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Abstract. We consider a special case of the Jin–Xin relaxation systems

ut + vx = 0, vt + λ2ux = (F (u)− v)/ε. (∗)

We assume that the integral curves of the eigenvectors ri of DF (u) are straight lines.
In this setting we prove that for every initial data u, v with sufficiently small total variation the

solution (uε, vε) of (∗) is well defined for all t > 0, and its total variation satisfies a uniform bound,
independent of t, ε. Moreover, as ε tends to 0+, the solutions (uε, vε) converge to a unique limit

(u(t), v(t)): u(t) is the unique entropic solution of the corresponding hyperbolic system ut+F (u)x = 0
and v(t, x) = F (u(t, x)) for all t > 0, a.e. x ∈ R.

The proofs rely on the introduction of a new functional for the solutions of (∗), corresponding to
the Glimm interaction potential for the approaching waves of different families.
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1. Introduction

Consider the following n× n hyperbolic system of conservation laws

ut + F (u)x = 0, (x, t) ∈ R× R+, u ∈ Rn, (1.1)

where F is a smooth vector valued function. In [8], S. Jin and Z. Xin proposed to approximate
(1.1) by the relaxation system {

ut + vx = 0

vt + Λux =
1

ε

(
F (u)− v

) (1.2)

where u, v ∈ Rn and Λ =diag(λ2
1, . . . , λ

2
n) is a n × n diagonal matrix. As ε tends to zero, at least

at a formal level one obtains the equations [8]

v = F (u), ut + F (u)x = 0.

The above problem is closely related to the convergence of the vanishing viscosity limit

ut + F (u)x − εuxx = 0.

In fact, for small ε, applying the Chapman–Enskog expansion in the relaxation system (1.2), we
obtain the following approximation

ut + F (u)x = ε
((

Λ− (A(u))2
)
ux

)
x
,

where A(u) is the Jacobian matrix of the flux function F . This relation shows that a necessary
stability condition is Λ− (A(u))2 > 0. For a survey of hyperbolic relaxation problems see [11].

In this paper we consider a simplified version of the system (1.2). More precisely we assume
Λ = λ2I, where I is the n×n identity matrix, λ is a sufficiently big constant, and F (u) is a vector
valued function such that its Jacobian matrix is strictly hyperbolic in an open set Ω ⊆ Rn. Up to
a rescaling of the space variable x, we can assume that λ = 1 and that all the eigenvalues of A(u)
lie in the interval (−1, 1), so that the above stability condition is satisfied.

The proof of well–posedness for the system (1.2) is similar to [1,6]: the main step is to obtain a
uniform estimate on the total variation of the solution (u, v), independent of ε.

Performing the rescaling t → t/ε, x → x/ε, the relaxation system (1.2) becomes{
ut + vx = 0,
vt + ux = F (u)− v

(1.2′)

We denote with −1 < λ1(u) < · · · < λn(u) < 1 the eigenvalues of the matrix A(u), and call
l1, . . . , ln, r1, . . . , rn its eigenvectors normalized so that

|ri(u)| = 1, 〈li(u), rj(u)〉 = δij . (1.3)

Here 〈·, ·〉 is the duality product in Rn and δij is the Kronecker symbol. The directional derivative
of a function φ = φ(u) in the direction of the eigenvector ri will be written as

ri • φ(u)
.
= lim

h→0

φ
(
u+ hri(u)

)
− φ(u)

h
.
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By defining z+
.
= u+ v, z−

.
= u− v, we can rewrite (1.2′) as

z−t − z−x = −F (u)− z−

2
+

z+

2

z+t + z+x = F (u) +
z−

2
− z+

2

(1.4)

We now decompose the gradients z±x along the eigenvectors ri, setting now z±x
.
=
∑

f j±rj(u).
From (1.4) we deduce

z±xt =
∑
j

f j±
t rj +

∑
j

f j±ut • rj =
∑
j

f j±rj −
∑
j,k

f j±
(
fk+ − fk−

2

)
rk • rj ,

z±xx =
∑
j

f j±
x rj +

∑
j,k

f j±
(
fk+ + fk−

2

)
rk • rj ,

so that the equations satisfied by the components f i± are
f i−
t − f i−

x = −1 + λi(u)

2
f i− +

1− λi(u)

2
f i+ +

∑
j,k

〈li, rk • rj〉f j−fk+

f i+
t + f i+

x = +
1 + λi(u)

2
f i− − 1− λi(u)

2
f i+ −

∑
j,k

〈li, rk • rj〉f j+fk−
(1.5)

Observe that (1.5) consists of n systems of 2× 2 balance laws, coupled through the terms 〈li, rk •
rj〉f j±fk∓. As in [1], these terms can be classified as:

– transversal terms: 〈li, rk • rj〉f j±fk∓, j, k = 1, . . . , n, j 6= k;

– non transversal terms: 〈li, rj • rj〉f j±f j∓, j = 1, . . . , n.

In this paper we assume that ri • ri = 0 for all i = 1, . . . , n, i.e. the integral curves of the
eigenvector rk are straight lines: this implies that in (1.5) only transversal terms are present. Since
the system (1.4) is semilinear, solutions initially remain smooth for all times. Uniform BV bounds
on z± can thus be obtained from L1 estimates on the gradient components f i±. As in [1,6], towards
these estimates the main task is to prove that the L1 norm of the coupling terms over the half
plane (t, x) ∈ R+ × R is bounded and of quadratic order.

The main novelty of this paper is the introduction of a Glimm–type interaction potential
Q(z−, z+) for the system (1.4). As in [6], one can interpret a solution of the 2 × 2 system (1.5)
as the density of random particles, whose average speed is λi(u). The potential Q then represents
the expected number of future crossings between particles with different speeds. Following this
interpretation, Q provides us the counterpart of the Glimm interaction potential measuring the
sum of all approaching waves of different characteristic families [3]. Differently form the hyper-
bolic case, however, in our system each wave is approaching the others, because of the diffusive
behavior of (1.2′), but its strength is weighted by an exponentially decreasing function, measuring
the probability of interaction when the particles start at different places.

