
3. Elements of singularity theory
Classification of critical points of functions

Denote by C∞
o (x) the local algebra of germs at the origin of smooth

functions f(x) in x ∈ Rn.
”Local” means there is a single maximal ideal M⊂ C∞

0 , which is the set
of all functions which vanish at the origin f(0) = 0.

H’Adamard lemma. A smooth function f(x, y) x = (x1, . . . , xn) ∈ Rn,
y ∈ Rk which vanish on the coordinate subspace x = 0 can be written in the
form f =

∑n
i=1 xihi(x, y) with certain smoooth functions hi.

Proof. Take t ∈ [0, 1] and differentiate F (t, x, y) = f(tx, y) upon t

∂F

∂t
=

n∑
i=1

xi
∂ϕ(tx, y)

∂xi

.

So

f(x, y) = F (1, x, y) =
n∑

i=1

xi(
∫ 1

0

∂f(tx, y)

∂xi

dt).

The gradient ideal If of a function germ f(x), 0 is the ideal generated by
partial derivatives of f (of course the ideal does not depend on cooordinates).

If = C∞
0

{
∂f

∂xi

}
Define the local algebra of the germ (f,0) as the factor-algebra Qf =

C∞
0 /If .

The dimension µf over R of this algebra is called the multiplicity (or
Milnor number) of the germ (f, 0).

When µf is finite - the singularity is isolated (a punctured neighbourhood
of the origin contains no critical points).

In the complex analytic case the inverse statement is also true. An iso-
lated critical point of holomorphic function has finite multiplicity.

Any very small deformation of f in a small neighbourhood of the origin
cointains at most µ critical points.

The multiplicity µf is finite if and only if for certain k Mk ⊂ If . Moreover
the following holds

Tougeron’s jet sufficiency lemma.
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1).Mµ ⊂ If .
2). Any function germ f̃ , 0 with jµ+1f̃ = jµ+1f is R-equivalent to f, 0.

(In particular f is equivalent to a polynomial of degree at most µ + 1.

Proof. Since Qf is µ-dimensional R-vector space than any µ+1 elements
of Qf are linearly dependent. Take any sequence of germs ϕ0, . . . , ϕj, . . .
j = 1, . . . , µ, with ϕj ∈ M for j = 1, . . . µ. Consider the sequence of
products α0 = ϕ0, α1 = ϕ0ϕ1, α2 = ϕ0ϕ1ϕ2, . . . , note that each of the
following classes is divisible by the previous one.

These µ+1 classes are linearly dependend so some of them αj plus a linear
combination cj+1αj+1 + . . . of the subsequent ones gives zero class in Qf . But
αj is a factor of this combination and remaining function is invertible. So αj

is zero in the local algebra.

Thus we see that a product of any µ germs from M belong to If , so any
monomial of degree µ belong to If . These monomials are generators of Mµ.

To prove 2). we use Moser homotopic method. Take a deformation
ft = f + t(f̃ − f), t ∈ [0, 1] and try to find a t-depending diffeomorphism θt

such that

ft ◦ θt = f0.

Differentiation of this equality by t provides so-called ”homological” equa-
tion

∂ft

∂t
◦ θt +

(
∂ft

∂x
◦ θt

)
dθt

dt
= 0.

Represent dθt

dt
= vt(θt(x)) = vt ◦ θt where vt(x) is a (time-dependent)

vector field, the flow of which consists of difeomorphisms θt. Thus

−∂ft

∂t
◦ θt +

(
∂ft

∂x
◦ θt

)
vt ◦ θt = 0.

Since θt is a diffeomorphism the homological equation is equivalent to

−∂ft

∂t
=

∂ft

∂x
vt(x) =

n∑
i=1

∂ft

∂xi

vt, i(x).

We have simplified the problem (instead of solving non-linear equations
for θ we have to solve a linear equation for v (however the answer will be not
explicit).
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Since ∂(f̃−f)
∂x

∈ Mµ+1 then for any t If = Ift and it contains Mµ. Hence
the lefthand side has a required decomposition, so the components of vt exist.
They are smooth functions in t ∈ [0, 1] and x from a small neighbourhood
of 0. Moreover vt(0) = 0 since the lefthand side −∂ft

∂t
belongs to Mµ+2.

Thus the origin is a fixed point for the flow, and flow is well defined in a
neighbourhoood of it.

Remarks. 1.This lemma holds also in parameter depending case.
In particular, the following parameter depending Morse lemma holds. If

the family f(x, y) has non-degenerate critical points with respect to x (∂f
∂x

=

0), at any point (0, y) and det(∂2f
∂x2 ) 6= 0 then there is a diffeomorphism ϕ of

the form ϕ(x, y) 7→ (X(x, y), y) which reduces the function f near coordinate
plane x = 0 to the sum of f(0, y) with the non-degenerate quadratic form in
x with the coefficients depending on y.

In fact, for any y0 the germ f(x, y0) − f(0, y0), 0 is Morse function with
the multiplicity µ = 1.

