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Abstrat. We onsider a speial 2� 2 visous hyperboli system of onservation laws of the formut+A(u)ux = "uxx, where A(u) = Df(u) is the Jaobian of some ux funtion f . For initial datawith small total variation, we prove that the solutions satisfy a uniform BV bound, independentof ". Letting "! 0, we show that solutions of the visous system onverge to the unique entropyweak solutions of the hyperboli system ut + f(u)x = 0. Within the proof, we introdue twonew Lyapunov funtional whih ontrol the interation of visous waves of the same family. Thisprovides a �rst example where uniform BV bounds and onvergene of vanishing visosity solutionsare obtained, for a system with a genuinely nonlinear �eld where shok and rarefation urves donot oinide.
1 - IntrodutionThis paper is a ontribution toward the understanding of the stability and onvergene ofvanishing visosity approximations to hyperboli systems of onservation laws. Given the n � nstritly hyperboli system ut + f(u)x = 0: (1:1)a long standing open question is whether the solutions of the visous approximationut +A(u)ux = "uxx (1:2)with A(u) = Df(u) are uniformly stable and onverge to entropy weak solutions of (1.1) as "! 0.We reall that, by the results in [4, 5, 9, 10℄, the entropy weak solutions of the hyperbolisystem (1.1) form a uniformly Lipshitz ontinuous semigroup S : D � [0;1[ 7! D de�ned on alosed domainD � L1 ontaining all funtions with suitably small total variation. A omprehensivedesription of the reent uniqueness and stability theory an be found in the monograph [3℄. Inearlier literature, vanishing visosity limits have been studied, with partial suess, by tehniquesof ompensated ompatness [6℄ and singular perturbations [8℄.1



The eventual goal of our researh is to prove that, for eah " > 0, the system (1.2) alsogenerates a ontinuous semigroup S", and that the onvergene S" ! S holds as " ! 0. Inpartiular, if the total variation of a solution is initially small, then it remains small for all timest � 0, uniformly w.r.t. ".The �rst step of this program was aomplished in [1℄, where the authors proved that theabove result indeed holds for n� n systems where all harateristi urves are straight lines. Forsuh systems, new osillations an only be produed by the interation of visous waves of distintfamilies. The result in [1℄ was indeed obtained by arefully ontrolling this type of interations.In the present paper, we onentrate on interations of visous waves of the same family.Namely, we study in detail one partiular 2 � 2 system, whih provides the most elementaryase where visous waves of the same family an interat and produe osillations in anotherfamily. We establish uniform BV bounds, and hene the (strong) onvergene of vanishing visosityapproximations.The heart of the matter is the derivation of a priori BV bounds, whih we obtain by introduingtwo new Lyapunov funtionals. These are related to the length and to the area swept by a planarurve whose omponents are the onserved quantity and the ux, for a salar visous onservationlaw. The present paper thus ahieves the seond step in our researh program, by understandingthe interation of visous waves of the same family. The third and �nal step, extending all resultsto general n� n visous hyperboli systems, is the the subjet of urrent researh.2 - Evolution of gradient omponentsOur main onern is to provide uniform BV estimates for solutions to the visous system(1.2). We always assume that the n� n matrix A(u) is stritly hyperboli, i.e. it has real distinteigenvalues �1(u) < � � � < �n(u) and dual bases of left and right eigenvetors l1; : : : ; ln, r1; : : : ; rn,suh that li(u) � rj(u) = � 1 if i = j,0 if i 6= j. (2:1)The diretional derivative of a funtion � = �(u) in the diretion of the eigenvetor ri is writtenri � �(u) := limh!0 ��u+ hri(u)�� �(u)h ;while [rj ; rk℄ := rj � rk � rk � rjdenotes the usual Lie braket. Moreover, we write uix := li � ux for the i-th omponent of ux. From(1.2) and (2.1) respetively it followsut +Xi �iuixri = "Xi (uixri)x = "Xi (uix)xri + "Xi;j uixujx(rj � ri) ; (2:2)ux =Xi uixri : (2:3)2



Di�erentiating (2.2) w.r.t. x and (2.3) w.r.t. t and equating the results we �nduxt =Xi (uix)tri �Xij uixujx�j(rj � ri)+ "Xi;j uix(ujx)x(rj � ri) + "Xi;j;kuixujxukx(rj � rk) � ri ;utx+Xi (�iuix)xri +Xi;j �iuixujx(rj � ri)= "Xi (uix)xxri + "Xi;j (uix)xujx(rj � ri) + "Xi;j (uix)xujx(rj � ri)+ "Xi;j uix(ujx)x(rj � ri) + "Xi;j;k uixujxukx rk � (rj � ri) ;Xi (uix)tri +Xi (�iuix)xri +Xj 6=k �j [rk; rj ℄ujxukx= "8<:Xi (uix)xxri + 2Xi;j (uix)xujx(rj � ri) +Xi;j;k uixujxukx[rk; rj � ri℄9=; : (2:4)
Let now a smooth initial ondition u(0; x) = �u(x) (2:5)be assigned. The resaling s = t="; y = x=" transforms the Cauhy problem (1.2), (2.5) intous +A(u)uy = uyy; u(0; y) = �u"(y) := �u("y)Observe that, as "! 0, the initial data �u" has onstant total variation, all its derivatives approahzero, but its L1 norm approahes in�nity. To study a priori BV bounds on solutions of (1.2), onean equivalently onsider the system ut + A(u)ux = uxx; (2:6)and derive uniform estimates on the total variation of u(t; �), for initial data whih have small BVnorm but whose L1 norm is arbitrarily large.Taking the inner produt of (2.4) with li(u) and assuming " = 1, we obtain(uix)t + (�iuix)x � (uix)xx= li ��Xj 6=k �j [rj ; rk℄ujxukx + 2Xj;k (rk � rj)(ujx)xukx +Xj;k;`[r`; rk � rj ℄ujxukxux̀�=Xj 6=kGijk(u)ujxukx +Xj;k Hijk(u)(ujx)xukx +Xj;k;`Kijk`(u)ujxukxux̀: (2:7)3



