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CHRONOLOGICAL SERIES AND THE CAUCHY--KOWALEVSKI THEOREM 

A. A. Agrachev and S. A. Vakhrameev UDC 517.955 

We consider the Cauchy problem for a system of partial differential equations. We 
prove an existence theorem for a solution of this problem which is analytic in the 
spatial variable under the assumption of measurability and local integrability of 
the right side with respect to time only. The solution is represented in the form 
of a chronological series. 

In this paper we consider the Cauchy problem for a system of partial differential equa- 
tions 

0t~, u (t, x)= 

: f ( t ,  x, u(t, x) . . . . .  ~ ) 
Ot k, (Oxl) ~, (Oxn) ~ . . . . .  

0 j by)u(t, x)i~=. =%(x), xeO~R ~, 
(z) 

j : O ,  1 . . . . .  m - - 1  

with respect to an N-dimensional function u. Here f is some N-dimensional function depend- 
ing on t, x, u and all partial derivatives of u of the form 

Ok+J~l 
Ot k(Oxl) ~1 . . .  (Oxn)~ ~,, [ o ~ l + k . < m ,  k < m ,  

w h e r e  o~=(e l  . . . . .  ~ . ) ,  Is]=~x,+...+o~,. 

The classical Cauchy--Kowalevski theorem asserts that if the functions ~, ~h, k=0, !,., 

m--l, are analytic in all free arguments in the corresponding domains, then there exists a 

unique analytic solution of this system, defined in some sufficiently small neighborhood of 

an arbitrary initial point (to, Xo)ERXG. 

Despite the fact that this theorem has been known for many years, the subject is suffi- 

ciently important that the question of the possibility of strengthening and generalizing it 

in various directions is constantly found in the field of view of specialists. We shall not 
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give here an account of the history of the question, but we refer the reader for details to 

[4, 7]. We note only [6], in which there is proved an abstract Cauchy--Kowalevski theorem 

under the hypothesis only of the continuity of the right side of the equation with respect 

to t. 

In the present paper, to solve the Cauchy problem (i) we shall use the technique of 

chronological series developed in [I, 2]. 

Representation of the solution in the form of a chronological series gives the possibil- 

ities: 

I) To prove the existence of a solution of the Cauchy problem (i) under the assumption 

only of measurability (and local summability) of the right side in t. This is essential, 

for example, for the theory of optimal control. 

2) To get relatively explict formulas, expressing a solution in terms of the initial 

conditions and the right side. 

3) In certain cases to get simple estimates with explicitly calculable constants of the 

interval of time t on which there exists a solution, of the norm of the solution of the re- 

mainder term of the chronological series. 

In the proof we first construct a formal solution of the Cauchy problem in the form of 

a chronological series, and then we prove the convergence of this series. 

We consider separately the case of a linear system and the case of a scalar quasilinear 

equation. This is done for the following reasons. 

In the linear case the chronological series can be calculated especially simply, and 

the proof of its convergence is slightly different from the proof of convergence of the 

Volterra chronological series, in the case of an ordinary differential equation (cf. [i]). 

Here we get convenient explicit estimates for the general term of the series. In the scalar 

quasilinear case the formulas are yet more compact, and furthermore the estimates obtained 

here are used in the proof of convergence of the general chronological series. 

Now we describe the notation used in the present paper. 

As usual, by R n we denote real n-dimensional arithmetic vector space, whose points 

we treat as column-vectors and always denote by Latin letters; we denote row-vectors by Greek 

letters. We shall write the scalar product of a row-vector by a column-vector of identical 

dimensions in the form of matrix multiplication 

~ . x = ( ~ l  . . . . .  ~ )  = $~x ~. 

The Jacobian matrix of an m-dimensional vector function x~g(x) with respect to the 

coordinates of the vector x~R n we denote by 

grad g (x) = ~ x X ) =  (Ofg ~ (x)), 

o 
= 1  . . . . .  m, ~ 1  . . . . .  n, O~=Oxg. 

By the modulus of the vector xER n we mean the quantity 

Ix[= max lx~ I 
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correspondingly, 

is the modulus of the n-dimensional row-vector $----(~i ..... ~n)- 

The modulus I AI of the nXm-matrix A=(a~,),~l ..... n,~=1 ..... m, is, by definition, 

max lamb 
p=l I-.< ~.~< n 

By Idx we denote the identity mapping of the set X. If it is clear from the context 

which set X is involved, then we write simply Id. 

In conclusion we express profound thanks to R. V. Gamkrelidze, who suggested applying 

the technique of [i] to partial differential equations and for his constant interest with 

respect to this work. 

i. Preparatory Material 

In this section we give the initial concepts and facts from analysis and algebra which 

will be used below. Some of them are commonly known and one can become acquainted with the 

others in the more detailed account in [I]. 

i. Differentiations in Algebras. Let ~ be an arbitrary real algebra, i.e., a real vec- 

tor space in which there is defined a multiplication, satisfying the unique condition of 

bilinearity. Thus, an algebra ~ can be nonassociative and not have a unit. 

By ~q(PJ) we denote the associative algebra of all linear mappings of the vector space 

9~ into itself. The product of elements TI, T26~(~) is defined as their composition 

TIT2=Tt ~ T2 VT~, T2C.~. (gJ). 

A linear mapping 6~a(~) is called a differentiation of the algebra ~ if it satisfies 

the formal rule of differentiation of a product 

6(ab)=(6a)b+a(6b) Va, b~ .  ( 1 , 1 )  

The set Der(~) of all differentiations of the algebra ~ forms a Lie algebra with the 

product 

[~, ~21 = ~1~ - -~2~  �9 

Let 6iEDer (~), j =  1, 2 . . . . .  m ,  

out that one has the formula 

be arbitrary differentiations of the algebra �9 . 

~+~=m ~Es~,iq) 

It turns 

(1.2) 

where S(=, ~), =+~=m is the set of all permutations of the numbers I, 2, ..., m, preserv- 

ing the orders of the first ~ and separately of the last ~ numbers. 