Our main results are as follows. We first consider the Cauchy problem for the system (1.2′). We
assume that the Jacobian matrix A(u) = DF (u), is a smooth uniformly strictly hyperbolic function
with values in Rn × Rn, i.e. it has n real distinct eigenvalues λi such that λ1(u1) < · · · < λn(un)
for all u1, . . . , un ∈ Ω. By li, ri we denote its left and right eigenvectors normalized as in (1.3).
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For a BV function w : R 7→ Ω we denote with Tot.Var.(w) the sum of the total variation of its
components along the eigenvectors ri,

Tot.Var.(w)
.
=
∑
i

Tot.Var.
(
〈li, wx〉

)
, (1.6)

and we write w(−∞)
.
= limx→−∞ w(x). Given two BV functions w1, w2 : R−→Ω, we define the

functional V(w1, w2) as
V(w1, w2)

.
= Tot.Var.(w1) + Tot.Var.(w2). (1.7)

Our first theorem is concerned with the existence of a global BV solution for (1.4).

Theorem 1. For every compact set K ⊂ Ω and constant M > 0 there exist a constant δ0, a closed
domain D ⊆ L1

loc(R;R2n) and a continuous semigroup S : D × [0,+∞)−→D with the following
properties:
i) the domain D has the form

D = cl

{
(z−, z+) ∈ W 1,1

loc (R ;R2n) :
(
z− + z+

)
(−∞) ∈ K, |z−(−∞)|, |z+(−∞)| ≤ M,

V(z−, z+) + C0Q(z−, z+) ≤ δ0

}
,

(1.8)
where the closure is taken w.r.t. the L1 norm;

ii) for every initial data
(z−(0, x), z+(0, x))

.
= (z−0 (x), z+0 (x)) ∈ D, (1.9)

there exists a unique globally defined solution to (1.4)–(1.9), corresponding to the semigroup
trajectory t → (z−(t), z+(t)) = St(z

−
0 , z+0 );

iii) there exists constants L,L′ such that for every pair of initial data (z−0 , z+0 ), (z̃
−
0 , z̃+0 ) ∈ D, and

for every s, t ≥ 0 one has

‖St(z
−
0 , z+0 )− Ss(z̃

−
0 , z̃+0 )‖L1 ≤ L′|t− s|+ L‖(z−0 , z+0 )− (z̃−0 , z̃+0 )‖L1 . (1.10)

We remark that the domain (1.8) depends only on the total variation of the initial data (z−0 , z+0 ),
and is invariant w.r.t. to the hyperbolic rescaling t → εt, x → εx. The above result thus yields an a
priori bound on the total variation of solutions (uε(t), vε(t)) of (1.2), independent of the parameter
ε.

Our second main result shows that, as ε → 0+, these solutions (uε(t), vε(t)) converge to a unique
limit (u(t), v(t)), depending continuously on the initial data u(0).

Theorem 2. In the same setting of Theorem 1, there exist constants L,L′, δ′ > 0, a closed domain
D′ ⊂ L1

loc and a continuous semigroup S : D′ × [0,∞[ 7→ D′ with the following properties:
i) the domain D′ has the form

D′ = cl

{
u ∈ L1

loc(R;Rn) : u(−∞) ∈ K, u piecewise constant, V (u) + C ′Q(u) ≤ δ′

}
, (1.11)

for some constants C ′, δ′, where V (u) and Q(u) are the total amount of waves and the Glimm
interaction potential measuring the sum of approaching waves of different characteristic families
[3];
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ii) for every ū, w̄ ∈ D′ with ū− w̄ ∈ L1 and every t, s ≥ 0 one has

‖Stū− Ssw̄‖L1 ≤ L′|t− s|+ L‖ū− w̄‖L1 ; (1.12)

iii) for every piecewise constant initial data ū ∈ D′, there exists τ > 0 such that the following holds.
For every ū ∈ D′, the trajectory t−→u(t, ·) = Stū is the unique entropic solution of the Cauchy
problem (1.1) in the sense of [4];

iv) for every ū ∈ D, the trajectory u(t, ·) = Stū is the unique limit in L1
loc of the corresponding

solutions uε(t, ·) of the relaxation Cauchy problem (1.2), as ε → 0+, with initial data

u(0, x) = ū(x) ∈ D′, (z−(0, x), z+(0, x)) ∈ D. (1.13)

Moreover, for every t > 0, v(t, x) = F (u(t, x)) for a.e. x ∈ R .

The proofs of the two above theorems are worked out in section 2–4. We shall first assume that
the initial data are sufficiently regular. The general case then follows by approximation.

In Section 2 we start by considering two linear 2×2 relaxation system. After proving some easy
lemmas, we compute the integral of the tensor product of the two solutions. Two components of
this integral have a simple probabilistic interpretation: they measure the expected number of times
where one random particle overtakes the other. This computation, differently from [1,6], is carried
out using complex analysis and the calculus of residues. Finally we give a simple probabilistic
interpretation of the results.

In Section 3, we introduce the Glimm-type potential. We show that this potential controls the
increase in total variation of the solution of (1.4), (1.9). This proves the first two statements in
Theorem 1. Next, we study the linearized equations (1.4) along a solution (z−(t), z+(t)). As in
[1,6], we show that these equations are of the same kind of (1.5), and thus we can again evaluate
the increment of the L1 norm of the perturbation using the potential. This concludes the proof of
Theorem 1.

In section 4 we address the question of convergence of the solution as ε → 0, proving Theorem
2. The main arguments are as in [6].

2. Estimate of transversal terms in the linear case

Aim of this section is to prove some easy properties of the solution of a 2× 2 system of balance
laws. These remarks are essentially the same as in [6]. Then we consider two solutions of two
distinct 2 × 2 linear systems, with strictly different average speeds, and we explicit compute the
integral of their product over the half plane R+ × R. The computation is performed using the
calculus of residues [2].

Consider a 2× 2 system of balance laws of the form f−
t − f−

x = −α(t, x)f− + β(t, x)f+

f+
t + f+

x = α(t, x)f− − β(t, x)f+
(2.1)

with 0 < α(t, x), β(t, x) < 1, α(t, x) + β(t, x) = 1. This system can be interpreted as the motion of
a random particle with speed ±1. If the initial datum (f−

0 , f+
0 ) is positive, it remains positive for

all t ≥ 0. Moreover it is easy to show that |f−|t − |f−|x ≤ −α(t, x)|f−|+ β(t, x)|f+|

|f+|t + |f+|x ≤ α(t, x)|f−| − β(t, x)|f+|
(2.2)
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and therefore
d

dt

∫
R

(
|f−(t, x)|+ |f+(t, x)|

)
dx ≤ 0. (2.2′)

The above relation implies that the L1 norm of the solution is not increasing in time, and it will
be useful in the next sections.

