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Each applicant is required to completely solve at least one of the following exercises. Every answer must be
sufficiently motivated.

1. Consider n harmonic oscillators with Hamiltonian
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with p = (p1,...,pn) € R™ and q = (¢1,. .-, ¢n) € R” and m; and w; real positive numbers for i = 1,...,n.

2)

Show that the Hamiltonian system has n independent conserved quantities in involution with respect to
the standard Poisson brackets

{ai,q;} =0, {qi,pj} = dij, {pi,p;} = 0.

Show that the change of coordinates (p;, q;) — (J;, ;) where

2J; .
pi = V2mw;J;cos ¢,  qi = m_; sin ¢;,

(Aad

is a canonical transformation and determine the domain of the transformation and the generating function.

Show that the coordinates (J,¢), J = (J1....,J,) and ¢ = (¢1,...,¢,) are action-angle variables for
the Hamiltonian H(p,q) and write the Hamiltonian in such coordinates. Describe the common p level
surface M of the first integrals where the motion takes place.

In the case n = 3 suppose that the frequencies w1, ws and wjs satisfy the relation
OJ1+20J2—4(JJ3:0, wl—OJQZO.
Furthermore, consider the change of coordinates

J=M")NJ, 6=M¢

where
1 2 -4
M=11 -1 0
0o -1 1

and show that it is a canonical transformation. Show that the transformed Hamiltonian assumes the form

K(J) = (w3 — wa) J,

and discuss the result.




2. Given a differentiable manifold X, let (X be the space of differential k-forms on X with compact support.

a) Prove that if w € QF(X) then dw € QF1(X). It is therefore possible to define a cohomological theory
H3p (X) — the de Rham cohomology of X with compact supports.

b) Compute the de Rham cohomology with compact supports of R.

c) Let X be a compact oriented differentiable manifold of dimension n, and let { € HJ,(X). Prove that
there exists an open subset U C z diffeomorphic to the open n-ball, and a closed n-form w such that
wipy =0 and [w] =&

d) Prove that Hjjp (R") ~ Hjp(S™).

3. (a) Let z be a point in the affine space Al. State and prove a criterion for which a polynomial p(t) € k[t] is
a local parameter for Al in z.

(b) Let O, be the local ring of a point z in affine space A", with n > 1, and let f1,..., f,, be germs in O,.
Let Y; be the hypersurface given around = by f; =0, withi=1,...,n.
(¢) Explain what it means that the hypersufaces Y; meet transversally at x.

(d) Assuming that the hypersufaces Y; meet transversally at z, show that (f1,..., f,) is system of local param-
eters around x.

4. (a) For an arbitrary positive integer k prove existence of a polynomial Py (z) of degree k
Pi(z) = agoz® + ap 12"+ tagg

such that
cos k¢ = Py (cos @).

(b) Prove that all coefficients of the polynomials Py(z) are integers. Compute the leading coefficient ay o of
these polynomials.

(c) For a given positive integer n and arbitrary numbers ¢1, ..., ¢, compute the determinant D,, of the following
n X n matrix
1 cos¢y cos2¢y ... cos(n—1)py
D, = det 1  cos¢a cos2¢py ... cos(n—1)ps
1 cosd, cos2¢, ... cos(n—1)o,

5. Consider a quantum mechanical system whose Hilbert space of states is C2, and has Hamiltonian

Eget/*0 B
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(a) Describe the time evolution of the system.

1

(b) Supposing that at ¢ = 0 the system is in the state ¥ (¢)|;=o = < 0

), find the value t,,4, of the time at

which the transition probability to the state ( 0

1 ) is maximal, and the value of that probability.

(c) discuss the validity of the Ehrenfest theorem % (0) = (£0) + ([0, H]) for a ge?eric observable O and

present detailed calculations in the limit wy — oo for the observable O = (z) BZ )



