (U,Uk,dk) — (u,kak,ak) eR"xR*" xR

is a parameterization of a center manifold near the equilibrium (0,0, A5 (0)) € Dy, for the ODE of traveling
waves

(A(u) — JH)’LLI = Upy — v, = (A(u) — ol)v
o, =0

where A(u) = D f(u), the Jacobian matrix of the flux f, and I is the identity n x n matrix.

Associated to the generalized eigenvectors, we can define smooth functions A; : Dy — R by

A (u, vg, o) = (Ui (w), A(u)7r(u, vg, o%) ).
We will call Ay, the k-generalized eigenvalue. By (2.2) and the definition of S\k, we can get
. oA
(2.3) Ak (u,0,0%) = Ap(u), ’E)k(u,vk, ok)
Ok

For the construction of the generalized eigenvectors and eigenvalues and the proof of (2.2), (2.3), see
Section 4 of [6].

Step 2. By a fixed point technique one can now prove that there exist d,7 > 0 (depending only on f),
such that for any

< O1)[vx].

ke{l,...,n}, u® € B(0,p/2), 0<s<m,
there is a curve
v o [0,8] — Dy,
= (1) = (u(7), vk(7), o%(T))
such that u, v, € CH1([0, 5]), op € C%1([0, 5]), it takes values in B(u®,d) x B(0,0) x B(Ar(u*),d) and it
is the unique solution to the system

T

u(r) = ub + / () de

(2.4) vk(7) = fe(y;7) — cony fr(y;7)

s

d
ox(T) = i Tr(y7)

where
(2.5) Je(ys ) = /OT Ae(7(<))ds.

and convyy 4 fr is the convex envelope of fi in the interval [0, s], see Definition A.1 in Appendix A. In
the case s < 0 a completely similar result holds, replacing the convex envelope with the concave one.
If we want to stress the dependence of the curve v on u” and s we will use the notation

Y, )(r) = (ulu, 5)(r), ve(u", 5)(7), on(uh, )(7) ).

Even if the existence and uniqueness of such a curve is known, we give a proof in Section 2.1.2, since
we need to use a definition of distance among curves slightly different from the one in [6].
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Step 3. Once the curve v solving (2.4) is found, one can prove the following lemma.

Lemma 2.2. Let v : [0,5] — Di, v(ul,s)(1) = (u(7),vk(7),0%(7)), be the Lipschitz curve solving the
system (2.4) and define the right state uf := u(s). Then the unique, right continuous, vanishing viscosity
solution of the Riemann problem (u”,u®) is the function

ulif x/t < op(0),

w(t,z) == u(r) if x/t = max{€ €0,s] | x/t = o1 ()},
uf' ifx/t > op(s).

For the proof see Lemma 14.1 in [6]. The case s < 0 is completely similar.
Step 4. By previous step, for any k € {1,...,n}, ul € B(0,p/2), there is a curve

(=nm) 2s = To(h):=u(u’,s)(s) € Bu,8) CR"
such that the Riemann problem (u’, T*(ul)) admits a self similar solution consisting only of k-waves.

Lemma 2.3. The curve s — T¥(ul) is Lipschitz continuous and

k(, L
(2.6) ess limL(u)

L
s—0 S )

=ri(u

For the proof see Lemma 14.3 in [6].
Step 5. Thanks to (2.6), the solution to the general Riemann problem (1.3), (2.1) can be now constructed

following a standard procedure (see for example [11, Chapter 9]). One considers the composite map
T = (=) — R™
L . m L
(81,...,80) = T(u”)(s1,...,8,) =T o~-~oT511(u )

By (2.6) and a version of the Implicit Function Theorem valid for Lipschitz continuous maps, T'(u”) is a
one-to-one mapping from a neighborhood of the origin in R™ onto a neighborhood of u”. Hence, for all

uf? sufficiently close to u* (uniformly w.r.t. u* € B(0,p/2)), one can find unique values s1,..., s, such
that T(u%)(s1,...,8,) = u®.
In turn, this yields intermediate states ug = u”, u1,...,u, = u* such that each Riemann problem with

data (ug—_1,ur) admits a vanishing viscosity solution wy = wg(t,x) consisting only of k-waves. By the
assumption (1.5) we can define the solution to the general Riemann problem (u,uf) by

w(t, ) = wi(t, x) for Aj_1 < % < Ak
Therefore we can choose d;,d2 < 1 such that if u’, uf* € B(0,d;), the Riemann problem (u”,uf) can be
solved as above and the solution takes values in B(0, d3), thus concluding the proof of the proposition. O

2.1.2. Proof of Step 2. We now explicitly prove that the system (2.4) admits a O+ x Ot x C%1-solution,
i.e. we prove Step 2 of the previous algorithm, using the Contraction Mapping Principle. As we said, we
need a proof slightly different from the one in [6]: in fact, even if the general approach is the same, the
distance used among curves is suited for the type of estimates we are interested in.

Fix an index k = 1,...,n and consider the space

X :=C°([0, s];R™) x C°([0,s]) x L' ([0, s])

A generic element of X will be denoted by v = (u, vk, o). The index k is just to remember that we are
solving a RP with wavefronts of the k-th family. Endow X with the norm

(2.7) 1vll+ = [[Cw, vk, o) [ = Ilulloo + 1velloo + low 11

and consider the subset
Ty (ul,s) = {’y = (u, vk, 0k) € X : u,v; are Lipschitz and Lip(u) + Lip(vx) < L,

u(0) = u,0(0) = 0,
lu(r) — uL| < 0, |vk(T)] < § for any 7 € [0, 5,

o (T) = Me(u®)] < 6 for LY —a.er € [0,5]}
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for u € B(0,p) and L,s,6 > 0 which will be chosen later. Clearly I'y(u’,s) is a closed subset of the
Banach space X and thus it is a complete metric space. Denote by D the distance induced by the norm
[ ll+ on X.
Consider now the transformation
T : Ti(ul,s) — L>=([0,s],R"*2)

g = V=T
defined by the formula

a(r) == ul + /OT T (v(s))ds,

O(7) = fe(y;7) — cony Te(y;7),

)

X d
ox(T) = o Te(y; 1),

where fi has been defined in (2.5). Observe that, since A is uniformly bounded near (u”,0, Ax(u”)), it
turns out that fi(7) is a Lipschitz function for any v € I'y(u”, s), and thus by Theorem A.3, Point (1),
c[gn]vfk (7) : [0, 8] — R is Lipschitz and its derivative is in L°°(]0, s], R).

)

Lemma 2.4. There exist L,n,6 > 0 depending only on f such that for all fized u* € B(0, p/2) it holds:

(1) for any |s| <n, T is a contraction from Uy (ul,s) into itself, more precisely

1
170 =T < 5l =715
(2) if ¥ = (u, v, 0%) is the fized point of T, then u, v, € C11 and 74, € COL.
Clearly Point (2) above yields Step 2 of the proof of Proposition 2.1.

Proof. Step 1. We first prove that if v € Ty (u”,s), then 4 = (@, ok, 6%) := T(y) € '(u*,s), provided
L>1,n < 1, while 6 will be fixed in the next step.
Clearly 4(0) = u” and ©,,(0) = 0. Moreover 1, 0, are Lipschitz continuous and 6}, is in L°°([0, s]).
Let us prove the uniform estimate on the Lipschitz constants. First we have

T2

a(r2) — ()| < [ 1AnGO]ds < [ulelra = 7l < 3l = 7.

T1

if the constant L is big enough. For vy it holds

|0 (12) = 0k(11)| < |fr(v572) = fa(v; ) +‘COHka(%Tz)—c[gn]ka(%ﬁ)’

yS

(by Theorem A.3, Point (1)) < 2 Lip(fe(y )|7'2 - T1| <2 H>‘kH ’7'2 - 7'1’

< §|T2 — T

)

if L is big enough.
Finally let us prove that the curve v remains uniformly close to the point (u”,0, A\x(u”)). First we
have

) —u"| </ 176 (7())|ds < (|7 lloo|T| < Pk llocIn] <6,
if n < 1. Next it holds
ok (T)| < [ fe(vi )| + |C[gr§/fk(v;7)|

BCHS) de + /T
0 0

d
ds ¢
(by Proposition A.6) < 2/ |(5\k o) (§)}d§
0

d
— con S
de [078?/ JAGHS)

<

< [ Melloo|n| < 6,
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if n < 1. Finally, before making the computation for oy, let us observe that

dfi(v;7)

dr - )\k(

‘)\k ), vi(7), 0%(T)) — S\k(uL,O,U;ﬂ(T))‘
< o<1>(|u(r> —ut| + (7))

< 0(1)(Lip(u) + Lip(vi) )
<O1)Ln <6,
if n < 1. Hence

d L
7 0[82]‘7fk( v) = A (u”)

(W) = ‘

oo

(by Prop. A.6) < deZT — A (uh)

o0

<9,

ifn<« 1.
We have thus proved that we can choose L > 1, n < 1 such that 4 := T (v) € I'(u”, s). Notice that
the choice of L,n depends only on f and & and not on u” € B(0,§/2).

Step 2. We now prove that the map 7 : I'(u”,s) — I'(u”,s) is a contraction. Let v = (u, vy, 01),7 =
(u', v, 0}) € T(uk,s) and set

F= (00, 0%) :=T(), 4 =@ 0,6)=TH).

It holds for the component

(2. 8)
a(r / |7k (3 ( (7' ())|ds
or : or : oF ,
g/o (\ o m!u<<>—u(<)!+'aw‘: myvk(@—vk(g)uH%’; mygk@_ak(gﬂ)dg
(o (22)) £ 001) [ (|u©) = /()] + 0u(6) = v (6] + Blon(s) = (0] ) s

<O(M)D(v,)(n +9)
< %D(%v’),

if n,d < 1.

For the component v, we have

(1) — 0 (T)| < | fu(vi7) = fr(37)| + | cony filyT) — cony S5 7)|

(by Proposition A.6) < 2ka - k(fy')Hoo
dfe(v)  dfi(v')
(2.9) = QH - dr 1
=2 A 7)) = M (7 (7)) |dr
/0 L (3(7) ~ M ()|
(using (2.3) as in (2.8)) < %D(’y,v’),

ifn,d < 1.
Finally

13 (v(5)) - 5%(7’(7))’ < %D(%Wl),

16 = &ill; <

if n,0 < 1 using (2.3) as in (2.9).
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Hence T is a contraction from I'(u’,s) into itself, with contractive constant equal to 1/2, provided
7,6 < 1.

Step 3. Let us now prove the second part of the lemma, concerning the regularity of the fixed point
¥ = (4, Vg, O)-

Fix a big constant M > 0 and let A(M) C T'(ul,s) be the subset which contains all the curves
v = (u,vg,0k) such that oy is Lipschitz with Lip(cy) < M. Clearly A(M) is non empty and closed in
X. We claim that T(A(M)) C A(M) if M is big enough and §,n small enough. This will conclude the
proof of the lemma.

Let v € A(M) and, as before, ¥ = (4,0, &%) := T (7). Let us first compute the Lipschitz constant of
afk (7).

dr

dfx(vi72)  dfe(yi71)
dr dr

= [Metr(m2)) = R (r(r))|

< 0(1)|(Lip(w) + Lip(vy) + dLip(a) ) 172 = 7
< O(1)(2L + 6M) |2 — 7|
< M|my — 7,

if 0 <d < 1and M > 1. Now observe that

d
conv f(v;m2) — e conv fr(v;71)

d
. . <4
|61 (2) — 6%(T1)| < ‘dr o - Som

. d
< Llp(dr C[(O)I;]V fk(’Y)) |7'2 - T1|

(by Theorem A.3, Point (3)) < Lip(dfk (’y)) ’7'2 — 7'1|

dr
S M|TQ — 7-1’-
Hence ¢ is Lipschitz and Lip(6) < M, ie. § € A(M),if § < 1 and M > 1. O

2.2. Definition of amounts of interaction, cancellation and creation. In this section we introduce
some quantities, namely the transversal amount of interaction (Definition 2.5), the cubic amount of
interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8), which measure how strong is the interaction between two contiguous Riemann problems
and we present some related results. All these quantities are already present in the literature. In Section
3, we will introduce one more quantity, which will be called the quadratic amount of interaction, and (as
far as we know) has never been defined before.
Consider two contiguous Riemann problem, whose resolution in elementary waves is

(2.10) WM =T} o oThut,  wf=Tho-- oThuV,
and the Riemann problem obtained by joining them, resolved by

R _ qm 1, L
u' =T, o---oTg u”.

Let fi, f! be the two reduced fluxes of the k-th waves s}, s} for the Riemann problems (u®,u™),
(uM, uft), respectively: more precisely, fi (f}/) is computed by (2.5) where, for k = 1,...,n, v}, (7)) is
the solutions of (2.4) with length s}, (s}/) and initial point
ul for k=1, Tf,*lo---oTsl,uL, for k > 2,
k—1 1

1

(quOI"k:L ijlo---OTsl,l,uM, fork>2.>
k—

Since (2.4) is invariant when we add a constant to fi, having in mind to perform the merging operations
(1.12), (1.13), we can assume that f;’ is defined in s}, + I(s}) and satisfies f;/(s}) = fr.(s})-
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Definition 2.5. The quantity
Atrans(uL7uM7uR) — Z |S;CHS;1/,
1<h<k<n

is called the transversal amount of interaction associated to the two Riemann problems (2.10).

Definition 2.6. For s}, > 0, we define cubic amount of interaction of the k-th family for the two Riemann

problems (ul, u™), (uM uft) as follows:
(1) if s/ >0,

/

. Sk
A = [ (om0 g, UL )

+ /GSHSZ [[Conv fi(r) = conv (fiU f’/“/)(T)}dT;

st sjc,sﬁc’] [O,S;C—O—sg]
(2) if —s}, <57 <0

’ "
_ Sktsk
il My R) ;:/ [ conv f;Q(T)—coan;Q(T)]dT
0 (0,57, +57] (0,5%]

Sk

+/ [ conc  fi.(T) — conv f];(T)i| dr;
si.+sy [s% 5% 5% 0,s%]

(3) if s} < —sp,,

cubic/, L , M | Ry .__
AT (uu ,u).—/
s+

0

1 1!
conc T) — conc T)|dr
’.’{[SHS%S% Je() [5%+s% 0] Jil )}

+ /052- {[ conc  fi/(r) — conv f]/g/(T):|dT.

st 4578 [0,s,
Similar definitions can be given if s}, < 0, interchanging convex envelopes with concave.

Remark 2.7. The previous definition is exactly Definition 3.5 in [4], where it is also shown that the
terms appearing in the above definition are non negative.

The following definition is standard.
Definition 2.8. The amount of cancellation of the k-th family is defined by
0 f ! I > 0
e R e T A
min{|s} |, [sy|} if s}.sf <0,
while the amount of creation of the k-th family is defined by
+
A (ul uM u®) = [|sk\ — |si, + s%]
The following theorem is proved in [4].
Theorem 2.9. It holds
Z |3k _ (S% + S%)‘ < O(l) |:Atran5(uL7uM7uR) + ZAiubiC(uL7uM7uR) )
k=1 k=1

As an immediate consequence, we obtain the following corollary.

Corollary 2.10. It holds

n
Azlr(uL7 uM7 ’LLR) < Atrans(uL’ UM7 UR) + Z Azubic(uL’ UM7 UR).
h=1
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2.3. Glimm scheme solution to a general system of conservation laws. Let us now briefly recall
how an approximate solution to (1.3) is constructed by the Glimm scheme. Fix ¢ > 0.

To construct an approximate solution u. = uc(t, ) to the Cauchy problem (1.3)-(1.4), we consider a
grid in the (¢, z) plane having step size At = Az = ¢, with nodes in the points

Py = (i, ) := (i€, me), i €N, meZ.
Moreover we shall need a sequence of real numbers 91, 99,93, ..., uniformly distributed over the interval

[0,1] (see [16]). This means that, for every A\ € [0, 1], the percentage of points ¥;,1 < ¢ < N, which fall
inside [0, A] should approach A as N — oo:

lim card{i | 1 <i < N,¥; € [0,\]}
N—o0 N

= for each A € [0,1].

At time t = 0, the Glimm algorithm starts by considering an approximation . (0, -) of the initial datum
u(0, +), which is constant on each interval of the form [r,,_1,%,) and such that its measure derivative
has compact support. We shall take (remember that (0, -) is right continuous)

ue(0,2) = u(0, 24,) for all © € [Ty, Tim1)-

Notice that clearly
Tot.Var.(u. (0); R) < Tot.Var.(u(0); R).

For times ¢ > 0 sufficiently small, the solution u. = wu.(¢,x) is obtained by solving the Riemann
problems corresponding to the jumps of the initial approximation u.(0,-) at the nodes x,,. By (1.5),
the solutions to the Riemann problems do not overlap on the time interval [0, ), and thus u.(¢) can be
prolonged up to t = €.

At time ¢; = € a restarting procedure is adopted: the function uc(t;—,-) is approximate by a new
function w.(t1, ) which is piecewise constant, having jumps exactly at the nodes x,, = me. Our approx-
imate solution u. can now be constructed on the further time interval [, 2¢), again by piecing together
the solutions of the various Riemann problems determined by the jumps at the nodal points z,,. At time
to = 2¢, this solution is again approximated by a piecewise constant function, and the procedure goes on.

A key aspect of the construction is the restarting procedure. At each time t; = ie, we need to
approximate u(t;—,-) with a piecewise constant function u.(¢;,-) having jumps precisely at the nodal
points x,,. This is achieved by a random sampling technique. More precisely, we look at the number J;
in the uniformly distributed sequence. On each interval [Z,,_1, 2y, ), the old value of our solution at the
intermediate point ¥;x,, + (1 — ¥;)x,,—1 becomes the new value over the whole interval:

Ue(ts, @) = e (ti—, (i + (1 — ﬁi)zm_l)) for all © € [T—1,Zm)-

One can prove that, if the initial datum «(0,-) has sufficiently small total variation, then an approxi-
mate solution can be constructed by the above algorithm for all times ¢ > 0 and moreover

(2.11) Tot. Var.(u.(t), R) < O(1)Tot.Var.(u(0), R).
The bound (2.11) on the total variation of the function at times ¢ > 0 can be obtained by standard
arguments (see [12], [9]), using Proposition 2.14 and Theorem 2.15 below.

