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1 - The area swept by a shortening curve

Fix two points A,B in the plane IR2 and consider the family FAB of all polygonal lines joining

A with B. Given γ ∈ FAB , say with vertices A = P0, P1, . . . , Pn = B, define vi
.
= Pi − Pi−1 and

consider the functional

Q(γ)
.
=

1

2

n∑
i,j=1
i<j

|vi ∧ vj |, (1.1)

where ∧ stands for the external product in IR2. Let γ′ be obtained from γ by replacing the two

segments P`−1P` and P`P`+1 by one single segment P`−1P`+1, as in fig. 1. The area of the triangle

with vertices P`−1, P`, P`+1 satisfies

Area(P`−1P`P`+1) =
1

2
|v`+1 ∧ v`| ≤ Q(γ)−Q(γ′). (1.2)

Indeed,

Q(γ)−Q(γ′) =
1

2

`−1∑
i=0

(
|vi ∧ v`|+ |vi ∧ v`+1| − |vi ∧ (v` + v`+1)|

)
+

1

2
|v` ∧ v`+1|

+
1

2

n∑
j=`+2

(
|v` ∧ vj |+ |v`+1 ∧ vj | − |(v` + v`+1) ∧ vj |

)
≥ 1

2
|v` ∧ v`+1|.

Next, assume that γ′ is obtained from γ by a finite sequence of consecutive cuts (fig. 2). In other

words, let γ0, γ1, . . . , γn be a sequence of polygonals with γ0 = γ, γn = γ′ and such that each γi is

obtained from γi−1 by replacing two adjacent segments with a single one. By (1.2), an inductive

argument yields

Area(γ, γ′) ≤
n∑

i=1

Area(γi, γi−1) ≤ Q(γ)−Q(γ′). (1.3)
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Figure 1. Figure 2.

More generally, instead of polygonals, we can define the functional Q on the family of para-

metric curves in the plane. Following [2], by a parametric curve we mean a continuous map
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γ : [a, b] 7→ IR2. Two parametric curves γ1 and γ2 are regarded as equivalent if, for every ε > 0,

there exists a homeomorphism hε : [a1, b1] 7→ [a2, b2] (possibly order–reversing) such that

sup
x∈[a1,b1]

∣∣γ1(x)− γ2(h
ε(x))

∣∣ < ε.

Let F be the set of all parametric curves with finite length, i.e. such that

L(γ)
.
= sup

n∑
i=1

∣∣∣γ(xi)− γ(xi−1)
∣∣∣ < +∞, (1.4)

where the supremum is taken w.r.t. all partitions a = x0 < . . . < xn = b. We recall that

(1.4) implies the existence of an absolutely continuous parameterization. In the following, up to a

homeomorphism h, we can assume that each γ ∈ F is absolutely continuous and parametrized by

x ∈ [0, 1], and we denote with γx the derivative of γ w.r.t. x. We recall that γx ∈ L1([0, 1]; IR2)

and

L(γ) =

∫ 1

0

∣∣γx∣∣ dx.
We can introduce a metric d on F defined as

d(γ1, γ2)
.
= inf

∥∥γ1 − γ2 ◦ h
∥∥
C0 , (1.5)

where the infimum is taken over all homeomorphisms h : [0, 1] 7→ [0, 1]. We can now define a

functional Q : F 7→ IR by setting

Q(γ)
.
=

1

2
sup

{
n∑

i,j=1
j>i

∣∣∣(γ(xi)− γ(xi−1)
)
∧
(
γ(xj)− γ(xj−1)

)∣∣∣}

=
1

2

∫ 1

0

∫ 1

x

∣∣γx(x) ∧ γx(y)
∣∣dydx ≤ 1

2
L(γ)2,

(1.6)

where, as above, the supremum is taken w.r.t. all partitions 0 = x0 < . . . < xn = 1. Observe that

the definition (1.6) is the natural extension of (1.1).

It is well known that the length L(γ) of a curve is lower semi continuous w.r.t. the distance

(1.5). A similar result holds for the functional Q.

