Gauge fields over noncommutative manifolds

Giovanni Landi

Trieste
Why we are doing this:

put together some Yang–Mills-Higgs systems

with noncommutative spaces

hoping to get interesting stuff
Vortices and gauge fields; Taubes,

The Ginzburg–Landau equations for vortices is related to the four dimensional Yang–Mills equations via reduction:

any $SO(3)$ symmetric solution to the $SU(2)$ Y–M eqs on $\mathbb{R}^2 \times S^2$

determines a solution to the G–L eqs on \mathbb{R}^2 and vice versa.
\(M \) a compact oriented Riemann surface
(or maybe \(\mathbb{R}^2 \) with suitable boundary conditions,
e.g. locally bounded and globally square integrable curvatures);

holomorphic vector bundles \(\mathcal{E}_0, \mathcal{E}_1 \) over \(M \) and a holomorphic

\[
\mathcal{E}_0 \xrightarrow{\phi} \mathcal{E}_1
\]

self-duality equations

\[
\star F_\nabla = - F_\nabla
\]
on \(M \times S^2 \) are vortex equations

\[
\star F_\nabla_0 = \text{id}_{\mathcal{E}_0} - \phi \circ \phi^* \quad \text{and} \quad \star F_\nabla_1 = - \text{id}_{\mathcal{E}_1} + \phi^* \circ \phi
\]
on \(M \)
Equivariant dimensional reduction:

a systematic procedure for including internal fluxes on S/R (instantons and/or monopoles of R-fields)

which are ‘symmetric’ (equivariant) under S

Monopoles; relevant for QHE
F.D. Haldane,

Instantons; relevant for Spin HE
S.-C. Zhang, J.-P. Hu
A four-dimensional generalization of the quantum Hall effect, Science (2001)
Physics: A brief history of dimensional reduction

Kaluza (1921), Klein (1926): the observed fundamental forces in 4-dimensions can be understood in terms of the dynamics of a simpler higher dimensional theory

Starting from a 5-D theory on $M_5 = M_4 \times S^1$, the product of a curved 4-D space-time M_4 and a circle with radius r (and coordinate $0 \leq y < 2\pi$). Take the line element

$$ds^2_{(5)} = ds^2_{(4)} + (rdy + A(x))^2,$$

with $A(x) = A_\mu(x)dx^\mu$ a 4-dimensional vector potential
The 5-dimensional Einstein action reduces to

\[
\frac{1}{2\pi r} \int_{M_5} \sqrt{-g(5)} R(5) \, d^4x \, dy = \int_{M_4} \sqrt{-g(4)} \left(R(4) - \frac{1}{4} F^2 \right) \, d^4x,
\]

\(F = dA\) is a \(U(1)\) field strength in 4-dimensions.

Matter, e.g. a scalar field \(\Phi\), harmonically expanded on \(S^1\),

\[
\Phi(x, y) = \sum_{n=-\infty}^{\infty} \phi_n(x) e^{\frac{iny}{r}},
\]

then the 5-dimensional kinetic term for \(\Phi\) gives rise to an infinite tower of massive fields \(\phi_n(x)\) in \(M_4\), with masses \(m_n = \frac{n}{r}\).
A non-abelian generalisation of the K-K idea,

Start from d-dimensional Y–M theory on $M_4 \times S/R$ with gauge group G

If $R \subset G$, integrating over S/R gives a Y–M–H system on M_4, with gauge group K, the centraliser, i.e. $[R, K] = 0$, of R in G

Upon dimensional reduction the internal components of the d-dimensional gauge field A play the rôle of Higgs fields in 4-dim:

$$A(x, y) \longrightarrow \begin{cases} A_\mu(x) \text{ (4-dim gauge fields)} \\ \Phi_a(x) \text{ (4-dim Higgs fields)} \end{cases}$$
A Higgs potential is generated from the d-dimensional Y–M action. Indeed, the full d-dim Y–M action reduces as

$$-\frac{1}{4} \int_{M_d} \sqrt{-g(d)} \text{Tr}(F^2) d^4x d^{d-4}y =$$

$$= \text{vol}(S/R) \int_{M_4} \sqrt{-g(4)} \text{tr} \left(-\frac{1}{4} F^2 + (D\Phi)^\dagger D\Phi - V(\Phi) \right) d^4x$$

The Higgs potential breaks K dynamically: if $S \subset G$, $V(\Phi)$ breaks K spontaneously to K', the centraliser, $[S, K'] = 0$, of S in G.
The Ginsburg–Landu action functional

\[GL(A, \Phi) = \int_{\mathbb{R}^2} \text{tr} \left(-\frac{1}{4} F^2 + D\Phi^\dagger D\Phi + \lambda(\Phi^\dagger \Phi - 1)^2 \right) \]

with critical points as mentioned self-duality equation are vortex equations:

\[*F = \text{id}_{\mathbb{R}^2} - \Phi \circ \Phi^* \quad \text{and} \quad D\Phi = 0 \]
a caveat:

In the co-set space dimensional reduction programme, spinors on $M_4 \times S/R$ cannot give a chiral theory on M_4

rather anti-climax, one should admit !!!
Equivariant dimensional reduction

Equivariant dimensional reduction is a systematic procedure for including internal fluxes on S/R (instantons and/or monopoles of R-fields) which are ‘symmetric’ (equivariant) under S

In general, a one-to-one correspondence between S-equivariant complex vector bundles over M_d

$$B \rightarrow M_d = M_4 \times S/R,$$

and R-equivariant bundles over M_4,

$$E \rightarrow M_4,$$

where S acts on the space M_d via the trivial action on M_4 and by the standard left translation action on S/R
In general the reduction yields rise quiver gauge theories on M_4.

Including spinor fields, coupling to background equivariant fluxes, can give rise to chiral theories on M_4.

