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Abstract

We study L1-optimal stabilization of linear systems with finite and
infinite horizons. Main results concern the existence, uniqueness and
structure of optimal solutions, and the robustness of optimal cost.

1 Introduction

The L1-norm of control as a cost attracted much less attention in the math-
ematical optimal control theory than the L2-norm or the traditional time-
optimal problem. This cost has interesting peculiarities and is very relevant
in common situations where optimal behavior should contain periods of
the movement with a switched off control. An important motivation is the
aerospace navigation where this cost is proportional to the fuel consumption
(see [2, 4]).

In this paper, we consider the most simple setting: optimal stabilization
of a linear system with control taking values in the unit ball. We will see
that the absolute value of optimal control is either 0 or 1 at every moment
of time. This means that the cost is equal to the time spent with the
activated control, while in the time-optimal problem the cost is the whole
time of movement. We study both finite and infinite horizon problems. Main
results concern the existence, uniqueness and structure of optimal solutions,
and robustness of the optimal cost. The time-optimal control comes as a
special case when the horizon is minimal possible to arrive to the target; in
this case, the control is always activated.
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1

ar
X

iv
:2

40
4.

07
91

3v
1 

 [
m

at
h.

O
C

] 
 1

1 
A

pr
 2

02
4



2 Finite Horizon

We consider optimal control problem for linear system

ẋ(t) = Ax(t) +Bu(t), x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, 0 ≤ t ≤ T. (1)

Here A : Rn → Rn, B : Rm → Rn, are linear maps, U = {u ∈ Rm : |u| ≤ 1}
is a unit ball. We would like to minimize the cost J(u) =

∫ t
0 |u(t)| dt among

all pairs (u, x) which satisfy (1) and boundary conditions x(0) = x0, x(T ) =
0. The time segment T and the initial condition x0 are parameters of the
problem and we are seeking for optimal solutions for all values of these
parameters.

Let E ⊂ Rn be an invariant subspace of the operator A and Bv ∈
E, ∀ v ∈ Rm. Then E is an invariant subspace of system (1) and the
condition x(T ) = 0 implies that x(t) ∈ E, 0 ≤ t ≤ T. Minimal invariant
subspace of A which contains {Bv : v ∈ Rm} is the linear hull of AiBv, i =
0, 1, . . . , n − 1, v ∈ Rm. Indeed, An is a linear combination of Ai, 0 ≤ i ≤
n− 1, according to the Cayley–Hamilton theorem.

We do not lose generality if we restrict our study to this invariant sub-
space or simply assume that this subspace is the whole Rn. It is why in this
paper we always assume that A,B satisfy the Kalman rank condition:

span{AiBv : v ∈ Rm, i = 0, 1, . . . , n− 1} = Rn. (2)

Admissible controls u(t), 0 ≤ t ≤ T are measurable vector-functions
with values in U . In other words, the space of admissible controls is the unit
ball in L∞([0, T ];Rm). We denote the space of admissible controls by UT

and we equip UT with the ∗-weak topology: un ⇀ ū as n → ∞ if and only
if ∫ T

0
⟨un(t)− ū(t), v(t)⟩ dt → 0, ∀ v ∈ L1([0, T ];Rm).

Then UT is a compact topological space.
We denote by x(t;u), 0 ≤ t ≤ T, the solution of (1) with the initial con-

dition x(0) = x0. Cauchy formula for solutions of linear ordinary differential
equations gives:

x(t;u) = etA
(
x0 +

∫ t

0
e−τABu(τ) dτ

)
.

Hence u 7→ x(t;u) is a continuous linear map from UT to Rn.
Let

AT = {x0 ∈ Rn : ∃u ∈ UT such that x(T ;u) = 0};
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then

AT =

{∫ T

0
e−tABu(t) dt : u ∈ UT

}
.

It is easy to see that AT , T > 0, is a monotone growing family of compact
convex and symmetric with respect to the origin subsets of Rn.

Proposition 1. The origin of Rn is an interior point of AT for any T > 0.

Proof. Assume that 0 ∈ ∂AT ; the convexity of AT implies that there exists
ξ ∈ Rn \ {0} such that ⟨ξ, x⟩ ≤ 0 for any x ∈ AT . Hence ⟨ξ, αx⟩ ≤ 0 for any
α > 0, x ∈ AT . On the other hand, the rank condition (2) implies that

⋃
α≥1

αAT =

{∫ T

0
e−tABu(t) dt : u ∈ L∞([0, T ];Rm)

}
= Rn.

This contradiction completes the proof.

Corollary 1. AT ⊂ intAT+ε, ∀ ε > 0.

Indeed, AT+ε = AT + e−TAAε.

Proposition 2. Let x0 ∈ AT ; then there exists ū ∈ U such that

J(ū) = min{J(u) : u ∈ UT , x(T ;u) = 0}.

Proof. The desired result follows from the compactness of UT and low
semi-continuity of the functional UT → R. □

The optimal control ū may be not unique even for very simple systems.

Indeed, let us consider the system

{
ẋ1 = x2

ẋ2 = u
, which describes a free particle

on the line controlled by the external force.
Let u ∈ UT , x(0;u) = x0, x(T ;u) = 0, where x0 = (x10, x

2
0). We have

x20 = −
∫ T

0
u(t) dt, x10 =

∫ T

0
tu(t) dt, (3)

J(u) =

∫ T

0
|u(t)| dt ≥

∣∣∣∣∫ T

0
u(t) dt

∣∣∣∣ = |x20|.

Moreover, J(u) = |x20| if and only if control u(t), 0 ≤ t ≤ T, does not change
sign. Hence any function from UT which does not change sign is optimal for
some initial condition; namely, for the initial condition (3).
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Now assume that ε ≤ u(t) ≤ 1 − ε, for some ε > 0 and let v ∈
L∞([0, T ];R) has zero average and zero first momentum:∫ T

0
v(t) dt =

∫ T

0
tv(t) dt = 0,

then u+sv is optimal control for our problem with the same initial condition
for any s sufficiently close to 0.

Coming back to the general case, we are going to characterize optimal
controls by the Pontryagin maximum principle (see [3, 1] and to impose
natural conditions on the pair (A,B) which guarantee the uniqueness and
simple structure of the optimal control. Pontryagin maximum principle is a
universal necessary optimality condition but it is also sufficient if the system
is linear and if the constrains and the cost are convex, i. e. in our framework.

In order to formulate the maximum principle, we introduce the Hamil-
tonians of the system. Normal Hamiltonian:

hu(p, x) = pAx+ pBu− |u|,

where p ∈ Rn∗ is a row, p = (p1, . . . , pn), px = p1x
1+· · ·+pnx

n (the product
of a row and a column), and abnormal Hamiltonian: h0u = pAx+ pBu.