For our purposes, it is convenient to redefine u. inside the open strips (ic, (i + 1)e) x R as follows:

(t,2) ue((i+1)e,me) if me < < me+1t—ic,
U ) = . . .
: ue (ig, me) ifme+t—ic <z < (m+1e.

In this way, uc(t, -) becomes a compactly supported, piecewise constant function for each time ¢ > 0 with
jumps along piecewise linear curves passing through the nodes (ie, me).
To conclude this section, let us introduce some notations which we will be used in the next. For any
grid point (ie,me), i > 0, m € Z, set
ui,m

i,m—1
)

= ue(ie, me),

and assume that the Riemann problem (u bm)

i 1 jm—1
uh™m =T" oo T ub™m
Sy s1

U is solved by

)

moreover denote by
i,m 7,m _
o I(sy") = R, k=1,...,n,
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the speed function of the k-th wavefront solving the Riemann problem (u®™~1 y»™m).

Let us introduce also the following notation for the transversal and cubic amounts of interaction and
for the amount of cancellation related to the two Riemann problems (u; m—1,%i—1,m—1), (Wim1m—1,%i,m)
which interact at grid point (ig, (m — 1)e):

A" (e, me) 1= A" (U 1, Ui 1, Wim )

and for k=1,...,n,
bic(, — bi
Aiu IC(ZgymE) = A‘]i-u lc(ui,mflaui*l,mflvui,m)y

A(];anc(i{:f, ms) = Aianc(uiym_l’ ui_Lm_l, Ui,m),
Azr(i& ma) = Air (ui7m_1, Ui—1,m—1, ui,m).

2.4. Known Lypapunov functionals. In this section we recall the definitions and the basic properties
of three already well known functionals, namely the total variation functional, the functional introduced
by Glimm in [12] which controls the transversal amounts of interaction and the functional introduced by
the first author in [1], which controls the cubic amounts of interaction.

Definition 2.11. Define the total variation along curves as

V(t) = Z Z s, for any ¢ € [ie, (i + 1)e).

k=1meZ
Define the transversal interaction functional as

n k—1

QUrans (1) .= Z Z Z |32m’||82m|, for any t € [ie, (i + 1)e).

k=1h=1m>m’'

Define the cubic interaction functional as

n
chbict — / /
CESD DID DIy S s

k=1m,m’'€Z

OZ’m(T) — a,i’m,(r’) ’dT’dT.

Remark 2.12. Notice that the three functionals ¢ + V/(t), Q®*2"(¢), Q°"P(¢) are local in time, i.e. their
value at time ¢ depends only on the solution u.(f) at time ¢ and not on the solution at any other time
t # t. On the contrary, the functionals Q4,k = 1,...,n we will introduce in Section 6 to bound the
difference in speed of the wavefronts before and after the interactions are non-local in time, i.e. their
definition requires the knowledge of the whole solution in R™ x R.

Remark 2.13. The functional Q" has been introduced first in [5]. The first work where the idea of
multiplying the product of the strengths by a factor which takes into account the relative speeds is the

paper [15].
The following statements hold: for the proofs, see [9], [4].

Proposition 2.14. There exists a constant C > 0, depending only of the flux f, such that for any time
t>0

éTot.Var.(u(t)) < V(t) < CTot.Var.(u(t)).

Theorem 2.15. The following hold:

(1) the functionals t = V (t), Qa"S(t), Q°"Pi(t) are constant on each interval [ic, (i + 1)e);
(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:

V(t) < O(1)Tot.Var.(u(t)),
Q'™ (t) < O(1)Tot. Var.(u(t))?,
Q°"Me(t) < O(1)Tot. Var. (u(t))?;
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(8) there exist constants cq,ca,cs > 0, depending only on the flux f, such that for any i € N, defining
anown(t) = 61V(t) + CQQtranS(t) + CchubiC(t),

it holds

Z [A“ans(ie, me) +

mEZ

n

(Aianc(ifi,m{:‘) + Aiubic(ig’ ms))] < anown((i . 1)5) o anown(ig)'
k=1

3. INTERACTION BETWEEN TWO MERGING RIEMANN PROBLEMS

This section is devoted to prove the local part of the proof of Theorem 1.1, as explained in the intro-
duction. In particular we will consider two contiguous Riemann problems (u”, u™), (u™ uf) which are
merging, producing the Riemann problem (u”, u®) and we will introduce a global amount of interaction

A, which bounds
(1) the L*°-distance between the u-component of the elementary curves before and after the inter-
action;
(2) the L!-distance between the speed of the wavefronts before and after the interaction, i.e. the
o-component of the elementary curves;
(3) the L'-distance between the second derivatives of the reduced fluxes, before and after the inter-
action.

This is done in Theorem 3.3.
Let us first introduce some notations, as in Section 2.2. Consider two contiguous Riemann problem

(3.1) WM =T} o oThu?,  wf=Tho-- oThuV,
and the Riemann problem obtained joining them,

R _ mmn 1 L
u' =T, o---oTg u”.

In particular the incoming curves are

53 vy = (uh, v, ah) =y (uE, s)), . = (U, vy, 0) = ’yk(ug_l(sﬁc_l),s;) fork=2,...,n,
3.2
W= (uf, v, o)) =W, s)), A= (ul,v),00) =(ul_(s)_y),s})) fork=2,...,n,

while the outcoming ones are
(33)  m = (ur,v1,01) =l s1), = (ug,op, o) = Vi (Wk—1(sk-1),s6) fork=2,...,n.

We will denote by f,, f}/, fr the reduced fluxes associated by (2.5) to 7., vy, v respectively; for simplicity,
we will assume that v}/ and f; are defined on s}, + I(s}), instead of I(s}) and f}/(s},) = fr.(s}.): indeed,
it is clear that adding a constant to fk does not vary system (2.4).

Fix an index k € {1,...n} and consider the points (Figure 1)

uf =l uﬁ = Tfﬁ_l on/_l o-~-oTsl,, oTsl/ ul, k>2
k—1 k—1 1 1
uﬁ/[ ::TS’Zuﬁ, u,?::Tqu%, k=1,...,n.

By definition, the Riemann problem between uF and u is solved by a wavefront of the k-th family with
strength s} and the Riemann problem between u} and uf is solved by a wavefront of the k-th family
with strength s}. Denote by ¥}, = (i}, 0}, 7},) the curve which solves the Riemann problem [uf, u}] and
by fi the associated reduced flux (see (2.5)).

Similarly, let 7 = (@}, },5}) be the curve solving the Riemann problem [u}! uff] and let f,;’ be the
associated reduced flux. Clearly, 7;, f,g are defined on I(sy), while, since we are going to perform the
patching (1.12), (1.13)), we will assume as above that 4} and f;’ are defined on s}, + I(s}) (instead of

I(s)) and that f(s},) = fi(s})-.
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- R L
" —

M uy Uy
uf =ul uy gl

F1GURE 1. Elementary curves of two interacting Riemann problems before and after
transversal interactions.

3.1. Definition of the quadratic amount of interaction. In this section we define a new quantity,
namely the quadratic amount of interaction, which will be used to bound the L'-norm of the difference
of speed between incoming and outgoing wavefronts.

Definition 3.1. If s} s} > 0, we define the quadratic amount of interaction of the k-family associated to
the two Riemann problems (3.1) by

4 JZJQ(SZ) CONV(0,s] +s/] (fk ,Qi) if s3>0, sy >0,
A (b M uft) = eonepy 4o o) (FL U FE) (s)) — fi(s L) if s, <0, sy <0,
0 if 5,57 < 0.

Definition 3.2. We define the total amount of interaction associated to the two Riemann problems (3.1)
as
n
A(UL, U,JVI’ uR) = Atrans(uL’ UM, uR) + Z (A;}Luadr(U,L’ U,M, UR) _|_Azanc(uL, UM, UR) +A2ubic(uL’ uM’ UR))
h=1

3.2. Distance between curves and between reduced fluxes. The main result of this section is the
following.

Theorem 3.3. Foranyk=1,...,n
e if sps) >0, then
||(“k Uuy) — ukHLOO(I(s;C+s§C’)ﬂI(sk))

/ "
H o U Uk> - UkHLl(I(sHsg)m(sk)) < O)AWE, uM, uF);

d2fk // B d2fk
d72 d7‘2 dr?

e if 5.5 <0, then

LY (I(s!, 45! )NI(sk))

H(UZ A uy) = ukHL”(I(sﬁchsg)ﬁI(sk))

/ "y _
H(Uk A o) Uk”Ll(z(s;+sg)m1(sk)) < O(M)A®WE, M uP);

d2f1/c A d2 I/c, 7d2fk
dr? dr? dr2

LY (I(s}+s7 )N (sk))
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The proof of the theorem is a bit technical, but it is not difficult. It is essentialy based on the fact that
we have used the L'-norm of the difference in speed into the definition of the distance D in Section 2.1.2
and on the computation in Lemma 3.9, which relates the difference in speed of the incoming wavefronts
with the quadratic amount of interaction introduced in Definition 3.1.

The proof of Theorem 3.3 is given in the following three subsections. In the first subsection we prove
some basic estimates related to translations of the starting point of the curve which solves a Riemann
problem and to changes of the length of such a curve; in the second subsection we consider the situation
in which each of the two incoming Riemann problems is solved by a wavefront of a single family k; in the
third subsection we conclude the proof of Theorem 3.3, piecing together the analysis of the previous two
cases.

3.2.1. Basic estimates. First of all, we prove the following three lemmas. The first is just an observation
on the second derivative of the reduced flux. The second and the third provide estimates on the distance
between curves and between reduced fluxes when varying the starting point of the curve or its length.

Lemma 3.4. Let v = (u, vk, op) := Yk (uo, ) the solution of the (2.4), i.e. the curve solving the Riemann
problem with left state ug and length s. Denote by fy the reduced flux associated to vy as in (2.5), i.e.

fulr) = / " R (uls), vi (), ok (€))ds.

Then it holds

2 3 \ - convig g
B TR0 = S lu) + S ) [ulon(r) - E S ).

Proof. Observe that

Mg

8f‘k('yk(T))F(T) =0 for L'-ae. T €0,5].
Namely, if d”(’i‘%y) # 0 for some 7, then vg(7) = 0 and thus, by (2.3),
O
ok (ulr)| < O ()] =
As a consequence, formula (3.4) holds £!-a.e., and being both sides continuous we can conclude. O

Lemma 3.5 (Translation of the starting point). Let v = v;(uo, s) = (u, vk, 0k) and v = vi(up, s) =
(W, v}, 01). Denote by fi, fi. the reduced flux associated to ~v,~' respectively.
Then it holds
lu = vlloe < O(1)]uo — ug|, ok = v lloe < O(1)]s][uo — ug,

>fe  dPf
dr? dr2

< O(1)]s[uo — ug-

ok — ohlly < O()lslluo — ), ]

Proof. 1t holds

u(r) = uo + / " Fe(r(e))ds W (r) =y + / "y (6))ds

oR(7) = fr(y;7) — cony Tr(y;7) v (1) = fi(57) — cony fe(¥'57)
ok(r) = - conv fi(;7) (7) = % conv (s 7)
T A o) kY Te\T dec[(&r;]v BT

Consider the curve ¥(7) = ~(7) + (uy — uo,0,0), i.e. the translation of v from the starting point

(ug,0,0%(0)) to (uy,0,04(0)) and set ¥ := T (¥). The curves 7 and 7 satisfy the following systems

r) =+ [ fer(6)e w(r) =y + / "R (0)ds
0

Ok(7) = fu(vi7) = cony fu(y;7) k(1) = fu(Fi7) — cony Fu(3;7)

d d _
or(T) = o o fe(y;7) or(t) = i k(35 7)
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Let us prove now the first inequality. Using the Contraction Mapping Principle, we get
Ju = 'l|oo < Ju—dilloe + |G — ']l < uo —ug| + D(F,7) < |uo — ug| +2D(7, T (7)),

being the map 7 a contraction with constant 1/2.
Since 7 is obtained from « by translation of the initial point of the u-component, we get

mm—Mﬂ<AWM%@wwmk|¢

T 67:]C - 87“k - 87:]@ ~
S/O (’au Do|u(< |+’ Tor "Uk(§)_vk(§)’+Hao_k Oo|ok(<)—ak(<)|>d<
or .
:/ o MECEEGI
1)|uo —UOIISI
Similarly,
0% — Tk|| . < OQ)[suo — upl, |Gk — k||, < OQ)|s]Juo — upl,
and thus
(3.6) D(H.7) < O(1)]s]|uo — upl.
Hence

lu = vlloe < O(1)]uo — ug|-
In a similar way
lvk = Vklloo < vk = Blloo + [Tk — villos < [Tk — vill < D7) < 2D(F, T()),
and
low = okl < llow = Gxlls + 6% — okl < 1|6% — oklly < D7) < 2D(F, T(F)).

A further application of (3.6) yields the estimates on vy, 0.
Finally, using the chain rule, Lemma 3.4, Proposition A.6 and the first part of the proof, we get

dek d2f}£ ’ / / /
(3.7) ‘ ar? ~ dr? ||, <o) {/0 (|U(T) —u'(7)| + ok (7) — v (7)| + |ow(T) — O‘k<7'))d7':|
< O(1)s]ug — |
This concludes the proof. 0

Lemma 3.6 (Change of the length of the curve). Let s',s” € R,ug € R" and assume s's” > 0. Let
Y= ’Yk(Um s’ + SH) = (’LL, Uk, Uk))a ’)/ = (ul? U;g? O-Ik)) = ’yk)(uOv S/)a ’YH = (u/l7 ’U;c/a U;g/) = ’}/k(’u(S/), SH)'

As before, denote by fi, fr., [} the reduced fluzes associated by (2.5) to v,7',~" respectively; assume also
that ~", fi are defined on s' + I(s") instead of I(s").
Then zt holds

(3.8) D(’y|1(s/),7’) < O()|s'||s"], D(7|s/+1(s~)77”) < O()]s']|s"|,
and
cfe A,
3.9 - < O(1)D N, <01 !
(3.99) o~ G, SOWPGl ) <Ol
d2fk d2 I/cl
(3.90) \dﬂdﬂ L0MDEren") < Ol
LY(s/+1(s"))




QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF CONSERVATION LAWS 21

Proof. We prove only the first inequality in (3.8) and (3.9) and only in the case s’,s” > 0; all the other
cases can be treated similarly.
By the Contraction Mapping Theorem, D(’y\I(s/),y’) < 2D (7|I(S/)ﬁ), where 5 = (4,0, 0%) =

T(7|I(s/)): -
(r) = o + / Fi(y(s))ds
(7)) = fu(y7) — cony (s 7)

- d
Uk(T) ar (EOLW fk(% )

Hence 4(7) = u(7) for any 7 € [0, s]. It also holds

|0 (7) — v (7 ’—‘COUka(% ™)~ o, filviT )’

‘/ — conv fr(v;7) — a onv  fr(7; )d‘

dt [0,s'] dr [) s/ +s"]
< —
_/0 a7 somy fulvim) = oo oy fi(7i7)

< ‘ d%c[&%fk(w - % o, Feljo,s1 OOIS'\
(by Prop. A.5) < O(1)|s|]s"].
Clearly
I = onll < | - comy ) = 4 conv ful)lo
dt [0,s'] dr [0 s/ 45" i
< 7 sy 500 = 7 o Al

(by Prop. A.5) < O(1)|s|]s"].
Hence we obtain
D(Vi(s),7') < 2D (vlis»7) < O1)]s]]s"].
The first inequality in (3.9) is proved as in Lemma 3.5, inequality (3.7). The second inequality in (3.8)
and the second inequality in (3.9) can be treated similarly. d

3.2.2. Elementary interactions. Now, using the previous estimates, we study how the curves 7, and
the reduced fluxes fj; vary when an elementary interaction between two Riemann problems occurs: by
elementary interaction we means that two adjacent Riemann problem contains waves belonging to one
family only. We consider the cases when the waves belong to two different families (transversal interaction)
or to the same family and have same sign (non-transversal interaction or simply interaction).

The case when the waves belong to the same family but have different sign (cancellation) will be
controlled by Lemma 3.6.

Lemma 3.7 (Transversal interaction). Let u™ = TF (uf), uft = TP (u™). Set 4™ =T (ul), a7 =
Tk (aM) and

Mash)v

7Sk:)-

Vi = (uks Vi, 01) = Y (u”, s1), Y = (un, v, 0n) == y(u

A = (tns Op, 1) = yu(u, s1), Ak = (T, By, 61) = (@M

Denote by f, fk, fns fh the reduced fluzes associated to the curves Vi, Vi, Yn, Yn Tespectively. Then it holds
(3.10a) l[un = dnlloc < O1)[skl, l[ur, — tik]loo < O(1)]snl,
(3.10b) [on = Dnlloe < O(1)]sk][snl; [k = Pklloe < O(1)Iskllsnl,

(3.10c) llon = Gnlls < O(1)]skl[snl, ok — orlls < O1)|sk|lsnl,
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e dfi & o dJn
- <0O(1 — <0O(1
|G- | <ot | <owisn,
and
(3.11) |u® —aft| < O(1)|sk]|sn].

Proof. Inequalities (3.10) are direct consequence of Lemma 3.5 and the fact that

|uM —uL} < O(1)]skl, oM —uL| < O)]snl-

Let us now prove inequality (3.11). We have

uf =l + /OSk 71(Vx (<)) ds + /OSh 7r(7n(<))ds,
af =l / () ds + / R (€))de.