Setting vi := uix, we thus need to estimate the L1 norm of solutions tovit + (�ivi)x � vixx =Xj 6=kGijkvjvk +Xj;k Hijkvjxvk +Xj;k;`Kijk`vjvkv`: (2:8)We regard (2.8) as a paraboli system of n salar equations, oupled through the terms G;H;Kde�ned by (2.7). These oupling terms an be split in two groups:{ Transversal terms involving at least two distint omponents, suh as vjvk, vjxvk, vjvkv` withj 6= k,{ Non-transversal terms involving one single omponent, suh as vjvjx, vjvjvj .In [1℄ we performed a areful study of transversal terms: if these are the only terms presentin the equations, we showed that their total ontribution is of quadrati order. Our present goal isto study the ontribution of a non-transversal term. For this purpose, we fous our attention on asimple 2� 2 system where H211 � 1 and all other terms Gijk, Hijk, Kijk vanish identially.3 - A speial systemThe system we want to study is( (u1)t + (u21=2)x = (u1)xx;(u2)t + �u31=3� u21=2 + u2�x = (u2)xx: (3:1)This orresponds to (2.6), where the matrix A is de�ned byA(u) := � u1 0u21 � u1 1� : (3:2)
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As u = (u1; u2) varies in a neighborhood of the origin in IR2, the matrix A(u) is stritlyhyperboli. Its eigenvalues are �1(u) = u1; �2(u) = 1:Dual bases of right and left eigenvetors (�g. 1) are omputed asr1 = � 1u1 � ; r2 = � 01� ;l1 = (1; 0); l2 = (�u1; 1):Observe that r2 � r2 = r1 � r2 = r2 � r1 = [r1; r2℄ = 0;r1 � r1 = r2;[rj ; rk � r`℄ = 0 for all j; k; ` 2 f1; 2g :In this ase, the oeÆients in (2.8) beomeGijk(u) = 0; Kijk` = 0for all i; j; k; `, while H211(u) = 1; Hijk(u) = 0 if (i; j; k) 6= (2; 1; 1):This motivates our interest in the partiular system (3.1). Our main result provides the uniformBV bounds for solutions of the visous system (2.6).Theorem 1. Consider the system (2.6), with the matrix A(u) de�ned at (3.2). Then there existonstants Æ1 > Æ0 > 0 and L suh that the following holds. For every initial data �u 2 L1 withTot.Var.f�ug � Æ0, the Cauhy problem (2.5)-(2.6) has a unique solution, de�ned for all timest � 0, suh that Tot.Var.�u(t; �)	 � Æ1 for all t � 0: (3:3)The next result provides the onvergene of vanishing visosity approximations.Theorem 2. Consider the system (1.2), with the matrix A(u) de�ned at (3.2). Then there existsÆ0 > 0 suh that, for every initial data �u 2 L1 with Tot.Var.f�ug � Æ0, the orresponding solutionu" = u"(t; x) of (1.2) onverges in L1lo to the unique entropy solution of (3.1), as "! 0.The key step in the proof of the above theorems is the derivation of a priori BV bounds onthe solutions of (2.6). Introduing the Riemann oordinatesz1 := u1; z2 := u2 � u212 ;the system (3.1) an be rewritten as( z1;t + (z21=2)x � z1;xx = 0;z2;t + z2;x � z2;xx = (z1;x)2: (3:4)5



Sine z1 satis�es a salar visous Burgers' equation, its total variation annot inrease in time. Wethus need to provide bounds on the total variation of z2. The main ideas toward this estimate areoutlined in the next two setions. Here we make one preliminary observation. If the total variationof the initial data �u = (�u1; �u2) 2 L1 is suÆienlty small, then the solution of (3.1) ertainly existswithin the time interval t 2 [0; 1℄. Moreover, by paraboli regularization, the norms of u and all ofits derivatives will be small at time t = 1. In partiular, for � = 0; 1; : : : ; 4 we an assumesupx ������u�x� (1; x)���� � 1; Z ������u�x� (1; x)���� dx � 1:By shifting the origin of time, it is thus not restritive to assume that the �rst Riemann omponentz1 in (3.4) satis�es ��z1�x� (t; �)L1 � 1; ��z1�x� (t; �)L1 � 1; (3:5)for � = 0; 1; : : : ; 4 and all t � 0.4 - BV estimates for the linear non-homogeneous heat equationAim of this setion is to derive an estimate on the total variation of the solution to the linearheat equation, in the presene of a soure and with unit drift:Ut + Ux � Uxx = V (t; x) U(0; x) = 0: (4:1)We only onsider the Cauhy problem with zero initial data, sine the general ase follows bylinearity. We are mainly interested in the ase where V is not integrable in the t-x plane, but itadmits a front traing representation, as spei�ed below.De�nition. We say that a salar funtion V = V (t; x) de�ned on IR+ � IR admits a front traingrepresentation if there exists some veloity funtion � = �(t; x) suh that the following integral isbounded: E := Z 10 Z 1�1 n��Vt + (�V )x��+ jV j � j�t + ��xjo dxdt <1 (4:2)Interpreting V as the density of partiles and � as their veloity, the above quantity an beinterpreted as E = [total amount of partiles reated or destroyed℄+ [mass℄� [hange in speed℄Lemma 1. Assume that the soure term V in (4.1) admits a front traing representation, with�(t; x) � �� < 1 for all t; x (4:3)and moreover V (0; �)L1 < 1. Then the total variation of the solution U of (4.1) remainsuniformly bounded. Indeed, for every t � 0 there holdsTot.Var.�U(t; �)	 � 2V (0; �)L11� �� + 2E1� �� + E(1� ��)2 : (4:4)6



Proof. Call Æ(P ) the Dira measure onsisting of a unit mass at the point P . Consider �rst theequation Ut + Ux � Uxx = Æ(�t) ; (4:5)assuming � < 1. A solution of (4.5) an be found in the form of a travelling wave:U(t; x) = �(�; x� �t):Substituting into (4.5) one �nds that the funtion � = �(�; �) must satisfy���� + �� � ��� = Æ(0); (4:6)hene �(�; �) = � (1� �)�1 if � � 0,(1� �)�1e(1��)� if � < 0. (4:7)Observe that ��(�; �) = � (1� �)�2 if � � 0,�(1� �)�2 � �(1� �)�1�e(1��)� if � < 0. (4:8)Therefore Tot.Var.��(�; �)	 = (1� �)�1; Tot.Var.���(�; �)	 = (1� �)�2: (4:9)Next, we try to onstrut a solution of (4.1) in the formU(t; x) = Z V (t; y)���(t; y); x� y� dy � v(t; x): (4:10)By suessive di�erentiations we obtainUt = Z (Vt�+ V ���t) dy � vt;Ux = Z V �� dy � vx;Uxx = Z V ��� dy � vxx:Here and in the sequel, it is understood thatV = V (t; y); � = �(t; y); � = ���(t; y); x� y�:Substituting (4.10) into (4.1) yieldsZ �Vt�+ V ���t + V �� � V ���� dy � vt � vx + vxx = V: (4:11)Performing an integration by parts and using the property (4.6) of the kernel funtion �, we obtainthe useful identityZ �� (�V )y�� V ����y + V �� � V ����dy = Z ��V (���y � ��)� V ����y + V �� � V ����dy= Z V �(1� �)�� � ����dy= V (t; x): (4:12)7