Lemma 1. The functional Q is lower semi continuous in (F , d). Namely, if d(γν , γ) → 0, then

Q(γ) ≤ lim inf
ν→∞

Q(γν).

Proof. For every ε > 0 there exists a ν̄ such that d(γν , γ) < ε for all ν ≥ ν̄, and hence

n∑
i,j=1
i<j

∣∣∣(γ(xi)− γ(xi−1)
)
∧
(
γ(xj)− γ(xj−1)

)∣∣∣
≤

n∑
i,j=1
i<j

∣∣∣(γν(xi)− γν(xi−1)
)
∧
(
γν(xj)− γν(xj−1)

)∣∣∣+ 2n2ε2 ≤ Q(γν) + 2n2ε2.
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Letting ε → 0 first and then taking the supremum w.r.t. all partitions 0 = x0 < . . . < xn = 1, the

conclusion follows.

Given γ ∈ F , by a cut we mean the replacement of the portion of the curve
{
γ(x);x ∈

[x1, x2] ⊆ [0, 1]
}
with the segment connecting γ(x1) to γ(x2), for some x1, x2 ∈ [0, 1]. We say that

γ′ follows γ, and write γ ≺ γ′, if there exists a sequence of curves γn converging to γ′ in (F , d)

such that each γn is obtained from γ by a finite sequence of consecutive cuts (fig. 3). Note that,

as a consequence of this definition, γ′ must have the same endpoints of γ. It is easy to see that ≺
defines a partial order relation.

Given γ, γ′ ∈ F with γ ≺ γ′, we consider the closed curve γ ∪ γ′ : [0, 2] 7→ IR2 as(
γ ∪ γ′

)
(x)

.
=

{
γ(x) x ∈ (0, 1]

γ′(2− x) x ∈ (1, 2]
(1.7)

By the area between γ and γ′, denoted by Area[γ, γ′], we mean the area of the regions where the

winding number of the curve γ ∪ γ′ is odd. For the definition and basic properties of the winding

number of a closed curve in the plane we refer to [8]. We remark that the above definition of area

between curves is not affected by a change in the parameterizations.

Lemma 2. If γ ≺ γ′, then the area between the two curves satisfies

Area[γ, γ′] ≤ Q(γ)−Q(γ′). (1.8)

Proof. In the case where γ is a polygonal and γ′ is obtained from γ with a finite sequence of cuts,

the result was already proved in (1.3). The general case follows by approximation, using Lemma

1.

Remark 1. One can give an equivalent definition of the partial order relation “≺” by setting

γ ≺ γ′ if the following holds:

There exists a sequence of parabolic problems on the plane:
ξνt + λν(t, x)ξ

ν
x − cν(t, x)ξ

ν
xx(t, x) = 0,

ξν(0, x) = γ(x) x ∈ [0, 1],

ξν(t, 0) = γ(0), ξν(t, 1) = γ(1), t ∈ [0, 1],

(1.9)

whose solutions at time t = 1 converge to γ′, i.e.

lim
ν→∞

d
(
ξν(1, ·), γ′) = 0.

Here λν , cν are smooth functions from [0, 1]× [0, 1] 7→ IR, with cν strictly positive. Note that by a

change of variable y = y(t, x), where y is the unique positive solution to the uniformly parabolic
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system  yt + λν(t, x)yx − cν(t, x)yxx = 0,
y(0, x) = x x ∈ [0, 1],

y(t, 0) = 0, y(t, 1) = 1, t ∈ [0, 1],

equation (1.9) becomes

ξνt = cν(t, x)
(
yx(t, x)

)2
ξνyy = c′ν(t, y)ξ

ν
yy, (1.9′)

whit c′ν(t, x) ≥ c > 0 for all (t, x) ∈ [0, 1]× [0, 1].

Consider now any cut in the curve γ, say obtained by replacing the portion {γ(x);x ∈ [a, b] ⊆
[0, 1]} by a single segment. This can be uniformly approximated by solutions of (1.9), letting the

viscosity coefficient cν tend to +∞ inside the interval [a, b] and to 0 outside [a, b].

