# On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws

Stefano Bianchini and Alberto Bressan

S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy.

E-mail addresses: bianchin@mis.mpg.de, bressan@sissa.it

**Abstract.** We study a non linear functional which controls the area swept by a curve moving in the plane in the direction of curvature. In turn, this yields a priori estimates on solutions to a class of parabolic equations and of scalar viscous conservation laws. A further application provides an estimate on the "change of shape" of a BV solution to a scalar conservation law.

Keywords: Area Functional, Parabolic Estimates, Glimm Functional.

S.I.S.S.A. Ref. 123/99/M

## 1 - The area swept by a shortening curve

Fix two points A, B in the plane  $\mathbb{R}^2$  and consider the family  $\mathcal{F}_{AB}$  of all polygonal lines joining A with B. Given  $\gamma \in \mathcal{F}_{AB}$ , say with vertices  $A = P_0, P_1, \ldots, P_n = B$ , define  $v_i \doteq P_i - P_{i-1}$  and consider the functional

$$Q(\gamma) \doteq \frac{1}{2} \sum_{\substack{i,j=1\\i< j}}^{n} |v_i \wedge v_j|, \qquad (1.1)$$

where  $\wedge$  stands for the external product in  $\mathbb{R}^2$ . Let  $\gamma'$  be obtained from  $\gamma$  by replacing the two segments  $P_{\ell-1}P_{\ell}$  and  $P_{\ell}P_{\ell+1}$  by one single segment  $P_{\ell-1}P_{\ell+1}$ , as in fig. 1. The area of the triangle with vertices  $P_{\ell-1}$ ,  $P_{\ell}$ ,  $P_{\ell+1}$  satisfies

Area
$$(P_{\ell-1}P_{\ell}P_{\ell+1}) = \frac{1}{2}|v_{\ell+1} \wedge v_{\ell}| \leq Q(\gamma) - Q(\gamma').$$
 (1.2)

Indeed,

$$Q(\gamma) - Q(\gamma') = \frac{1}{2} \sum_{i=0}^{\ell-1} \left( |v_i \wedge v_\ell| + |v_i \wedge v_{\ell+1}| - |v_i \wedge (v_\ell + v_{\ell+1})| \right) + \frac{1}{2} |v_\ell \wedge v_{\ell+1}| \\ + \frac{1}{2} \sum_{j=\ell+2}^n \left( |v_\ell \wedge v_j| + |v_{\ell+1} \wedge v_j| - |(v_\ell + v_{\ell+1}) \wedge v_j| \right) \ge \frac{1}{2} |v_\ell \wedge v_{\ell+1}|.$$

Next, assume that  $\gamma'$  is obtained from  $\gamma$  by a finite sequence of consecutive cuts (fig. 2). In other words, let  $\gamma_0, \gamma_1, \ldots, \gamma_n$  be a sequence of polygonals with  $\gamma_0 = \gamma$ ,  $\gamma_n = \gamma'$  and such that each  $\gamma_i$  is obtained from  $\gamma_{i-1}$  by replacing two adjacent segments with a single one. By (1.2), an inductive argument yields

$$\operatorname{Area}(\gamma, \gamma') \leq \sum_{i=1}^{n} \operatorname{Area}(\gamma_{i}, \gamma_{i-1}) \leq Q(\gamma) - Q(\gamma').$$
(1.3)



More generally, instead of polygonals, we can define the functional Q on the family of parametric curves in the plane. Following [2], by a parametric curve we mean a continuous map  $\gamma : [a, b] \mapsto \mathbb{R}^2$ . Two parametric curves  $\gamma_1$  and  $\gamma_2$  are regarded as equivalent if, for every  $\varepsilon > 0$ , there exists a homeomorphism  $h^{\varepsilon} : [a_1, b_1] \mapsto [a_2, b_2]$  (possibly order–reversing) such that

$$\sup_{x \in [a_1, b_1]} \left| \gamma_1(x) - \gamma_2(h^{\varepsilon}(x)) \right| < \epsilon.$$

Let  $\mathcal{F}$  be the set of all parametric curves with finite length, i.e. such that

$$L(\gamma) \doteq \sup \sum_{i=1}^{n} \left| \gamma(x_i) - \gamma(x_{i-1}) \right| < +\infty,$$
(1.4)

where the supremum is taken w.r.t. all partitions  $a = x_0 < \ldots < x_n = b$ . We recall that (1.4) implies the existence of an absolutely continuous parameterization. In the following, up to a homeomorphism h, we can assume that each  $\gamma \in \mathcal{F}$  is absolutely continuous and parametrized by  $x \in [0, 1]$ , and we denote with  $\gamma_x$  the derivative of  $\gamma$  w.r.t. x. We recall that  $\gamma_x \in L^1([0, 1]; \mathbb{R}^2)$  and

