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1. Introduction

In this paper we address th question of differentiability of the flow generated by a strictly
hyperbolic system of conservation laws. The primary motivation for the introduction of shift dif-
ferentials comes from the theory of hyperbolic conservation laws [5,6,13], in particular the evolution
of first order perturbation of initial data. Other potential applications are variational problems
and optimal control of solutions.

It is well known that if S is L1 contractive semigroup generated by a scalar conservation, then
in general the map u−→Stu, for fixed t, is not differentiable in the usual L1 differential structure.
However, for any Lipschitz continuous map, one can introduce a new differential structure on the
space BV, defining a tangent space Tu at u ∈ BV: given a set Γ of continuous paths γ : [0, θ∗] 3
θ → γ(θ) ∈ BV, with γ(0) = u, consider the equivalence relation

∧∼ defined as

γ
∧∼ γ̃ if lim

θ→0

1

θ
‖γθ(u) − γ̃θ(u)‖L1 = 0. (1.1)

The tangent space Tu at u is by definition the elements of the set Γ/
∧∼. Every equivalence class

can be regarded as a “first-order tangent vector” at the point u. The standard choice is to consider
a family Tu of tangent vectors which can be put in a one-to-one correspondence with L1(R). More
precisely, Tu is defined as the family of all equivalence classes of the maps

θ−→ γv(θ)
.
= u + θv, v ∈ L1(R). (1.2)

As it is shown in [6], this choice is not adequate for describing a first-order variation of the flow
map St: in fact it happens that u−→Stu does not map Tu = L1 into TStu = L1.

For example consider Burgers’ equation

ut +
[
u2/2

]
x

= 0, (1.3)

with the family of initial conditions

uθ(0, x) = θx · χ[0,1](x). (1.4)

By χI(x) we denote here and in the following the characteristic function of the interval I. Choose
for example u

.
= x · χ[0,1](x). In this case uθ corresponds to the path (1.1) with tangent vector

v = x · χ[0,1](x) ∈ L1(R). Assuming θ > 0, the corresponding solution of (1.3)-(1.4) is

uθ(t, x) =
θx

1 + θt
· χ[0,

√
1+θt](x). (1.5)

Observe that, for t > 0, the map θ−→uθ(t, ·) defined in (1.5) is Lipschitz continuous but nowhere
differentiable because the location xθ(t) =

√
1 + θt of the shock varies with θ. Therefore, the limit

lim
∆θ→0

uθ+∆θ − uθ

∆θ
, t > 0,

is not well defined as an element of the space TStū = L1(R).
In [6] it is studied a different space Tu of tangent vectors, u ∈ BV(R), which can be put into a one-

to-one correspondence with L1(Du). Here Du denotes the (signed) Radon measure corresponding
to the distributional derivative of u. The basic idea is the following. In the special case where v is
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continuously differentiable with compact support, to v it is associated the equivalence class of the
map θ 7→ uθ, where uθ is implicitly defined as

uθ(x + θv(x)) = u(x), (1.6)

for all θ ≥ 0 sufficiently small. It is then shown that this correspondence can be uniquely extended
to the whole space L1(Du). Observe that in (1.2) the graph of uθ is obtained by lifting the graph
of u vertically by θv. On the other hand, in (1.6), the graph of u is shifted horizontally by θv. This
motivates the term “shift-differential” used in the sequel. A map which is differentiable w.r.t. the
tangent vectors in Tu is said to be shift differentiable.

The main result in [6] shows that the flow generated by a single conservation law u−→Stu is
shift differentiable “almost everywhere” w.r.t. t, i.e. outside a countable set {tk}k∈N.

In [?] it is introduced a different approach to first order perturbations of a strictly convex scalar
conservation law. The main result of [?] is that if the initial datum u0 satisfies (u0)x ≤ C, then
the limit

w
.
= lim

θ→0

St(u0 + θv) − Stu0

θ
(1.7)

exists in the weak∗ sense of measures, for all v ∈ L1 ∩ L+∞, and the map v−→w is a linear and
bounded operator from L+∞ to the space of bounded Radon measures on R. This means that the
operator u0 −→Stu0 is Gâteaux differentiable in u0, in some weak sense. It can be shown that if
u + θv generates a shift tangent vector, then the measure w is equal to aDu, where a ∈ L1(Du) is
the shift tangent vector generated by St(u0 + θv). Of course the limit (1.1) is much stronger than
(1.7).

In [8] the construction of shift differentials is extended to the case of vector valued function u.
If u : R−→Rn is a BV function, a shift tangent vector is defined in terms of:
i) a decomposition of u into n scalar components;

ii) a n-tuple of functions (v1, . . . , vn) ∈ L1(Du), determining the rate at which each component of
u is shifted.

This is accomplished by assigning a matrix valued function A : R−→Mn×n
d , where we denote

with Mn×n
d the set of diagonalizable n × n matrices with real eigenvalues. The eigenvectors of

A correspond to the local scalar decomposition of u, while the eigenvalues of A determine the
shift rate of the correspondent component of u. Denoting with 〈·, ·〉 the scalar product in Rn, the
assumption on A are:

A1) if li, ri denote the left and right eigenvectors of A, normalized such that |ri| = 1 and 〈lj , ri〉 = δji ,
then they are Borel measurable and uniformly bounded;

A2) the eigenvalues λi belong to L1(Du).
Given A ∈ Mn×n

d satisfying A1, A2, the main result of [8] is the construction of an equivalent class

of paths γ : θ−→uθ ∈ L1
loc which determine the shift tangent vector A.

In this paper we consider a class of paths γ : θ−→uθ ∈ L1
loc, and show how these paths generate

a space Tu of tangent vectors at u ∈ BV. Relying on the previous observations and the results of
section 4, we will call the elements of Tu shift tangent vectors.

Before introducing the space Tu, in section 2 we study a simple case: we consider a constant
matrix A and a piecewise constant function u with a single jump. In this case the path θ → uθ ∈
L1
loc(R,Rn) is defined considering the solution of the linear equation

∂uθ

∂θ
+ A

∂uθ

∂x
= 0. (1.8)

The study of this simple case leads to the introduction of a new distance d̂ on the space Mn×n
d

such that (Mn×n
d , d̂) is a complete metric space.
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In section 3, relying on a simple decomposition of u in terms of its measure derivative, we define
the matrix valued functions A which can generate shift tangent vectors at u. These vector valued
functions are called admissible generators. Our definition is much less restrictive than the one in
[8].

It is obvious that two matrix valued functions A and Ã define the same path if, roughly speaking,
their difference acts on the vector space “orthogonal” to u: for example, if l̄ ∈ Rn is a left eigenvector
for the constant matrix A and Du(x) is orthogonal to l̄ for all x ∈ R, then the path generated
by (1.8) is independent from the value of the eigenvalue λ̄ corresponding to l̄. It follows that,
differently from the scalar case, a path θ−→uθ ∈ L1

loc does not determine uniquely the admissible
generator, in general. However, we give two criteria to say whether two matrix valued functions A

and Ã define the same shift tangent vector or not.
In section 4 we show that our definition coincides with the one given in [6] for the scalar case.

