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Each applicant is required to completely solve at least one of the following exercises. Every answer must be
sufficiently motivated.

1. Consider n harmonic oscillators with Hamiltonian

H(p, q) =

n∑
i=1

p2i +m2
iω

2
i q

2
i

2mi
,

with p = (p1, . . . , pn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn and mi and ωi real positive numbers for i = 1, . . . , n.

a) Show that the Hamiltonian system has n independent conserved quantities in involution with respect to
the standard Poisson brackets

{qi, qj} = 0, {qi, pj} = δij , {pi, pj} = 0.

b) Show that the change of coordinates (pi, qi)→ (Ji, φi) where

pi =
√

2miωiJi cosφi, qi =

√
2Ji
miωi

sinφi,

is a canonical transformation and determine the domain of the transformation and the generating function.

c) Show that the coordinates (J ,φ), J = (J1. . . . , Jn) and φ = (φ1, . . . , φn) are action-angle variables for
the Hamiltonian H(p, q) and write the Hamiltonian in such coordinates. Describe the common p level
surface M of the first integrals where the motion takes place.

d) In the case n = 3 suppose that the frequencies ω1, ω2 and ω3 satisfy the relation

ω1 + 2ω2 − 4ω3 = 0, ω1 − ω2 = 0.

Furthermore, consider the change of coordinates

J̃ = (MT )−1J, φ̃ = Mφ

where

M =

1 2 −4
1 −1 0
0 −1 1


and show that it is a canonical transformation. Show that the transformed Hamiltonian assumes the form

K̃(J̃) = (ω3 − ω2)J̃3,

and discuss the result.



2. Given a differentiable manifold X, let Ωk
c (X) be the space of differential k-forms on X with compact support.

a) Prove that if ω ∈ Ωk
c (X) then dω ∈ Ωk+1

c (X). It is therefore possible to define a cohomological theory
H•dR,c(X) — the de Rham cohomology of X with compact supports.

b) Compute the de Rham cohomology with compact supports of R.

c) Let X be a compact oriented differentiable manifold of dimension n, and let ξ ∈ Hn
dR(X). Prove that

there exists an open subset U ⊂ x diffeomorphic to the open n-ball, and a closed n-form ω such that
ω|U = 0 and [ω] = ξ.

d) Prove that Hn
dR,c(Rn) ' Hn

dR(Sn).

3. (a) Let x be a point in the affine space A1. State and prove a criterion for which a polynomial p(t) ∈ k[t] is
a local parameter for A1 in x.

(b) Let Ox be the local ring of a point x in affine space An, with n > 1, and let f1, . . . , fn be germs in Ox.

Let Yi be the hypersurface given around x by fi = 0, with i = 1, . . . , n.

(c) Explain what it means that the hypersufaces Yi meet transversally at x.

(d) Assuming that the hypersufaces Yi meet transversally at x, show that (f1, . . . , fn) is system of local param-
eters around x.

4. (a) For an arbitrary positive integer k prove existence of a polynomial Pk(x) of degree k

Pk(x) = ak,0x
k + ak,1x

k−1 + · · ·+ ak,k

such that
cos kφ = Pk(cosφ).

(b) Prove that all coefficients of the polynomials Pk(x) are integers. Compute the leading coefficient ak,0 of
these polynomials.

(c) For a given positive integer n and arbitrary numbers φ1, . . . , φn compute the determinant Dn of the following
n× n matrix

Dn = det


1 cosφ1 cos 2φ1 . . . cos(n− 1)φ1
1 cosφ2 cos 2φ2 . . . cos(n− 1)φ2
. . . . . . . . . . . . . . .
1 cosφn cos 2φn . . . cos(n− 1)φn

 .

5. Consider a quantum mechanical system whose Hilbert space of states is C2, and has Hamiltonian(
E0e

t/ω0 E1

E1 E0e
t/ω0

)
(a) Describe the time evolution of the system.

(b) Supposing that at t = 0 the system is in the state Ψ(t)|t=0 =

(
1
0

)
, find the value tmax of the time at

which the transition probability to the state

(
0
1

)
is maximal, and the value of that probability.

(c) discuss the validity of the Ehrenfest theorem d
dt 〈O〉 = 〈 ∂∂tO〉+ 1

i~ 〈[O, H]〉 for a generic observable O and

present detailed calculations in the limit ω0 →∞ for the observable O =

(
0 −i
i 0

)
.
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