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Part I. Sub-Riemannian manifolds

1 Sub-Riemannian structures

1.1 Definition

Let M be a smooth n-dimensional manifold.

Definition. A sub-Riemannian structure on M is a pair (D, g) where D is a dis-
tribution and g is a Riemannian metric on D.

A sub-Riemannian manifold (M,D, g) is a smooth manifold M equipped with
a sub-Riemannian structure (D, g).

Recall that a distribution D of rank m (m ≤ n) is a family of m-dimensional
linear subspaces Dq ⊂ TqM depending smoothly on q ∈ M . A Riemannian metric
on D is a smooth function g : D → R which restrictions gq to Dq are positive
definite quadratic forms.

Let (M,D, g) be a sub-Riemannian manifold. A horizontal curve γ : I ⊂ R →
M is an absolutely continuous curve such that γ̇(t) ∈ Dγ(t) for almost every t ∈ I.
We define the length of a horizontal curve, as in Riemannian geometry, by:

length(γ) =

∫

I

√
gγ(t)

(
γ̇(t)

)
dt.

Definition. The sub-Riemannian distance on (M,D, g) is defined by

d(p, q) = inf

{
length(γ) :

γ horizontal curve
γ joins p to q

}

We use the convention inf ∅ = +∞. Thus, if p and q can not be joined by a
horizontal curve, d(p, q) = +∞.
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Local formulation Locally, on some open subset U , there exist vector fields
X1, . . . , Xm which values at each point q ∈ U form an orthonormal basis of Dq

for the quadratic form gq. We call (X1, . . . , Xm) a local orthonormal frame of the
sub-Riemannian structure (D, g).

The horizontal curves in U coincides then with the solutions in U of the control
system

q̇ =
m∑

i=1

ui(t)Xi(q),

with L1 controls u(·). Such control systems are called nonholonomic control sys-
tems.

As a trajectory, the length of a horizontal curve q(t), t ∈ I, is given by

length
(
q(·)

)
=

∫

I

√
u2

1(t) + · · · + u2
m(t)dt.

Thus, locally, to give a sub-Riemannian structure is equivalent to the given of
a nonholonomic control system of constant rank (i.e. the rank of X1(q), . . . , Xm(q)
is constant).

1.2 Generalized sub-Riemannian structures

The definition of sub-Riemannian structure does not take account of important
cases like the following ones:

Riemannian metric with singularities: consider R2\{x = 0} equipped with
the Riemannian metric g = dx2 + 1

x2 dy2 (known as Grušin plane). An or-
thonormal frame is X1 = ∂x, X2 = x∂y, which is defined everywhere on R2

but does not generate a distribution on {x = 0}. So it does not define a
sub-Riemannian structure.

General nonholonomic control systems: take a nonholonomic control system

q̇ =
m∑

i=1

ui(t)Xi(q), q ∈ M. (1)

In general, the rank of (X1, . . . , Xm) is not constantly equal to m (it can even
be impossible for global topological reasons, for instance in S2).

In both cases, the problem is characterized by the given of a family of vector
fields (X1, . . . , Xm) playing the role of an orthonormal frame. Let us show how we
can associate a distance to such a family of vector fields.
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We define first a metric. For q ∈ M and v ∈ TqM , set

g(q, v) = inf{u2
1 + · · · + u2

m : v =
m∑

i=1

uiXi(q)}.

Clearly, g : TM → R is a smooth function and

• g(q, v) = +∞ if v /∈ Fq = span{X1(q), . . . , Xm(q)},

• g|Fq is a positive definite quadratic form.

The length of an absolutely continuous curve γ(t), t ∈ I, is

length(γ) =

∫

I

√
g
(
γ(t), γ̇(t)

)
dt.

The distance associated to X1, . . . , Xm is defined by

d(p, q) = inf length(γ)

where the infimum is taken over all absolutely continuous curves joining p to q.
Observe that only trajectories of the control system (1) can have finite length.