Both Hamiltonians depend on the parameter u. The Hamiltonian system
for both Hamiltonians reads: {

ṗ = −pA,

ẋ = Ax+Bu.
(3)

We say that u ∈ UT is a normal extremal control if x(T ;u) = 0 and there
exists a solution of the system ṗ = −pAx such that

hu(t)(p(t), x(t;u)) = max
v∈U

hv(p(t), x(t;u)), ∀ t ∈ [0, T ].

We say that u is an abnormal extremal control if there exists a nonzero
solution of the system ṗ = −pAx such that

h0u(t)(p(t), x(t;u)) = max
v∈U

h0v(p(t), x(t;u)), ∀ t ∈ [0, T ].

The Pontryagin maximum principle states that u ∈ UT , is optimal if and
only if x(T ;u) = 0 and u is a normal or abnormal extremal control.

Abnormal extremal controls do not depend on the cost J and are actually
extremal controls of the very well studied time-optimal problem. We briefly
summarize there properties and devote the rest of the paper to the normal
extremal controls.
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Theorem 1. Let u ∈ UT , x(T ;u) = 0. The control u is an abnormal
extremal control if and only if x0 /∈ At, ∀ t < T . Moreover, any abnormal
extremal control u has the following properties:

1. u is a unique solution of the equation x(T ; v) = 0, v ∈ UT ;

2. u is a piece-wise analytic vector-function with isolated jump disconti-
nuities;

3. |u(t)| = 1, 0 ≤ t ≤ T, and u(t + 0) = −u(t − 0) in the discontinuity
points.

Proof. We start from the proof of the statements 2. and 3. The covector
p(t) from the maximality condition has a form p(t) = p0e

−tA, it is an analytic
vector-function. Moreover, u(t)∗ = 1

|p(t)B|p(t)B, where * is the transposition,

it transforms columns in rows and vice versa. The vector-function p(t)B is
analytic, it has only isolated zeros if it is not identically zero. The identically
zero case is excluded by the Kalman rank condition.

We have shown that u is piece-wise analytic and takes values in the
sphere ∂U . It remains to understand the structure of singularities. Let
p(t̄)B = 0 and k = min{i : di

dti
p(t̄) ̸= 0}. We have:

p(t)B = (t− t̄)ke+O
(
(t− t̄)k+1

)
.

Then:
u(t) = sign(t− t̄)k

e

|e|
+O(t− t̄).

Now we prove the first statements of the theorem. First of all, the Pon-
tryagin maximum principle for the time-optimal problem implies that any
time-optimal control must be an abnormal extremal control in our sense.
Moreover, the equality x0 = −

∫ T
0 e−tABu(t) dt implies:

p(0)x0 = −
∫ T

0
p(t)Bu(t) dt = −

∫ T

0
|p(t)B| dt < −

∫ T

0
p(t)Bv(t) dt,

for any v ∈ UT which differs from u on positive measure subset of [0, T ], and

p(0)x0 < −
∫ t1

0
p(t)Bv(t) dt, ∀ t1 < T, v ∈ UT .

It follows that u is a unique control which transfers x0 to the origin in
time T and that x0 /∈ At1 , ∀ t1 < T. □
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Now we analyse the maximality condition (3) for the normal extremal
controls. We have:

hu(t)(p(t), x) =

{
p(t)Ax+ |p(t)B| − 1, if |p(t)B| ≥ 1;

p(t)Ax, if |p(t)B| ≤ 1.

If |p(t)B| > 1, then u(t)∗ = 1
|p(t)B|p(t)B like in the abnormal case; if

|p(t)B| < 1, then u(t) = 0. If |p(t)B| = 1, then we can only say that
u(t)∗ = s

|p(t)B|p(t)B, for some s ∈ [0, 1].

Recall that p(t) = p(0)e−tA; then either |p(t)B| ≡ 1 or the equation
|p(t)B| = 1 with unknown t ∈ [0, T ] has only a finite number of solutions. If
the first possibility is not realized, then optimal control is piece-wise analytic
with jump discontinuities: it simply switches from 1

|p(t)B|(p(t)B)∗ to 0 and

back when |p(t)B| − 1 changes the sign.
Moreover, optimal control is unique in this case as we see in the next

proposition.

Proposition 3. Assume that for any p0 ∈ Rn∗ there exists t0 ∈ R such that
|p0etA| ≠ 1; then optimal control is unique for any T, x0.

Proof. Optimal control is either normal or abnormal extremal control. As
we know (see Th. 1), abnormal extremal control is a unique control which
transfers x0 to the origin in time T . It corresponds to the pairs T, x0 such
that x0 ∈ ∂AT . For all other pairs T, x0 optimal controls are normal.

Assume that u,w ∈ UT are two optimal controls for the same T, x0.
Then∫ T

0
e−tABu(t) dt =

∫ T

0
e−tABw(t) dt,

∫ T

0
|u(t)| dt =

∫ T

0
|w(t)| dt. (4)

Moreover, there exists p0 ∈ Rn∗ such that

p0e−tABu(t)− |u(t)| = max
v∈U

(p0e−tABv − |v|), ∀ t ∈ [0, T ], (5)

and u is a unique element of U , which satisfies maximality condition (5).
In particular,

p0e−tABu(t)− |u(t)| > p0e−tABw(t)− |w(t)|

for any t ∈ [0, T ] such that w(t) ̸= u(t) and |p0e−tAB| ≠ 1.
It follows that u(t) = w(t) almost everywhere. □
The assumption of Proposition 3 is violated for the considered above

system

{
ẋ1 = x2

ẋ2 = u
, where, as we know, optimal control is not unique.
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Lemma 1. Let m = 1. the assumption of Proposition 3 is valid if and only
if detA ̸= 0.

Proof. We have B : R → Rn, B1 = b ∈ Rn. In this case, the assumption
of Proposition 3 can be rewritten as follows: p0etAb ̸≡ const for any p0 ∈
Rn ∗ \{0} or, equivalently, p0AetAb ̸≡ 0. In other words, this assumption is
valid if and only if A(span{etAb : t ∈ R}) = Rn.

The Kalman rank condition guaranties that span{etAb : t ∈ R} = Rn.
Hence the assumption of Proposition 3 is valid if and only if the operator A
is not degenerate.

Unfortunately, the last test does not work for m ≥ 2. Here is a simple
counterexample for n = m = 2. We identify R2 with the complex plane
C. Complex numbers are identified with linear operators on C = R2 acting
by the complex multiplication. We set A = i, B = 1; then etAB = eti. If
p0 = (1, 1) ∈ R2∗, then |p0etAB| = |eti| = 1.