Conversely, any solution of (1.9’) can be uniformly approximated by a forward difference

scheme

ξν
(
(n+ 1)∆t, k∆x

)
− ξν

(
n∆t, k∆x

)
=

∆t

∆x2
cν
(
n∆t, k∆x

)[
ξν
(
n∆t, (k + 1)∆x

)
− 2ξν

(
n∆t, k∆x

)
+ ξν

(
n∆t, (k − 1)∆x

)]
.

In fact, if
∆t

∆x2
max

0≤t,x≤1

{
cν
}
<

1

2
,

it is easy to prove that the quantities |ξν(x + ∆x)|, |ξν(x + ∆x) − ξν(x))/∆x| remain uni-

formly bounded. If we consider the polygonal line γν(n∆t) obtained by connecting the points

ξν(n∆t, k∆x) with n fixed, then it follows that γn converges in C0 to the unique classical so-

lution of (1.9’). At each time step, the approximate solutions γν thus constructed will satisfy

γν(n∆t) ≺ γν((n + 1)∆t). From the relations γν(0) ≺ γν(1), and the convergence γν(0) → γ,

γν(1) → γ′ we conclude γ ≺ γ′.

We also observe that (1.9) implies that the vector ξνt lies in the half plane {v ∈ IR2, v ·
ξνxx ≥ 0}. Hence, by possibly modifying the function λ (which has the only effect of changing the

parameterization), we obtain a solution of where the vectors two ξνt and ξνxx are parallel and have

the same orientation. In other words, ξν will move in the direction of curvature.

A

B

A

B

γ
γ

γ

nγ
γ ’

(s)

(t)

Figure 3. Figure 4.
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More generally, consider a path varying with time. This is described by a map γ : [t1, t2] 7→ F .

We say that γ moves in the direction of curvature if γ(s) ≺ γ(t) for all s < t, s, t ∈ [t1, t2] (fig. 4).

Observe that, from our definitions, it follows that the endpoints of γ(t) remain constant in time.

The area swept by γ(t) during the time interval [t1, t2] is defined as

Area
(
γ; [t1, t2]

) .
= sup

{
n∑

i=1

Area
[
γ(si), γ(si−1)

]
; t1 = s0 < · · · < sn = t2, n ≥ 1

}
. (1.10)

An immediate consequence of the above definitions is

Theorem 1. Let t 7→ γ(t) ∈ F denote a curve in the plane, moving in the direction of the

curvature. Then, for every t1 < t2 one has

Area
(
γ; [t1, t2]

)
≤ Q

(
γ(t1)

)
−Q

(
γ(t2)

)
. (1.11)

Remark 2. It is possible to state Theorem 1 in more generality by enlarging the class of equivalent

curves. Consider two curves γi ∈ F , i = 1, 2, parametrized by arc length, and define γ1 ∼ γ2 if

there exists a bijection h :
[
0, L(γ1)

]
7→

[
0, L(γ2)

]
such that

γ1 = γ2 ◦ h. (1.12)

Using (1.4) and (1.6), it is easy to verify that L(γ1) = L(γ2) and Q(γ1) = Q(γ2). In essence, we

identify two curves γ1, γ2 of finite length if the sets
{
γi(x);x ∈ [ai, bi]

}
, i = 1, 2, are equal.

γ ’

γ ’

γ ’

γ

1

−1
−1

1

0

1 −1

0

−1

Figure 5.

Let now a continuous parameterization x → γ(x) ∈ IR2 be given. As before, by a cut we mean

the replacement of the part of the curve γ, {γ(x);x ∈ [a, b] ⊆ [0, 1]} with the segment connecting

γ(a) to γ(b). Note however that this definition now depends on the parameterization. For example,

consider the curve in fig. 5. Given two points on the curve γ, we can obtain many different curves

γ′ depending on which part of the original curve is replaced by the cut.
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When γ ≺ γ′, the area between γ and γ′ can be again defined as the area of the regions in

which the winding number of the curve γ ∪ γ′ is odd. Recall that γ ∪ γ′ was defined at (1.7). It is

not difficult to see that the estimate (1.11) remains valid also in this more general case.