0

Hence
Sk

Sh
uB 0B < [ Fnm(s) — FeGie)|ds + / 1709 (<)) — 7 (G (<)) |ds

<OW)| [ (jur(6) = a6(6)1 + 109) = 8] +lon(6) = (9] ) s

+ /OSh (\uh(c) — i (S)] + [vn(s) = o (s)| + |on(s) — &"@Ddg}

<O |Isklllur — tlloo + [klllve — Okl + [low — Gkll1

|shlllun — tnlloo + [salllvn — Onlleo + llon — &h||1}
(by (3.100)-(3.10¢)) < O(1)|sx]|snl,

thus concluding the proof of the lemma. O

Let u' € B(0,6/2), A € N and consider a family of A consecutive curves, {Ya}aeq1,...,a}: given
{1,..., 4} 5 a— (k(a),s*) € {1,...,n} x R,
define
~ () = (u“(T),va(T), O’a(T)) = Vi(a) (ﬁa, Sa)(T), acl,... A,
where @t = u%(s%), fora=1,... A — 1.

Let {¥a = (0@%,7%,6) }aeq1,...,a} be the curves obtained by switching the values of k(a), s(a) in two
consecutive points a, a+ 1, 1 <a < A:

k(a) a#a,a+1, s(a) a fG,a+1,
k(a) =< k(@@+1) a=a, $(a)=qs(@a+1) a=a,
k(a) a=a+1, s(a) a=a+1.

We assume > |s?| < 1 sufficiently small (depending only on f) so that the curves 7,, 9, remain in
B(0,9).
Denote by f*, f* a=1,..., A, the reduced fluxes associated to v*,7* respectively.

Corollary 3.8. It holds

Jue — @], < OW)lslls* 1, [or — a0 < O(1)]s7[s%H],
(3.12) o _ o
lo® — 52, < O()|s7][s™ 1], 17e = 7o, < O)]s?|se+1]

Proof. For a =1,...,a — 1, the L.h.s. of each inequality in (3.12) is equal to zero. For a = a,a + 1, the
proof is an immediate consequence of Lemma 3.7.
Assume that (3.12) has been proved up toa € a+1,..., A — 1; in particular

|u(s) — a®(5%)| < O(1)]s*|s*+].
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Observe that at step @ + 1 we have to translate the initial point 4%t = u%(s%) of the curve v%*! to the
point @%(5%).
Now use Lemma 3.5 to conclude that (3.12) holds for a + 1. O

We now consider interactions among wavefronts of the same family and with same sign. Let

/

=g 0p) = (et ),y =Wl of) = (s,
where u™ :=/(s') and s's” > 0. Let
v = (u, v, 01) == y(ul, s +5").

Denote by f;, fi!, fi the reduced flux associated to +',~”,~ respectively. Assume as before that 7" and
+ are defined on the interval s’ + I(s”), instead of I(s”), and that f;(s") = f/(sk).

Lemma 3.9 (Interaction of wavefronts of the same family and with same sign). It holds

E(fLUf) A fi

dr? dr?

D(’Y/ U’}/H,’Y) < O(l)Aquadr(uL,uMmR), ‘

< O(l)Aquadr(uL, uM’ ’LLR).
1

Proof. We prove the lemma only in the case s’,s” > 0, the case s’,s” < 0 being entirely similar. We have

o' (1) = ul Tr u" (1) = uM Tf i
() =t + [ RO, ) =+ [ i),

vy, (1) = fr.(7) = ([30;1\]’fk( 7), v (1) = fil (1) = Lo, fi(7),
d
ok (1) = —= conv fi(7), o (1) = — k(7).

conv
dT [0,s] dr [s',s'+5"]

Set ﬁ/: (Tl7f)k7a'k) = T(’Y U’Y ):

min{7,s’} T
a(r) = L+ ~ / dc + ~ 1 ds,
i) =+ [T Ao [ R @)ds
(1) = (fr U fi)(7) = Lo, (LU fd) (),
d
ok(r) = 5 comy (Fr U f)(7).

Let us prove the first inequality of the statement. It holds
— Aquadr (UL UIV[ ’LLR).
Moreover,

I Uu) = ille =0, 0k U} — e
’ = /Sl dconvig s [y (1) — dconvio o5 (fi U fi))
1 0 dr dr

+ /Sl+s” ‘dCOnV[s/,s’Jrs”] flg _ dconv[()75l+5,,]<fllf J f]g) d

|| (Uf€ U O’g) — Ok

dr

o dr dr
_ /S/ [dCOHV[O,s'] fllc . dCOHV[o,s/-i-S'/](fI/C - fllc/)]dT
- dr dr
0
+ /S'+s” deonvi s (fy U fy)  deonviy o yom [y dr
. dr dr

= (1) = eomy, (FLUF)() + (F() = comy, (FLUF)()

[0,s"+s""]
= 2(fi(") — cony (FLU ()

-9 Aquadr(uL7uM ’U,R).

)

Hence
D(’)// U ’7”7 ;y\) _ 3Aquadr(uL, UM, UR),
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and thus, by the Contraction Mapping Theorem,
D('Yl U 7//77) < 2D(’yl U '7//7&) < 6Aquadr(uL7uM,uR).

The second inequality is a consequence of Lemma 3.4, Proposition A.6 and the first part of the statement.
O

3.2.3. Conclusion of the proof of Theorem 3.3. To prove Theorem 3.3, we piece together all the previous
estimates as follows. First of all we split the operation of “merging the two Riemann problems” into
three steps:

(1) first we pass from the collection of curves (3.2), i.e. the black ones in Figure 2, to the collection

of curves
51 = (allv’[)/l’ &/1) = 71(uL7 Sll)a :Yil = (’a/l/af]i/a 6'11/) = Vl(ull(sll)v 8,1/)7
(3.13) :Vllc = (a;cvﬁl/cv&;c) = ’Vk(ﬂ;c/—l(s;c/—l)vsgc)v :Yllcl = (ﬂg’@g’&g) = ’Yk(N;e(s;e)vsg)v k=2,...,n,

i.e. the red curves in Figure 2; this first step will be called transversal interactions and it will be
studied in Lemma 3.10;

(2) as a second step, we let the curves of the same family interact, passing from the collection of red
curves (3.13) to the collection of curves (green in Figure 2)

(3.14) Y1 = (fig, 01,61) =y (u”, s} + sY),
' Y = (g, Ox, 0) i = Ve (Gr—1(Sh_1 + sk_1), 8% +51), k=2,...,n;

this operation will be called collision among waves of the same family and it will be studied in
Lemma 3.11;

(3) finally we pass from the collection of green curves (3.14) to the outcoming collection of curves
(3.3), blue in Figure 2; this operation will be called perturbation of the total variation due to
nonlinearity, and it will be studied in Lemma 3.12 and its Corollary 3.13.

We will denote by f,’w ~,Q’ , fr the reduced fluxes associated respectively to V> Vi Ak and, as before, we will
assume that 7;/, f;/ are defined on s, + I(s}), instead of I(s}), and f}/(s},) = f1.(s},). Let us begin with
the analysis of transversal interactions.

Lemma 3.10. For any k =1,...,n, it holds

|k — @Il Loe (101 )
luwk — @l Loo (s 4257
ok = Grll (s

H " ~1!

O — Uk||L1(s;€+I(s;€’))

N < O(l)AtranS(uL,uM,uR).
‘ cfy  df;

2 2
dr dr Li(K(s)))
‘ d2 I/c/ 42 N]/C/
dr? A7 o xap))

Proof. The proof is an easy consequence of Corollary 3.8 and Definition 2.5 of A" (yl M y®R) just
observing that we can pass from the collection of curves (3.2) to the collection of curves 3.13 first switching

the curve ~{ with all the curves ~;, k = 2,...,n, then switching the curve +4 with all the curves ~;,
k=3,...,n, and so on up to curve v,/_;. O

Let us now analyze the collision among waves of the same family.

Lemma 3.11. For any k=1,...,n,
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71

F1GURE 2. Elementary curves of two interacting Riemann problems before the interac-
tion (black ones), after transversal interaction (red ones), after interaction/cancellation
(collision) among wavefronts of the same family (green ones), after creation/cancellation
(perturbation of the total variation) due to non-linearity (blue ones).

o if si.s7 >0, then

|| (@, Uay) — ]| oo (1o ! sl))
1(6% Ua%) = Trllor sy +s1))

H(dek /f/) _ d*fi

k

h=1

dr? dr2 dr?

Ll(I(sgc—&-s;C'))
e if s.s) <0, then

||(@§c A Y) = gl oo (1 +57))

/ k

~11 ~
Uk) — Okl (xs) +)

H d2fk lg/) B dek

h=1

dr? dr? dr?

L1 (I(s},+s}))

Proof. Step 1. First we prove that for each k =1,...,n, it holds

K
(3.15) |y (5% + s%) — A (si + s3] Ly {Aquadr (u, ™ )+ A (uh u, UR)]~
h=1

Recalling that @} is defined on s} + I(s}), set

B = (itg, 5, 55) = {'y;€(1~L§€(O),(S;c + sg) if s).s) >0 or (s%sg < 0 and |s}| > |s} ),
- b b T

Y (@} (0), s}, + sy) if spsy < 0and |s}] > |s}].

In order to prove (3.15), distinguish three cases:

< O St )+ 4 )|

< O(].) {ZAzuadr(uL’uM’uR) +Azanc(uL,uM,uR):| )

25
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e first assume that s} s} > 0; the following computation holds:

| (s5 + s%) — (s, + 5| < | (s + i) — (s + s0)| + [ (s + s7) — (s + )]
(by Lemma 3.9) < O(1) [Azuadr(uL,uMmR) + | (s + sp) — r(s), + sg)u

(by Lemma 3.5) < O(1 )[ LU (L M Ry 4 iy, (0) — ak(0)|};

e now assume that sis) < 0 and |s},| > |s}/|; in this case it holds, applying again Lemma 3.5 and

using the fact that ﬂg(sk) = uy(s})),

|5, (5% + s3) — (s + s3] < Jag (s, + si0) — @ (s3,)| + [, (s3,) + @ (s), + s7)|
+ ’U/c s + 5%) — Ur(sy, + Sk)’
< O(1) |31+ [@,(0) - @ (0)]
= O() [A5m (b uM uf) + [4,(0) — 7 0)]]

e finally assume that s}.s} < 0 and |s}| < |s}/| and perform the following computation:

~1

| (sy, + si) — i (sy + s3)| < |@(sh, + si) — i (s;+s§é)!+\ﬁk(s;+8%)—ﬂk(sz+s§é>\

(by Lemmas 3.6 and 3.5) < O(1) \sk| + |t (0) — @ (0 )|
(since iy (0) = @} (0)) < O(1)[|s4] + | (0) — @ (0)]]
o

(since i (s7,) = g (s})) <

~ i (0)]]

D[t u, wf) + a4, (0) - @ (0)]|;

( (0)
( (0)

<1>[sk| + [a7(0) = af (s3] + @ (sh) — @4, (0)] + | 4.(0) — @x(0)]
(by Lemma 3.6) < O(1) ||s}| + |, (0)

(

Summarizing the three previous cases, we obtain
(3.16) [i/(s}, + s}) — (s}, + s})| < O(1 )[ Auadr (L M Ry 4opeane(y L My B 4l (0) _ak(0)|].
If k=1, @ (0) = 41 (0) = ul, and thus (3.16) yields (3.15). If k > 2, one observes that
1,(0) — @ (0) = 1 (Sp—1 + sh—1) — U—1(8j_1 + 5%_1)
and argues by induction to obtain (3.15).
Step 2. Using Step 1 we can now conclude the proof of the lemma. We will prove only the inequalities

related to the u-component, the proof of the other ones being completely analogous. We again study the
three cases separately:

o if 551 >0, it holds

my T [ akHLOO(I(s;Jrs;C’))

I

(@, U ay) — akHLm(I(s;CJrs;c/)) < |l vay) —a

(by Lemmas 3.9 and 3.5) < O(1) [Azuadr(uL, M uf) + i, (0) — k(0)

o if 575} <0 and |s,| > |s}|, it holds

(X(sts)) T [ uk||L°° si+s!"))

(@ o ;) - ﬂkHLoo(I(SHé,,)) < ||(@ & ay) —

(by Lemmas 3.6 and 3.5) < O(1) [Aianc(uL, M oufty + |}, (0) — ﬁk(())”;
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o if s} 5} <0 and |s)| < |s}], it holds

|| (@, & (s +syy) T e = akHL“(I(s;Jrsg))

)~ f‘kHLoo(l(s'kg,s'k')) < |[(@k & @) — i

(by Lemmas 3.6 and 3.5) < O(1) -Aianc(uL7uM7uR) + ’ﬂZ(O) - uk(O)‘]
(since @), (s},) = @} (s})) < O(1) [asae(ul, uM ) + |u — i (s})|
+ |t () — i1}, (0)] + | (0) - @ (0)]]
<0(1) _Aianc(uL7uM7uR) + ya;(o) - ak(o)y].
Summarizing, -
(3.17)

(ﬁ/ U fLH) — Ukl ;o o 4l
|| ~j€ jl ) HL (I(sy+s%)) < O(l) [Azuadr(uL,uM,uR) + Aianc(uL,uM,uR) + ’ﬂ&g(o) _ ﬂk(0)|:|
(@ & ay) = ukHLOO(I(s;JrsZ))

If k =1, (3.17) together with the fact that @} (0) = 7, (0) = u” yields the thesis. If k¥ > 2, one observes
that @), (0) = a)_, (s}, + s7) and @ (0) = Gx_1 (s}, + s}); hence, using (3.17) and (3.15) of Step 1, one gets
the statement. 0

Finally, let us analyze the perturbation of the total variation due to nonlinearity.
Lemma 3.12. For any k=1,...,n it holds

[ ar — UkHLoo(I(s +s)NI(sk))

Hffk - O’kHLl(I (s5,+s)NI(sk))

‘ fi  dfy

dr2  dr?
Proof. We prove only the inequality related to the u component, the other ones being completely similar.
The proof is by induction on k. If (s} + si)sx < 0, there is nothing to prove. Hence, let us assume
(S;€ + SZ)S]C > 0. Set Vi = (ﬂk,ﬁlﬁﬁk) = Yk (ﬁk(O), Sk) It holds

k
Z‘Sh sh+sZ)|.

LA (I(s',+s)NI(s))

(3.18) Hﬂk - ukHLw(I(sLJrsk)ﬁI(sk)) > H“k “kHLw (I(s, 45N (sk)) + ||“k uk||L°°(I(sk+s”)ﬂI(sk))
' (by Lemmas 3.6 and 3.5) < O(1 {||sk| sk + sil| + |u(0) — uk(O)u

If k=1, (3.18) yields the thesis. If & > 2, observe that
@ (0) — ui(0)| = [@x(0) — ur(0)|
= |tin—1(sk_1 + sk _1) — ub—1(5K—1)]
|1 (k1 + 85_1) = U1 (s8-1)]
k-1 (sk-1) — uk—1(sk—1)|
|ﬂk71(3271 + 8211) - ukfl(sgcq + ngl)
g1 (shoy + si-1) — w1 (sK-1

i [+ 5] > Jskal,

IN

‘)| i (s 4 8] < [snal,

< O [[st1 = (shos + 55| + -1 = w1l g a re i)
k—1
(by induction) < ‘sh — (s), + 7).
h=1

Hence, using (3.18), we get

Hﬂk o ukHLOO(I(SQ-&-SL’)ﬁI(Sk)) <o) [|5k B (S;c + Sg)| + |Hk(0) B uk(o)” <0 Z |5h N (S/h T SZ)|



28 STEFANO BIANCHINI AND STEFANO MODENA

Applying Theorem 2.9, we immediately obtain the following corollary.
Corollary 3.13. For any k=1,...,n it holds

ll%r — k|| Loo (105 +57)nI(s1))

1k — okl (x(s),+s7)nI(s0))

‘ 2f, A2 fy

It is easy to see that Theorem 3.3 follows from Lemmas 3.10, 3.11 and Corollary 3.13.

< 0(1) Atrans(u M R + ZAcublc M R)

dr? dr? LY (I(sh+5)NI(sy))

4. LAGRANGIAN REPRESENTATION FOR THE GLIMM APPROXIMATE SOLUTION .

In this section we define the notion of Lagrangian representation of an approximate solution u. obtained
by the Glimm scheme to the Cauchy problem (1.3)-(1.4), and we explicitly construct a Lagrangian
representation satisfying some useful additional properties. At the end of the section we introduce some
notions related to the Lagrangian representation; in particular, the notion of effective flux fzﬁ(t) of the
k-th family at time t will have a major role in the next sections.

4.1. Definition of Lagrangian representation. Given a piecewise constant approximate solution wu.
constructed by the Glimm scheme (see Section 2.3), for any time ¢ > 0 define the quantities

Liw=>"[sy"",  Lpy == [sy"]", ifteie,(i+1)e).
MmEZL MmeEZ

It is easy to see that | L} (t)| +|L, (t)| < O(1)Tot.Var.(uc(t)). A Lagrangian representation for u. is a set
W called the set of waves, together with

e the maps

family : W — {1,...,n} the family of the wave w € W,

S:W — {1} the sign of the wave w € W,
t W — [0, +00) the creation time of the wave w € W,
W — (0, +o0] the cancellation time of the wave w € W,

e a relation, which we will denote by <,
e the map, called position function,

x: {(tw) € [0,00) x W | £ (w) < t < £(w)} S R,
which satisfy the conditions (1)-(4) below.
For the sake of convenience, set
Wk ={wew | family(w) = k},
Wie(t) == {w € Wi | £ (w) <t <t°(w)},
WE(t) —{weWk ) | S(w) = £1}.
The additional conditions to be satisfied by a Lagrangian representation are the following:

(1) for any family k, time ¢, sign 41, the relation < is a total order both on W,':(t) and on W,_ (t); if
T C WiE(t) is an interval in the order set (Wi (t), <), we will say that Z is an interval of waves
(i.0.w.) at time t;

(2) the map x satisfies:

(a) for fixed time ¢, x(¢,-) : Wi (t) — R is increasing;
(b) for fixed w € W, the map x(-,w) : [t (w), t°*°(w)) — R is Lipschitz;
(c) for any point (¢,Z) € [0,400) x R, all the waves in

We(t, T) = x(t_)_l(.f) N Wy

have the same sign;
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F1GURE 3. The Lagrangian representation: at each ¢ the sum of the length of the
red/green regions gives the set L, L;:, and x follows the trajectory of each wave w.
The map ®(t) is order reversing on W, (t) (red) and order preserving on W (t) (green).