Yukawa couplings are induced and the dimensional reduction can give masses to some zero modes of the Dirac operator on S/R.
A simple example: Complex projective line

\(S = SU(2) \) and \(R = U(1) \), giving a 2-dim sphere \(S^2 \simeq SU(2)/U(1) \) (or projective line \(\mathbb{CP}^1 \)), and with \(G = U(k) \).

An embedding \(S \hookrightarrow G \) results into a decomposition

\[
U(k) \rightarrow \prod_{i=0}^{m} U(k_i),
\]

\(k = \sum_{i=0}^{m} k_i \), associated with the \(m + 1 \)-dim I.R. of \(SU(2) \)

\(g \in G \) decomposes as:

\[
g = (g_{k_i} \times k_i), \quad g_{k_i} \times k_i \quad \text{on} \quad \mathbb{C}^{k_i}
\]

each \(\mathbb{C}^{k_i} \) transforms under \(U(k_i) \subset U(k) \)

carries a \(U(1) \) charge \(p_j = m - 2j \), for \(-m \leq p_j \leq m \).
The $U(k)$ gauge potential, A on M_d, splits into $k_i \times k_j$ blocks

$$A(x, y) = A(x) + a(y) + \Phi(x)\overline{\beta}(y) + \Phi^\dagger(x)\beta(y),$$

$$a = \bigoplus_{i=0}^{m}a_{m-2i}, \quad a_{m-2i} \text{ charge } m-2i \text{ monopole connection}$$

$A(x) = \bigoplus_{i=0}^{m}A^i(x)$, $A^i(x)$ is a $U(k_i)$ gauge connection on M_4,

and $\Phi(x)$ is a collection of Higgs fields.

$$A(x, y) = \begin{pmatrix}
A^0 + a_m \mathbf{1}_{k_0} & \phi_1\overline{\beta} & 0 & \cdots & 0 \\
\phi_1^\dagger\beta & A^1 + a_{m-2} \mathbf{1}_{k_1} & \phi_2\overline{\beta} & \cdots & 0 \\
0 & \phi_2^\dagger\beta & \vdots & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \phi_m\overline{\beta} \\
0 & 0 & 0 & \cdots & A^m + a_{-m} \mathbf{1}_{k_m}
\end{pmatrix}$$
Dimensional reduction generates a 4-dim Higgs potential,

\[V(\Phi) = \frac{g^2}{2} \text{tr}_k \left(\frac{1}{4g^2 r^2} \begin{pmatrix} m^1_{k0} & 0 & \cdots & 0 \\ 0 & (m-2)^1_{k1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -m^1_{km} \end{pmatrix} - [\Phi, \Phi^\dagger] \right)^2, \]

whose minimization gives a vacuum structure depending on the monopole charges \(p_j = m - 2j \)
all of the above is related to stability of bundles

a form of Hitchin-Kobayashi correspondence

but
let us

move to noncommutative spaces

interesting consequences: e.g. de-singularization of moduli spaces
A dictionary:

<table>
<thead>
<tr>
<th>Classical</th>
<th>Noncommutative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(locally) compact space</td>
<td>(unital) C*-algebra</td>
</tr>
<tr>
<td>smooth manifold</td>
<td>C*-algebra with ‘smooth’ subalgebra</td>
</tr>
<tr>
<td>vector bundle</td>
<td>finite projective module</td>
</tr>
<tr>
<td>spin structure</td>
<td>spectral triple</td>
</tr>
</tbody>
</table>

....
Symmetries

\[U = (U, \Delta, S, \varepsilon) \text{ a Hopf } \ast\text{-algebra} \]

\[\Delta : U \to U \otimes U \quad \text{the coproduct} \]

\[S : U \to U \quad \text{the antipode} \]

\[\varepsilon : U \to \mathbb{C} \quad \text{counit} \]

\(\mathcal{A} \text{ a left } U\text{-module } \ast\text{-algebra: there is a left action } \triangleright \text{ of } U \text{ on } \mathcal{A}, \)

\[h \triangleright xy = (h_{(1)} \triangleright x)(h_{(2)} \triangleright y), \]

\[h \triangleright 1 = \varepsilon(h)1, \quad (h \triangleright x)^* = S(h)^* \triangleright x^*, \]

notation \(\Delta : U \to U \otimes U, \quad \Delta(h) = h_{(1)} \otimes h_{(2)}. \)
Connections on bundles

a space traded with a noncommutative algebra \mathcal{A} (and a calculus $(\Omega(\mathcal{A}), d)$)

a vector bundle traded with a finitely generated projective (right) \mathcal{A}-module \mathcal{E}

a connection:

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1(\mathcal{A}), \quad \nabla(\eta a) = \nabla(\eta)a + \eta da$$
M a smooth manifold; $\mathbb{C}P^1_q$ the quantum projective line

Characterize vector bundles over the quantum space

$$\underline{M} := \mathbb{C}P^1_q \times M$$

equivariant under an action of the quantum group $SU_q(2)$

These are finitely-generated and projective $SU_q(2)$-equivariant modules over the algebra of functions

$$\mathcal{A}(\underline{M}) = \mathcal{A}(\mathbb{C}P^1_q) \otimes \mathcal{A}(M)$$
Describe the dimensional reduction of invariant connections

In particular, Yang–Mills gauge theory on $\mathcal{A}(M)$ is reduced to a type of Yang–Mills–Higgs theory on the manifold M

The equations of motion give q-deformations of known vortex equations, whose solutions possess remarkable properties

In particular desingularization of moduli spaces
$q \in \mathbb{R}_{>0}$ \hspace{1cm} $q \simeq q^{-1}$

$\mathcal{A}(SU_q(2)) :=$ \ast-algebra generated by a and c, with relations

$UU^* = U^*U = 1$ \hspace{1cm} $U = \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix}$

$ac = qca, \hspace{1cm} ac^* = qc^*a, \hspace{1cm} cc^* = c^*c,$

$a^*a + c^*c = aa^* + q^2cc^* = 1$

Hopf \ast-algebra structure on $\mathcal{A}(SU_q(2))$:

$\Delta U = U \otimes U$ \hspace{1cm} $S(U) = U^*$ \hspace{1cm} $\varepsilon(U) = 1$
These dualize classical operations

\(\mathcal{A}_1 = \mathcal{A}(\text{SU}(2)), \) polynomial functions on \(\text{SU}(2) \)

\[\Delta : \mathcal{A}_1 \to \mathcal{A}_1 \otimes \mathcal{A}_1; \quad (\Delta f)(x \otimes y) = f(xy) \]

\[S : \mathcal{A}_1 \to \mathcal{A}_1; \quad (Sf)(x) = f(x^{-1}) \]

\[\varepsilon : \mathcal{A}_1 \to \mathbb{C}; \quad (\varepsilon f) = f(e) \]
A (right) action: \(\alpha : U(1) \rightarrow \text{Aut}(\mathcal{A}(\text{SU}_q(2))) \)

\[
\alpha_u \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix} = \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix} \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}, \quad \text{for} \quad u \in U(1).
\]

The invariant elements form a subalgebra of \(\mathcal{A}(\text{SU}_q(2)) \), the co-ordinate algebra \(\mathcal{A}(S^2_q) \) of the standard Podleś sphere \(S^2_q \)

\[
\mathcal{A}(S^2_q) = \mathcal{A}(\text{SU}_q(2))^U(1)
\]

the algebra inclusion

\[
\mathcal{A}(S^2_q) \hookrightarrow \mathcal{A}(\text{SU}_q(2))
\]

is a noncommutative principal bundle
As a set of generators for $\mathcal{A}(S^2_q)$ we may take

$$B_- := ac^*, \quad B_+ := ca^*, \quad B_0 := cc^*.$$

A natural complex structure on the 2-sphere S^2_q for the unique 2-dimensional $\text{SU}_q(2)$-covariant calculus;

S^2_q becomes a quantum Riemannian sphere or quantum projective line \mathbb{CP}^1_q.

noncommutative manifolds

SU_q(2) and S^2_q

admit equivariant spectral triples \((\mathcal{A}, \mathcal{H}, D)\)
A vector space decomposition

\[\mathcal{A}(\text{SU}_q(2)) = \bigoplus_{n \in \mathbb{Z}} \mathcal{L}_n, \]

\[\mathcal{L}_n := \mathcal{A}(\text{SU}_q(2)) \boxtimes_{\rho_n} \mathbb{C} \cong \left\{ x \in \mathcal{A}(\text{SU}_q(2)) \mid \alpha_u(x) = x (u^*)^n \right\} \]

for \(u \in \text{U}(1) \)

Each \(\mathcal{L}_n \) is a finitely-generated projective (right, say) \(\mathcal{A}(\mathbb{C}P^1_q) \)-module of rank one

module of \(\text{SU}_q(2) \)-equivariant sections of a line bundles over the quantum projective line \(\mathbb{C}P^1_q \) with degree (monopole charge) \(-n\)
Left covariant calculus

\[\Omega^i = \mathcal{A}(SU_q(2)) \otimes \bigwedge^i \{\beta_+, \beta_-, \beta_z\} \quad 0 \leq i \leq 3 \]

\[\Delta^{(1)}_{L}(\beta_s) = 1 \otimes \beta_s, \quad s = z, \pm, \]

\[\Delta^{(1)}_{L} \] the left-coaction extended to 1-forms

\[\bigoplus \bigwedge^i \{\beta_+, \beta_-, \beta_z\} = \text{the } q\text{-Grassmann algebra:} \]

\[\beta_+ \wedge \beta_+ = \beta_- \wedge \beta_- = \beta_z \wedge \beta_z = 0 \]
\[\beta_- \wedge \beta_+ + q^{-2} \beta_+ \wedge \beta_- = 0 \]
\[\beta_z \wedge \beta_- + q^4 \beta_- \wedge \beta_z = 0, \]
\[\beta_z \wedge \beta_+ + q^{-4} \beta_+ \wedge \beta_z = 0. \]

unique top form: \[\beta_- \wedge \beta_+ \wedge \beta_z \]
Differential $d : \mathcal{A}(\text{SU}_{q}(2)) \to \Omega^{1}(\text{SU}_{q}(2))$:

$$df = (X_+ \triangleright f) \beta_+ + (X_- \triangleright f) \beta_- + (X_z \triangleright f) \beta_z,$$

$$X_z = \frac{1 - K^4}{1 - q^{-2}}, \quad X_- = q^{-1/2}FK, \quad X_+ = q^{1/2}EK$$

E, F, K, K^{-1} generates the q.u.e.a. $\mathcal{U}_{q}(\text{su}(2))$:

$\mathcal{U}_{q}(\text{su}(2))$ is a Hopf $*$-algebra of twisted derivation on $\text{SU}_{q}(2)$:

$$h \triangleright x := x_{(1)} \langle h, x_{(2)} \rangle, \quad x \triangleleft h := \langle h, x_{(1)} \rangle x_{(2)}$$

with notation $\Delta(x) = x_{(1)} \otimes x_{(2)}$

$\langle \ , \ \rangle$ a natural pairing between $\mathcal{U}_{q}(\text{su}(2))$ and $\mathcal{A}(\text{SU}_{q}(2))$
The holomorphic calculus on $\mathbb{C}P^1_q$

By restriction

$$\Omega(\mathcal{A}(S^2_q)) \simeq \mathcal{A}(S^2_q) \oplus (\mathcal{L}_{-2}\beta_- \oplus \mathcal{L}_2\beta_+) \oplus \mathcal{A}(S^2_q)$$

In particular

$$\Omega^1(\mathcal{A}(S^2_q)) = \Omega^-(\mathcal{A}(S^2_q)) \oplus \Omega^+(\mathcal{A}(S^2_q)) \simeq \mathcal{L}_{-2}\beta_- \oplus \mathcal{L}_2\beta_+$$

a complex structure

$$d = \partial + \overline{\partial}, \quad df = (X_+ \triangleright x)\beta_+ + (X_- \triangleright x)\beta_-$$

$$\partial f = (X_+ \triangleright x)\beta_+, \quad \overline{\partial} f = (X_- \triangleright x)\beta_-$$