Remark 3. It is possible to generalize Theorem 1 to a curve γ(t) in IRn: the definition of motion

in the direction of curvature remains the same. However when computing the area swept by γ and

the functional Q(γ) in (1.6) we should use the external product on IRn.

2 - Estimates for parabolic equations

In this section we consider two applications of Theorem 1 to parabolic equations. The basic

idea is to associate to a solution u(t) a parametric curve γ(t) in such a way that γ(t) moves in the

direction of curvature.

Theorem 2. Consider a scalar parabolic equation on an open interval ]a, b[, with fixed boundary

conditions:

ut = c(t, x)uxx,

{
u(t, a) = ū1,

u(t, b) = ū2.
(2.1)

Assume that the function c(t, x) is continuous and positive on [0, T ] × [a, b]. Then every solution

of (2.1) satisfies the a priori estimate∫ T

0

∫ b

a

∣∣ut(t, x)
∣∣ dxdt ≤ 1

4

∫ b

a

∫ b

a

∣∣ux(0, x)− ux(0, y)
∣∣ dxdy. (2.2)

Proof. We can assume that c(t, x) is smooth: otherwise we can approximate c(t, x) with a sequence

of positive smooth functions cν(t, x) and apply classical convergence results to get that the solution

uν(t, x) tends to the solution u(t, x) of (2.1) in C0([0, T ]× [a, b]) (see for example [4]).

Observe that the graph of every solution of (2.1) is a curve moving in the direction of the

curvature. Indeed, setting γ(t, x)
.
=

(
x, u(t, x)

)
, one has

γt =
(
0, c(t, x)uxx

)
= c(t, x)γxx.

Applying Theorem 1 to the curve γ we obtain the a priori estimate

Area
(
γ; [0, T ]

)
=

∫ T

0

∫ b

a

∣∣∣γt(s, y) ∧ γx(s, y)
∣∣∣ dyds ∫ T

0

∫ b

a

∣∣ut(t, x)
∣∣ dxdt

≤ Q
(
γ(0)

)
−Q

(
γ(T )

)
≤ 1

2

∫∫
a<x<y<b

∣∣∣(1, ux(0, x)
)
∧

(
1, ux(0, y)

)∣∣∣ dxdy.
This yields (2.2).
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Remark 4. Recalling Remark 2, one easily checks that the same estimate (2.2) holds in the

periodic case, i.e. for solutions of

ut = φ(t, x)uxx,

{
u(t, a) = u(t, b),

ux(t, a) = ux(t, b),
(2.3)

assuming that the continuous function φ satisfies φ(t, a) = φ(t, b) for every t.

Our second application is concerned with viscous scalar conservation laws. Let f, c : IR 7→ IR

be smooth functions, with c ≥ 0, and consider the conservation law

ut + f(u)x −
(
c(u)ux

)
x
= 0. (2.4)

Let u = u(t, x) be a smooth solution of (2.4), with initial data having bounded variation. This of

course implies u(t, ·) ∈ BV for all t ≥ 0, because the total variation cannot increase in time. For

each t ≥ 0, consider the curve γ(t) ∈ F defined as

γ(t, x)
.
=

(
u(t, x)

f
(
u(t, x)

)
− c

(
u(t, x)

)
ux(t, x)

)
x ∈ IR. (2.5)

x

u

u(t  )

u(t  )1

2

u

(t  )

(t  )

1

2γ

γ

f(u) − c(u)ux

f(u)

Figure 6.

By a direct computation, one checks that γ moves in the direction of curvature (fig. 6). Indeed,

it satisfies the equation

γt + f ′(u)γx −
(
c(u)γx

)
x
= 0. (2.6)

If we define amount of interaction I(u; [t1, t2]) during the interval [t1, t2] as the area swept by

γ = γ(u), then Theorem 1 implies

I
(
u; [t1, t2]

) .
= Area

(
γ; [t1, t2]

)
≤ Q

(
u(t1)

)
−Q

(
u(t2)

)
, (2.7)

where the interaction potential Q(u) is now defined as

Q(u)
.
= Q

(
γ(u)

