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1 Introduction and motivation

In its standard formulation, string theory is defined in terms of a perturbative series, i.e. as a
sum over genera. Each term in this sum corresponds to an amplitudes evaluated on a Riemann
surface of genus g. For example, the “free energy” of string theory, as a function of the “moduli”
t and the string coupling constant gs has the structure

F (t, gs) ∼
∑
g≥0

Fg(t)g
2g−2
s . (1.1)

In some cases, like topological string theory, the genus g free energies Fg(t) can be computed
in closed form. Defining an object through a power series is not necessarily a bad thing. The
problem with the series in the r.h.s. is that it has a zero radius of convergence: many examples
and calculations, as well as general arguments, indicate that, for fixed t,

Fg(t) ∼ (2g)! (1.2)

Therefore, string theory is fundamentally ill-defined. This is typically encoded in the motto
“there is no non-perturbative definition of string theory”. A non-perturbative definition of string
theory should provide well-defined functions, whose asymptotic expansion at small gs lead to the
perturbative series above.

One of the basic consequences of the gauge/string duality is to solve this problem. In these
dualities, the string coupling constant can be regarded as the Planck constant (or coupling
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constant) of a well-understood quantum system. In a typical gauge/string duality, one has
roughly a correspondence of the type,

g2
YM ∼ gs, g2

YMN ∼ t (1.3)

(we are assuming for simplicity that the gauge theory has a single modulus). Under such a
correspondence, the string theory perturbative expansion corresponds to the large N ’t Hooft
expansion of the gauge theory. Quantities in string theory are then identified with quantities in
the gauge theory. For example, the free energy of the string theory corresponds to an appropri-
ately well-defined free energy in the gauge theory, and one has

F (g2
YM, N) = F (t, gs). (1.4)

Working out this correspondence beyond tree level/planar limit has been challenging.

One possibility to push this further is to consider simpler versions of string theory, e.g.
topological string theory. We expect that in this case one will have a simpler counterpart instead
of a gauge theory. In recent years, evidence has accumulated that there exists a simpler version of
the gauge/string duality for topological string theory on toric Calabi–Yau (CY) manifolds, where
the dual theory is simply a quantum mechanical system (one can regard it as a non-interacting
Fermi gas of N particles with a non-trivial density matrix determined by the CY geometry).
This leads to a non-perturbative definition of topological string theory on these manifolds, as
well as to a new family of exactly solvable quantum mechanical problems in one dimension.

2 Topological string theory

2.1 Perturbative definition

Let us consider holomorphic maps from a Riemann surface of genus g to the CY X,

f : Σg → X. (2.1)

Let [Si] ∈ H2(X,Z), i = 1, · · · , s, be a basis for the two-homology of X, with s = b2(X). The
maps (2.1) are classified topologically by the homology class

f∗[(Σg)] =

s∑
i=1

di[Si] ∈ H2(X,Z), (2.2)

where di are integers called the degrees of the map. We will put them together in a degree vector
d = (d1, · · · , ds). The Gromov–Witten invariant at genus g and degree d, which we will denote
by Nd

g , “counts” (in an appropriate way) the number of holomorphic maps of degree d from a
Riemann surface of genus g to the CY X. Due to the nature of the moduli space of maps, these
invariants are in general rational, rather than integer, numbers; see for example [1] for rigorous
definitions and examples.

The Gromov–Witten invariants at fixed genus g but at all degrees can be put together
in generating functionals Fg(t), usually called genus g free energies. These are formal power
series in e−ti , i = 1, · · · , s, where ti are the Kähler parameters of X. More precisely, the ti are
flat coordinates on the moduli space of Kähler structures of X. It is convenient to add to these
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generating functionals polynomial terms which appear naturally in the study of mirror symmetry
and topological strings. In this way, we have, at genus zero,

F0(t) =
1

6

s∑
i,j,k=1

aijktitjtk +
∑
d

Nd
0 e−d·t. (2.3)

In the case of a compact CY threefold, the numbers aijk are interpreted as triple intersection
numbers of two-classes in X. At genus one, one has

F1(t) =

s∑
i=1

biti +
∑
d

Nd
1 e−d·t. (2.4)

In the compact case, the coefficients bi are related to the second Chern class of the CY manifold
[2]. At higher genus one finds

Fg(t) = Cg +
∑
d

Nd
g e−d·t, g ≥ 2, (2.5)

where Cg is a constant, called the constant map contribution to the free energy [3]. It turns
out that these functionals have a physical interpretation as the free energies at genus g of the
so-called type A topological string on X. Roughly speaking, this free energy can be computed by
considering the path integral of a string theory on Riemann surfaces or “worldsheets” of genus
g. This makes it possible to use a large amount of methods and ideas of physics in order to shed
light on these quantities.

Although the above generating functionals are in principle formal generating functions, they
have a common region of convergence near the large radius point ti →∞. The total free energy
of the topological string is formally defined as the sum,

FTS (t, gs) =
∑
g≥0

g2g−2
s Fg(t) = F (p)(t, gs) + FWS (t, gs) , (2.6)

where

F (p)(t, gs) =
1

6g2
s

s∑
i,j,k=1

aijktitjtk +

s∑
i=1

biti +
∑
g≥2

Cgg
2g−2
s ,

FWS (t, gs) =
∑
g≥0

∑
d

Nd
g e−d·tg2g−2

s ,

(2.7)

The superscript “WS” refers to worldsheet instantons, which are counted by this generating
functional. The variable gs, called the topological string coupling constant, is in principle a
formal variable keeping track of the genus. However, in string theory this constant has a physical
meaning, and measures the strength of the string interaction. When gs is very small, only
Riemann surfaces of low genus contribute to a given quantum observable. On the contrary, if gs
is large, the contribution of higher genus Riemann surfaces becomes very important.

2.2 Gopakumar–Vafa invariants

As we mentioned in the introduction, there is strong evidence that, for fixed ti in the common
region of convergence, the numerical series Fg(t) diverges factorially, as (2g)!. Therefore, the
total free energy (2.6) does not define in principle a function of gs and ti. In a remarkable paper
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[4], Gopakumar and Vafa pointed out that the series FWS (t, gs) can be however resummed order
by order in exp(−ti), at all orders in gs. This resummation involves a new set of enumerative
invariants, the so-called Gopakumar–Vafa invariants ndg . Out of these invariants, one constructs
the generating series

FGV (t, gs) =
∑
g≥0

∑
d

∞∑
w=1

1

w
ndg

(
2 sin

wgs
2

)2g−2
e−wd·t, (2.8)

and one has, as an equality of formal series,

FWS (t, gs) = FGV (t, gs) . (2.9)

The Gopakumar–Vafa invariants turn out to be integers, in contrast to the original Gromov–
Witten invariants. One can obtain one set of invariants from the other by comparing (2.6) to
(2.9), but there exist direct mathematical constructions of the Gopakumar–Vafa invariants as
well, see [5].