A particular but fundamental case is when the functions α, β are constant: in this case (2.1)
becomes 

f−
t − f−

x = −1 + a

2
f− +

1− a

2
f+

f+
t + f+

x =
1 + a

2
f− − 1− a

2
f+

(2.1′)

where a
.
= α − β, α ∈ (−1, 1). With the above probabilistic interpretation, we can say that a is

the time average on [0,+∞) of the speed of a particle whose density at the point (t, x) is given by
f−(t, x) + f+(t, x) (see [11]).

It is well known that the solution of (2.1′) can be explicitly computed using the Fourier transform:
if we write the vector (f−, f+) for any fixed t ≥ 0 as[

f−(t, x)
f+(t, x)

]
.
=

1√
2π

∫
R
cξ(t) exp{−iξx}dξ, cξ(t) ∈ R2,

the substitution of the above formula in (2.1′) gives the equations for the Fourier components c(t):

ċξ =

−1 + a

2
− iξ

1− a

2

1 + a

2
−1− a

2
+ iξ

 cξ
.
= A(a; ξ)cξ. (2.3)

We shall denote with

σi(a; ξ), ri(a; ξ) =

[
ri−(a; ξ)
ri+(a; ξ)

]
, li(a; ξ) =

[
li−(a; ξ), li+(a; ξ)

]
, i = 1, 2, (2.4)

respectively the i-th–eigenvalue and the i-th right and left eigenvectors of the matrix A(u), nor-
malized so that

ri− + ri+ = 1,
〈
li(a; ξ), ri(a; ξ)

〉
.
= li−ri− + li+ri+ = 1. (2.5)

It is easy to prove that, for ξ ∈ R \ {0}, one has −1 < Re(σ) < 0 and σ1(a; 0) = −1, σ2(a, 0) = 0.
The non-positivity of these eigenvalues reflects the fact that the L1 norm of a solution is non-
increasing.

Finally, if f̂0(ξ) is the Fourier transform of the initial datum f(0, x), the solution to (2.1′) can
be written as[

f−(t, x)
f+(t, x)

]
=

1√
2π

∫
R

{〈
l1(a; ξ), f̂0(ξ)

〉
r1(a; ξ)exp

{
−iξx+ σ1(a; ξ)t

}
+
〈
l2(a; ξ), f̂0(ξ)

〉
r2(a; ξ)exp

{
−iξx+ σ2(a; ξ)t

}}
dξ.

(2.6)

It will be convenient to study σ as a multivalued function on the whole complex plane, defined
by the equation

det
[
σI −A(a, ξ)

]
= σ2 + σ − iξa+ ξ2 = 0, (2.7)
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In this case the branch points are

ξ±(a) = ±
√
1− a2

2
+ i

a

2
,

and the picture in the complex plane is given in fig. 2.1, with a > 0.

σ

θ

θ

1

+

−

σ2

θ

θ+

−
−2π

ξ ξ
ξ ξ

−
+

−
+

Figure 2.1. The two branches of the solution of (2.7), given by (2.8).

The eigenvalues can be written as

σ1(a; ξ) = − 1

2
+ i
√

|ξ − ξ−||ξ − ξ+| exp
{
θ− + θ+

2

}
σ2(a; ξ) = − 1

2
− i
√

|ξ − ξ−||ξ − ξ+| exp
{
θ− + θ+

2

} (2.8)

where now the square root is considered as a function from R+ to R+. Note that, by (2.5), the
eigenvectors are rational functions of the eigenvalues, and therefore they have the same branch
points.

Consider now two systems of the form (2.1′) with a′ 6= a. We want to compute the (tensor)
transversal integral ∫ +∞

0

∫
R

[
f−(t, x)
f+(t, x)

]
⊗
[
(f−)′(t, x)
(f+)′(t, x)

]
dxdt, (2.9)

where we denote with (f∓)′(t, x) ∈ R2 the solution of a second system, with a replaced by some
different value a′. The tensor product in (2.9) is defined as

[
f−

f+

]
⊗
[
(f−)′

(f+)′

]
.
=

[
f−(f−)′ f−(f+)′

f+(f−)′ f+(f+)′

]
.

For the sake of definiteness in the following we assume a > a′ ≥ 0, the other cases can be handled
similarly, and we will denote all quantities referring to this second system by a prime.

If we assume that the initial data f(0, x) = f0(x), f
′(0, x) = f ′

0(x) are in L2(R;R2), we can
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rewrite the integral (2.9) using the Fourier transform as the limit T → +∞ of∫ T

0

∫
R

[
f−(t, x)
f+(t, x)

]
⊗
[
(f−)′(t, x)
(f+)′(t, x)

]
dxdt =∫

R
dξ

2∑
i,j=1

ci(a; ξ)⊗ c′j(a
′;−ξ)

∫ T

0

dt exp
{
(σi(a; ξ) + σ′

j(a
′;−ξ))t

}
=

∫
R
dξ

2∑
i,j=1

ci(a; ξ)⊗ c′j(a
′;−ξ)

exp
{
(σi(a; ξ) + σ′

j(a
′;−ξ))T

}
− 1

σi(a; ξ) + σ′
j(a

′;−ξ)
,

(2.10)

where the coefficients ci(a; ξ), c
′
j(a

′; ξ) are in L2(R;C2).

− + +−

’

ξ
_

γ

’ ’’− − −+ + −
−

Ω
−ξ ξ

ξξ ξ ξ

ξ ξ

Figure 2.2. Figure 2.3.

Instead of computing the above integral for any initial data f0, f
′
0, by the linearity of the systems

we only need to compute (2.10) for f0(x) = vδ(x), f ′
0(x) = v′δ(x − x0), with v = [v1, v2] ∈ R2,

v′ = [v′1, v
′
2] ∈ R2. In this case, by the above analysis and (2.5), the Fourier coefficients c, c′

are multivalued holomorphic functions on the complex plane. However one should consider the
principal value of the integral (2.10), i.e. we suppose to move the integral path of ±iε at ∞, and
then we let ε go to zero. The choice of the sign will depend on the sign of x0: this assures the
exponential decay at ∞, i.e. the existence of the integral (2.10). The path of integration in the
complex plane is represented in fig. 2.2.