The proof of (1.2) is based on (i.i) and is done by the obvious induction on m. 
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In the special case when 6j=6, ]=I ..... m , from (1.2) one gets the Leibniz formula 

5 m tab~ ~ m[ , , ~ ~ ~ (6~a) (60b) va ,  bE~, 
a+~=m -" 

w h e r e  6 ~  I d, 6 ~-i  = 8 o 8 h = 8 h o 6. 

2. One-Parameter Families of Functions. We denote by O(G) 

finitely differentiable functions, defined in the domain G~R n. 

the Cartesian product of N copies of ~(G). 

Let hER n We denote by 

and we set for VCOE~(O) 

the algebra of all in- 

By ~ N ( G )  we shall denote 

the first-order linear differential operator 

cc=I Ox~ 

$ ._> 

11 CO }I,,M = max ~ 1 max l h~CO (x)]. 
x(~M k=o kt a=l 

Here McG is compact and s is an integer >0. 

It is obvious that with the help of the family of seminorms ll'Hs,M we turn ~(O) into a 

Frechet space (completely metrizable and locally convex). 

Below we shall see that in those partial differential equations which we consider in 

this paper, the variables t and x play completely different roles, Hence we shall be es- 

pecially interested in one-parameter families COt, t6R , of elements ~(O), to which in the 

standard way one carries over all the basic constructions of analysis. 

Namely, continuity and differentiability of a family COt, t6R , of elements ~(G) is de- 

fined in the obvious way, by virtue of the fact that ~(O) is a linear topological space. 

We shall say that the family 

is measurable. 

cot, t~R ,  is measurable if Vx6G the scalar function 

t~cot (x) 

One says that the measurable family COt, t@/~, is locally integrable if Vtl, t2~R, S-----0, 1 ..... 

and compact A4~O 

12 

t~ 

By the integral of a locally integrable family q~t, tE~, in the given limits from tl to 

t2 we mean the function 

t~ 

x ~ ~ (x) d~. 
Ix 

One can prove (cf. [i]) that this function belongs to ~ ( 0 )  and one has the formula 

t2 [~ 

hi . . . . .  hk e o , d x :  Izl . . . .  COr vh l  . . . . .  ttkER ~, 
tl fl 
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from which follows the inequality 

~7~ ~,~ !t l%jl~,Md v s > o ,  M~G.  

The family ~t, t6R , is called absolutely continuous if there exists a locally integrable 

family ~t, tE~ ,  such that 

t 

to 

It turns out that in this case for almost all t6~ 

In fact, it is clear that the topology of the space ~(G) can be given with the help of 

a countable number of seminorms I]'[[s,Mj , where 3Jj~G is compact, j=l, 2 .... , s=0, 1, 2,.... 

It is easy to see that there exists aset Ts,y such thatmes (~\Ts.j)=0 and VxEAI7, t@Ts,i 

t+At  

/~k,~ (x) d~ =/z~% (x) At + ~k (~t; x, h) at, 
t 

where ~k(At; x, h)-~0 as At-+0 uniformly with respect to x6My, IkI=l. Consequently, 

s [ ( t+At )[ 
I/ 1 II -----limmax ~ o l m a x l f f k l  ! '~**d*-q~tt]= lira -At {~t+At-fpt}-*t  s,M} At--+Ox~Mj k ' t j h [ = l  A t ---~0 = ~./ ? 

s 1 ] t+At [ s 

= lira max h ~ d ~ - -  hk~t t = lim max ~ max 134 (At; x, h)[~., = 0 .  
a~-+oxEM j o N ~ at~ox@Mj- ~'i'_01hl=1 

We s e t  T =  N Ts,f so rues ( R \ T ) = 0  and v tER = ~ t ,  which i s  what  had to  be  p roved .  
s=O l'=O 

All the concepts introduced above (except for absolute continuity) also carry over 

naturally to families 

% ...... ~,~, "rj@R, j = l ,  2 , . . . ,  m, 

of elements of ~(G) , depending on m parameters T, ..... Tm. Moreover, there are defined in 

an obvious way corresponding concepts for families ~t, t6R , of elements of ON(G) . Thus, for 

example, a family ~t, t6R, of elements of ON(G) is called locally integrable if the family 

~t~,t6R, j=l, 2 ..... N, of elements of ~(O) is locally integrable, and by the integral of the 

locally integrable family ~t, t6R , of elements of ON(G) is meant the element 

~2 

/ I  

E ~N(0). 

In the m-dimensional space of point T(m)=(rl,..., Tin) by the symbol At0,~(T (m)) we shall 

denote the simplex 
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~,o~ (~< '~)=  1(-~,,... ,  , , ,) !  t o ~ < % , 4  �9 �9 �9 -.<~:,.< t} .  
If ~- is an arbitrary permutation of the numbers i, 2, ..., m, then by the symbol 

A~o , t (~  (m)) is denoted the simplex 

~o., (r~,/,,)) = {(r~,. . . ,  r,,)[ to ~<*.,(~) ~< . . .  -.< r,~u) -.< t}. 

One has the obvious equality 

:,,o,, (~(~))• ( ~ ) =  U A.,, (~-,-~u,, 0 

v~, ~ ~- t -~=m.  

Let ~=~4(T(m)) ,  ~(#m)) be locally integrable functions with values in ~(O). 

Then V~, ~, ~@~=t~ we have: 

( ~ , )  d~c~ ~ ~ (~/~) d~(~ = 
Ato, t(~ (~)) Afo,t(~(~)) 

f ~ (~(~)) ~ (~(~)) d'~Ccz)| = ~ ~ ~g (~(1) , . . . ,  ~(~)) ~ (T~(~+I),. �9 ~cm)) d r(m). 
~'to, t(d~)) Xato, t('~ (~)) a~s(~,~) A~o, ~(dm)) 

Whence follows the important relation 

t "ro~--I t r[~--I 
f dl; ' i . . ,  f dT(cz)#~(T1 . . . . .  Tcz)~ng (a, f t iT1.. .  I dT'(Ig)~ . . . . .  T(0,)dT("----- 
to to to /o 

~Cs(c*,fl) to to 
(r.(~+~) . . . . .  r.(~)) d~ (~). 