(3) there exist maps @ (t) : Wi (t) — I(L;, (t)) UI(L} (t)) such that <I>k(t)|W;r(t) W () = I(Lf ()
is an isomorphism of ordered sets, while <I>k(t)|wk_ W Wi () = I(L; (t)) is an antisomorphism
of ordered sets;

(4) there exist maps 45 (t) : Wi(t) = D, CR™ x R x R, 43 (t) = (@x(t), 0x(t), 6%(t)), such that

(a) for any Z € R, setting
ul = lim wu.(t,z), uf' == lim u.(t,z),

T rz—zt

the collection of curves
it sw-sntw}

=1,....,n

solves the Riemann problem (u”, u®);
(b) for any w € Wit (ie), if £*°(w) > (i + 1)¢, then for any time t € [ic, (i + 1)) it holds

(4.1)

x(t, w) = x(ie, w) if 9,41 > 61(ie, w),
U x(ie, w) 4 (t—ie) if i < op(ie, w).

4.2. Explicit construction of a Lagrangian representation. In this section we prove the following
theorem.
Theorem 4.1. There exists at least one Lagrangian representation for the approximate solution u.
constructed by the Glimm scheme, which moreover satisfies the following conditions: for any grid point
(te, me) € Ne x Ze,

(a) the set Wy (i, me) N Wy ((i — 1)e) is an i.o.w. both at time (i — 1)e and at time ie, while the set

Wi (ie, me) \ Wi((i — 1)) is an i.o.w. at time ic;
(b) the map

O, ((i — 1)e)(Welie, me) N Wi((i — 1)e)) T2 5 (ie) W (ie, me) 0 Wi (i — 1)¢))
s an affine map with Lipschitz constant equal to 1.

Roughly speaking, the first condition means that we can insert/remove waves due to nonlinear inter-
action in an ordered way, the second condition focuses on the map at the level of I(L (t)) UI(L] (2)).
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Proof. The proof is divided in three steps:
(1) first we define, for any family k and any grid point (ie,me), i € N, m € Z, the set Wy (ie, me) of k-
th waves which at time ic are located at point me, together with the maps <I>§C’m = (i) lwy (ie,me)s
(2) then using the definitions given in Step (1), we construct all the other objects needed to have a
Lagrangian representation, i.e. the set of waves W, the sign S(w) of any wave w, the creation
and cancellations time t (w), t°2¢(w), the relation < and the position function x;
(3) finally we show that the additional properties (a) and (b) hold.

Step 1. The definitions of Wy (ie, me) and @y (ic) are given by induction on times ic,i € N, assuming
that at each time the map

(4.2) fI)fc’m : W (ie, me) — Z 52’"/ + I(SZ’m),
m<m
sign(s;’m ):sign(s;’m)

is a bijection;
At time ie = 0, for any m € Z, define
Wi (0,me) :=I(s)™) x {0} x {me} x {k}
and the bijection

V™ (w) = Z sg’m/ + 7, for w = (1,0, me, k).
rr/L’<m
sig‘n(sg’m ):sign(s%m)
For any m € Z, let us now define Wy/(ie, me) and <I>2’m at time ¢e, ¢ > 1, assuming to have already
defined, for any m € Z, the set Wy ((i — 1)e,me) C R x Ne x Ze x {1,...,n} and the bijections
&, (1) : Wi((i = 1)g,me) = T(Ly, (1) UI(L] (1))
at time ¢ = (i — 1)e of the form (4.2).

If
i—1l,m i—1lm __ i—1lm i—1m _i—1m
{Wc }kzl,...,n’ Yk = (uy, U, , O, )
i—1,

1,m

is the collection of curves which solves the Riemann problem (u —L u=1m) then, assuming that

each 'y,’:l’m is defined on the set

2 sy | I

m'<m
. f v
sign(s;;l‘m ):sign(s}fl’m)
instead of I(s; ™), set
~t—1lm _ s~t—1lm ~i—1m ~t—1my . _i—1m (bifl,m
k = (1, » Uk O ) = ° Py ‘

Set also

W,go)((i —1)e, me) := {w € Wi ((i — 1)g, me)

517" (w) < 0:,
WO (i = 1)e, me) = {w € Wi((i — De,me) | 6270 (w) > 19i}.

Now fix m € Z and define the set of waves located in (ie, me) as follows. First notice that, since @fjl’m
is a bijection and the collection of curves {*y;;l’m i=lm)
then there exist a,b, s, s” € R such that

oIt g W,il)((i — e, (m—1)e) = I(s'),

I —p W,go)((i —1)e,me) = s +1(s")

i—1l,m—1
)

}k=1,... n solves the Riemann problem (u U

)

(4.3)
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are bijections. Set s := sz’m and define
1), . i—1,m—1 -1 / / "
X, (ie,me) == {(I)k - a} (I(s )NI(s"+s")N I(s)),
(0) /. i—1,m -1 / % / "
(4.4) X, (ie,me) == [@k ’ —b} ((s +I(s") NI(s' + s )OI(S)),
Cr(ie,me) := {(7’, ie,me, k) | 7€ I(s) \I(s' + s”)}.
Finally set
Wi (ie, me) = E,(fl)(ie, me) U E,&O) (ie,me) U Ck(ie, me).
We will refer to Cy(ie, me) as the set of waves created at point (ic, me).

We have now to define the map CIJ';'C’m. First let us introduce the auxiliary map ¥ : Z,(cl)(is,ms) U

2560) (ie,me) — I(s) NI(s" + s") setting
@ifl’mfl(w) —a ifwe XM (ie, me),
(45) \Il(w) = ?—Lm . (0)(;
Q" (w) — b if w e X (ie, me).

Since
(I(s’) NI(s + ") N 1(5)) N ((s’ +1(s")) NI(s' +5") N 1(3)) =0,

it follows that W is a bijection. Define now the function <I>2’m on Wi (ie, me) as follows:

(4.62) L™ Wy (ie, me) — Z szm, +I(sy™),
m<m
sign(sy™ )=sign(s;™)

U(w) if we XM (ig,me) UL (ie, me),

T if w € C(ie,me) and w = (7,1, me, k).

(4.6b) @y (w) = > o’ +{

’
m <m
i

sign(skTm/):sign(sZ’m)
It is immediate to see that <I>2’m is a bijection. We conclude this first step observing that

(4.7) Wiy (ie,me) N Wy (ie,m’e) = () if m #m'.

Step 2. We now define all the other objects which appears in the definition of Langrangian representation.
For any k € {1,...,n}, i € N, set

W (ig) := U Wi (ie, me), Wy, = U Wi (ig), W = U Wi.
mez ieN k=1
It holds
Whe(i€), We, W CR x Ne x Ze x {1,...,n}.

Since Wy N W, = 0 if k # h, we can define the family of a wave w € Wy, as family(w) = k. Now for any
k-th wave w € Wy, define its creation and cancellation time as

t¥(w) :=min {i € N | w € Wy(ie)}, £ (w) :==sup {i € N | w € Wy(ie)} +¢;

it is not difficult to see that w € Wy(ie) for any ie € [t (w), t**(w)). The sign S(w) of a wave w € W
is defined as

(4.8) S(w) := sign(sy™) if w € Wy (ie, me).
To show that the definition (4.8) is well posed, it is sufficient to prove the following lemma.
Lemma 4.2. For any w € E,(Cl)(is,me) U Eéo)(is,me), it holds

S(w) = sign(sy™).
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(= 1)z, (m “H)

i~lm-1
@y

(u, vy, 03,)

FIGURE 4. The use of the auxillary map ®4(t) to induce the correct ordering on W(¢):
the colliding k-th waves (green) at ((i — 1)e, (m — 1)e), ((¢ — 1)e, me) are mapped to the
k-th waves at (ie,me) preserving the ordering on I(L} ((i — 1)€)), and the new waves
(blue) are added to the right.

Proof. Assume w € E,(cl)(ia, me), the case w € E,(CO) (ie, me) being completely similar. Define a,b, s’, s as

n (4.3). It holds S(w) = sign(s’) and

(4.9) oI (w) —a e I(s) NI(s + s”) N1(s),
where s = s;m From (4.9), since I(s") NI(s’' + s") N1I(s) # 0, it follows that ss’ > 0. O
Set

Wi (ie) == {w € Wy(ie) ‘ S(w) = +1}, Wy (ie) := {w € Wy(ie) | S(w) = —1}.
Define now the position function x for times ic,i € N, as follows: for any w € W, for any time
ie € [t (w), t"(w)), set
x(ie,w) :=me, if w € Wy(ie, me).
The definition is well posed thanks to (4.7).
Using (4.7) we can define the map
Dy, (i) : Wy (ie) — I(Ly, (i) UL(L} (ie))
through the formula 4
(bk:(ig)‘wk(is,ms) = q)z’ma
and the map
’?k(ié‘) : Wk(ié‘) — Dk
through the formula _
’?k(ie)'Wk(ie,me) = ’?}?m'
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From

im’ i,m i,m’ TN
E 5 +1I(s;")N E 5y +I(s") =0, form#r,
77/1’<m n,z'<r
sign(s;c’m ):sign(s;’m) sign(s}c’m ):sign(sL’T)

we have that ®(ie) is a bijection.
Next define the relation < on W as any relation such that the maps

@k(i€)|wz(i€) : W,j(w) — I(Lﬁ(is))7 ék(igﬂwg(is) Wy (ie) — I(L,; (is)),

become respectively an isomorphism and an antisomorphism of ordered sets.
To prove that this definition is well posed, it is sufficient to show that the following lemma holds.

Lemma 4.3. Let w',w"” € Wi ((i — 1)e) N Wy (ie) and assume that they have the same sign. Then
Op((i — De)(w') < Pp((i — )e)(w"”) = Pxlie)(w') < Pk (ie)(w”).

Proof. Tt is sufficient to prove the implication ”==". Suppose that both w’ and w” are positive, the

other case being similar, and that w’ # w”; assume w’ € Wy (ie,m’e), w” € Wy(ic,m”e). Distinguish

three cases:

(i) m’ < m': in this case, by the definition of the codomains of the maps {®}" },cz in (4.6a), it is
immediate to see that the @y (ic)(w') < Py (ie)(w”);

(ii) m’ = m”; using the notations as in (4.3)-(4.6b), it is sufficient to prove that ¥(w’) < ¥(w”). If
both w’ and w” belong to E](go)(is,m’e) (or if they both belong to E,(gl)(ie,m’s)), the conclusion
follows from

U(w') = (i — De)(w') — a < k(i — D)e)(w") — a = ¥ (w');
if w € ¥O (ie,m'e), w” € M (ie,m’e), then s’ and s” must be greater than zero; by definition,
U(w') = @p((i — Ve, w’) —a € I(s’) and ¥(w”) = Ok((i — 1)e,w”) — b € ' +I(s”), and thus,
since s, s” > 0, we have ¥(w') < ¥(w");

(iii) m’ > m”’; since by hypothesis @ ((i — 1)e)(w') < @ ((i — 1)e)(w”), the only possibility is that

w e W (i —Dem"s),  w e WO(li—1)e,m"), m =m"+1;
hence
i—1,m'’ (Pifl,m” my _ ~i—1m” <, ~i—1m/ N i—1,m” (I)ifl,m” Y.
Ok (P (w")) = 6% (w") <9; <y, (w') =0y, (@ (w'));

. »71, 1" . . »71’ 1" ‘71) " . .
since oy, " is non decreasing, we get @, " (w”) < @, "™ (w’), a contradiction. O

Finally extend all the definitions above for times t € (ig, (i + 1)e), defining x(¢, w) according to (4.1)
and setting

(bk(t) = (I)k(is)v ;Yk(t) = ﬁ/k(ie)a ifte [’L'é" (Z + 1)5)
It is not difficult to see that Properties (1)-(4) of the Definition of Lagrangian representation hold.

Step 3. We are left to show that the additional properties (a) and (b) hold.
(a) From (4.4), it follows

Wi (ie, me) N Wi((i — 1)e) = £ (ie, me) U £\ (ie, me).

To prove that this set is an interval of waves at time ie, just observe that for any w € Z,(cl)(iams) U
E,(CO) (ie,me) and for any w' € Cy(ie, me), it holds By (ic)(w) = O™ (w) < 0" (w') = &y (ie)(w’) and
thus w < w'.

Let us now prove that Wy(ie, me) N Wi ((i — 1)e) is an interval of waves also at time (i — 1)e. First

notice that both E,(Cl)(is,me) and Z,go)(is,me) are intervals of waves at time (i — 1)e, since by (4.4)
they are pre-images of intervals through an (anti)isomorphism of ordered sets. Hence, to prove that

Eé”(i& me)UE,&O)(iE, me) is an interval of waves at time (i —1)e, take w € E,&l)(ie, me), w' € E}(;)) (ie, me),
and z € Wi ((i — 1)e) with w < z < w': it is sufficient to show that z € Eg)(is, me) U E,io)(is, me). Since
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E,(cl)(ia7 me), EECO) (ie,me) # B, we have that (using the same notations as in (4.3)-(4.4)), s’, s”, s have the
same sign (say positive) and a = b. Hence

a < Pp((i—1)e)(w) < Pp((i — 1)e)(2) < Pp((i — 1)e)(w') < a+ mln{s +s", s}
therefore @5 ((i — 1)e)(z) —a € (I( NI +s")NI(s ) ((s +I(s")) NI(s" + s”)) and thus z €
(

E,gl)(is, me) U E,&O)(is, me), thus showing that Wy (ie, me) N Wy ((i — 1)e ) is an interval of waves at time
(1 —1e.

Finally, since ® (i) is an (anti)isomorphism of ordered set, using (4.4) and (4.6b), we immediately get
that Cj(ie, me) is an interval of waves at time ée, thus concluding the proof of Property (a).

(b) Assume both Z,(Cl) (te, me) and E,(CO) (ie, me) are not empty and contains positive waves; if they contain
negative waves or if one of them is empty, the proof is similar. Using again the same notations as in
(4.3)-(4.6b), since they both are not empty, then a = b in (4.5). Hence ¥ coincides with ®5((i —1)e) up to
a constant. Moreover, by (4.6a), ®(ic) coincides with ¥ up to a constant. Hence @y (ic)o @ ((i —1)e)~!
is an affine map, with slope equal to 1. O

As an immediate corollary of Properties (a)-(b) we get

Corollary 4.4. The following hold.

(1) Leti e N,meZ, T C W,El)((i —1e,(m—1)e)U W,go)((i —1)e, me) be an i.o.w. at time (i — 1)e.
Then either T N Wy (i) is empty or it is an i.0.w. both at time (i — 1)e and at time ic.

(2) Let T C Why(ie, me) be an i.o.w. at time ic. Then either TN Wiy ((i — 1)e) is empty or it is an
i.0.w. both at time (i — 1)e and at time ic.

(3) For any I C Wy(ie,me) N Wi((i — 1)e), it holds L (®((i — 1)e)(T)) = LY (Pi(ie)(T)).

4.3. Further definitions and remarks. We conclude this section by introducing some useful notions
that we will frequently use hereinafter, in particular, as we already said, the notion of effective flux fzﬂ(t)
of the k-th family at time t.

Definition 4.5. Fix ¢ > 0. Let Z C Wj/(f) be an interval of waves at time ¢. Set I := ®4(¢)(Z). By
Property (3) of the Definition of Lagrangian representation, I is an interval in R (possibly made by a
single point). Let us define:
o the strength of T as
IZ] = £(1D);

o the Rankine-Hugoniot speed given to the interval of waves T by a function g : R — R as

g(sup D)—g(inf ) ;¢ 74 .
(g, T) = { supI—inf ] if I is not a singleton,

g (I) if I is a singleton;

e for any w € Z, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

% COIan(cI)k(f)(w)) if Spy(w) = +1,

% coIncg<<I>k(f>(w)) if Sp(w) = —1.

If 0™(g,Z) = 0°™(g,Z,w) for any w € Z, we will say that Z is entropic w.r.t. the function g.
We will also say that the Riemann problem I with flux function g divides w,w’ if c***(g,Z,w) #
ent( I )
g,L,w

o*(9,Z, w) :=

We recall that by definition an interval of waves is made of waves with the same sign.

Remark 4.6. Notice that o™ is always increasing on Z, whatever the sign of Z is, by the monotonicity
properties of the derivatives of the convex/concave envelopes.

Remark 4.7. Given a function g and an interval of waves Z, we can always partition Z through the
equivalence relation

z~2 <= 22 are not divided by the Riemann problem Z with flux function g.
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As a consequence of Remark 4.6, we have that each element of this partition is an entropic interval of
waves and the relation induced by the order < on the partition (see Section 1.3) is still a total order.

Let us conclude this section, introducing the following notion.

Definition 4.8. For each family K = 1,...n and for each time ¢t > 0 define the effective fluz of the k-th
family at time t as any function
£5:7(t,) : [Ly L] = R
whose second derivative satisfies the following relation:
T) =
or2 dr ’
for Ll-a.e. 7 € [L;, L}], where w = ®5(t) (7).
Remark 4.9. Let us observe the following:
(1) £¢%(¢,) is defined up to affine function;
(2) since the second derivative of £$%(¢,-) is an L*°-function, it turns out that £$(¢,-) is a C11-
function;
(3) £57(¢, ) = £$f (ie, -) for any t € [ie, (i + 1)e);
(4) it is quite easy to see that for any time ic,i € N and for any m € Z, on the interval

’
m <m
i,m

b )
sign(s =sign(s;™
k k

the k-th effective flux function £$% (ie, -) coincides, up to an affine function, with the k-th reduced
flux associated to the Riemann problem located at (ie, me) as defined in (2.5).