By (4.11) and (4.12), if U in (4.10) provides a solution to the Cauhy problem (4.1), then v mustsatisfy vt + vx � vxx = Z h�Vt + (�V )y��+ V (�t + ��y)��i dy; (4:13)v(0; x) = Z V (0; y)���(0; y); x� y� dy: (4:14)Realling (4.3) and (4.9), from (4.13)-(4.14) we obtainTot.Var.�v(t; �)	 � �V (0; �)L1 + Z Z ��Vt + (�V )y�� dydt� � Tot.Var.��(��; �)	+�Z Z jV j ���t + ��y�� dydt� � Tot.Var.���(��; �)	� V (0; �)L11� �� + E1� �� + E(1� ��)2 : (4:15)
Furthermore, by (4.2) it follows that the quantity V approximately satis�es a onservation lawwith ux �V . Hene Z ��V (t; y)�� dy � V (0; �)L1 + E: (4:16)From (4.10), using (4.16), (4.9) and (4.15) we reover (4.4).5 - Front-traing representations for the visous Burgers' equationLet u = u(t; x) be a solution of the salar visous onservation lawut + f(u)x = uxx: (5:1)Toward the study of (3.1) it suÆes to take f(u) = u2=2, but at this stage we shall onsider anysmooth funtion f . In view of Lemma 1, in order to show that the total variation of z2(t; �) in(3.5) remains bounded, we need to prove that, for any solution u of (5.1) with suitably smalltotal variation, the quantity V (t; x) := u2x(t; x) admits a front traing representation, with a speed� = �(t; x) < 1.More generally, given any BV solution u = u(t; x) of (5.1), assuming that���f 0�u(t; x)���� � �� for all t; x; (5:2)we shall prove that the quantity V = u2x admits a front traing representation, determined by theveloity funtion � = �[���; ��℄�� utux� = �[���; ��℄�f 0(u)� uxxux � : (5:3)Here � is the projetion on the interval [���; ��℄, i.e.�[���; ��℄(�) := 8<: � if � 2 [���; ��℄,��� if � < ���,�� if � > ��.8
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�gure 2Introdue the variables (�g. 2)w := f(u)� ux; v := w � f(u) = �ux; ( � := t;y := u(t; x): (5:4)Observe that y and w represent the onserved quantity and the ux, respetively. In regions whereu is monotone, we an write w as a funtion of the independent variables � , y. Sine�t = 1; �x = 0; yt = ut; yx = ux;for every funtion ' one has ('x = '��x + 'yux't = '��t + 'yut = �v'y;= '� + vwy'y: (5:5)From (5.4)-(5.5) it follows wt + f 0(u)wx = wxx;w� � wywx + f 0wx = �wy(f � w)�x;w� � w2y(f � w) + f 0wy(f � w) = wyy(f � w)2 + wy(f � w)y(f � w):The ux funtion w = w(�; y) thus satis�esw� = �w � f)2wyy: (5:6)9



Equivalently, v� = v2�vyy + f 00(y)�: (5:7)Consider the quantityE := Z 10 Z 1�1 n��Vt + (�V )x��+ jV j � j�t + ��xjo dxdt= Z 10 Z ����V� + v �Vywy � (�V )y����+ jV j � ���� + v�y(wy � �)��� � 1jvj jdyjd�: (5:8)We are mainly interested in the ase where V = v2, so thatV� = 2vv� = 2v3wyy:It is interesting to ompute the value of E for various hoies of �. In the following, theintegrals w.r.t. y range over all branhes of the (possibly multivalued) funtion w.1. Taking � � �� onstant, we obtainE = Z 10 Z ��V� + Vyv(wy � ��)�� � 1jvj jdyjd�= Z 10 Z 2���v� + vvy(wy � ��)��� jdyjd�: (5:9)
2. Taking � � f 0(y) we obtainE = Z 10 Z ����V� + vVywy � v(f 0 � V )y��� + jV j ��vf 00vy��� � 1jvj jdyjd�:= Z 10 Z ����2v2wyy + 2vvywy � v2f 00 � 2vvyf 0��� + ��v2vyf 00��� jdyjd�:= Z 10 Z ����2v2wyy + 2vv2y � v2f 00��� + ��v2vyf 00��� jdyjd�� Z 10 Z �2jv� j + ��2vv2y � v2f 00�� + ��v2vyf 00��� jdyjd�: (5:10)
3. Taking � := wy = f 0 + vy we obtainE = Z 10 Z n��V� � vV wyy��+ jV j jvy� jo � 1jvj jdyjdt= Z 10 Z njv3wyyj+ jv2vy� jo � 1jvj jdyjdt= Z 10 Z njv� j+ jvj jvy� jo jdyjdt: (5:11)
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�gure 3Observe that in this last ase we have � = wy = �ut=ux. In other words (�g. 3), � is the speed ofthe intersetion of the graph of u(t; �) with a horizontal line u =onst.6 - A visous Glimm interation funtionalWe summarize here the main results in [2℄. Consider any polygonal line  in IR2, with vertiesA = P0; P1; : : : ; Pn = B. Set vi := Pi � Pi�1 and onsider the funtionalQ() := 12Xi<j jvi ^ vj j (6:1)Let 0 be obtained from  by replaing the two segments Pi�1Pi and PiPi+1 by one single segmentPi�1Pi+1, as in �g. 4. The area of the triangle Pi�1PiPi+1 isarea (Pi�1PiPi+1) = 12 jvi+1 ^ vij � Q()�Q(0):
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P�gure 4A ontinuous version of the above estimate is the following. Let  = (t; �) be a parametrizedurve moving in the plane, with �xed endpoints A;B. Call v := �=�� the tangent vetor and11
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�gure 5de�ne the funtional (�g. 5)Q�(t)� := 12 � Z ba Z ba ��v(t; �) ^ v(t; �0)�� d�d�0:Assume that the motion of the urve is direted along the urvature. In other words, allingn the interior unit normal, assume that the inner produt n � �=�t is always non-negative. Inthis ase, the evolution of  an be uniformly approximated by a sequene of polygonals, eahobtained from the previous one by replaing two onseutive edges by a single segment, as in �g. 4.Therefore, as proved in [2℄, for any t < t0, the area of the region (�g. 6) bounded by the urves := (t) and 0 := (t0) is bounded by Q() � Q(0). In partiular, the total area swept by theurve during its motion is � Q�(0)�.
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�gure 6As a speial ase, let w = w(�; y) satisfyw� = '(�; y)wyy; w(0; y) = �w(y)with ' � 0. Applying the previous argument to the graph of w,(t; y) := �y; w(t; y)�we obtain Z 10 Z ��w� (�; y)�� d� jdyj � Q�(0)� = 12 Z Zy<z �� �wy(y)� �wy(z)�� jdyjdz: (6:2)If w = w(�; y) is a solution of (5.6) and u = u(t; x) is the orresponding solution of (5.1), thefuntional Q in (6.2) takes the formQ(u) = 12 Z Zx<x0 ��ux(x)ux(x0)�� � ����(x)� �(x0)��� dxdx0; (6:3)12