2. Existence of a Solution of the Cauchy Problem 

In this section we shall prove the stronger existence theorem for a solution of the 

Cauchy problem already mentioned in the introduction. We note, first of all, that it suf- 

fices to consider systems of first-order partial differential equations, whose right sides 

do not contain the spatial variable x, i.e., systems of the form 

Ou (t ,  tt, Ou Ou 
-?F = f , Ox' . . . . .  0~-~) ' 

u (to, x )  = Uo (x) ,  x 6 0 ~ R  ~. 

(1.3) 

( 2 . 1 )  

The reduction of a general system of partial differential equations (i) to such a form is 

carried out in the usual way, by the introduction of supplementary unknown functions, and 

subsequent differentiation (cf. e.g., [3]). We shall also have to deal withasystemof the 

form (2) later. 

We turn first to the consideration of the special case of a linear system. 

i. Case of a Linear System. We consider a first-order linear partial differential sys- 

Ov ~ Ov 
. . . . .  Ov Bo( t ,  x ) v +  B~( t ,  x ) - b - ~ - - c  - t - B , ( t ,  x )  Ox n , ot 

v(to, x)=uo(x), x~O~R". 

tem 
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Below we shall see that the variables x and t play completely different roles in this 

system. Hence it will be convenient for us to treat the Na-valued functions 

B~:R X R~--> R '~' 

as families 

Bi={A/); tCR} 

of infinitely differentiable mappings 

AI~  .): R ~ R  N=. 

We shall assume that the families AI k), t~R ,  are locally integrable families in ~)N~(G) 

In accord with this we shall write the Cauchy problem we are studying in the form 

2 A(k)~ u~ (G)' (2.2) 
d 

: ~  l L t =  t O k l l  t ,  / / t o =  
k=O 

O 
where 0 k = ~ x  k, 00=Id , and consider it as an equation relative to a family ut, t~R , of in- 

finitely smooth N-dimensional functions. More precisely, by a solution of (2.2) we shall 

understand an absolutely continuous family ut, t6J , of elements of ON(G ') , where J is an 

interval of the real axis containing the point to,, and G' is a subdomain of the domain G such 

that for almost all tEJ 

n 

d~ ut= A~k) OkUt' 
k~O 

and uto=u0 in ~N(G,) 

By v i r t u e  of  the  assumption about a b s o l u t e  c o n t i n u i t y ,  the  problem (2.2) i s  e q u i v a l e n t  

to the  i n t e g r a l  equa t ion  

n t 

k=O t o 

We shall solve (2.3) by successive substitutions: 

(2.3) 

k=O to k t=O t o k t=O k~=O l o l o 

The formal series which arises 

Ft,t~ (Uo)= Id+ dr1 S ~(*') < - (*m)~ . . . . . . . . .  -/'{-C r a U k n 
1 k l = O  km.=O to [o 

(2.4) 

is called the chronological series of the Cauchy problem (2.3) or (2.2). 

Let V be a complex extension of the domain G~R ~ . We denote by Q(V) 

of all functions ~: V~C, bounded and analytic in the domain V, with norm 

the Banach space 

II q~ 11~= = sup l~  (z)[.  
z~v 
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Let Q~(V) be the Cartesian product of k copies of Q(V) . For o6Q~(V) we set 

li v i[~ '~ =max [l 'o ~ [1 cn. 
t ~ f ~ t e  

PROPOSITION 2 . 1 .  I f  Ai~/6QV~(V), ttofiQNiV) and  t h e  f u n c t i o n s  

i l v ,  a = 0 ,  1 . . . . .  n ,  

a r e  l o c a l l y  i n t e g r a b l e ,  t h e n  f o r  any  s u b d o m a i n  V ~, t h e  d i s t a n c e  f r o m  t h e  b o u n d a r y  o f  w h i c h  

t o  t h e  b o u n d a r y  o f  t h e  domain  V i s  g r e a t e r  t h a n  some s ~ O  , t h e r e  e x i s t s  a P ~ O ,  s u c h  t h a t  

the series 

t / Z ~ l  ~ i = O  lem~O to t o 

c o n v e r g e s  a b s o l u t e l y  and  u n i f o r m l y  f o r  { t - -  to i < 9 ,  zEV ' .  

Proof. For any zGV' , by virtue of the Cauchy integral formula 

1 ~ i -(k~D d~, A ~  ~ ( ~ ) -  
c, c n l I~  (z) ' 

I ~ Uo (~) 
Uo (z) = (2~i), ~ f d~, �9 �9 " J g ~  ( z )  

C~ C n 

w h e r e  H$ = ( . ~ - - z 0 . . .  ( ~ - - z  n) , and C k i s  a c i r c l e  o f  r a d i u s  ~ w i t h  c e n t e r  a t  t h e  p o i n t  z k. 

C o n s e q u e n t l y ,  we h a v e  

. . .  A~, (~1) 
( 2 ~ i ) n ( m + l )  . . . . . . . . . . . .  

Ct C n C~ C n 

�9 (kin) k~ . . . . .  k m 
. . .  A~. ,  (~DUo(~):~ ...... ~.~,~(z)dL . . ,  d~,~ d~, 

where 

k.. . .  '~m 1 1 1 z~ ....... ~ , ( z ) = u ~ , ( ~ )  Ok,u~, (z) "'" 0 M ~ '  

o 0o = Id. 
Okj ~ Oak1, 

F o r  I ~ - - z ~ [ > / s ,  [ ~ - - z ~ ] > s ,  k = l , 2  . . . . .  m, a----l, 2 . . . . .  n, one  h a s  t h e  i n e q u a l i t y  

t k ...... k m 2ram! 

w h e r e  6 ~ m i n { 1 ,  s}. T h i s  e s t i m a t e  i s  p r o v e d  by  d i r e c t  i n d u c t i o n  on m ( c f .  

mate in [i]). 