5. ANALYSIS OF WAVES COLLISION

Starting with this section we enter in the heart of our construction. We introduce in fact the notion of
pair of waves (w,w’) which have already interacted and pair of waves (w,w’) which have never interacted
at time ¢. For any pair of waves (w,w’) and for a fixed time ¢, we define an interval of waves Z(¢, w,w’)
and a partition P (%, w,w’) of this interval: these objects in some sense summarize the past “common”
history of the two waves, from the moment in which they have split (if they have already interacted) or
from the last time in which one of them is created, if they have never interacted.

The interval Z(f, w,w’) and its partition P(f,w,w’) will be crucial in order to define the functional Qy
in Section 6 and to prove that it satisfies the inequality (1.9).

5.1. Wave packets. We start by defining an equivalence relation between waves, which will be useful
to pass from the uncountable sets of waves W(t) at time ¢ to the finite quotient set, whose elements will
be called wave packets.

For any ¢ > 0 and w € Wi (%), t € [ig, (i + 1)¢), define the wave packet to which w belongs as the set

(5.1)  E(t,w):= {w’ € Wi(t) ‘ £ (w) = £ (w'), x(t,w) = x(t,w’) for all t € [t~ (w), (i + 1)5)}.

In Section 6.5 we will denote this equivalence relation as <.

Remark 5.1. Notice that is it natural to require that the condition in (5.1) holds on the time interval
[t (w), (i+1)e) instead of [t (w), ie] since it could happen that x(ie, w) = x(ie, w’), but x(¢, w) # x(t,w’)
for t > ie, while we want to give definitions which are ”left-continuous in time”.

Lemma 5.2. The collection {E(T,w) | w € W(T)} is a finite partition of W(t) and the order induced
by the < is a total order both on the set {E(t,w) | w € W} (t)} and on the set {E(t,w) | w e W, (1)},
k=1,...,n.

Proof. Clearly {E(f,w) | w € W(I)} is a partition of W(f). To see that it is finite, just observe that
the curve x(t, -) is uniquely determined by assigning the points me = x(i¢, -), and for all fixed time ¢ the
set of nodal points supporting D u.(t), t < ¢, is finite. Finally, the monotonicity of x(¢,-) implies the
statement about the order. 0
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5.2. Characteristic interval. We now define the notion of pairs of waves which have never interacted
before a fired time t and pairs of waves which have already interacted at a fized time t and to any pair of
waves (w,w’) we will associate an interval of waves Z(t, w, w’).

Definition 5.3. Let ¢ be a fixed time and let w,w’ € Wy (f). We say that

w,w’ interact at time t if x(t,w) = x(f,w’);

w,w’ have already interacted at time t if there is t < ¢ such that w,w’ interact at time ¢;

w,w’ have never interacted at time t if for any ¢t < ¢, they do not interact at time ¢.

w,w’ will interact after time t if there is ¢ > ¢ such that w,w’ interact at time ¢.

w,w’ are joined in the real solution at time t if there is a right neighborhood of ¢, say [, + (),
such that they interact at any time ¢ € [t, 7 + ();

o w,w' are divided in the real solution at time t if they are not joined at time ¢.

Lemma 5.4. Assume that the waves w,w’ have already interacted at time t. Then they have the same
Stgn.

The proof is an easy consequence of Property (2¢) of the definition of Lagrangian representation, page
28.

Remark 5.5. It t # ie for each ¢ € N, then two waves are divided in the real solution if and only if they
have different position. If ¢ = ig, they are divided if there exists a time ¢t > ¢, arbitrarily close to ¢, such
that w, w’ have different positions at time ¢.

Definition 5.6. Fix a time t and two k-waves w,w’ € Wy (¥), w < w'. Assume that w,w’ are divided in
the real solution at time #. Define the time of last splitting tP"* (£, w,w") (if w,w’ have already interacted
at time t) and the time of next interaction t™ (¢, w,w’) (if w,w’ will interact after time #) by the formulas

£PIY(E w, w') == max {t < T | x(t,w) = x(t,0")},
(£, w,w') = min {t >t | x(t,w) = x(t,w')}.
(In the case one of sets is empty we assume the corresponding time to be +00.) Moreover set
xSPUS(F w, w') = x (%P (£, w, w'), w) = x(t*PH (£, w,w’), w')
and
X (F w, w') = x(t(Fw, w'), w) = x(tT(F,w, W), w'),
whenever defined.
Observe that t*P1(#,w,w’), ™ (£, w, w’) € Ne and P (£, w, w’), x4 (£, w, w') € Ze.

Definition 5.7. Let w,w’ € W({) be divided in the real solution at time ¢ and assume they have the
same sign. Define the characteristic interval of w,w’ at time ic, denoted by Z(,w,w’), as follows.
First we define Z(f, w,w’) for times t = i¢, ¢ € N.
(1) If w,w" have never interacted at time ic, set
(5.3)
{z € Wi(ie) | S(z) = S(w) and z < E(ie,w’) } UE(ie,w’) if 7 (w) < 7 (w'),
I(ie,w,w') =
E(ie,w) U {z € Wi(ie) | S(z) = S(w) and z > E(ie,w)}  if £ (w) > £ (w');
(2) If w,w" have already interacted at time ie, argue by recursion:
(a) if ie = t3P1 (ie, w, w'), set
Z(ie, w,w') := W(ie, x(ie,w)) = W(ie, x(ie,w’));

(b) if ie > t%1(ig,w,w’), define Z(ic,w,w’) as the smallest interval in (Wi (i), <) which
contains Z((i — 1)e, w,w’) N Wy (ig), i.e.

I(ie,w,w') := {z € W (ie) ‘ S(z) = S(w) = S(w')

and Jy,y" € Z((i — 1)e,w,w") N Wi(ie) such that y < z < y'}.
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Finally set
I(t,w,w') := Z(ie,w,w") for t € [ie, (i + 1)e).

Lemma 5.8. Let w,w’ € Wy(ie) be divided in the real solution at time ie and assume that they have the
same sign. Then the following hold:

(1) Z(ie,w,w’) is an interval of waves at time t;
(2) Z(ie,w,w’") = UzeI(is,w,w’) E(ig, z).
Moreover, if w,w’ have already interacted at time ic,

(3) if ie > tPit(ie, w,w’), then
Z(ie,w,w) N Wk ((i — 1)e) = Z((i — 1)e, w,w") N Wy (ig);
(4) if z € Z(ie,w,w’), then
2z € Z(t,w,w") for any t € [ max {tSpht (ie, w,w'), £ (2) }, ie];

(5) if z,2" € Wy(ig), t(2) = t(2') = ie and x(ie, z) = x(ie, '), then z € I(ie,w,w’) if and only if
Z' € I(ie,w,w’).

Proof. Point (1). Immediate from the definition of Z(ie, w, w’).

Point (3). The inclusion ”D” is straightforward. To prove the inclusion 7C”, take z € Z(ie, w,w’) N
Wi ((i—1)e). By definition of Z(ie, w, w’), there are y,y" € Z((i—1)e, w, w’)NWy(ie) such that y < z < ¢/'.
Since 2z € Wi ((i — 1)) and, by Point (1), Z((i — 1)e, w,w’) is an interval of waves at time (i — 1)e, it
must be z € Z((i — 1)e, w, w’).

Point (4). Easy consequence of Point (3).

Point (5). Set me := x(ie, z) = x(ie, 2'). By symmetry, it is sufficient to prove one implication. Let z €
I (ie,w,w"). Since z, 2’ are created at time ic, we have z, 2’ € Cy(ic, me) (the case where t*P1 (¢, w.w') =
ie is straightforward). From z € Z(ie, w, w"), we deduce that there exist y,y" € Z((i —1)e, w, w") N W(ic)
such that y < z < y’. We want to prove that y < 2z’ < g/'. Assume by contradiction that v’ < z. This
implies z <y’ < z. Since z,2" € Ck(ie,me), y € Wy(ic) and, by Point (a) of Theorem 4.1, Cy(ic, me)
is an interval of waves at time ie, we get y’' € Cy(ie, me), a contradiction, since y' € Wy ((i — 1)e). In a
similar way one proves that y < 2z’ and thus we get 2z’ € Z(ie, w,w’).
Point (2). If w,w’ have never interacted, the proof is an immediate consequence of the definition (5.3)
and Lemma 5.2. Assume thus w,w’ have already interacted at time ic and argue by induction on 4.
The only non-trivial inclusion is ”2”. Let z € Z(ie,w,w’), 2/ € E(ie, z); we would like to prove that
z' € I(ie,w,w").

(1) If ie = t5Plt (ig, w, w'), then, x(ie, w) = x(ie,w’) = x(ie, z) = x(ie, 2’) and thus 2’ € Z(ie, w,w")

by definition (Point (2a) of Definition 5.7).
(2) If ie > 5Pl (je, w, w'), assume that the statement is proved at time (i — 1)e, i.e.

(5.4) Z((i — De,w,w') = U E((i —1)e,y).
yeEZ((i—1)e,w,w’)

Distinguish two cases:

(a) if £ (2) = t°"(2') = ie, then x(ie, z) = x(i¢, z’) and thus, by Point (5), 2’ € Z(ie,w,w');

(b) if t(2) = t(2) < ie, since z € Z(ie, w,w’) N Wk((z — 1)e), then, by Point (3), z €
Z((i—1)e,w,w") and thus by (5.4), £((i—1),2) C Z((i —1)e,w,w’). Since 2z’ € E((i—1)e, 2),
we get

2 e I((i — Ve, w,w") N Wy(ie) = Z(ie,w,w") "N Wi ((i — 1)¢),

again by Point (3).
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5.3. Partition of the characteristic interval. We now define a partition P(¢,w,w’) of the interval
of waves Z(t,w,w’) for any time ¢ such that w,w’ are divided in the real solution at time #, with the
properties that each element of P(f,w,w’) is an interval of waves at time ie, entropic w.r.t. the flux
£¢1 (%) of Definition 4.8.

We first give the definition by recursion on times i, € N.

(1) If w,w’ have never interacted at time ie, the equivalence classes of the partition P(ie, w,w’) are
singletons.

(2) Assume now that w,w’ have already interacted and are divided in the real solution at time ie:
(a) if ie = £%Plt (e, w, w’), then P (i, w,w’) is given by the equivalence relation
o { 2,7 are not divided by the Riemann problem Wj(ie, x(i, w))

with flux function £$% (ie, -);

(b) if ie > tPt (e, w,w’), (i.e. w,w’ are divided in the real solution also at time (i — 1)¢), then

Plie, w,w') is given by the equivalence relation

z, 2’ belong to the same equivalence class J € P((i — 1)e, w,w’) and
the Riemann problem J N W(ie) with flux £5(ie, ) does not divide them

z~ 7 = or
[t“(z) =t"(7) =ic and z = z']

Observe that the previous definition is well posed, provided that J N W(ic) is an interval of waves at
time ie. This will be an easy consequence of Proposition 5.12 and Corollary 4.4, Point (1).
Finally extend the definition of P (¢, w,w’) also for times t € (ic, (i + 1)e), setting

P(t,w,w') = P(ie, w,w") for any ¢ € [ie, (i + 1)e).

Remark 5.9. As a consequence of Remark 4.7 we immediately see that each element of the partition
P(t,w,w’) is an entropic interval of waves (w.r.t. the flux function £§%(,-)) and the relation induced on
P(t, w,w') by the order < is still a total order on P (¢, w,w’).

Let us prove now some properties of the partition P (¢, w,w’).
Lemma 5.10. Let t be a fized time and let w,w',z,2" € Wi(t), z € E(t,w), 2’ € E(t,w’). Then
IZ(t,w,w') =I(t, 2z, 2) and  P(t,w,w') =Pt z7").
Proof. The proof is an easy consequence of the previous definitions. O

Lemma 5.11. Let t1,t2 > 0, w,w’ € Wy (t1) "Wy (t2). Assume that w,w’ are divided in the real solution
at time t1 and

0 S tsPlit(tl, w, w/)
Let J € P(ta,w,w’). Then either J N Wy(t1) =
time tq.

<t <ty < £t w,w').

0 or TNWk(t1) =T and J is an interval of waves at
Proof. Tt is sufficient to prove the lemma for ¢1,ts € Ne. Fix t; € Ne, w,w’ € Wi(t1) as in the statement
of the lemma. We prove the lemma by induction on times 5 € Ne, to = #1,...,t" ({1, w,w') — €.

If t3 = t; the proof is trivial. Hence assume that the lemma is proved for time t5 — ¢ and let us
prove it for time t5 € Ne, with t; +¢& < to < t™ (¢, w,w’') —e. Let J € P(t2, w,w’) and assume that
T NWe(t1) # 0. Let 2z € T NWy(t1), 2/ € J. Since z ~ 2’ at time ty and z € Wy (t1), with t; < ta, by
definition of equivalence classes, there must be K € P(ty — €, w,w’) such that z,2’ € £ and £ O J. By
inductive assumption, X N Wy (¢;) = K and thus

T NWi(t1)) =T NKNWi(t1) =T NK =J,

thus proving the first part of the statement.

Let now 2,2/ € J C K, y € Wi(t1), 2 < y < 2. By inductive assumption y € K; since I N Wy (t2)
with flux function fzﬂ(tg, -) does not divide z, 2" and z < y < 2/, we have that KXNW}(t2) does not divide
2,2,y and thus y € J, thus proving also the second part of the lemma. O
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Proposition 5.12. Let ¢ > 0, let w,w’ € Wy (t) be divided in the real solution at time t and have the
same sign and let J € P(t,w,w’). Then x(t,-) is constant on J and the Riemann problem W(t,x(t,J))
with fluz function £$% (%, ) does not divide waves in J, i.e. also the map z — 61 (t)(z) introduced in Point
(4) of the definition of Lagrangian representation is constant on J.

Proof. Clearly it is sufficient to prove the proposition for times ic, i € N, since if the proposition is proved
at time e it holds for times ¢ € [ie, (i + 1)e). Hence let ¢ = ie for some ¢ € N. If w,w’ have never
interacted at time ie, then the proof is trivial, because J is a singleton.

Assume thus that w, w’ have already interacted at time ic. Let J € P(ic, w,w’) and let 2,2’ € J. We
want to prove that

(5.5) x(ig, z) = x(ig, 2") and ok (ig, z) = oy (ig, 2').
We argue by induction on :.
(1) If ie = t5Plit(je, w, w’), then (5.5) is an immediate consequence of the definition of P (ic,w, w').
(2) If ie > tPlit(je, w, w'), two cases arise:
(a) t(z) = t(#') = ie and z = z’: in this case the conclusion is trivial;
(b) thereis K € P((i—1)e, w,w’) such that z, 2z’ € K and the Riemann problem KNW (ic) with
flux function £$ (ie, -) does not divide 2,2’ (Point (2b) above); in this case by the inductive

assumption x((i — 1), -) is constant on K and thus we can set

2
me = x(ie, K N W(ig)).

Moreover, since the Riemann problem X NWj(ie) = KNWy(ie, me) does not divide z, 2/, by
Proposition A.4 also the Riemann problem Wj (i, me) does not divide z, 2/, i.e. dy(ie, z) =
o1 (ie, 7). O

Definition 5.13. Let A, B two sets, A C B. Let P be a partition of B. We say that P can be restricted
to A if for any C € P, either C C A or C C B\ A. We also write

Pla:={CeP|CCA}
Clearly P can be restricted to A if and only if it can be restricted to B\ A.

Proposition 5.14. Lett > 0 be a fized time. Let w,w’, 2,2’ € W(t), z < w < w' < 2/, assume that w,w’

are divided in the real solution at time t and they have the same sign. Then P(t,z,2') can be restricted
both to Z(t,z,2") NZ(t,w,w’) and to Z(t,z,7' )\ Z(t,w,w’).

Proof. As before, it is sufficient to prove the proposition for times ie,7 € N. If 2, 2/ have never interacted
at time ie, the proof is immediate being the equivalent classes singletons. Hence, assume that z, 2’ have
already interacted at time ie. Let J € P(ig, z, 2’) such that J NZ(ie, w,w’) # . We want to prove that
J C I(ie,w,w").

Assume first that w,w’ have never interacted at time ie. Suppose w.l.o.g. that t*(w) < t°(w’), the
case t(w) > t“(w’) being analogous. Since w,w’ have never interacted at time ie, while z, 2’ have
already interacted, it must hold t (w’) > t*Pi(ie, 2, 2/). It holds

0 # T NZIlic,w,w') = (j N {y € Wi (ig) big] S(y) = S(w) and y < E(i&:,w')}) U (j N 5(i5,w’)>.