One could think that (2.9) provides a non-perturbative definition of the topological string
free energy. In order to see if this is the case, one has to analyze the convergence properties of
the formal series defined by (2.9). Let us focus on the one-modulus case for simplicity, and let
us write this series as

FGV(t, gs) =
∑
`≥1

a`(gs)e
−`t. (2.10)

The first thing one notices is that the coefficients a`(gs) have poles at values of gs of the form

gs =
p

q
2π, p, q ∈ Z. (2.11)

This is a dense set of poles on the real line, so FGV(t, gs) fails to define a function when gs ∈ R.
In addition, one finds [6] that, if gs ∈ C\R,

log |a`(gs)| ∼ `2, `� 1. (2.12)

Therefore, the generating functional (2.8) is in general ill-defined and, as it stands, it can not be
used as a non-perturbative definition of the topological string free energy. We should point out
that, in some geometries, (2.8) can be resummed by using instanton calculus, and one obtains a
convergent function if gs ∈ C\R [7]. However, the resulting function still has a dense set of poles
on the real line.

2.3 Mirror symmetry

The mirror manifold X̂ to X has s complex deformation parameters zi, i = 1, · · · , s, which
are related to the Kähler parameters of X by the so-called mirror map ti(z). At genus zero,
the theory of deformation of complex structures of X̂ can be formulated as a theory of periods
for the holomorphic (3, 0) form of the CY X̂, which vary with the complex structure moduli
zi. As first noted in [8], this theory is remarkably simple. In particular, one can determine a
function F0(z) depending on the complex moduli, called in this context the prepotential, which is
the generating functional of genus zero Gromov–Witten invariants (2.3), once the mirror map is
used. The theory of deformation of complex structures also has a physical realization in terms of
the so-called type B topological string. However, for general CY manifolds, a precise definition
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of this theory at higher genus is still lacking. In practice, one often uses the description of the
B-model provided in [3]. This provides a set of constraints for a series of functions Fg(z), g ≥ 1,
known as holomorphic anomaly equations. After using the mirror map, these functions become
the generating functionals (2.5).

One of the consequences of mirror symmetry and the B-model is the existence of many pos-
sible descriptions of the topological string, related by symplectic transformations. The existence
of these descriptions can be regarded as a generalization of electric-magnetic duality. In this
way, one finds different “frames” in which the topological string amplitudes can be expressed.
Although these frames are in principle equivalent, some of them might be more convenient, de-
pending on the region of moduli space we are looking at. The topological string amplitudes
Fg(t) written down above, in terms of Gromov–Witten invariants, correspond to the so-called
large radius frame in the B-model, and they are appropriate for the so-called large radius limit
Re(ti) � 1. The topological string free energies in different frames are related by a formal
Fourier–Laplace transform, as explained in [9].

Although mirror symmetry was formulated originally for compact CY threefolds, one can
extend it to the so-called “local” case [10, 11]. In local mirror symmetry, the CY X is taken to
be a toric CY manifold, which is necessarily non-compact. It can be described as a symplectic
quotient

X = Ck+3//G, (2.13)

where G = U(1)k. Alternatively, X may be viewed physically as the moduli space of vacua
for the complex scalars φi, i = 0, . . . , k + 2 of chiral superfields in a 2d gauged linear, (2, 2)
supersymmetric σ-model [12]. These fields transform as

φi → eiQαi θαφi, Qαi ∈ Z, α = 1, . . . , k (2.14)

under the gauge group U(1)k. Therefore, X is determined by the D-term constraints

k+2∑
i=0

Qαi |Xi|2 = rα, α = 1, . . . , k (2.15)

modulo the action of G = U(1)k. The rα correspond to the Kähler parameters. The CY condition
c1(TX) = 0 holds if and only if the charges satisfy [12]

k+2∑
i=0

Qαi = 0, α = 1, . . . , k. (2.16)

The mirrors to these toric CYs were constructed by [13], extending [10, 14]. They involve
3 + k dual fields Y i, i = 0, · · · , k + 2, living in C∗. The D-term equation (2.15) leads to the
constraint

k+2∑
i=0

Qαi Y
i = log zα, α = 1, . . . , k. (2.17)

Here, the zα are moduli parametrizing the complex structures of the mirror X̂, which is given by

w+w− = WX , (2.18)

where

WX =

k+2∑
i=0

eYi . (2.19)
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The constraints (2.17) have a three-dimensional family of solutions. One of the parameters
correspond to a translation of all the fields

Y i → Y i + c, i = 0, · · · , k + 2, (2.20)

which can be used for example to set one of the Y is to zero. The remaining fields can be expressed
in terms of two variables which we will denote by x, p. The resulting parametrization has a group
of symmetries given by transformations of the form [15],(

x
p

)
→ G

(
x
p

)
, G ∈ SL(2,Z). (2.21)

After solving for the variables Y i in terms of the variables x, p, one finds a function

WX(ex, ep). (2.22)

Note that, due to the translation invariance (2.20) and the symmetry (2.21), the function
WX(ex, ep) in (2.23) is only well-defined up to an overall factor of the form eλx+µp, λ, µ ∈ Z, and
a transformation of the form (2.21). It turns out [16, 17] that all the perturbative information
about the B-model topological string on X̂ is encoded in the equation

WX(ex, ep) = 0, (2.23)

which can be regarded as the equation for a Riemann surface ΣX embedded in C∗ × C∗.
An important class of examples is given by toric CY manifolds X in which ΣX has genus

one, i.e. it is an elliptic curve. The most general class of such manifolds are toric del Pezzo CYs,
which are defined as the total space of the canonical bundle on a del Pezzo surface1 S,

O(KS)→ S. (2.24)

These manifolds can be classified by reflexive polyhedra in two dimensions (see for example
[11, 18] for a review of this and other facts on these geometries). The polyhedron ∆S associated
to a surface S is the convex hull of a set of two-dimensional vectors

ν(i) =
(
ν

(i)
1 , ν

(i)
2

)
, i = 1, · · · , k + 2. (2.25)

The extended vectors
ν(0) = (1, 0, 0),

ν(i) =
(

1, ν
(i)
1 , ν

(i)
2

)
, i = 1, · · · , k + 2,

(2.26)

satisfy the relations
k+2∑
i=0

Qαi ν
(i) = 0, (2.27)

where Qαi is the vector of charges characterizing the geometry in (2.15). Note that the two-
dimensional vectors ν(i) satisfy,

k+2∑
i=1

Qαi ν
(i) = 0. (2.28)

1Sometimes a distinction is made between del Pezzo surfaces and almost del Pezzo surfaces. Since our results
apply to both of them, we will call them simply del Pezzo surfaces.
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It turns out that the complex moduli of the mirror X̂ are of two types: one of them, which
we will denote ũ as in [18, 19], is a “true” complex modulus for the elliptic curve Σ, and it is
associated to the compact four-cycle S in X. The remaining moduli, which will be denoted as
mi, should be regarded as parameters. For local del Pezzos, there is a canonical parametrization
of the curve (2.23), as follows. Let

Y 0 = log κ,

Y i = ν
(i)
1 x+ ν

(i)
2 p+ fi(mj), i = 1, · · · , k + 2.