$$L(\gamma) = \int_0^1 \left| \gamma_x \right| dx.$$

We can introduce a metric d on  $\mathcal{F}$  defined as

$$d(\gamma_1, \gamma_2) \doteq \inf \left\| \gamma_1 - \gamma_2 \circ h \right\|_{C^0},\tag{1.5}$$

where the infimum is taken over all homeomorphisms  $h : [0,1] \mapsto [0,1]$ . We can now define a functional  $Q : \mathcal{F} \mapsto \mathbb{R}$  by setting

$$Q(\gamma) \doteq \frac{1}{2} \sup\left\{ \sum_{\substack{i,j=1\\j>i}}^{n} \left| \left( \gamma(x_i) - \gamma(x_{i-1}) \right) \wedge \left( \gamma(x_j) - \gamma(x_{j-1}) \right) \right| \right\}$$

$$= \frac{1}{2} \int_{0}^{1} \int_{x}^{1} \left| \gamma_x(x) \wedge \gamma_x(y) \right| dy dx \le \frac{1}{2} L(\gamma)^2,$$
(1.6)

where, as above, the supremum is taken w.r.t. all partitions  $0 = x_0 < \ldots < x_n = 1$ . Observe that the definition (1.6) is the natural extension of (1.1).

It is well known that the length  $L(\gamma)$  of a curve is lower semi continuous w.r.t. the distance (1.5). A similar result holds for the functional Q.

**Lemma 1.** The functional Q is lower semi continuous in  $(\mathcal{F}, d)$ . Namely, if  $d(\gamma_{\nu}, \gamma) \to 0$ , then

$$Q(\gamma) \le \liminf_{\nu \to \infty} Q(\gamma_{\nu})$$

*Proof.* For every  $\varepsilon > 0$  there exists a  $\bar{\nu}$  such that  $d(\gamma_{\nu}, \gamma) < \varepsilon$  for all  $\nu \geq \bar{\nu}$ , and hence

$$\sum_{\substack{i,j=1\\i  
$$\leq \sum_{\substack{i,j=1\\i$$$$

Letting  $\varepsilon \to 0$  first and then taking the supremum w.r.t. all partitions  $0 = x_0 < \ldots < x_n = 1$ , the conclusion follows.

Given  $\gamma \in \mathcal{F}$ , by a *cut* we mean the replacement of the portion of the curve  $\{\gamma(x); x \in [x_1, x_2] \subseteq [0, 1]\}$  with the segment connecting  $\gamma(x_1)$  to  $\gamma(x_2)$ , for some  $x_1, x_2 \in [0, 1]$ . We say that  $\gamma'$  follows  $\gamma$ , and write  $\gamma \prec \gamma'$ , if there exists a sequence of curves  $\gamma_n$  converging to  $\gamma'$  in  $(\mathcal{F}, d)$  such that each  $\gamma_n$  is obtained from  $\gamma$  by a finite sequence of consecutive *cuts* (fig. 3). Note that, as a consequence of this definition,  $\gamma'$  must have the same endpoints of  $\gamma$ . It is easy to see that  $\prec$  defines a partial order relation.

Given  $\gamma, \gamma' \in \mathcal{F}$  with  $\gamma \prec \gamma'$ , we consider the closed curve  $\gamma \cup \gamma' : [0, 2] \mapsto \mathbb{R}^2$  as

$$\left(\gamma \cup \gamma'\right)(x) \doteq \begin{cases} \gamma(x) & x \in (0,1]\\ \gamma'(2-x) & x \in (1,2] \end{cases}$$
(1.7)

By the area between  $\gamma$  and  $\gamma'$ , denoted by  $\text{Area}[\gamma, \gamma']$ , we mean the area of the regions where the winding number of the curve  $\gamma \cup \gamma'$  is odd. For the definition and basic properties of the winding number of a closed curve in the plane we refer to [8]. We remark that the above definition of area between curves is not affected by a change in the parameterizations.

**Lemma 2.** If  $\gamma \prec \gamma'$ , then the area between the two curves satisfies

$$\operatorname{Area}[\gamma, \gamma'] \le Q(\gamma) - Q(\gamma'). \tag{1.8}$$

*Proof.* In the case where  $\gamma$  is a polygonal and  $\gamma'$  is obtained from  $\gamma$  with a finite sequence of cuts, the result was already proved in (1.3). The general case follows by approximation, using Lemma 1.

