
GLIMM INTERACTION FUNCTIONAL FOR BGK SCHEMES

STEFANO BIANCHINI

1. Introduction

Consider the n × n hyperbolic system of conservation laws

(1.1) ut + F(u)x = 0, u ∈ R
n.

Under the assumptions that the matrix A(u) = DF(u) is strictly hyperbolic and its eigenvalues are
genuinely non linear or linearly degenerate, the global existence of a solution u : [0, +∞) 7→ R

n for small
BV initial data has first been proved in [18].

The uniqueness of solutions and their Lipschitz dependence in L1 w.r.t. the initial data has been
established in a series of papers [9, 11, 12, 13, 14, 15]. See [10, 17] for a general introduction to the theory
of hyperbolic systems in one space dimension.

In the two papers [6, 4], a different approach has been used. Instead of constructing approximate
solutions of the hyperbolic system (1.1) and studying their properties, the authors consider two approxi-
mations:

• vanishing viscosity approximation,

(1.2) ut + F(u) = ǫuxx;

• semidiscrete upwind approximation,

(1.3) ut(t, x) +
1

ǫ

(

F(u(t, x)) −F(u(t, x − ǫ))
)

= 0.

Aim of the two papers [6, 4] is to prove that the solutions of the two schemes (1.2), (1.3) are well defined,
globally in times, and satisfy some estimates which are independent on ǫ. More precisely:

(1) the solution has uniformly bounded total variation for all t ≥ 0, and its BV norm depends only
on the BV norm of the initial data;

(2) the solution depends Lipschitz continuously on the initial data in L1, and on time.

It is easy to verify that both properties (1), (2) are invariant for the hyperbolic rescaling (t, x) 7→ (t/ǫ, x/ǫ).
Because of this rescaling, it suffices to consider the case ǫ = 1 in (1.2), (1.3). As an example of some non
scaling invariant property, note that the L1 norm of a solution tends to 0 as ǫ → 0: thus to obtain non
trivial hyperbolic limits one has to assume u ∈ L∞, for example.

One advantage of the approach in [6, 4] is that strict hyperbolicity is the only assumption needed
on A(u): as an example, the analysis of stability for a wave front tracking or Glimm scheme solution
becomes quite difficult without the usual assumption on genuine non linearity or linear degeneracy of
the eigenvalues. It is an open problem whether the results on hyperbolic systems obtained in [6, 4] can
be proved directly at the hyperbolic level (1.1). We note also that in [1, 2] it is shown how a similar
approach cannot easily been extended to fully discrete schemes, e.g. Lax-Friedrichs or upwind Godunov
scheme.

In the literature, there are other schemes used to approximate (1.1): the relaxation schemes. The
easiest example is the scheme

(1.4)

{

ut + vx = 0
vt + Λ2ux = 1

ǫ (F(u) − v)
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where Λ is a positive constant. The above system is a special case of a class of relaxation systems
introduced in [20], but we will refer to it as the Jin-Xin relaxation system from the name of the authors.
For a general introduction and survey to relaxation schemes see [23].

At a formal level, one sees that, as ǫ → 0,

v → F(u), ut + F(u)x → 0.

As in the previous cases, the linearized version of (1.4) around ū defines a continuous semigroup if A(ū)
is hyperbolic and its eigenvalues λi(ū) satisfy

(1.5) −Λ + c ≤ λi(ū) ≤ Λ − c,

for some c > 0. The transformation x 7→ x/Λ, v 7→ Λv allows us to set Λ = 1 in (1.4), and with the
hyperbolic rescaling (t, x) 7→ (t/ǫ, x/ǫ) we can take ǫ = 1 in (1.4).

Troughout the following, for notational convenience we denote by

u0,t, u0,tx, . . . ,

the derivatives of u at time t = 0.
We should look for properties of the solution (u, v) which are invariant under the hyperbolic rescaling.
By differentiating the second equation in (1.4) w.r.t. x and using the first, one obtains the nonlinear

wave equation

(1.6) ut + A(u)ux = uxx − utt,

with A(u) = DF(u). The above equation is meaningful also in the case A(u) is not a Jacobian matrix,
so that one cannot write it in the conservative form (1.4).