(2.29)

Due to (2.28), the terms in x, p cancel, as required to satisfy (2.17). In addition, we find the
parametrization

log zα = log κQ
α
0 +

k+2∑
i=1

Qαi fi(mj), (2.30)

which can be used to solve for the functions fi(mj), up to reparametrizations. We then find the
equation for the curve,

WX = OX(x, p) + κ = 0, (2.31)

where

OX(x, p) =

k+2∑
i=1

exp
(
ν

(i)
1 x+ ν

(i)
2 p+ fi(mj)

)
. (2.32)

Figure 1. The vectors (2.33) defining the local P2 geometry, together with the polyhedron ∆P2 (in thick
lines) and the dual polyhedron (in dashed lines).

Example 2.1. Local P2. In order to illustrate this procedure, let us consider the well-known
example of local P2. In this case, we have k = 1 and the toric CY is defined by a single charge
vector Q = (−3, 1, 1, 1). The corresponding polyhedron ∆S for S = P2 is obtained as the convex
hull of the vectors

ν(1) = (1, 0), ν(2) = (0, 1), ν(3) = (−1,−1). (2.33)

In the mirror, the variables Y i satisfy

− 3Y 0 + Y 1 + Y 2 + Y 3 = −3 log κ, (2.34)

and the canonical parametrization is given by

Y 0 = log κ, Y 1 = x, Y 2 = p, Y 3 = −x− p, (2.35)
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so that
WP2(ex, ep) = ex + ep + e−x−p + κ (2.36)

and
OP2(ex, ep) = ex + ep + e−x−p. (2.37)

Local mirror symmetry is considerably simpler than full-fledged mirror symmetry. On the
A-model side, the enumerative invariants can be computed algorithmically in various ways, either
by localization [20–22], or by using the so-called topological vertex [23]. At the same time, the
theory of deformation of complex structures of X̂ can be simplified very much. At genus zero,
one should consider the periods of the differential

λ = y(x)dx (2.38)

on the curve (2.23) [10, 11]. The mirror map and the genus zero free energy F0(t) in the large
radius frame are determined by making an appropriate choice of cycles on the curve, αi, βi,
i = 1, · · · , s, and one finds

ti =

∮
αi

λ,
∂F0

∂ti
=

∮
βi

λ, i = 1, · · · , s. (2.39)

In general, s ≥ gΣ, where gΣ is the genus of the mirror curve. Also, in the local case, the type
B topological string can be formulated in a more precise way, by using the topological recursion
of [24], in terms of periods and residues of meromorphic forms on the curve (2.23) [16, 17]. In
particular, mirror symmetry can be proved to all genera [25, 26] by comparing the definition of
the B model in [16, 17] with localization computations in the A model.

Example 2.2. Local P2. In the case of the local P2 CY, the genus zero free energy can be
obtained by mirror symmetry as follows. The complex deformation parameter in the mirror
curve is the parameter κ appearing in (2.36), or equivalently the parameter z = κ−3. Let us
introduce the power series,

$̃1(z) =
∑
j≥1

3
(3j − 1)!

(j!)3
(−z)j ,

$̃2(z) =
∑
j≥1

18

j!

Γ(3j)

Γ(1 + j)2
{ψ(3j)− ψ(j + 1)} (−z)j ,

(2.40)

where ψ(z) is the digamma function, as well as

$1(z) = log(z) + $̃1(z),

$2(z) = log2(z) + 2$̃1(z) log(z) + $̃2(z).
(2.41)

The mirror map is given by
t = −$1(z), (2.42)

where $1(z) is the power series in (2.41). Then, F0(t) is defined, up to a constant, by

∂F0

∂t
=
$2(z)

6
, (2.43)
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where $2(z) is the other period in (2.41). One then finds, after fixing the integration constant
appropriately,

F0(t) =
t3

18
+ 3e−t − 45

8
e−2t +

244

9
e−3t + · · · . (2.44)

From here one can read the very first Gromov–Witten invariants, like for example Nd=1
0 = 3, see

[11] for more details.

2.4 Refined topological strings and the NS limit

Another interesting feature of the local case is that it is possible to define a more general set of
enumerative invariants, and consequently a more general topological string theory, known some-
times as the refined topological string. This refinement has its roots in the instanton partition
functions of Nekrasov for supersymmetric gauge theories [27]. Different aspects of the refinement
have been worked out in for example [28–30]. In particular, one can generalize the Gopakumar–
Vafa invariants to the so-called refined BPS invariants. Precise mathematical definitions can be
found in [31, 32]. These invariants, which are also integers, depend on the degrees d and on
two non-negative half-integers, jL, jR, or “spins”. We will denote them by Nd

jL,jR
. Given this

invariants, one can defined a refined topological string free energy as follows. One first introduces
two parameters ε1,2, as well as the combinations,

εL =
ε1 − ε2

2
, εR =

ε1 + ε2
2

, (2.45)

and their exponentiated versions,

q1,2 = eiε1,2 , qL,R = eiεL,R . (2.46)

We also need the SU(2) character for the spin j,

χj(q) =
q2j+1 − q−2j−1

q − q−1
(2.47)

Then, the refined topological string free energy is given by

Fref(t, ε1, ε2) =
∑

jL,jR≥0

∑
w≥1

∑
d

1

w
Nd
jL,jR

χjL(qwL )χjR(qwR)(
q
w/2
1 − q−w/21

)(
q
w/2
2 − q−w/22

)e−wd·t. (2.48)

The standard topological string is recovered when

ε1 = −ε2 = gs. (2.49)

In particular, the Gopakumar–Vafa invariants are particular combinations of these refined BPS
invariants, and one has the following relationship,∑

jL,jR

χjL(q)(2jR + 1)Nd
jL,jR

=
∑
g≥0

ndg (−1)g−1
(
q1/2 − q−1/2

)2g
, (2.50)

where q is a formal variable We note that the sums in (2.50) are well-defined, since for given
degrees d only a finite number of jL, jR, g give a non-zero contribution.