**Remark 1.** One can give an equivalent definition of the partial order relation " $\prec$ " by setting  $\gamma \prec \gamma'$  if the following holds:

There exists a sequence of parabolic problems on the plane:

$$\begin{cases} \xi_t^{\nu} + \lambda_{\nu}(t, x)\xi_x^{\nu} - c_{\nu}(t, x)\xi_{xx}^{\nu}(t, x) = 0, \\ \xi_{\nu}(0, x) = \gamma(x) & x \in [0, 1], \\ \xi_{\nu}(t, 0) = \gamma(0), \quad \xi_{\nu}(t, 1) = \gamma(1), & t \in [0, 1], \end{cases}$$
(1.9)

whose solutions at time t = 1 converge to  $\gamma'$ , i.e.

$$\lim_{\nu \to \infty} d(\xi^{\nu}(1, \cdot), \gamma') = 0.$$

Here  $\lambda_{\nu}, c_{\nu}$  are smooth functions from  $[0,1] \times [0,1] \mapsto \mathbb{R}$ , with  $c_{\nu}$  strictly positive. Note that by a change of variable y = y(t,x), where y is the unique positive solution to the uniformly parabolic

system

$$\begin{cases} y_t + \lambda_{\nu}(t, x)y_x - c_{\nu}(t, x)y_{xx} = 0, \\ y(0, x) = x & x \in [0, 1], \\ y(t, 0) = 0, \quad y(t, 1) = 1, & t \in [0, 1], \end{cases}$$

equation (1.9) becomes

$$\xi_t^{\nu} = c_{\nu}(t,x) \big( y_x(t,x) \big)^2 \xi_{yy}^{\nu} = c_{\nu}'(t,y) \xi_{yy}^{\nu}, \tag{1.9'}$$

whit  $c'_{\nu}(t,x) \ge c > 0$  for all  $(t,x) \in [0,1] \times [0,1]$ .

Consider now any cut in the curve  $\gamma$ , say obtained by replacing the portion  $\{\gamma(x); x \in [a, b] \subseteq [0, 1]\}$  by a single segment. This can be uniformly approximated by solutions of (1.9), letting the viscosity coefficient  $c_{\nu}$  tend to  $+\infty$  inside the interval [a, b] and to 0 outside [a, b].

Conversely, any solution of (1.9) can be uniformly approximated by a forward difference scheme

$$\xi^{\nu} \big( (n+1)\Delta t, k\Delta x \big) - \xi^{\nu} \big( n\Delta t, k\Delta x \big) = \frac{\Delta t}{\Delta x^2} c_{\nu} \big( n\Delta t, k\Delta x \big) \Big[ \xi^{\nu} \big( n\Delta t, (k+1)\Delta x \big) - 2\xi^{\nu} \big( n\Delta t, k\Delta x \big) + \xi^{\nu} \big( n\Delta t, (k-1)\Delta x \big) \Big].$$

In fact, if

$$\frac{\Delta t}{\Delta x^2} \max_{0 \le t, x \le 1} \left\{ c^{\nu} \right\} < \frac{1}{2},$$

it is easy to prove that the quantities  $|\xi^{\nu}(x + \Delta x)|$ ,  $|\xi^{\nu}(x + \Delta x) - \xi^{\nu}(x)\rangle/\Delta x|$  remain uniformly bounded. If we consider the polygonal line  $\gamma^{\nu}(n\Delta t)$  obtained by connecting the points  $\xi^{\nu}(n\Delta t, k\Delta x)$  with *n* fixed, then it follows that  $\gamma^{n}$  converges in  $C^{0}$  to the unique classical solution of (1.9'). At each time step, the approximate solutions  $\gamma^{\nu}$  thus constructed will satisfy  $\gamma^{\nu}(n\Delta t) \prec \gamma^{\nu}((n+1)\Delta t)$ . From the relations  $\gamma^{\nu}(0) \prec \gamma^{\nu}(1)$ , and the convergence  $\gamma^{\nu}(0) \rightarrow \gamma$ ,  $\gamma^{\nu}(1) \rightarrow \gamma'$  we conclude  $\gamma \prec \gamma'$ .

We also observe that (1.9) implies that the vector  $\xi_t^{\nu}$  lies in the half plane  $\{v \in \mathbb{R}^2, v \in \xi_{xx}^{\nu} \geq 0\}$ . Hence, by possibly modifying the function  $\lambda$  (which has the only effect of changing the parameterization), we obtain a solution of where the vectors two  $\xi_t^{\nu}$  and  $\xi_{xx}^{\nu}$  are parallel and have the same orientation. In other words,  $\xi^{\nu}$  will move in the direction of curvature.