To make things working for any m, we require the hyperbolicity of the
operator A. Recall that A is called hyperbolic if any eigenvalue of A has a
nonzero real part. A key property of the hyperbolic operators is as follows:
if A is hyperbolic and b ∈ Rn \ {0}, then either |etAb| → ∞ as t → +∞ or
|etAb| → ∞ as t → −∞. In the first case, |etAb| → 0 as t → −∞ and in the
second case, |etAb| → 0 as t → +∞.

Lemma 2. If A is hyperbolic, then the assumption of Proposition 3 is valid
and optimal controls are unique.

Proof. Let e1, . . . , em be an orthonormal basis of Rm, bi = Bei, i =

1, . . . ,m. We have: |p0etAB|2 =
m∑
i=1

|p0etAbi|2. The key property of the hy-

perbolic operators implies that |p0etAB|2 = 0 if and only if p0etAbi = 0, i =
1, . . . ,m. The differentiation of the last identities gives: p0Ajbi = 0,∀ i, j,
but this is not possible for p0 ̸= 0 due to the Kalman rank condition. □

Let x0 ∈ AT and

µT (x0) = min{J(u) : u ∈ UT , x(T ;u) = 0}

be the optimal cost. In what follows, we are interested not only in the
dependence of µT (x0) on T and x0 but also on the matrices A,B and we use
notations AT = AT (A,B), µT (x0) = µT (x0;A,B), (T, x0;A,B) ∈ R+ ×
Rn × Rn2 × Rnm.

Theorem 2. The set

{(T, x0;A,B) : x0 ∈ intAT (A,B)} (6)
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is an open subset of R+ × Rn × Rn2 × Rnm and the function

(T, x0;A,B) 7→ µT (x0;A,B)

is continuous on (6).

Proof. In what follows, we assume that UT ⊂ UT ′ for any T ′ > T , where
u ∈ L∞([0, T ];Rm) is extended to the interval (T, T ′] by zero.

First we prove the openness of set (6). Let x0 ∈ intAT (A,B); take a
simplex with vertices y0, . . . , yn ∈ AT (A,B) such that x0 is an interior point
of this simplex. We have:

yi =

∫ T

0
e−tABui dt, ui ∈ UT , i = 0, . . . , n.

If T ′, A′, B′ are close to T,A,B, then y′i =
∫ T ′

0 e−tA′
B′ui dt are close to

yi, i = 0, . . . , n, and x0 is an interior point of the simplex with vertices y′i,

i. e. x0 =
n∑

i=0
αiyi, where αi ∈ (0, 1). Hence

x0 =

∫ T ′

0
e−tAB

n∑
i=0

αiui(t) dt

and x0 ∈ intAT ′(A′, B′).
The next step is the continuity of µT (x0;A,B) with respect to T . First

of all, T 7→ µT (x0) is a monotone decreasing function. Indeed, let u ∈ UT

be the minimizing control, µT (x0) = JT (u); then

µT ′(x0) ≤ JT ′(u) = JT (u) = µT (x0), ∀T ′ ≥ T.

The monotony implies the existence of the right and left limits:

lim
T ′↘T

µT ′(x0) = µT+0(x0), lim
T ′↗T

µT ′(x0) = µT−0(x0).

It is easy to see that µT+0(x0) = µT (x0). Indeed, let Tn ↘ T and
µTn(x0) = JTn(un) We may assume that un ⇀ ū as n → ∞ by taking a
subsequence if necessary; then lim

n→∞
µTn(x0) = JT (ū) ≥ µT (x0). On the

other hand, µT+0(x0) ≤ µT (x0); hence µT+0(x0) = µT (x0).
It remains to prove that µT−0(x0) = µT (x0). This is more complicated.

Let ũ ∈ UT be the optimal control: J(ũ) = µT (x0) and −
∫ T
0 e−tABũ(t) dt =

x0. We have to show that there exists an arbitrarily close to ũ in the norm

L1 control u′ ∈ UT such that −
∫ T ′

0 e−tABũ′(t) dt = x0 for some T ′ < T .
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Recall that AT is a full-dimensional convex and symmetric with respect
to the origin compact. Moreover, x0 ∈ intAT ; hence x0 ∈ ν0AT for some
ν0 ∈ (0, 1). Let v0 ∈ UT be such that −ν

∫ T
0 e−tABv0(t) dt = x0. Then

−
∫ T

0
e−tAB(sν0v0(t) + (1− s)ũ(t) dt = x0, ∀ s ∈ [0, 1].

Let v = sν0v0(t) + (1− s)ũ(t), where s > 0 is so small that the norm L1 of
v − ũ is smaller than a preliminary chosen ε > 0.

By construction, v ∈ νUT for some ν ∈ (0, 1] and −
∫ T
0 e−tABv(t) dt =

x0.

Let τ ∈ [0, T ), we set Aτ,T =
{∫ T

τ e−tABu(t) dt : u ∈ UT

}
; then Aτ,T is a

full-dimensional convex and symmetric with respect to the origin compact.
We have:

x0 +

∫ τ

0
e−tABv(t) dt = −

∫ T

τ
e−tABv(t) dt ∈ νAτ,T .

Hence −
∫ T
τ e−tABv(t) dt ∈ intAτ,T . I claim that any interior point of Aτ,T

belongs to Aτ,Tτ for some Tτ < T . This fact can be proved in the same way
as the openness of set (6), We leave details to the reader.

Now we know that x0 +
∫ τ
0 e−tABv(t) dt ∈ Aτ,Tτ for some Tτ ∈ [τ, T ).

Hence

x0 +

∫ τ

0
e−tABv(t) dt = −

∫ Tτ

τ
e−tABvτ (t) dt,

for some vτ ∈ UT . We set

uτ (t) =

{
v(t), if 0 ≤ t ≤ τ ;

vτ (t), if τ < t ≤ T .

Then −
∫ Tτ

0 e−tABuτ (t) dt = x0 and uτ tends to v in the norm L1 as τ → T .
These relations complete the proof of the continuity of µT (x0;A,B) with
respect to T .

The continuity with respect to T will help us to prove continuity with
respect to all variables. Let (Tn, xn;An, Bn) → (T, x0;A,B) as n → ∞. We
will separately prove the inequalities:

µT (x0;A,B) ≤ lim inf
n→∞

µTn(xn;An, Bn) µT (x0;A,B) ≥ lim sup
n→∞

µTn(xn;An, Bn).

The first inequality is easy. Let

JTn(un) = µTn(xn;An, Bn), −
∫ Tn

0
e−tABun(t) dt = xn.

