
Lagrangian and Legendre Singularities

1 Symplectic and contact geometry

1.1 Symplectic geometry

A symplectic form ω on a manifold M is a closed two-form ω, non-degenerate
as a skew-symmetric bilinnear form on the tangent space at each point, so
dω = 0 and ωn is a volume form.

ManifoldM endowed with symplectic form is called symplectic, its dimen-
sion is even. If the form is exact ω = dλ the symplectic area upon two-chain
S equals

∫
DS λ. When λ exists and is fixed M is caled exact symplectic.

Examples. 1. Let K = M = R2n = {q1, . . . , qn, p1, . . . , pn}, be a vector
space, and λ = pdq, ω = dp∧dq. In these coordinates the form ω is constant.
Corresponding bilinear form is given by the matrix

E =

(
0 −I
I O

)

Any constant symplectic structure on K in some basis (called Darboux
basis) has this matrix.

2. M = T ∗N , λ = pdq - Liouville form, which is defined in an invariant
(coordinate free) way as follows: λ(α) = π(α)ρ∗(α), where α ∈ T (T ∗N), π :
T (T ∗N) → T ∗N and ρ : T ∗N → N. This is exact symplect manifold. If q are
local coordinates on the base N the dual coordinates p are the the coefficients
of decomposition of a covector into linear combination of the differentials dqi.

3. On Kahler complex manifold M the imaginary part of Hermitian struc-
ture ω(α, β) = Im(α, β) is a skew-symmetric 2-form which is closed.

4. Product of two symplectic manifolds. Given two symplectic manifolds
Mi, ωi i = 1, 2 the pair M ×M2, (π1)∗ω1 − (π2)∗ω2 where πi are projections
of the product to the corresponding factors, is a symplectic manifold.

A diffeomorphism ϕ : M1 →M2 mapping symplectic structure ω2 on M2

to symplectic structure ω1 on m1 ϕ∗ω2 = ω1 is called a symplectomorphism
from M1 ω1 to M2 ω2. When Mi, ωi coincide symplectomorphism preserves
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symplectic structure. Clearly, symplectomorphism pregerves a volume form
ωn. In the first example the group Sp(2n) of linear symplectomorphisms
ϕ ∈ Gl(2n) is isomorphic to group of matrices S such that S−1 = −EStE (
”t” -stands for transposition).

It is useful to use auxillary scalar product (·, ·) on K. Then always it is
possible to choose orthnormal Darboux basis. Then we get a well defined
operator Ẽ (in this basis it has matrix E) such that ω(a, b) = (a, Ẽb) and K
becomes a complex Hermitian space z = q + ip Multiplication by i =

√
−1

is multiplication by Ẽ. Hermitian structure is (a, b) + iω(a, b). Then we get
Gl(n,C)

⋂
O(2n) = Gl(n,C)

⋂
Sp(2n) = O(2n)

⋂
Sp(2n) = U(n).

The characteristic polynomial of such ϕ is reciprocal: if a is an eigenvalue,
then a−1 also is. Jourdan structure for a and a1 are the same.

Remark. The image of a unitary sphere S2n−1 : q2 + p2 = 1 under a
linear symplectomorphism can belong to a cylinder q2

1 + p2
2 ≤ r only if r ≥ 1.

The non-linear analog of this result is rather non trivial: (This is Gro-
mov’s theorem on symplectic camel) S2n−1 ∈ T ∗Rn (in standard Euclidean
structure) can not be symplectically embedded into the cylinder {p2

1 + q2
1 ≤

1} × T ∗Rn−1.
Thus symplectomorphisms form a ”thin” subset in the space of volume

ωn preserving diffeomorphisms (when n ≥ 2).

The dimension k of a linear subspace Lk ⊂ K and the rank rL of the
restriction of bilinear form ω on it are the complete set of invariants of L
with respect to Sp(2n).

Define a skew orthogonal L
6

of L as the set of v ∈ L such that ω(v, u) = 0

for all u ∈ L. (Note that L
6

= Ẽ(L)). So dimension of L
6

is 2n − k. The

kernel subspace of the ω restriction to L is L
⋂
L
6
. Its dimension is k − r.

Subspace is called isotropic if L ⊂ L
6

(hence dimL ≤ n). Any line

is isotropic. Subspace is called coisotropic if L
6 ⊂ L (hence dimL ≥ n).

Any hypersurface H is coisotropic. H
6

is called a characteristic direction on
H. Subspace is called Lagrangian if L

6
= L (hence dimL = n). (Ẽ(L) is

orthogonal to L).