In some sense our construction gives the most natural path, as the path γθ
v(u) considered in (1.2)

is the easiest choice in that case. Moreover we show that the matrix valued functions considered in
[8] are admissible generators and the definition of shift tangent vector given there coincides with
ours.

Finally in section 5 we address the question of the application to hyperbolic systems of conser-
vation laws. Extending [6], we introduce the shift differential of a map Φ : L1

loc −→L1
loc. Roughly

speaking, Φ is shift differentiable at u ∈ BV if Φ(u) ∈ BV and for all shift tangent vectors A ∈ Tu,
Φ maps a path generating A into a path generating a shift tangent vector B ∈ TΦ(u). In general
the semigroup St generated by an hyperbolic system of conservation laws is not defined on the
whole L1

loc, but on an L1–closed subset of BV. Since with our definition there are shift tangent
vectors generated only by paths γ(θ) with

lim
θ→0

Tot.Var(γ(θ)) = +∞,

we need to restrict the space Tu, i.e. we need to consider a subspace M(u) of Tu. The shift
differential of a map Φ is now defined using M(u) instead of the entire Tu. Finally we give three
examples of the applications to the Lipschitz continuous semigroup St generated by a hyperbolic
system of conservation laws.

The first example consider a simple 2 × 2 Temple class system, i.e. a system whose rarefaction
curves are straight lines. In this case we show that the shift differentiability of the map u−→Stu
occurs only if we restrict the space Tu to the shift tangent vectors that shift independently the
two Riemann invariants. We show also that this subset M(u) of Tu is the biggest set M(u) such
that the shift differentiability of the map u−→Stu occurs. The last two examples show that in
general it is difficult to determine which subspace M(u) of Tu should be considered to prove the
shift differentiability of the map u−→Stu, and this subspace could be very small.

2. The Riemann problem for linear systems

We begin with the most elementary case: a Riemann problem for a linear hyperbolic system
with constant coefficients. Without any loss of generality, we consider a function u ∈ L1

loc(R;Rn)
with a single jump in 0, i.e. u(x)

.
= vχ[0,+∞)(x), v ∈ Rn, and a constant matrix A ∈ Mn×n

d . We

recall that with Mn×n
d ⊆ Mn×n we denote the space of n × n diagonalizable matrices with real

eigenvalues: if with ri, l
i ∈ Rn the left and right eigenvectors corresponding to the eigenvalues

λi ∈ R, then

r1 ∧ · · · ∧ rn > 0, |ri| = 1, 〈lj , ri〉 = δji , i, j = 1, . . . , n, (2.1)
4



where 〈·, ·〉 is the scalar product in Rn, δji is the kronecher’s delta and | · | is a norm of Rn. For
sake of definiteness, we shall use |(v1, . . . , vn)| = |v1| + · · · + |vn|, but all the following results are
valid for any equivalent norm in Rn. To define in this simple case the shift tangent vector A at u,
we consider the linear system {

ut + Aux = 0
u(0, x) = vχ[0,+∞)(x),

(2.2)

whose solution is

u(t, x) =
n∑

i=1

〈li, u(0, x− λit)〉ri =
n∑

i=1

χ[λit,+∞)(x)〈li, v〉ri, (2.3)

where 〈·, ·〉 is the scalar product on Rn. We now introduce a notation for the functions obtained
by (2.3). This notation is the obvious generalization of definition 2 in [8].

Definition 2.1. If u ∈ L1
loc and A ∈ Mn×n

d are as above, we denote by Aθ ?u the solution of (2.3)
evaluated at time θ, i.e.

Aθ ? u(x)
.
= u(θ, x) =

n∑
i=1

χ[θλi,+∞)(x)〈li, v〉ri. (2.4)

Note that this definition coincides with definition 6 of [8], since the matrix A is constant; in
particular each component 〈li, u〉ri of u is shifted of the amount θλi.

In the following sections we shall need to estimate ‖Aθ ? u− Ãθ ? u‖L1 , where A, Ã ∈ Mn×n
d . If

we denote by ũ(t, x) the solution of{
ũt + Ãũx = 0
ũ(0, x) = vχ[0,+∞)(x),

(2.5)

an explicit computation gives

‖Aθ ? u− Ãθ ? u‖L1 =

∫
R
|u(θ, x) − ũ(θ, x)|dx

=

∫
R
|u(1, x/θ) − ũ(1, x/θ)|dx = θ‖u(1) − ũ(1)‖L1 ,

(2.6)

where we use the fact that u and ũ are self similar. The last formula, divided by θ, can be used to
define a distance on the space of diagonalizable matrices:

Definition 2.2. Given two matrices A, Ã ∈ Mn×n
d and a vector v ∈ Rn, consider the two Riemann

problems defined in (2.2) and (2.5), and denote by u(t, x) and ũ(t, x) their respective solutions. We

define the function d(A, Ã; v) as

d(A, Ã; v)
.
= ‖u(1) − ũ(1)‖L1 =

∫
R
|u(1, x) − ũ(1, x)|dx. (2.7)

Moreover we define the distance d̂(A, Ã) by

d̂(A, Ã)
.
= sup

v:|v|=1

d(A, Ã; v). (2.8)

In the following theorem we prove that d̂ is actually a distance in Mn×n
d .
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Theorem 2.3. The function d̂ : Mn×n
d ×Mn×n

d −→R defined in (2.8) is a distance on the space

of diagonalizable matrices Mn×n
d . The space (Mn×n

d , d̂) is a complete metric space.

Proof. It is obvious form (2.7) and (2.8) that d̂(A, Ã) ≥ 0 and d̂(A, Ã) = d̂(Ã, A).

Suppose now that d̂(A, Ã) = 0. By definition, the distance d̂(A, Ã) can be defined as the L1

distance between the two solution of the Riemann problem (2.2) and (2.5), respectively: thus to

prove A = Ã is equivalent to say that the matrix A is uniquely determined by the solution of the
Riemann problems (2.2), when v varies in Rn. Assume that v is equal to a right eigenvector of A,
namely v = r`, with 1 ≤ ` ≤ n. Then the solution u of (2.2) is a single shock traveling with speed
λ`,

u(t, x) = r`χ[λ`t,+∞)(x),

and since by hypotheses d(A, Ã; rl) = 0, u must be a solution also of the equation (2.5): in fact u
and ũ are self similar, and thus if they coincide at t = 1, they are equal for all t ≥ 0. Consequently
(2.3) implies that

Ãr` = λ`r`. (2.9)

Since (2.9) holds for all ` ∈ {1, . . . , n} and Ã ∈ Mn×n
d , it follows A = Ã.