To pass to the limit in (2.10), we consider the region Ω ⊆ C in which Re
(
σi(a; ξ)+σ′

j(a
′;−ξ)

)
<

0, ∀i, j = 1, 2: it can be shown that this region is shaped as in fig. 2.3, where

ξ
.
=

i

2

a− a′

1−
(
a+a′

2

)2 > 0. (2.11)

Since 0 ∈ Ω, in order to compute the limit of (2.10) as T → +∞, we need to change the path of
integration. Noting that the Fourier coefficients of f ′

0 can be written as c′(a′; ξ)eiξx0 , it follows

lim
T→+∞

∫ T

0

∫
R

[
f−(t, x)
f+(t, x)

]
⊗
[
(f−)′(t, x)
(f+)′(t, x)

]
dxdt = p.v.

∫
γ

2∑
i,j=1

ci(a; ξ)⊗ c′j(a
′;−ξ)

σi(a; ξ) + σ′
j(a

′;−ξ)
e−iξx0dξ

= p.v.

∫
γ̃

c(a; ξ)⊗ c′(a′;−ξ)

σ(a; ξ) + σ′(a′;−ξ)
e−iξx0dξ

.
= p.v.

∫
γ̂

h(x0; ξ)dξ.

(2.12)
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Here γ is the path in the complex plane depicted in fig. 2.3, while γ̂ is the path γ repeated on the
Riemann surface made of 4 copies of the complex plane connected by the two cuts, as in fig. 2.4.

ξ
_ ξ

_

+ξ

’
−

−ξ’
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−ξ

ξ −

ξ −

ξ −

ξ −

ξ −
’
+

−ξ
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+

−ξ

’
+

−ξ

’
+

−ξ

+ξ

+ξ

+ξ

+ξ ’
−

−ξ

’
−

−ξ

’
−

−ξ

’
−

−ξ

γ

γ

γ

γ

^

^

^

^

γ

Ω

Figure 2.4. The path of integration projected on the complex plane and on the Riemann surface.

At this point we need to consider 2 cases separately, corresponding to the sign of x0.

CASE 1. We suppose x0 < 0, i.e. the particle with average speed a is on the right of the particle
with average speed a′. In this case the integral (2.12) is computed as

p.v.

∫
γ̂

h(x0; ξ)dξ
.
= lim

ε→0

∫
γ̂+iε

h(x0; ξ)dξ = Res(h; ξ) +
4∑

i=1

∫
γi

h(x0; ξ)dξ, (2.13)

where γi, i = 1, . . . , 4 is one of the 4 paths winding twice a branch point (fig. 2.5).

ξ
_ ξ

_

’−ξ +
’
−

−ξ

+
ξ

−ξ

’−ξ +

’−ξ +

’−ξ +

’−ξ +

’
−

−ξ

’
−

−ξ

’
−

−ξ

’
−

−ξ

+
ξ

+
ξ

+
ξ

+
ξ

−ξ

−ξ

−ξ

−ξ

γ

γ

γ

γ

^

^

^

^

Ω

γ
~

ε

γ γ γ

γ

γ

γ

1

2

3

4i j

Figure 2.5.

Note that in the neighborhood of any point ξ± the variable (σ + 1/2)2 can be used to perform
the integral along the corresponding γi. With this substitution we have∫

γi

h(x0; ξ)dξ =

∫
η

h(x0; ξ)ξ
′((σ + 1/2)2

)
2(σ + 1/2)d(σ + 1/2),

where η is a circumference centered at the origin with sufficiently small radius. A simple analysis
now shows that the function h(x0; ξ)(σ+1/2) is bounded in the neighborhood of the corresponding
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branch point, so that the above integrals are equal to 0 for all i = 1, . . . , 4. Therefore by calculus
of residues (2.13) becomes

p.v.

∫
γ̂

h(x0; ξ)dξ = Res(h; ξ)

=
1

a− a′

(
1 + a

2 + a+ a′
v1 +

1− a

2− a− a′
v2

)(
1 + a′

2 + a+ a′
v′1 +

1− a′

2− a− a′
v′2

)
1

4

[
(2− a− a′)2 4− (a+ a′)2

4− (a+ a′)2 (2 + a+ a′)2

]
exp

{
− 2(a− a′)

4− (a+ a′)2
x0

}
.

(2.14)

CASE 2. In this case x0 > 0, so that the path of integration γ̂ is moved in the lower half of the
complex plane for large ξ. A computation similar to the one above gives

p.v.

∫
γ̂

h(x0; ξ)dξ = Res(h; 0)

=
1

a− a′
(v1 + v2) (v

′
1 + v′2)

1

4

[
(1− a)(1− a′) (1− a)(1 + a′)
(1 + a)(1− a′) (1 + a)(1 + a′)

]
.

(2.15)

Note that in both cases the denominator contains the difference in the average speed of the two
particles: this correspond exactly to the computation made in [1].

If now we denote with Pijkl(x0) the 4× 4 tensor whose action on v⊗v′ is defined at (2.14) and
(2.15), then it is clear that for all f0, f

′
0 > 0 ∈ L1 we have(∫

R+

∫
R
f(t, x)⊗ f ′(t, x)dxdt

)
ij

=

∫
R

∫
R

∑
k,l=1,2

Pijkl(x− y)(f0(x))k(f
′
0(y))ldxdy.

The last part of this section is devoted to some probabilistic computations which explain and
simplify the results (2.14)–(2.15).

Following [6], we define

E0
.
=

(1− a)(1 + a′)

4(a− a′)
, and E1

.
=

(1 + a)(1− a′)

4(a− a′)
. (2.16)

We observe that the quantities 2E0 and 2E1 yield the expected number of times where the slow
particle, starting in front of the fast particle, overtakes or is overtaken by the fast particle, respec-
tively: in fact in each collision the difference in speed is 2, so that each collision contributes to the
integral (2.9) by an amount of 1/2. The relation 2E0 + 1 = 2E1 stems from the fact that the fast
particle eventually overtakes the slow particle with probability 1.