)
=

1

2

∫∫
x<y

∣∣γx(x) ∧ γx(y)
∣∣ dxdy

=
1

2

∫∫
x<y

∣∣ux(x)
∣∣ ∣∣ux(y)

∣∣ · ∣∣η(x)− η(y)
∣∣ dxdy, (2.8)
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η
.
= f ′(u)−

(
c(u)ux

)
x

ux
. (2.9)

Observe that, for a solution of (2.4), the above quantity η = −ut/ux can be regarded as the speed

of a viscous wave. Indeed, for a given x̄ ∈ IR, η(t, x̄) is the speed of the intersection of the graph

of x 7→ u(t, x) with the horizontal line u ≡ u(x̄). Clearly Q(u) = 0 if and only if this speed η is

constant. The functional Q thus seems to be suited for studying the stability of traveling waves.

By (2.7), Q provides a Lyapunov functional for all BV solutions of (2.4). Indeed

d

dt
Q
(
u(t, ·)

)
≤ 0. (2.10)

Remark 5. An entirely similar result holds for periodic solutions of (2.6), say with u(t, x+ p) =

u(t, x). In this case γ : [0, p] 7→ IR2, defined as in (2.5), is a closed curve. The inequalities (2.7),

(2.10) remain valid in connection with the functional

Q(u)
.
=

1

2

∫∫
0≤x<y≤p

∣∣ux(x)
∣∣ ∣∣ux(y)

∣∣ · ∣∣η(x)− η(y)
∣∣ dxdy, (2.11)

3 - Application to scalar conservation laws

Consider a scalar conservation law

ut + f(u)x = 0, (3.1)

with f sufficiently smooth. Given an initial data u0 ∈ BV, let u = u(t, x) be the corresponding

unique entropic solution. In this section we will show that to u(t, ·) one can associate a parametric

curve γ(t) such that γ(t) moves in the direction of curvature, i.e. γ(s) ≺ γ(t) whenever 0 ≤ s < t.

Given a map u : IR 7→ IR with bounded variation, define the function U ∈ BV as

U(x)
.
=

∫ x

−∞
|Du| = Tot.Var.

{
u; (−∞, x]

}
. (3.2)

HereDu is the measure corresponding to the distributional derivative of u. For θ ∈
]
0,Tot.Var.(u)

[
,

we define x(θ) to be the point x such that

U(x−) ≤ θ ≤ U(x+). (3.3)

Let now two points
(
u−, f(u−)

)
,
(
u+, f(u+)

)
∈ IR2, be given, with u− > u+ (or u− < u+, respec-

tively). We then define the curve R
(
θ; [u−, u+]

)
, where θ ∈

[
0, |u+ − u−|

]
, as the graph of the
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convex (concave) envelope of the function f(u) on the interval [u−, u+]. To a function u ∈ BV we

associate the parametric curve γ :
[
0, T.V.(u)

]
7→ IR2 defined as

γ(u; θ)
.
=



(
u(−∞), f

(
u(−∞)

))
θ = 0,(

u(θ), f
(
u(θ)

))
u is continuous at x(θ),

R
(
θ − U(x(θ)−); [u(x(θ))−, u(x(θ))+]

)
u has a jump in x(θ),

θ ∈ [U(x(θ)−), U(x(θ)+)],(
u(∞), f

(
u(∞)

))
θ = Tot.Var.(u).

(3.4)

x

u f(u)

(u)γ

u

1

2

3

4
5

1 245 3

Figure 7.

We claim that γ(u) ∈ F . Indeed, if κ provides a Lipschitz constant for the function f restricted

to the range of u, then

L
(
γ(u)

)
≤

√
1 + κ2 · Tot.Var.(u).

We can thus associate to γ(u) the functional

Q(γ(u)) =
1

2

∫∫
θ<θ′

∣∣∣γ(u; θ) ∧ γ(u; θ′)
∣∣∣ dθdθ′. (3.5)

Given u ∈ BV, let γ(u) ∈ F be the corresponding parametric curve. We say that γ′ is obtained

from γ(u) by a Riemann cut if, for some points x1 < x2, the curve γ′ can be constructed by

replacing the part of the curve
{
γ(u; θ); θ ∈

[
U(x1), U(x2)

]}
with

{
R(θ); θ ∈

[
U(x1), U(x2)

]}
.