More generally, consider a path varying with time. This is described by a map  $\gamma : [t_1, t_2] \mapsto \mathcal{F}$ . We say that  $\gamma$  moves in the direction of curvature if  $\gamma(s) \prec \gamma(t)$  for all  $s < t, s, t \in [t_1, t_2]$  (fig. 4). Observe that, from our definitions, it follows that the endpoints of  $\gamma(t)$  remain constant in time. The area swept by  $\gamma(t)$  during the time interval  $[t_1, t_2]$  is defined as

Area
$$(\gamma; [t_1, t_2]) \doteq \sup \left\{ \sum_{i=1}^n \operatorname{Area}[\gamma(s_i), \gamma(s_{i-1})]; t_1 = s_0 < \dots < s_n = t_2, n \ge 1 \right\}.$$
 (1.10)

An immediate consequence of the above definitions is

**Theorem 1.** Let  $t \mapsto \gamma(t) \in \mathcal{F}$  denote a curve in the plane, moving in the direction of the curvature. Then, for every  $t_1 < t_2$  one has

$$\operatorname{Area}(\gamma; [t_1, t_2]) \le Q(\gamma(t_1)) - Q(\gamma(t_2)).$$
(1.11)

**Remark 2.** It is possible to state Theorem 1 in more generality by enlarging the class of equivalent curves. Consider two curves  $\gamma_i \in \mathcal{F}$ , i = 1, 2, parametrized by arc length, and define  $\gamma_1 \sim \gamma_2$  if there exists a bijection  $h : [0, L(\gamma_1)] \mapsto [0, L(\gamma_2)]$  such that

$$\gamma_1 = \gamma_2 \circ h. \tag{1.12}$$

Using (1.4) and (1.6), it is easy to verify that  $L(\gamma_1) = L(\gamma_2)$  and  $Q(\gamma_1) = Q(\gamma_2)$ . In essence, we identify two curves  $\gamma_1$ ,  $\gamma_2$  of finite length if the sets  $\{\gamma_i(x); x \in [a_i, b_i]\}$ , i = 1, 2, are equal.



Figure 5.

Let now a continuous parameterization  $x \to \gamma(x) \in \mathbb{R}^2$  be given. As before, by a *cut* we mean the replacement of the part of the curve  $\gamma$ ,  $\{\gamma(x); x \in [a, b] \subseteq [0, 1]\}$  with the segment connecting  $\gamma(a)$  to  $\gamma(b)$ . Note however that this definition now depends on the parameterization. For example, consider the curve in fig. 5. Given two points on the curve  $\gamma$ , we can obtain many different curves  $\gamma'$  depending on which part of the original curve is replaced by the cut. When  $\gamma \prec \gamma'$ , the area between  $\gamma$  and  $\gamma'$  can be again defined as the area of the regions in which the winding number of the curve  $\gamma \cup \gamma'$  is odd. Recall that  $\gamma \cup \gamma'$  was defined at (1.7). It is not difficult to see that the estimate (1.11) remains valid also in this more general case.

**Remark 3.** It is possible to generalize Theorem 1 to a curve  $\gamma(t)$  in  $\mathbb{R}^n$ : the definition of motion in the direction of curvature remains the same. However when computing the area swept by  $\gamma$  and the functional  $Q(\gamma)$  in (1.6) we should use the external product on  $\mathbb{R}^n$ .

#### 2 - Estimates for parabolic equations

In this section we consider two applications of Theorem 1 to parabolic equations. The basic idea is to associate to a solution u(t) a parametric curve  $\gamma(t)$  in such a way that  $\gamma(t)$  moves in the direction of curvature.

**Theorem 2.** Consider a scalar parabolic equation on an open interval ]a, b[, with fixed boundary conditions:

$$u_t = c(t, x)u_{xx}, \qquad \begin{cases} u(t, a) = \bar{u}_1, \\ u(t, b) = \bar{u}_2. \end{cases}$$
(2.1)

Assume that the function c(t, x) is continuous and positive on  $[0, T] \times [a, b]$ . Then every solution of (2.1) satisfies the a priori estimate

$$\int_{0}^{T} \int_{a}^{b} \left| u_{t}(t,x) \right| dx dt \leq \frac{1}{4} \int_{a}^{b} \int_{a}^{b} \left| u_{x}(0,x) - u_{x}(0,y) \right| dx dy.$$
(2.2)

*Proof.* We can assume that c(t, x) is smooth: otherwise we can approximate c(t, x) with a sequence of positive smooth functions  $c^{\nu}(t, x)$  and apply classical convergence results to get that the solution  $u^{\nu}(t, x)$  tends to the solution u(t, x) of (2.1) in  $C^{0}([0, T] \times [a, b])$  (see for example [4]).

Observe that the graph of every solution of (2.1) is a curve moving in the direction of the curvature. Indeed, setting  $\gamma(t, x) \doteq (x, u(t, x))$ , one has

$$\gamma_t = \left(0, \ c(t, x)u_{xx}\right) = c(t, x)\gamma_{xx}.$$

Applying Theorem 1 to the curve  $\gamma$  we obtain the a priori estimate

$$\operatorname{Area}(\gamma; [0,T]) = \int_0^T \int_a^b \left| \gamma_t(s,y) \wedge \gamma_x(s,y) \right| dy ds \int_0^T \int_a^b \left| u_t(t,x) \right| dx dt$$
$$\leq Q(\gamma(0)) - Q(\gamma(T)) \leq \frac{1}{2} \iint_{a < x < y < b} \left| (1, u_x(0,x)) \wedge (1, u_x(0,y)) \right| dx dy.$$

This yields (2.2).