We consider the wave equation (1.6), with A(u) strictly hyperbolic but not necessarily a Jacobian of
some vector function F(u). The first main result presented in the meeting is the following theorem:

Theorem 1.1. Consider the nonlinear wave equation (1.6), with A(u) strictly hyperbolic and satisfying

the stability conditions (1.5) with Λ = 1

(1.7) −1 + c ≤ λi(ū) ≤ 1 − c.

Assume that the initial data (u0, u0,t) are sufficiently smooth and with total variation less than δ1:

(1.8) ‖u0‖L∞ , ‖u0,t‖L∞ ≤ δ1, ‖u0,x‖L1, ‖u0,tx‖L1 ≤ δ1, ‖∂k
xu0‖L1, ‖∂k

xu0,t‖L1 ≤ C′δ1,

for some constant C′ and k = 2, 3.
If δ1 ≤ C−1δ0, with C sufficiently large, then there exists a global solution (u, ut), defined for all t ≥ 0,

and with the L1 norm of ux, utx less than 4δ0:

(1.9) ‖u(t)‖L1 ≤ 4δ0, ‖ut(t)‖L1 ≤ 4δ0.

Moreover this solution depends continuously w.r.t. time and the initial data: there exists a constant L
such that, for any two solutions u, û one has

∥

∥u(t) + e−tu0,t − (û(s) + e−sû0,t)
∥

∥

L1 +
∥

∥(ut(t) − e−tu0,t) − (ût(s) − e−sû0,t)
∥

∥

L1

≤ L
(

|t − s| +
∥

∥(u0 + u0,t) − (û0 + û0,t)
∥

∥

L1 +
∥

∥u0,tx − û0,tx

∥

∥

L1 +
∥

∥u0,txx − û0,txx

∥

∥

L1

)

.(1.10)

We note here that by means of the techniques used in this paper, one can avoid the assumption of
smooth initial data. Moreover, if ū ∈ R

n is any constant state, by the shift u 7→ u− ū we can replace the
first inequality of (1.8) by

‖u0 − ū‖L∞, ‖u0,t‖L∞ ≤ δ1,

and assume A(u) strictly hyperbolic in a neighborhood of ū.
It is important to observe that the initial data are not assumed to satisfy u0,t ∈ L1, which on the other

hand is a natural condition for the initial data of (1.4), since vx = −ut. As we will show in the analysis,
apart from exponentially decaying terms, ut becomes immediately in L1. More precisely we will show
that ut − e−tu0,t is integrable and has L1 norm of the order of 4δ0 for all t > 0.

Finally, notice that the Lipschitz dependence is w.r.t. the sum of u0 +u0,t. This is clearly more precise
that the dependence w.r.t. u0 and u0,t separately. Moreover this dependence becomes particularly
relevant in the hyperbolic limit ǫ → 0, see (1.14) below.
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The second result presented is the analysis of the limit as ǫ → 0. Denote by uǫ(t) the solution of the
rescaled system

(1.11) ut + A(u)ux = ǫ(uxx − utt), u(0, x) = u0(x), ut(0, x) = u0,t(x),

and assume that the initial data are given by (u0, u0,t/ǫ), with u0, u0,t fixed. This assumption on the
form of ut(t = 0) is needed in order to make the sum u + ǫut to converge at t = 0. We then prove the
following theorem:

Theorem 1.2. Consider the nonlinear wave equation (1.11), with A(u) strictly hyperbolic and satisfying

the stability conditions (1.7). Assume that the initial data (u0, ǫu0,t) are sufficiently smooth and with

total variation less that δ1:

(1.12) ‖u0‖L∞ , ‖u0,t‖L∞ ≤ δ1, ‖u0,x‖L1, ‖ǫu0,tx‖L1 ≤ δ1, ǫk‖∂k
xu0‖L1 , ǫk+1‖∂k

xu0,t‖L1 ≤ C′δ1, k = 2, 3.

for some constant C′.

Then the solution uǫ(t) to (1.11) converges in L1
loc as ǫ → 0 to a unique limit u(t).

The BV functions u(t), t > 0, generate a Lipschitz continuous semigroup u(t) = Stu(0) in L1
loc w.r.t.

time and data: for t, s ≥ τ > 0

(1.13) ‖u(t) − û(s)‖L1 ≤ L
(

|t − s| + ‖u(τ) − û(τ)‖L1

)

.

Moreover, we have the estimate

(1.14) ‖u(t) − (u0 + u0,t)‖L1 ≤ Lt,

so that the correct initial data for u(t) is given by u0 + ut,0.