Lemma Each Lagrangian subspace L ⊂ K has regular projection at least
to one of the 2n coordinate Lagrangian planes (pI , qJ) along the complement
lagrangian plane (pJ , qI). Here I

⋃
J = {1, . . . , n} and I

⋂
J = ∅.
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Proof. Let Lk
q be the intersection of L with q-space and Lq has regular

projection on qI (along qJ) with |I| = k. If L has no regular projection to pJ

(along (q, pI)) then L contains a vector v ∈ (q, pI). The intersection with q-

space of skew-orthogonal complement v
6

has k−1 dimensional projection to
qI (along qJ) and so does not coincide with Lq. This contradicts the claim
that L is Lagrangian.

A Lagrangian subspace L which has regular projection to q plane is the
graph of a self-ajoint operator S from q to p space with symmetric matrix in
(orthonormal) Darboux basis.

Splitting of K = L1
⊕
L2 with Lagrangian L1, L2 is called a polarization.

Any two polarizations are symplectomorphic.

Lagrangian Grassmanian GrL(2n) is diffeomorphic to U(n)/O(n). Its
foundamental group is π1(Λ) = Z.

Grassmanian Grk(2n) of k-isotropic spaces is isomorphic to U(n)/(O(k)+
U(n− k)).

Even in non-linear setting symplectic structure has no local invariants (
e.g.,in contrast to Riemannian structure) according to the follwing theorems:

Darboux’s theorem. Any two symplectic manifolds of equal dimensions
are locally symplectomorphic.

Weinstein’s theorem. A tubular neighbourhood of two submanifolds
Ni ⊂ M i = 1, 2 are symplectomorphic iff the restrictions of ω to tangent
subbundles TNi

M are diffeomorphic.

Givental’s theorem. Two germs of submanifolds Ni ⊂ M (of equal
dimensions) are symplectomorhic iff the restrictions of ω to TNi are diffeo-
morphic.

Proof of Givental’s theorem. It suffices to prove that if the restrictions
of two symplectic forms ωi i = 1, 2 on tangent spaces to a germ at the origin
of submanifold G ⊂ M coinside then the forms are locally diffeomorphic.
Also we may assume that at the origin forms coincide on total tangent space
to M. Using homotopy method find a family of diffeomorphisms gt, t ∈ [0, 1]
such that

gt|G = id, g∗t (ωt) = ω1
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where ωt = ω1 + (ω2 − ω1)t. Differentiating by t this is equivalent to

ω1 − ω2 = Lv(ωt) = d(ivωt)

where Lv is the Lie derivative along the vector field, whose phase flow is gt.
Since ωt are closed, the left hand side is locally exact form. Using relative
Poincare lemma it is possible to find a primitive α of ω1−ω2 which vanishes
on G. Then the required vector field v exists since ωt is non-degenerate.

Darboux theorem is a corollary of Givental theorem: (take a point as a
submanifold).

If at each point x the tangent subspace to a submanifold L in symplectic
space M is Lagrangian in symplectic space TxM then L is called Lagrangian.

Examples. Fibers, zero section, graph of the differential of a function on
the base are Lagrangian submanifolds of the cotangent bundle of the base.

The graph of a symplectomorphism is a Lagrangian submanifold of the
product space (which has regularr projections on factors). Arbitrary La-
grangian submanifold of the product space defines so-called Lagrangian re-
lation.

Weinstein theorem imply that a tubular neighbourhood of a Lagrangian
submanifold L in any symplectic space is symplectomorphic to the tubulat
neighbourhood of the zero section in T ∗N.

Fibration with Lagrangian fibers is called Lagrangian. Locally all La-
grangian fibrations are symplectomorphic (the proof is similar to Darboux
theorem). Cotangent bundle is a Lagrangian fibration.

Let ψ : L→ T ∗N be a Lagrangian embedding. The product ρ◦ψ : L→ N
is called Lagrangian mapping. It critical values

ΣL = {q ∈ N |∃p : (p, q) ∈ L, rankd(ρ ◦ ψ) < n.}

form caustic of Lagrangian mapping. The equivalence of Lagrange mappings
is defined by a fiber preserving symplectomorphism of ambient symplectic
space. Caustics of equivalent Lagrange mappings are diffeomorphic.

Given a real function h : M → R define a Hamiltonian vector field vh

by the formula ω(·, vh) = dh. Clearly vh is tangent to the level hypersurfaces
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Hc = h−1(c). The directions of vh on h = 0 are characteristics of tangent
spaces of the level hypersurfaces Hc.

Associating vh to h we obtain a Lie algebra structure on the space of
functions [vh, vf ] = v{h,f} where {h, f} = vh(f) is the Poisson bracket of
Hamiltonians h, f.