There is another limit which is particularly important, the Nekrasov–Shatashvili (NS) limit
[33], in which one considers

ε1 = ~, ε2 → 0. (2.51)
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The NS free energy (more precisely, its “instanton” part) is defined as

FNS
inst(t, ~) = i lim

ε2→0
ε2Fref(t, ε1, ε2)

=
∑
jL,jR

∑
w,d

Nd
jL,jR

sin ~w
2 (2jL + 1) sin ~w

2 (2jR + 1)

2w2 sin3 ~w
2

e−wd·t.
(2.52)

One then defines the “full” NS free energy as

FNS(t, ~) ==
1

6~

s∑
i,j,k=1

aijktitjtk +

s∑
i=1

bNS
i ti~ + FNS

inst(t, ~). (2.53)

By expanding (2.53) in powers of ~, we find the NS free energies at order n, FNS
n (t), as

FNS(t, ~) =
∞∑
n=0

FNS
n (t)~2n−1. (2.54)

The expression (2.52) can be regarded as a Gopakumar–Vafa-like resummation of the series in
(2.54). An important observation is that the first term in this series, FNS

0 (t), is equal to F0(t),
the standard genus zero free energy. Note that the term involving the coefficients bNS

i contributes
to FNS

1 (t).
Note that the standard topological string and the NS limit give two a priori different one-

parameter deformations of the “classical” topological string theory. The second one turns out to
be a quantization deformation, as we will review next. The first one is not clearly so. However,
as we will following [34], it also has a quantum-mechanical interpretation.

3 Quantum curves

3.1 The all-orders WKB method

One interesting aspect of mirror symmetry at genus zero, i.e. the formulae (2.38) and (2.39), is
that it looks like a WKB approximation. Let us recall some basic facts of this approximation.
Let us assume that we have a classical Hamiltonian of the form,

H(x, p) =
p2

2
+ V (x), (3.1)

where y is interpreted as the momentum, and V (x) is a potential. In the WKB method one
consider the following plane curve, or WKB curve,

H(x, p) = E, (3.2)

where E is interpreted as the energy of the system, and a differential on this curve given by

λ = p(x)dx. (3.3)

If the curve (3.2) has genus g, one can choose a symplectic basis of 2g cycles, Ai and Bi,
i = 1, · · · , g, and define periods

ti(E) =

∮
Ai

λ,

∂F0

∂ti
=

∮
Bi

λ, i = 1, · · · , g.
(3.4)
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This defines a “genus zero free energy” F0(t). Therefore, the geometry of the leading order WKB
method defines a setting which is very similar to genus zero mirror symmetry.

What happens to the quantum corrections? The all-orders WKB method leads to a deforma-
tion of λ, as follows. Let us consider the Schrödinger equation corresponding to the Hamiltonian
(3.1),

~2ψ′′(x) + p2(x)ψ(x) = 0, p(x) =
√

2(E − V (x)), (3.5)

The WKB ansatz for the wavefunction is

ψ(x) = exp

[
i

~

∫ x

Q(x′)dx′
]
. (3.6)

The Schrödinger equation for ψ(x) becomes a Riccati equation for Q(x),

Q2(x)− i~
dQ(x)

dx
= p2(x), (3.7)

which can be solved in power series in ~:

Q(x) =

∞∑
k=0

Qk(x)~k. (3.8)

The functions Qk(x) can be computed recursively as

Q0(x) = p(x),

Qn+1(x) =
1

2Q0(x)

(
i
dQn(x)

dx
−

n∑
k=1

Qk(x)Qn+1−k(x)

)
.

(3.9)

If we split the formal power series in (3.8) into even and odd powers of ~,

Q(x) = Qodd(x) + P (x), (3.10)

one finds that Qodd(x) is a total derivative,

Qodd(x) =
i~
2

P ′(x)

P (x)
=

i~
2

d

dx
logP (x). (3.11)

Therefore, only the even part P (x) contributes to the periods of Q(x)dx. We define then the
differential

λ(~) = P (x)dx (3.12)

which can be regarded as a deformation of λ. Note that P (x) is defined as a formal power series
in ~2. We also define the quantum periods as

ti(E; ~) =

∮
Ai

λ(~),

∂FNS

∂ti
(E; ~) =

1

~

∮
Bi

λ(~),

(3.13)

and this defines the quantum free energy FNS(t, ~), which has the power series expansion

FNS(t, ~) =
∑
n≥0

Fn(t)~2n−1, (3.14)
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where F0(t) is defined by the leading WKB method. We emphasize that this can be done in
any one-dimensional quantum-mechanical model, see e.g. [35] for explicit formulae in relevant
examples.

In conclusion, the quantum corrections to F0(t) are obtained by a quantization of the classical
curve (3.2), in which we promote the variables x, p to Heisenberg operators,

x→ x, p→ p, (3.15)

with
[x, p] = i~. (3.16)

The equation for the classical curve

H(x, y)− E = 0 (3.17)

is then promoted to the stationary Schrödinger equation

H(x, p)|ψ〉 = E|ψ〉. (3.18)

3.2 Quantum curves in supersymmetric gauge theory

Although the above considerations were made for a curve of the form (3.1), it turns out that one
can consider more general curves, involving in particular difference (not differential) operators.
For example, let us consider the SW curve for the pure N = 2 Yang–Mills theory with gauge
group SU(N):

ΛN
(
ep + e−p

)
+WN (x) = 0, (3.19)

where

WN (x) =
N∑
k=0

(−1)kxN−khk. (3.20)

The differential on this curve is still (3.3), and the periods of this curve are precisely the SW
periods ai, aD,i, i = 1, · · · , g. The genus zero function F0(ai) is the famous SW prepotential. By
promoting x, p to operators we obtain a difference operator

HN = ΛN
(
ep + e−p

)
+ VN (x), (3.21)

where

VN (x) =

N−1∑
k=0

(−1)kxN−khk. (3.22)

Notice that we have removed the last term, (−1)NhN , since we will interpret it as an eigenvalue.
By acting on wavefunctions, we have

〈x|HN |ψ〉 = ΛN (ψ(x+ i~) + ψ(x− i~)) + VN (x)ψ(x). (3.23)

This is a difference operator. The eigenvalue problem for this operator is

HN |ψ〉 = (−1)N−1hN |ψ〉. (3.24)

In [36] it was suggested that the quantization of curves appearing in supersymmetric gauge
theory, non-critical strings and topological string theory makes it possible to compute quantum
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corrections to genus zero quantities. These quantum corrections were tentatively identified with
“stringy corrections” in the string coupling constant ε1 = −ε2 = gs. However, motivated by [33],
Mironov and Morozov in [37, 38] applied the WKB method to the SW curve, in order to obtain
“quantum corrections” to the SW prepotential. They computed the quantum periods in (3.13)
and determined the quantum free energy (3.14) at the very first orders. They found that this
agrees with the NS limit of the Nekrasov free energy for this theory. In particular, by performing
a perturbative, WKB quantization of the curve, one does not obtain the standard topological
string deformation ε1 = −ε2 = gs, but rather the NS deformation ε1 = ~, ε2 = 0.