This semigroup is defined on a domain D containing all the function with sufficiently small total

variation, and can be uniquely identified by a relaxation limiting Riemann Solver, i.e. the unique Riemann

solver compatible with (1.6).

We can thus say that the semigroup S represent a family of relaxation limiting solutions to the quasi-
linear hyperbolic system

(1.15) ut + A(u)ux = 0.

We repeat again that as a consequence of the above theorem, the appropriate initial data for the limiting
solution u(t) is the sum of u0 + u0,t. Thus u(t) may have a jump at t = 0, while, for t > 0, u(t) is
Lipschitz continuous w.r.t. t. Consider the following easy example.

Example 1.3. Consider the simple model

ut = ǫ(uxx − utt).

with initial data u(0) = 0, ut(0) = ǫ−1. Then the solution is clearly 1−e−t/ǫ, which converges to u(t) ≡ 1,
t > 0. Thus the hyperbolic limit should have the initial data u(0) = 1.

When proving uniform BV estimates (and also stability estimates), the fundamental points are

• to understand the non linear wave structure of the solution of the kinetic scheme,
• to write a Glimm type functional which measure the interaction of non linear waves.

These two steps are strictly related: in fact the knowledge of the wave decomposition yields the form
of the interacting terms, hence suggests the form of the functional. Conversely, the form of the functional
describes how the solution can be decomposed as a sum of non linear waves.

In this note we want to extend the construction of a Glimm interaction functional to the general case
of BGK models, i.e. kinetic models of the form

(1.16) Fα
t + αFα

x = Mα

(

∑

β

F β

)

− Fα, Fα ∈ R,

with the assumption that for all u

(1.17)
∑

α

Mα(u) = u, Mα(u),
dMα(u)

du
> 0.
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For simplicity, we will only construct the functional for the linearized version of (1.16), i.e.

(1.18) Fα
t + αFα

x = cα

(

∑

β

F β

)

− Fα, cα > 0,
∑

α

cα = 1.

We assume moreover that the speeds α are bounded.

2. Flux on a Dirichlet boundary and Glimm functional

Before constructing the Glimm type functional for relaxation, we recall its construction for the scalar
nonlinear parabolic equation

ut + λ(u)ux = uxx.

One can in fact introduce the vector valued function P = (u, f(u) − ux), which satisfies

Pt + λ(u)Px = Pxx.

For the above equation one can show that the functional

(2.1) Q(t) =
1

2

∫ ∫

x<y

|Px(t, x) ∧ Px(t, y)|dxdy

is decreasing: precisely

(2.2)
dQ

dt
≤ −

∫

R

|Pt(t, x) ∧ Px(t, x)|dx = −

∫

R

|Pxx(t, x) ∧ Px(t, x)|dx.

The last equation can be thought as the instantaneous area swept by the curve P (t, x).
It is possible to give another interpretation of the previous functional. In fact one can consider the

variable

p̃(t, x, y) = Px(t, x) ∧ Px(t, y) = ux(t, x)ut(t, y) − ux(t, y)ut(t, x),

which satisfies

(2.3) p̃t + div
(

(λ(u(t, x)), λ(u(t, y))p̃
)

= △p̃.

Due to the symmetry p̃(t, x, y) + p(t, y, x) = 0, the above scalar 2-d equation can be considered in the
half plane {x > y} with boundary data p̃(t, x, x) = 0. The functional Q now has half of the L1 norm of
p̃, and its time derivative is the flux of p̃ across the boundary {x = y}.

While the first interpretation as a shortening curve is difficult to extend to BGK kinetic schemes, the
last interpretation is more suitable: in the next section we will associate to system (1.16) in one space
variable a BGK model in the half plane {x > y}, and we will estimate the flux of the solution through
the boundary {x = y}. To understand better the construction and the final estimate, we consider here
the following 1-d example.

Example 2.1. We consider the simple model

(2.4)

{

z−t − z−x = z+−z−

2

z+
t + z+

x = z−−z+

2

in x ≥ 0 with boundary data f−(t, 0) + f+(t, 0) = 0. Our goal is to estimate

(2.5)

∫ +∞

0

|z−(t, 0)|dt.