Consequently, VzEV', m=1, 2 ..... we have 

the analogous esti- 

f d q  . .  l A(k,) ~ aCk,) A(k,,) d~m ~, (z) (z)  ~., . . . . .  k , . ~ ,  . . .  (z) Ok~Uo (z) ] <  
k1=O k m = O  to to 

f Tm--i 

_<2~m, (n+l)~id,1 I d~"l[A~'[]c~ " ~  8 m ( n + l )  " " " V 

to to  

. . .  [[ ATm fl cn r it u0 f k - ,  
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where 

Since 

t[ A.~ k HvC"= m a x  [I A ~  ~ I f ' .  

we have the estimate 

2, j" 7' X,~ " " " ,'~(,~,) a A(km) 
kt~O ktn ~0 to /o (i )" �9 *,~ 5n , ,  II A, tlv & 1t uoll~." 

/o 

from which follows the assertion of Proposition 2.1. 

Using the absolute and uniform convergence of the series 

F,,to(uo(z))~uo(z)+ [ d* A~ k) (z) Okuo(z)-F . . . .  
to k=O 

we get, if the hypotheses of Proposition 2.1 hold, 

rz ~o s ~ i ~ ram-1 
z) + X  .. .  a , , . . ,  a ,ox  

k=O m=I k~=O km=O to [o 

Xa(k')(Z)Sk, A (k'~) (z)&~.,Uo(Z)}=s A~ '~ (z) a~F, ,o(Uo (zl), ~TI , . . Tm 
b=O 

F,. . ,o (Uo (z)) = ~o (z), 

but this also means that the series Ft,to(UO) is a solution of (2.2). 

Thus, we have proved the following theorem. 

THEOREM 2.1. Let A~ k), t6R , be a locally integrable family in r 

UoEQN(v), A I k ) E Q N ' ( V )  k = 0 , 1 , 2  . . . . .  

where the functions 

and 

t~iIA~kl]tc~, k = O ,  1 . . . . .  n 

are locally Lebesgue integrable. Here VcC n is some domain containing GcR n. 

Then for any subdomain V'cV , the distance from the boundary of which to the boundary 

of the domain V is greater than some e>0, the series 

Fl, to (Uo (z)) = Uo (z) + X d~'l Z- a Ik,) A tk~) 
�9 . .  . . .  _ ~ , ~ , - , ~ ,  (z) G ,  . . .  (z) O~mu o(z) 

m=l kl=O km=O to t o "Cm 

converges absolutely and uniformly for all z~V' and those t for which 

where 

2 ( n + l )  i nd~c] 1, a.+, llA~ltCe --<P< 
/o 

6=min{1, e}, []AtJ!~=maxlJ A~]~II~. n 
O<~j~n 
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and is a solution of the Cauchy problem 

Here one has the estimate 

n 

dt 
k=O 

17to ~ I~ O. 

Ii F~,o (Uo)I$ ~ ~< 
C gt 

[[ u0 [Iv 

1 - - - -  
2 ( n + l )  

(~rt 41 II A~ I[v d'~ 
l LI 

2. Formal Solution of the Cauchy Problem (General Case). We turn to the consideration 

of a general system of partial differential equations of type (2.1) 

at = g (t, v ,  O~v . . . . .  c)~v), 

V(to, x)--Uo(X), x ~ O c R  ~. 

As in the linear case too, the right side g of this equation is convenient for us to 

consider as a family 

(2.5) 

of smooth mappings 

g = {ft; t6R} 

f~=g(t, .) :R~-+p~ ~, ~ p= (n+ 1)~. 

Hence we shall write (2.5) in the form 

d u  t 
a-V-= L (ut, O~ut . . . . .  Gut), 

Uto ~ ~0 

a n d  s a y  t h a t  a n  a b s o l u t e l y  c o n t i n u o u s  f a m i l y  u t, rE J ,  i s  a s o l u t i o n  o f  

t 6 J  
d u  t 
dt = f t  (Ut, 01U t . . . . .  OnUt) 

a n d  uto---- Uo i n  0 x ((3'). 

Here J is an interval of the real axis containing the point to, and G' is a subdomain 

of the domain G, possibly coinciding with it. 

Our basic assumptions are that UoECD~V(G), and the family It, t6R , can be expanded in a 

MacLaurin series* 

f r  (g~, 01/A . . . . .  Oa/~ ) = ~__~ a.~.~(O) . . . . .  ~(n) (u)o~(O) (01/s  . . . ( O n U ) ~ ( u ) ,  j : 1, 2 . . . . .  N ,  

o~(0) ..... odn) 

whose radius of convergence R t > R > 0 .  Here 

(2.6) 

(2.6) if for almost all 

" ' ' ~  N ]~ 

(Oku)~(~) = (8~uI)~ ~) ~ (~) . . . ( O k u  N )  N . 

*It is obvious that by change of the unknown function one can reduce to this case the case 
of an arbitrary system whose right side is analytic in all arguments except t. 
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We construct a formal solution of the Cauchy problem (2.6). To this end we consider 

the real algebra ~ , whose elements are formal power series with real coefficients in the 

independent variables e, u I ..... u ~- ..... 0~u k ..... where a= (al ..... an) is an arbitrary multi- 

index with nonnegative components, k = i, 2, ..., N. For example, 

i 
a = a [  ~31 . . . . .  ~q ]=  E ~i ...... i q ( , - o i ) i l . . ,  g jqq~9~,  

is . . . . .  iq>~O 

w h e r e  v~6{e, u ~ , . . . ,  u N , . . . ,  O=Uk , . . . } .  A d d i t i o n  and  m u l t i p l i c a t i o n  o f  s e r i e s  i s  d e f i n e d  i n  t h e  

usual way. An arbitrary linear transformation 6g of the algebra ~ is called continuous if it 

can be brought under the sign of an infinite sum, for example, 

i a , . . . .  iq>/O 

We shall be interested in continuous differentiations of the algebra o~ , the collection of 

which we denote by Derc(~l) . A differentiation ~g)6Derc(~) is uniquely determined by its values 

on the generators e, a=u ~ , by virtue of the Leibniz rule and the condition of continuity. On 

the other hand, the values of ~ on the generators can be arbitrary. 