To prove d̂(A, Ã) ≤ d̂(A, Â) + d̂(Â, Ã), for all A, Ã, Â ∈ Mn×n
d , note that for all v ∈ Rn we have

d(A, Ã; v) = ‖u(t) − ũ(t)‖L1 ≤ ‖u(t) − û(t)‖L1 + ‖û(t) − ũ(t)‖L1

= d(A, Â; v) + d(Â, Ã; v) ≤ d̂(A, Â) + d̂(Â, Ã),
(2.10)

where û is the solution of (2.2) with the matrix Â. Taking the supremum of the left–hand side of
(2.10), we conclude

d̂(A, Ã) ≤ d̂(A, Â) + d̂(Â, Ã).

This concludes the proof that d̂ is a metric. We now prove that this distance makes Mn×n
d a

complete metric space.

For any v ∈ Rn and A, Ã ∈ Mn×n
d we can write

|Av − Ãv| ≤
∫
R
|u(1, x) − ũ(1, x)|dx = d(A, Ã; v). (2.11)

In fact, from (2.2) and (2.5) it follows∫
R
u(t, x) − ũ(t, x)dx = −

∫ t

0

∫
R
Au(t, x)x − Ãũ(t, x)xdxdt = t(Av − Ãv). (2.12)

Now let Ak ∈ Mn×n
d be a Cauchy sequence in (Mn×n

d , d̂), and define uk(t) as the self–similar
solution of the Riemann problem (2.2) with the matrix Ak and initial datum vχ[0,+∞)(x). Since

‖uk(t) − u`(t)‖L1 ≤ td̂(Ak, A`), we have that, for any fixed t, uk(t) − u1(t) is a Cauchy sequence
in L1(R), converging to a unique limit u(t):

lim
k→+∞

∫
R
|uk(t, x) − u(t, x)|dx = 0. (2.13)

Note that (2.11) implies that Ak is a Cauchy sequence in Mn×n, and then there exists a matrix A
such that

lim
k→+∞

Ak = A. (2.14)
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If we write equation (2.2) with the matrix Ak in weak form and we let k → +∞, (2.13) and (2.14)
imply for all φ ∈ C1(R,R) that∫∫

R+×R
u(t, x)φt(t, x) + Au(t, x)φx(t, x)dxdt +

∫
R+

vφ(0, x)dx = 0, (2.15)

so that u is a weak solution of the system{
ut + Aux = 0
u(0, x) = vχ[0,+∞)(x),

(2.16)

This concludes the proof, because it is well known that the system (2.16) has a solution for all
v ∈ Rn if and only if A is diagonalizable (see [12]). �
Remark 2.4. It is easy to see that the space Mn×n

d is not a vector space: for example[
2 0
0 1

]
+

[
−1 1
0 0

]
=

[
1 1
0 1

]
,

and while the two matrices are in Mn×n
d , their sum is not. The same result can be proved for the

product of two matrices. Note that Mn×n
d is star shaped, and in fact d̂ satisfies also

d̂(αA,αÃ) = αd̂(A, Ã), (2.17)

for any α > 0, A, Ã ∈ Mn×n
d . While Mn×n

d is a manifold, the distance d̂ does not define a

Riemannian structure: namely it can be shown that there are no metric tensors generating d̂.
A corollary of theorem 2.3 is

Corollary 2.5. The distance d̂ is stronger that the usual operator norm ‖·‖: for any two matrices

A, Ã ∈ Mn×n
d

‖A− Ã‖ = sup
v∈Rn

|Av − Ãv| ≤ d̂(A, Ã). (2.18)

Proof. Formula (2.18) follows immediately from (2.11) and the definition (2.8). �
The following remark will be important in the following section.

Remark 2.6. Consider two matrices A, Ã ∈ Mn×n
d . It is clear that ‖A−Ã‖ = 0 implies d̂(A, Ã) = 0,

but in general, fixed a vector v ∈ Rn, we could have Av = Ãv and d(A, Ã; v) > 0. Consider for
example the vector v = (1,−1) and the following matrices

A1
.
=

[
−3 0
0 3

]
, A2

.
=

[
1 4
4 7

]
=

[
2 1
−1 2

] [
−1 0
0 9

] [
2/5 −1/5
1/5 2/5

]
.

With easy computation one can verify that d(A1, A2; v) = 44/5 while A1v = A2v.

3. Shift tangent vectors: the vector case

In this section we introduce a space of shift tangent vectors for a function u ∈BV(R;Rn). These
are functions in L1

loc(R;Rn) whose distributional derivative is a bounded vector measure on R. We
define f

.
= Du/|Du|, the Lebesgue decomposition of Du w.r.t. its total variation measure |Du|.

Without any loss of generality, in the following we assume u right continuous.
We now give the following definition:
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Definition 3.1. Consider a matrix valued function A : R−→Mn×n
d . Given u ∈BV(R;Rn), we

say that A is a admissible generator of a shift tangent vector at u if∫
R
d(A(y), 0; f(y))|Du|(y) < +∞, (3.1)

where d(A(y), 0; f(y)) is defined in (2.7). We denote the class of admissible generators for u as
Adm(u).

For all u ∈ BV, it is easy to prove the existence of the following limit

u(−∞)
.
= lim

x→−∞
u(x).

Since our definition of shift tangent vector at u depends only on the derivative Du of u, we assume
u(−∞) = 0. Given u ∈ BV, we can obviously write

u(x) = u(−∞) +

∫
R
f(y)χ(−∞,x](y)|Du|(y) = u(−∞) +

∫
R
f(y)χ[y,+∞)(x)|Du|(y). (3.2)

If A(y) is an admissible generator for u, then we consider for any y the solution w(t, x; y) of the
Riemann problem {

wt + A(y)wx = 0
w(0, x; y) = f(y)χ[y,+∞)(x),

(3.3)

and we define the path θ → Aθ ? u ∈ L1
loc as

Aθ ? u(x)
.
=

∫
R
w(θ, x; y)|Du|(y) =

∫
R

n∑
i=1

〈li(y), f(y)〉χ[y,+∞)(x− λi(y)θ)ri(y)|Du|(y)

=

∫
R

n∑
i=1

〈li(y), f(y)〉χ[y+λi(y)θ,+∞)(x)ri(y)|Du|(y).

(3.4)

If A is constant, (3.4) coincides with (2.4). With these notations we can rewrite condition (3.1) as∫
R

∫
R
|w(1, x; y) − w(0, x; y)|dxdy < +∞. (3.1′)

We first show that the function Aθ ? u is well defined as an element of L1
loc for all θ ≥ 0.