Now an appropriate linear change of x coordinates depending on y reduce
the function to the required form.

In particular, let k = n−rank(d2f) be the corank of the second differential
of a function f(x) germ (with the critical point at the origin) Then f(x) is
right equivalent to g(x1, . . . , xk)±x2

k+1± . . .±x2
n with a germ g(x1, . . . , xk) ∈

M3. (One can prove that the reduced germ g is defined by f up to R-
equivalence.

According to Morse lemma it sufice to classify only germs f(x) ∈M3. R-
orbits of functions in one variable form an ordered sequence Ak : f = ±xk+1.

R-orbits of functions in two variables (x, y) with non-zero 3-jet form an
infinite series Dk : f = y2x ± xk−1, three simple orbits E6 : x3 ± y4, E7 :
x3 + xy3, E8 : x3 + y5, or are adjacent to X9 : x4 + y4 + aX2y2, a2 6= 4(X9 is
adjacent to E7) or to J10 : x3 +ax2y2 +y6, 4a3 +27 6= 0. (which is adjacent to
E8). All orbits except A, D, E are non-simple (any neighbourhood of them
intersects with infinite number of orbits).

A family F (x, q) is called induced from a family G(x, λ) if there is a
smooth mapping from ϕ : (q) 7→ λ(q) such that G(x, λ(q) is R-equivalent to
F (x, q).

A germ at the origin of a family F (x, λ) is called a versal deformation
of the function f(x) = F (x, o) if any deformation G(x, q) of f(x) is induced
from F.
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Versality theorem. A deformation F (x, q) of a function germ f(x) =
F (x, 0) is versal if and only if the deformation velocities ϕi(x) = ∂F

∂qi
|q=0 in

the directions qi span local algebra Qf .

The proof is based on homotopy method and the following basic result

Malgrange preparation theorem. Let g : Rm → Rn, g(0) = 0
g : x 7→ y be a germ of smooth mapping. Let A be a finitely generated
module over the C∞

0 (x). Denote by g∗My the ideal in C∞
0 (x) generated by

the components of g. Assume that A = g∗MyA + R{ϕ1, . . . ϕs} + Ms+1
x A,

where ϕi are certain elements of A.
Then ϕi generates A as f∗(C

∞
0 (y)) module.

In many cases the following easy lemma replaces Malgrange preparation
theorem:

Nakayama lemma Let A be a finite generated C∞
o module, B - sub-

module of A. assume that A = B +MA then A = B.

Families of functions which are versal at any point are generic due to an
apppropriate version of transversality theorem, which we discuss now.

In the jet space JN(Rk,R) = Rn × JN
o (n, 1) with sufficiently high N(

N > µ(f) + 1) consider the product Ôf of Rn with the R-orbit Of in the
space of jets a the origin of a germ f, 0 with simple singularity under the
action of diffeomorphisms which preserve the origin. The codimension of
Of in jN(n, 1) is k + µ(f). So the codimension of Ôf in JN(Rn,R) is also
k + µ(f).

The infinitesimal condition of versality of a family F (x, q) is equivalent
to transversality of the mapping JNF : (x0, q0) 7→ jNFx0(x, q0) to Ôf .

To have versality condition at each point we need JNF be transversal to
all orbits. So we need transversality to a stratification.

Stratification of a manifold is a partition of M into open Xni
i submanifolds

(strata) of dimensions ni such that the boundary condition holds: the closure
of a stratum is a union of strata of low dimensions.

A (locally finite) stratification satisfies first regularity (Whitney) condi-
tion: if for any sequence of points xi, i = 1, . . . of a stratum X tending to a
point y from the boundary stratum Y such that the tangent subspaces Txi

X
converge (in some metrics on M) to a subspace T of a tangent space to M
at y then TyY ⊂ T.
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A mapping f : N 7→ M is called transversal to a stratification S of M if
it is transversal to each stratum of S.

Thom transversality theorem. Let S be a Whitney regular stratifica-
tion of the jet space JK(N, M) Asuume that manifold N is compact. Then
the set of mappings f : N → M whose jet extension jKf : x 7→ JK

x f is
transversal to S form an open and dense subset in the space of all smooth
mapping f.

Versality theorem implies that simple R-orbits and appropriate stratifi-
cation of the union of the non-simple orbits form a regular stratification in
any jet space. So families of functions which are versal at any point form
open and dense (in the compact case) or countable intersection of open dense
subsets in the space of all families.

So generical family of functions is versal at any point. In small dimnen-
sions the germs of generic wavefronts and caustics are diffeomorphic to that
of versal deformations of corresponding A, D, E singularities of functuions.

Considering germs (jets) of functions at sets of finitely many points (called
respectively multigerms and multijets) the multigerms version of transversal-
ity theorem imply that generically the germ of a caustic or wavefront at any
point is determined by versal multigerm ( it is a transversal intersection of
finitely many caustics or wavefronts of versal germs of families).
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