In the algebra ~ there are natural differentiations 01,..., 0~Derc(~) , which are given 

on the generators by the formulas: 

O~e=O, O~ ( f u k ) = O  ( . . . . . . . . .  Y . . . . . .  'V)u~ 

f o r  a n y  ~ =  (e~ . . . . .  ~ ) ,  k = l  . . . . .  N, i = l  . . . . .  N. 

Further, each component of the right side of (2.6) can be considered as an element of 

the algebra ~l: 

f {  (u,  a l u  . . . . .  Onu) = 

v / e(O) ~(n) cdO) = ~ a  e . . . . . . . .  (u) . . .  (O,zU)~('~ v t C R ,  j =  1 . . . . .  N .  

We i n t r o d u c e  a o n e - p a r a m e t e r  f a m i l y  o f  d i f f e r e n t i a t i o n s  f tf iDer~(~) , g i v i n g  i t s  a c t i o n  on 

the generators with the help of the formulas 

r e dO ,  

f = (u, o,u . . . . .  o u), 

f tttk = f ~  (t~, 01tZ . . . . .  Ont 0 ,  

t ~ R ,  le = 1 . . . . .  N ,  o: = (% . . . . .  o~n). 

The mos t  i m p o r t a n t  p r o p e r t y  f o r  us  o f  t h e  d i f f e r e n t i a t i o n s  f t ,  t~t?, ,  i s  t h a t  a l l  o f  them 

commute with 01 . . . . .  On: 

Io,, i , l = O , o L - f ,  oa ,=o vt R, i = 1  . . . . . .  

In fact, the commutator [0i, {t] is a continuous differentiation, i.e., [0~, /~]6Dere(~). 

On the other hand, by virtue of the definitions, [0i, ft] vanishes on the generators. Conse- 

quently, [01, rt] is identically zero. 

We construct the way the family of differentiations ft, t6R, we have defined acts on 

elements of the algebra 
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Suppose, for example, a - - a l e ,  u 1 . . . . .  u N, c)lu ~, O~tt t, . . . .  dnu.~']6~l. Then obviously 

o~, f t  (u, O~u, O~u) -I o~ [~ ~ . . . . .  Olf~ (u, O~u . . . . .  O ~ u ) + . . .  . . . .  O (O~u) 

(2.7) 
o~, [8, , ,  o,u . . . . .  o~,] O~ft (u, O~u,..., O~u). 

�9 " " - [  0 tOnU) 

We shall use this formula below for the "determination" of the chronological series cor- 

responding to a quasilinear equation. 

Below we shall constantly have to do with one-parameter families of elements of the al- 

gebra~. We say that such a family at is measurable, absolutely continuous, etc., if all 

the coefficients of the corresponding formal series are measurable, absolutely continuous, 

etc. in t. Integration and differentiation of formal series with respect to t is always done 

term by term. 

Suppose b = b [ v l  . . . . .  v q ] @ I . .  If a l  . . . . .  aq are some elements of ~ , where the correspond- 

ing power series have no free terms, then there is defined the composition b [ a b . . . ,  aq]69.i �9 In 

what follows, in all formulas where a composition of formal series occurs, one should assume 

that the "inner" series have no free term. 

By a formal solution of the Cauchy problem (2.6) is meant an absolutely continuous one- 

parameter family at of elements of the algebra ~, such that for almost all t one has the 

equation 

a = ~ f ~  (at, O~a~) ~ i - a t  . . . .  

and a t o ~  u. 

If in the power series corresponding to some formal solution of the Cauchy problem one 

substitutes in place of the variables ~f ..... a N .... ,a~u ~ .... smooth functions u~(x) ..... uN(x), 

.... O-~-s .... and sets e=1 , then one gets some series of smooth functions. It is clear 

that in this case when such a series converges uniformly its sum is a solution (not formal) 

of the Cauchy problem (2.6). 

Proposition 2.2. The series 

t ~m--1 

m=l  to t o 

is a formal solution of the Cauchy problem (2.6). 

Proof. We note firstly that the series F~,t,(u) contains only a finite number of terms 

of each degree, so its "sum" is a well-defined element of the algebra ~ . Analogously, the 

series 

co t ~'m-t 

3bt, t o = ' d  + X 8tn I d't"l �9 . �9 f d~'m?.~m . . . . .  ?'~1 
m=l  t0 to 

gives a continuous linear transformation of the algebra ~. 

We note that by the definition itself 
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Moreover, we see that 

~.toU = F,.,o(U) 

An important fact is that the series ~t,t0 has the following mu!tiplicative property: 

~,.,o (dO) =.~,.,o (a)._@,.,o @), 
Vd, bC~. 

In fact, we have on the basis of (1.2) 

A. . . . . .  i Y ( d o ) =  Z 
~+~=m aES(cz, ~) 

Consequently, using (1.3), we have: 

f "~#'/I - 1 

to to 

that 

va ,  OGg. 

a,,,,/,,,, . . . . .  L ,  (ab)= 

( ) '  ) 
, \ t ~  /o 

but this means that 

~,.,o (dO) = ~,.,o (a) ~,.,o (0). 

From this multiplicative property it also follows that the series 

solution of the Cauchy problem. 

where 

Fcto(U ) is a formal 

In  f a c t ,  F t o , t . ( u ) = u  and 

to t o to 

= s)','oft (U, O , u , . . . ,  Ontt)= 
'~ ,  d~(o) ... . .  cdn) ,,~ ,odO) 

tmt,,o tt) . . .  (O,) t , tot t )  ~(") = e f t  (Ft.to (tt), OiFt,,o (u) . . . . .  OnFt,to (u)), 8 

cdO) ..... ~(n) 

I,~iO) ..... c~(n) ) d~(O) ..... ~(n) = t 

dN' (0) ..... ~x(N) 

If in the formal series Ft,to one substitutes in place of u i . . . . .  ~N . . . . .  a"z~ . . . .  smooth 
0 n 

u0tx )I~ ~ ..... ~N(x ) ..... 0_~_u~(x ) .... and sets e=1 , then we get a series consisting of functions 

smooth vector-functions 

t Tm -I 

Such a series we call a chronological series for the Cauchy problem (2.6). We shall prove 

the convergence of the series (2.8) in the case when u0 is an analytic function. First we 

deal with the scalar quasilinear case. 