Lemma 3.2. Given a function u ∈ L1
loc ∩ BV(R;Rn), the function Aθ ? u defined in (3.4) is a

path in L1
loc(R;Rn) such that

‖Aθ ? u− u‖L1 ≤ θ

∫
R
d(A, 0; f(y))|Du|(y). (3.5)

Proof. Since we have∫∫
R2

∣∣∣w(θ, x; y) − w(0, x; y)
∣∣∣dx|Du|(y) = θ

∫
R
d(A, 0; f(y))|Du|(y) ≤ +∞,
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the function w(θ, x; y) − w(0, x; y) is in L1(|Du| × dx), and then (3.4) is in L1
loc, thus defined a.e..

Finally, if we change the order of integration, we can write

‖Aθ ? u− u‖L1 =

∫
R
|Aθ ? u(x) − u(x)|dx =

∫
R

∣∣∣∣∫
R

(
w(θ, x; y) − w(0, x; y)

)
|Du|(y)

∣∣∣∣ dx
≤
∫∫

R2

∣∣∣w(θ, x; y) − w(0, x; y)
∣∣∣dx|Du|(y) = θ

∫
R
d(A(y), 0; f(y))|Du|(y).

(3.6)

The conclusion follows. �
Remark 3.3. In general the function Aθ ?u needs not to be in BV(R;Rn) if n ≥ 2. In fact, consider
the following example

u = (u1, u2) =

(
+∞∑
i=1

1

2i
χ[i,+∞)(x), 0

)
∈ BV(R;R2),

and the matrix valued function defined as

A(i) =

[
−2−i 0
−2 2−i

]
=

[
1 0
2i 1

] [
−2−i 0

0 2−i

] [
1 0

−2i 1

]
.

The solution of each Riemann problem (3.3) is

w(θ, x; i) =

 (0, 0) x < i− 2−iθ
(1, 2i) i− 2−iθ ≤ x < i + 2−iθ
(1, 0) x ≥ i + 2−iθ

(3.7)

If we set |(v1, v2)| = |v1|+ |v2|, an easy computation shows that d(A(i), 0; f(i)) = 2−i+ 2 < 3, and
then A is an admissible generator at u. The weak derivative of (3.7) has measure norm 1 + 2i+1,
and thus, for all 0 < θ ≤ 1, Aθ ? u is not in BV(R;R2). The scalar case is a particular situation,
since for all φ ∈ C1

c (R) we have∫
R
Aθ ? u(x)φ′(x)dx =

∫∫
R2

w(θ, x; y)φ′(x)dx|Du|(y)

=

∫∫
R2

f(y)χ[y+λi(y)θ,+∞)(x)φ′(x) =

∫
R
f(y)

∫ +∞

y+λi(y)θ

φ′(x)dx|Du|(y)

= −
∫
R
f(y)φ(y + λi(y)θ)|Du|(y) ≤ ‖φ‖C0Tot.Var(u).

This implies that Aθ ? u ∈BV(R).
In general we can prove the following theorem:

Theorem 3.4. Assume that the left eigenvectors li(y) of A(y) ∈ Adm(u), satisfying (2.1), are
uniformly bounded by a constant M . Then the function Aθ ? u is in BV for all θ ≥ 0.

Proof. We recall that by (2.1) the right eigenvectors are normalized. If φ is a C1
c (R) function and

we denote with φ′ its derivative, we have∫
R
Aθ ? u(x)φ′(x)dx =

∫∫
R2

w(θ, x; y)φ′(x)dx|Du|(y)

=

∫ n∑
i=1

〈li(y), f(y)〉ri(y)

(∫ +∞

y+θλi(y)

φ(x)dx

)
|Du|(y)

=

∫ n∑
i=1

〈li(y), f(y)〉ri(y)φ(y + θλi)|Du|(y) ≤ 2nM‖φ‖C0Tot.Var(u).
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This concludes the proof, since the above formula is a definition of the space BV. �

Remark 3.5. Definition 3.1 is the largest class of admissible generators at u ∈ BV. One can restrict
the class of admissible generators, for example assuming the matrix valued function A ∈ Adm(u) to

be uniformly diagonalizable in the sense of theorem 3.4, or using the distance d̂ in (3.1) instead of
d(A, 0; f(y)). However all the following results are independent of the set of admissible generators,
and then we will use definition (3.1).

Before giving the definition of shift tangent vector, we prove the following theorem.

Theorem 3.6. If A and Ã are two admissible generators at u, then

lim inf
θ→0

1

θ
‖Aθ ? u− Ãθ ? u‖L1 ≥

∫
R

∣∣∣A(y)f(y) − Ã(y)f(y)
∣∣∣ |Du|(y),

lim sup
θ→0

1

θ
‖Aθ ? u− Ãθ ? u‖L1 ≤

∫
R
d(A(y), Ã(y); f(y))|Du|(y).

(3.8)

Remark 3.7. Note that by formula (2.11) we have∫
R

∣∣∣A(y)f(y) − Ã(y)f(y)
∣∣∣ |Du|(y) ≤

∫
R
d(A(y), Ã(y); f(y))|Du|(y).

Note also that∫
R
d(A(y), Ã(y); f(y))|Du|(y) ≤

∫
R
d(A(y), 0; f(y))|Du|(y) +

∫
R
d(Ã(y), 0; f(y))|Du|(y) < +∞,

if A, Ã are admissible.
To prove the theorem we need a preliminary lemma.

Lemma 3.8. The function (Aθ ? u − u)/θ converges to A(y)f(y)|Du|(y) in the weak sense of
measures.

Proof. If φ is a C0
c (R) function, we have∫

R

Aθ ? u(x) − u(x)

θ
φ(x)dx =

∫∫
R2

(
w(θ, x; y) − w(0, x; y)

θ

)
φ(x)dx|Du|(y)

=

∫ n∑
i=1

〈li(y), f(y)〉ri(y)

(
1

θ

∫ y

y+θλi(y)

φ(x)dx

)
|Du|(y).