Note that this definition depends on the choice of the flux function f(u). It essentially corresponds

to the substitution of u with

û(x)
.
=


u(x) x < x1,

u(x1−) x1 ≤ x ≤ x,
u(x2+) x < x ≤ x2,
u(x) x > x2.

(3.6)
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All waves of u located inside the interval [x1, x2] are thus collapsed to a single point x̄, with

x1 < x̄ < x2.

Lemma 3. Let u be a scalar BV function. Fix any three points x1 < x̄ < x2 and construct the

function û as in (3.6). Then the corresponding curves, defined by (3.4), satisfy γ(u) ≺ γ(û).

Proof. Consider first the case where u is piecewise constant. By an inductive argument, it suffices

to prove the result in the case where u contains two adjacent jumps, say at y1 < y2, which are

replaced by a single jump of û. Consider the left, middle and right states

ul = u(y1−), um = u(y1+) = u(y2−), ur = u(y2+).

In the various possible configurations, it it easy to check that the portion of the curve γ(û) cor-

responding to the jump (ur, ul) is contained in the convex hull of the portion of the curve γ(u)

corresponding to the two jumps (ur, um) and (um, ul). The two main cases ul < um < ur and

ul < ur < um are illustrated in fig. 8.

u
l u m

u r u mu ru l

f(u) f(u)

γ

γ

γ

(u)γ

(u) (u)

(u)^

^

uu

Figure 8.

This proves the lemma in the case of piecewise functions u. The general case is handled by a

standard approximation argument.

We now establish a relation between the L1 convergence of a sequence of functions un and the

convergence of the corresponding parametric curves γ(un). The main ideas in the proof are taken

from [1], where a similar construction was used to prove the lower semicontinuity of the Glimm

functional.

Lemma 4. Let (un)n≥1 be a sequence of scalar functions with uniformly bounded total variation.

Assume that un → u in L1 and γ(un) → γ0 in F . Then γ0 ≺ γ(u).

Proof. By possibly taking a subsequence, we can assume the pointwise convergence un(x) → u(x)
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and the weak convergence of measures |Dun| ⇀ µ, for some positive measure µ. The lemma will

be proved by showing that, for every ε > 0, one can construct a sequence of curves γ̂n such that

lim sup
n→∞

d
(
γ̂n, γ0

)
≤ ε, γ(un) ≺ γ̂n for each n. (3.7)

Let ε > 0 be given. Consider first a point x̄ such that µ
(
{x}

)
= 0. We can then choose δε > 0

such that

µ
(
[x̄− δε, x̄+ δε]

)
< ε, |Dun|

(
[x̄− δε, x̄+ δε]

)
< ε

for all n sufficiently large. Choose a point y ∈ ]x̄− δε, x̄+ δε[ where u and all un are continuous,

so that the point
(
un(y), f(un(y))

)
lies in the range of the map γ

(
un), for each n ≥ 1. Let Lip(f)

be a Lipschitz constant for f on an interval [umin, umax] containing the range of all functions un.

From the relations

lim sup
n→+∞

∣∣un(y)− u(x̄)
∣∣ ≤ ε, lim sup

n→+∞

∣∣∣f(un(y)
)
− f

(
u(x̄)

)∣∣∣ ≤ ε · Lip(f),

it follows that the point
(
u(x̄), f(u(x̄)

)
lies in the range of γ0. In other words, points x̄ such that

µ({x̄}) = 0 correspond to the same point on the image of γ0 and on the image of γ(u).

Next, let x1 < · · · < xN be all the points such that

µ(xα) ≥ ε α = 1, . . . , N.