3.3 Quantum mirror curves

The next step is to consider the quantization of mirror curves of the form (2.23). Here, we have
to face a standard issue in quantization which didn’t occur in (3.1) nor in (3.19), namely ordering
ambiguities. Upon quantization, the classical term

eax+bp (3.25)

leads to different answers depending on the quantization procedure. The most natural prescrip-
tion is Weyl quantization, which is simply

eax+bp → eax+bp. (3.26)

Let us consider for simplicity curves (of genus one) of the form (2.31). Weyl quantization leads
to an operator

OX(x, p)→ OX(x, p) (3.27)

and we will interpret κ as (minus) its eigenvalue, as in the case of the SW curve. We can now
look for solutions of

OX(x, p)|ψ〉 = −κ|ψ〉 (3.28)

by using the WKB method, and calculate the corresponding deformation of F0(t). This was done
in [39] with the same result obtained in [37, 38] for the SW curve: the deformation gives the NS
free energy.

Remark 3.1. In the literature on quantum curves it is sometimes argued that the WKB wave-
function can be constructed with the Eynard–Orantin recursion, which corresponds to the stan-
dard topological string ε1 = −ε2 = gs. This is clearly in tension with the results of [37, 39], and
it is probably true only when the curve has genus zero.

Remark 3.2. The above result shows that, in the case of the NS limit of the refined topological
string, the mirror computation of the amplitudes is the WKB method as applied to the mirror
curve. For the general refined amplitudes, no explicit mirror formulation has been found so far.

3.4 Spectral theory and quantum curves

The WKB approach of [37, 39] is very nice but it does not lead us beyond a perturbative approach.
It does not say anything about the standard topological string, which was the original goal of
[36]. In order to go beyond perturbation theory in ~, we have to look at the exact spectral
problem defined by the quantum operators obtained by quantizing the mirror curve (or the SW
curve).

In pursuing this approach, one has to abandon momentarily the realm of complex variables.
Mirror curves are complex curves, and all variables appearing there (x, p, κ, ...) are in principle
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complex. However, in spectral theory (or Quantum Mechanics) we need to impose reality con-
ditions (e.g. we want operators to be self-adjoint). In fact, spectral properties are very sensitive
to positivity conditions. Once we understand a spectral problem in some range of values, one
can try to extend it to more general values of the parameters. As we will see, in spite of all
these reality conditions, we will eventually recover to a large extent the original, complex realm
of topological string theory.

The first reality choice we have to make concerns the quantization of the curve itself. Namely,
we have assumed that the variables x, p appearing in the curve become self-adjoint Heisenberg
operators on L2(R), so that ex, ep act as

〈x|ex|ψ〉 = exψ(x), 〈x|ep|ψ〉 = ψ(x− i~). (3.29)

In particular, the domain of the operator ep consists of functions which admit an analytic con-
tinuation to the strip

S−~ = {x− iy ∈ C : 0 < y < ~} , (3.30)

such that ψ(x− iy) ∈ L2(R) for all 0 ≤ y < ~, and the limit

ψ (x− i~ + i0) = lim
ε→0+

ψ (x− i~ + iε) (3.31)

exists in the sense of convergence in L2(R). In addition, we will assume that ~ ∈ R>0. Finally,
many mirror curves involve a “mass parameter”. For example, in local F0, the curve involves the
function

OX = ex +mF0e−x + ep + e−p (3.32)

where mF0 is in principle a complex parameter, associated to a Kähler parameter of the CY.
However, as we will see, it is useful to start the analysis in the case mF0 > 0.

Once this has been settled, we can ask about the spectral properties of these operators. Take
for example the operator associated to local P2, which is the Weyl quantization of (2.37):

OP2 = ex + ep + e−x−p. (3.33)

To have a first approach to the spectrum, we can use numerical methods, as pointed out in [40].
First, one should choose an appropriate orthonormal basis of functions {φi}i=0,1,··· of L2(R), in
the domain of OP2 (for example, the eigenfunctions of the harmonic oscillator will do). Then,
the eEn are the eigenvalues of the infinite-dimensional matrix

Mij = (φi,OP2φj), i, j = 0, 1, · · · . (3.34)

They can be obtained numerically by truncating the matrix to very large sizes. Boundary effects
can be partially eliminated with standard extrapolation methods, and one can find very accurate
values for the En. For ~ = 2π, the results for the very first eigenvalues are listed in Table 1.

Another approach that we can follow is the WKB method that we presented above. al-
though our quantum operator (3.33) is not of the standard form (3.1), we can still use the
Bohr–Sommerfeld condition. The classical counterpart of the operator OP2 is the function (2.37)
on the phase space R2. The analogue of the hyperelliptic curve (3.2) is now,

OP2(x, y) = eE , (3.35)

and the function (2.37) defines a compact region in phase space

R(E) = {(x, y) ∈ R2 : OP2(x, y) ≤ eE}, (3.36)
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n En
0 2.56264206862381937
1 3.91821318829983977
2 4.91178982376733606
3 5.73573703542155946
4 6.45535922844299896

Table 1. Numerical spectrum of the operator (3.33) for n = 0, 1, · · · , 4, and ~ = 2π.

The Bohr–Sommerfeld quantization condition is that

vol0(E) = 2π~
(
n+

1

2

)
, n = 0, 1, 2, · · · (3.37)

where vol0(E) is the volume of the regionR(E). This volume can be computed explicitly in terms
of special functions, but since the resulting quantization condition is only valid at large energies,
it is worth to simplify it, as follows. At large E, the region R(E) has a natural mathematical
interpretation: it is the region enclosed by the tropical limit of the curve

ex + ey + e−x−y − eE = 0, (3.38)

and limited by the lines

x = E, y = E, x+ y + E = 0, (3.39)

see Fig. 2 for an illustration when E = 15. In this polygonal limit, we find

vol0(E) ≈ 9E2

2
, (3.40)

and we obtain from (3.37) the following approximate behavior for the eigenvalues, at large quan-
tum numbers,

En ≈
2

3

√
π~n1/2, n� 1. (3.41)

It can be seen, by direct examination of the numerical spectrum, that this rough WKB estimate
gives a good approximation to the eigenvalues of the operator (3.33) when n is large. The
estimate (3.41) has been rigorously proved in [41].