**Remark 4.** Recalling Remark 2, one easily checks that the same estimate (2.2) holds in the periodic case, i.e. for solutions of

$$u_t = \phi(t, x)u_{xx}, \qquad \begin{cases} u(t, a) = u(t, b), \\ u_x(t, a) = u_x(t, b), \end{cases}$$
(2.3)

assuming that the continuous function  $\phi$  satisfies  $\phi(t, a) = \phi(t, b)$  for every t.

Our second application is concerned with viscous scalar conservation laws. Let  $f, c : \mathbb{R} \to \mathbb{R}$ be smooth functions, with  $c \ge 0$ , and consider the conservation law

$$u_t + f(u)_x - (c(u)u_x)_x = 0.$$
(2.4)

Let u = u(t, x) be a smooth solution of (2.4), with initial data having bounded variation. This of course implies  $u(t, \cdot) \in BV$  for all  $t \ge 0$ , because the total variation cannot increase in time. For each  $t \ge 0$ , consider the curve  $\gamma(t) \in \mathcal{F}$  defined as

$$\gamma(t,x) \doteq \begin{pmatrix} u(t,x) \\ f(u(t,x)) - c(u(t,x)) u_x(t,x) \end{pmatrix} \qquad x \in \mathbb{R}.$$
(2.5)



Figure 6.

By a direct computation, one checks that  $\gamma$  moves in the direction of curvature (fig. 6). Indeed, it satisfies the equation

$$\gamma_t + f'(u)\gamma_x - \left(c(u)\gamma_x\right)_x = 0. \tag{2.6}$$

If we define amount of interaction  $\mathcal{I}(u; [t_1, t_2])$  during the interval  $[t_1, t_2]$  as the area swept by  $\gamma = \gamma(u)$ , then Theorem 1 implies

$$\mathcal{I}(u; [t_1, t_2]) \doteq \operatorname{Area}(\gamma; [t_1, t_2]) \le \mathcal{Q}(u(t_1)) - \mathcal{Q}(u(t_2)),$$
(2.7)

where the *interaction potential* Q(u) is now defined as

$$\mathcal{Q}(u) \doteq Q(\gamma(u)) = \frac{1}{2} \iint_{x < y} |\gamma_x(x) \wedge \gamma_x(y)| \, dxdy$$
  
$$= \frac{1}{2} \iint_{x < y} |u_x(x)| \, |u_x(y)| \cdot |\eta(x) - \eta(y)| \, dxdy,$$
(2.8)

$$\eta \doteq f'(u) - \frac{\left(c(u)u_x\right)_x}{u_x} \,. \tag{2.9}$$

Observe that, for a solution of (2.4), the above quantity  $\eta = -u_t/u_x$  can be regarded as the speed of a viscous wave. Indeed, for a given  $\bar{x} \in \mathbb{R}$ ,  $\eta(t, \bar{x})$  is the speed of the intersection of the graph of  $x \mapsto u(t, x)$  with the horizontal line  $u \equiv u(\bar{x})$ . Clearly  $\mathcal{Q}(u) = 0$  if and only if this speed  $\eta$  is constant. The functional  $\mathcal{Q}$  thus seems to be suited for studying the stability of traveling waves. By (2.7),  $\mathcal{Q}$  provides a Lyapunov functional for all BV solutions of (2.4). Indeed

$$\frac{d}{dt}\mathcal{Q}\big(u(t,\cdot)\big) \le 0. \tag{2.10}$$

**Remark 5.** An entirely similar result holds for periodic solutions of (2.6), say with u(t, x + p) = u(t, x). In this case  $\gamma : [0, p] \mapsto \mathbb{R}^2$ , defined as in (2.5), is a closed curve. The inequalities (2.7), (2.10) remain valid in connection with the functional

$$\mathcal{Q}(u) \doteq \frac{1}{2} \iint_{0 \le x < y \le p} \left| u_x(x) \right| \left| u_x(y) \right| \cdot \left| \eta(x) - \eta(y) \right| dxdy, \tag{2.11}$$

# 3 - Application to scalar conservation laws

Consider a scalar conservation law

$$u_t + f(u)_x = 0, (3.1)$$

with f sufficiently smooth. Given an initial data  $u_0 \in BV$ , let u = u(t, x) be the corresponding unique entropic solution. In this section we will show that to  $u(t, \cdot)$  one can associate a parametric curve  $\gamma(t)$  such that  $\gamma(t)$  moves in the direction of curvature, i.e.  $\gamma(s) \prec \gamma(t)$  whenever  $0 \le s < t$ .