Choose δε > 0 such that

µ
(
[xα − δε, xα[∪ ]xα, xα + δε]

)
< ε, (3.8)

|Dun|
(
[xα − δε, xα[∪ ]xα, xα + δε]

)
< ε, (3.9)

for every α and all n sufficiently large. Choose two points y−α , y
+
α with xα − δε < y−α < xα < y+α <

xα + δε, where all un are continuous and such that µ
(
{y−α }

)
= µ

(
{y+α }

)
= 0. These conditions

imply that the points
(
un(y

±
α ), f(un(y

±
α ))

)
,
(
u(y±α ), f(u(y

±
α ))

)
, belong to the range of γ(un), γ(u),

respectively. Moreover,

lim sup
n→∞

∣∣un(y
−
α )− u(xα−)

∣∣ ≤ ε, lim sup
n→∞

∣∣un(y
+
α )− u(xα+)

∣∣ ≤ ε.

We now define γ̂n as the curve obtained from γ(un) by performing N Riemann cuts, in connection

with the intervals [y−α , y
+
α ], α = 1, . . . , N . By construction, γ(un) ≺ γ̂n. Moreover, the above

analysis yields

d
(
γ̂n, γ(un)

)
≤ Cε,

for some constant C independent of ε and all n sufficiently large. This establishes (3.7), proving

the lemma.
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As a consequence of the above lemma we have:

Theorem 3. Assume that f : IR 7→ IR is locally Lipschitz and let u(t) be the unique entropy

solution to (3.1) with initial data u0 ∈ BV. Call γ(t)
.
= γ(u(t)) the parametric curve associated to

u(t), as in (3.4). Then γ(t) moves in the direction of curvature, i.e. γ(s) ≺ γ(t) whenever s < t.

Proof. By the semigroup property [7], it is not restrictive to assume s = 0. Following [3], the

solution u can be obtained as limit of a sequence of front tracking approximations un. More

precisely, for each n ≥ 1 we let fn be a piecewise affine function which coincides with f at each

node pi,n
.
= 2−ni. Moreover, we choose a piecewise constant approximate initial data u0,n taking

values inside the grid 2−nZZ so that

u0,n → u0 in L1
loc, d

(
γ(u0), γ(u0,n)

)
→ 0. (3.10)

Calling un = un(t, x) the corresponding entropy solution of

ut + fn(u)x = 0, un(0, x) = u0,n,

it is known that each un is piecewise constant, with jumps on a finite number of straight lines in

the t-x plane, and takes values within the grid 2−nZZ. The corresponding curves γn(t) = γ
(
un(t)

)
all move in the direction of the curvature. Indeed, each γn remains constant except at finitely

many times 0 < t1 < t2 < · · · < tmn
where two fronts interact. At each of these times tj , the curve

γn(tj+) is obtained from γn(tj−) by a Riemann cut, hence the relation γn(0) ≤ γn(t) clearly holds

for every t > 0.

Using Lemma 4 we can now pass to the limit as n → ∞. By (3.10) this yields γ(0) ≺ γ(t),

proving the theorem.

Remark 6. As in Section 2, define the amount of interaction I(u; [t1, t2]) during [t1, t2] as the

area swept by γ(u(t)) over the time interval [t1, t2]. Theorems 1 and 3 then yield

I(u; [t1, t2]) ≤ Q(u(t1))−Q(u(t2)), (3.11)

where Q(u) is the interaction potential defined at (3.5). One can interpret the quantity I(u; [t1, t2])
as measuring the change in the shape of the solution u = u(t, x) within the time interval [t1, t2].

By (3.11), this is bounded in terms of a Glimm type potential, similar to the one introduced by

T.P. Liu in his paper on hyperbolic systems [9].

Remark 7. For an arbitrary flux function f , there may not exist a Borel function λ (the wave

speed), such that

Q(u) =
1

2

∫∫
x<y

|λ(x)− λ(y)||Du|(x)|Du|(y). (3.12)
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However, if f is strictly convex and u has no upward jumps, i.e. u(x−) ≥ u(x+) for every x ∈ IR,

then (3.12) holds with

λ(x)
.
=


f ′(u(x)) u is continuous in x,

f
(
u(x+)

)
− f

(
u(x−)

)
u(x+)− u(x−)

u has a jump at x .
(3.13)

In particular the entropic solution of a scalar conservation law with strictly convex flux satisfies

(3.12)-(3.13) for every t > 0.
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