Also,

$$\Omega^2(\mathcal{A}(S^2_q)) = \mathcal{A}(S^2_q)(\beta_+ \wedge \beta_-) = (\beta_+ \wedge \beta_-) \mathcal{A}(S^2_q)$$
Enlarging the space

For a smooth manifold M, consider $\overline{M} := \mathbb{C}P^1_q \times M$ with ‘coordinate’ algebra,

$$\mathcal{A}(\overline{M}) := \mathcal{A}(\mathbb{C}P^1_q) \otimes \mathcal{A}(M).$$

A coaction of $\text{SU}_q(2)$ on $\mathcal{A}(\overline{M})$; trivially on $\mathcal{A}(M)$ and with canonical coaction Δ_L on $\mathcal{A}(\mathbb{C}P^1_q)$:

$$\Delta : \mathcal{A}(\overline{M}) \longrightarrow \mathcal{A}(\text{SU}_q(2)) \otimes \mathcal{A}(\overline{M}),$$

$$b \otimes f \mapsto m_{13}\left(\Delta_L(b) \otimes (1 \otimes f)\right) = b_{(-1)} \otimes b_{(0)} \otimes f$$

for $b \in \mathcal{A}(\mathbb{C}P^1_q), f \in \mathcal{A}(M)$. Here $\Delta_L(b) = b_{(-1)} \otimes b_{(0)}$

with $b_{(-1)} \in \mathcal{A}(\text{SU}_q(2)), b_{(0)} \in \mathcal{A}(\mathbb{C}P^1_q)$.
A $\text{SU}_q(2)$-equivariant right $\mathcal{A}(\tilde{M})$-module \mathcal{E} carries a coaction

$$\delta : \mathcal{E} \longrightarrow \mathcal{A}(\text{SU}_q(2)) \otimes \mathcal{E}$$

compatible with the coaction Δ of $\mathcal{A}(\text{SU}_q(2))$ on $\mathcal{A}(\tilde{M})$,

$$\delta(\varphi \cdot f) = \delta(\varphi) \cdot \Delta(f) \quad \text{for all} \quad \varphi \in \mathcal{E}, \ f \in \mathcal{A}(\tilde{M})$$

Relate $\mathcal{A}(\text{SU}_q(2))$-equivariant bundles \mathcal{E} on the quantum space \tilde{M} to $\text{U}(1)$-equivariant bundles E over the manifold M.
Proposition 1. Every finitely-generated $\text{SU}_q(2)$-equivariant projective module \mathcal{E} over $\mathcal{A}(\underline{M})$ equivariantly decomposes as

$$\mathcal{E} = \bigoplus_{i=0}^{m} \mathcal{E}_i = \bigoplus_{i=0}^{m} \mathcal{L}_{m-2i} \otimes \mathcal{E}_i$$

(and uniquely up to isomorphism), for some $m \in \mathbb{N}_0$;

\mathcal{E}_i are modules of sections of (usual) vector bundles E_i over M with trivial $\text{SU}_q(2)$ coactions;

\mathcal{L}_n are the above modules of sections of $\text{SU}_q(2)$-equivariant line bundles over $\mathbb{C}P^1_q$.

(there are also morphisms $\Phi_i \in \text{Hom}_{\mathcal{A}(\underline{M})}(\mathcal{E}_{i-1}, \mathcal{E}_i)$, of $\mathcal{A}(\underline{M})$-modules, coming from the $\text{SU}_q(2)$-coaction).
On each $\mathcal{A}(M)$-module \mathcal{E}_i in this decomposition fix an $\mathcal{A}(M)$-valued hermitian structure

$$h_i : \mathcal{E}_i \times \mathcal{E}_i \to \mathcal{A}(M).$$

Combined with the hermitian structure on the line bundles \mathcal{L}_n this gives an $\mathcal{A}(M)$-valued hermitian structure on \mathcal{E}_i defined by

$$h_i = \hat{h}_{m-2i} \otimes h_i : \mathcal{E}_i \times \mathcal{E}_i \to \mathcal{A}(\mathbb{C}P^1_q) \otimes \mathcal{A}(M),$$

and in turn a left $\text{SU}_q(2)$-covariant hermitian structure on \mathcal{E} by

$$h = \bigoplus_{i=0}^{m} h_i : \mathcal{E} \times \mathcal{E} \to \mathcal{A}(M).$$
Lemma 2. A unitary connection ∇ on $(\mathcal{E}, \mathcal{H})$ decomposes as

$$\nabla = \sum_{i=0}^{m} \left(\nabla_i + \sum_{j<i} \left(\beta_{ji} - \beta_{ji}^* \right) \right),$$

where:

1. Each ∇_i is a unitary connection on $(\mathcal{E}_i, \mathcal{H}_i)$, i.e.
 $$\mathcal{H}_i(\nabla_i \varphi, \psi) + \mathcal{H}_i(\varphi, \nabla_i \psi) = d \left(\mathcal{H}_i(\varphi, \psi) \right) \text{ for } \varphi, \psi \in \mathcal{E}_i.$$

2. For $j \neq i$,
 $$\beta_{ji} \in \text{Hom}_{\mathcal{A}(\mathcal{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_j)) \text{ is the adjoint of } -\beta_{ij}, \text{ i.e.}$$
 $$\mathcal{H}(\beta_{ji} \varphi, \psi) + \mathcal{H}(\varphi, \beta_{ij} \psi) = 0 \text{ for } \varphi \in \mathcal{E}_i, \psi \in \mathcal{E}_j.$$
In an analogous way, any element A of the space (of anti-hermitian elements) $\text{Hom}^a_{A(\mathcal{M})}(\mathcal{E}, \Omega^1(\mathcal{E}))$ decomposes as

$$A = \sum_{i=0}^{m} \left(A_i + \sum_{j<i} \left(A_{ji} - A_{ji}^* \right) \right),$$

with

$$A_i \in \text{Hom}^a_{A(\mathcal{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_i)), \quad A_{ji} \in \text{Hom}_{A(\mathcal{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_j))$$

leading to a decomposition

$$\text{Hom}^a_{A(\mathcal{M})}(\mathcal{E}, \Omega^1(\mathcal{E})) \cong \bigoplus_{i=0}^{m} \left(\text{Hom}^a_{A(\mathcal{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_i)) \right)$$

$$\oplus \bigoplus_{j<i} \text{Hom}_{A(\mathcal{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_j)),$$
SU\(_q\)(2)-invariant connections and gauge transformations