To have a better control of the solution, we first notice that if the boundary data is z+(t, 0) = 0, then
clearly by L1 contraction

d

dt

∫

R+

|z−(t, x)| + |z+(t, x)|dx ≤ −|z−(t, 0)|,

so that the integral (2.5) is bounded by the initial L1 norm of z. The above estimate just tells that
the number of particle which cross the boundary (and disappears) is bounded by the total number of
particles in x > 0.
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Figure 1. The functions z−,1 (left) and z+,1 (right).

We thus have only to consider the case of an initial Dirac mass δ in f+ located at the origin. We now
decompose the solution to (2.4) with initial data z−(0, x) = 0, z+(0, x) = δ(x) as the sum of functions
z±,i, i = 0, 1, . . . , each one satisfying

(2.6)

{

z−,i+1
t − z−,i+1

x = z−,i+z+,i

2 − z−,i+1

z+,i+1
t + z+,i+1

x = z−,i+z+,i

2 − z+,i+1

with z±,−1 = 0, z−,0 = 0, z+,0 = δ(x), and null initial data for i = 1, 2, . . . . Roughly speaking, we
can imagine that each function z±,i describes a generation of particles, moving with speed ±1, and with
average decay time of 1. When 2 particles of the i generation decay, then 2 particles of the i + 1-th
generation are created, with speed −1 and +1.

It is simple to construct the first solutions: in fact,

z−,0(t, x) = 0, z+,0(t, x) = e−tδ(x − t),

z−,1(t, x) =
e−t

2
χ{0 ≤ x ≤ t}, z+,1(t, x) = −

e−t

2
χ{0 ≤ x ≤ t} +

t

2
e−tδ(x − t).

At this point we can observe that at the next step the total source z−,1 + z+,1 has become 1/2, while the
total flux of these solutions across the boundary is 1/2. We thus have proved the following: after 1+ 1/2
crossing (1 is due to the initial absorbing boundary), we have that 1/2 of the initial L1 norm disappear.
It is thus clear that the total amount of crossing is bounded by

1 + 1/2

1 − 1/2
= 3.

We thus conclude with the estimate

(2.7)

∫ +∞

0

|z−(t, 0)|dt ≤ 3

∫

R+

|z−(0, x)| + |z+(0, x)|dx.

3. BGK schemes

Consider the linear scalar BGK scheme

(3.1) Fα
t + αFα

x = cα
∑

β

F β − Fα, Fα ∈ R.

where cα are positive coefficients such that
∑

α

cα = 1,

and the speeds α are bounded by K.
Consider the initial data

(3.2) Fα(t, x) = δα,ᾱδ(x).
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The solution to (3.1) together with (3.2) is the Green function Γα(ᾱ, x): we suppose that Γ exists and
is smooth in (t, x) for t > 0. An application of Duhamel formula gives that the solution to (3.1) with
general initial data is

(3.3) Fα(t, x) =
∑

β

∫

R

Γα(β, x − y)F β(0, y)dy.

An important quantity is the viscosity associated to (3.1). Define the state u by

(3.4) u(t, x) =
∑

α

Fα(t, x).

By the Chapman-Enskog expansion (or considering the parabolic part of the Green kernel Γ), we obtain
that

(3.5) ut +

(

∑

α

αcα

)

ux −

(

1

2

∑

αβ

(α − β)2cαcβ

)

uxx ≃ 0.

Let

(3.6) λ =
∑

α

α, σ2 =
1

2

∑

αβ

(α − β)2cαcβ > 0.

Without any loss of generality we can assume λ = 0.
The last quantity is the asymptotic viscosity of the solution Fα, and is related to the long time diffusive

behavior of Fα. We will show that it is also related to the existence of a Glimm functional for (3.1).
Observe that σ > 0 and the fact that the average speed is 0 imply that

(3.7)
∑

α>m

cα ≥
1

K(K − m)

∑

α

(α − m)(α + K)cα =
σ2 − mK

K(K − m)
,

and similarly

(3.8)
∑

α<m

cα ≥
σ2 − mK

K(K − m)
,

We introduce the two quantities related to the wave interaction: the Amount of Interaction is defined
by

I =
∑

αβ

|α − β|

∫ +∞

0

∫

R

∣

∣Fα
t (t, x)F β

x (t, x) − Fα
x (t, x)F β

t (t, x)
∣

∣dxdt

=
∑

αβ

|α − β|

∫ +∞

0

∫

R

∣

∣Fα
x (t, x)F β

x (t, x)
∣

∣

∣

∣

∣

∣

−
F β

t (t, x)