3. Case of a One-Dimensional Quasilinear Equation. We consider a one-dimensional quasi- 

linear first-order partial differential equation 
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d~ 
at = a}O (U) 0 ~  + . . .  q- a~ ~) (U) dnU = f ,  @Z, OU) = f t (U, OxV. . . . . .  OnU), 

U,o = ttoE(b ev (G). ( 2 . 9 )  

It turns out that one has the following formula for the integrand of the (m+l)-st term 

of the series (2.8) 

f ] . ,  . . . . .  f ~ , f , ,  (Uo, duo) = . 1 ~  . . . . .  f , J , ,  (Uo, O~,o . . . . .  &,Uo) = 

= X ... i: o,,0 .... o,.,_, (<,, (,o)...,!'-'::' (.o) z,,. (,,o, O,o)). 
1~=1 /m_i=l 

(2.10) 

We shall prove this formula by induction on the number m. For m = 1 it is obvious. 

Let (2.10) be true for m-.<p . Then for m = p + i, 

. . . . . . . .  \ Cl '" " t'c'~;p-I 
]t=l ]p_l~1 

}7 

. . . .  ^ \ ~t . ~ , ( f p _ J [  , , ~. ~ . 2 • o,, ..... .... ,._, .. 2 o,o... 
J a i l  f p _ l ~ l  7"i=I J p _ l = l  

�9 "" ~ ~, " ' "  - ~, " ' "  ~ v - ,  o ( o j ~ . )  f * p ( u ~ 1 7 6  = 

J ' p = I  

tz 

�9 X o,, i: (o~(<,,~o~ .,<,~(,o))O,,,oj~,,,(,o,O,o)+ = ~ . . . . . . c C ) ] p  . . 

/~=1 J p _ l = i  7 p = l  

+<,> ~,o)... <0~(.o~O,/~.., (,o, O,o)) = 2 ... i: o,o ...0o,,(<,, ~,o)... <.~(.0~ i~.+, (.o, O,o~). 
1~=I ]p=l 

(2.10) is proved. 

Just as in Paragraph 1 Section 2, we shall use the Cauchy integral formula to prove the 

convergence of the chronological series obtained 

t t I'1 

t o t o lo t o J'~i 

-{-'S 'TIS d%'2 2 ~ 0J,(a'CfJ(//'0)'(:=)('0)0]eLZ0) ' -  " ' '@~ '171''" S dTm2 "'" 2 O/,o... 
to fo /1=1 j~=l t. to Jl=l /m_l=l 

" {-(A) a(/'n)(u~176 / "' (2 Ii) 
. . . .  o j=_,  W ~ ,  (Uo) . . . . .  " 

corresponding to the Cauchy problem (2.9) in the analytic case. 

ing 

Proposition 2.3. If V is a complex extension of the domain 

Namely, one has the follow- 

G ~ R  '~ and uoEQ(V), 

a~n (Uo)~Q(V) v t C R ,  ]= 1, 2 , . . . ,  n, 

and the functions t ~ ]ta,~ cn are locally integrable, then for any subdomain V' of the 

domain V, the distance from the boundary of which to the boundary of the domain V is greater 

than some g>0 , there exists a p>0 , such that (2.11) converges absolutely and uniformly 

in V' for It--t01<p. 

Proof. We have vz@V ' 
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: 
a:',) (~o(Z)).a(~,> (~o (z))..a(~) (Uo(Z)) a:~o(Z) = ~  :, �9 el  1:0: " %/T/ r 

C~ C n 

where C~,~ is  a c i r c l e  of  radius s w i t h  center zc:, 

�9 a(~ ) (Uo (~)) 8:,rno, (D'rt~ (z)' 

~ ( z ) = ( ~ ' - z : ) . . . ( ~  . . . .  zO. 

Consequently, Vz@V',  m=l ,  2,... 

where 

^ 1 '~J~-I " i "' a(J,)(tto(~))... 
?Tztzo . . . .  /~ ;2 /T ,  (U0 (Z), O]UO (Z)) = (~i)n 7 "" 1 ,n =1 C', C. 1, 

�9 1 
J . . . . . .  4 .  ( z )  : G , o  o8:,._, n~ (z)' 9r . . .  

0 
dj~ : Ozj~" 

For all JSe--za[>e,a=l,...,n , it is obvious that one has the estimate 

] . . . . . .  f m  "Z" ~ (m--l){ 
]%~ ( )'~" e ' - : s " '  

from which it follows that v z E V '  

] j2LnO. . .o .~ : fz ,  (tto (z) ' Otto (z))i..~ ~ .. .  1 ~r,~(A) .!!a~?)(tZo)i[~n ion (m--l)!  ~ f:=O ]~ 1=1 1 ~  ..o 1[ (~0) t1Ctz'" 11 (~J~UO IV" Era-18 n 
m~ C~ C n 

(m--1)In m-~ , c n ,c n 
< -  sm_l [ [ a t , ( t t o ) f n . . . j l a % ( U o ) l j  v J!graduoliv , 

where 

[ cn C n 
a~r ]Iv = m a x  II _ . /  (J) ~ r  (tto)JIv = max max I a~r (uo (z))], 

l<f~<, l</<n z ~ V  

n n 

. C n ~ 0 ilgrada~o//c"= ~ llOj~olt~ = maxJ0ju0(z)J, Oj=-d-jy 
f=: = zEv 

Consequently, whence we get that for all 

~1 . . .  ~ d,~5% ..... L~/~, (.o(Z), O,o(~)) 
to to 

g Tin- I 
~(m--l)In m-1 

to [o 

(m--l)[ FLm-I | ( i [ [  . . .  I1 a~m [ /II  grad Uo[ /  = ~ ~., ,o 

Thus, we have proved the inequality 

C n C n C n 
at  ]Iv d r  J[ grad Uo IIv - -  ~ [[ at  [[v d~ ]l grad Uo [l~'"- 

m" n to 

g Tm -1 ~i (n i 8 C n 
< n-AT:-A-.n IIct~tlv d~  [Igraduo H c~ V~ 

from which follows the absolute and uniform convergence of the series (2.11) for all z6V' 

and t sufficiently close to ~. 