where �(x) := f 0�u(x)�� uxx(x)ux(x) (6:4)is the speed of the intersetion of the graph of a solution of (5.1) with a horizontal line (�g. 3).Observe that, for a BV solution of (5.1), the orresponding funtional Q(u) is �nite at all timest > 0. Indeed, Q(u) = O(1) � �Tot.Var.fug+ Tot.Var.fuxg�: (6:5)
7 - Bounds on higher derivativesIn onnetion with the variable transformation (5.4), for any funtion ' one has�'�y = 1ux � �'�xUsing the uniform bounds on ux; uxx; uxxx : : : , by suessive di�erentiations we obtainvy = �uxxux = O(1) � 1jvj ; (7:1)vyy = 1ux ��uxxxux + u2xxu2x � = O(1) � 1v2 + v2yjvj! ; (7:2)vyyy = 1ux ��uxxxxu2x + 4uxxxuxxu3x � 3u3xxu4x �= O(1) � 1jv3j + jvyjjv3j + jv3y jv2 ! : (7:3)vyyyy = 1ux ��uxxxxxu3x + 7uxxxxuxxu4x + 4u2xxxu4x � 25uxxxu2xxu5x + 15u4xxu6x �= �4v2yyv +O(1) � 1v4 + jv3y jv4 + v4yv3! : (7:4)The last estimate was obtained observing thatu2xxxu4x =  v2yv + vyy!2 :Di�erentiating (5.6) we �nd w� = v2wyy ; (7:5)wy� = 2vvywyy + v2wyyy ; (7:6)wyy� = 2v2ywyy + 4vvywyyy + 2vvyywyy + v2wyyyy : (7:7)On regions where vy remains uniformly bounded, from (7.1){(7.3) it thus followsw� = O(1); wy� = O(1) � 1v : (7:8)13



In the ase where the ux is onvex, it is interesting to derive a time dependent lower bound onwyy whih resembles an Oleinik-type estimate for the gradient wy. Assume f 00 � 0 and onsider asolution with v > 0. De�ne Z := wyy + 12�v :With suessive di�erentiations we �ndZy = wyyy � vy2�v2 ;Zyy = wyyyy � vyy2�v2 + 2v2y2�v3 ;Z� = �2v2ywyy + 4vvywyyy + 2vvyywyy + v2wyyyy�� 12�2v � wyy2� :A lengthy but straightforward omputation now yieldsZ� � v2Zyy � 4vvyZy +�1� � 2v2y � 2vvyy�Z = f 002� > 0: (7:9)This allows us to use the maximum priniple: if Z � 0 on the paraboli boundary ��
 of a domain
 in the � -y plane, then Z � 0 on the whole set 
. As an appliation, assume thatux(0; x) = �ux(x) � 0 for all x 2 IR:By the strong maximum priniple this impliesux(t; x) < 0 for all t > 0; x 2 IR;so that the solution is stritly monotone dereasing as a funtion of x, for all t > 0. From (7.9) itnow follows the inequality wyy � 12�v (7:10)for all y; � with � > 0.8 - Estimates related to graph lengthLet ' = '(�) be a smooth, onvex salar funtion whih admits asymptotes as � ! �1. Morepreisely, assume that there exists onstants �; � suh thatlim�!1 ��'(�)� �� � ��� = 0 = lim�!�1 ��'(�) + �� + ���: (8:1)For example, the funtion '(�) =p1 + (� � �)2 satis�es the above onditions with � = 1. Considera BV solution u = u(t; x) of (5.1) and let w; v be the orresponding solutions of (5.6), (5.7)respetively, so that the bounds (7.1){(7.4) hold. Introdue the funtional�(w) := Z '(wy) jdyj; (8:2)14



where the integral ranges over all branhes of the (possibly multivalued) funtion w. Observe that,by (8.1), the funtion ' has sublinear growth, hene �(w) an be bounded in terms of the lengthof the graph of w. We now ompute the time derivative of �(w), and show that it is non-positive.Let a < b be the loations of two onseutive zeroes of v, so thatv��; a(�)� = v��; b(�)� = 0; v��; y� 6= 0 for all y 2 �a(�); b(�)� :We laim thatdd� Z b(�)a(�) '(wy) dy = �Z b(�)a(�) '00(wy)v2w2yy dy � h�� + �f 0(a)� _a+ �� + �f 0(b)�_bi ; (8:3)where the minus sign is taken if v > 0 and the plus sign if v < 0 for a < y < b. Observe that (8.3)annot be obtained from (7.5) by a straightforward integration by parts, beause one may havewy; wyy ! �1 as y ! a; b. The boundary terms must therefore be handled with are. To �x theideas, assume v > 0 for a < y < b. Fix " > 0 and onsider the points a" > a, b" < b suh thatv�a"(�)� = " = v�b"(�)�:The time derivatives of these points are easily omputed as_a" = �v�vy (a"); _b" = �v�vy (b"): (8:4)This yields the relationsw� (a") = v� (a") = � _a"vy(a") = � _a"�wy(a")� f 0(a")�;w� (b") = v� (b") = �_b"vy(b") = �_b"�wy(b")� f 0(b")�: (8:5)Using (8.5) we now omputedd� Z b(�)a(�) '(wy) dy = lim"!0 dd� Z b"(�)a"(�) '(wy) dy= lim"!0 "Z b"a" '0(wy)�v2wyy)y dy + _b" � '�wy(b")�� _a" � '�wy(a")�#= � lim"!0 Z b"a" '00(wy)v2w2yy dy + lim"!0 h� '0�wy(b")� _b"�wy(b")� f 0(b")�+ '0�wy(a")� _a"�wy(a")� f 0(a")�+ _b" � '�wy(b")�� _a" � '�wy(a")�i= �Z ba '00(wy)v2w2yy dy � h�� + �f 0(a)� _a+ �� + �f 0(b)�_bi :
(8:6)