9



Let unk
be a convergent subsequence, unk

⇀ ū as k → ∞, then

JT (ū) = lim
k→∞

µTnk
(xnk

;Ank
, Bnk

), −
∫ T

0
e−tABū(t) dt = x0

and µT (x0;A,B) ≤ JT (ū). Hence µT (x0;A,B) ≤ lim inf
n→∞

µTn(xn;An, Bn).

Let us prove the second inequality. Take a small δ > 0; let

JT−δ(uδ) = µT−δ(x0;A,B), −
∫ T−δ

0
e−tABuδ(t) dt = x0.

We set yn = xn +
∫ T−δ
0 e−tABuδ(t) dt; then |Tn − T | < δ and yn ∈ AT−δ,Tn

for all big enough n. In particular yn = −
∫ Tn

T−δ e
−tABvn(t) dt for some

vn ∈ UT+δ. Let

ûn(t) =

{
uδ(t), if 0 ≤ t ≤ T − δ;

vn(t), if T − δ < t ≤ Tn.

Then −
∫ Tn

0 e−tABûn(t) dt = xn and

µTn(xn;An, Bn) ≤ J(ûn) ≤ µT−δ(x0;A,B) + 2δ.

Hence lim sup
n→∞

µTn(xn;An, Bn) ≤ µT−δ(x0;A,B) + 2δ, for any δ > 0. It

remains to go to the limit as δ → 0. □

3 Infinite Horizon

Let

U∞ = {u ∈ L1([0,∞);Rk) : |u(t)| ≤ 1, ∀ t ≥ 0}, J∞(u) =

∫ ∞

0
|u(t)| dt,

A∞ =
⋃
T>0

AT ; then A∞ is an open convex subset of Rn. Given x0 ∈ A∞,

we set
µ∞(x0) = inf

{
J∞(u) : u ∈ U∞, lim

t→∞
x(t;u) = 0

}
.

Proposition 4. µ∞(x0) = inf
T>0

µT (x0).

Proof. We have: µT (x0) = inf{JT (u) : u ∈ UT , x(T ;u) = 0}. The
inclusion UT ⊂ U∞ implies that µT (x0) ≥ µ∞(x0),∀T > 0. On the other
hand, for any ε > 0 and u ∈ U∞, the relation x(t;u) → ∞ (t → ∞) implies

10



there existence of T > 0 such that x(T − ε;u) ∈ AT−ε,T . It follows that

x(T − ε;u) = −
T∫

T−ε

e−tABv(t) dt for some v ∈ UT . We set:

ûε(t) =

{
u(t), if 0 ≤ t ≤ T − ε;

v(t), if T − ε < t ≤ T .

Then x(T ;uε) = 0, JT (uε) ≤ J∞(u)+ε. Hence µT (x0) ≤ µ∞(x0)+ε. □
In general, we cannot substitute the inf by the min in the definition of

µ∞ (see the next section for a simple counterexample). We can do it if A is
a hyperbolic operator. Moreover, the infinite horizon problem is reduced to
a finite horizon one in this case.

Let A : Rn → Rn be hyperbolic, then Rn = E+⊕E−, where AE± ⊂ E±

and invariant subspace E+ (E−) corresponds to the eigenvalues of A with
positive (negative) real parts. We have etAE± = E±; moreover, there exist
α > 0 such that

|etAx+| ≥ c+e
tα|x+|, |etAx−| ≤ c−e

−tα|x−|,

for some c± > 0 and any x± ∈ E±, t ≥ 0.
Given x ∈ Rn, we set x = x+ + x−, where x± ∈ E± and define a

linear map B+ : Rm → E+ by the formula B+u = (Bu)+. Finally, we set
µ+
T (x

+
0 ) = µT (x

+
0 ;A,B

+) and µ+
∞(x0) = µ∞(x+0 ;A,B

+), the optimal cost
for the system ẋ+ = Ax+ +B+u on E+.

Theorem 3. Let A be hyperbolic; then for any x0 ∈ A∞ there exists a
unique optimal control u ∈ U∞ for the infinite horizon problem with the
initial condition x0. Moreover, there exists T > 0 such that µ∞(x0) =
µ+
T (x

+
0 ) = JT (u) and u(t) = 0 for any t > T .

Proof. It is easy to see that t 7→ x(t;u)+ is a solution of the system ẋ+ =
Ax++B+u on E+, for any u ∈ U∞. Hence µ+

∞(x+0 ) ≤ µ∞(x0). Moreover, if
x(T ;u)+ = 0, then x(T ;u) belongs to the asymptotically stable subspace of
the system ẋ = Ax and zero control transfers x(T ;u) to the origin in infinite
time without augmentation of the cost. Hence µ+

∞(x+0 ) ≤ µ∞(x0) ≤ µ+
T (x

+
0 ).

It remains to show that for any x+0 ∈ E+ there exists T > 0 such
that µ+

∞(x+0 ) = µ+
T (x

+
0 ). To do that, we may assume that E+ = Rn in

order to simplify notations. We fix x0 ∈ AT0 and take uT ∈ UT such that
JT (uT ) = µT (x0), for any T > T0. Then uT is a normal extremal control
and there exists pT ∈ Rn∗ such that:

|uT (t)| =

{
1, if |pT e−tAB| > 1;

0, if |pT e−tAB| < 1,
0 ≤ t ≤ T.

11



Recall that |pT e−tAB| ≤ ce−αt|pT |, for some positive constants α and c.
If pT are uniformly bounded, i. e |pT | ≤ c′, ∀T > T0, then uT (t) = 0 for

any t > 1
α(ln c+ ln c′) and we obtain that

µ∞(x0) = µT (x0), ∀T >
1

α
(ln c+ ln c′).

If |pT | is not uniformly bounded, then there exists a sequence Tk →
∞, (k → ∞) such that |pTk

| → ∞; moreover, we may assume that 1
|pTk |

pTk
→

ξ, where |ξ| = 1. Let us show that this is not possible.
We consider the set T = {t ∈ [0, 2T0] : ξe

−tAB = 0}; this is a finite
subset of [0, 2T0]. Let OεT be the radius ε neighborhood of T , this is the
union of #T intervals where each interval has length 2ε. We fix a small
enough ε to guarantee that the measure of OεT is smaller than T0.

There exists δ > 0 such that |pTk
e−tAB| ≥ δ|pTk

| for any t ∈ [0, 2T0]\OεT
and any k > 1

δ . Hence |pTk
e−tAB| ≥ 1 for all t ∈ [0, 2T0] \ OεT if k

is sufficiently big. It follows that |uTk
(t)| = 1, ∀ t ∈ [0, 2T0] \ OεT and

µTk
(x0) = J(uTk

) > T0.
On the other hand, µTk

(x0) ≤ µT0(x0) ≤ T0. This contradiction proves
that |pT | is uniformly bounded and thus completes the proof of the theorem.