We note that, in (2.15), the only coefficient depending of the initial data has the form (v1 +
v2)(v

′
1+v′2) and that (2.15) does not depend on x0: this follows from the fact that the fast particle,

starting behind the slow particle, must collide with the slow one, no matter which is the position
and the initial speed. We can thus rewrite (2.15) as

Res(h; 0) = (v1 + v2)(v
′
1 + v′2)

[
· · · E0

E1 · · ·

]
. (2.15′)
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To interpret (2.14), we first compute the probability distribution of the first time X where a
particle, starting with speed −1 at t = 0 and satisfying (2.1′), changes speed to +1. The partition
function is easily computed to be

P (X ≤ t)
.
=


0 t < 0

1− exp

{
−1 + a

2
t

}
t ≥ 0

(2.17)

Now consider two particles, with average speeds a and a′, both starting with speed −1 at t = 0.
If X and Y denotes the first time in which they change speed, the probability density φ(·) of
Z

.
= X − Y is

φ(z) =


1 + a

2 + a+ a′
1 + a′

2
exp

{
−1 + a′

2
z

}
z ≤ 0

1 + a′

2 + a+ a′
1 + a

2
exp

{
−1 + a

2
z

}
z ≥ 0

so that we define

p−
.
=

1 + a

2 + a+ a′
, p′−

.
=

1 + a′

2 + a+ a′
= 1− p−, (2.18)

as the probabilities that the first particle changes speed before the second one or vice versa. In the
case where the particles start with speed +1, with very similar computations one finds

p+
.
=

1− a

2− a− a′
, p′+

.
=

1− a′

2− a− a′
= 1− p+. (2.19)

Note that p+ < p−, p
′
− < p′+.

Using (2.18) and (2.19) and assuming x0 = 0, we can write the right hand side of (2.14) as

Res(h; x̄i) =

(
v1 +

p+
p−

v2

)(
p′−
p′+

v′1 + v′2

)[
· · · E1

E1 · · ·

]
, (2.14′)

where we use the relation

E0

E1
=

p+p
′
−

p−p′+
. (2.20)

We now explain the element of the matrix corresponding to the collisions in which the slow
particle overtakes the fast. Using (2.20) we have

E1

(
v1 +

p+
p−

v2

)(
p′−
p′+

v′1 + v′2

)
= E0

(
p−
p+

v1 + v2

)(
v′1 +

p′+
p′−

v′2

)
=
[
E1p

′
− + E0p−

]
v1v

′
1 + E1v1v

′
2 + E0v2v

′
1 +

[
E0p

′
+ + E1p+

]
v2v

′
2.

Each coefficient is the probability that one of the particles changes speed multiplied by the expected
number of collisions computed using (2.15’). The various possible cases are illustrated in fig. 2.6.
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Figure 2.6. Possible collisions depending on the initial speeds of the particles.

With a very similar analysis, one obtains

E1

(
v1 +

p+
p−

v2

)(
p′−
p′+

v′1 + v′2

)
=[

E1p
′
− + E0p−

]
v1v

′
1 + E1v1v

′
2 + E0v2v

′
1 +

[
E0p

′
+ + E1p+

]
v2v

′
2.

Moreover we have the relations:

2E0 =
p+p

′
−

p−p′+ − p+p′−
, 2E1 =

p−p
′
+

p−p′+ − p+p′−
, α

.
=

2(a− a′)

4− (a+ a′)2
= p−p

′
+ − p+p

′
−, (2.21)

where α is the decay exponent in (2.14).

3. Proof of Theorem 1

In this section we prove the first theorem stated in the introduction. The main tool is the
introduction of a Glimm type interaction potential which gives a bound on the growth of the total
variation of the solution to (1.4). Before proving the result in the general case, we consider the
case in which we have two equations of the form (2.1′), with constants a and a′, a 6= a′, and we
want to bound the instantaneous interaction,∫

R
f−(t, x)(f+)′(t, x) + f+(t, x)(f−)′(t, x)dx.

We first recall the basic quantities obtained in the previous section: if A, A′ are the collision
matrices in the right hand side of (2.1′), and Λ is the hyperbolic matrix of the principal part, i.e.

A
.
=

−1 + a

2

1− a

2
1 + a

2
−1− a

2

 , A′ .
=

−1 + a′

2

1− a′

2
1 + a′

2
−1− a′

2

 , Λ
.
=

[
−1 0
0 1

]
, (3.1)

then the exponent of decay α and the corresponding eigenvalue σ are defined as

α
.
=

2(a− a′)

4− (a+ a′)2
, σ

.
=

(a− a′)(a+ a′)

(4− (a+ a′)2)
. (3.2)
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The above definitions implies that the projectors

l0
.
= [1, 1], l′0

.
= [1, 1], l1

.
= [p−, p+] , l′1

.
=
[
p′−, p

′
+

]
, (3.3)

satisfy the following relations:

l0A = 0, l′0A
′ = 0, l1

(
A− σI − αΛ

)
= 0, l′1

(
A′ + σI + αΛ

)
= 0. (3.4)

We recall that the quantities p−, p+, p
′
−, p

′
+ are defined in (2.18), (2.19):

p−
.
=

1 + a

2 + a+ a′
, p′−

.
= 1− p−, and p+

.
=

1− a

2− a− a′
, p′+

.
= 1− p+. (3.5)

Remark 3.1. One can define the quantities α, σ, and the projectors (3.3) using (3.4). It is clear
that the results are exactly the same. However the computation performed in Section 2 can be
useful to study the transversal terms in other situation, for example in connection with discrete
numerical schemes.

Define the interaction potential Q(f, f ′) as

Q(f, f ′)
.
=

∫∫
R2

2∑
k,l=1

(
P12kl(x− y) + P21kl(x− y)

)
(f0(x))i(f

′
0(y))j dxdy

=

∫∫
x<y

(
E0 + E1

)
〈l0, f(t, x)〉〈l′0, f ′(t, y)〉dxdy

+

∫∫
x>y

(
E0

p+p′−
+

E1

p−p′+

)
〈l1, f(t, x)〉〈l′1, f ′(t, y)〉e−α(x−y)dxdy.