On \(\mathcal{E} = \bigoplus_i \mathcal{E}_i = \bigoplus_i \mathcal{L}_{m-2i} \otimes \mathcal{E}_i\) a coaction \(\Delta_\mathcal{E}\) of \(\mathcal{A}(SU_q(2))\) which combines the natural coaction of \(\mathcal{A}(SU_q(2))\) on the modules \(\mathcal{L}_{m-2i}\) and the trivial coaction on the modules \(\mathcal{E}_i\):

\[
\Delta_\mathcal{E} : \mathcal{E} \rightarrow \mathcal{A}(SU_q(2)) \otimes \mathcal{E}.
\]

‘Adjoint’ coactions of \(\mathcal{A}(SU_q(2))\) on

the space \(\mathcal{C}(\mathcal{E})\) of unitary connections,

the group \(\mathcal{U}(\mathcal{E})\) of gauge transformations,

the spaces \(\text{Hom}_{\mathcal{A}(\underline{M})}(\mathcal{E}_i, \mathcal{E}_j)\) and \(\text{Hom}_{\mathcal{A}(\underline{M})}(\mathcal{E}_i, \Omega^1(\mathcal{E}_j))\).
The corresponding space of coinvariant elements, i.e.

\[\mathcal{C}(\mathcal{E})^{SU_q(2)} = \{ \nabla \in \mathcal{C}(\mathcal{E}) \mid \Delta^C(\nabla) = 1 \otimes \nabla \} , \]

and similarly for the other spaces and coactions

These spaces of invariants are given in terms of objects defined on \(M \) and of canonical (and unique) objects defined on \(\mathbb{C}P^1_q \).
Proposition 3. There is a bijection

\[\mathcal{C}(\mathcal{E})^{\text{SU}_q(2)} \simeq \mathcal{C}(\mathcal{E}) := \prod_{i=0}^{m} \left(\mathcal{C}(\mathcal{E}_i) \times \text{Hom}_{A(M)}(\mathcal{E}_i, \mathcal{E}_{i+1}) \right) \]

associate, to any element \((\nabla, \phi)\) of \(\mathcal{C}(\mathcal{E})\), given by:

- connections \(\nabla_i \in \mathcal{C}(\mathcal{E}_i)\)
- Higgs fields \(\phi_{i+1} \in \text{Hom}_{A(M)}(\mathcal{E}_i, \mathcal{E}_{i+1})\),

the \(\text{SU}_q(2)\)-invariant unitary connection \(\nabla \in \mathcal{C}(\mathcal{E})^{\text{SU}_q(2)}\):

\[\nabla = \sum_{i=0}^{m} \left(\nabla_i + \beta_+ \otimes \phi_{i+1} + \beta_- \otimes \phi_{i+1}^* \right). \]
Here ∇_i is the unitary connection on (\mathcal{E}_i, h_i) given by
\[
\nabla_i = \widehat{\nabla}_{m-2i} \otimes \text{id} + \text{id} \otimes \nabla_i,
\]
with
\[
\widehat{\nabla}_{m-2i} \text{ the unique } SU_q(2)\text{-invariant unitary connection on the hermitian line bundle } (\mathcal{L}_{m-2i}, \hat{h}_{m-2i}) \text{ over } \mathbb{C}P^1_q
\]
$\beta_+ , \beta_- \text{ the basis holomorphic, anti-holomorphic, 1-forms on } \mathbb{C}P^1_q$
Proposition 4. There is a bijection

\[\mathcal{U}(\mathcal{E})^{SU_q(2)} \simeq \mathcal{U}(\mathcal{E}) := \prod_{i=0}^{m} \mathcal{U}(\mathcal{E}_i) , \]

which associates to

any element \(u = (u_0, u_1, \ldots, u_m) \in \mathcal{U}(\mathcal{E}) \)

the \(SU_q(2) \)-invariant gauge transformation of \((\mathcal{E}, h)\)

\[u = \sum_{i=0}^{m} u_i \quad \text{with} \quad u_i = 1 \otimes u_i \in \mathcal{U}(\mathcal{E}_i)^{SU_q(2)} \simeq \mathbb{C} \otimes \mathcal{U}(\mathcal{E}_i) . \]
Integrable connections

M be a complex manifold, with standard complex structure. Combined with the complex structure for the differential calculus on $\mathcal{A}(\mathbb{C}P^q_1)$ we get a natural complex structure for the calculus on the algebra $\mathcal{A}(M) = \mathcal{A}(\mathbb{C}P^q_1) \otimes \mathcal{A}(M)$.

If ∇ is a connection on the $\mathcal{A}(M)$-module \mathcal{E} with equivariant decomposition as before, then the $(0,2)$-component of its curvature $F^{0,2}_{\nabla}$ is an element of $\text{Hom}_{\mathcal{A}(M)}(\mathcal{E}, \Omega^{0,2}(\mathcal{E}))$.

The connection ∇ is then integrable if $F^{0,2}_{\nabla} = 0$. In this case the pair (\mathcal{E}, ∇) is a holomorphic vector bundle.
Let $\mathcal{C}(\mathcal{E}_i)^{1,1}$ be the integrable unitary connections on (\mathcal{E}_i, h_i).