Hamiltonian flow (even if h depends on time) consists of symplectomor-
phisms. Locally (or in R2n) any time depending family of symplectomor-
phisms starting from the identity mapping is a phase flow of a time depen-
dend hamiltonian. However, say,on torus R2/Z+Z (which is the factorization
of the plane by integer lattice) the family of constant velocity displacements
are symplectomorphisms but they can’t be Hamiltonian since Hamiltonian
function on torus has to have critical points.

Given a time dependent hamiltonian h̃ = h̃(t, p, q) consider an extended
space M × T ∗R with auxillary coordinates (s, t) and the form pdq − sdt.
An auxillary (extended) hamiltonian ĥ = −s + h̃ determines a flow in the
extended space generated by vector field

ṗ = −∂ĥ
∂q
, q̇ = −∂ĥ

∂p
,

ṫ = −∂ĥ
∂s

= 1, ṡ =
∂ĥ

∂t

The restrictions of this flow to t = const sections are essentially the flow
mappings of h̃.

Integral of extended form upon a closed chain in M × {to} is preserved
by ĥ hamiltonian flow. Hypersurfaces −s + h̃ = const are invariant. When
h is autonomous form the pdq is also a relative integral invariant.

The (transversal) intersection of a Lagrangian L with Hamilton level set
Hc = h−1(c) is an isotropic submanifold Lc. All Hamiltonian trajectories
issued from Lc form a Lagrangian submanifold (denoted by expH(Lc)). The
space ΞHc of Hamilton trajectories on Hc inherit (at least locally) an induced
symplectic structure. The projection of expH(Lc) on ΞHc is Lagrangian. This
is a particular case of a symplectic reduction (which will be discussed later).

Example: Set of straight lines in R2n is T ∗ Sn−1 as a space of character-
istics of hamiltonian p2 = 1 on R2n.
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1.2 Contact geometry

An odd dimensional manifoldM2n+1 endowed with a maximally non-integrable
distribution of a hyperplanes (contact elements) in its tangent spaces is called
contact manifold. Maximal non-integrability means that if locally the distri-
bution is determined by zeros of a 1-form α on M then α∧ (dα)n 6= 0 (recall
that complete integrability Frobenious condition is α ∧ dα = 0.)

Examples.
1. Projectivized cotangent bundle PT ∗Nn+1 with the projectivization of

Liouville form α = pdq. This is also called a space of contact elements on
N. Spherization of PT ∗Nn+1 is two-fold covering of PT ∗Nn+1 and consists
of cooriened contact elements.

2. Space of 1-jets of functions on Nn. (Two functions have the same m-jet
at a point x if their Taylor polynomials of degree k at x coincide). The space
of all 1-jets at all poins has local coordinaters q ∈ N p = df(q) are partial
derivatives of a function at q), and z = f(q). Contact form is pdq − dz.

Contactomorphisms are diffeomorphisms preserving distribution of con-
tact elements.

Contact Darboux theorem. Locally all equidimensional contact man-
ifolds are contactomorphic.

Also an analog of Givental’s theorem holds.

Symplectization. Let M̃2n+2 be the space of all linear forms vanishing
on contact elements of M. The space M̃2n+2 is a ”line” bundle over M (fibers
do not contain zero form). Denote the corresponding projection by π̃. The
symplectic structure (which is homogeneous of degree 1 with respect to fibers)
is the differential of canonical α̃ 1-form on M̃ defined as follows: α̃(χ) =
p(π̃∗χ), where χ is tangent vector to M̃ at a point p.

To any contactomorphism F of M it corresponds a symplectomorphism
defined by F̃ (p) = (F ∗

F (x))
−1p. It commute with multiplication by constants

in the fibers and preserves α̃. The symplectization of contact vector fields (in-
finitezimal contactomorphisms) lead to hamiltonian vector fields possessing
homogeneous (of degree 1) Hamilton functions h(rx) = rh(x).

Assume the contact structure is defined by zeros of a fixed 1-form β, then
M has natural embedding x 7→ xβ into M̃.
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Using the local model J1Rn, pdq − dz of a contact space we get the
following formulas for components of contact vector field with homogeneous
hamiltonian function K(x) = h(xβ). (Note that K = β(X), where X is the
corresponding contact vector field.)

ż = pKp −K, ṗ = −Kq − pKz, q̇ = Kp.

(here subscripts mean partial derivations).

Various homogeneous conterparts of symplectic properties imply hold in
contact geometry (the analogy is similar to that of affine and projective
geometries).

In particular, a hypersurface (transversal to contact distribution) in a
contact space inherits a field of characteristics.

Contactization. To an exact symplectic space M2n associate R ×M
with extra coordinate z and take the form α = λ − dz. We get a contact
space.

Here vector field ξ = − ∂
∂z

is such that iξα = 1, iξdα = 0. Such a field is
called Reeb vector field. Its direction is uniquely defined by contact struc-
ture.It is transversal to contact distribution. Locally projection along ξ pro-
duce a symplectic manifold.