(3.6)

For a fixed time t, this quantity gives precisely the future expected number of mutual crossings of
the two particles. One thus expects that its time derivative coincides with

−
{∫

R
f−(t, x)(f+)′(t, x) + f+(t, x)(f−)′(t, x)dx

}
,

i.e. the instantaneous crossings at time t.
Differentiating Q w.r.t. t one has

dQ(f, f ′)

dt
=

∫∫
x<y

(
E0 + E1

)
〈l0, ft(t, x)〉〈l′0, f(t, y)〉dxdy

+

∫∫
x<y

(
E0 + E1

)
〈l0, f(t, x)〉〈l′0, ft(t, y)〉dxdy

+

∫∫
x>y

(
E0

p+p′−
+

E1

p−p′+

)
〈l1, ft(t, x)〉〈l′1, f ′(t, y)〉e−α(x−y)dxdy

+

∫∫
x>y

(
E0

p+p′−
+

E1

p−p′+

)
〈l1, f(t, x)〉〈l′1, f ′

t(t, y)〉e−α(x−y)dxdy.

= I1 + I2 + I3 + I4.

(3.7)

The above integrals will be studied separately. Using (2.1′) and (3.1)–(3.5), one finds

I1 =
(
E0 + E1

) ∫
R

(
f−(t, x)− f+(t, x)

)(
(f−)′(t, x) + (f+)′(t, x)

)
dx,
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I2 =
(
E0 + E1

) ∫
R

(
f−(t, x) + f+(t, x)

)(
−(f−)′(t, x) + (f+)′(t, x)

)
dx,

I3 =

(
E0

p+p′−
+

E1

p−p′+

)∫
R

(
−p−f

−(t, x) + p+f
+(t, x)

)(
p′−(f

−)′(t, x) + p′+(f
+)′(t, x)

)
dx

+

(
E0

p+p′−
+

E1

p−p′+

)∫∫
x>y

σ〈l1, f(t, x)〉〈l′1, f ′(t, y)〉e−α(x−y)dxdy,

I4 =

(
E0

p+p′−
+

E1

p−p′+

)∫
R

(
p−f

−(t, x) + p+f
+(t, x)

)(
p′−(f

−)′(t, x)− p′+(f
+)′(t, x)

)
dx

+

(
E0

p+p′−
+

E1

p−p′+

)∫∫
x>y

−σ〈l1, f(t, x)〉〈l′1, f ′(t, y)〉e−α(x−y)dxdy,

Summing up all integrals, from (3.7) we obtains

dQ(t)

dt
= I1 + I2 + I3 + I4 =

(
E0 + E1

) ∫
R

(
2f−(f+)′ − 2f+(f−)′

)
dx

+

(
E0

p+p′−
+

E1

p−p′+

)∫
R

(
−2p−p

′
+f

−(f+)′ + 2p+p
′
−f

+(f−)′
)
dx

= 2

(
E0 + E1 − E0

p−p
′
+

p+p′−
− E1

)
f−(f+)′ + 2

(
−E0 − E1 ++E0 + E0

p′−p+

p′+p−

)
f+(f−)′

= −
∫
R
f−(t, x)(f+)′(t, x) + f+(t, x)(f−)′(t, x)dx,

(3.8)
because of the relation (2.20). Using again (2.20), we can rewrite the potential (3.6) as

Q(f, f ′)
.
=

∫∫
x<y

(
E0 + E1

)(
f− + f+

)(
(f−)′ + (f+)′

)
dxdy

+

∫∫
x>y

2E1

(
f− + f+ · p+/p−

)(
(f−)′ · p′−/p′+ + (f+)′

)
e−α(x−y)dxdy,

(3.6′)

with p+/p− < 1, p′−/p
′
+ < 1. This proves the estimate

Q(f, f ′) ≤ 2E1

∫∫
R2

(
f− + f+

)(
(f−)′ + (f+)′

)
dxdy. (3.7)

Formula (3.8) can be better understood by considering two situations (fig. 3.1).
i) The fast particle is overtaking the slow one. In this case the potential before the interaction is

E1. Afterwards it equals E0. Therefore the variation of the potential in a time dt is given by

dQ(t) = 2(E1 − E0)f
+(f−)′dt = f+(f−)′dt.

The coefficient 2 is due to the difference in speed of the particles, since in the interval of time
dt they cover a distance 2dt.

ii) A slow particle is overtaking the fast one. The computation is exactly the same of i):

dQ(t) = 2(E1 − E0)f
−(f+)′dt = f−(f+)′dt.
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Now we can handle the general case. We start by choosing constants c, δ0 so that the compact
set

K1
.
=
{
u ∈ Rn; dist(u,K) ≤ δ0

}
(3.8)

is entirely contained inside Ω, and moreover

λj(u)− λi(v) ≥ c whenever i < j, u, v ∈ K1. (3.9)

We also choose a constant C0 such that∣∣∣〈li(u), rk • rj(u)
〉∣∣∣ ≤ C0 for all u ∈ K1. (3.10)

Moreover we define

λ−
i = min

u∈K1

λi(u), λ+
i = max

u∈K1

λi(u) for all i = 1, . . . , n. (3.11)

Using the above definitions and (2.2), from (1.5) it follows that
|f i−|t − |f i−|x ≤ − 1 + λi(u)

2
|f i−|+ 1− λi(u)

2
|f i+|+ C0

∑
j 6=k

|f j−||fk+|

|f i+|t + |f i+|x ≤ 1 + λi(u)

2
|f i−| − 1− λi(u)

2
|f i+|+ C0

∑
j 6=k

|f j−||fk+|
(3.12)

We now introduce the interaction potential as

Q(z−, z+)
.
=
∑
j>i

{∫∫
x<y

(
Eij

0 + Eij
1

)
〈l0, |f j(t, x)|〉〈l0, |f i(t, y)|〉dxdy

+

∫∫
x>y

(
Eij

0

pj+p
i
−

+
Eij

1

pij−(p
ij
+)

′

)
〈lij1 , |f j(t, x)|〉〈(lij1 )′, |f i(t, y)|〉e−αij(x−y)dxdy

}
=
∑
j>i

Qij ,

(3.13)
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where f i± are the components of the spatial derivatives of z−, z+ defined in the Introduction. For
j > i, the constants are chosen such that

αij .
=

2(λ−
j − λ+

i )

4− (λ−
j + λ+

i )
2
, l0

.
= [1, 1], (3.2′)

Eij
0

.
=

(1 + λ+
i )(1− λ−

j )

4(λ+
i − λ−

j )
, Eij

1
.
=

(1− λ+
i )(1 + λ−

j )

4(λ+
i − λ−

j )
, (3.14)

and the projectors are

lij1
.
=

[
1 + λ−

j

2 + λ−
j + λ+

i

,
1− λ−

j

2− λ−
j − λ+

i

]
.
=
[
pij−, p

ij
+

]
,

(lij1 )′
.
=

[
1 + λ−

j

2 + λ−
j + λ+

i

,
1− λ−

j

2− λ−
j − λ+

i

]
.
=
[
(pij−)

′, (pij+)
′
]
.