Let $\mathcal{C}(\mathcal{E})^{1,1} \subset \mathcal{C}(\mathcal{E})$ made of

- integrable connections $\nabla^\partial_i \in \mathcal{C}(\mathcal{E}_i)^{1,1}$

- Higgs fields $\phi^*_{i+1} \in \text{Hom}_{\mathcal{A}(M)}(\mathcal{E}_{i+1}, \mathcal{E}_i)$ s. t.

 $\nabla^\partial_{i+1,i}(\phi^*_{i+1}) := \phi^*_{i+1} \circ \nabla^\partial_{i+1} - \nabla^\partial_i \circ \phi^*_{i+1} = 0$.

Then, Proposition 3 yields a bijection

$$\mathcal{C}(\mathcal{E})^{1,1} \simeq (\mathcal{C}(\mathcal{E})^{1,1})^{\text{SU}_q(2)}$$

with the space of $\text{SU}_q(2)$-invariant integrable connections.
Yet another ingredient: an integral on \mathbb{CP}^1_q

The Haar state H on $\mathcal{A}(\text{SU}_q(2))$ when restricted to $\mathcal{A}(\mathbb{CP}^1_q)$ yields a faithful, invariant state, $H(a \triangleleft X) = H(a) \epsilon(X)$ for $a \in \mathcal{A}(\mathbb{CP}^1_q)$ and $X \in \mathcal{U}_q(\text{su}(2))$, with modular automorphism

$$\vartheta(a) = a \triangleleft K^2$$

such that

$$H(ab) = H(\vartheta(b) a)$$

With $\beta_- \wedge \beta_+$ the generator of $\Omega^2(\mathbb{CP}^1_q)$, the linear functional

$$\int_{\mathbb{CP}^1_q} : \Omega^2(\mathbb{CP}^1_q) \rightarrow \mathbb{C} , \quad \int_{\mathbb{CP}^1_q} a \beta_- \wedge \beta_+ := H(a)$$

defines a non-trivial ϑ-twisted cyclic two-cocycle τ on $\mathcal{A}(\mathbb{CP}^1_q)$

$$\tau(a_0, a_1, a_2) := \frac{1}{2} \int_{\mathbb{CP}^1_q} a_0 \text{ da}_1 \wedge \text{ da}_2 .$$

i.e.

$$b_\vartheta \tau = 0 \quad \text{and} \quad \lambda_\vartheta \tau = \tau$$
b_ϑ is the ϑ-twisted coboundary operator

$$(b_\vartheta \tau)(f_0, f_1, f_2, f_3) := \tau(f_0 f_1, f_2, f_3) - \tau(f_0, f_1 f_2, f_3) + \tau(f_0, f_1, f_2 f_3) - \tau(\vartheta(f_3) f_0, f_1, f_2)$$

λ_ϑ is the ϑ-twisted cyclicity operator

$$(\lambda_\vartheta \tau)(f_0, f_1, f_2) := \tau(\vartheta(f_2), f_0, f_1)$$

With M a connected Kähler manifold of complex dimension d, using this we get an integral

$$\int_M := \int_{\mathbb{CP}^1_q} \otimes \int_M : \Omega^2(\mathbb{CP}^1_q) \otimes \Omega^{2d}(M) \rightarrow \mathbb{C}$$

We set $\int_M \alpha := 0$ whenever $\alpha \notin \Omega^2(\mathbb{CP}^1_q) \otimes \Omega^{2d}(M)$.
There is also a Hodge operator (as a bimodule map)

\[\star := \hat{\star} \otimes \star : \Omega^p(M) \longrightarrow \Omega^{2(d+1)-p}(M) \]

Let \(\mathcal{C}(\mathcal{E}) \) be the space of unitary connections on an SU\(_q(2)\)-equivariant hermitian \(A(M) \)-module \((\mathcal{E}, h) \).

The Y–M action functional \(\text{YM} : \mathcal{C}(\mathcal{E}) \rightarrow [0, \infty) \) is as usual

\[\text{YM}(\nabla) = \left\| F_\nabla \right\|^2_h \] (5)

from a suitable \(L^2 \)-norm \(\| - \|_h \) on the space \(\text{Hom}_{A(M)}(\mathcal{E}, \Omega^p(\mathcal{E})) \)
Dimensional reduction of the Yang–Mills action functional
Proposition 6.

The functional $\text{YM}_{C(\mathcal{E})^\text{SU}_q(2)}$ on the quantum space \mathcal{M}, when restricted to $\text{SU}_q(2)$-invariant unitary connections coincides with the Y–M–H functional $\text{YMH}_{q,m}$ on \mathcal{M}:

$$\text{YMH}_{q,m}(\nabla, \phi) = \sum_{i=0}^{m} \left(\| F_{\nabla_i} \|_{h_i}^2 + (q^2 + 1) \| \nabla_{i-1,i}(\phi_i) \|_{h_{i-1,i}}^2
ight.
+ \left. \| \phi_i^{*} \circ \phi_i + q^2 \phi_i \circ \phi_i^{*} - q^{m-2i+1}(m-2i)_{q} \text{id}_{\mathcal{E}_i} \|_{h_i}^2 \right),$$

with

- $F_{\nabla_i} = \nabla_i^2$, the curvature of the connection $\nabla_i \in C(\mathcal{E}_i)$ on \mathcal{M}

- $\nabla_{i-1,i}$ the connection on $\text{Hom}_{A(M)}(\mathcal{E}_{i-1}, \mathcal{E}_i)$ induced by ∇_{i-1} on \mathcal{E}_{i-1} and ∇_i on \mathcal{E}_i and given by

 $$\nabla_{i-1,i}(\phi_i) = \phi_i \circ \nabla_{i-1} - \nabla_i \circ \phi_i.$$
Symbol

\[[x]_q = \frac{q^x - q^{-x}}{q - q^{-1}} \]

Also \(\phi_0 := 0 =: \phi_0^* \) and \(\phi_{m+1} := 0 =: \phi_{m+1}^* \)

This functional restricts to a map on gauge orbits

\[\text{YMH}_{q,m} : \mathcal{C}(E) / \mathcal{U}(E) \rightarrow [0, \infty) \]
Characterize stable critical points of the Y–M functional (5) on \(M \), and study their reduction to configurations on \(M \).

generalized instantons

Lemma 7. Let \(\nabla \in \mathcal{C}(E) \) be a unitary connection such that

\[
\star F_{\nabla} = -F_{\nabla} \wedge \Xi
\]

for \(\Xi \in \Omega^{2d-2}(M) \) a closed form of degree \(2d-2 \).