The distance could then have been defined as the infimum over all the trajectories
joining p to q.

This is not a sub-Riemannian distance with our definition. We give then a gen-
eralization of sub-Riemannian structures that will include this notion of distance.

Definition. A generalized sub-Riemannian structure on M is a triple (E, σ, g)
where

• E is a vector bundle over M ;

• σ : E → TM is a morphism of vector bundles;

• g is a Riemannian metric on E.

To a generalized sub-Riemannian structure is associated a metric defined, for
q ∈ M and v ∈ TqM , by

g(q, v) = inf{gq(u) : u ∈ Eq, σ(u) = v}.

The length of absolutely continuous curves and the generalized sub-Riemannian
distance are defined as above, in the same way than in Riemannian geometry.

Examples.
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• Take E = M×Rm, σ : E → TM , σ(q, u) =
∑m

i=1 uiXi(q) and g the Euclidean
metric on Rm. The resulting generalized sub-Riemannian distance is the
distance associated to the family X1, . . . , Xm.

• Take E = D, σ : D ↪→ TM the inclusion, and g a Riemannian metric on D.
We recover the sub-Riemannian distance associated to the sub-Riemannian
structure (D, g).

A generalized sub-Riemannian structure can always be defined locally by a
single finite family X1, . . . , Xm of vector fields.

In this lecture we will work in the framework of “classic” sub-Riemannian struc-
tures, which is simpler. However the results of Part II (sections 3 to 5), and some
of Part III, can be easily extended for generalized sub-Riemannian structure.

2 Topological structure

Let (M,D, g) be a sub-Riemannian manifold.
Denote by D1 the set of smooth sections of D, that is

D1 = {X ∈ V F (M) : X(q) ∈ Dq ∀q ∈ M}.

In this lecture, we will identify systematically a distribution with the set of its
smooth sections, in particular D with D1. For s ≥ 1, set Ds+1 = Ds + [D1, Ds],
where [D1, Ds] = span{[X,Y ] : X ∈ D1, Y ∈ Ds}, and Lie(D) =

⋃
s≥1 Ds.

Locally, a local frame X1, . . . , Xm of D generates D1. Denote by I = i1 · · · ik a
multi-index of {1, . . . ,m}, its length by |I| = k, and

XI = [Xi1 , [. . . , [Xik−1
, Xik ] . . . ].

With these notations, locally, Ds = span{XI : |I| ≤ s}.

Definition. The distribution D is bracket generating if, ∀q ∈ M , Lie(D)q = TqM .

Equivalently, for any q ∈ M , there exists an integer r = r(q) such that dim Dr
q = n.

This property is also known as Chow’s Condition or Lie Algebra rank condition
(LARC) in control theory, and as Hörmander condition in the context of PDE.

Theorem 1 (Chow’s theorem). If M is connected and if D is bracket-generating,
then any two points of M can be joined by a horizontal curve, and so d < ∞.

Proof. Let p ∈ M . Denote by Ap the set of points joined to p by a horizontal
curve. We just have to prove that Ap is a neighborhood of p. Indeed, if it is this
case, then the equivalence classes of the equivalence relation d(p, q) < ∞ are open
sets. Since M is connected, there is only one such class.
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Let X1, . . . , Xm be a frame of D on a small neighborhood U ⊂ M of p. We fix
local coordinates and we identify U with a neighborhood of 0 in Rn .

Let φi
t be the flow of the vector field Xi. The curves t 7→ φi

t(q) are horizontal
curves and we have

φi
t = id + tXi + o(t).

Define then φij
t as the commutator of flows, that is

φij
t = [φi

t, φ
j
t ] = φj

−t ◦ φi
−t ◦ φj

t ◦ φi
t.

It is a well-known fact that φij
t = id + t2Xij + o(t2).

