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Each applicant is required to completely solve at least one of the following exercises. Every answer
must be sufficiently motivated.

A. Consider the Hamiltonian of the Kepler problem

H(r,p) =
1
2
µ|p|2 +

α

|r|
, µ > 0, α < 0,

where r ∈M = R3\{0}, (r,p) ∈ T ∗M and |r| =
√
r21 + r22 + r23, and the corresponding Hamilton

equations

d

dt
ri =

∂H

∂pi
= {ri,H},

d

dt
pi = −∂H

∂ri
= {pi,H}, i = 1, . . . , n,

where { , } is the standard Poisson bracket on T ∗M defined as

{f, g} =
∂f

∂ri

∂g

∂pi
− ∂g

∂ri

∂f

∂pi

for any f(r,p), g(r,p) ∈ C∞(T ∗M).
1) Verify that the quantities

m = r × p, W = p×m + µα
r

|r|

are constants of motions.
2) Using the expression

W · r,
show that r(t) describes a conic section lying in the region

{r ·m = 0} ∩ {r ·W > µαr}.

Classify the possible conics for different values of H(r,p) = E, E ∈ R. (Hint: use the following
relations: W · m = 0 and |W |2 = 2µ|m|2E + µ2α2. Also remind that the polar equation of a
conic section with focal parameter f and eccentricity e is given by r = fe/(1 + e cos θ)).
3) Show that p(t) lies on a circle with centre in (m×W )/|m|2. Compute the radius of the circle.
4) The flows generated by the functions mi and Wi, i = 1, 2, 3 are canonical transformations.
Are such transformations point tranformations? (Recall that a canonical transformation Φ :
T ∗M → T ∗M is a point transformation if it is induced by a transformation φ : M → M , so that

Φ(r,p) = (φ(r), φ∗−1(p)), (φ∗(p))i =
∂φi(q)
∂qj

pj).

5) For H(r,p) = E verify the commutation relations

{mi,mj} = εijkmk, {mi,Wj} = εijkWk, {Wi,Wj} = −2µEεijkmk, (1)



for i, j, k = 1, 2, 3, where εijk is non zero only for i 6= j 6= k and it is equal to 1 for an even
permutation of indeces and −1 for an odd permutation of indeces.
6) Prove that the Lie algebra (1) generated by the functions mi and Wi is isomorphic to the
following Lie algebras:

(i) for E < 0 to so(4), that is, the algebra of 4× 4 antisymmetric matrices with real entries;

(ii) for E > 0 to the Lie algebra so(1, 3) of the Lorentz group SO(1, 3) defined as

SO(1, 3) = {G = ((gij)1≤i,j≤4 ∈ R | GtJG = J}, J = diag(1,−1,−1,−1);

(iii) for E = 0 to the Lie algebra e3 of the group E3 of isometries of the Euclidean space R3.

Hint: for E < 0 introduce the quantities A±k = mk±
Wk√
−2µE

, k = 1, 2, 3, and for E > 0 introduce

Ak = mk + i
Wk√
2µE

, and Āk = mk − i
Wk√
2µE

, k = 1, 2, 3.

B. Consider a particle in one dimension with potential

V (x) = −V0δ
(x
a

)
(2)

where V0 and a are positive real numbers.
(1) Show that the system has a bound state, i.e., a state with negative energy, and compute the
corresponding energy.
(2) Study the spectrum of unbound states of the system (E > 0), determining the reflection and
transmission coefficients for plane waves, defined by

ψk(x) = exp(ikx) +R(k) exp(−ikx) (x < 0)
ψk(x) = T (k) exp(ikx) (x > 0) (3)

(3) Show that the conservation of the probability current implies

|R(k)|2 + |T (k)|2 = 1 (4)

(4) Study the analiticity properties (in particular the pole structure) of the functions R(k), T (k)
and comment on them in relation with the results of point 1.
(5) Compute the inner product of the plane waves in eq.(3)∫ ∞

−∞
dx ψ∗k(x)ψl(x)

[hint: recall that
∫∞
0

exp(ikx) = πδ(k) + ip.p.(1/k) and use the properties of the principal part].

C. The total electromagnetic force (Lorentz force) due to an electric field E and a magnetic field
B acting on a particle of charge q and velocity v in 3-dimensional space is

F = qE +
q

c
v ×B



when |v| � c, c being the speed of light.
1. Find the velocity dependent potential U such that the equations of motion can be derived from
a Lagrangian of the form L = T − U

2. Show that in a constant magnetic field B = Bẑ (when E = 0) the particle moves in a uniform
circular motion. Find the radius and the frequency of such a motion. Find a reference system
with respect to which the particle is at rest.
3. Do the Lorentz force and the equation of motion get modified in special relativity, when |v| ' c?
If they are, how? Extend the results obtained at point 2) above to this case and prove that they
give back the correct nonrelativistic limit when |v| � c.