Indeed, if a(�) is the height of a loal minimum for u(�; �), we then have wy(a")!1 as a" ! a+,hene lim"!0h'0�wy(a")� �wy(a")� f 0(a")�� '�wy(a")�i= lim�!1 �'0(�) �� � f 0(a)�� '(�)�= �� � �f 0(a): (8:7)15



Similarly, if b(�) is the height of a loal maximum of u(�; �), we then have wy(b")! �1 as b" ! b�,hene lim"!0h� '0�wy(b")� �wy(b")� f 0(b")�+ '�wy(b")�i= lim�!�1 �� '0(�) �� � f 0(b)�+ '(�)�= �� � �f 0(a): (8:8)In the ase where v < 0, one has wy(a") ! �1, wy(b") ! 1 as a" ! a+, b" ! b�, hene thesigns in the limits (8.7)-(8.8) are reversed. This yields (8.3).To omplete the proof we observe that, in ases wherea(�) = limx!�1u(�; x) or b(�) = limx!�1 u(�; x);the limits wy ! �1 may fail. However, in these ases one trivially has _a � 0 or _b � 0, and theformula (8.3) again holds.Summing (8.3) over all branhes of the multivalued funtion w, and observing that boundaryterms anel eah other, we now obtaindd� ��w(�)� = dd� Z '�wy(�)� jdyj = �Z '00(wy)v2w2yy dy � 0: (8:9)In terms of the original solution u = u(t; x) of (5.1), this yieldsddt Z 1�1 '�f 0(u)� uxxux �juxj dx � 0: (8:10)In the speial ase '(�) :=p1 + �2, from (8.9) it followsZ 10 Z (1 + w2y)�3=2v2w2yy jdyjd� � ��w(0)� = Z q1 + �w2y(y) jdyj : (8:11)The left hand side of (8.11) desribes the shortening of the graph of w. For any �xed �, restritedto regions where jwy j � �, the �rst fator in the integrand is uniformly bounded. HeneZ 10 Zjwyj<� v2w2yy jdyjd� = O(1): (8:12)By an approximation argument, the smoothness assumption on ' an be dropped. If ' is anyonvex funtion satisfying (8.1), then the mapt 7! Z '�wy(�; y)� jdyjis non-inreasing. For example, taking '(�) := j�j we see that the total variation of the map w(�; �)is non inreasing in time.We onlude this setion observing that, by similar tehniques, one an easily obtain newLyapunov funtionals desribed by multiple integrals. For example, onsider a symmetri, onvexfuntion ' satisfying (8.1). Let us de�ne	(w) := 14 Z Z '�wy(y)� wy(y0)� jdyj jdy0j: (8:13)16



Notie that the funtion '(�� ) still satis�es (8.1) for every value of the onstant . For a solutionw = w(�; y) of (5.6) we an thus ompute the time derivative of 	 as in (8.3){(8.9):dd�	�w(�)� = �12 Z Z '00�wy(y)� wy(y0)� v2(y)w2yy(y) jdyj jdy0j: (8:14)In the speial ase where'"(�) := ("+ �2)�1=2; '00" (�) = "("+ �2)�3=2;the orresponding funtional 	" satis�esdd�	"�w(�)� = �12 Z Z "�"+ �wy(y)� wy(y0)�2��3=2v2(y)w2yy(y) jdyj jdy0j: (8:15)We are partiularly interested in the limit 	" ! 	 as " ! 0. To study the time derivatived	�w(�)�=d� , let y be a point where wyy(y) 6= 0. Using the mean value theorem and the hangeof variable z = wyy(y)"�1=2y0, for � > 0 suitably small we ompute the limitlim"!0Z y+�y�� "�"+ �wy(y0)� wy(y)�2��3=2dy0 = lim"!0Z y+�y�� "�1=2 1 + w2yy(y�)(y0 � y)2" !�3=2 dy0= lim"!0Z �wyy(y)=p"��wyy(y)=p" 1��wyy(y)�� � 1 + w2yy(y�)w2yy(y) z2!�3=2 dz= 1��wyy(y)�� � Z 1�1(1 + z2)�3=2dz= 2��wyy(y)�� : (8:16)Realling (5.6), from (8.15) and (8.16) one obtains the estimatedd�	�w(�)� = dd� Z Z ��wy(y)� wy(y0)�� jdyj jdy0j � �Z ��u� (�; y)�� jdyj : (8:17)This provides an alternative derivation of the basi formula (6.2).9 - Visous rarefation wavesIn this setion we make the additional assumption that f is onvex, so that f 00 � 0. We willshow that, on regions where v < 0 (i. e. ux > 0), the alternative hoie � = f 0(u) also yields abounded value for E in (5.10). In other words, one an trae visous rarefation waves by hoosing� equal to their harateristi speed. This result is not needed toward the proof of the maintheorem, but we believe it has some interest by itself.Let �a(�); b(�)� be an interval where v < 0, with v ! 0 for y ! a+ and for y ! b�. Realling(5.7), we ompute dd� Z b(�)a�() jvj dy = �Z b(�)a(�) v2(vyy + f 00) dy= �Z b(�)a(�) 2jvjv2y dy � Z b(�)a(�) v2f 00(y) dy: (9:1)17



Observe that in the above integration by parts the boundary terms vanish beause of (7.1). Sineboth terms on the right hand side of (9.1) are � 0, we onludeZ 10 Z b(�)a(�) 2jvjv2y dyd� + Z 10 Z b(�)a(�) v2f 00 dyd� � Z b(0)a(0) ��v(0; y)�� dy: (9:2)Observing that v2 jvy j � jvj v2y2 + jv3j2 jvj = O(1);this provides an a-priori estimate of the right hand side of (5.8), on regions where v � 0. Thisorresponds to rarefation waves, with ux � 0.10 - Regions with large gradientAssume f 0(u) 2 [���; ��℄ for all u 2 �a(t); b(t)�, and let w be a solution of (5.6) de�ned fory 2 [a; b℄, with w(a) = f(a), w(b) = f(b).
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1 1 2 2 3�gure 7Consider the region where the gradient of w is large (�g. 7).J := ny 2 [a; b℄ ; v 6= 0; ��wy(y)�� � ��o = �[j=0 ℄aj ; bj [: (10:1)Consider the speed � := � �� if wy � ��,��� if wy � ���.Observe that the above hoie impliesvy(wy � �) = (wy � f 0)(wy � �) � 0 for all y 2 J:18