For a multi-index I = iJ , we define by induction the local diffeomorphisms
φI

t = [φi
t, φ

J
t ]. We have

φI
t = id + t|I|XI + o(t|I|),

and φI
t (q) is the endpoint of a horizontal curve.

To obtain a diffeomorphism which derivative with respect to the time is exactly
XI , we set

ψI
t =





φI
t1/|I| if t ≥ 0,

φI
−|t|1/|I| if t < 0 and |I| is odd,

[φJ
|t|1/|I| , φ

i
|t|1/|I| ] if t < 0 and |I| is even.

We have

ψI
t = id + tXI + o(t), (2)

and ψI
t (q) is the endpoint of a horizontal curve.

Let us choose now commutators XI1 , . . . , XIn which values at p span TpM . It
is possible since D is bracket-generating. Introduce the map ϕ defined on a small
neighborhood Ω of 0 in Rn by

ϕ(t1, . . . , tn) = ψIn
tn ◦ · · · ◦ ψI1

t1 (p) ∈ M.

Due to (2), this map is C1 near 0 and its derivative at 0 is invertible. This implies
that ϕ is a local C1-diffeomorphism and so that φ(Ω) contains a neighborhood of
p.

Now, ϕ(t) results from a concatenation of horizontal curves, the first one starting
at p. Each point in φ(Ω) is then the endpoint of a horizontal curve starting at p.
Therefore φ(Ω) ⊂ Ap and so Ap is a neighborhood of p.

Remark. Chow’s theorem appears also as a consequence of the Orbit Theorem
(Sussmann, Stefan): each set Ap is a connected immersed submanifold of M and,
at each point q ∈ Ap, Lie(D)q ⊂ TqAp. Moreover, when Lie(D) has constant rank
on M , both spaces are equal: Lie(D)q = TqAp.

Thus, when Lie(D) has constant rank, the bracket generating hypothesis is not
restrictive: it is indeed satisfied on each Ap by the restricted distribution D|Ap .
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This proof of Chow’s theorem gives a little bit more than accessibility. Assume
first that, in our construction, the vector fields X1, . . . , Xm are an orthonormal
frame of (D, g).

For ε small enough, any φi
t(q), 0 ≤ t ≤ ε is a horizontal curve of length ε. Thus

ϕ(t1, . . . , tn) is the endpoint of a horizontal curve of length less than N
(
|t1|

1/|I1| +

· · ·+ |tn|
1/|In|

)
, where N counts the maximal number of concatenations involved in

the ψIi
t ’s. This gives an upper bound for the distance:

d
(
p, φ(t)

)
≤ N

(
|t1|

1/|I1| + · · · + |tn|
1/|In|

)
. (3)

This kind of estimates of the distance in function of local coordinates plays an
important role in sub-Riemannian geometry. However here (t1, . . . , tn) are not local
coordinates: ϕ is only a C1-diffeomorphism, not a smooth diffeomorphism.

Let’s try to replace (t1, . . . , tn) by local coordinates. Choose local coordinates
(y1, . . . , yn) centered at p such that ∂

∂yi
|p = XIi

(p). The map ϕy = y ◦ ϕ is a

C1-diffeomorphism between neighborhoods of 0 in Rn, and its differential at 0 is
dϕy

0 = IdRn .
Denoting by ‖ · ‖Rn the Euclidean norm on Rn, we obtain, for ‖t‖Rn small

enough, yi(t) = ti + o(‖t‖Rn). The inequality (3) becomes

d(p, qy) ≤ N ′‖y‖
1/r
Rn ,

where qy denotes the point of coordinates y and r = maxi |Ii|. This inequality
allows to compare d to a Riemannian distance.

Let gR be a Riemannian metric compatible with g, that is gR|D = g, and dR the
associate Riemannian distance. By construction dR(p, q) ≤ d(p, q). Moreover, near
p, dR(p, qy) ≥ Cst‖y‖Rn . We obtain like that a first estimate of the sub-Riemannian
distance.