!30 !20 !10 0 10 20
!30

!20

!10

0

10

20

Figure 2. The region R(E) for E = 15.
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The above analysis shows that the spectrum of OP2 is discrete, just as that of a confining
potential in conventional QM. This also suggests that ρP2 = O−1

P2 is a compact operator. In fact,
more is true. Semiclassically, we have

TrρP2 =

∫
dxdp

2π

1

ex + ep + e−x−p
< +∞ (3.42)

which suggests that ρP2 is a trace class operator. We recall that an operator ρ is trace class if

Trρ < +∞. (3.43)

If ρ is of trace class, it is in particular compact and Hilbert–Schmidt, and all its powers are trace
class as well. Therefore, all its spectral traces are finite

Trρ` < +∞, ` = 1, 2, · · · (3.44)

The fact that ρP2 is trace class was proved in [42], by an explicit calculation of the integral
kernel of ρP2 . In fact, in [34] we proposed that, for local del Pezzo (2.24), and provided the mass
parameters are positive, the operator

ρS = O−1
S (3.45)

is of trace class (this can be extended to the general toric case, as done in [43]).

Remark 3.3. The operators OS can be constructed as well as Hamiltonians of cluster integrable
systems [44] for mirror curves of genus one.

3.5 Fredholm determinants

Trace class operators occupy a central rôle in spectral theory, and they are in a sense the “best”
possible operators one can consider: they are compact, therefore they have a discrete spectrum,
and in addition are all their spectral traces are finite. Given a trace class operator ρ, its spectral
or Fredholm determinant is defined by an infinite determinant

Ξ(κ) = det (1 + κρ) . (3.46)

The trace class property guarantees [45, 46] that these determinant exists and is an entire function
of κ.

One conceptual reason to introduce the Fredholm determinant is the following. We want
to relate the world of spectral theory to the world of topological strings. However, the natural
mathematical objects in these worlds are very different. Topological string free energies are
complex functions, analytic in a domain of the complex plane. Spectral theory deals with discrete
spectra. If topological strings are to emerge from quantum mechanics, we need a way of obtaining
smooth objects from discrete objects. The Fredholm determinant encodes the spectrum but at
the same time is an analytic function of its parameter and then offers a possibility to cross that
bridge.

The Fredholm determinant has as a power series expansion around κ = 0, of the form

Ξ(κ) = 1 +
∞∑
N=1

Z(N)κN , (3.47)

where Z(N) is the fermionic spectral trace, given by

Z(N) = Tr
(
ΛN (ρ)

)
, N = 1, 2, · · · (3.48)
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In this expression, the operator ΛN (ρ) is defined by ρ⊗N acting on ΛN
(
L2(R)

)
. A theorem of

Fredholm asserts that, if ρ(pi, pj) is the kernel of ρ, the fermionic spectral trace can be computed
as a multi-dimensional integral,

Z(N) =
1

N !

∫
det (ρ(pi, pj)) dNp. (3.49)

In turn, the logarithm of the Fredholm determinant can be regarded as a generating functional
of the spectral traces of ρ, since

J (κ) = log Ξ(κ) = −
∞∑
`=1

(−κ)`

`
Trρ`. (3.50)

The Fredholm determinant (3.46) has the infinite product representation

Ξ(κ) =
∞∏
n=0

(
1 + κe−En

)
, (3.51)

where e−En are the eigenvalues of ρ. Therefore, one way of obtaining the spectrum of ρ is to
look for the zeroes of Ξ, which occur at

κ = −eEn , n ≥ 0. (3.52)

There are very few operators on L2(R) for which the Fredholm determinant can be written
down explicitly. One family of examples which has been studied in some detail are Schrödinger
operators with homogeneous potentials V (x) = |x|s, s = 1, 2, · · · [47, 48]. In this case, the
Fredholm determinant is defined as a regularized version of

D(E) =
∏
n≥0

(
1 +

E

En

)
, (3.53)

see for example [49] for a detailed treatment. For these potentials, the function D(E) is known
to satisfy certain functional equations and it is captured by integral equations of the TBA type
[48].

3.6 A conjecture for the spectral determinant

One of the surprising (conjectural) results of [34] is that the Fredholm determinant of the oper-
ators ρS can be computed exactly and explicitly in terms of the enumerative invariants of X.

The conjectural expression of [34] for the Fredholm determinant of the operator ρS requires
the two generating functionals of enumerative invariants considered before, (2.8) and (2.53). In
order to state the result, we identify the parameter κ appearing in the Fredholm determinant,
with the geometric modulus of X appearing in (2.31). We will also write κ in terms of the
“chemical potential” µ

κ = eµ. (3.54)

In addition to the modulus κ, we have the “mass parameters” ξj . The flat coordinates for the
Kähler moduli space, ti, are related to κ and ξj by the mirror map, and at leading order, in the
large radius limit, we have

ti ≈ ciµ−
s−1∑
j=1

αij log ξj , i = 1, · · · , s, (3.55)
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where ci, αij are constants. As shown in [39], the WKB approach makes it possible to define a
quantum mirror map ti(~), which in the limit ~→ 0 agrees with the conventional mirror map. It
is a function of µ, ξj and ~ and it can be computed as an A-period of a quantum corrected version
of the differential (2.38). This quantum correction is simply obtained by using the all-orders,
perturbative WKB method of Dunham.

We now introduce two different functions of µ. The first one is the WKB grand potential,

JWKB
S (µ, ξ, ~) =

s∑
i=1

ti(~)

2π

∂FNS(t(~), ~)

∂ti
+

~2

2π

∂

∂~

(
FNS(t(~), ~)

~

)

+

s∑
i=1

2π

~
biti(~) +A(ξ, ~).

(3.56)

In this equation, FNS(t, ~) is given by the expression (2.53). In the second term of (3.56), the
derivative w.r.t. ~ does not act on the implicit dependence of ti. The coefficients bi appearing
in the last line are the same ones appearing in (2.4). The function A(ξ, ~) is not known in
closed form for arbitrary geometries, although detailed conjectures for its form exist in various
examples. It is closely related to a all-genus resummed version of the constant map contribution
Cg appearing in (2.5). The second function is the “worldsheet” grand potential, which can be
obtained from the generating functional (2.8),

JWS
S (µ, ξ, ~) = FGV

(
2π

~
t(~) + πiB,

4π2

~

)
. (3.57)

In this formula, B is a constant vector (“B-field”) which depends on the geometry under consid-
eration. This vector should satisfy the following requirement: for all d, jL and jR such that the
refined BPS invariant Nd

jL,jR
is non-vanishing, we must have

(−1)2jL+2jR+1 = (−1)B·d. (3.58)

For local del Pezzo CY threefolds, the existence of such a vector was established in [6]. Note
that the effect of this constant vector is to introduce a sign

(−1)wd·B (3.59)

in the generating functional (2.8). An important remark is that, in (3.57), the topological string
coupling constant gs appearing in (2.6) and (2.8) is related to the Planck constant appearing in
the spectral problem by,

gs =
4π2

~
. (3.60)

Therefore, the regime of weak coupling for the topological string coupling constant, gs � 1,
corresponds to the strong coupling regime of the spectral problem, ~ � 1, and conversely,
the semiclassical limit of the spectral problem corresponds to the strongly coupled topological
string. We therefore have a strong-weak coupling duality between the spectral problem and the
conventional topological string.