Given a map  $u: \mathbb{R} \to \mathbb{R}$  with bounded variation, define the function  $U \in BV$  as

$$U(x) \doteq \int_{-\infty}^{x} |Du| = \text{Tot.Var.} \Big\{ u; (-\infty, x] \Big\}.$$
(3.2)

Here Du is the measure corresponding to the distributional derivative of u. For  $\theta \in \left[0, \text{Tot.Var.}(u)\right]$ , we define  $x(\theta)$  to be the point x such that

$$U(x-) \le \theta \le U(x+). \tag{3.3}$$

Let now two points  $(u^-, f(u^-)), (u^+, f(u^+)) \in \mathbb{R}^2$ , be given, with  $u^- > u^+$  (or  $u^- < u^+$ , respectively). We then define the curve  $\mathcal{R}(\theta; [u^-, u^+])$ , where  $\theta \in [0, |u^+ - u^-|]$ , as the graph of the

convex (concave) envelope of the function f(u) on the interval  $[u^-, u^+]$ . To a function  $u \in BV$  we associate the parametric curve  $\gamma : [0, T.V.(u)] \mapsto \mathbb{R}^2$  defined as



Figure 7.

We claim that  $\gamma(u) \in \mathcal{F}$ . Indeed, if  $\kappa$  provides a Lipschitz constant for the function f restricted to the range of u, then

$$L(\gamma(u)) \leq \sqrt{1 + \kappa^2} \cdot \text{Tot.Var.}(u).$$

We can thus associate to  $\gamma(u)$  the functional

$$Q(\gamma(u)) = \frac{1}{2} \iint_{\theta < \theta'} \left| \gamma(u; \theta) \wedge \gamma(u; \theta') \right| \, d\theta d\theta'.$$
(3.5)

Given  $u \in BV$ , let  $\gamma(u) \in \mathcal{F}$  be the corresponding parametric curve. We say that  $\gamma'$  is obtained from  $\gamma(u)$  by a *Riemann cut* if, for some points  $x_1 < x_2$ , the curve  $\gamma'$  can be constructed by replacing the part of the curve  $\{\gamma(u;\theta); \theta \in [U(x_1), U(x_2)]\}$  with  $\{\mathcal{R}(\theta); \theta \in [U(x_1), U(x_2)]\}$ . Note that this definition depends on the choice of the flux function f(u). It essentially corresponds to the substitution of u with

$$\hat{u}(x) \doteq \begin{cases} u(x) & x < x_1, \\ u(x_1-) & x_1 \le x \le \overline{x}, \\ u(x_2+) & \overline{x} < x \le x_2, \\ u(x) & x > x_2. \end{cases}$$
(3.6)

All waves of u located inside the interval  $[x_1, x_2]$  are thus collapsed to a single point  $\bar{x}$ , with  $x_1 < \bar{x} < x_2$ .

**Lemma 3.** Let u be a scalar BV function. Fix any three points  $x_1 < \bar{x} < x_2$  and construct the function  $\hat{u}$  as in (3.6). Then the corresponding curves, defined by (3.4), satisfy  $\gamma(u) \prec \gamma(\hat{u})$ .

*Proof.* Consider first the case where u is piecewise constant. By an inductive argument, it suffices to prove the result in the case where u contains two adjacent jumps, say at  $y_1 < y_2$ , which are replaced by a single jump of  $\hat{u}$ . Consider the left, middle and right states

$$u_l = u(y_1 -),$$
  $u_m = u(y_1 +) = u(y_2 -),$   $u_r = u(y_2 +).$ 

In the various possible configurations, it it easy to check that the portion of the curve  $\gamma(\hat{u})$  corresponding to the jump  $(u_r, u_l)$  is contained in the convex hull of the portion of the curve  $\gamma(u)$  corresponding to the two jumps  $(u_r, u_m)$  and  $(u_m, u_l)$ . The two main cases  $u_l < u_m < u_r$  and  $u_l < u_r < u_m$  are illustrated in fig. 8.



This proves the lemma in the case of piecewise functions u. The general case is handled by a standard approximation argument.

We now establish a relation between the  $\mathbf{L}^1$  convergence of a sequence of functions  $u_n$  and the convergence of the corresponding parametric curves  $\gamma(u_n)$ . The main ideas in the proof are taken from [1], where a similar construction was used to prove the lower semicontinuity of the Glimm functional.

**Lemma 4.** Let  $(u_n)_{n\geq 1}$  be a sequence of scalar functions with uniformly bounded total variation. Assume that  $u_n \to u$  in  $\mathbf{L}^1$  and  $\gamma(u_n) \to \gamma_0$  in  $\mathcal{F}$ . Then  $\gamma_0 \prec \gamma(u)$ .