Theorem 2. Assume D is a bracket generating distribution. For any Riemannian
metric gR compatible with g, we have, for q close enough to p,

dR(p, q) ≤ d(p, q) ≤ Cst dR(p, q)1/r

where Dr
p = TpM .

As a consequence, the sub-Riemannian distance is continuous.

Corollary 3. If the distribution D is bracket generating, then the topology of the
metric space (M,d) is the original topology of M .

Remark. The converse of Chow’s theorem is false in general. Consider for instance
the sub-Riemannian structure in R3 defined by the orthonormal frame X1 = ∂x,
X2 = ∂y + f(x)∂z where f(x) = e−1/x2

for positive x and f(x) = 0 otherwise.
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The associated sub-Riemannian distance is finite whence the distribution is not
bracket generating. Moreover the topology of the metric space is different from the
canonical topology of R3.

However, for an analytic sub-Riemannian manifold (that is when M , D, g
are in the analytic category), the bracket generating property is equivalent to the
finiteness of the distance.
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Part II. Infinitesimal point of view

3 Nilpotent approximations

In all this section, we consider a sub-Riemannian manifold (M,D, g), with D
bracket generating, and the associated sub-Riemannian distance d. We fix a point
p ∈ M and a local orthonormal frame X1, . . . , Xm of the sub-Riemannian structure
(D, g) in a neighborhood of p.

3.1 Nonholonomic orders

Let f be a smooth function defined near p.

Definition. We call nonholonomic derivatives of f of order 1 the Lie deriva-
tives X1f, . . . , Xmf . We call further Xi(Xjf), Xi(Xj(Xkf)),. . . the nonholonomic
derivatives of f of order 2, 3,. . . . The nonholonomic derivative of f of order 0 is
f(p).

When M = Rn, m = n, and Xi = ∂xi
, nonholonomic derivatives are just

the usual partial derivatives. In fact, the nonholonomic derivatives will play in
sub-Riemannian geometry a role analogous to that of ∂xi

in Rn.

Proposition 4. Let s ≥ 0 be an integer. For a smooth function f defined near p,
the following conditions are equivalent:

(i) f(q) = O
(
d(p, q)s

)
,

(ii) all nonholonomic derivatives of f of order smaller than s vanish at p.

Proof.

(i)⇒(ii) Note first that a nonholonomic derivative of f of order k can be written
as

(Xi1 . . . Xikf)(p) =
∂k

∂t1 · · · ∂tk
f
(
etkXik ◦ · · · ◦ et1Xi1 (p)

)∣∣∣
t=0

.
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The point q = etkXik ◦ · · · ◦ et1Xi1 (p) is the endpoint of a horizontal curve of
length |t1|+ · · ·+ |tn|. Therefore, d(p, q) ≤ |t1|+ · · ·+ |tn| and, since f satisfies
(i), f(q) = O

(
(|t1| + · · · + |tn|)

s
)
. This implies that, for k < s,

(Xi1 . . . Xikf)(p) =
∂k

∂t1 · · · ∂tk
f(q)

∣∣∣
t=0

= 0.

(ii)⇒(i) The proof goes by induction on s. For s = 0, there is nothing to prove.

Assume that (ii)⇒(i) for a given s ≥ 0 (induction hypothesis) and take a
function f such that all its nonholonomic derivatives of order < s + 1 vanish
at p.

Observe that, for i = 1, . . . ,m, all the nonholonomic derivatives of Xif of
order < s vanish at p. Indeed, Xi1 . . . Xik(Xif) = Xi1 . . . XikXif . Applying
the induction hypothesis to Xif yields Xif(q) = O

(
d(p, q)s

)
. In other terms,

there exist positive constants C1, . . . , Cm such that, for q close enough to p,

Xif(q) ≤ Cid(p, q)s.

