
SISSA Mathematical Physics Sector.
Entrance examination. 2004 Session .

The candidate is asked to solve at least one of the following exercises.

1 Quantum Mechanics

Consider a free quantum particle of mass m which lies on a circle of radius R.
Its coordinate is q with q ≡ q + 2πR and its lagrangian is given by

L =
m

2

(
dq

dt

)2

1. Determine the energy eigenfunctions, the energy levels and their degener-
acy.

2. Change the lagrangian according to

L =
m

2

(
dq

dt

)2

− θ̂
dq

dt

Write the corresponding Hamiltonian and determine the new quantum
energy levels. Study their degeneracy as a function of the dimensionless
parameter θ = θ̂R/~ in the interval 0 ≤ θ ≤ 1.

3. Prove that the spectrum is invariant for θ → θ± k, where k is any integer
number.

4. Take θ = 1/3 and suppose that at t = 0 system is in the physical state

described by the wave function ψ(q) = cos
q

R
. Determine the minimal

time required to the system for coming back to the same physical state.
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2 Analytical Mechanics

Consider, in the configuration space R2 the Lagrangian

L = T − V =
1

2
(ẋ2 + (1 + x2)ẏ2)− V (x), (2.1)

where (x, y) ∈ R2, V (x) ∈ C∞(R).
1) Compute the Hamiltonian H corresponding to L. Find the constants of

the motion, and show that the stationary Hamilton-Jacobi equation H = E is
separable in the coordinates x, y, i.e., it admits a solution of the form S(x, y) =
S1(x) + S2(y).

2) Show that the Euler-Lagrange equations defined by (2.1) are equivalent
to a system of the form:

ẏ = φ(x; c) (2.2)

ẍ = ψ(x; c), (2.3)

for two suitable functions φ, ψ and a constant c.
Show that equation (2.3) is an Euler-Lagrange equation for a system with

one degree of freedom and compute its Lagrangian Lred.
3) Set ẏ equal to a constant (say, ẏ = ω) and

V (x) =
x4

4
− a

x2

2

in L, and qualitatively study the types of open and closed orbits in the one-
dimensional system so obtained, for all values of the parameters a, ω.

4) Study the equilibrium points of the system (2.1) for the potential

V (x, y) =
x4

4
− a

x2

2
+

1

2
(x− y)2

Determine, in particular, the frequencies of the small oscillations around stable
equilibrium for all a 6= 0.
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3 Theory of Functions

1. For a given complex number z 6= 0 describe all solutions w to the equation

wn = z.

2. Consider the analytic function f(z) of the complex argument z defined
in the neighborhood |z − 1| < 1

2
of the point z = 1 by

[f(z)]n = z, f(1) = 1.

Denote g(z) the result of the counter-clockwise analytic continuation of the
function f(z) along the path

z = ei φ, 0 ≤ φ ≤ 2π

to the same neighborhood of z = 1. Evaluate g(1).

3. Prove that there exist exactly two functions F1(z) and F2(z) analytic in
the upper half-plane Im z > 0 and satisfying

[F1,2(z)]
2 = z(z − 2)(z − 3)(z − 5)(z − 9). (1).

4. a) Prove existence of the limits

Fk(x) := lim
z→x, Im z>0

Fk(z), k = 1, 2 (2)

for any real x (Fk(x) in the left hand side of the last equation is defined as the
value of the limit).
b) Let F1(z) be the solution to (1) such that the limits (2) are positive for real x
satisfying 0 < x < 2. Evaluate the above limits F1(1), F1(4), F1(10) and F2(1),
F2(4), F2(10) of the functions F1(z), F2(z) defined in (1).
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4 Theory of Operators

Consider the linear operator T : L2(R) → L2(R) defined by

T (f)(x) =

∫ +∞

−∞
K(x, y) f(y) dy, (4.1)

with

K(x, y) = exp

[
−1

4
(x2 + y2) +

1

2
Jxy

]
. (4.2)

Here J is a real parameter.

1. Recall that an integral operator of the form (4.1) with a real valued kernel
K(x, y) is a Hilbert-Schmidt operator if

||T ||2HS :=

∫ +∞

−∞

∫ +∞

−∞
K(x, y)K(y, x) dx dy <∞. (4.3)

The number ||T ||HS so obtained is called the norm of the Hilbert-Schmidt
operator.

Determine all values of the parameter J for which the operator T defined
by (4.1), (4.2) is a Hilbert-Schmidt operator and compute its norm.

Useful formula:∫ +∞

−∞
exp[−αx2 + bx] dx =

√
π

α
exp

[
b2

4α

]
2. Let J be any number such that ||T ||HS <∞. Introduce the linear operator

A(a) by

A(a) = a x+
d

dx

a) Find the value a0 > 0 of the parameter a such that A0 := A(a0) satisfies

A0T = ξ TA0

for some real ξ. Compute also the value of ξ.

b) Observe that A†
0 = a0 x − d

dx
is the operator adjoint to A0 and prove

that
TA†

0 = ξA†
0T.

3. Prove that for any J for which the operator T is Hilbert-Schmidt, its
eigenfunction ψ0(x) corresponding to its highest eigenvalue λ0 must satisfy

A0ψ0 = 0.

Compute ψ0(x) and λ0.
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4. Determine all the other eigenvalues λ1, λ2, . . . of the operator T .

Hint: Use the identity
∞∑

n=0

λ2
n = ||T ||2HS

valid for the eigenvalues of any Hilbert-Schmidt operator T .
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