Suppose that u1, u2 ∈ U∞ are optimal. Then there exist T1, T2 > 0
such that µ∞(x0) = JTi(ui|[0;Ti]) and ui(t) = 0, ∀t ≥ Ti. Assume T1 < T2.
The origin is an equilibrium point of the system so x(T2;u1)

+ = 0 and
JT2(u1|[0;T2]) = JT1(u1|[0;T1]) = JT2(u2|[0;T2]). Applying Lemma 2 in the
hyperbolic case, the optimal control for the finite horizon problem in time
T2 is unique. Then u2|[0;T2] = u1|[0;T2] and u1 = u2 in U∞.

Corollary 2. If A is hyperbolic, then µ∞ : A∞ → R is a continuous func-
tion.

Indeed, according to Theorem 3, optimal control has a compact support.
This support depends on x0 but we see from the proof of the theorem that
it remains uniformly bounded if x0 runs a compact subset of A∞. Continuity
of µ∞ now follows from Theorem 2.

Theorem 4. Assume that E+ = Rn. A control u ∈ U∞ such that x(T ;u) =
0 and x(t;u) ̸= 0 for any t < T is optimal for the infinite horizon problem
if and only if x(.;u) can be complemented by p(·) in such a way that the
Pontryagin maximum principle is satisfied, and, moreover, |p(T )B| = 1 and
|p(T )e−τAB| ≤ 1, ∀τ ≥ 0.

Proof. We apply the Pontryagin maximum principle. In this case, the
transversality condition states that hu(t)(p(t), x(t;u)) = p(t)Ax(t;u)+p(t)Bu(t)−

12



|u(t)| = 0,∀t ≥ 0. There exists ε > 0 such that u(t) = ±1, T − ε ≤ t ≤ T ,
otherwise x(T−ε;u) = 0. Then p(t)Bu(t)−|u(t)| = |p(t)B|−1, T−ε ≤ t ≤ T
(maximality condition), and because x(T ;u) = 0, we obtain |p(T )B| = 1.

Assume that u is optimal for the free time problem and that x(T ;u) = 0,
we may assume that u(t) = 0,∀t ≥ T . Then the control u(t), 0 ≤ t ≤ T+s is
optimal for the free time problem for any s > 0. Hence x(t;u), 0 ≤ t ≤ T+s,
can be complemented by ps(·) in such a way that the Pontryagin maximum
principle is satisfied. Then |ps(T )B| = 1 and |ps(T+τ)B| = |ps(T )e−τAB| ≤
1, ∀ τ ∈ [0, s].

Lemma 3. Let s > 0; then the set {ξ ∈ Rn∗ : |ξe−τAB| ≤ 1, 0 ≤ τ ≤ s} is
bounded.

Proof of the lemma. By contradiction assume that there exists a sequence
(ξk) in the previous set such that |ξk| → +∞ as k → ∞. We may assume
that ξk

|ξk| → η ∈ Rn∗, |η| = 1. Then passing to the limit for 0 ≤ τ ≤ s, we

have ηe−τAB = 0, which contradicts the Kalman condition. □

Applying this lemma, the family {ps(T ), s > 0} is bounded so it has
limiting points as s → ∞. Any limiting point satisfies the conditions of the
theorem. Hence these are necessary conditions for optimality.

Moreover, the Pontryagin maximum principle is a sufficient optimality
condition for the fixed time problem. It follows that our extremal is optimal
for every time T +s, s ≥ 0, i.e. for any arbitrarily big fixed time. Hence this
extremal is optimal for the free time problem and conditions of the theorem
are sufficient for optimality.

4 Two-dimensional systems

4.1 Classical examples

In this section we study the stabilization to the origin in infinite time horizon
of classical two-dimensional systems with a scalar control |u| ≤ 1 : the case
of a free particle and the one of a harmonic oscillator.

4.1.1 Free particle

Considering the degenerated case of a free particle, we study the stabilization
of the 2-dimensional system to 0R2 in infinite time horizon:(

ẋ1

ẋ2

)
=

(
0 1
0 0

)(
x1

x2

)
+ u

(
0
1

)
|u| ≤ 1

13



Theorem 5. For every x0 ∈ R2, µ∞(x0) = inf
T>0

µT (x0) = |x20|.

If x0 ∈ {x | x1 ≤ −1
2(x

2)2, x2 ≥ 0} or x ∈ {x | x1 ≥ 1
2(x

2)2, x2 ≤ 0}, then
there exists 0 < T < ∞ such that µT (x0) = |x20|. Otherwise µT (x0) > |x20|
for all 0 < T < ∞.

Figure 1: Regions of optimal control at the limit in infinite time horizon

Proof. Noting that ẋ2 = u, for every x0 ∈ R2, for every T > 0:

µT (x0) =

∫ T

0
|u(t)|dt ≥ |

∫ T

0
u(t)dt| = |

∫ T

0
ẋ2(t)dt| = |x2(0)−x2(T )| = |x22|

Then µ∞(x0) = inf
T>0

µT (x0) ≥ |x20|.
We study the form of the trajectory in function of the control.
If u ≡ 1 or u ≡ −1:{

ẋ1 = x2

ẋ2 = ±1
x1 = ±1

2
((x2)2 − (x20)

2) + x10

If u ≡ 0: {
ẋ1 = x2

ẋ2 = 0

{
x1(t) = x20t+ x10
x2(t) = x20

Region where µ∞(x0) in reached in finite time:

If x10 = 1
2(x

2
0)

2 and x20 ≤ 0 we can take a control u ≡ +1 until x reaches

14



the origin (and then u ≡ 0). With this control, we obtain µT (x0) = |x20| for
every T ≥ |x20|. By symmetry, if x10 = −1

2(x
2
0)

2 and x20 ≥ 0, with a control
u ≡ −1 until the origin (then u ≡ 0), we obtain the same result.

If now x10 >
1
2(x

2
0)

2 and x20 ≤ 0, we can take a control u ≡ 0 until x1 = 1
2(x

2)2.
The portion of the trajectory is a horizontal line x2 = x20. Then we take
u ≡ +1 and the trajectory is the same as the previous one. The cost does
not change by adding a time interval where u ≡ 0. By symmetry, we obtain
the same result when x10 < −1

2(x
2
0)

2 and x20 ≥ 0.