Fix now a point q near p. Let γ(·) be a minimizing curve joining p to q. We
will see in Part III, § ??, that such a curve exists and that we can assume it
has velocity one. This means that γ satisfies

γ̇(t) =
m∑

i=1

ui(t)Xi

(
γ(t)

)
for a.e. t ∈ [0, T ], γ(0) = p, γ(T ) = q,

with
∑

i u
2
i (t) = 1 a.e. and d(p, q) = length(γ) = T . Actually every sub-arc

of γ is also clearly minimizing, so d
(
p, γ(t)

)
= t for any t ∈ [0, T ].

To estimate f
(
γ(T )

)
, we compute the derivative of f

(
γ(t)

)
with respect to t:

d

dt
f
(
γ(t)

)
=

m∑

i=1

ui(t)Xif
(
γ(t)

)
,

⇒

∣∣∣∣
d

dt
f
(
γ(t)

)∣∣∣∣ ≤
m∑

i=1

|ui(t)|Cid
(
p, γ(t)

)s
≤ Cts,

where C = C1 + · · · + Cm. Integrate this inequality between 0 and t:

∣∣f
(
γ(t)

)∣∣ ≤ |f(p)| +
C

s + 1
ts+1.

We have f(p) = 0 since it is the nonholonomic derivative of f of order 0.
Finally, at t = T = d(p, q), we obtain

|f(q)| ≤
C

s + 1
T s+1.
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Definition. If Property (i), or (ii), holds, we say that f is of (nonholonomic) order
≥ s at p. If f is of order ≥ s but not of order ≥ s + 1, we say that f is of order s
at p and we denote it as ordp(f) = s.

In other terms,

ordp(f) = min
{
s ∈ N : ∃ i1, . . . , is ∈ {1, . . . ,m} s.t. (Xi1 . . . Xisf)(p) 6= 0

}
.

Remark. The order does not depend on the chosen frame X1, . . . , Xm. Actually,
the order is a nonholonomic notion rather than a sub-Riemannian one: it depends
only on the distribution D and not on the Riemannian metric g (exercise: prove
that the orders defined by two different frames of D are the same).

Any smooth function defined near p is of order ≥ 0. Functions vanishing at p
are of order ≥ 1. Moreover, we have the classical properties of orders:

ordp(fg) ≥ ordp(f) + ordp(g),

ordp(λf) = ordp(f) for λ ∈ R∗,

ordp(f + g) ≥ min
(
ordp(f), ordp(g)

)
.

Notice that the first inequality is actually an equality. However the proof of this
fact requires an additional result (see Proposition 5).

We define in the same way order for vector fields.

Definition. Let σ ∈ Z. We say that a vector field X is of order ≥ σ at p if, for
any smooth function f defined near p, Xf is of order ≥ σ + ordp(f). If X is of
order ≥ σ but not of order ≥ σ + 1 at p, we say that X is of order σ at p, and we
denote it as ordp(X) = σ.

In other terms, we have ordp(0) = +∞ and, for X 6= 0,

ordp(X) = max
{
σ ∈ Z : ∀f ∈ C∞(p), ordp(Xf) ≥ σ + ordp(f)

}
.

The order of a differential operator is defined in exactly the same way.
The order of a function coincides with its order as a differential operator acting

by multiplication. We have then the following properties:

ordp([X,Y ]) ≥ ordp(X) + ordp(Y ),

ordp(fX) ≥ ordp(f) + ordp(X) for f ∈ C∞(p),

ordp(X + Y ) ≥ min
(
ordp(X), ordp(Y )

)
.
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As already noticed for functions, the second inequality is in fact an equality. This
is not the case for the first inequality (take for instance commuting nonzero vector
fields).

As a consequence, X1, . . . , Xm are of order ≥ −1, [Xi, Xj ] of order ≥ −2, and
XI of order ≥ −|I|.