F β
x (t, x)

−

(

−
Fα

t (t, x)

Fα
x (t, x)

)∣

∣

∣

∣

dxdt.(3.9)

The Glimm Functional is

Q(t) =
∑

αβ

∫ ∫

R2

∣

∣Fα
t (t, x)F β

x (t, x) − Fα
x (t, x)F β

t (t, x)
∣

∣dxdt

=
∑

αβ

∫ ∫

R2

∣

∣Fα
x (t, x)F β

x (t, x)
∣

∣

∣

∣

∣

∣

−
F β

t (t, x)

F β
x (t, x)

−

(

−
Fα

t (t, y)

Fα
x (t, y)

)∣

∣

∣

∣

dxdt.(3.10)

The interpretation of the above formulas is the following.
If we define the strength of the wave in the family Fα located at (t, x) as |Fα

x (t, x)|, and its speed as
the level set speed

σα(t, x) = −
Fα

t (t, x)

Fα
x (t, x)

,

then the amount of interaction is the integral over the half plane (t, x) ∈ R
+ × R and w.r.t. µ× µ of the

elementary interactions

|α − β||Fα
x ||F β

x |
∣

∣σα − σβ
∣

∣

= |α − β|
(

strength of α wave
)

×
(

strength of β wave
)

×
∣

∣

∣
difference in speed between α, β

∣

∣

∣
.
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σα σβ|   −   | |F  ||F  ||      −     |α β α β
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x

β
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Figure 2. Amount of interaction and Glimm functional.

This is, a part from the index α, β the amount of interaction among non linear waves of hyperbolic
systems. The coefficient |α−β| is related to the time of interaction: if two families have speed α, β, then
the time of interaction is of order |α − β|−1.

Similarly, the Glimm functional is given by the sum of the elementary Glimm interaction potentials

|Fα
x (t, x)||F β

x (t, y)|
∣

∣σα(t, x) − σβ(t, y)
∣

∣

=
(

strength of α wave in x
)

×
(

strength of β wave in y
)

×
∣

∣

∣
difference in speed between α, β

∣

∣

∣
.

(3.11)

Define now the variables

gα =
∂Fα

∂t
, fα =

∂Fα

∂x
,

which satisfy the same linear BGK scheme

(3.12) gα
t + αgα

x = cα
∑

β

gβ − gα, fα
t + αfα

x = cα
∑

β

fβ − fα,

and introduce the functions

(3.13) Pαβ(t, x, y) = fα(t, x)gβ(t, y) − fβ(t, y)gα(t, x).

A simple computation shows that

Pαβ
t = − αPαβ

x − βPαβ
y + cα

∑

γ

P γβ + cβ
∑

γ

Pαγ − 2Pαβ

= − (α, β) · ∇Pαβ +
∑

γ

(

cβPαγ + cαP γβ
)

− 2Pαβ.(3.14)

Because of the symmetry of (3.13) one has

(3.15) Pαβ(x, y) = −P βα(y, x),

Thus the above BGK scheme can be considered either in the plane with initial data satisfying (3.15), or
in the half plane {x > y} with boundary conditions

(3.16) Pαβ(x, x) + P βα(x, x) = 0.

The meaning of the above boundary condition is that when a particle pαβ travelling with speeds (α, β),
α < β hits the boundary {x = y}, then it changes into −pβα, i.e. it is reflexed (α, β) 7→ (β, α) and from
positive it becomes negative (or viceversa).
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It is thus clear that the total number of particle is preserved, i.e.

d

dt

∑

αβ

∫

R2

|Pαβ(t, x, y)|dxdy = 2
d

dt

∑

αβ

∫

x>y

|Pαβ(t, x, y)|dxdy ≤ 0.

We can also expect that, because of diffusion, if Pαβ > 0 in some points, then it is positive in a small
neighborhood. Hence after the boundary reflection some particles become negative and annihilates with
the positive ones: observe in fact that the source term is the sum w.r.t. the velocity α of all particles at
a fixed location.

The quantities (3.9), (3.10) turn out to be the flux of Pαβ on the boundary x = y,

(3.17) I =
∑

αβ

|α − β|

∫ +∞

0

∫

R

|Pαβ(t, x, x)|dxdt,

and the initial L1 norm of Pαβ in the plane,

(3.18) Q =
∑

αβ

∫ ∫

R2

|Pαβ(0, x, y)|dxdy.