(3.9)

Since φ is uniformly continuous in R, we have that

lim
θ→0

1

θ

∫ y

y+θλi(y)

φ(x)dx = λi(y)φ(y),

for every y ∈ R. Note that (2.7) yields∣∣∣∣∣
n∑

i=1

〈li(y), f(y)〉ri(y)

(
1

θ

∫ y

y+θλi(y)

φ(x)dx

)∣∣∣∣∣ ≤ ‖φ‖C0d(A(y), 0; f(y)),
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and then we can use Lebesgue’s dominated convergence theorem in (3.9) when θ → 0:

lim
θ→0

∫
R

Aθ ? u(x) − u(x)

θ
φ(x)dx = −

∫
R

n∑
i=1

〈li(y), f(y)〉ri(y)φ(y)|Du|(y)

= −
∫
R
A(y)f(y)φ(y)|Du|(y). �

(3.10)

Proof of Theorem 3.6. Since A(y)f(y)|Du|(y) is the weak limit of the sequence (Aθ ? u−u)/θ, the
linearity of the integrals gives

lim
θ→0

∫
R

Aθ ? u(x) − Ãθ ? u(x)

θ
φ(x)dx = −

∫
R

(
A(y)f(y) − Ã(y)f(y)

)
φ(y)|Du|(y),

for all φ ∈ C1
c (R), and a standard argument yields∫

R

∣∣∣A(y)f(y) − Ã(y)f(y)
∣∣∣ |Du|(y) ≤ lim inf

θ→0

∫
R

∣∣∣∣uθ(x) − ũθ(x)

θ

∣∣∣∣ dx.
The other inequality follows from a argument similar to (3.6): since∫

R

∣∣∣Aθ ? u(x) − Ãθ ? u(x)
∣∣∣ dx =

∫
R

∣∣∣∣∫
R

(
w(θ, x; y) − w̃(θ, x; y)

)
|Du|(y)

∣∣∣∣ dx
≤
∫∫

R2

∣∣∣w(θ, x; y) − w̃(θ, x; y)
∣∣∣dx|Du|(y) = θ

∫
R
d(A(y), Ã(y); f(y))|Du|(y),

it follows

lim sup
θ→0

1

θ
‖Aθ ? u− Ãθ ? u‖L1 ≤

∫
R
d(A(y), Ã(y); f(y))|Du|(y). �

In the following example, we prove that the limits in (3.8) may in general be different.

Example 3.9. Consider the vector function u = (u1, u2) defined as

u1(x) =


0 x < 0

n∑
i=1

1

2i
min{ci, 1}

n−1∑
i=1

ci
3i

+
1

3n
< x <

n−1∑
i=1

ci
3i

+
2

3n
, ci = 0, 1, 2

1 x > 1

u2(x) = 0,

and the fixed matrix A defined as

A =

[
0 1
1 0

]
=

[
1 −1
1 1

] [
1 0
0 −1

]
1

2

[
1 1
1 −1

]
.

The function u is essentially Vitali’s function multiplied by the unitary vector (1, 0). We now study
the integral

I(θ) =
1

θ

∫
R
|uθ(x) − u(x)|dx,

11



where uθ is the solution the system (2.2) evaluated at time θ, namely

uθ(x) =
1

2
u1(x− θ)

(
1
1

)
+

1

2
u1(x + θ)

(
1
−1

)
.

Note that by the definition of u, we have I(3−n) = I(3−1). An explicit computation of I(3−1)
gives

I(3−1) = 3

∫ 1+3−1

−3−1

|u3−1

1 (x) − u(x)|dx + 3

∫ 1+3−1

−3−1

|u3−1

2 (x)|dx = 3

(
1

6
+

1

3

)
=

3

2
.

With the same construction we can compute

I(2/3n) = I(2/9) =
9

2

(
11

108
+

2

9

)
=

35

24
.

Note that ∫
R
|A(y)f(y)||Du|(y) =

∫
R
Du(y) = 1 ≤ 35

24
,∫

R
d(A(y), 0; f(y))|Du|(y) =

∫
R

2Du(y) = 2 ≥ 3

2
,

as theorem 3.6 requires.
We now introduce the main definitions of this paper.

Definition 3.10. Fix u ∈BV(R;Rn) and consider the partition of Adm(u) defined by the following

equivalence relation
∧∼ : if A, Ã ∈ Adm(u), then A

∧∼ Ã if

lim sup
θ→0

1

θ

∫
R

∣∣∣Aθ ? u(x) − Ãθ ? u(x)
∣∣∣ dx = 0. (3.11)

We define the shift tangent vectors A at u as the elements A of the set Adm(u)/
∧∼.

Remark 3.11. In general, given u ∈ BV, it is difficult to give a precise characterization of the

equivalence class A. For example, if u ∈ C1
c (R;Rn) and A, Ã ∈ Mn×n

d are two constant matrices,
the application of Lebesgue dominated convergence theorem shows that

lim
θ→0

1

θ

∫
R
|Aθ ? u(x) − Ãθ ? u| =

∫
R
|Aux(y) − Ãux(y)|dy,

and thus in this case A
∧∼ Ã if Aux(y) = Ãux(y) for all y ∈ R. Remark 2.6 shows instead that if u

has a jump, in general A and Ã belong to different equivalence classes. However, using (3.8), we
can say that if ∫

R
d(A(y), Ã(y); f(y))|Du|(y) = 0,

then A
∧∼ Ã. Conversely if ∫

R

∣∣∣A(y)f(y) − Ã(y)f(y)
∣∣∣ |Du|(y) > 0,

then Aθ ? u and Ãθ ? u generate two different shift tangent vectors.
12



Definition 3.12. Consider a path θ → uθ ∈ L1(R;Rn), defined in some interval θ ∈ [0, θ?]. We

say that the path uθ generates the shift tangent vector A ∈ Adm(u)/
∧∼ if for some admissible

generator A ∈ A we have

lim
θ→0

1

θ
‖uθ −Aθ ? u‖L1 = 0. (3.12)

Remark 3.13. It is easy to prove using (3.11) that the above definition does not depend on the
choice of the representative A ∈ A. Moreover, if it exists, the shift tangent vector A, not the
admissible generator, is uniquely determined by the curve θ−→uθ.

4. Equivalence of the other definitions

In this section we show that definition 3.12 coincides with the definition of shift tangent vector
given in [6] for the scalar case and in [8] in the vector case.

If u is a function in BV(R;R), then instead of a matrix valued function A ∈ Adm(u) we have a
function a ∈ L1(Du): in fact in this case condition (3.1) reduces to∫

R
|a(y)||Du|(y) < +∞, (3.1′)

since d(a, 0; v) = |a||v|. Moreover it is easy to verify that the set Adm(u)/
∧∼ coincides with L1(Du),

because in the scalar case the limits (3.8) coincide and then a
∧∼ ã if and only if a = ã almost

everywhere w.r.t. the measure |Du|. We recall that in [6] the shift tangent vector a ∈ L1(Du) is
defined by the equivalence class w.r.t. the L1 norm of the path aθ � u, where

(aθ � u)(x + θaθ(x)) = u(x), (4.1)

and aθ is a Lipschitz continuous function such that

lim
θ→0

∫
R

∣∣aθ(y) − a(y)
∣∣ |Du|(y) = 0, lim sup

θ→0
Lip(θaθ) < 1, lim

θ→0
‖θaθ‖∞ = 0. (4.2)

In [6] it is shown that this class is uniquely determined by the function a ∈ L1(Du), so that the
definition is consistent.

The following proposition shows that our definition of shift tangent vectors coincides with the
one above.

