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Joint work with Andrey Sarychev (Florence) motivated by the
deep learning of artificial neural networks treated as an interpo-
lation problem.



Maps interpolation:

Given a class of “good” maps F we look for F' € F that is close
to ® at the marked points.



In neural networks, the class of ‘““good maps’ F consists of the
“input — output” transformations of discrete time control sys-
tems of the form:

x(t+1)=c(U)x(t) +v(@)), zeR" t=0,1,...,k,
where the matrix U and vector v are control parameters,

o(x1,...,2n) = (c(x1),...,0(xn)),

o IS a monotone nonlinear function with a bounded derivative,
and F:xz(0) — z(k). Some samples:

o(s) = max{o,s}, o(s)= . —I—le_s’ o(s) = / e~ dr.



Continous time:

The goal is to uniformly approximate given transformation
d :R" — R™ on a compact K C R".

Example: u = (v, w),

2 2
f(x,u) = (1)16_|x| + wq,... ,vne_|x| + wp).
Theorem 1. Let & : R" — R"™ be an isotopic to the identity
diffeomorphism, K € R", and € > 0. Then there exists u(-) such
that

Slélp| ()(ZE) CD(CB)| < €.



General result:

Let M be a complete Riemannian manifold, fi,...,fr bounded
smooth vector fields and

I—ie{fl,...,fr}:Sp@’n{[fil,["' 7fzk]] : k€Z+}
We consider a system:
t=uyf1(z) + - F+urfr(z), x€M, u €R;
Fy:2(0) — x(1), where u = (u1(-),...,ur()).

Theorem 2 (Rashevskij—Chow). If Lie{f1,...,fr}q = T4M,
Vq € M, then, for any qo,q1 € M, 3u such that Fy,(q0) = q1.



Corollary 1. Let dimM > 1 and Lie{f1,..., fr} is everywhere
dense in Vec(M) in the Cy-topology. Then for any finite families
of points xq,ya € M, o € A, #A < oo, there exists u such that
Fy(za) = Yo, Va € A.

Let £ >0, K € M; we set:

Liel {fr, ) = {g c Lie{/1,. o1} + sup(lo(@)] + [ Vagl) < e}.

Definition 1. We say that {f1,..., fr} has property (A) if for any
smooth vector field X and any K € M there exists ¢ > 0 such
that

inf{sg[[yg(:c) — X(x)|: g€ Lie%{fl,...,ff,«}} = 0.



Theorem 3. If{f1,..., fr} has property (A), then for any isotopic
to the identity diffeomorphism ® : M — M, K € M, and € > O,

there exists a control function u such that sup § (Fy(z), P(x)) < &,
reK

where §(-,-) is the Riemannian distance in M.
Examples:

M = R™ the family of vector fields:
o
P2
has property (A). The iterated commutators of these vector
fields produce Hermit polynomials.

1=1,...,n,



M=T"={(01,...,0n) : 0, e R/2xZ}. The family of vector fields:

=1,...,n,

0 . 0 . 0 LA 0
iy sm(ei)%, sin(26;) - —, Zsm(ej)a—ei, i

has property (A).
M =S82={zeR3:|z] =1}. Given a smooth function a : R3 —

R, we define spherical gradient field V%a and Hamiltonian field a
by the formulas:

Via=Vgza— (x,Vza)r, d(x)=x X Vza.

Let linear functions ej,es,e3 form a basis of R3", p : R3 —» R
be a quadratic harmonic polynomial and ¢ : R3 — R be a cubic
harmonic polynomial. The family of vector fields on S2:

vsp7 ﬁ? (j; v86i7 é;;? /L — 17 2737
has property (A).



Sketch of proof.

Together with the system z = } u;f;(z) and generated by this

1
system diffeomorphisms F! : z(0) — x(t), t € [0,1], we consider
the extended system:

y = wai(y) + > wilfi, f1®), yeM, wjuj€R,

1<J

and diffeomorphisms G, : y(0) — y(t), where v = {u;(-),u;;(-)}.

Theorem 4. For any extended control v, any € > 0, kK > 0, and
K € M there exists an appropriate control v = {u;(-)} such that
|Gt — Fi|lp. i < e for any t € [0,1], where || ||y.x is @ C* norm for
maps defined on K.



Lemma 1. Let Xy, t € [0,1], be a time-dependent vector field,
w : [0,1] — R a smooth function, and ¢ > 0. We set
ue(t) = 2sin(t/e2)w(t) and consider systems

& = Xy(z) + 1/esin(t/e?)g(x) + ete(t) f(z). (e)

Then the flow generated by (¢) converges uniformly to the flow
generated by the system

z = X¢(z) +w()[f, g](x)

ase— 0, inany norm || - ||, k, 7> 0,K € M.

The proof is based on a factorization of system (g): the flow
generated by eu:(t) f(x) is taken out.
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Chronological notations: let f € Vec(M), we set et/ : 2(0) — x(t)
in virtue of £ = f(x). Then:

etf M= M, &Y vec(M) = Vec(M).

Moreover, et/ = e=t2df where (adf)g = [f, g].

/
Given a time-varying vector field f-, we set exp [ frdr : z(0) —
0

x(t), in virtue of x = f(x). If [fr,fs] = 0 for all 0 < 7,5 < 1,
t t

then exzp [ frdr = eJofrdr
0

Variations formula:

exp /t fr + grdr = exp j frdr o exp /t (exp ] ad fsds)grdr.
0] 0] 0] 0]
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Let:

fr=ceue(T)f(x), gr=X:(x)+1/e Sin(7/52)9($)-

We have:

t
B [ Xr+1/esin(r/e2)g + cie(r) f dr =
0
t
e=u(T)f o eTl%/egug(T)adf(XT + 1/esin(r/e%)g) dr
O

t
= {+0())o &B/XT + w(r)[f, 9] + O(e) dr.
0]
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We have a sample family of points zo, o € A, and we wish F,(xq)
to be close to yo. A functional to minimize is:

1

p(w) = Y [Fu(wa) = yal? +v [ lu()? dt.

acA 0
We have:

o, | £1 2
8uz(t) — %:(fzav|Fu —yal >F8’t(£€a)

where F;”° @ z(7) — x(s) in virtue of & = Y u;f;(x); in particular,
1

+2vu,(t),

F, = ot
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Simulations (Alessandro Scagliotti, SISSA). Gradient descent for
the discretized system, v = 0.
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Azat Miftakhov
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