*Proof.* By possibly taking a subsequence, we can assume the pointwise convergence  $u_n(x) \rightarrow u(x)$ 

and the weak convergence of measures  $|Du_n| \rightarrow \mu$ , for some positive measure  $\mu$ . The lemma will be proved by showing that, for every  $\varepsilon > 0$ , one can construct a sequence of curves  $\hat{\gamma}_n$  such that

$$\limsup_{n \to \infty} d(\hat{\gamma}_n, \gamma_0) \le \varepsilon, \qquad \gamma(u_n) \prec \hat{\gamma}_n \quad \text{for each } n.$$
(3.7)

Let  $\varepsilon > 0$  be given. Consider first a point  $\bar{x}$  such that  $\mu(\{x\}) = 0$ . We can then choose  $\delta_{\varepsilon} > 0$  such that

$$\mu([\bar{x}-\delta_{\varepsilon}, \ \bar{x}+\delta_{\varepsilon}]) < \varepsilon, \qquad |Du_n|([\bar{x}-\delta_{\varepsilon}, \ \bar{x}+\delta_{\varepsilon}]) < \varepsilon$$

for all *n* sufficiently large. Choose a point  $y \in ]\bar{x} - \delta_{\varepsilon}$ ,  $\bar{x} + \delta_{\varepsilon}[$  where *u* and all  $u_n$  are continuous, so that the point  $(u_n(y), f(u_n(y)))$  lies in the range of the map  $\gamma(u_n)$ , for each  $n \ge 1$ . Let Lip(f)be a Lipschitz constant for *f* on an interval  $[u_{min}, u_{max}]$  containing the range of all functions  $u_n$ . From the relations

$$\limsup_{n \to +\infty} \left| u_n(y) - u(\bar{x}) \right| \le \varepsilon, \qquad \limsup_{n \to +\infty} \left| f\left(u_n(y)\right) - f\left(u(\bar{x})\right) \right| \le \varepsilon \cdot Lip(f),$$

it follows that the point  $(u(\bar{x}), f(u(\bar{x})))$  lies in the range of  $\gamma_0$ . In other words, points  $\bar{x}$  such that  $\mu(\{\bar{x}\}) = 0$  correspond to the same point on the image of  $\gamma_0$  and on the image of  $\gamma(u)$ .

Next, let  $x_1 < \cdots < x_N$  be all the points such that

$$\mu(x_{\alpha}) \ge \varepsilon \qquad \alpha = 1, \dots, N.$$

Choose  $\delta_{\varepsilon} > 0$  such that

$$\mu([x_{\alpha} - \delta_{\varepsilon}, x_{\alpha}[\cup]x_{\alpha}, x_{\alpha} + \delta_{\varepsilon}]) < \varepsilon,$$
(3.8)

$$|Du_n| \left( [x_\alpha - \delta_\varepsilon, x_\alpha[\cup] x_\alpha, x_\alpha + \delta_\varepsilon] \right) < \varepsilon, \tag{3.9}$$

for every  $\alpha$  and all *n* sufficiently large. Choose two points  $y_{\alpha}^{-}$ ,  $y_{\alpha}^{+}$  with  $x_{\alpha} - \delta_{\varepsilon} < y_{\alpha}^{-} < x_{\alpha} < y_{\alpha}^{+} < x_{\alpha} + \delta_{\varepsilon}$ , where all  $u_{n}$  are continuous and such that  $\mu(\{y_{\alpha}^{-}\}) = \mu(\{y_{\alpha}^{+}\}) = 0$ . These conditions imply that the points  $(u_{n}(y_{\alpha}^{\pm}), f(u_{n}(y_{\alpha}^{\pm})))$ ,  $(u(y_{\alpha}^{\pm}), f(u(y_{\alpha}^{\pm})))$ , belong to the range of  $\gamma(u_{n}), \gamma(u)$ , respectively. Moreover,

$$\limsup_{n \to \infty} \left| u_n(y_{\alpha}^-) - u(x_{\alpha}^-) \right| \le \varepsilon, \qquad \limsup_{n \to \infty} \left| u_n(y_{\alpha}^+) - u(x_{\alpha}^-) \right| \le \varepsilon.$$

We now define  $\hat{\gamma}_n$  as the curve obtained from  $\gamma(u_n)$  by performing N Riemann cuts, in connection with the intervals  $[y_{\alpha}^-, y_{\alpha}^+]$ ,  $\alpha = 1, \ldots, N$ . By construction,  $\gamma(u_n) \prec \hat{\gamma}_n$ . Moreover, the above analysis yields

$$d(\hat{\gamma}_n, \gamma(u_n)) \leq C\varepsilon,$$

for some constant C independent of  $\varepsilon$  and all n sufficiently large. This establishes (3.7), proving the lemma.

As a consequence of the above lemma we have:

**Theorem 3.** Assume that  $f : \mathbb{R} \to \mathbb{R}$  is locally Lipschitz and let u(t) be the unique entropy solution to (3.1) with initial data  $u_0 \in BV$ . Call  $\gamma(t) \doteq \gamma(u(t))$  the parametric curve associated to u(t), as in (3.4). Then  $\gamma(t)$  moves in the direction of curvature, i.e.  $\gamma(s) \prec \gamma(t)$  whenever s < t.

