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Mathematical Physics Sector

Entrance examination 2002/2003 — October Session

The candidate is asked to solve at least one problem among the following.

1 Quantum Mechanics

A Harmonic oscillator in an electric field
Consider the one—dimensional quantum harmonic oscillator with Hamilto-
nian
P’ 2.2
H=_—+_-mw
2m 2

The particle has also a charge e. Switching on a constant electric field £, the
Hamiltonian gets an additional potential term and becomes

P 1
H = %+§mw2x2—e&c (1.1)
1. Using the well-known expression of the energy spectrum of the har-

monic oscillator, determine the spectrum of the new Hamiltonian.

2. Prove that the two operators H' and H! (obtained by changing & —
—& in eq.(1.1) are unitarily equivalent in Ly(—00,00).

3. Determine the value of £ such that the energy of the first excited state
| 1) of H" coincides with the energy of ground state | 1) of H. Which
observable permits to distinguish | ¢}) from | ¢)y)?



2 Linear algebra
Linear operators and matrices

Let A : R* — R” be a linear operator acting in the n-dimensional real
space R". Denote

a2 Q1in
a a a
A — 21 (22 2n
Ap1 Ap2 ... Qpp
the matrix of the linear operator with respect to some basis eq, es, ..., €, in

the space R", i.e.
n
Aejzza’ijei) ]:1, 2,...,7’7,.
i=1

Denote P4(t) the characteristic polynomial of the operator A,

Pu(t) = det(A — t1).

Here
1 0 0
7= 0 1 0
0 0 1

is the identity matrix.

1. Considering the complex numbers C as the two-dimensional real space
R2, introduce the linear operator of multiplication by a given complex number

A,
Az=Xz, zeC.
Compute the characteristic polynomial P4(t).
2. Let
AB:R> 5 R?

be two linear operators acting in the two-dimensional real space satisfying

AB = BA.

Prove the existence of such a basis e;, e; that the matrices A, B of the linear
operators take one of the following forms:



or

or

for some real numbers aq, as, by, bs.

3. Let two linear operators

AB: R 5 R?

acting in three-dimensional real space satisfy the following equation

AB — BA = B.

Compute the characteristic polynomial Pg(t).

(2.1)

(2.2)

(2.3)



3 Classical mechanics

A Classical Particle in a magnetic field
Consider the system defined in the Euclidean space R® by the Lagrangian

LA:%X-X—FQX-A(X)—V(X), (3.1)
c
where x = (x1,...,x,) are Cartesian coordinates, A (x) is the vector poten-

tial, V(x) is the scalar potential, and x denotes the velocity vector.
1) Prove that the Euler Lagrange equations associated with La are invariant
under the gauge transformation

A(x) = A'(x) = A(x) + grad ®(x) (3.2)

2) Prove that, in the Hamiltonian formalism, the transformation (3.2) yields
a canonical transformation.
3) Consider the case of R* endowed with Cartesian coordinates x,y, z. Use
the above arguments to prove complete integrability (that is, to find an
integral of the motion in addition to the obvious two) of the system with
Lagrangian

Ly = %(:&2 gt 22 — %Byég —V(p), (3.3)

where B is a constant and p = /22 + y2.
(Hint: compute first the magnetic field associated with the vector potential

A= [_Bya 07 0])

4) Consider the Hamiltonian of the system (3.3), written in the appropriate
gauge, and discuss qualitatively the resulting one dimensional radial motion,
assuming V' (p) = log p, for generic values of the constants of the motion.



4 Statistical Mechanics

One-dimensional random walk
At discrete units of time (¢t =1, 2,3, ---), a particle moves along a one dimen-
sional lattice. Suppose it starts at the origin and that at each step it moves
either one lattice site to the right or to the left, each with probability 1/2.
For n > 1, let u, be the probability that the particle returns to the origin
at time ¢t = n and p,, the probability that the first return to the origin occurs
at t = n. For convenience we take po = 0 and uy = 1. Clearly p, = u, =0
whenever n is odd.

1. Show that for n > 1, the two probabilities are related as

Up = Poly, + P1Un_1 + PoUp_2 + -+ Dply (4.1)

2. Prove that

1 <2n>:1-3:5-.--(.2.n—1) (4.2)

3. Show that the particle will sooner or later return to its initial position,
ie.
P2+ pstpst-o-=1

Hint. Introduce the generating functions

F(x) = ipnx", Ux) = iunx"
n=0 n=0

and show that eq.(4.1) leads to the relation U(x) = 1 + F(z)U(z). Use
this relation and the us, given by eq.(4.2) to determine F(z). It is useful to
remind that

gg—=1) » glg—1) ... (g=k+1) 4

(1+:L‘)q:1+qx+Tx +-F u ¥+




5

Geometry

Projective spaces
Let P%(C) be the n-dimensional complex projective space (n > 1).

1.

2.

Prove that P(C) is homeomorphic to the real 2-dimensional sphere S2.

Show that P"(C) contains a copy of C" in a such a way that the com-
plement is isomorphic to P"~Y(C).

Compute the homology groups Hy(PY{C),Z) for k € N.
Compute the homology groups Hy(P¥C),Z) for k € N.

Embed PYC) into P{C) as a line and show that the associated natural
map Hy(PY(C),Z) — Ho(P*C),Z) is an isomorphism.

Let C' be a smooth (i.e., nonsingular) conic in PXC). Show that C is
homeomorphic to S2. (Hint: project C' onto a line from a point in C.)

Compute the image of Ho(C,Z) into Hy(P%C),Z) under the natural
map.



6 Differential Equations

The nonlinear Schrodinger equation
Consider the nonlinear Schrodinger equation

iy + Uy + 2|ul?u =0, (6.1)

where u(zx,t) is a complex function of the two real variables x,t, rapidly
decreasing at infinity, that is, lim 2™u(xz,t) =0, Vn > 0.

|z|—00

1. Show that, for a solution u = u(x,t) of eq. (6.1), the Hamiltonian and
the momentum

?

+oo . +o00
H = / (|ue® = |u|"dz, P = 5/ (u*u, — uwul)dx

are independent of time. Here, u* is the complex conjugate of u(z,t).
(Hint: use integration by parts).

2. Show that the equation is invariant under the following Galilean trans-

formation
E=x+ vt
s=t _
w(E, ) = ulw, e F @0,

that is, the function w(&, s) satisfies the equation
iwg + wee + 2|w]*w = 0
of the same form. Here v is an arbitrary real number.

3. Prove the existence of a solution rapidly decreasing at infinity of the
form

u(z,t) = c(z)e™, ) real positive constant, c(x) real, (6.2)

observing that the equation for ¢(z) is a one-dimensional motion in a
quartic potential.

4. Check that the solution of the form (6.2) has momentum P = 0. Using
the Galilean invariance, write the corresponding solution having P # 0.