Figure 2: Optimal trajectories in finite time

Region where µ∞(x0) is not reached in finite time:

We construct a sequence Tk such that µTk
(x0) → |x20|. Applying the PMP,

we obtain some extremals, that are all optimal thank to the linearity of
the system and the convexity of the constrain set. Solving the Hamiltonian
equation ṗ = −pA, we obtain the switching function:

f(t) = p(t) ·B = −p10t+ p20

Variation of the covector allows the switches −1 → 0 → +1 and +1 → 0 →
−1 with every lengths for the different time intervals where u is constant.

If x10 > −1
2(x

2
0)

2 and x20 ≥ 0, we consider a control with switches −1 →
0 → +1. First portion of the trajectory is parabolic with equation x1 =
−1

2((x
2)2−(x20)

2)+x10. We choose the first time of switch when x2(t) = − 1
k .

Second portion is then a horizontal line of equation x2 = − 1
k . Third portion

is parabolic with equation x1 = +1
2(x

2)2 and arrive at the origin at a time

15



denoted Tk. This control corresponds to a co-vector thus is optimal.
Because x20 ≥ 0:

µTk
(x0) = |x20 − (−1

k
)|+ |1

k
− 0| = x20 +

2

k
−→

k→+∞
x20

So µ∞(x0) = inf
T>0

µT (x0) = |x20|. If x10 < 1
2(x

2
0)

2 and x20 ≤ 0 by symmetry we

can construct such a sequence with a control +1 → 0 → −1 and we obtain
also µ∞(x0) = |x20|.

2

2

Figure 3: Construction of an optimal trajectory

The trajectory limit when k goes to infinity is not admissible, because if
x2 = 0, x1 ̸= 0 and u ≡ 0, then the point is in an equilibrium of the system
and cannot reach the origin. We also see that as soon as the optimal control
change of sign, then µT (x0) > |x20|.

4.1.2 Harmonic oscillator

Considering the example of a 2- dimensional controlled harmonic oscillator,
we study the stabilization to the origin in infinite time horizon:(

ẋ1

ẋ2

)
=

(
0 1
−1 0

)(
x1

x2

)
+ u

(
0
1

)
Proposition 5. In a finite time T > 0, the optimal control u is unique
and has a mainly periodic structure. Let ε ∈ {−1;+1}. There exists a first
switching time α0 ∈ [0;π[ and a period δ ∈ [0;π[such that, for t ≥ α0, u
takes the values −1, 0 and +1 in a periodic way :

−ε → 0 → +ε → 0 → −ε → ... or 0 → +ε → 0 → −ε → 0 → ...

16



The time where u is 0 is π − δ and the one where u is +1 or −1 is δ.

Proof. Applying Lemma 1, B is a column and det(A) ̸= 0, the PMP gives
the description of the optimal control, which is unique. Solving ṗ = −pA,
we obtain the switching function:

f(t) = p(t) ·B = a sin(t+ b)

Where a and b are real parameters related to p10, p
2
0. Then if |a| > 1, the

optimal control is not always 0 and takes the mainly periodic structure
described in the proposition.

Proposition 6. The optimal trajectory change periodically between different
arc of circles, traveled clockwise:
Center (±1, 0) when u = ±1
Center (0, 0) when u = 0

Proof.If u ≡ 0:{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

{
x1(t) = a0 cos(t+ b0)

x2(t) = a0 sin(t+ b0)

Then:
d

dt
{(x1)2(t) + (x2)2(t)} = 0

So the trajectory is a clockwise circle centered into the origin.
If u ≡ 1: {

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + 1

{
x1(t) = a1 cos(t+ b1) + 1

x2(t) = a1 sin(t+ b1)

Then:
d

dt
{(x1(t)− 1)2 + (x2)2(t)} = 0

So the trajectory is a clockwise circle centered into the point (1, 0).
If u ≡ −1, by symmetry the trajectory is a clockwise circle centered into the
point (−1, 0).

Theorem 6. Let x0 ∈ R2. For every k ∈ N such that |k| ≥ |x0|, there exists
a finite time T (k), (k − 1)π ≤ T (k) ≤ kπ, such that the optimal trajectory
which returns to the origin has its switches on the circles of centers (0, n) for

n ∈ Z, n ≤ k. The optimal cost of this trajectory is c(k) = k·arccos(1− |x0|2
2k2

).
The limit of the optimal cost is µ∞(x0) = |x0| and the point-wise limit of

the optimal trajectory is the clockwise circle x∞(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
x0.

17



Proof. The proof is presented in Appendix A.
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Figure 4: Switching curves and optimal trajectories

4.2 Hyperbolic systems

In this section, we study the stabilization to the origin in infinite time of
all real hyperbolic two-dimensional systems ẏ = Ay + Bu with a scalar
control |u| ≤ 1. The matrix A is similar to one of the following where
(λi, λ, α, β) ∈ R4: (

λ1 0
0 λ2

) (
λ 1
0 λ

) (
α β
−β α

)
As explained in Theorem 3, the L1-limit cost in infinite time horizon µ∞(x0)
only depends on the part x+0 corresponding to the eigenvalues of A with
positive real parts. Thus we only consider cases where R2 = E+, i.e. where
x0 = x+0 for all x0 ∈ R2 : λ, µ, α > 0. In order to treat all cases B =(
b1
b2

)
with (A,B) respecting the Kalman condition, we apply a change of

basis x = Py such that P and A commute. Thus the system in these new
coordinates can be written ẋ = Ax+ PBu.
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4.2.1 First hyperbolic case : A =

(
λ1 0
0 λ2

)
The Kalman condition is respected if and only if b1, b2 ̸= 0. Applying the

change of basis P =

(
b−1
1 0

0 b−1
2

)
, the study reduces to the stabilization of

the system:(
ẋ1

ẋ2

)
=

(
λ1 0
0 λ2

)(
x1

x2

)
+ u

(
1
1

)
λ1, λ2 > 0 |u| ≤ 1

Proposition 7. Let x0 ∈ R2. If 0R2 is reachable from x0, then the op-
timal control is unique and has isolated switches with one of the following
structure:

ε → 0, 0 → ε → 0, −ε → 0 → ε → 0 ε ∈ {−1;+1}

Proof. The uniqueness and the structure of the optimal control u(.) are
given applying Lemma 2, noting that A is hyperbolic. Solving the Hamilto-
nian equation ṗ = −pA, we obtain the switching function:

f(t) = p(t) ·B = p10e
−λ1t + p20e

−λ2t

If f(t) is less than −1, then u ≡ −1. If it is more than +1, then u ≡ +1.
Else u ≡ 0. The function goes to 0 at infinity and has at most two different
monotone branches. Thus we obtain one of the structures described in the
proposition.