Aim of the next section is to prove that if σ > 0, then I is bounded by Q.

3.1. Construction of the Glimm functional for BGK kinetic schemes. We consider the linear
BGK model (1.18) in the plane

(3.19) Pαβ
t + (α, β) · ∇Pαβ =

1

2

∑

γ

(

cβPαγ + cαP γβ
)

− Pαβ ,

with initial data satisfying

(3.20) Pαβ(0, x, y) + P βα(0, y, x) = 0.

The coefficients have been renormalized by the rescaling (t, x) 7→ (t/2, x/2).
Since the system is linear, it suffices to consider the special initial data

(3.21) Pαβ(0, x, y) = δα,ᾱδβ,β̄δ(x, y) − δα,β̄δβ,ᾱδ(x, y), ᾱ > β̄,

i.e. two Dirac deltas located at the origin with speed (ᾱ, β̄) and (β̄, ᾱ), by the symmetry (3.20).
In fact, we can first solve the equation (3.19) with absorbing boundary data,

Pαβ(t, x, x) = 0 for α ≥ β.

Denote this solution with Pαβ,−1. As in Example 2.1, from conservation it follows that the boundary
flux of this solution is

(3.22)
∑

αβ

|α − β|

∫ +∞

0

∫

R

|Pαβ,−1(t, x, x)|dxdt ≤
∑

αβ

∫ ∫

R2

|Pαβ,−1(0, x, y)|dxdy.

Then we solve (3.19) with the source term |α − β|Pαβ,−1(t, x, x). If we have that the boundary flux of
the solution with the initial data (3.21) is bounded by C, independent of (ᾱ, β̄), then it follows that

∑

αβ

|α − β|

∫ +∞

0

∫

R

|Pαβ(t, x, x)|dxdt ≤ C
∑

αβ

|α − β|

∫ +∞

0

∫

R

|Pαβ,−1(t, x, x)|dxdt

≤ C
∑

αβ

∫ ∫

R2

|Pαβ(0, x, y)|dxdy

≤ (1 + C)

(

∑

α

Tot.Var.(Fα)

)2

.(3.23)

We follow the same approach used in the one dimensional example.
The solution to the BGK scheme (3.19) with initial data (3.20) can be written as

(3.24) Pαβ(t, x, y) =

+∞
∑

n=0

Pαβ,n(t, x, y),
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where each function Pαβ,n satisfies

(3.25) Pαβ,n
t + (α, β) · ∇Pαβ,n =

1

2

∑

γ

(

cβPαγ,n−1 + cαP γβ,n−1
)

− Pαβ,n.

We will say that Pαβ,n is the n-th generation of particle.
We will write only the functions Pαβ,n with n = 0, 1, 2, and then compute the source term for n = 3.

The idea of the proof is that we will show that the source term for n = 3 decreases of a positive quantity,
and the flux through the boundary of the first 3 generations is bounded.

It is a matter of computation to verify that Pαβ,n, n + 0, 1, 2, are given by

(3.26) Pαβ,0(t, x, y) = e−tδ(x − ᾱt, y − β̄t)δα,ᾱδβ,β̄ − e−tδ(x − β̄t, y − ᾱt)δα,β̄δβ,ᾱ,

Pαβ,1(t, x, y) =
1

2
te−t(cᾱ + cβ̄)

(

δ(x − ᾱt, y − β̄t)δα,ᾱδβ,β̄ − δ(x − β̄t, y − ᾱt)δα,β̄δβ,ᾱ

)

+
1

2
e−t

(

cαδα6=ᾱχ[α, ᾱ](x/t)δ(y − β̄t)δβ,β̄ + cβδβ 6=β̄χ[β, β̄](y/t)δ(x − ᾱt)δα,ᾱ

)

−
1

2
e−t

(

cβδβ 6=β̄χ[β, β̄](x/t)δ(y − ᾱt)δα,ᾱ + cαδα6=ᾱχ[α, ᾱ](y/t)δ(x − β̄t)δβ,β̄

)

,(3.27)

Pαβ,2(t, x, y) =
1

4
t2e−t

(

cᾱ + cβ̄
)2

(

δ(x − ᾱt, y − β̄t)δα,ᾱδβ,β̄ − δ(x − β̄t, y − β̄t)δα,β̄δβ,ᾱ

)