Proposition 4.1. Given a ∈ L1(Du), let aθ be a Lipschitz continuous function such that (4.2)
hold, and let aθ � u be the L1

loc function defined in (4.1). Then

lim
θ→0

1

θ
‖aθ � u− aθ ? u‖L1 = 0, (4.3)

where aθ ? u is defined the path in L1
loc defined in (3.4).

Proof. It is simple to verify that the function aθ � u can be written as

aθ � u =

∫ +∞

−∞
f(y)χ[y,+∞)(x− θaθ(y))|Du|(y),

13



and, using (4.2), with easy computation we obtain

1

θ
‖aθ � u− aθ ? u‖dx ≤ 1

θ

∫∫
R2

∣∣f(y)χ[y,+∞)(x− θaθ(y)) − f(y)χ[y,+∞)(x− θa(y)))
∣∣ |Du|(y)dx

=

∫
R
|aθ(y) − a(y)||Du|(y) = ‖aθ − a‖L1(Du),

and then (4.3) is verified. �
We now consider the vector case. Given u ∈ BV(R;Rn), we recall that in [8] a shift tangent

vector is determined by a matrix valued function A : R−→Mn×n
d having the ri, l

i as right and
left eigenvectors, and the λi as eigenvalues such that the functions ri, li : R−→Rn are Borel
measurable and uniformly bounded and λi ∈  L1(|Du|). In this case the path Aθ � u is defined by
considering a matrix valued function Aθ : R−→Mn×n

d such that

i) for each given θ ∈ (0, θ∗], its right and left eigenfunctions rθi , li,θ : R−→Rn and its eigenvalues
λθ
i : R−→R are Lipschitz continuous and bounded. Moreover, they remain constant outside a

compact interval Kθ ⊆ R;
ii) for each i = 1, . . . , n one has

lim
θ→0

∫
R

{∣∣rθi (x) − ri(x)
∣∣+
∣∣li,θ(x) − li(x)

∣∣ +
∣∣λθ

i (x) − λi(x)
∣∣} dµu(x) = 0, (4.4)

lim
θ→0

θ1/4
(
Lip(rθi ) + Lip(li,θ) + Lip(λθ

i ) + ‖λθ
i ‖∞

)
= 0, (4.5)

lim
θ→0

max
j

{‖λθ
j‖∞}

∫
R

(∣∣rθi (x) − ri(x)
∣∣+
∣∣li,θ(x) − li(x)

∣∣)|Du|(x) = 0, (4.6)

‖rθi ‖∞ ≡ 1, sup
i,θ

‖li,θ‖∞ < ∞, (4.7)

Next, for any integer k ∈ Z, let P θ
k ∈ R be the points P θ

k
.
= k

2 θ
3/4, and let Iθk and Jθ

k be the

open intervals centered at P θ
k and with lengths 1

2θ
3/4 and θ3/4, respectively. Finally set

Aθ � u(x)
.
=

n∑
i=1

〈
li,θ(P θ

k ), u(x− θλθ
i (P θ

k ))
〉
rθi (P θ

k ), for x ∈ Iθk . (4.8)

The last result of this section shows that, following definition 3.14, Aθ�u generates the shift tangent
vector A determined by A ∈ A.

Proposition 4.2. If A is defined as above, then A is admissible. Moreover, if we consider the
path Aθ ? u defined in (3.4), we have

lim
θ→0

1

θ
‖Aθ � u−Aθ ? u‖L1 = 0. (4.9)

It follows that Aθ � u generates A, where A is the shift tangent vector determined by A ∈ A.

Proof. By the assumptions on A, there exists a constant M such that

sup
i

‖li‖∞ ≤ M. (4.10)
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The matrix valued function A : R−→Mn×n
d is then uniformly strictly hyperbolic on R, and for

every y ∈ R the distance d̂(A, 0) is bounded by

d̂(A(y), 0) = sup
v∈Rn,
|v|=1

d(A(y), 0; v) = sup
v∈Rn,
|v|=1

∣∣∣∣∣
n∑

i=1

λi(y)〈li(y), v〉ri(y)

∣∣∣∣∣
≤

n∑
i=1

|λi(y)| sup
v∈Rn,
|v|=1

〈li(y), v〉 ≤ M
n∑

i=1

|λi(y)|.
(4.11)

Since λi belongs to L1(|Du|), (4.13) implies that A is admissible. Now we prove (4.9).
For any y ∈ R we evaluate the L1 distance between the solution of the Riemann problem (2.2)

with matrix A(y) and the one with matrix Aθ(y): if v ∈ Rn has norm |v| = 1, we have

d(A(y), Aθ(y); v) =

∥∥∥∥∥
n∑

i=1

χ[λi(y)t,+∞)(x)〈li(y), v〉ri(y)

−
n∑

i=1

χ[λθ
i
(y)t,+∞)(x)〈li,θ(y), v〉rθi (y)

∥∥∥∥∥
L1

≤
n∑

i=1

|λi(y) − λθ
i (y)||〈li(y), v〉|

+

∥∥∥∥∥
n∑

i=1

χ[λθ
i
(y)t,+∞)(x)

(
〈li(y), v〉ri(y) − 〈li,θ(y), v〉rθi (y)

)∥∥∥∥∥
L1

≤ M

n∑
i=1

|λi(y) − λθ
i (y)| + max

j
{‖λθ

j‖∞}
n∑

i=1

(
M
∣∣rθi (y) − ri(y)

∣∣+
∣∣li,θ(y) − li(y)

∣∣).

(4.12)

We note in fact that the integrand function is different from 0 only for

x ∈ [−max
j

{‖λθ
j‖∞,max

j
{‖λθ

j‖∞].

It follows from (4.12) and (4.4)–(4.7) that

lim
θ→0

∫
R
d̂(A(y), Aθ(y))|Du|(y) = 0. (4.13)

If M is a bound also for li,θ in (4.7), a similar argument gives

d(Aθ(P θ
k ), Aθ(y); v) ≤ M

∣∣y − P θ
k

∣∣ n∑
i=1

Lip(λθ
i )

+
∣∣y − P θ

k

∣∣max
j

{‖λθ
j‖∞}

n∑
i=1

(
MLip(rθi ) + Lip(li,θ)

)
,

(4.14)

If y is in Jθ
k , (4.14) and (4.4)–(4.7) yield

lim
θ→0

∑
k

∫
Jθ
k

d̂(Aθ(P θ
k ), Aθ(y))|Du|(y) = 0. (4.15)
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The conclusion follows easily from (4.13) and (4.15), noting that

‖Aθ � u−Aθ ? u‖L1 =
∑
k

∫
Iθ
k

∣∣Aθ � u(x) −Aθ ? u(x)
∣∣ dx

≤
∫
R
d̂(A(y), Aθ(y))|Du|(y) +

∑
k

∫
Jθ
k

d̂(Aθ(y), A(y))|Du|(y). �

5. Application to systems of conservation laws

In this section we study the shift–differentiability of the flow generated by a hyperbolic system
of conservation laws. Following [6], we consider an operator Φ : L1

loc −→L1
loc.