Distinguish two cases:
(1) if 7 NE(ie,w') # (), since t(w') > t5Plt(ig, 2, 2'), J is a singleton by Point (2b), page 38, and
thus J C E(ie,w’) C Z(ie,w,w');
(2) otherwise, if 7 NE(ie,w’) =0 and J N {y € Wi(ie) | S(y) = S(w) and y < E(ie,w’)} # 0, since
J is an interval of waves and &(ie, w') # 0, it must hold J C {y € Wi(ic) | y < E(ie,w’)} C
Z(ie,w,w").
Assume now w,w’ have already interacted at time ie. We argue by induction.
(1) If ie = tPYt (e, w, w’), then Z(ie, w,w') = Wy (ie, x(ie,w)) and thus J N Wy (ie, x(ie,w)) # (). By
Proposition 5.12; it must hold J C Wy (ie, x(ie, w)) = Z(ie, w,w’).
(2) If ie > t°Plit(je, w,w’), assume that the proposition is proved for time (i — 1)e. Distinguish two
more cases:
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(a) at least one wave in J is created at time ig; in this case, J is a singleton and thus J C
Z(ie,w,w');

(b) all the waves in J already exist at time (i — 1)e; in this case by the definition of P(ic, z, 2’),
there is K € P((i — 1)e, 2, 2’) such that J C K. Now observe that

0+ T NZI(ie,w,w)
= J NZ(ie,w,w") N Wi((i — 1)e)
(by Lemma 5.8, Point (3)) = J NZ((i — 1)e, w,w") N Wy (ie)
CKNZ((i — 1)e,w,w") N Wg(ie)
(

CKNZI((i— e, w,w).
Hence, by inductive assumption, X C Z((i — 1)e, w,w’) and thus we can conclude, noticing
that
J CKNWyi(ie) CZ((i — 1)e,w,w") N Wy (ie) = Z(ie,w,w") "N W ((i — 1)e) C Z(ie,w,w’),
where we have again used Lemma 5.8, Point (3). O

Proposition 5.15. Let ¢ > 0 be a fized time and let w,w', z,2" € Wi(?), 2 < w < w’ < 2/, and assume
that w,w’ are divided in the real solution at time t.
(1) If w,w' have already interacted at time t, z,2' € Z(t,w,w') and t°(2),t(2’) < tPU(E w,w’),
then Z(t,z,2') = Z(t,w,w’) and P(t,z,2") = P(t,w,w’).
(2) If w,w' have already interacted at time t, but at least one wave between z,z' is created after
P (£ w, w'), then z,2 have never interacted at time t.
(3) If w,w' have never interacted at time t,
o if t%(w) < t%(w') and 2’ € E(t,w'), then z,2" have never interacted at time t;
o if t(w) >t (w') and z € E(t,w), then z,z’ have never interacted at time t.

Proof. Let us prove the first point by recursion. As before it is sufficient to prove the proposition for
times ie, i € N. If ie = t%Pi*(ig, w,w’), then the proof is obvious. Let thus ie > tPi*(ie, w,w’) and
assume that the proposition holds at time (¢ — 1)e. Then by Point (2b) of Definition 5.7

Z(ie,w,w') = {y € Wy (ig) big| S(y) = S(w) = S(w')
and 37,7 € Z((i — 1)e,w,w") N Wi(ie) such that § <y < gj’}
(recursion) = {y € Wilic) big| S(y) = S(z) = S(+')
and 37,9 € Z((i — 1)&,2z,2") N Wi(ig) such that g <y < gj’}
= 1(ie, z, 7).
Now assume that y,y’ € Z(ie,w,w’) = Z(ie, z,2"). Then it holds
1,7y’ belong to the same equivalence
class 7 € P((i — 1)e,w,w’) at time (i — 1)e
and the Riemann problem J NW(ig)
with flux £ (ie, ) does not divide them

or
[+7(y) =7 (y) and y = ' ]
(by P((i — e, w,w') = P((i — 1)e, 2, z’))

y,y’ belong to the same equivalence

class 7 € P((i — 1)e, z,2') at time (i — 1)e

and the Riemann problem J N W(ig)

with flux function £§ (ie, -) does not divide them
or
[t(y) =t (y') and y =y ]
< y~y w.ur.t. the partition P(ie, z,2).

y~y wrt. Plic,w,v') <
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Hence P(ie, w,w’) = P(ie, z, 2’).

Let us now prove the second point, assuming w.l.o.g. that t°"(z) > tP(,w,w’). Assume by contra-
diction that z, 2’ have already interacted at time f. This means that there exists a time ¢ < £ such that
x(t,2) = x(t,2"). Clearly £ > t°(z) > t5Plit (£, w, w’). Therefore, at time ¢, w,w’, 2,2’ € Wy(t) and thus,
by the monotonicity of x, it should happen x(f,2) = x(t,w) = x(f,w’) = x(t, 2’), a contradiction, since
t> 1> Pt w,w').

Let us now prove the third part of the proposition. We consider only the case t(w) < t(w’), the case
£t (w) > t"(w') being completely similar. By contradiction, assume that z, 2’ have already interacted
at time £. This means that there is a time # <  such that x(¢, 2) = x(£,2). Since 2’ € £(f,w’), it must
hold # > t°(2') = £t (w’) > t(w). Hence w,w’, z,2' € Wy (#) and by the monotonicity of x, we have
x(z) = x(w) = x(w') = x(2'), a contradiction since w,w’ have never interacted at time f > . O

6. THE FUNCTIONAL £},

Now we have all the tools we need to define the functional £ for £k = 1,...,n and to prove that it
satisfies the inequality (1.9), thus obtaining the global part of the proof of Theorem 1.1.

In Section 6.1 we give the definition of Q, using the intervals Z(t,w, w’) and their partitions P(f, w, w’).
In Section 6.2 we state the main theorem of this last part of the paper, i.e. inequality (1.9) and we give
a sketch of its proof, which will be written down in details in Sections 6.3, 6.4, 6.5.

6.1. Definition of the functional ;. We define now for each family & = 1,...,n, the functional
Q. = Qk(t), which bounds the change in speed of the waves in the approximate solution wu., or more
precisely, which satisfies (1.9). We first define the weight qx (¢, 7,7) of a pair of waves

w=®p(t)" (1), w = Op(t)" (7)) € W,:Ct, w<w,

at time ¢, and then we define the functional 9 (t) as the sum (integral) over all pairs (7,7") of the weight
qi(t, 7, 7).
Let us start with the definition of the weights qx(¢,7,7’) at times ¢t = ie, i € N. Fix ic € Ne and

let 7,7" € (0,L{ (ie)] (vesp. 7,7 € [L; (i€),0)); 7,7’ correspond to the two waves w = ®(ic)~1(7),
w' := @y (ie) 1 (7') in Wy (i) having the same sign. We define the weight associated to the pair (1,7") at
time ic as follows:

e if w,w’ are not divided in the real solution at time ¢ or if they are divided but they will never
interact after time ic, set
qi(ie, 7,7") :== 0;
e if w,w’ are divided in the real solution at time ie and they will interact after time ie, set
. / Tk (i57 T, T/)
e, 7,7) (= ———=,
I ( ) di(ie, 7,7')

where 7 (ie, 7,7"), di(ic, 7, 7') are defined as follows. Since w,w’ will interact after time ie, then ie <
t (G, w,w'). Let

6.1) J,J' € P(ie,w,w’), such that w € J,w’ € J’,

6.1 .
K, K" € P(t™ (ie,w,w") — e,w,w’), such that w € K,w’ € K'.

be the element of the partition containing w,w’ at time ie and at time £ (i, w, w’) — & respectively, and
set

(6.2) G=Ku{zeJ|z>Kk}, ¢ =Ku{zeJ |z<Kk},

and
B:=KU {z € Wi(ie) | S(2) = S(w) = S(w') and K < 2 < /c’} UK.

By Lemma 5.11, G, G’ are i.0.w.s at time ie. We can now define

+
(6.3) mlie, 7 7') = |0 (857 (12), G) — (£ (ie), G|
and

(6.4) di(ie, 7, 7') == L (P (ic)(B)).



42 STEFANO BIANCHINI AND STEFANO MODENA

As usual, set
qr(t,7,7") = q(ie, 7, 7") for t € [ie, (i + 1)e).
Remark 6.1. Tt is easy to see that qx(ie, 7,7’) is uniformly bounded: in fact,
) 7 (ie, 7, 7") 2 off
0< =S DT ) p2eef )| < O(1).
_qk:(ZEvTvT) dk(iE,T,T,) = H k (3” = ( )
We can finally define the functional Q(¢) as

Qi (t) = QF (1) + Q5 (0),

L@ L ()
QZ(t) ::/ dT/ dT/qk(t,T,Tl)
0 T

0 0
Q. (1) ::/ dT/ dr'aqe(t, 7', 7).
L;(t) T

Remark 6.2. Clearly Q () is constant on the time intervals [ig, (i + 1)e) and it changes its value only
at times ie, i € N.

where

and

6.2. Statement of the main theorem and sketch of the proof. We now state the main theorem
of this last part of the paper and give a sketch of its proof: with this theorem, the proof of the Theorem
1.1 is completed.

Theorem 6.3. For anyi € N, i > 1, it holds
(6.5) Q. (ie) — Qr((i — 1)e) < — Z ALY (e me) + O(1)Tot. Var. (u(0); R) Z A(ie, me).
meZ meZ

Sketch of the proof. First of all observe that it is sufficient to prove inequality (6.5) separately for D;C"
and £, . In particular, we will prove only that

Qif (ie) — QF ((i — 1)e) < — > A (ie, me) + O(1)Tot. Var.(u(0); R) > _ A(ie, me),

meZ meZ
S(Wy (ie,me))=1

since the proof of the same inequality for 9, is completely similar.
For any m € Z, set (see Figure 5)

JE = @ ((i — 1)e) (W,EP (i = e, (m — 1)e) N Wi ((i — 1)5)),
TR = ®((i — 1)e) (ngo) ((i — e, me) "W, ((i — 1)5)),
= JEuJk,

Im

K, = Oy (ie) (Wk(ig,ma) N W,j(za)),

Sy = p((i — 1)e) ((2,9)(1'5, me) U B (i, me)) N W (i — 1)5)),
Ty = (i) ((z,@”(ie, me) U B (ie, me)) N w,j(z'a)).

Observe that if 7,7/ € JE (or 7,7 € J&), then &' ((i — 1)e)(7), ;. ((i — 1)e)(7’) are not divided in the
real solution at time (¢ — 1)e and thus qx((¢ — 1)e, 7,7") = 0.

Similarly, if 7,7 € K, 7 < 7/, setting w := &, ' (ie)(1), w’ := &, '(ie)(7’) then either w,w’ are not
divided at time ie, and thus qi(ie,7,7') = 0, or they are divided at time ie, i.e. they have different
positions at times ¢ € (ie, (i + 1)e); in this second case, with the same notations as in (6.1)-(6.2), we can
use the monotonicity properties of the derivative of the convex envelope and the fact that the element of
the partition P (i, w,w’) are entropic w.r.t. the function £¢(ic) to obtain

0> o™ (257 (ie), 7) — o™ (£5 (i), T') > o™ (25 (i), G) — o™ (£5 (i), G),

and thus m(ie, 7, 7') = 0 = qi(ie, 7, 7).
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K\ Jm

(ie. (m = 1)e)

Tor W,

"”‘(:s. me)

((i _,1,)5'_(”'1'_'2)5)‘ = JE Fm

((i = 1)e,me)

FIGURE 5. The quantities defined in (6.6): JL (resp. JI) are the waves at ((i—1)e, (m—
1)e) (resp. ((i — 1)e,me)) which travel towards (ie, me); Sy, is made by all the waves
in J,, := JL U JE which are not canceled at time ie, while the map of Sy, at (i, me)
gives the transmitted waves T,,,; finally K, is the set of all waves at (ie, me) and thus
the created waves at (ie, me) are those in K, \ Tr,.

We can thus perform the following computation:

Qz(lf‘:) —Qz((l — 1)8) S Z [// qk(iE’T’ T/)deT/ + // qk(i€77'7 T/)deT/
Ty XT,, 1 (KmXKm/)\(TmXTm/)

m<m/
- // qr((i — Ve, 7, 7" )drdr’
Sr,,LXSm//

- Z // qr((i — Ve, 7, 7")drdr".
JExJR

meZ
We will now separately study:

(1) in Section 6.3, the integral over pairs of waves such that at least one of them is created at time
1€

(6.7) > / / Qi (ie, 7, 7')drdr’ < O(1)Tot.Var.(u(0)) > _ A(ie, me).
m<m/’ (K,,,LXKm/)\(T,,,LXTm/) meZ

(2) in Section 6.4, the variation of the integral over pairs of waves which exist both at time (i — 1)e
and at time ic:

6.8) > l / / » qr (ie)drdr’ — / /S y qi((i — 1)e)drdr’ | < O(1)Tot.Var.(u(0)) Y _ A(ie, re).

m<m/ rez

(3) in Section 6.5, the (negative) term, related to pairs of waves which are divided at time (i — 1)e
and are interacting at time ie:

(6.9)
_ mzezz//%x% qe((i — 1)e)drdr’ < — mze:Z ALY (e, me) + O(1) Tot. Var. (u(0)) mz;ZA(ie,me).

S(Wy (ie,me))=1
It is easy to see that inequality (6.5) in the statement of Theorem 6.3 follows from (6.7), (6.8), (6.9). O
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6.3. Analysis of pairs with at least one created wave. The integral over pair of waves such that
at least one of them is created at time ie is estimated in the following proposition.
Proposition 6.4. It holds
> / / Qi (ie, 7, 7')drdr’ < O(1)Tot.Var.(u(0)) > A(iz, me).
(K XKy )\(Tyn XT,1)

m<m/ meZ

Proof. In fact,
L2 ((Km % Kip) \ (T X Tor)) < L2 (K \ Trn) X Kot ) + L2 (K X (K \ Tr))
< LYK ) LN (K \ T) + LK) L (K \ Tt

Hence

Z // qx (ie, 7, 7")drdr’
e Ko XK, O\(Toa XT,01)

) > L (K X K) \ (T % Tor))

m<m/
1) > LYK K\ Tin) + LY (Eon) L (Ko \ Tyt
m<m/
DY LY Em) > LY (K \ Tin)
m' €z mez
< O(1)Lj (ie) Z A (ie, me)
mEZ
(by (2.11) and Corollary 2.10) < O(1)Tot.Var.(u(0)) Z A(ie, me). O

meZ

6.4. Analysis of pairs of waves which exist both at time (i —1)c and at time ie. The aim of this
section is to estimate the variation of the integral over pair of waves which exist both at time (i — 1)e
and at time ie. More precisely we prove the following theorem.

Theorem 6.5. It holds

[// (i, 7,7’ deT—// w((i = Ve, 7, 7")drdr’
T><T/ S><S/

< O(1)Tot. Var.( ZA i€, re)
rel

(6.10) m<m'

We first need a preliminary result. As a starting point, observe that for each m € Z, by Points (a)
and (b) of Theorem 4.1, the map

©: Sy — T, O 1= By (i) o Bp((i — 1)e) 7 H,

is an affine function with slope 1. We now prove the following lemma, which estimates the change of the
numerator 7 and the denominator dj, in the definition of qi, formulas (6.3) and (6.4).

Lemma 6.6. For any m <m’ and for any 7 € Sy, 7/ € Sy, setting

(6.11a) Adi(7,7') = dy (i, 0(7),0(7")) — dip (i — Ve, 7, 7'),

(6.11b) Am(r,7') == m (i, 0(7), 0(7")) — me ((i — Ve, 7, 7).
the following inequalities hold:

m m
|Adk(T,T Z A(ie, re) Amy (7, 7") Z A(ig,re).
r=m r=m



QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF CONSERVATION LAWS 45

Proof. Fix w := @4 ((i — 1)e)71(7), w’ := @4 ((i — 1)e)~1(7’) and let
I, J € P((i — e, w,w), we J,w eJ,
J,J € Plic,w,w'), we J,weJ,
K,K' € P(t"™ (ie, w, w') — &, w,w’), wekK,w ek

Set also
A=KU{zeWi((i-1)e) | K<z<K'}UK, B:=KU{zeW!(ie) | K<z<K}UK"

It is easy to see that
m’ m’

(6.12) AC U {w € Wi((i — 1)e) | tlg?ax(t w) = ra} B C U Wi (ie, me).

Moreover, it holds

= (A\ Wi (ie)) U (AN Wy(ie)) = (A\ Wy(ie)) U 6 AN Wj(ie, re))

and
B = (B\Wx((i - 1)¢)) U (Bﬂ Wi((i - 1)e))
= (B\Wi((i — 1)g)) U U (BN Wy ((i — 1)) N Wy (ie, re)).
Notice that for any r = m, ..., m’
(6.13) ANWy(ie,re) = BN Wi ((i — 1)) N W (ie, re),

and thanks to this equality and Corollary 4.4, the set in (6.13) is an interval of waves both at time (i —1)e
and at time ¢e. Hence, by Point (3) of Corollary 4.4,

© : Pp((i— 1)) (AﬂWk(is,rs)) ) (BﬂWk((i —1)e) ﬂWk(iara)),
T — O = Py (ic) o Pp((i — 1)) 1(7)
is an affine function with slope equal to 1 and thus

(6.15) c! (@k((i — 1)e) (AN Wi (e, rs))) -y <<I>k(i5) (BOWi((i — 1)g) N Wi(ie, rs))).

(6.14)

We now prove separately the two inequalities of the statement.
Proof of (6.11a). We have

’Ad(T, T/)’ = ’d(i&,@(T),@(T/)) —d((i — e, T, 7_/)‘
= | (04(i2)(8)) - £ (a((i ~ Do) ()]

= |LM(®y (i) (B\ Wi((i — 1)g))) + i ct (<I>;c ie) (BN Wi ((i — 1)e) N Wy(ie, ma)))

r=—m

,ﬁl(cbk((i—l))(A\Wk ic) ) igl( (i—1) )(AﬂWk(ie,rs)))‘

(by (6.15)) < ‘Ll(ék(ia) (B\ Wi((i — 1)5)))‘ n ‘cl(@f (i — 1)e) (A\Wk(ia)))‘

’
m

(by (6.12)) < > Aff(ie, re) + A2 (ie, 7€)

’
m

(by Cor. 2.10) < A(ie, re).

r=m
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FIGURE 6. The various set used in the proof of (6.11b): in Step 2 pass from the waves in
F,F' to the waves H, H' which survives at ¢ = ie; in Step 3 change the flux £$¥((i — 1))
to £$(ie) for the intervals H,H’; in Step 4 observe that G,G’ are shorter that H,H’
because of a splitting has occurred.