Realling (5.9) we now omputeEJ := 2ZJ ��v� + vvy(wy � �)�� jdyj� 2ZJ jw� j jdyj+ 2Xj Z bjaj ��vvy(wy � �)�� dy= 2ZJ jw� j jdyj+Xj �����Z bjaj 2vvy(wy � �) dy�����= 2ZJ jw� j jdyj+Xj Z bjaj ��v2(wy � �)y�� dy� 3ZJ jw� j jdyj
(10:2)

We observe that, in the integration by parts over eah interval [aj ; bj ℄ the boundary terms playno role. As y ! aj or y ! bj either wy ! ���, or else v ! 0 and hene by (7.1) we havev2(wy � ��)! 0. Thanks to (6.2), the quantity EJ in in (10.2) is thus uniformly bounded.11 - Paraboli estimatesDe�ne the retangles (�g.8) R := [�3=4; 3=4℄� [1; 10℄;R0 := [�1=2; 1=2℄� [5; 6℄: (11:1)� := [�1; 1℄� [1; 10℄;�0 := [�1=4; 1=4℄� [5; 6℄;�00 := [�2; 2℄� [1; 10℄: (11:2)Consider the equation Wt = a(Y;W )WY Y : (11:3)We assume that (11.3) is uniformly paraboli with smooth oeÆients:a� � a(Y;W ) � a� for all (Y;W ) 2 �00; (11:4)kakC3(�00) � � (11:5)for some onstants a� > a� > 0 and � > 0. The next lemma, based on the Shauder interiorestimates for paraboli equations [7℄, provides bounds for the mixed seond derivative WY t, interms of the total variation of the boundary data.Lemma 2. Let W = W (t; Y ) be a smooth solution of (11.3) de�ned for t 2 [t0; T ℄, Y 2[�3=4; 3=4℄, taking values inside the interval [1; 10℄, so that (11.4)-(11.5) apply.19
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�gure 8a) For every 1 > 0 there exists a onstant C depending only on a�; a�; �; 1 suh thatZ Tt0+1 Z 1=2�1=2 ��WY t(t; Y )�� dY dt � C � 1 + Z Tt0 ���Wt(t; �3=4)��+ ��Wt(t; 3=4)��� dt! : (11:6)b) If in addition ��WY (t0; Y )�� � 2 for all Y 2 [�3=4; 3=4℄; (11:7)then there exists a onstant C depending only on a�; a�; � suh that, for every t1 2 ℄t0; t0+1℄,one hasZ Tt1 Z 1=2�1=2 ��WY t(t; Y )�� dY dt � C� 1 + �� ln(t1 � t0)��+ Z Tt0 ���Wt(t; �3=4)��+ ��Wt(t; 3=4)��� dt! :(11:8)Applying Lemma 2 to the retanglesR� := [� � 3=4; � + 3=4℄� [1; 10℄;R0 := [� � 1=2; � + 1=2℄� [5; 6℄;integrating over � 2 [�1=4; 1=4℄ and observing that� = [j�j�1=4R�; �0 = \j�j�1=4R0�;we obtainLemma 3. Let W = W (t; Y ) be a smooth solution of (11.3) de�ned for t 2 [t0; T ℄, Y 2 [�1; 1℄,taking values inside the interval [1; 10℄, so that (11.4)-(11.5) apply.a) For every 1 > 0 there exists a onstant C depending only on a�; a�; �; 1 suh thatZ Tt0+1 Z 1=4�1=4 ��WY t(t; Y )�� dY dt � C � 1 + Z Tt0 Z 1�1 ��Wt(t; Y )�� dy dt! : (11:9)20



b) If in addition ��WY (t0; Y )�� � 2 for all Y 2 [�1; 1℄; (11:10)then there exists a onstant C depending only on a�; a�; � suh that, for every t1 2 ℄t0; t0+1℄,one hasZ Tt1 Z 1=2�1=2 ��WY t(t; Y )�� dY dt � C � �1 + �� ln(t1 � t0)��+ Z 1�1 ��Wt(t; Y )�� dy dt� : (11:11)The onstant C depends only on a�; a�; �.12 - Regions with small gradientIt now remains to estimate the integral (5.11) restrited to regions where the gradient wy =f 0(u)� (uxx=ux) is small: E� := Z Zjwyj<�� jvwy� j jdyj d�= Z Zjwyj<�� ��v3wyyy + 2v2vywyy�� jdyj d�: (12:1)An a priori bound for (12.1) should be provided in terms of the \area" funtionalQ in (6.3) and the\graph length" funtional � in (8.11). By the assumption of small total variation, is not restritiveto assume ��f 0(y)�� � �� � 14 (12:2)for every y in the range of our solution u.We start by onstruting ountably many retangles whih are resaled opies of the retanglesin (11.2): �� := �y�; f(y�)�+ v��;�0� := �y�; f(y�)�+ v��0;�00� := �y�; f(y�)�+ v��00;suh that, for some integer N , the following property holds (�g. 9):(P) Every point P in the open region where w 6= f(y) is ontained in some �0� and in no morethan N distint retangles �00�Observe that, by (12.2) and the de�nition of the retangles �00�, every point (y;w) 2 �00 satis�esw � f(y) 2 �12v�; 212 v�� : (12:3)21
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�gure 9We now de�ne the intervals and the setsI� := [y� � v�; y� + v�℄;I 0� := [y� � v�=4; y� + v�=4℄;I 00� := [y� � 2v�; y� + 2v�℄; 
� := n(�; y) ; �y; w(�; y)� 2 ��o;
0� := n(�; y) ; �y; w(�; y)� 2 �0�o;
00� := n(�; y) ; �y; w(�; y)� 2 �00�o:Clearly, we have the inlusions�0� � �� � �00�; 
0� � 
� � 
00�; I 0� � I� � I 00�:Observe that by (12.3) the equation (5.6) is uniformly paraboli restrited to eah domain 
00�. Foreah �, it is onvenient to resale the variables v; w; y by settingV = vv� ; W = w � f(y�)v� ; Y = y � y�v� : (12:4)When the point (y;w) falls inside �00�, the orresponding point (Y;W ) falls inside the retangle �00.In partiular, we haveY 2 [�2; 2℄; W 2 [1; 10℄; V 2 �12 ; 212 � : (12:5)Diret omputations yieldWY = wy; WY Y = v� wyy; WY Y Y = v2�wyyy ; (12:6)V� =W� = V 2WY Y ; V�Y = W�Y = 2V VYWY Y + V 2WY Y Y ; (12:7)ZI� jw� j dy = v2� Z 1�1 jW� j dY: (12:8)22