The proposition is proved. 
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From Proposition 2.3 and the arguments of Section 2 Paragraph 2 we get the following 

theorem. 

THEOREM 2.2. Let the hypotheses of Paragraph 2 Section 2 hold and 

C n 

U o ~  (v) ,  a ?  ) (Uo)~  (v) ,  {l Uo IIv ~< R .  k =  1, . . . ,  n 

and the functions 

be locally summable. Here 

Then for any subdomain 

domain V is greater than e>0, the series 

domain V' for those t for which 

t~lla?)(u0)[/, k = l ,  2, . . . , n ,  

V ~ C  ~ i s  a domain c o n t a i n i n g  G ~ R ' .  

V ' ~ V  t h e  d i s t a n c e  from whose bounda ry  to  t he  bounda ry  o f  the  

(2.11) converges absolutely and uniformly in the 

T [[a~ p < l  

and is a solution of the Cauchy problem (2.9). Here one has the estimate 

~ n  8 C n 1 8 C n 
llF,.,,(Uo)ll~-...<-y-llgraduollv 1 + ~  m [[a~fl c d'~ -=n[lgradtto[lv 1-t-ln 1-- Ila~f[~"d~ �9 

m ~ l  

We note in a series of cases one can collapse the series (2.11) and get a solution of 

the Cauchy problem in closed form. We demonstrate this in the simplest example. Suppose, 

for example, we consider the Cauchy problem 

"-8F=U-d-~ ' O t ~  oft tt,o(X) = xER. 

Then according to the account above we get that a solution of this problem is the series 

t 

F t d o ( x ) - - - - - x + J x  . .  = x + x ( t - - t o )  + x ( t - - t o ) 2 +  - -  x [ t _ t 0 [ ~ < 9 < l ,  
Ox . . . .  1 - - ( t - - t o )  ' 

to 

which i s  v e r i f i e d  d i r e c t l y .  

To c o n c l u d e  t h i s  P a r a g r a p h  we n o t e  t h a t  t h e  f o r m u l a  ( 2 . 7 ) ,  used  f o r  " d e t e r m i n i n g "  t h e  

c h r o n o l o g i c a l  s e r i e s  c o r r e s p o n d i n g  to  t h e  Cauchy p rob l em,  can be r e d u c e d  to  a c o n c r e t e  f o r -  

mula f o r  s o l v i n g  t h i s  p rob lem i n  c e r t a i n  o t h e r  c a s e s  t o o .  

4. Convergence of the General Chronological Series. In this paragraph we give the proof 

of the convergence of the chronological series correspondingto the quasilinear system 

du ~ ( I )  . . .  A~n) - ~ = ~  (u)O~u+ + (u)O~u = L ( u ,  O u ) = L ( u ,  O~u . . . . .  O~u), ULo=~O 

in the case when the initial function u0 is analytic in the domain G. For our goals it suf- 

fices to consider only this case, because, as is known (cf. [3]), one can reduce to this case 

an arbitrary system of partial differential equations of the form (2.5). 

We shall prove convergence of the chronological series corresponding to this quasilinear 

system in the neighborhood of an arbitrary initial point (to, X o ) 6 R x G .  
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Since, by assumption, the function uo is analytic in G, at the point xo it can be ex- 

panded in a Taylor series 

tx --x0) , 
k l,...l:a n 

converging for all x sufficiently close to Xo. 

We set 

j - - ! ,  2 . . . . .  N,  

% ( x ) =  ~]  max [u/e  . . . . . .  l e n [ ( X I - - X ~ ) ) k * . . ,  rz :zte (x --.r0) n. 
k k I~<./~<n 1 , . . . ,  /g 

Then the function Vo is defined and analytic close to the point Xo and is a majorant for the 

initial functions u0 ~ (i=l, 2 ..... N) in a neighborhood of this point. 

We recall that an analytic function f, representable by a convergent power series, is 

a majorant of an analytic function g, if the coefficients of the expansion of g in a power 

series are in modulus less than or equal to the corresponding coefficients of the expansion 

of f (assuming that the coefficients of the expansion of f are greater than or equal to zero). 

We denote by e the N-dimensional vector 

and we set 

1 

By our assumptions (cf. Sec. 2 Para. 

in a MacLaurin series, i.e., the components a~.k(t, u) of the matrices A~k)(u), 
i, /=I, 2 ..... N , are representable in the form of a series 

2 ) ,  t h e  r i g h t  s i d e  o f  t he  s y s t e m  can be expanded 

k = l ,  2 . . . . .  N ,  

converging for ]~j<Rt. 
We get 

a< (t,u)= ~ at 
Y, k 7, k, ' X l , . . . , ~ & .  

~ 1 , . . . , ~  N 

(u'F"... (,~)~" 

a t (u):= ~ max max l a< 

Then the  f u n c t i o n  at(u) i s  d e f i n e d  f o r  a l l  t and a l l  u s u f f i c i e n t l y  s m a l l  i n  a b s o l u t e  

v a l u e ,  Le t  E be t h e  N 2 m a t r i x  c o n s i s t i n g  o f  ones :  

/1 1 . . . 1 . \  
s {, 1 . . .1]  
=g ] : . .  i/ 

We set 

gt (u, O~u . . . . .  G,u) = gt (u, 8u) = a t (u) E ~ Oiu = a t (u). e G u L  
t = 1  i = 1  j = l  
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By the definition itself, the function 

(u, 0~u ..... 0~u)~gt(u, 0~u ..... 0~u)=gt(u, au) 

majorizes (componentwise) the function 

(u, Ol~ . . . . .  O~u)~ f t (u, Ou)= f t (u, 01u . . . . .  O~u) = ~ A~ k) (u) Oku. 
k=I 

Since the function vo defined above componentwise majorizes the initial function uo 

in the neighborhood of the point x06G , the function 

x ~ g t  ~o (x), 0~o (x) . . . . .  O~Vo (x)) 

majorizes componentwise the function 

x~ft(uo(x),  O~o(X) . . . . .  O~uo(x)). 