Theorem 7. The region of initial conditions from which there exists a tra-
jectory that reaches 0R2 is open and delimited by portions of the curves C+
and C− between the points ( 1

λ1
, 1
λ2
) and (− 1

λ1
,− 1

λ2
):

C+ : x2 =
1

λ2
(2(

λ1x
1 + 1

2
)
λ2
λ1 − 1) C− : x2 =

1

λ2
(1− 2(

1− λ1x
1

2
)
λ2
λ1 )

The switching curve 0 → +1 is given by the portion of the curve C0,+1

between the points (0, 0) and (− 1
λ1
,− 1

λ2
) (respectively C0,−1, (0, 0), (

1
λ1
, 1
λ2
)

for the switch 0 → −1):

C0,+1 : x2 =
1

λ2
((λ1x

1 + 1)
λ2
λ1 − 1) C0,−1 : x2 =

1

λ2
(−(1− λ1x

1)
λ2
λ1 + 1)

The switching curve +1 → 0 is given by the portion of the curve C+1,0

between points (0, 0) and ( 1
λ1
, 1
λ2
) (respectively C−1,0, (0, 0) and (− 1

λ1
,− 1

λ2
)

for the switch −1 → +1:

C+1,0 : x2 =
1

λ2
(λ1x

1)
λ2
λ1 C−1,0 : x2 = − 1

λ2
(−λ1x

1)
λ2
λ1
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0

Figure 5: Attainable set and switching curves in the case λ1 < λ2

Proof. First we look at the form of the trajectories when the control is
constant. If u ≡ +1: {

ẋ1 = λ1x
1 + 1

ẋ2 = λ2x
2 + 1

The only equilibrium point is (− 1
λ1
,− 1

λ2
). Otherwise the solution |x(t)|

goes to +∞ in infinite time. Solving the differential system from an initial
condition (x10, x

2
0) we obtain a trajectory of the form, traveled in the direction

of infinity:
λ2x

2 + 1

λ2x20 + 1
= (

λ1x
1 + 1

λ1x10 + 1
)
λ2
λ1

If (0, 0) belongs to the trajectory then (x10, x
2
0) belongs to the portion of

C0,+1 between (− 1
λ1
,− 1

λ2
) and (0, 0).

Then we look at the trajectories with one switch of type 0 → +1. If u ≡ 0
on a time interval: {

ẋ1 = λ1x
1

ẋ2 = λ2x
2

The only equilibrium point is (0, 0). Otherwise the trajectory has the fol-
lowing form, traveled in the direction of infinity:

x2

x20
= (

x1

x10
)
λ2
λ1
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In order to arrive at 0R2 with one switch 0 → +1, the trajectory must cross
the portion of C0,+1 between the points (− 1

λ1
,− 1

λ2
) and (0, 0). Because tra-

jectories corresponding to u ≡ 0 do not cross except at the origin, the region
of initial conditions for which such a switch is possible is delimited by the
trajectory with control 0 which pass by the point (− 1

λ1
,− 1

λ2
). We obtain

the curve C−1,0 between the points (0, 0) and (− 1
λ1
,− 1

λ2
).

By symmetry we obtain the switching curves for 0 → −1 between the points
(0, 0) and ( 1

λ1
, 1
λ2
). Finally in order to obtain a switch of type −1 → 0 → +1,

the trajectory with u ≡ −1 at the beginning must cross the portion of C−1,0

between the points (0, 0) and (− 1
λ1
,− 1

λ2
). Because the trajectories do not

cross except in ( 1
λ1
, 1
λ2
) when u ≡ −1, the region of initial conditions for

which such a switch is possible is delimited by the one which pass by the
point (− 1

λ1
,− 1

λ2
). Thus we obtain the portion of the curve C− between

points ( 1
λ1
, 1
λ2
) and (− 1

λ1
,− 1

λ2
).

0

Figure 6: Optimal trajectories

4.2.2 Second hyperbolic case : A =

(
λ 1
0 λ

)
The Kalman condition is respected if and only if b2 ̸= 0. Applying the

change of basis P =

(
b−1
2 0

0 b−1
2

)
and denoting b = b1

b2
, the study reduces to
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the stabilization of the system:(
ẋ1

ẋ2

)
=

(
λ 1
0 λ

)(
x1

x2

)
+ u

(
b
1

)
λ > 0 |u| ≤ 1

Proposition 8. Let x0 ∈ R2. If 0R2 is reachable from x0, then the op-
timal control is unique and has isolated switches with one of the following
structure:

ε → 0, 0 → ε → 0, −ε → 0 → ε → 0 ε ∈ {−1;+1}

Proof. The proof is the same as in the previous study, we apply the
Lemma 2 and we note that the switching function, given by the following
formula, has at most two monotone branches and goes to 0 at infinity:

f(t) = p(t) ·B = (p10 + p20 − p20t)e
−λt

Theorem 8. The region of initial conditions from which there exists a tra-
jectory that reaches 0R2 is open and delimited by portions of the curves C+
and C− between the points ( 1λ(b−

1
λ),

1
λ) and (− 1

λ(b−
1
λ),−

1
λ):

C+ : x1 = − 1

λ
(b− 1

λ
) +

1

λ2
(λx2 + 1)(λb− 1 + ln(

λx2 + 1

2
))

C− : x1 =
1

λ
(b− 1

λ
) +

1

λ2
(λx2 − 1)(λb− 1 + ln(

1− λx2

2
))

The switching curve 0 → +1 is given by the portion of the curve C0,+1

between the points (0, 0) and (− 1
λ(b − 1

λ),−
1
λ) (respectively C0,−1, (0, 0),

( 1λ(b−
1
λ),

1
λ) for the switch 0 → −1):

C0,+1 : x1 = − 1

λ
(b− 1

λ
) +

1

λ2
(λx2 + 1)(λb− 1 + ln(λx2 + 1))

C0,−1 : x1 =
1

λ
(b− 1

λ
) +

1

λ2
(λx2 − 1)(λb− 1 + ln(1− λx2))

The switching curve +1 → 0 is given by the portion of the curve C+1,0

between points (0, 0) and ( 1λ(b −
1
λ),

1
λ) (and respectively C−1,0, (0, 0) and

(− 1
λ(b−

1
λ),−

1
λ) for the switch −1 → +1:

C+1,0 : x1 = x2(1− 1

λ
+

1

λ
ln(−λx2)) C−1,0 : x1 = x2(1− 1

λ
+

1

λ
ln(λx2))
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Figure 7: Attainable set and switching curves

Proof. The scheme of the study is exactly the same as in the previous
hyperbolic case.