Legendre submanifold L̂ of M2n+1 is an n-dimensional integral submani-
fold of contact distribution. This dimension is maximal possible.

Examples.
1. To a Lagrangian L ⊂ T ∗M associate L̂ ⊂ J1M as follows

L̂ = {(z, p, q) | z =
∫
pdq, (p, q) ∈ L.

Here the integration is taken along a pass joining a distinguished point on L
with given point (p, q). L̂ is Legendre.

2. The set of all cotangent vectors vanishing on tangent spaces to a
submanifold W0 ⊂ N (or variety) form a Legendre submanifold (variety) in
PT ∗N.

3. If an intersection I of Legendre submanifold L̂ with a hypersurface G in
a contact space is transversal then I is tranversal to the characteristic vector

7



field on G. The collection of characteristics issuied from I form a Legendre
submanifold.

Legendre fibration of a contact space is a fibration with Legendre fibers.
For example PT ∗N → N and J1N → J0N are Legendre. Locally any two
Legendre fibrations (of course, of equal dimensions) are contactomorphic.

Projection to the base of Legendre fibration of an embedded Legendre
submanifold L̂ is called a Legendre mapping. Its image is called wave front
of L̂.

Example:
1. Embed Legendre L̂ into J1N. Its projection to J0N is a graph (wave

front W (L̂) of a multivalued action-function
∫
pdq + c (again we integrate

along passes on Lagrangian submanifold L = π1(L̂), where π1 : J1N → T ∗N
is a projection dropping z coordinate). If q does not belong to ΣL then over
q the wave front W (L̂) is a collection of smooth branches. If at two distinct
point (p1, q), (p2, q) from L and non-caustic value q the values of action
function are equal to the same value z then at (z, q) wave front contain
transversal intersection of graphs of regular functions on q.

The projection (z, q) 7→ q of singular and transversal self-intersection
locus of W (L̂) consists of caustic ΣL and so-called Maxwell (conflict) set.

2. To a function f(q), q ∈ Rn associate ils Legendre lifting L̂ = j1(f)
(also called 1-jet extension of f) to J1Rn. Project L̂ along fibers parallel to
q space of another Legendre fibration π∧1 (z, p, q) 7→ (z − pq, p) of the same
contact space pdq − dz = −qdp − d(z − pq). The image of π∧1 (L̂) is called
Legendre transform of the function f. It has singularities if f is not convex.

This is an affine version of the projective duality (which is also related
to Legendre mappings). The space PT ∗P n (P n is the projective space) is
isomorphic to the projectivised cotangent bundle PT ∗P n∧ of the dual space
P n∧. Elements of both are the pairs consisting of a point and a hyperplane,
containing the point. Natural contact structures coincide. Set of all tangent
hyperplanes to a submanifold S in P is a front of dual projection of Legendre
lifting of S.

Given a Hamilton function h : T ∗N → R take exact Lagrangian L =
expH(I) ⊂ H of Hamilton level hypersurface H = h−1(c) which is flow
invariant and consists of all characteristics issued from the intersection I
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with H of homogeneous initial Lagrangian submanifold L0 formed by all
covectors annihilating tangent spaces to initial wave front W0 ⊂ N.

The intersections of the Legendre lifting L̂ of L into J1N ( z =
∫
pdq)

with coordinate hypersurfaces z = const project to Legendre submanifolds
(varieties) L̂z ⊂ PT ∗N (by projectivization with respect to p.) In fact, the
form pdq vanishes on each tangent vector to L̂z. Generically the dimension
of L̂z is n− 1.

The wave front in J0N of L̂ is called big wave front. It is swept by a
family of fronts Wz of L̂z shifted to correspondin slice of z coordinate. Note
that up to a constant the value of z at a point over a point (p, q) is equal
to z =

∫
p∂h

∂p
dt along a segment of Hamilton trajectory joining certain point

from initial I with (p, q).

When h is homogeneous of degree k with respect to p in each fiber then
zt = kct. Let It ⊂ L be the image of I under the flow transformation gt for
time t. The projectived It are Legendrian in PT ∗N . The family of their fronts
in N is Wkct. So Wt are momentary wavefronts propagating from initial W0.
Their singular locii swept caustic ΣL.

The case of time depending Hamiltonian h = h(t, p, q) can be reduced
to the previous one considering an extended phase space J1(N × R), α =
pdq − rdt− dz. The image of initial Legendrian L̂O ⊂ J1(N × {0}) under gt

is a Legendre Lt ⊂ J1(N × {t}).

When locally z can be written as a regular function in q, t it satisfies the
Hamilton-Jacobi equation −∂z

∂t
+ h(t, ∂z

∂q
, q) = 0.
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