Remark. When M = Rn, m = n, and Xi = ∂xi
, nonholonomic orders are the usual

vanishing orders from analysis. At x = 0, it is the smallest degree of the monomials
which appears with a nonzero coefficient in the Taylor series

f(x) ∼
∑

cαxα1

1 . . . xαn
n

of f at 0.
On the other hand the order of a constant differential operator is the negative

of its usual order. For instance ∂xi
is of nonholonomic order −1.

We are able now to precise the meaning of approximation of a family X1, . . . , Xm

of vector fields.

Definition. A system of vector fields X̂1, . . . , X̂m defined near p is called a first-
order approximation of X1, . . . , Xm at p if the vector fields Xi − X̂i, i = 1, . . . ,m,
are of order ≥ 0 at p.

In particular the order at p defined by the vector fields X̂1, . . . , X̂m coincides
with the one defined by X1, . . . , Xm.

To go further in the characterization of orders and approximations, we need
suitable systems of coordinates.

3.2 Privileged coordinates

We have introduced in § 2 the sets of vector fields Ds, defined locally as Ds =
span{XI : |I| ≤ s}. Since D is a bracket generating distribution, the values of
these sets at p form a flag of subspaces of TpM

D1
p ⊂ D2

p ⊂ · · · ⊂ Dr
p = TpM. (4)

Here r = r(p) is the smaller integer such that Dr
p = TpM . This integer is called

the degree of nonholonomy at p.
Set ni(p) = dim Di

p. The integer list (n1(p), . . . , nr(p)) is called the growth
vector at p. The first integer n1(p) = m is the rank of the distribution and the last
one nr(p) = n is the dimension of the manifold M .

By definition, D1 is a distribution (recall that we identify D with D1). For
s > 1, the set Ds is a distribution if and only if ns(q) is constant on M . We then
distinguish two kind of points.
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Definition. The point p is a regular point if the growth vector is constant in a
neighborhood of p. Otherwise, p is a singular point.

Thus, near a regular point, all sets Ds are locally distributions.

Some properties of growth vector and degree of nonholonomy

• The regular points form an open and dense subset of M .

• At a regular point, the growth vector is a strictly increasing sequence: n1(p) <
· · · < nr(p). Indeed, if ns(q) = ns+1(q) in a neighborhood of p, then Ds is
locally an involutive distribution and so s = r.

As a consequence, at a regular point, r(p) ≤ n − m + 1.

• In a connected analytic sub-Riemannian manifold, the growth vector – and
so the degree of nonholonomy – is the same at all regular points.

• The degree of nonholonomy is an upper continuous function, that is r(q) ≤
r(p) for q near p. In general it can be unbounded on M . Thus the finiteness
of a sub-Riemannian distance is a non decidable problem: the computation
of an infinite number of brackets may be needed to decide if the distribution
is bracket generating.

In the case (important in the sequel) of a distribution in Rn generated by
polynomial vector fields, the degree of nonholonomy can be bounded by a
universal function of the degree d of the polynomials:

r(x) ≤ 23n2

n2nd2n.

The structure of the flag (4) may also be described by the sequence of integers
w1 ≤ · · · ≤ wn where wj = s if ns−1(p) < j ≤ ns(p) (we set n0 = 0), that is

w1 = · · · = wn1
= 1, wn1+1 = · · · = wn2

= 2, . . . , wnr−1+1 = · · · = wnr = r.

The integers wi = wi(p), i = 1, . . . , n, are called the weights at p.
The meaning of this sequence is best understood in terms of basis of TpM .

Choose first vector fields Y1, . . . , Yn1
in D1 which values at p form a basis of D1

p

(for instance Yi = Xi). Choose then vector fields Yn1+1, . . . , Yn2
in D2 such that the

values Y1(p), . . . , Yn2
(p) form a basis of D2

p (for instance Yi = XIi
, with Ii of length

2). For each s, choose Yns−1+1, . . . , Yns in Ds such that Y1(p), . . . , Yns(p) form a
basis of Ds

p (for instance Yi = XIi
, with |Ii| = s). We obtain in this way a sequence

of vector fields Y1, . . . , Yn such that
{

Y1(p), . . . , Yn(p) is a basis of TpM,
Yi ∈ Dwi , i = 1, . . . , n.