ZI0� jvwy� j dy = v2� Z 1=2�1=2 jV WY � j dY; (12:9)ZI00� v2w2yy dy = v� Z 2�2 V 2W 2Y Y dY: (12:10)Thanks to the bounds (7.2){(7.4), on regions wherejWY j = jwy j � 2we have maxnjWY Y j; jWY Y Y j; jW� j; jWY � jo � C1v� (12:11)for some onstant C1. For eah �, de�ne the set of timesT� := n� ; there exist y0; y00 suh that �y0; w(�; y0)� 2 �0�;�y00; w(�; y00)� 2 �00�; ��wy(�; y0)�� � ��; ��wy(�; y00)�� � 1o:The double integral in (12.1) an now be estimated asE� := Z Zjwyj<�� jvwy� j jdyj d��X� Z Z(�;y)2
0�; jwyj���; �2T� ��vwy� �� jdyj d�+X� Z Z(�;y)2
0�; jwyj���; � =2T� ��vwy� �� jdyj d�:= E℄ + E[: (12:12)
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We begin with an estimate of E℄. Observe that (�g. 10), for � 2 T�, the derivative WY (�; �)hanges from a small value � �� to some value � 1 within the interval [�2; 2℄. Moreover, by (12.5)the fator V 2 remains bounded away from zero. Therefore, for � 2 T� we haveZ 2�2 V 2W 2Y Y dY � 0 (12:13)for some onstant 0 > 0. On the other hand, by (12.5) and (12.11) it followsZjY j�1=2; jWY j��� ��V WY � (�; Y )�� dY � C2v� : (12:14)with C2 := 21C1=2. Using (12.13)-(12.14), the resaling properties (12.9)-(12.10) and �nally (6.4)we obtain E℄ :=X� Z Z(�;y)2
0�; �2T� ��vwy� �� dyd�=X� v2� ZT� ZjY j�1=2; jWY j��� jV WY � j dY d��X� v2� ZT� C2v� d��X� C2v�0 ZT� ZjY j�2; jWY j�1 V 2W 2Y Y d��X� C20 ZT� Zy2I00� ; jwy j�1 v2w2yy dyd�� N C20 Z Zjwyj�1 v2w2yy dyd�= O(1):
(12:15)

Next, we provide an estimate on E[. For eah � we onsider the open set of timesT 0� := n� > 0 ; 1 < W (�; Y ) < 10 for all Y 2 [�1; 1℄o: (12:16)We write T 0� as a disjoint union of open intervalsT 0� =[j J�;j ; J�;j =℄t��j ; t+�j [ :For a given interval J�;j , allt�;j := inf nt 2 J�;j ; ��WY (t; Y )�� � 1 for all Y 2 [�1; 1℄o; (12:17)t0�;j := inf nt 2 J�;j ; ��WY (t; Y )�� � �� for all Y 2 [�2; 2℄o; (12:18)t00�;j := inf nt 2 J�;j ; ��WY (t; Y )�� � �� for all Y 2 [�2; 2℄and W (t; Y �) 2 [5; 6℄ for some Y � 2 [�1=4; 1=4℄o; (12:19)24



Realling that �� � 1=4, it is lear that t�;j� � t�;j � t0�;j � t00�;j . We shall only onsider pairs ofindies (�; j) for whih the set of times in (12.19) is nonempty. In the other ase there is nothing toprove. The setA of all relevant pairs of indies will be split into four subsets: A = A1[A2[A3[A4,aording to the following ases.CASE 1: t�� = 0, t+�;j > 1.In this ase, Lemma 3a yields the estimateZ t+�;j1 Z 1=4�1=4 jWY � j dY d� � C � 1 + Z t+�;j0 Z 1�1 jW� j dY d�! :After a resaling we obtainZ t+�;j1 ZI0� jvwy� j dyd� � C 0 v2� + Z t+�;j0 ZI� jw� j dyd�! : (12:19)Observe that, by the property (P) of the overing,X(�;j)2A1 v� � N2 � �total variation of u(0; �)� = O(1):Together with (6.2), this yieldsX(�;j)2A1 Zt2J�;j Zy2I0�; jwyj<1 jvwy� j dyd� = O(1): (12:20)
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CASE 2: t�;j = t��;j > 0.The assumption implies��W (t��;j ; Y )�� � 1 for all Y 2 [�1; 1℄:Moreover, by ontinuity we must have (�g. 11)W (t��;j ; Y ?) = 10 or W (t��;j ; Y ?) = 1for some Y ? 2 [�1; 1℄. The bound on jWY j implies that, for all Y 2 [�1; 1℄, we haveW (t��;j ; Y ) > 8 or W (t��;j ; Y ) < 3respetively. A simple omparison argument now shows that there exists a onstant 1 > 0 suhthat t00�;j � t��;j > 1:Observing that Z t00�;jt��;j Z 1�1 jW� j dY d� > 2;an appliation of Lemma 3a yields the estimateZ t+�;jt��;j+1 Z 1=4�1=4 jWY � j dY d� = O(1) � 1 + Z t+�;jt��;j Z 1�1 jW� j dY d�!= O(1) � Z t+�;jt��;j Z 1�1 jW� j dY d� : (12:21)After a resaling, this yieldsX(�;j)2A2 Zt2J�;j Zy2I0�; jwyj<1 jvwy� j dyd�� X(�;j)2A2 Z t+�;jt00�;j Zy2I0� jvwy� j dyd�= O(1) � X(�;j)2A2 Z t+�;jt��;j Zy2I� jw� j dyd�= O(1): (12:22)
CASE 3: t��;j > 0, t00�;j � t��;j > 1.As in the previous ase, Lemma 3a yieldsZ t+�;jt00�;j Z 1=4�1=4 jWY � j dY d� = O(1) � 1 + Z t+�;jt��;j Z 1�1 jW� j dY d�! : (12:23)26
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�gure 12If Z t+�;jt��;j Z 2�2 jW� j dY d� � 1 (12:24)we an argue as in Case 2, and we are done. To handle the opposite ase, assume thatW (t��;j ; Y ?) = 10 (12:25)for some Y ? 2 [�1; 1℄, the other ase being similar. Consider the two squaresQ1 := [�2;�1℄� [7; 8℄; Q2 := [1; 2℄� [7; 8℄Figure 12 shows a ase where (12.24) holds. On the other hand, if (12.24) fails (�g. 13), there existpoints P1 = (Y1;W1) 2 Q1; P2 = (Y2;W2) 2 Q2whih never lie on the graph of W , as t 2 [t��;j ; t+�;j ℄. HeneW (t; Y1) < W1 � 8; W (t; Y2) < W2 � 8 for all t 2 [t��;j ; t+�;j ℄:Realling (12.25), this implies that the height of a loal max in W dereases from 10 down to 8,hene the total variation of W dereases by at least 4 units. After a resaling, we obtainX(�;j)2A3 Zt2J�;j Zy2I0�; jwy j<1 jvwy� j dyd�� X(�;j)2A3 Z t+�;jt00�;j Zy2I0� jvwy� j dyd�= O(1) � X(�;j)2A3 Z t+�;jt��;j Zy2I00� jw� j dyd� + X(�;j)2A03O(1) � v2�= O(1): (12:26)
27