Definition 5.1. We say that Φ is shift–differentiable at u ∈ BV(R;Rn) along the shift tangent

vector A ∈ Adm(u)/
∧∼ if Φ(u) ∈ BV(R;Rn) and there exists B ∈ Adm(Φ(u))/

∧∼ such that

lim
θ→0

1

θ

∥∥Bθ ? Φ(u) − Φ(Aθ ? u)
∥∥
L1 = 0, (5.1)

for some A ∈ A, B ∈ B. Moreover if there exists a map Λ : Adm(u)/
∧∼−→Adm(Φ(u))/

∧∼ such

that for all A ∈ Adm(u)/
∧∼ the limit (5.2) holds with B = ΛA, then Φ is shift differentiable at u.

In other words Φ is shift differentiable at u if it is shift differentiable along each direction

A ∈ Adm(u)/
∧∼. Note that Adm(u)/

∧∼ is not a vector space, except in the scalar case.

Remark 5.2. This definition points out a major difficulty when one is dealing with the semigroup
S generated by a system of conservation laws: in fact the domain D of definition of S is an L1

closed subset of BV, while in general the definition of shift tangent vector uses a path not in BV.
Moreover using the same example given in remark 3.3, one can show that there exists shift tangent
vectors such that if θ−→uθ is any generating path, then

lim
θ→0

Tot.Var(uθ) = +∞.

The above remark motivates the following definition:

Definition 5.3. Let Φ : L1
loc ⊇ Dom(Φ)−→BV such that (5.1) holds for u, v ∈ Dom(Φ). Given

a subset M(u) ⊆ Adm(u)/
∧∼, we say that Φ is M(u)–shift differentiable at u if there exists a map

Λ : Adm(u)/
∧∼ ⊇ M(u)−→Adm(Φ(u))/

∧∼ such that for all A ∈ M(u) the limit (5.1) holds with
B = ΛA.

In the rest of this section we consider the application of these definitions to the flow generated
by a hyperbolic system of conservation laws{

vt + f(v)x = 0
v(0, x) = u(x)

(5.2)

where v ∈ Rn and f : Rn −→Rn smooth. We recall that, under various assumption of f (see
[1,4,10]), (5.2) generates a unique Lipschitz continuous semigroup St : [0,+∞)⊗D−→D such that
– D contains all the functions u with sufficiently small total variation with values in some compact

set K;
16



– there exists a constant L such that

‖Stu− Ssw‖L1 ≤ L(|t− s| + ‖u− w‖L1);

– each trajectory Stu is a weak entropic solution of the Cauchy problem (5.2) with initial datum
u;

– if u is a piecewise constant function, then, for small t, Stu coincides with the function obtained
piecing together the solutions of the corresponding Riemann problems.

We are interested in the shift differentiability of the map u−→Stu, for fixed t. The first example
shows the application of the above definitions to the semigroup St generated by a simple 2 × 2
Temple class system. We recall that in the case of Temple class systems the domain D of the
semigroup can be extended to vector valued functions with arbitrary large total variation (see
[2,3]).

Example 5.4. Consider the following Temple class system:
ut +

(
u

u + v

)
x

= 0

vt +

(
v

u + v

)
x

= 0

(5.3)

If we choose the two Riemann coordinates w1 = u + v and w2 = v/u, the system becomes{
(w1)t = 0

(w2)t +
1

w1
(w2)x = 0

(5.4)

We assume that the initial data w1,0, w2,0 ∈ BV(R;R) assume values in some square [a, b]× [a, b] ⊆
R2, with a, b > 0. It is well known that the domain [a, b] × [a, b] is invariant for the semigroup St

generated by (5.3) ([2,3]). If we consider the characteristics lines of the second equation, i.e. the
integral lines of the ODE{

ẋ =
1

w1,0(x)
x(0) = y

=⇒ t =

∫ x

y(t,x)

w1,0(z)dz, (5.5)

then the solution of (5.4) can be obtained by the method of characteristics:

w1(t, x) = w1,0(x), w2(t, x) = w2,0(y(t, x)). (5.6)

The semigroup St is then

St : BV(R; [a, b] × [a, b]) × [0,+∞) −→ BV(R; [a, b] × [a, b])
(w1,0, w2,0) −→ (w1(t, x), w2(t, x))

.
= (w1,0(x), w2,0(y(t, x)))

(5.7)

The class of shift tangent vectors M(w1,0, w2,0) ⊆ Adm(w1,0, w2,0)/
∧∼ that we consider are those

generated by shifting independently the two components w1 and w2: more precisely, M(w1,0, w2,0)
is the class of shift tangent vectors generated by the set of admissible generators{

A ∈ M2×2
d : A =

[
λ1 0
0 λ2

]
, λ1 ∈ L1(Dw1), λ2 ∈ L1(Dw2)

}
. (5.8)

It is clear that in this case M(w1,0, w2,0) is homeomorphic to the space L1(Dw1,0) × L1(Dw2,0),
and then it is a vector space. The following result is essentially theorem 3 of [6].
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Theorem 5.5. Suppose that u−→Stu is Y–shift differentiable at u, where

Y
.
=

{
A ∈ M2×2

d : A =

[
λ1 0
0 λ2

]
, λi ∈ C1

c (R), i = 1, 2

}
. (5.9)

Then u−→Stu is M–shift differentiable.

Proof. The proof is an easy extension of the proof of theorem 3 in [6]. �
If θ is less than min{1/Lip(λ1), 1/Lip(λ2)}, then λθ

i ? wi coincides with the function implicitly
defined by

(λθ
i ? wi)(x + θλi(x)) = wi(x).

If we write (5.5) for the shifted case, we have{
ẋ =

1

λ1 ? w1,0(x)
x(0) = y

=⇒ t =

∫ xθ(t,y)

y

λθ
1 ? w1,0(z)dz, (5.5′)

and then the solution is

St(λ
θ
1 ? w1,0, λ

θ
2 ? w2,0)(xθ(t, y)) = (λθ

1 ? w1,0(xθ(t, y)), λθ
2 ? w2,0(y)). (5.10)

We can write

Stw2(x) = w2,0(y(t, x)) = λ2 ? w2,0(y(t, x) + θλ2(y(t, x)))

= St(λ
θ
2 ? w2,0)

(
xθ
(
t, y(t, x) + θλ2(y(t, x))

))
= St(λ

θ
2 ? w2,0)

(
x + θ

xθ
(
t, y(t, x) + θλ2(y(t, x))

)
− x

θ

)
.