(5)
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A sequence of vector fields satisfying (5) is called an adapted frame at p. The word
“adapted” means “adapted to the flag (4)”, since the values at p of an adapted
frame contain a basis Y1(p), . . . , Yns(p) of each subspace Ds

p of the flag. The values
of Y1, . . . , Yn at q near p form also a basis of TqM . However, this basis may be not
adapted to the flag (4) at q if p is singular.

Let us relate now the weights to the orders. Write first the tangent space as a
direct sum

TpM = D1
p ⊕ D2

p/D
1
p ⊕ · · · ⊕ Dr

p/D
r−1
p ,

where Ds
p/D

s−1
p denotes a supplementary of Ds−1

p in Ds
p, and take a local system

of coordinates (y1, . . . , yn). The dimension of each Ds
p/D

s−1
p is equal to ns − ns−1,

so we can assume that, up to a reordering, dyj(D
s
p/D

s−1
p ) 6= 0 for ns−1 < j ≤ ns.

Thus, for 0 < j ≤ n1, we have dyj(D
1
p) 6= 0. There exists then Xi such that

dyj(Xi(p)) 6= 0. Since dyj(Xi) = Xiyj is a first-order nonholonomic derivative of
yj, we have ordp(yj) ≤ 1 = wj.

In the same way, for ns−1 < j ≤ ns, there exists a multi-index I of length s
such that dyj(XI(p)) = (XIyj)(p) 6= 0, and so ordp(yj) ≤ wj.

To sum up, for any system of local coordinates (y1, . . . , yn), we have, up to a
reordering, ordp(yj) ≤ wj (or, without reordering,

∑n
i=1 ordp(yi) =

∑n
i=1 wi). We

distinguish the coordinates with the maximal possible order.

Definition. A system of privileged coordinates at p is a system of local coordinates
(z1, . . . , zn) such that ordp(zj) = wj for j = 1, . . . , n.

Remark. Kupka [Kup96] defines privileged functions by ***

Privileged coordinates are an essential tool to compute nonholonomic orders,
characterize first-order approximations, and estimate the distance. We first show
how to compute orders.

Notice that privileged coordinates (z1, . . . , zn) satisfy

dzi(D
wi
p ) 6= 0, dzi(D

wi−1
p ) = 0, i = 1, . . . , n, (6)

or, equivalently, ∂zi
|p ∈ Dwi

p but /∈ Dwi−1
p . Local coordinates satisfying (6) are

called linearly adapted coordinates (“adapted” because the differentials at p of the
coordinates form a basis of T ∗

p M dual to the values of an adapted frame).
Thus privileged coordinates are always linearly adapted coordinates. Notice

that the converse is false.

Example. Take X1 = ∂x, X2 = ∂y + (x2 + y)∂z in R3. The weights at 0 are (1, 1, 3)
and (x, y, z) are adapted at 0. But they are not privileged: (X 2

2z)(0) = 1.
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Consider now a system of privileged coordinates (z1, . . . , zn). Given a sequence
of integers α = (α1, . . . , αn), we define the weighted degree of the monomial zα =
zα1

1 · · · zαn
n as w(α) = w1α1 + · · · + wnαn and the weighted degree of the monomial

vector field zα∂zj
as w(α)−wj. The weighted degrees allow to compute the orders

of functions and vector fields in a purely algebraic way.

Proposition 5. For a smooth function f with a Taylor expansion

f(z) ∼
∑

α

cαzα,

the order of f is the least weighted degree of a monomial appearing in the Taylor
series with a nonzero coefficient.

For a vector field X with a Taylor expansion

X(z) ∼
∑

α,j

aα,jz
α∂zj

,

the order of X is the least weighted degree of a monomial vector field appearing in
the Taylor series with a nonzero coefficient.