Proof of (6.11b). The proof of the second inequality in (6.11) is more involved. Define
F:=KU (Jﬂ {zeWi((i—1)) | 2> IC}), F=K'U (J’ﬁ {zeWi((i—1)) | 2 < IC’}),

G:=KU(Tn{zemdie) | z>K}), G = KU (T N {zeWiiie) | 2 < K'});
F,F' are i.o.w.s at time (i — 1)e, while G, G’ are i.o.w.s at time ie. Hence the sets
F = ®((i — 1)e)(F), F' = @ ((i — De)(F'),
G = . (ie)(G), G’ = O (ie)(G),

are intervals in R. Moreover, since 7 — £57(¢)(7) is defined up to affine function, we can assume that
d£ ¢ (ie) _ dfgt((i—1)e)
dr dr

We divide now the proof of the second inequality in several steps.
Step 1. Define

H:=KU{zeTNW(ic) | 2> K}, H =K'U{ze T NWlic) | z<K'}.
We now show that the sets H, H’ are i.o.w.s both at time ie and at time (i — 1)e and

H C T NWg(ie), H C T N Wy(ie).

(6.16) (inf @4 (ie)(K)) (inf @4 ((i — 1)e)(K)) = 0.

Moreover also the sets
Hi,1 = (I)k((’é — 1)5)(7‘[)7 Hz = (I)k(’LE)(H),
HI_y = @i ((i — Do) (), H = @ (ie)(H),
are intervals in R.

Proof of Step 1. We prove only the statements related to H, those related to H' being completely
analogous. Clearly H C J N Wj(ie). Moreover the set

M= {z € Wlic) | ze K or 2 > K}
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is clearly an i.0.w. at time ie. Since we can write H as intersection of two i.0.w.s at time ie as
H=Mn (T NWg(ie)),

it follows that also H is an i.o.w. at time ie. Moreover, since H = H N W ((i — 1)e), by Proposition 5.12
and Corollary 4.4, Point (2), H is an i.o.w. also at time (¢ —1)e. As an immediate consequence H;_; and
H; are intervals in R.

Step 2. We have
H; 1 CF, LYF) — LY(H;—1) <A™ (ig, me),

and

oM (857 ((i — 1)e), H) — o™ (257 (i — D)e), ]:)‘ < O(1)AF"(ie, me).
Similarly, H/ _; C F', LY(F'") — LY(H]_,) < A°(ig,m’e) and

ER (- De), H) = o (ERT (0 - D)e), F)

< O(1)AP"(ie,me).

Proof of Step 2. We prove only the first part of the statement, the second one being completely similar.
Clearly H C F. Hence H;—1 = @1((i — 1)e)(H) C @, ((i — 1)e)(F) = F. Moreover, by Proposition 5.12,
it follows that

F\HC {w € Wi((i = 1)e) \ Wi(iz) | lim x(t, w) = ms}
and thus
LYF) = LY(Hi—1) = LY(Px((i = 1)e)(F)) — L1(Px((i — 1)e)(H))
= LHPk((i = 1)e)(F\ H))
< £1< w € Wi((i = 1)2) \ Wy(ie) | lim x(t,w) = mz—:})

Moreover, by Proposition A.7,

o™ (£ (i — 1)e, H) — oD (£ (7 — 1)e, .7-")‘ < LYNF) — LY(Hi_1) < O(1)AS™ (i, me).

Step 3. It holds

o™ (£57 (i), M) — o™ (£55 (i — 1)e ‘ <0(1) Y Alie,re),

’

(1) Z A(ie, re).

T=m

O’rh(fzﬁ(iE),Hl) _ O'rh(fzﬂ((i _ 1)8),7‘[/) <

Proof of Step 3. In this step, we prove only the second inequality and assume that £ (H;) = £'(H;_1) > 0,
since the first inequality and the other cases can be treated similarly (and actually the computations are
simpler).

We have

o™ (£7 (ie), H') — o™ (£57 (1 — 1)e), H')

| L[ de) ! a5 (i~ 1)2)
- ‘El(H‘)// @ (ng_ﬁl(H;l)/, T (T)dr

d2feﬂ(7,€)
by (6.16)) ‘ / / SJeds
( ( ,Cl H/ 7 Jinf &, (ZE)(K) d€2 ( )

’ d*£57((i — 1)e)
VTR n)dndr|,
ﬁl(Hz/q) /;1 ~/inf<I>k((i—1)5)(Kj) dn? )
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and, remembering that £1(H]) = £L1(H]_,) and integrating by parts,

/SupHi d*£57 (ic)
inf o (i) () 482

1
- LU(H))

(§)(sup Hj — max {¢, inf H{})dﬁ

_ /H 25 (i = 1)o)
inf @ ((i—1)e)(K) dn?

’z”: / a?£5% (ie)

= Jlint o, (i) (K) sup HINK, A€

N / P - De)

= Jlint &4 ((i—1)e)(K).sup H]_,NJ dn?

where K, J, are defined in (6.6); using now that £(K,\T,) = A (ie, re), while £L(J,\S,) = AP (ie, re)
we can proceed as

(n)<sup H] | — max {n,inf Hi’_l})dn‘

1

T Li(H)) (Q(SUPH{ — max {f,ian;}>d5

’

(n)(sup Hj_; — max {7, inf H§—1}>d77 :

’
m

1 Cr( . canc /.
= o | 2 O()L! (Hy) (A iz, e) + A§ iz, 7))
m’ 2ceff (;
+ / dfkiz(w)({)(supH{—max {{,ian{})df
= Jint oy, (ie) (K0) sup HNT, A€

RS / 1 ie)

> (n)(sup H;_y — max {n, inf Héfl})dn :
= Jlint &, ((i-1)e)(K)sup H!_,JnS, A7

using that the function © : [inf @ ((i — 1)e)(K),sup H,_;] N S, — [inf @y (i) (K), sup H{] N T} introduced
in (6.14) is an affine bijection with derivative 1,

< [Zl i o)L (H (Acr(ze me) + A (ie, ms))

_
LH(H)

. A2 (e 257 (i — 1)e
> | o) - =)
r=mm  [inf @4 ((i—1)e)(K),sup H,_,]NS, 3 n

: (Sup H!_, — max {n,inf H£71}>dn

+

S cr c’1nc dgfeff ’LE deiH((i — 1)5)
<0 TE,; (A ie, re) + A (e, rE Z / d§2 (77)) - dn2<’7)’d”
- deEff ) d?feff i1
< O(l) Z Air(iE,TE) + Aianc(ig,rs) + ‘ w 0O — M 7
r=m dé dn L1(Sy)
and finally by Theorem 3.3 and Corollary 2.10
o™ (558 (i), H') — o™ (€5 (i — 1)), M)
m’ 2 geff (5 2peff((; _ ]
=0@) Z Ay (e, re) + A (ig, re) + dk72(zs) 0O — w
r=m df d?] Ll(Sr)

/
m

E A ze 7‘5
r=—m

Step 4. It holds
+

[0 (£57(12). G) — o™ (£5(12). 6] — [ (557 (i), 2) — o™ (557 (i) 1) <0
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Proof of Step 4. We want to use Proposition A.8 with
g=13"(ie), [a,0] = ®x(ie)(T N Wilie)), @=sup®i(ie)(J), u= infdy(ic)(K).
Indeed, by definition of the partition P(ie, w,w’) (Point (2b) at page 38), it holds

o609y o £57 (ie) (sup @, (i) () = £57 (ie) (sup P (ig)(T)),

ie. conv g(i) = g(i).
We thus have
o (5 (i2), G) = 0" (£ (ie), [inf 1 (ie) (), sup By (ie) ()] )
(6.17) < ot (f;ﬂ“(ig), [inf ®,(i)(K), sup @ (i)(J N Wk(is))D
o™ (£¢% (ie), H).
In a similar way one can prove that

(6.18) o™ (£5% (ie, ") > o™ (£ (ie, H).

A

Using (6.17) and (6.18), one gets the conclusion.

Step 5. We can finally conclude the proof of (6.11b), showing that

An(r,7) < O(1)

A(ie, me).

(=

T

I
3

Proof of Step 5. We can perform the following computation:
An(r,7")
= 7(ie,0(7),0(7")) = m((i — 1)e, 7,7')

= [0 (557 (i2),6) — o™ (£57(ie), 6] -
= [ 5 ie), 6) — o™ (857 (120,61 -
+ [0 (5 (i), 1) — o™ (55 i) )|

o™ (557 (i~ 1)2), F) — o (55 (i~ 1)), F)] |
o™ (85 (i), H) — 0™ (£ (i), 1))
~ [ (- 1)2), 1) — o™ (e - ), )]

+ [0~ )e), ) — o™ (TG - D), H)] [T 1), F) — o (65 (- 1), F)]

|

-
< [o™ (15 (00, 6) — o™ (557 (1), 6]~ [0 (£ i), 7) — o™ (557 (i), 1]
+ o™ (657 (i), H) — 0™ (57 (( — 1)e), )|+ [0 (457 ie), 7) <fsz<<z De), H)

+ o™ (E (0 = 1e), H) — o™ (£ (0 - 1)5)77")‘ ™M (£ (i = 1)e), H') — o™ (257 (i — V)e), F')
(by Steps 2, 3, 4 above)

’

m
<0(1) Z A(ie),me). O
This concludes the proof of Lemma 6.6. d

We can now prove Theorem 6.5.

Proof of Theorem 6.5. Fix m <m/, 7 € S, 7 € S,,» and define
Aqp(r, 7)) = qp (is, o(r), @(T/)) — qk((z — e, T, T/).



50 STEFANO BIANCHINI AND STEFANO MODENA

Since m < m/, it follows that Aqy(7,7’) can be greater or equal than 0 only if ®x((i — 1)e)~!(7),
@5 ((i — 1)e)~1(7') will interact after time ic. In this case it holds

Aq(r,7") = qi (ie, O(7 ) ( ")) = ax((i — e, 7,7")

#(i,0(1),0()  w((i-1en7)
d(ie,0(7),0("))  d((i —1)e,7,7')
< wlie 6 )< die, S D d((i—11>a,mf)>
+ W <7r(¢5, o(r),0(r")) —n((i — 1)e,m, T'))
o - e 2 ZE?ESE?SEZQ M) + G Al )
<o )d(( 1)5 — (lad(r =] + An(r, 7))

(|Ad 7|+ An(r, T’))

m
Azs 7'5

TE:

r=m

As observed before, for each m € Z, by Point (b) of Theorem 4.1, the map

\]

(by Lemma 6.6) < O(1

O: S5, = Tn, O 1= &y (ig) o Op((i — 1)e) 7 H,

is an affine function with slope 1. Hence for any pair of integers m < m’ it is well defined the change of
variable

Ox0O:8S, xS = TmXxTh,

and we have

(6.20) // qr(ie, s, <" )dsds" = // qx(ie, ©(1), O(7"))drdr .
TmXTm/ SmXSm/

We can now estimate the Lh.s of (6.10) as follows:

// (ie)drdr’ — // qr((i — V)e)drdr’
m<m’ m><T ’ SmXS ’

(by (6.20)) Z //S . qk ie,0(7),0(7")) — i ((i — 1)e, 7, T/)}d’rd’]'/

m<m’ m

(by (6.19)) < O(1 Z // Z A(ig, re)drdr’
S xSy T 7T

m<m/’ r=m
. 1
A( drdr’
D| Satere) Y 2//
reZ m=—oom’'=r+1
1
+ ZA (e, 7€) Z // - deT/]
reL m=—00 T -7

sup S,

ZA i€, 1€ / / drdr

TEZ inf S7+1 T -7

sup Sr—1 1
+ ) A(ie,re / / drdr’|,
Z inf S, =T

rez
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and since sup S,_1 < inf S, < sup S, < inf 5,11 after an elementary integration by parts,

< O)Li((i —1)e Z A(ie, me)
rEZL
(by (2.11)) < O(1)Tot.Var.(u(0)) > _ A(ic, me)
re’Z
thus concluding the proof of Theorem 6.5. g

6.5. Analysis of interacting waves. This section is devoted to conclude the proof of Theorem 6.3,
showing that inequality (6.9) holds, i.e. estimating the (negative) term related to pairs of waves which
are divided at time (i — 1)e and are interacting at time éc. In particular we will prove the following
theorem:

Theorem 6.7. The following estimate holds:

(6.21) - Z //J o qr((i — De)drdr’ < — Z A (G2 me) + O(1) Tot. Var. (u(0)) Z A(ie, me).

meZ m meZL meZL

To prove this theorem, we first study the change of the Lh.s. of (6.21) due to transversal interac-
tions (Lemma 6.8) and then we study the interaction between waves of the same family and same sign
(Proposition 6.9).

First of all we introduce the following notations. Fix m € Z and assume JL, JE £ () (see (6.6) for the
definition). Consider the grid point (ie, me) and the two incoming Riemann problems (u®™~1 yi=1m=1)
and (u'~bm=1 44™). Assume that

ui*l,mfl — Tn; 0.0 Tl/ ui,mfl ui,m — T?}/ 0" 0 Tl//uifl,mfl
st sh n S1

’ s )

and that their elementary curves are

,m—1

71 = (ullvvlho'/l) = ")/1(U 75/1)7 7;1 = (ulfmv;wa;b) = ’Yh(u;L—l(S/h—l)aslh% for h:2a"-7n

ry{/ = (ulllv Ullla O-i/) =M (ui—l,m—l’ 3l1/)7 7;{ = (ulfi7 ’U;L/a 0-;:) =" (u/h/—l(sg—l)7 8;{)7 for h = 27 ey
see Section 2.1 for the notation.

We are interested in the k-th family. Denote by f;, f/ the reduced fluxes associated respectively to
e Ve and w.lo.g. assume that f;, f;/ are defined respectively on JE JE. Now consider the collection
of curves

1 = (@, 01,61) = 7 (uh™ T ), Y = (@, 07,67) == m(ui(s1), s7),

V= (@, 0, 07) = (51 (sh-1),8n),  An = (5,05, 67) = (W), s), for h=2,....n
This is the situation after the transversal interactions considered at the beginning of Section 3, see Figure
1. For the k-th (fixed) family, denote by f7, f// the reduced fluxes associated to the curves 75,4} and let

f=Muli
As before, w.l.o.g. assume that f,C7 " are defined respectlvely on Jan JE.
For any (1,7') € JL x JE& con31der w = ®p((i — De) 1 (1), w' := ®p((i — 1)e)~(7') and define the
quantity
g (T, 7)

i (7, 7') = d((i — e, 7,7)’

where 7(7,7') is defined as follows: if J,J" € P((i — 1)e,w,w’) are the element of the partition at time
(i — 1) containing w, w’ respectively, then 7(7,7’) is defined as in (6.3), with f instead of £5((i — 1)),
ie.

~ / rthy g rth/ 7 7/ +

#(r,7) = [0 (. T) = o™ (. T)]
Recall that since w,w’ are interacting at time ie, then J = K, J' = K’ in (6.1). We can now study the
change of the Lh.s. of (6.21), due to transversal interaction. This is done in the next lemma.
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Lemma 6.8. It holds
// { — k(i — Ve, 7,7') + qu(r, T')]deT' < O()A"™(ie, me) L1 ()
JL X JR
< O(1)Tot.Var.(u(0))A™" (ig, me).
Proof. We first prove that for any (7,7') € JE x JE&
(6.22) [m((i — Ve, 7,7') = 7(7,7")| < O(1)A"* (i, me).
As in (6.16), choose £$((i — 1)) such that
7&25((;— E) (ng 72) = C;—J}(inf JE).
For any ¢ € J,,, it holds

def((i—1)e), . df _ a2 (i — 1)e d2f
=D - o) < [0 - Heole
’ Pt ((i—1)e) &S
(6.23) - dr? dr* |l i,
2¢ceff (¢, 2( ¢/ "
by Lemma 3.10 and since a1ty (1= 1e) = (1Y fi)) a.e. on Jp,
dr? dr?

< O(1)A™5 (i, me).

For (1,7") € JE x JE set w := ®1((i —1)e) (1), w’ := @1 ((i —1)e) "1 (7'); let T, T" € P((i —1)e, w,w'),
we J,w € J be the element of the partition containing w, w’ respectively; since

(1 — De,w,w') —e = (i — 1),
using (6.1) we have

+

m((i = Ve, 7, ™) = [ (@1~ 1)2), T) = o™ (#57(( - De), )]
Hence
|mk((i — Ve, 7,7") — me(7,7")]
= [ (= )e), )~ o5 (- 1), )] [ ) - (T +]

< o™ €55 (- 1), ) — ()| +
des((i —1)e)  df
 dr dr
(by (6.23)) < O(1)A™" (i, me),

oM (85 (1 - 1)2), T) — (£, T)

S ‘

Lo (Jm)

thus proving (6.22).
As an immediate consequence, we have that for any (7,7') € JE x JZ it holds

1 s/
ﬁA“anb (ie, me).

<0(1)

a7 7) = au((i = e, )
We thus have as in the proof of Theorem 6.5

1
// [— qk((i — Ve, 7, 7") + (7, 7'/)} drdr’ < O(1)A"*S(ig, me) // - drdr’
JL xJR JLxJgrR T°— T
< O(1)A" 5 (g, me) LY (),

thus concluding the proof of the lemma, because £!(.J,,) < O(1)Tot.Var.(u(0)) by (2.11). O

Now, to conclude the proof of Theorem 6.7 it is sufficient to prove the following proposition.
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Proposition 6.9. It holds
//JL B qr (7, 7" )drdr" > Azuadr(is,me).
X

Proof. Set
Tar = sup JL = inf JE,
and

JEUJE

m

TL = max{TE JE | chlef(T): conv_f(r )}

TR = min {T €Jm | TRy f(r) = JE U it )}

m m m

W.lo.g. we assume that 7, < 73 < Tg, otherwise there is nothing to prove.
It is quite easy to see that

Al (e me) = f(TM)

conv
[inf JL ;sup JE]

= f(rar) — conv f

[Tr,7R]
_ 1 Kf(TM)—f(TL)_f(TR)—f(TM)>(T — ) (-7 )}
TR —TL ™ — TL TR — TM M L)\TR M
= - i - [Urh(fy (t1,701)) — rh(f (TMaTR])}‘C2((TL7TM] X (Ta, TR]).
It is thus sufficient to prove that
(6.24) - i - [Urh (f, (11, TM]) — o™ (f, (T, TR])} L? ((TL, ] X (Tags TR / / 7')drdr'.