(5.11)

Now we show that

xθ(t, y(x) + θλ2(y(t, x))) − x

θ
→ 1

w1,0(x)

∫ x

y(t,x)

λ1(z)Dw1,0(z) +
w1,0(y(t, x))

w1,0(x)
λ2(y(t, x)), (5.12)

if Dw1,0 is continuous in x, y(t, x). Indeed (5.6’) is differentiable at θ = 0 if and only if w1,0 is
continuous in x, y(t, x), and its derivative coincides with (5.12). It is clear that the convergence in
(5.12) is in L1(Dw2(t)) if and only if the atomic part of Dw1 and Dw2 are disjoint at t = 0 and t.
In fact the left hand side of (5.12) is uniformly bounded for all θ > 0, and (5.12) holds outside the
countable set of jumps of w1,0. Using Lebesgue’s dominated convergence theorem the conclusion
follows.

The map Λ : M(w1,0, w2,0)−→Adm(Stu) is then

{
v1(x)
v2(x)

−→


v1(x)

1

w1(x)

∫ x

y(t,x)

λ1(z)Dw1(z) +
w1(y(t, x))

w1(x)
λ2(y(t, x))

(5.13)

Using theorem 5.5 we can say that, given w = (w1, w2) such that the atomic parts of Dw1 and
Dw2 are disjoint, the map w−→Stw defined in (5.8) is M(w1, w2)–shift differentiable for all t such
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that the atomic parts of D(Stw)1 and D(Stw)2 are disjoint. In this simple case it is easy to prove
that Λ is a bounded linear operator from M(w1,0, w2,0) to M(w1(t), w2(t)).

Note that one cannot expect the map w → Stw to be M(w)–shift differentiable for a bigger set
M(w). Consider in fact figure 5.1a. In this case the initial condition u is one single shock along the
first Riemann invariant. The solution Stu is then a single travelling shock. In this case Adm(u) is
all Mn×n

d . Consider a matrix A ∈ Mn×n
d , and assume that the function Aθ ? u has two jumps for

θ > 0: this implies that the A is not in the class M(w) considered in (5.8). The solution St(A
θ ? u)

is in figure 5.1b: in fact it is easy to prove that the new jumps are splitted in waves of the two
families. It is then clear that for all t > 0 the map u → Stu is not shift differentiable along A: in
fact no matrix A ∈ Mn×n

d can generate the wave patterns of figure 5.1b if t > 0.

x

t

x

t

θλθλ 1 2

Figure 5.1a Figure 5.2b

The following examples show that in general the map u−→Stu is not M(u)–shift differentiable
even if M(u) contains very simple tangent vectors. The conclusion is that, given a hyperbolic
system (5.2), it is very difficult to determine the class M(u) in which the shift differentiability of
the map u−→Stu occurs. Moreover the set M(u) could be extremely small: in example 5.6, M(u)
is only bidimensional.

Example 5.6. Consider the wave–fronts configuration of figure 5.2a: three shocks of different fami-
lies interact at the same point, but only two survive to the interaction. It is clear that, by standard
Glimm’s interaction estimates, one can construct this configuration if the vanishing shock has size
of the order of the product of the sizes of the other two. For simplicity we assume that the two
surviving shocks do not change in position or size: this can be achieved considering a systems in
which two equations are independent of the others, for example the 3 × 3 system

vt − ux = 0

ut +

(
1

v

)
x

= 0

zt + (−3 + z)zx + vx = 0

Consider the configuration of figure 2.b, in which the vanishing shock has been shifted of an amount
θ: the admissible generator A is then

A(y) =

 0 x ≤ x

I x > x

where I is the identity matrix, and x̄ is a point between the vanishing shock and the other two.
The shadowed region represents the centered rarefaction wave generated by the interaction of the
two surviving shocks.
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θ

Figure 2.a Figure 2.b

Assume without any loss of generality that the interaction occurs at t = 1. Since we are dealing
with systems in conservation form, we have for all t ≥ 0 that∫

R
St(A

θ ? u)(x) − Stu(x)dx =

∫
R
Aθ ? u(x) − u(x)dx. (5.14)

From the picture it is clear that the path θ−→St(A
θ ? u) does not generate any shift tangent

vector, if t > 1: in fact, since the two surviving shocks do not move, the shift tangent vector must
be 0, but using the conservation property (5.14) one has

1

θ

∫
R

∣∣St(A
θ ? u)(x) − Stu(x)

∣∣ dx ≥ 1

θ

∣∣∣∣∫
R
St(A

θ ? u)(x) − Stu(x)dx

∣∣∣∣ = |σ|, (5.15)

where σ is the size of the shifted shock. With the same analysis, it is clear that the u → Stu is
shift differentiable along A ∈ Adm(u) if and only if the three shocks are shifted in such a way that
they will meet at the same point. If we denote with si the speed of the i–th shock, the shift rates
of the three shocks are

λi = ξ1 − siξ2, (ξ1, ξ2) ∈ R2, i = 1, 2, 3.

The vector (ξ1, ξ2) gives the direction in which the interaction point is shifted.

In example 5.6 the instability w.r.t. the shift differentiability can be related to the structural
instability of the point of interaction of the three shocks (see [7]). We recall that the solution Stu
of (5.4) is said to be structurally stable at the point (τ, ξ) ∈ R+ ×R if, on the half plane t < 0, the
function

ũ(t, x)
.
= lim

η→0+
u(τ + ηt, ξ + ηx) (5.16)

satisfies one of the following conditions:
– ũ is a constant function;
– ũ contains one incoming shock and no other wave;
– ũ contains two incoming shocks and no other wave.
In [7] it is shown that limit (5.16) exists and it is a self similar weak solution of

ut + f(u)x = 0.

In the case considered in example 5.6, the self similar solution contains 3 incoming shocks, and
thus it is structurally unstable. In the next example we show that the same results can be proved
for solution structurally stable in each point of the half plane R+ × R.
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Example 5.7. Consider the (triangular) system{
ut + (−3 + u)ux = −vx

vt + vvx = 0

In this case the second equation is decoupled. This implies that the 2–waves move with a speed
independent on the value of u: then it is possible to construct the wave–pattern of figure 5.3a, for
initial data chosen carefully and small enough: a Lipschitz continuous solution of the first equation,
a shock and a centered rarefaction wave of the second equation interact in such a way that only
the shock will survive.

t

x

t

x

θ

Figure 5.3a Figure 5.3b

In figure 5.3b it is represented the solution corresponding to Aθ ? u, where A is the same as in
example 5.6. Using the same analysis of example 5.6, one can show that the path θ−→St(A

θ ? u)
does not generate any shift tangent vector: in fact also in this case the surviving shock does not
move, and then the shift tangent vector should be zero. A computation similar to (5.15) gives

1

θ

∫
R

∣∣St(A
θ ? u)(x) − Stu(x)

∣∣ dx ≥
∫
R
|Du|(x).

Note that in this case the solution is structurally stable in the whole plane R+ × R.
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