(3.3′)

Defining the matrices

Aij .
=

−
1 + λ−

j

2

1− λ−
j

2
1 + λ−

j

2
−
1− λ−

j

2

 , (Aij)′
.
=

−1 + λ+
i

2

1− λ+
i

2
1 + λ+

i

2
−1− λ+

i

2

 , Λ
.
=

[
−1 0
0 1

]
, (3.1′)

we can rewrite (3.12) in vector form for the components i, j as

|f i|t + Λ|f i|x ≤ Aij |f i|+ (λi − λ+
i )B|f i|+ s(t, x)[1, 1]

|f j |t + Λ|f j |x ≤ Aj |f j |+ (λj − λ−
j )B|f j |+ s(t, x)[1, 1],

(3.12′)

where

s = C0

∑
j 6=k

|f j+|fk−| and B
.
=

1

2

[
−1 −1
1 1

]
. (3.15)

The meaning of (3.12′) is that, neglecting the source terms, the particle i will have an average speed
lower than λ+

i , while the particle j will travel at least with speed λ−
j . Thus in the coefficients of

the potential (3.13) we are assuming the worst case, i.e. for all couple of particles the case in which
their speed is closer.

We now compute the derivative of each Qij . With a computation similar to (3.8), we find

dQij

dt
≤ −

∫
R

(
|f j−(t, x)||f i+(t, x)|+ |f j+(t, x)||f i−(t, x)|

)
dx

+

∫∫
x>y

(
Eij

0

pij+(p
ij
−)

′
+

Eij
1

pij−(p
ij
+)

′

)
(λj − λ−

j )
(
pij+ − pij−

)
|f j(t, x)|〈(lij1 )′, |f i(t, y)|〉e−αij(x−y)dxdy

+

∫∫
x>y

(
Eij

0

pij+(p
ij
−)

′
+

Eij
1

pij−(p
ij
+)

′

)
〈lij1 , |f j(t, y)|〉(λi − λ+

i )
(
(pij+)

′ − (pij−)
′
)
|f i(t, x)|e−αij(x−y)dxdy

+ 4Eij
1 C0

∫
R

(
|f i(t, x)|+ |f j(t, x)|

)
dx

∫
R
s(t, x)dx

≤ −
(
‖f j−(t)f i+(t)‖L1 + ‖f j+(t)f i−(t)‖L1

)
+ 4Eij

1

(
‖f i(t)‖L1 + ‖f j(t)‖L1

)
‖s(t)‖L1 ,

(3.16)
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because λj ≥ λ−
j , p

ij
− ≥ pij+ and λi ≤ λ+

i , (p
ij
−)

′ ≥ (pij+)
′. Let us introduce the constant

Ē
.
= max

i<j
Eij

1 ≤ 1

4c

(
1 +

c

2

)2
. (3.17)

Summing up all terms in (3.16) with j > i, we obtain the estimate

d

dt
Q(z−, z+) ≤ − 1

C0
‖s(t)‖L1 + 4(n− 1)ĒV(z−, z+)‖s(t)‖L1

= −
(
1− 2nC0ĒV(z−, z+)

) 1

nC0

d

dt
V(z−, z+).

(3.18)

Indeed,
d

dt
V(z−, z+) ≤ 2n‖s(t)‖L1 .

By choosing a smaller constant δ0, we can assume that

δ0 ≤ 1

4nC0Ē
, (3.19)

so that the first two points of Theorem 1 are proved with C = 2nC0. Indeed by (3.8), (3.18) and
(3.19), it follows that the solution (z−, z+) remains in K1 for all t ≥ 0, and hence all estimates
(3.9), (3.10) are valid.

To prove the Lipschitz continuous dependence w.r.t. the initial data, as in [1,6] we consider the
variational equation satisfied by an infinitesimal perturbation (h−, h+):

h−
t − h−

x = −A(u)

2
(h+ + h−) +

h+

2
− h−

2

h+
t + h+

x =
A(u)

2
(h+ + h−)− h+

2
+

h−

2

(3.20)

We now project the perturbation (h−, h+) in components along the eigenvectors ri(u):

h± =
∑
j

hj±rj(u),

h±
t =

∑
j

hj±
t rj(u) +

∑
j

hj±ut • rj =
∑
j

hj±
t rj −

∑
jk

hj±
(
fk+ − fk−

2

)
rk • rj ,

h±
x =

∑
j

hj±
x rj +

∑
jk

hj±
(
fk+ + fk−

2

)
rk • rj .

Each component hi± thus satisfies the equations
hi−
t − hi−

x = −
(
1 + λi(u)

2

)
hi− +

(
1− λi(u)

2

)
hi+ +

∑
k 6=j

〈li, rk • rj〉hj−fk+

hi+
t − hi+

x =

(
1 + λi(u)

2

)
hi− −

(
1− λi(u)

2

)
hi+ −

∑
k 6=j

〈li, rk • rj〉hj+fk−
(3.21)
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The analysis is now very similar to the one above. Consider the functional

D(z, h)
.
=
∑
j>i

{∫∫
x<y

(
Eij

0 + Eij
1

)
〈l0, |hj(t, x)|〉〈l0, |f i(t, y)|〉dxdy

+

∫∫
x<y

(
Eij

0 + Eij
1

)
〈l0, |f j(t, x)|〉〈l0, |hi(t, y)|〉dxdy

+

∫∫
x>y

(
Eij

0

pij+(p
ij
−)

′
+

Eij
1

pij−(p
ij
+)

′

)
〈lij1 , |hj(t, x)|〉〈(lij1 )′, |f i(t, y)|〉e−αij(x−y)dxdy

+

∫∫
x>y

(
Eij

0

pij+(p
ij
−)

′
+

Eij
1

pij−(p
ij
+)

′

)
〈lij1 , |f j(t, x)|〉〈(lij1 )′, |hi(t, y)|〉e−αij(x−y)dxdy

}
≤ 2Ē‖h‖L1V(z−, z+).