Then \(\nabla \) is a critical point of the Y–M functional and

\[
YM(\nabla) = Top_2(E, \Xi) := -\left(F_{\nabla}, \star (F_{\nabla} \wedge \Xi) \right)_h
\]
The functional $\text{Top}_2(\mathcal{E}, \Xi)$ does not depend on the choice of ∇

It defines a ‘topological action’ depending only on the $\mathcal{A}(\mathcal{M})$-module \mathcal{E} and the closed form Ξ

Provides an $a\ priori$ lower bound on the Y–M functional

The gauge invariant equation (8) is the Ξ-anti-selfduality eqn

The gauge equivalence classes in $\mathcal{C}(\mathcal{E})/\mathcal{U}(\mathcal{E})$ of solutions are

generalized instantons or Ξ-instantons
Holomorphic chain q-vortex equations

(M, ω) a Kähler manifold

A natural closed $(1, 1)$-form on $\mathcal{A}(M)$

$$\omega = (\beta_- \wedge \beta_+) \otimes 1 + 1 \otimes \omega$$

Set

$$\Xi = \frac{\omega^{d-1}}{(d-1)!} = 1 \otimes \frac{\omega^{d-1}}{(d-1)!} + (\beta_- \wedge \beta_+) \otimes \frac{\omega^{d-2}}{(d-2)!}$$

Recall the generalized instanton equation

$$\star F_\nabla = -F_\nabla \wedge \Xi$$
Proposition 9. The subspace of $SU_q(2)$ invariant connections

$$\nabla \bar{\partial} \in (\mathcal{C}(\mathcal{E})^{1,1})^{SU_q(2)}$$

solving the generalized instanton equation on M corresponds bijectively to the subspace of $\mathcal{C}(\mathcal{E})^{1,1}$ of elements $(\nabla \bar{\partial}, \phi^*)$ satisfying the holomorphic chain q-vortex equations on M

$$F_{\nabla_i} = q^2 \phi_i \circ \phi_i^* - \phi_{i+1} \circ \phi_{i+1} + q^{m-2i+1} [m - 2i]_q \text{id}_{\mathcal{E}_i} \quad (10)$$

for $i = 0, 1, \ldots, m$. Here

$$F_{\nabla_i}^\omega = * \left((F_{\nabla_i}^{1,1})^* \wedge *\omega \right) \in \text{End}_{A(M)}(\mathcal{E}_i),$$

the component of the curvature of ∇_i along the Kähler form ω
Stability conditions

A hermitian finitely-generated projective $\mathcal{A}(M)$-module (\mathcal{E}, h) has degree and slope given by

$$\deg(\mathcal{E}) = \frac{\text{Top}_1(\mathcal{E}, \omega)}{\text{vol}_\omega(M)} \quad \text{and} \quad \mu(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\text{rank}(\mathcal{E})},$$

with $\text{rank}(\mathcal{E}) = \text{tr}(\text{id}_\mathcal{E})$.

Analogously, the (q, m)-degree of a finitely-generated $\text{SU}_q(2)$-equivariant projective module \mathcal{E} over the algebra $\mathcal{A}(M)$, with equivariant decomposition $\mathcal{E} = \bigoplus_{i=0}^m \mathcal{E}_i = \bigoplus_{i=0}^m \mathcal{L}_{m-2i} \otimes \mathcal{E}_i$ is

$$\deg_{q,m}(\mathcal{E}) = \sum_{i=0}^m \left(\deg(\mathcal{E}_i) - q^{m-2i+1} [m-2i]_q \text{rank}(\mathcal{E}_i) \right).$$
and, its \((q,m)\)-slope is

\[
\mu_{q,m}(E) = \frac{\deg_{q,m}(E)}{\text{rank}(E)}
\]

with \(\text{rank}(E) = \sum_i \text{rank}(E_i)\).

Natural topological meaning: the \(q\)-integers \([m-2i]_q\) label classes in the \(SU_q(2)\)-equivariant K-theory \(K_0^{U_q(su(2))}(\mathbb{C}P^1_q)\).

\(SU_q(2)\) acting trivially on \(M\), the \((q,m)\)-degree labels classes in the \(SU_q(2)\)-equivariant K-theory of \(M = \mathbb{C}P^1_q \times M\).

Thus the usual assignment of D-brane charges in equivariant K-theory to quiver vortices extends to our \(q\)-vortices as well.

The parameters \(q, m\) and the topology of the bundles \(E_i\) over \(M\) are constrained by the following (semi-)stability criteria.
Proposition 11. A stable q-quiver bundle on M has slopes constrained by the inequalities:

(a) $\mu(\mathcal{E}_0) \leq q^{m+1}[m]_q$, with equality iff \mathcal{E}_0 admits a holomorphic connection ∇_0 solving the hermitian Yang–Mills eqn
$$F_{\nabla_0}^\omega = q^{m+1}[m]_q \text{id}_{\mathcal{E}_0}.$$

(b) $\mu(\mathcal{E}_m) \geq -q^{-m+1}[m]_q$, with equality iff \mathcal{E}_m admits a holomorphic connection ∇_m solving the hermitian Yang–Mills eqn
$$F_{\nabla_m}^\omega = -q^{-m+1}[m]_q \text{id}_{\mathcal{E}_m}.$$

(c) $\mu_{q,m}(\mathcal{E}) \leq 0$, with equality iff \mathcal{E}_i admits a holomorphic connection ∇_i solving the hermitian Yang–Mills eqn
$$F_{\nabla_i}^\omega = q^{m-2i+1}[m-2i]_q \text{id}_{\mathcal{E}_i} \quad \text{for each} \quad i = 0, 1, \ldots, m.$$
Examples

Some explicit examples of the q-vortex equations

$$F_{\nabla_i} = q^2 \phi_i \circ \phi_i^* - \phi_{i+1} \circ \phi_{i+1} + q^{m-2i+1} [m - 2i]_q \text{id}_{\mathcal{E}_i}$$

$i = 0, 1, \ldots, m$.