In exactly the same way the function 

x ~ g ~  . . . . .  g~,g~, (Vo (x), O~Vo (x) . . . . .  0~o (x)) 

majorizes componentwise the function 

x ~ ) ~  . . . . .  ] ~ , f ~ , ( ~ o ( X ) ,  O~uo(X) . . . . .  O~o(X)), 

because in the construction of these functions one uses the same rules which include only 

differentiation with respect to corresponding arguments, addition, multiplication, and sub- 

stitution of a series in a series, in one word, rational operations which preserve the rela- 

tion of majorizing analytic functions. 

Everything said above means that the series (2.8), constructed for a quasilinear sys- 

tem 

at - f t (ttt, O u t ) =  f t (ttt, O~ut . . . . .  O,,tO = Al~) (tt) Oktt, 
k=l 

trio ~ / t O ,  

converges, at least in that (sufficiently small) neighborhood of the initial point 

in which the series 

Xo~O , 

f t 

c~,.,o (~o (x)} = $o (~) + j" g, (~o (x), O$o (~)) d~ + . . .  + ~ a~  . . .  
to t o 

ClTmg~r n . . . . .  g-~,g-~, (Vo(X), 07Vo(X))'~-... (2.12) 
to 

converges. 

The convergence of the series 

has the formula 

(2.12) is easy to prove. Namely it turns out that one 

g~m ..... ~,g~, (~0(x), a#0(x))=Nme ~ ... ~ aj, o .... aJm_1=~1 (~0(x)) ... a~(~0(~))aj~0(~). (2.13) 
71=i jm~I  

The proof of (2.13) is done by induction and is hardly different from the proof of (2.10), 

so we shall not dwell on it. 

Let S be a small enough neighborhood of the initial point Xo~Go , that in this neighbor- 

hood the series for Vo converges and let v be a complex extension of this neighborhood such that 
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Voe~ (v), as (G)eQ (v). 
A n a l o g o u s  t o  P r o p o s i t i o n  2 . 2 ,  one  h a s  

P r o p o s i t i o n  2 . 4 .  Fo r  a n y  s u b d o m a i n  V ' ~ V  , t h e  d i s t a n c e  f r o m  whose  b o u n d a r y  t o  t h e  

b o u n d a r y  o f  V i s  g r e a t e r  t h a n  some e > 0  , t h e r e  e x i s t s  a p > 0  , s u c h  t h a t  t h e  s e r i e s  

Gt,to(v0(z)) converges absolutely and uniformly for I t--t0[<p, zEV'. 

The proof follows from the estimate 

^ Nmnra-' ar  i c= [[ a** [/c= [I g rad  v0 IIc=, Ilg~,~ . . . . .  g, ,g, , (Vo,  OVo) tl c~, -.< ~ (m- -  1)! ~ , v  " "  

11 a~ lit= = sup l a~ (7Oo (z))I, 
z6.v 

w h i c h  i s  p r o v e d  j u s t  l i k e  t h e  c o r r e s p o n d i n g  e s t i m a t e  f r o m  P r o p o s i t i o n  2 . 2 .  

S u m m a r i z i n g  e v e r y t h i n g  s a i d  a b o v e ,  we a s s e r t  t h a t  one  h a s  t h e  f o l l o w i n g  t h e o r e m .  

THEOREM 2 . 3 .  L e t  t h e  h y p o t h e s e s  o f  S e e .  2 P a r a .  2 h o l d  and  l e t  UoEgJV(N)~ A~k)(Uo)ES2N'(V), 

UolIv -~<Rt , where the function t~-*t[at(Vo)[[~. ~ is locally summable. Here V is some sufficient- 

ly small complex neighborhood of an arbitrary point x0EO, Rt is the radius of convergence of 

the MacLaurin series constructed for the right side (cf. Sec. 2 Para. 2), and at, v0 are the 

functions constructed above. 

Then for any subdomain g'~g, the distance from whose boundary to the boundary of the 

domain V is greater than some e>0, there exists a p>0 , such that the series (2.8) con- 

verges absolutely and uniformly for It--t01<p, z~V; and is a solution of the Cauchy problem 

d i u=  ~ Alk~ (U) aktt, tt,~=Uo. dt 
k = l  

5. Uniqueness of the Solution and Comparison Theorem. One has the following 

THEOREM 2.4. Let the hypotheses of Sec. 2 Para. 2 hold and 

where the function 

c " <Rt,  U o ~ ( V ) ,  Iluoll V 

C n 

t~tlft(Uo, Ouo)I1 v 

is locally summable. Here I/~C n is some domain containing G. Then, if ut, ot 

tions of the Cauchy problem (2.6), belonging to ~x(V), then ut=vt in QN(V) 

for which they are both defined. 

For the proof, we consider the series 

are two solu- 

for those t 

t f ~ .. 

O , , t o = ~ ' t ? ~ = I d +  ~ ( - - 1 ) " ~  dG. ."  S d ~ m / A O ' " o f ~  �9 
m = l  to to 

Direct verification (cf. with [i]) shows that 

~Q,,to u,=o 

in a neighborhood of each point (to, xo)~RxV. Consequently, 

G,,0 u , : u 0  ~n 2N(v) and u,=P,,ooQ,,,o u,=P,,,o ~o. 

Whence also follows the assertion of the theorem. 
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A direct consequence of the chronological representation of the solution and the preced- 

ing theorem is the following result, which can be called the comparison theorem. 

THEOREM 2.5. Let the conditions guaranteeing the existence and uniqueness of solutions 

of the Cauchy problem (2.6) and the Cauchy problem 

dvt .~ 
~t-=gt[  t, d~t), 

vto = Vo6~] N ( V ) ,  (2.14) 

with which we were concerned above, hold. Then if the functions gt and v0 are componentwise 

majorized by the functions h and u0, then the solution vt of the Cauchy problem (2.14) is 

componentwise majorized by the solution ut of the Cauchy problem (2.6) for all t for which 

they are defined. 
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