Here A03 denotes the set of indies (�; j) for whih the resaled funtionW does not satisfy (12.24).The last estimate in (12.26) follows from (6.2) and the fat that, by the previous arguments, toeah (�; j) 2 A03 there orresponds a derease of at least 4v� in the total variation of w. Sine thistotal variation is non-inreasing and initially bounded, there holdsX(�;j)2A03 v� = O(1):
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�gure 13CASE 4: t�;j > t��;j > 0, t00�;j � t��;j � 1.We �rst observe that the bounds (12.11) implyt00�;j � t0�;j � 1v� (12:27)for some onstant 1 > 0. Indeed, the derivative WY must hange from �1 to a value inside[���; ��℄ within the above time interval. We now onsider two subases. Assume �rst thatZ t00�;jt��;j Z 2�2 jW� j dY d� = Z t00�;jt��;j Z 2�2 jV 2WY Y j dY d� � 1; (12:28)In this ase, sine V is uniformly bounded above and below, by the Cauhy inequality we obtainthe a priori bound Z t00�;jt��;j Z 2�2 V 2W 2Y Y dY dt � 2 (12:29)for some onstant 2 > 0. On the other hand, if (12.28) fails, then arguing as in Case 3 we onludethat the total variation ofW dereases at least by 4 units within the time interval [t��;j ; t00�;j ℄. Aftera resaling we see that, for some onstant 3 > 0, to eah (�; j) 2 A4 there orresponds a dereaseof at least 3v� either in the length of the graph of w, or in the total variation of w. HeneX(�;j)2A4 v� = O(1): (12:30)28



Using Lemma 3b we now obtainZ t+�;jt00�;j Z 1=4�1=4 jWY � j dY d� = O(1) � 1 + �� ln(t00�;j � t0�;j)��+ Z t+�;jt��;j Z 1�1 jW� j dY d�!= O(1) � 1 + j ln v�j+ Z t+�;jt��;j Z 1�1 jW� j dY d�! : (12:31)After a resaling one �ndsX(�;j)2A4 Zt2J�;j Zy2I0�; jwyj<1 jvwy� j dyd�� X(�;j)2A4 Z t+�;jt00�;j Zy2I0� jvwy� j dyd�= O(1) � X(�;j)2A4 Z t+�;jt��;j Zy2I00� jw� j dyd� + X(�;j)2A4O(1) � v2��1 + j ln v�j�= O(1): (12:32)
The four ases disussed above over all possibilities. Together, the estimates (12.20), (12.22),(12.26) and (12.32) provide an a priori bound on the seond integral E[ in (12.12).In view of Lemma 1, the existene of a front-traing representation for the quantity z21;x in(3.4) implies a uniform bound on the total variation of the seond Riemann oordinate z2. Thisompletes the proof of Theorem 1.13 - The vanishing visosity limitConsider again the system (1.2), where A is the matrix de�ned at (3.2). Let an initial datau(0; x) = �u 2 L1 be given, with small total variation. By the previous analysis, the total variationof the orresponding solutions u" remain uniformly bounded in time, as " ! 0. By Helly's om-patness theorem we an thus extrat a subsequene, onverging to some funtion u = u(t; x) inL1lo. Sine the onvergene is strong, this limit funtion u provides an entropy admissible solutionto the system of onservation laws (3.1). By the uniqueness theorem in [3, p.188℄, valid for BVsolutions, we onlude that u oinides with the unique entropy weak solution with the given initialdata.Remark. The previous analysis has established global BV bounds for solutions of the visoussystem (3.1). It remains an open problem to prove their L1 stability. Toward this goal, onsiderany solution u = u(t; x), with suitably small total variation. Assume that we ould show thatevery solution h of the linear variational systemht + �A(u)h�x = hxx (13:1)satis�es an estimate of the form h(t)L1 � L � h(0)L1 ; (13:2)29



for some onstant L independent of t and u. As in [1℄, by a standard homotopy argument we ouldthen onlude u(t)� u0(t)L1 � L � u(0)� u0(0)L1for every ouple of solutions u; u0 of (3.1). Observe that h = ux provides one partiular solution of(13.1), for whih the estimate (13.2) is known. We onjeture that the bound (13.2) an be provedby suitably extending the tehniques used to estimate the total variation.Referenes[1℄ S. Bianhini and A. Bressan, BV estimates for a lass of visous hyperboli systems, IndianaUniv. Math. J., to appear.[2℄ S. Bianhini and A. Bressan, On a Lyapunov funtional relating shortening urves and visousonservation laws, Nonlin. Anal., T.M.A., to appear.[3℄ A. Bressan, Hyperboli Systems of Conservation Laws. The One Dimensional Cauhy Problem.Oxford University Press, 2000.[4℄ A. Bressan, G. Crasta and B. Pioli, Well posedness of the Cauhy problem for n � n on-servation laws, Amer. Math. So. Memoir 694 (2000).[5℄ A. Bressan, T. P. Liu and T. Yang, L1 stability estimates for n� n onservation laws, Arh.Rational Meh. Anal. 149 (1999), 1-22.[6℄ R. DiPerna, Convergene of approximate solutions to onservation laws, Arh. Rational Meh.Anal. 82 (1983), 27-70.[7℄ A. Friedman, Partial Di�erential Equations of Paraboli Type, Prentie-Hall, Englewood Cli�s,1964.[8℄ J. Goodman and Z. Xin, Visous limits for pieewise smooth solutions to systems of onser-vation laws, Arh. Rational Meh. Anal. 121 (1992), 235-265.[9℄ J. X. Hu and P. LeFloh, L1 ontinuous dependene for systems of onservation laws, Arh.Rat. Meh. Anal. 151 (2000), 45-93.[10℄ T. P. Liu and T. Yang, Well posedness theory for hyperboli onservation laws, Comm. PureAppl. Math. 52 (1999), 1553-1586.
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