Observe that, by Proposition 5.12,
d((i — Ve, 7,7") < TR — 7L;

hence (6.24) will follow if we prove that

(6.25) {arh(f, (0, v)) — o™ (F, (TM,TR])}ﬁ (2, 7] % (a1, 7)) / / "drdr'.

Let

L:=D((i — 1)5)_1((7',;, TM]), R :=Dp((i — 1)8)_1((TM,TR]).
We will identify waves through the equivalence relation < introduced in (5.1): for any couple of waves
w,w € JUR, set wp<w' if and only if

t"(w) = t(w') and x(t,w) = x(t,w’) for any t € {t”(w),ie).
As observed in Lemma 5.2, the sets

E:zﬁ/m, ﬁ::R/m
are finite and totally ordered by the order < on W, ((i — 1)e). Moreover for any ¢ € Z, e ﬁ, let w e &,
w' € & and set
I((Z - 1)575;5/) = I((Z - 1)8,11),’[1)’), P((l - 1)57575/) = P((Z - 1)5aw; w/)a
and R
I((i — e, &, &) = I((i — e, &,€) [

The above definitions are well posed thanks to Lemma 5.10 and Lemma 5.8, Point (2). It is moreover
quite easy to see that ICLUR.

Now we partition the rectangle L xR in sub-rectangles, as follows. For any rectangle C:= [AZC X 73,(; C
L x R, define (see Figure 7)

oo, C=0,
11 = ~ = ~ ~ ~ ~ ~ ~
(C) { [Ec NZ((i— 1)€,max£c,min72c)} X [Rc NZ((: —1)e,max L¢,minR¢)|, C#0,
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)

L

FIGURE 7. Partition of C := /jc X ﬁc.

oo, c =1,
(€)= { [Ac NZ((i— 1)5,maxljc,min7€c)} X [ﬁc \f((z - l)e,maxfc,minﬁc)}, C 0,
e Jo c=1,

2(C) = [Ac \Z((i — 1)5,max2c,min7€c)} X [ﬁc \Z((i — 1)6,max/:'c,min7€c)], C+0,
e {? C =1,
3(C) = [EC \Z((i — 1)57maxzc,min7€c)} X [7’%@ NZ((i — l)g,maxfc,minﬁc)}, C+0,

Clearly {Ho (C), 111 (C), 5 (C), I3 (5)} is a disjoint partition of C.

For any set A, denote by A<N the set of all finite sequences taking values in A. We assume that
0 € A<N| called the empty sequence. There is a natural ordering < on A<N: given o, 8 € A<,

a<df <= [ isobtained from a by adding a finite sequence.
A subset D C A<N is called a tree if for any a, 3 € AN o <8, if € D, then a € D.
Define a map ¥ : {0,1,2,3}<N — 2£XR by setting
T L x 7%, if a =0,
M, ool (LxR), ifa=/(al,... a,) € {0,1,2,3}<N\ {0}

a =

For a € {0,1,2,3}<N, let Lo, Ra be defined by the relation ¥, = £, xRq. Define a tree D in {0,1,2,3}<N
setting

D:= {@}U{a:(al,...,an)6{0,1,2,3}<N neN, I, # 0, ak#Oforkal,...,n—l}.

See Figure 8.
Since IIp(IIo(C)) = Iy(C) for any C C L x R, this implies, together with the fact that £ x R is a finite
set, that D is a finite tree.
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ﬂ22 i ﬁ21 1o i 1144
f[23 3 f[20 I3 3 I R
31
fffffffffffffffffff 1,
T30
C

FiGURE 8. Partition of £ x R using the tree D.

For any o € D, set

‘COZ = U 55 Ra = U

¢€ly &eRa
Lo :i=P,((1 — De)(La), Ro = Pk((i — 1)e)(Ra).
The idea of the proof is to show that, for each o € D, on the rectangle L, X R, it holds
(6.26) [0™(f,La) — ™(f, Ra)| L3 (Lo X Ra) < / 7(r,7")drdr’.
LoaXR

The conclusion will follow just considering that §) € D and Ly = (7, 7], Ry = (Tar, TR
We now need the following two Lemmas.

Lemma 6.10. For any | B € D, the partition P((i — 1)e, max Eg,mln Rg) of the characteristic interval
Z((i — 1)5,max£5, mln’RB) can be restricted to

LsNI((i— l)a,maxfg,minﬁg)
and to

RgNZI((i —1)e,max Lg, minRg).
Proof. Let us prove only the first part of the statement, the second one being completely similar. We
will show by induction the following stronger claim:
for each v < 3, the partition P((i — 1)e, max 25, minﬁg) of the interval Z((i — 1)e, max EA@, min 7%5) can
be restricted to £, NZ((¢ — 1)e, max Lg, min Rg).

For v = (), by definition £5 = £ and thus the proof is an easy consequence of Proposition 5.12. Thus
assume the claim is true for some v < 8 and let us prove it for va, with a € {0,1,2,3}.
If @ = 0,1, by definition it holds

Lo =LyNI((i— 1), max[i ,min R 5)-

Hence

Lo NI((E— 1)5,max25,min7/€g) =L,NZ((z—1)e, maxﬁw,mlnR YNZ((i— 1)e, maxﬁg,mng)
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By inductive assumption, the partition P((i — 1)e, max Eg, min 7%[5) of Z((i — 1)e, max Eg,min ﬁg) can
be restricted to £, NZ((i — 1)e, max Eﬁ, min Rﬂ) while, since v <1 3,

max Eﬁ < max f"v < min 7/'57 < min ﬁg

and therefore, by Proposition 5.14, the partition P((i — 1), max /35, min 7%3) can be restricted also to
Z((t — 1)e,max L, min Ry) NZ((i — 1), max L3, min R ), and thus we are done.
If a = 2, 3, by definition it holds

Lo = Ly \ Z((i — 1)e, max L, min R).
Hence
Lo NZ((2—1)e, maxEB, minﬁ,ﬁ)
(E \Z((i — 1)e, maxﬁ ,min R )) NZ((i— l)e,maxljg,min’l%@)
= (EA, NZ((i— 1)57max2g, minﬁg)) N (I((z - 1)5,max25, minﬁﬁ) \Z((i — 1)5,max£2,min7€7)).
As in the case a = 0, 1, by inductive assumption, the partition P((i — 1)e, max/jg,mlnRB) of the
interval Z((i — 1)e, maxﬁg,mlnR/g) can be restricted to £, N Z((¢ — 1)e, maxﬁg,mng) while, as

before, by Proposition 5.14 using v <1 8, it can be restricted also to Z((i — 1)e, max 2,87 min ’ﬁﬁ) \Z((i —
1)e,max L, min Rg), and thus we are done also in this case. O

Lemma 6.11. For each a = (ay,...a,) € D, if a, =0, then it holds
[arh(f, La) — o™ (f, Rw)]ﬁ2 (Lo X Ry) // 7(r,7")drdr’.

Lo XRa

Proof. Set 8 := (a1,...,a,-1). Since a,, = 0, then

U, = Ho(@g) = (Eg NZ((i — 1)5,max25,min7€5)) X (7/5[3 NZ((i — 1)5,max2g,min7/€5)),
and thus
Lo=LsNI((i—1)e, maxfg7min7€5), Ra=RgNI((i— 1)57max25,min7/€5).
Consider the partition P((i — 1)e, max /35, min 7%,3) of the interval Z((i — 1)e, max 25, min 7%5) and set
P:= {@k((i —1)e)(T) | T e P((i — 1)5,max25,min7€ﬁ)}.

By definition of the partition in Section 5.3, the elements of P are intervals in R, possibly singletons.
Clearly the non-singleton intervals in P are at most countable; moreover by Lemma 6.10, the partition
P((i — 1)e, max Eg,min ﬁﬂ) can be restricted both to £, and to R,; hence, denoting by {U, },en the
non-singleton elements of P contained in L, and by {V,}, ¢y the non-singleton elements of P contained
in R, we can write Lo, R, as

Lo = ®4((i — 1)6)(La) = ( U Ur) U (La\ U Ur>,

reN reN
Ro = @il = D2)R) = (U Vo) () U v )
r’'eN r’eN
set also, for shortness:
v=U., Vv=JV.
reN r’eN

Now observe that for (7,7) € Ly X Rq, setting

wi= k(i —1)e) 7M7),  w = @p((i - 1)),
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it holds:
[Jrh(fa Ur) Urh(fa Vr’)}+ ifre Ur, and 7’ € Vtr’a
- B df +
MU - o r’)] if 7 € Uy, and 7' € R, \ 'V,
T
6.27 7(r,7) =< [df _ +
(6.27) () ;lf(T)—Urh(f,VT/)} ifre Lo \U, and 7" € V.,
-
df __df 1" . ,
%(T)—%(T) ifreL,\U, and 7" € R, \ V.

Indeed, if max EB, min ﬁg have never interacted at time (i — 1)e, then by Proposition 5.15, Point (3),
w,w’ have never interacted at time (i — 1)e and thus

(by (6.3) and the fact that I, K’ in (6.2) are singletons). In particular (6.27) holds.
On the other hand, if max £z, min R3 have already interacted at time (i — 1)e, distinguish two cases:

(1) if £ (w), t(w') < PUY((7 — 1)€,max[:/3,min7€g), then by Proposition 5.15, Point (1), w,w’
have already interacted at time (i — 1)e and

Z((i — 1)e, max Lz, min Rg) = Z((i — 1)e,w,w'), P((i — 1)e,max Ly, minRz) = P((i — 1)e, w,w’),
which implies (6.27) (remember that
P (i — 1)e, w, w') = tP1((4 — 1), max L3, min 7%[3),

since the intervals are not further partitioned by Ilp);
(2) if one or both among w,w’ is created after t5Pit((i — 1)e, max L, min Rg), then, by Proposition
5.15, Point (2), w,w’ have never interacted at time (i — 1)e and thus

) = L 1) - L o) ’

(by (6.3) and the fact that I, K’ in (6.2) are singletons). In particular (6.27) holds also in this
case.
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We are now able to conclude the proof of the lemma as follows:

[Urh(f) La) - Urh(f Rq )]ﬁQ(La X Ry)

://LQXRQ [Zf( ) — Zi(T’)]deT'

Sl ol -t

r,r’ €N reN
df . df ] // {df df } :
+ drdr’ + — — (7" |drdr
%/\/LG\U XV, [dT( s ™) (La\U)X(Ra\V) g )
= Z L2(U, x Vyr) {orh(f, U,) — o™ (f, VT,)} + Zﬁl(Ur)/ [Urh(f, U,) — df(T’):| dr’
R.A\V dT
r,r’eN reN o\
df : df _, df
+ LV, / [ o™ fa‘/r’:|d7'+// [T - = I:|deT/
sewa [ |ge-rdvales [ oG
2 h,F h F + 1 n 7 af *
< 3 LU < V) [0 - eV e (UT)/ {or (f,UT)(T’)] dr’
r,r’ €N reN Ra\V dr
df -7 af . df, 1"
D> ﬁ%vm/ CEAD] dr+// Lo -] arar
gt Lo\U LdT (La\U)x(Ra\V) LAT dr
(6.27)
< Z// (r, 7 deT+Z// 7drdr’
T,T,GN U XV/ U >< R \V)
+ Z // #(r, 7" )drdr" + // #(r,7")drdr’
S Jwavyxv,, (La\U) X (Ra\V)
= // 7(r, 7" drdr’,
Lo XRe
which is what we wanted to prove. ]

Conclusion of the proof of Proposition 6.9. In the previous lemma we proved inequality (6.26) for
the elements a € D of the tree whose last component is equal to 0. Now we use this fact to prove (6.26)
for any o € D. We proceed by (inverse) induction on the tree.

If a is a leaf of the tree, then, by definition, the last component of « is equal to zero, and thus Lemma
6.11 applies.

If o is not a leaf, then

and thus

Lo % Ry = (Lao X Rao) U (Lal x Ral) U <La2 x R(ﬁ) U (La3 x Ra3).
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The estimate (6.26) holds on Lyg X Rao by Lemma 6.11, while it holds on Ly, X Raa, @ = 1,2,3, by
inductive assumption. Hence we can write

[0™(f, La) — 0™ (f, Ra)] £*(La % Ra) //L . Lh ZZ( )}d &

_Z//wmm { (1) - ;if(r/)]deT’

- Z rh f Laa) - O (fa Raa)} 52([/1)«1 X Raa)

< Z//MXRM 7")drdr’

= // 7(r,7)drdr’.
LoaXRaa

As already observed, for a = (), we get inequality (6.25), thus concluding the proof of the proposition. O
We can finally use Lemma 6.8 and Proposition 6.9 to prove Theorem 6.7.

Proof of Theorem 6.7. 1t holds

-y / /] o qu((i — 1)e)drdr’

mez
< Z //JLXJR [— 9 ((0 — 1)e) + aw (7, T/)} drdr’ — Z //JLXJR qx (7, 7' )drdr’

meZ m 2 Jm meEZL
Z A8 (e me) L1, Z // (1, 7")drdr’
mez mez” /I XJJ?L
< - Z AT (g, me) + O(1)Tot. Var. (u(0)) Z AT (G2 me)
mEZ meZ
< = ) AP (ig,me) + O(1)Tot. Var.(u(0)) Y _ A(ie, me). O

meZ meZ
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APPENDIX A. REAL ANALYSIS RESULTS

In this section collect some results about convex envelopes of continuous functions and slopes of secant
lines; these results are frequently used in the paper. The statements related to convex envelopes are
already proven in [4], [7], [8], with some minimal variations, while the results regarding the slopes of the
secant lines will be explicitly proved.

A.1. Convex envelopes. We recall here the notion of convex envelope of a continuous function g : R —
R and we state some results about convex envelops.

Definition A.1. Let g : R — R be continuous and [a,b] C R. We define the convexr envelope of g in the
interval [a,b] as

c[orll)?/g(u) = sup {h(u) ‘ h:[a,b] — R is convex and h < g}.

A similar definition holds for the concave envelope of g in the interval [a,b] denoted by coréc g. All
a,
the results we present here for the convex envelope of a continuous function g hold, with the necessary
changes, for its concave envelope.

Lemma A.2. In the same setting of Definition A.1, c[on?/g is a convex function and conv g(u) < g(u)
b

a, [a,b]

for each u € [a, b].

The proof is straightforward.
The following theorem is classical and provides a description of the regularity of the convex envelope
of a given function g. For a self contained proof (of a bit less general result), see Theorem 2.5 of [7].

Theorem A.3. Let g:[a,b] = R be a Lipschitz function. Then:

(1) the convex envelope c[oré]vg of g in the interval [a,b] is Lipschitz on [a,b] and
a

: < Tinla).
Llp(c[gg]v g) < Lip(g);
(2) if g € C'([a,b]), then c[ori]vg € C'([a,b]) and, for any point u € (a,b) such that g(u) = c[onv g(u),
a, a,

b]
it holds J J
@g(u) = c[gg]vg(u);

(3) if g € C*Y([a,b]), then c[orazg € C"([a,b]) and

d dg
Lip( — < Lip( == ).
lp<duﬁ3fi}vg)— lp<du>

By "C*([a,b])” we mean that c[ora/g is C! on (a,b) in the classical sense and that in a (resp. b) the
a,

right (resp. the left) derivative exists.
We now state some useful results about convex envelopes, which we frequently use in the paper.

Proposition A.4. Let g: R — R be C* and a < @ < b. Then

(1) for each uy,us € [a,q], u1 < us,

d con (u2) d con (ug) > d con (u2) d con (uq)
— conv — [ — conv — conv — [ — conv ;
du [a,a] A du [a,a) I )N =\ G [a,b] A du Tab) gt
(2) for each uy,uz € [G,b], uy < ug,
d d d d
(du cony g) (uz2) — (du c[gg]vg) (u1) = (du cony g) (u2) — (du ﬁgg]vg> (u1),
where the derivative in the endpoints of the intervals are in the sense of right/left derivative.

Proof. See Proposition 2.10 of [7]. O



QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF CONSERVATION LAWS 61

Proposition A.5. Let g be a C%' function, let a < @ < b. Then

<di convg>( -) - (dcz Convg> (@) < Lip(¢')(b — ).

la,a] la,b
Proof. See Proposition 2.15 of [7]. O
Proposition A.6. Let g,h: R — R be C' functions. Let a,b € R, a < b. Then it holds
d dg dh deconvi,p g dconvi ) h dg dh
—convg——c - - — - — - .
du a,b] du Ia, b] du du dr dr dr dr|
Proof. For the first estimate see Proposition 2.12 of [8], while for the second one see Lemma 3.1 of [1]. O

A.2. Slopes of secant lines. We now state two results related to the slope of the secant line of a function
g between two given points a < b. Their proofs are easy exercises. Using the language of Hyperbolic
Conservation Laws, we will call this slope the Rankine-Hugoniot speed given by the map g to the interval

[a, b].
Proposition A.7. Let g: R — R be a C*! function and let a € R. Then the map

9(@) — gla)
2 w—a 0 ITFO
g/(a‘)v ifr=0

is Lipschitz on R, with Lipschitz constant equal to Lip(g’).
Proposition A.8. Let g: R — R be a CY! function, let [a,b] C R, @ € [a,b] such that conv g(u) = g(u).

Then for any u € [a,b], “
e ifu € [a,ul, then
g, [u, 1)) < o™ (g, [u,b));
e if u € [u,b], then
(g, [4,u]) > o™(g, [a,u)).
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