+
1

4
te−tδα,ᾱδβ,β̄

(

∑

γ 6=ᾱ

cγcᾱtr[γ, ᾱ, ᾱ](x/t)δ(y − β̄t) +
∑

γ 6=β̄

cγcβ̄tr[γ, β̄, β̄](y/t)δ(x − ᾱt)

)

−
1

4
te−tδα,β̄δβ,ᾱ

(

∑

γ 6=β̄

cγcβ̄tr[γ, β̄, β̄](x/t)δ(y − ᾱt) +
∑

γ 6=ᾱ

cγcᾱtr[γ, ᾱ, ᾱ](y/t)δ(x − β̄t)

)

+
1

4
te−tδα6=ᾱδβ,β̄

(

cα(cᾱ + cβ̄)tr[α, ᾱ, ᾱ](x/t)δ(y − β̄t) + (cα)2tr[α, α, ᾱ](x/t)δ(y − β̄t)

+ cα
∑

γ 6=α,ᾱ

cγtr[α, γ, ᾱ](x/t)δ(y − β̄t)

)

+
1

4
te−tδα=ᾱδβ 6=β̄

(

cβ(cᾱ + cβ̄)tr[β, β̄, β̄](y/t)δ(x − ᾱt) + (cβ)2tr[β, β, β̄](y/t)δ(x − ᾱt)

+ cβ
∑

γ 6=β,β̄

cγtr[β, γ, β̄](y/t)δ(x − ᾱt)

)

+
1

4
e−t

(

cαcβ̄δα6=ᾱχ[α, ᾱ](x/t)δ(y − β̄t)δβ,β̄ + cβcᾱδβ 6=β̄χ[β, β̄](y/t)δ(x − ᾱt)δα,ᾱ

)

−
1

4
te−tδβ 6=β̄δα,ᾱ

(

cβ(cᾱ + cβ̄)tr[β, β̄, β̄](x/t)δ(y − ᾱt) + (cβ)2tr[β, β, β̄](x/t)δ(y − ᾱt)

+ cβ
∑

γ 6=β,β̄

cγtr[β, γ, β̄](x/t)δ(y − ᾱt)

)

−
1

4
te−tδβ=β̄δα6=ᾱ

(

cα(cᾱ + cβ̄)tr[α, ᾱ, ᾱ](y/t)δ(x − β̄t) + (cα)2tr[α, α, ᾱ](y/t)δ(x − β̄t)

+ cα
∑

γ 6=α,ᾱ

cγtr[α, γ, ᾱ](y/t)δ(x − β̄t)

)

−
1

4
e−t

(

cβcᾱδβ 6=β̄χ[β, β̄](x/t)δ(y − ᾱt)δα,ᾱ + cαcβ̄δα6=ᾱχ[α, ᾱ](y/t)δ(x − β̄t)δβ,β̄

)

+
1

4
cαcβδα6=ᾱδβ 6=β̄e−t

(

χ[α, ᾱ](x/t)χ[β, β̄](y/t) − χ[β, β̄](x/t)χ[α, ᾱ](y/t)
)

,

(3.28)
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χ [a,b](x)

x x

tr[a,b,c](x)

a b a b c

1/(b−a)

1/(c−a)

Figure 3. The functions χ[a, b](x) and tr[a, , c](x).

where the functions χ[a, b](x) and tr[a, b, c](x) are defined as

(3.29) χ[a, b](x) =

{

|a − b|−1 min{a, b} ≤ x ≤ max{a, b}

0 otherwise

for a 6= b and

(3.30) tr[a, b, c](x) =











|x − a′|/(|b′ − a′||c′ − a′|) a′ ≤ x ≤ b′

|c′ − x|/(|c′ − b′||c′ − a′|) b′ ≤ x ≤ c′

0 otherwise

a′ = min{a, b, c}, c′ = max{a, b, c}, b′ = {a, b, c} \ {a′, b′}, a′ < c′.

Note that as a consequence of conservation, we have that the integral over (t, x, y) ∈ R
+×R

2 of Pαβ,1,
Pαβ,2 is constant:

(3.31)
∑

αβ

∫ +∞

0

∫ ∫

R2

|Pαβ,i(t, x, y)|dxdydt = 2, i = 1, 2.