4.2.3 Third hyperbolic case : A =

(
α β
−β α

)
The Kalman condition is respected if and only if β, (b21 + b22) ̸= 0. Applying

the change of basis P = (b21 + b22)
−1

(
b2 −b1
b1 b2

)
, the study reduces to the

stabilization of the system:(
ẋ1

ẋ2

)
=

(
α β
−β α

)(
x1

x2

)
+ u

(
0
1

)
α > 0 β ̸= 0 |u| ≤ 1

We use the complex notation z(t) = x1(t) + ix2(t). If u = 0 then the tra-
jectory is a logarithmic spiral of equation z(t) = z(0)e(α−iβ)t. If u ± 1 the
trajectory is a logarithmic spiral of equation z(t) = (z(0) ± z̄)e(α−iβ)t ∓ z̄
with z̄ = β−iα

α2+β2 .

The domain of initial conditions that can be stabilized to the origin with
a bounded control |u| ≤ 1 is delimited by the parameterized curves z(t) =
±zlime(α−iβ)t ± z̄,−π

β ≤ t ≤ 0 with zlim = z̄(1 + 2

e
α
β
π−1

). A simple way to

find this domain is to compute time-optimal synthesis. It should be well
known and we leave it as an exercise.
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Proposition 9. Let x0 be an initial condition in the attainable set. There
exists a finite time T for which the lowest L1-cost µ∞(x0) can be reached.
The corresponding optimal control u and optimal trajectory x(·) are unique
until 0R2 is reached, and the structure of u is given by a switching function
of the form f(t) = r0e

−αt sin(θ0−βt), r0 > 0, θ0 ∈ [0; 2π). If |f(t)| ≥ 1, then
u(t) = sign(f(t)), otherwise u = 0.

Proof. For any nontrivial solution of the adjoined equation ṗ = −pA, we
obtain p(t)B = p2(t) = f(t), where f is a function of the form described
in the statement of the proposition. We see that any switching function
has such a form. Note, that this class of functions is invariant with respect
to the translation of the argument: if f is in this class then the function
t 7→ f(t + s) also is, ∀ s ∈ R. Moreover, for such a function f , there is a
unique sf ∈ R such that |f(sf )| = 1 and |f(t)| ≤ 1,∀ t ≥ sf . Given T > 0,
let

u(t) =

{
sign(f(t+ sf − T )), if |f(t+ sf − T )| > 1;

0, if |f(t+ sf − T )| ≤ 1

and x(t) be the solution of the Cauchy problem

ẋ = Ax+Bu(t), x(T ) = 0.

According to Theorem 4, x(·) is optimal solution for the free time problem
with the initial condition x0 = x(0).

Moreover, any optimal solution has such a form.

In order to obtain images of the optimal synthesis, we use numerical sim-
ulation. We compute the trajectory given by some switching functions in
reverse time and starting from the origin. The covector follows a trajectory
of polar equation r(θ) = r0e

−α
β
θ0(e

α
β )θ. The numerical simulation can reduce

to a one parameter simulation. For each spiral of equation r(θ) = C0(e
α
β
t
)θ,

starting from the origin in reverse time and following the spiral curve and
using the ordinate of the point as the switching function, one obtain one
optimal trajectory in reverse time starting from the origin. It it sufficient to
make variations of C0 in (0; e

α
β
2π
] to obtain all possible trajectories. In red

the part of the trajectory when u = 0, in blue when u = ±1.
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Figure 8: Some optimal trajectories for α = 0.1, β = 1
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Figure 9: Some optimal trajectories for α = 1, β = 2
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Appendix

A Harmonic oscillator

Proof of Theorem 5

We consider the optimal control with a mainly periodic structure described
in the previous proposition, we denote α0 the length of the last interval
where u ̸= 0 and we look at the specific case where δ, the length of the time
interval where u is equal to +1 or −1, is equal to α0.
If on the last time interval u ≡ 1, then because the trajectory arrive at 0R2 ,
the last portion is an arc of the circle of center (1, 0) and radius 1, traveled
clockwise.
After the interval ]T − α0, T ] where u ≡ 1, u ≡ 0 for a time π − δ and
the trajectory is a circle of center (0, 0). Because here δ = α0, applying
the inscribed angle theorem, we obtain the upper part of the circle as the
previous switching curve.
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Figure 10: Last switching curve when δ = α0

In order to construct the last to last switching curve, we use the following
geometric construction:
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Figure 11: Construction of the last to last switching point

The two triangles that have one side on the abscissa axis are the same
triangles but with a different side on this axis. And so the triangle in the
middle is isosceles. Then because the sum of the angles of a triangle is π we
have: {

a+ b+ α0 = π

x+ 2c = π

Because the sum of the angles of a quadrilateral is 2π we have :

2α0 + a+ b+ 2c = 2π

Finally we remark also that :

a+ b+ x = π

Using these equations we obtain x = α0. So this figure corresponds to the
construction of the next to next to last switching point. The corresponding
switching curve is the upper half circle of center (−2, 0) and radius 2. Re-
peating this scheme of construction, in the case where u ≡ 1 on the last time
interval, we obtain all the circles of center (−2n, 0) with radius 2n and all
those of center (2n+ 1, 0) with radius 2n+ 1, where n ∈ N. By symmetry,
if we add the possibility of the value u = −1 in the last interval ]T − α0;T ]
we obtain all the circles of center (k, 0) and radius |k|, where k ∈ Z.
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Figure 12: Switching curves when u ≡ +1 at the end

Let x0 ∈ R2, x10 > 0, k ∈ N, k > |x0|. We begin with a control u ≡ 0,
the trajectory is a circle of center (0, 0) until the first switch on the circle of
center (k, 0) and radius k. Then the trajectory is as described previously.
Such a trajectory has k portions where u ≡ +1 or u ≡ −1, all of length
δ = α0(k). So the L1-cost of such a trajectory is equal to c(k) = k · α0(k).

With the notations of the following figure, we compute cos(α0(k)) = 1− |x0|2
2k2

.

Figure 13: Attainable set and switching curves

The optimal cost c(k) = k · arccos(1 − |x0|2
2k2

) goes to |x0| when k goes to
infinity. The functional µ∞ is decreasing and bounded from below (by 0) so
the limit exists : µ∞(x0) = limTk→∞ µTk

(x0) = |x0|.
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When k goes to infinity, the trajectory has more and more switches, but
with portions of circles of centers (−1, 0) and (1, 0) that are smaller and
smaller.
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Figure 14: Trajectory for 2π ≤ T ≤ 3π

-10-10 -8-8 -6-6 -4-4 -2-2 22 44 66 88 1010 1212 1414

-6-6

-4-4

-2-2

22

44

66

00

Figure 15: Trajectory for 5π ≤ T ≤ 6π
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