(3.22)
Its time derivative satisfies

d

dt
D(z, h) ≤ − 1

nC0

d

dt
‖h(t)‖L1 + 2Ē‖h(t)‖L1

d

dt
V(z−, z+) + 2ĒV(z−, z+) d

dt
‖h(t)‖L1

≤ − 1

2nC0

d

dt
‖h(t)‖L1 + ‖h(t)‖L1

d

dt
Q(z−, z+).

With easy computation one concludes

‖h(t)‖L1 ≤ ‖h(0)‖L1 + 2nC0

∫ t

0

d

ds
D(z, h)exp

{
2nC0

(
Q(t)−Q(s)

)}
ds

≤ ‖h(0)‖L1 + 2nC0D(z(0), h(0)) ≤ 2‖h(0)‖L1 .

(3.23)

This holds for any infinitesimal perturbation. Consider a smaller domain D′ ⊆ D, such that
given now two initial data (z−0 , z+0 ), (z

−
1 , z+1 ) ∈ D′, we construct the smooth path ζ

θ−→ ζ(θ) = (1− θ)(z−0 , z+0 ) + θ(z−1 , z+1 ) ∈ D, θ ∈ [0, 1]. (3.24)

If S denotes the semigroup generated by (1.4), one has by (3.23)∫ 1

0

∥∥∥∥dStζ(θ)

dθ

∥∥∥∥
L1

dθ ≤ 2

∫ 1

0

‖ζ(θ)‖L1dθ, for all t ∈ R+.

Finally

‖St(z
−
0 , z+0 )− St(z

−
1 , z+1 )‖L1 ≤

{∫ 1

0

∥∥∥∥dStζ(θ)

dθ

∥∥∥∥
L1

dθ

}
≤ 2

∫ 1

0

‖ζ(θ)‖L1dθ = 2 ‖(z−0 , z+0 )− (z−1 , z+1 )‖L1 .

(3.15)

This concludes the proof of Theorem 1, since the continuous dependence w.r.t. time follows
from (1.4) and the fact that the solution (z−(t), z+(t)) takes values in a compact set of R2n.

Remark 3.2. Since all propagation speeds are contained in the interval [−1, 1], a similar argument
shows that∫ b

a

∣∣∣(z−(t, x), z+(t, x))− (z̃−(t, x), z̃+(t, x))
∣∣∣ dx ≤

L

∫ b+t

a−t

∣∣∣(z−(0, x), z+(0, x))− (z̃−(0, x), z̃+(0, x))
∣∣∣dx. (3.16)
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4. Proof of Theorem 2

In this section we give a proof of Theorem 2, retracing the arguments in [6]. For each given
ε > 0, let Sε the continuous semigroup generated by (1.2′). According to Theorem 1, this defines
a continuous semigroup. However but as ε → 0, dependence on time is not uniformly continuous.

Define

Z(t)
.
=

n∑
i=1

∫
R

∣∣∣∣〈li(u(−∞)), v(t, x)− F (u(t, x))
〉∣∣∣∣dx. (4.1)

With easy computations, since the total variation of u is bounded, we have

Ż(t) = O(1)

{
−Z(t)

ε
+Tot.Var.(u(t))

}
.

Therefore
Z(t) = O(1)

{
Z0e

−t/ε + ε
}
. (4.2)

By (1.2) this implies that the semigroup Sε is uniformly Lipschitz continuous if t ≥ ε log ε. Moreover
by (1.2) one has

‖u(t)− u0‖L1 ≤ t · Tot.Var.(v). (4.3)

By a standard compactness argument, this proves the convergence to a unique Lipschitz semi-
group for all t ≥ 0, which can be characterized as the unique entropic solution to (1.1) constructed
by wave front tracking (see [1,6]). Moreover (4.2) implies v(t) = F (u(t)) for all t > 0. Formula
(1.11) follows easily from (1.8).

Remark 4.1. One sees that the discontinuous behavior of Sε is due to the exponentially fast decay
of v(t) to an ε–neighborhood of F (u(t)) in the L1 norm, where the long time dynamics takes place.

Acknowledgment. This research was partially supported by the European TMR Network on
Hyperbolic Conservation Laws ERBFMRXCT960033.

References

[1] S. Bianchini, A. Bressan, BV solutions for a class of viscous hyperbolic systems, Indiana Univ. Math. J. (to
appear).

[2] C. A. Berenstein, R. Gay, Complex variables. An introduction, Springer–Verlag, New York (1991).
[3] A. Bressan, Hyperbolic systems of conservation laws. The one dimensional Cauchy problem, Oxford University

Press (to appear).
[4] A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal. 130 (1995), 205–230.

[5] A. Bressan, T. P. Liu, T. Yang, L1 stability estimates for n×n conservation laws, Arch. Rational Mech. Anal.
149–1 (1999), 1–22.

[6] A. Bressan, W. Shen, BV estimates for multicomponent chromatography with relaxation, Discrete Cont. Dy-

namical Systems 6–1 (2000), 21–38.
[7] G. Q. Chen, T. P. Liu,, Zero relaxation and dissipation limits for systems of conservation laws, Comm. Pure

Appl. Math. 43 (1993), 755–781.
[8] S. Jin, Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions,

Comm. Pure Appl. Math. 48 (1995), 235–277.
[9] T. P. Liu, Hyperbolic conservation laws with relaxation, Commun. Math. Phys. 108 (1987), 153–175.
[10] R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure

Appl. Math. 49 (1998), 795–823.

[11] R. Natalini, Recent results on hyperbolic relaxation problems, Analysis of systems of conservation laws, H.
Freistühler Ed., Chapman & Hall/CRC (1998), 128–198.

Stefano Bianchini, S.I.S.S.A. (I.S.A.S.), Via Beirut 2/4, 34013 Trieste, Italy
E-mail address: bianchin@sissa.it

19