The total grand potential is the sum of these two functions,

JS(µ, ξ, ~) = JWKB
S (µ, ξ, ~) + JWS

S (µ, ξ, ~), (3.61)
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and it was first considered in [6]. It has the structure

JS(µ, ξ, ~) =
1

12π~

s∑
i,j,k=1

aijktitjtk +
s∑
i=1

(
2πbi
~

+
~bNS
i

2π

)
ti +O

(
e−ti , e−2πti/~

)
, (3.62)

where the last term stands for a formal power series in e−ti , e−2πti/~, whose coefficients depend
explicitly on ~. Note that the trigonometric functions appearing in (2.52) and (2.8) have double
poles when ~ is a rational multiple of π. However, as shown in [6], the poles cancel in the sum
(3.61). This HMO cancellation mechanism was first discovered in [50], in a slightly different
context, and it was first advocated in [51] in the study of quantum curves.

A natural question is whether the formal power series in (3.61) converges, at least for some
values of its arguments. Although we do not have rigorous results on this problem, the available
evidence suggests that, for real ~, JS(µ, ξ, ~) converges in a neighbourhood of the large radius
point ti →∞.

We can now state the main conjecture of [34].

Conjecture 3.4. The Fredholm determinant of the operator ρS is given by

ΞS(κ, ξ, ~) =
∑
n∈Z

exp (JS(µ+ 2πin, ξ, ~)) . (3.63)

The sum over n defines a quantum theta function ΘS (µ, ξ, ~),

ΞS(κ, ξ, ~) = eJS(µ,ξ,~)ΘS (µ, ξ, ~) . (3.64)

The reason for this name is that, when ~ = 2π, the quantum theta function becomes a classical,
conventional theta function, as we will see in a moment. The vanishing locus of the Fredholm
determinant, as we have seen in (3.52), gives the spectrum of the trace class operator. Given the
form of (3.64), this is the vanishing locus of the quantum theta function.

It would seem that the above conjecture is very difficult to test, since it gives the Fredholm
determinant as a formal, infinite sum. However, it is easy to see that the r.h.s. of (3.63)
has a series expansion at large µ in powers of e−µ, e−2πµ/~. In addition, it leads to an integral
representation for the fermionic spectral trace which is very useful in practice: if we write ZS(N, ~)
as a contour integral around κ = 0, simple manipulations give the expression [34, 50]

ZS(N, ~) =
1

2πi

∫
C

eJS(µ,ξ,~)−Nµdµ, (3.65)

where C is a contour going from e−iπ/3∞ to eiπ/3∞. Note that this is the standard contour for
the integral representation of the Airy function and it should lead to a convergent integral, since
JS(µ, ξ, ~) is given by a cubic polynomial in µ, plus exponentially small corrections. Finally, as
we will see in a moment, in some cases the r.h.s. of (3.63) can be written in terms of well-defined
functions.

What is the interpretation of the total grand potential that we introduced in (3.61)? The
WKB part takes into account the perturbative corrections (in ~) to the spectral problem defined
by the operator ρS . In fact, it can be calculated order by order in the ~ expansion, by using
standard techniques in Quantum and Statistical Mechanics (see for example [52, 53]). The
expression (3.56) provides a resummation of this expansion at large µ. However, the WKB piece
is insufficient to solve the spectral problem, since as we mentioned above, (3.56) is divergent for
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a dense set of values of ~ on the real line. Physically, the additional generating functional (3.57)
contains the contribution of complex instantons, which are non-perturbative in ~ [52] and cancel
the poles in the all-orders WKB contribution. Surprisingly, the full instanton contribution in
this spectral problem is simply encoded in the standard topological string partition function.

The formulae (3.56), (3.57), (3.63) are relatively complicated, in the sense that they involve
the full generating functionals (2.52) and (2.8). There is however an important case in which
they simplify considerably, namely, when ~ = 2π. This was called in [34] the “maximally super-
symmetric case,” since in the closely related spectral problem of ABJM theory, it occurs when
there is enhanced N = 8 supersymmetry [54]. In this case, as it can be easily seen from the ex-
plicit expressions for the generating functionals, many contributions vanish. For example, in the
Gopakumar–Vafa generating functional, all terms involving g ≥ 2 are zero. A simple calculation
shows that the function (3.61) is given by

JS(µ, ξ, 2π) =
1

8π2

s∑
i,j=1

titj
∂2F̂0

∂ti∂tj
− 1

4π2

s∑
i=1

ti
∂F̂0

∂ti
+

1

4π2
F̂0(t) + F̂1(t) + F̂NS

1 (t), (3.66)

where F̂0(t), F̂1(t) and F̂NS
1 (t) are the generating functions appearing in (2.3), (2.4) and (2.54),

with the only difference that one has to include as well the sign (3.59) in the expansion in e−ti . It
can be also seen that, for this value of ~, the quantum mirror map becomes the classical mirror
map, up to a change of sign κ → −κ. One can now use (3.66) to compute the quantum theta
function appearing in (3.64). In all cases computed so far, the quantum theta function becomes
a classical theta function. We will now illustrate this simplification in the case of local P2.

Example 3.5. Local P2 has one single Kähler parameter, and no mass parameters. The function
A(~) appearing in (3.56) has been conjectured in closed form, and it is given by

A(~) =
3Ac(~/π)−Ac(3~/π)

4
, (3.67)

where

Ac(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

x

ekx − 1
log(1− e−2x)dx. (3.68)

This function was first introduced in [52], and determined in integral form in [55, 56]. It can
be obtained by an appropriate all-genus resummation of the constants Cg appearing in (2.5). In
the “maximally supersymmetric case” ~ = 2π, one can write the Fredholm determinant in closed
form. The standard topological string genus zero free energy is given in (2.43), (2.44). The genus
one free energies are given by (see e.g. [30, 57]):

F1(t) =
1

2
log

(
−dz

dt

)
− 1

12
log
(
z7 (1 + 27z)

)
,

FNS
1 (t) = − 1

24
log

(
1 + 27z

z

)
.