*Proof.* By the semigroup property [7], it is not restrictive to assume s = 0. Following [3], the solution u can be obtained as limit of a sequence of front tracking approximations  $u_n$ . More precisely, for each  $n \ge 1$  we let  $f_n$  be a piecewise affine function which coincides with f at each node  $p_{i,n} \doteq 2^{-n}i$ . Moreover, we choose a piecewise constant approximate initial data  $u_{0,n}$  taking values inside the grid  $2^{-n}\mathbb{Z}$  so that

$$u_{0,n} \to u_0 \quad \text{in } \mathbf{L}^1_{\text{loc}}, \qquad d\big(\gamma(u_0), \ \gamma(u_{0,n})\big) \to 0.$$
 (3.10)

Calling  $u_n = u_n(t, x)$  the corresponding entropy solution of

$$u_t + f_n(u)_x = 0,$$
  $u_n(0, x) = u_{0,n},$ 

it is known that each  $u_n$  is piecewise constant, with jumps on a finite number of straight lines in the *t*-*x* plane, and takes values within the grid  $2^{-n}\mathbb{Z}$ . The corresponding curves  $\gamma_n(t) = \gamma(u_n(t))$ all move in the direction of the curvature. Indeed, each  $\gamma_n$  remains constant except at finitely many times  $0 < t_1 < t_2 < \cdots < t_{m_n}$  where two fronts interact. At each of these times  $t_j$ , the curve  $\gamma_n(t_j+)$  is obtained from  $\gamma_n(t_j-)$  by a Riemann cut, hence the relation  $\gamma_n(0) \leq \gamma_n(t)$  clearly holds for every t > 0.

Using Lemma 4 we can now pass to the limit as  $n \to \infty$ . By (3.10) this yields  $\gamma(0) \prec \gamma(t)$ , proving the theorem.

**Remark 6.** As in Section 2, define the *amount of interaction*  $\mathcal{I}(u; [t_1, t_2])$  during  $[t_1, t_2]$  as the area swept by  $\gamma(u(t))$  over the time interval  $[t_1, t_2]$ . Theorems 1 and 3 then yield

$$\mathcal{I}(u; [t_1, t_2]) \le \mathcal{Q}(u(t_1)) - \mathcal{Q}(u(t_2)), \tag{3.11}$$

where  $\mathcal{Q}(u)$  is the interaction potential defined at (3.5). One can interpret the quantity  $\mathcal{I}(u; [t_1, t_2])$ as measuring the change in the shape of the solution u = u(t, x) within the time interval  $[t_1, t_2]$ . By (3.11), this is bounded in terms of a Glimm type potential, similar to the one introduced by T.P. Liu in his paper on hyperbolic systems [9].

**Remark 7.** For an arbitrary flux function f, there may not exist a Borel function  $\lambda$  (the wave speed), such that

$$\mathcal{Q}(u) = \frac{1}{2} \iint_{x < y} |\lambda(x) - \lambda(y)| |Du|(x)| Du|(y).$$
(3.12)

However, if f is strictly convex and u has no upward jumps, i.e.  $u(x-) \ge u(x+)$  for every  $x \in \mathbb{R}$ , then (3.12) holds with

$$\lambda(x) \doteq \begin{cases} f'(u(x)) & u \text{ is continuous in } x, \\ \frac{f(u(x+)) - f(u(x-))}{u(x+) - u(x-)} & u \text{ has a jump at } x. \end{cases}$$
(3.13)

In particular the entropic solution of a scalar conservation law with strictly convex flux satisfies (3.12)-(3.13) for every t > 0.

Acknowledgment. This research was partially supported by the European TMR Network on Hyperbolic Conservation Laws ERBFMRXCT960033.

### References

- P. Baiti and A. Bressan, Lower semicontinuity of weighted path length in BV, in *Geometrical Optics and Related Topics*, F. Colombini and N. Lerner Eds, Birkhäuser (1997), 31-58.
- [2] L. Cesari, Optimization Theory and Applications, Springer-Verlag, New York, 1983.
- [3] C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. **38** (1972), 202-212.
- [4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964.
- [5] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715.
- [6] B. Gustavsson, H-O. Kreiss, J. Oliger, *Time dependent problems and difference methods*, Wiley, New York, 1995.
- [7] S. Kruzhkov, First-order quasilinear equations with several space variables, Mat. Sb. 123 (1970), 228–255. English transl. in Math. USSR Sb. 10 (1970), 217–273.
- [8] S. Lang, Complex Analysis, Springer-Verlag, New York, 1977.
- [9] T-P. Liu, Admissible solutions of hyperbolic conservation laws, Amer. Math. Soc. Memoir 240 (1981).