D. Given a natural number n, denote

Hn := {X ∈Mat(n,C) |X∗ = X}

the set of n× n Hermitian matrices. Here

X∗ := X̄T

is the operation of Hermitian conjugation (i.e., complex conjugation along with matrix transposi-
tion).
(1) Prove that Hn is a linear space over R. Determine the dimension of this space, and construct
a basis.
(2) Define a bilinear form on Hn by the formula

< X,Y >= tr (X · Y ), X, Y ∈ Hn (5)

where tr stands for the trace of a matrix. Prove that this bilinear form defines a Euclidean
structure on Hn.
(3) Denote

PX(λ) = det (X − λ · Id)

the characteristic polynomial of the matrix X. Discuss the properties of the roots of the charac-
teristic polynomial for the case X ∈ Hn, as well as the properties of the eigenvectors of Hermitian
matrices.
(4) For given real numbers λ1 < λ2 < · · · < λn denote

Hn(λ1, . . . , λn) = {X ∈ Hn |PX(λ1) = 0, PX(λ2) = 0, . . . , PX(λn) = 0} (6)

the set of all Hermitian matrices with prescribed characteristic roots. Prove that

Hn(λ1, . . . , λn) ⊂ Hn

is a smooth compact submanifold. Determine the dimension of this submanifold.
(5) Consider the particular case n = 2. For given real numbers λ1 < λ2 compute the area of the
submanifold

H2(λ1, λ2) ⊂ H2

with respect to the metric induced on the submanifold by the Euclidean metric of H2 (see n. 2
above).



E. Let M be the open submanifold of R3 given by the condition z > 0, where (x, y, z) are the
standard coordinates in R3. Let X, Y be the vector fields on M

X =
∂

∂x
+ a(y)

∂

∂z
, Y =

∂

∂z
− 1
z

∂

∂y

where a is a smooth function. Let ∆ be the distribution (subbundle of the tangent bundle)
generated by X and Y .
(1) Define the notions of involutivity and integrability of distributions on a differentiable manifold
in the sense of Frobenius.
(2) Choose a nonzero function a such that ∆ is integrable.
(3) Find a generator of the ideal I in the algebra of differential forms on M associated with the
distribution.
(4) Prove that (with the previous choice of the function a) the ideal I is a differential ideal, i.e.,
dI ⊂ I.
(5) Find the integral subvarieties of ∆ of maximal dimension.

F. Let n be a positive integer, and r another integer with 0 < r < n. Let G(r, n) be the Grassmann
variety parametrizing r-dimensional vector subspaces of a fixed n-dimensional complex vector
space.
(1) Recall the definition of G(r, n), and prove that it is an irreducible, smooth algebraic variety.
Compute its dimension.
(2) Prove that G(2, n) is isomorphic to the locus of rank 2 matrices in the projective space asso-
ciated to the vector space of n× n skew-symmetric matrices.
(3) Let G = G(2, 4); it parametrizes lines in P3. Let C ⊂ P3 be a rational normal curve (i.e., the
image of the degree 3 Veronese embedding of P1 in P3), and let X ⊂ G be the locus of secant lines
to C (i.e., lines that meet C in two points or are tangent to C). Show that X is isomorphic to the
projective plane. Find the degree of X in the Plücker embedding of G.
(4) Prove that there is an open subvariety of G(n, 2n) which is isomorphic to GL(n). Hint: use
the graph of a map.

G. Let A be a topological space, B ⊂ A a subspace. Define the quotient of A by B to be the
quotient of A by the equivalence relation a ≡ b iff a = b or a, b ∈ B, with the quotient topology.
Let Xn be the quotient of the interval I = [0, 1] by the subset Yn = {0, 1

n , . . . ,
n−1

n , 1}.
(1) Find a subspace of R2 homeomorphic to X3.
(2) Prove that the fundamental group of Xn is the free group Fn on n generators.
(3) Prove that Xn is not homeomorphic to Xm if n 6= m.
(4) Let π : Z → Xn be a topological covering, and assume that Z is connected and π has finite
fibres. Prove that Z is homotopy equivalent to Xm, for some m.
(5) Prove that every subgroup G of Fn of finite index is isomorphic to Fm for some m.
(6) Let Σ be a noncompact, noncontractible Riemann surface. Prove that there exists a unique n
such that Σ is homotopy equivalent to Xn. Prove that Σ is not homeomorphic to Xn.