(3.69)

We identify

z = e−3µ =
1

κ3
. (3.70)
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Then, it follows from the conjecture above that

ΞP2(−κ, 2π) = det (1− κρP2)

= exp

{
A(2π) +

1

4π2

(
F0(t)− t∂tF0(t) +

t2

2
∂2
t F0(t)

)
+ F1(t) + FNS

1 (t)

}
× eπi/8ϑ2

(
ξ − 1

4
, τ

)
,

(3.71)

where

ξ =
3

4π2

(
t∂2
t F0(t)− ∂tF0(t)

)
, τ =

2i

π
∂2
t F0(t), (3.72)

and ϑ2 (z, τ) is the Jacobi theta function. The τ appearing here is the standard modulus of the
genus one mirror curve of local P2. In particular, one has that Im(τ) > 0. The formulae that we
have written down here are slightly different from the ones listed earlier in this section, since we
are changing the sign of κ in the Fredholm determinant, but they can be easily derived from them.
We can now perform a power series expansion around κ = 0, by using analytic continuation of
the topological string free energies to the so-called orbifold point, which corresponds to the limit
z → ∞. This is a standard exercise in topological string theory (see for example [9]), and one
finds [34]

ΞP2(κ, 2π) = 1 +
κ

9
+

(
1

12
√

3π
− 1

81

)
κ2 +O(κ3), (3.73)

provided some non-trivial identities are used for theta functions. This predicts the values of the
very first fermionic spectral traces ZP2(N, 2π), for N = 1, 2. Interestingly, these traces can be
calculated directly in spectral theory, and the values appearing in the expansion (3.73) have been
verified in this way in [42, 58].

3.7 Non-perturbative topological strings

Perhaps one of the most compelling consequences of the conjectures in [34] is that it provides a
completely well-defined non-perturbative definition of the standard topological string partition
function (one should be aware that many of the proposals in the literature for such a non-
perturbative completion are not even well-defined as functions, and/or they do not reproduce
manifestly the perturbation series that one is supposed to complete).

Again, we face here the problem of how to reconstruct a continuous, geometric world from
the discrete world of quantum-mechanical spectra. We have seen that the spectral determinant
provides a bridge between these two worlds. Let us then consider the following ’t Hooft like
double-scaling limit:

~→∞, µ→∞, µ

~
= ζ fixed. (3.74)

For simplicity, we will also assume that the mass parameters ξj scale in such a way that

mj = ξ
2π/~
j , j = 1, · · · , s− 1, (3.75)

are fixed (although other limits are possible, see [59] for a detailed discussion). It is easy to see
that, in this limit, the quantum mirror map becomes trivial. The grand potential entering into
the spectral determinant has then the asymptotic expansion,

J’t Hooft
S (ζ,m, ~) ∼

∞∑
g=0

JSg (ζ,m) ~2−2g, (3.76)
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where

JS0 (ζ,m) =
1

16π4

(
F̂0 (t) + 4π2

s∑
i=1

bNS
i ti + 14π4A0 (m)

)
,

JS1 (ζ,m) = A1 (m) + F̂1 (t) ,

JSg (ζ,m) = Ag (m) + (4π2)2g−2
(
F̂g (t)− Cg

)
, g ≥ 2.

(3.77)

In these equations,

ti = 2πciζ −
s−1∑
j=1

αij logmj , (3.78)

and F̂g (t) are the standard topological string free energies as a function of the standard Kähler
parameters t, after turning on the B-field as in (3.59). We have also assumed that the function
A (ξ, ~) has the expansion

A (ξ, ~) =

∞∑
g=0

Ag(m)~2−2g, (3.79)

and this assumption can be tested in examples. We conclude that, in this scaling limit, the
grand potential has an asymptotic expansion given by the topological string free energies in the
large radius frame. It follows from (3.64) that the logarithm of the spectral determinant has an
asymptotic expansion given also by the topological strings, and in addition “modulated” by the
contribution of the quantum theta function. A similar type of asymptotics, involving generalized
theta functions, has already appeared in the theory of random matrices [60].

This behavior has also another implication, in which the “continuous” physics of the topo-
logical string appears through a large N limit of a discretized quantity, as it happens in large
N dualities. Indeed, let us consider the corresponding ’t Hooft limit of the fermionic spectral
traces,

~→∞, N →∞, N

~
= λ fixed. (3.80)

Then, it follows from (3.65) that one has the following asymptotic expansion,

log ZS(N, ~) =
∑
g≥0

Fg(λ)~2−2g, (3.81)

where Fg(λ) can be obtained by evaluating the integral in the right hand side of (3.65) in the
saddle-point approximation and using just the ’t Hooft expansion of JS(µ, ξ, ~). At leading order
in ~, this is just a Legendre transform, and one finds

F0(λ) = JS0 (ζ,m)− λζ, (3.82)

evaluated at the saddle-point given by

λ =
∂JS0
∂ζ

. (3.83)

The higher order corrections can be computed systematically. In fact, the formalism of [9] gives
a nice geometric description of the integral transform (3.65) in the saddle-point approximation:
the functions Fg(λ) are simply the free energies of the topological string on X, but on a different
frame. This frame corresponds to the so-called conifold point of the geometry. In particular, λ
turns out to be a vanishing period at the conifold point.
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Therefore, the conjecture (3.63), in its form (3.65), provides a precise prediction for the ’t
Hooft limit of the fermionic spectral traces: they are encoded in the standard topological string
free energy, but evaluated at the conifold frame. It turns out that this prediction can be tested in
detail. The reason is that, at least in some cases, the fermionic spectral traces can be expressed
as random matrix integrals, and their ’t Hooft limit can be studied by using various techniques
developed for matrix models at large N . This solves in fact the long-standing problem of finding
matrix model representations for topological strings on toric CY manifolds. For example, for
local P2 and other geometries, one finds a matrix model of the form [59],

Z(N, ~) =
1

N !

∫
RN

dNu

(2π)N

∏
i<j 4 sinh

(
ui−uj

2

)2

∏
i,j 2 cosh

(
ui−uj

2 + iπC
) N∏
i=1

e−V (ui,~), (3.84)

where the potential function V (u, ~) is explicitly known in many examples and it can be expressed
in terms of Faddeev’s quantum dilogarithm. (3.84) can be regarded as a generalization of the
O(2) matrix model [61–63].

One finds in this way a description of the all-genus topological string free energy of local
P2 and other geometries as the asymptotic ’t Hooft expansion of matrix integral of the form
(3.84). Detailed calculations show that the expansion obtained in this way agrees exactly with
the predictions of (3.65). In fact, the conjecture “explains” many aspects of topological string
theory at the conifold point, for many toric CY geometries. For example, it has been known for
some time that the leading terms in the expansion of the conifold free energies are universal [64],
and that they agree with the all-genus free energy of the Gaussian matrix model. Since matrix
models like (3.84) are deformations of the Gaussian one, this observation is a consequence of our
conjecture (or, equivalently, this observation must hold in order for the conjecture to be true).
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Henri Poincaré 18 (2017) 559–622, [1507.02096].

[44] A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, 1107.5588.

[45] B. Simon, Notes on infinite determinants of hilbert space operators, Advances in Mathematics 24
(1977) .

[46] B. Simon, Trace ideals and their applications. American Mathematical Society, Providence,
second ed., 2000.

[47] A. Voros, The return of the quartic oscillator. The complex WKB method, Annales de l’I.H.P.
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