We can use a similar computation to estimate the flux on the boundary: in fact, integrating only on
{x > y} and observing that on {x = y} the function Pαβ > 0 if α < β, we obtain or i = 1, 2

∑

α<β

(β − α)

∫ +∞

0

∫

R

Pαβ,i(t, x, x)dxdt

≤
∑

α<β

∫ +∞

0

∫ ∫

R2

∑

γ

1

2

(

cαP γβ,i−1(t, x, y) + cβPαγ,i−1(t, x, y)
)

dxdydt ≤ 1.

It thus follows that the total flux, counting also the initial data, is

(3.32)

3
∑

i=1

∑

α<β

(β − α)

∫ +∞

0

∫

R

Pαβ,i(t, x, x)dxdt ≤ 3.

The cancellation is due to the fact that for n = 3 some of the squares

Q+
αβ =

{

(x, y) ∈
[

min{α, ᾱ}t, max{α, ᾱ}t
]

×
[

min{β, β̄}t, max{β, β̄}t
]

}

,

Q−
αβ =

{

[

min{β, β̄}t, max{β, β̄}t
]

×
[

min{α, ᾱ}t, max{α, ᾱ}t
]

}

overlap. A simple analysis shows that

(3.33) Q+
αβ ∩ Q−

αβ =































0 α ≥ β

(α − β)2 β̄ ≤ α ≤ β ≤ ᾱ

(α − β̄)2 β̄ ≤ α ≤ β, β > ᾱ

(ᾱ − β)2 α ≤ β ≤ ᾱ, α < β̄

(ᾱ − β̄)2 α < β̄, β < ᾱ
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’(α ,β )’

(α,β)− −

x

y

Figure 4. The cancellation occurring on Pα,β,2.

We have thus that the cancellation when computing the source term of the step n = 3 is greater than

C =
∑

α<β̄,β>ᾱ

cαcβ (ᾱ − β̄)2

4|α − ᾱ||β − β̄|
+

∑

β>ᾱ,β̄≤α≤β

cαcβ |α − ᾱ|

4|β − β̄|

+
∑

α<β̄,α≤β≤ᾱ

cαcβ |β − β̄|

4|α − ᾱ|
+

∑

β̄≤α≤β≤ᾱ

cαcβ (α − β)2

4|α − ᾱ||β − β̄|
.(3.34)

We now use the assumption that the dissipation is strictly positive to estimate C, and more precisely
we consider (3.7) with m = σ2/(2K),

(3.35)
∑

α>σ2/(2K)

cα ≥
σ2

2K2 − σ2
,

∑

α<−σ2/(2K)

cα ≥
σ2

2K2 − σ2
.

We consider 3 cases:

(1) If ᾱ ≥ β̄ > −σ2/(4K), then we have

C ≥
∑

α<β̄,α≤β≤ᾱ

cαcβ |β − β̄|

4|α − ᾱ|
≥

∑

α≤β≤−σ2/(2K)

cαcβ |β − β̄|

4|α − ᾱ|

≥
σ2

16K2

1

2

∑

α,β≤−σ2/(2K)

cαcβ ≥
σ6

32K2(2K2 − σ2)2
.(3.36)

(2) Similarly for β̄ ≤ ᾱ ≤ σ2/(4K),

C ≥
∑

β>ᾱ,β̄≤α≤β

cαcβ |α − ᾱ|

4|β − β̄|
≥

∑

β≥α≥σ2/(2K)

cαcβ |β − β̄|

4|α − ᾱ|

≥
σ2

16K2

1

2

∑

α,β≥σ2/(2K)

cαcβ ≥
σ6

32K2(2K2 − σ2)2
.(3.37)
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(3) Finally, if ᾱ ≥ σ2/(4K), β̄ ≤ −σ2/(4K), is follows

C ≥
∑

α<β̄,β>ᾱ

cαcβ (ᾱ − β̄)2

4|α − ᾱ||β − β̄|
≥

∑

α≤−σ2/(2K),β≥σ2/(2K)

cαcβ (ᾱ − β̄)2

4|α − ᾱ||β − β̄|

≥
σ4

16K4

1

2

∑

α≤−σ2/(2K),β≥σ2/(2K)

cαcβ ≥
σ8

32K4(2K2 − σ2)2
.(3.38)

In all cases, the cancellation is strictly positive. We thus conclude that there exists a constant C such
that I ≤ CQ, and the constant can be estimated by

C ≤ 3 ·
32K4(2K2 − σ2)2

σ8
.
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