The q-deformations affect stability conditions for the existence of solutions and the structure of the corresponding moduli spaces.
1. Deformations of holomorphic triples and stable pairs

A holomorphic triple \((E_0, E_1, \phi)\) on a compact Kähler manifold \((M, \omega)\) is a pair of holomorphic vector bundles \(E_0, E_1\) over \(M\) and a holomorphic morphism

\[E_0 \xrightarrow{\phi} E_1 \]

With \(\phi := \phi_1\), we get

\[
F^\omega_{\nabla 0} = q^2 \left(\text{id}_{E_0} - q^{-2} \phi \circ \phi^* \right) \quad \text{and} \quad F^\omega_{\nabla 1} = - \left(\text{id}_{E_1} - q^2 \phi^* \circ \phi \right) \tag{\play}
\]

The degrees of the bundles are related by

\[
\deg(E_0) + q^{-2} \deg(E_1) = q^2 \text{rank}(E_0) - q^{-2} \text{rank}(E_1)
\]

Much more stringent than the undeformed stability condition
2. q-vortices on Riemann surfaces

M a compact oriented Riemann surface of genus g and scalar curvature κ. Eq. (♦) describe q-non-abelian vortices on M.

A particular case:

$\mathcal{E} := \mathcal{E}_0, \quad \nabla := \nabla_0 \quad ; \quad \mathcal{E}_1 \simeq \mathbb{C}^r \otimes \mathcal{A}(M) \quad r = \text{rank}(\mathcal{E}),$

the Higgs field $\phi = q^{-1}\varphi$ can be regarded as an element of $\mathbb{C}^r \otimes \mathcal{E}$

Also $\frac{1}{2\pi} \text{Top}_1(M, \omega) = c_1(\mathcal{E})$.

A non-empty moduli space of solutions to the q-vortex equations (♦) is ensured by the stability condition

$$c_1(\mathcal{E}) = \frac{4r}{\kappa} \left(q^2 - q^{-2} \right) (1 - g) \quad \text{for} \quad g \neq 1$$
Since $0 < q < 1$, this degree satisfies the bound

$$c_1(\mathcal{E}) < \frac{4q^2}{\kappa} (1 - g).$$

Hence the pair (\mathcal{E}, φ) is τ-stable and by the Hitchin–Kobayashi correspondence it is gauge equivalent to a solution of the non-abelian q-vortex equations.

For abelian vortices, $r = 1$, this moduli space is the $|n|$-th symmetric product orbifold of M, i.e. the space of effective divisors on M of degree $n = c_1(\mathcal{E})$.
3. q-instantons

Let (M, ω) be a Kähler surface. Set $\mathcal{E}_0 \simeq \mathcal{E}_1 =: \mathcal{E}$.

Since ϕ is a holomorphic section, $\nabla_{\bar{\partial}}^{0,1}(\phi) = 0$; we have $\nabla_0 = \nabla_1 =: \nabla$ and both equations in (♦) simplify to

$$F^\omega_\nabla = (q^2 - 1) \text{id}_\mathcal{E}$$

a deformation of the hermitian Yang–Mills equation on M, and hence of the standard anti-selfduality equations $\star F_\nabla = -F_\nabla$. Its gauge equivalence classes of solutions are thus called q-instantons.
The natural $\mathcal{U}(\mathcal{E})$-invariant symplectic form ω_C on $\mathcal{C}(\mathcal{E})$:

$$\omega_C(\alpha, \alpha') = \frac{1}{2} \int_M \text{tr} (\alpha^* \wedge \alpha') \omega \omega^2$$

for $\alpha, \alpha' \in \text{Hom}^a_{\mathcal{A}(M)}(\mathcal{E}, \Omega^1(\mathcal{E}))$.

Then corresponding moment map $\mu_C : \mathcal{C}(\mathcal{E}) \to (\text{Lie } \mathcal{U}(\mathcal{E}))^*$ is

$$\mu_C(\nabla) = F^\omega_\nabla.$$

The moduli space of q-instantons on M is the symplectic quotient

$$\mu_C^{-1}((q^2 - 1) \text{id}_\mathcal{E}) / \mathcal{U}(\mathcal{E}),$$

and q-vortices correspond to points of $\mu_C^{-1}((q^2 - 1) \text{id}_\mathcal{E})$ which lie inside the Kähler submanifold $\mathcal{C}(\mathcal{E})^{1,1}$ (outside the singularities).
When $M = \mathbb{C}^2$, the constant shift in the moment map condition

\[\mu_C = 0 \quad \text{to} \quad \mu_C = (q^2 - 1) \operatorname{id}_\mathcal{E} \]

induces a shift in the corresponding real ADHM equation.

NS: this modification arises in the equations which determine
instantons on a certain noncommutative deformation of \mathbb{R}^4.

Here we have the same sort of resolution of instanton moduli
space via our q-deformed dimensional reduction procedure over
the quantum projective line \mathbb{CP}_q^1.
Summing up:

Characterized vector bundles over the quantum space

\[\mathcal{M} := \mathbb{CP}_q^1 \times M \]

equivariant under an action of the quantum group \(SU_q(2) \)

Described the dimensional reduction of invariant connections

In particular, Yang–Mills gauge theory on \(A(\mathcal{M}) \) is reduced to a type of Yang–Mills–Higgs theory on the manifold \(\mathcal{M} \)

The equations of motion give \(q \)-deformations of known vortex equations, whose solutions possess remarkable properties.
Thank you