Proof. For i = 1, . . . , n, we have ∂zi
|p ∈ Dwi

p . We can then find a frame Y1, . . . , Yn

adapted at p such that Y1(p) = ∂z1
|p, . . . , Yn(p) = ∂zn|p. For each i, Yi of order

≥ −wi at p (since it belongs to Dwi). Moreover (Yizi)(p) = 1 and ordp(zi) = wi.
Thus ordp(Yi) = −wi.

Take a sequence of integers α = (α1, . . . , αn). The monomial zα is of order
≥ w(α) at p and the differential operator Y α = Y α1

1 · · ·Y αn
n is of order ≥ −w(α).

Noticing that (Yizj)(p) = 0 if j 6= i, we prove easily that (Y αzα)(p) = 1
α1!...αn!

6= 0,
which implies ordp(z

α) = w(α).
In the same way, we obtain that, if zα, zβ are two different monomials and λ,

µ two nonzero real numbers, then ordp(λzα + µzβ) = min
(
w(α), w(β)

)
. Thus the

order of a series is the least weighted degree of monomials actually appearing in it.
This shows the result on order of functions.

As a consequence, for any smooth function f , the order at p of ∂zi
f is ≥

ordp(f) − wi. Since moreover ∂zi
zi = 1, we obtain ordp(∂zi

) = −wi and the result
on order of vector fields.

We see that, when using privileged coordinates, the notion of nonholonomic
order amounts to the usual notion of vanishing order at some point, only assigning
weights to the variables.
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Homogeneity Fix a system of privileged coordinates (z1, . . . , zn). A notion of
homogeneity is naturally associated to this system. Define first the one-parameter
group of dilations

δt : (z1, . . . , zn) 7→ (tw1z1, . . . , t
wnzn), t ∈ R.

The dilation δt acts on functions and vector fields by pull-back: δ∗t f = f ◦ δt and
δ∗t X, so that (δ∗t X)(δ∗t f) = δ∗t (Xf).

Definition. A function f is homogeneous of degree s if δ∗t f = tsf . A vector field
X is homogeneous of degree σ if δ∗t X = tσX.

For a smooth function (resp. for a vector field), this is the same as being a
finite sum of monomials (resp. monomial vector fields) of weighted degree s.

We introduce also the function ‖z‖ = |z1|
1/w1 + · · · + |zn|

1/wn , which is homo-
geneous of degree 1. This function, called pseudo-norm, will be of great use in the
sequel. Observe already that, by definition of orders, zi = O

(
d(p, qz)wi

)
and so

‖z‖ = O
(
d(p, qz)

)

where qz is the point of coordinates z.

Examples of privileged coordinates Of course all the results above on alge-
braic computation of orders hold only if privileged coordinates do exist. Two types
of privileged coordinates are commonly used in the literature.

a. Exponential coordinates. Choose an adapted frame Y1, . . . , Yn at p.
The inverse of the local diffeomorphism

(z1, . . . , zn) 7→ ez1Y1+···+znYn(p)

defines a system of local privileged coordinates at p, called canonical coordinates
of the first kind. These coordinates are mainly used in the context of hypoelliptic
operator and for nilpotent Lie groups with right (or left) invariant sub-Riemannian
structure. The fact that these coordinates are privileged is proved – in different
terms – in [RS76].

The inverse of the local diffeomorphism

(z1, . . . , zn) 7→ eznYn ◦ · · · ◦ ez1Y1(p)

also defines privileged coordinates at p, called canonical coordinates of the second
kind. They are easier to work with than the one of the first kind. For instance, in
these coordinates, the vector field Yn read as ∂zn . One can also exchange the order
of the flows in the definition to obtain any of the Yi as ∂zi

. The fact that these
coordinates are privileged is proved in [Her91] (see also [Mon02]).
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Exercise 1. Prove that the diffeomorphism

(z1, . . . , zn) 7→ eznYn+···+zs+1Ys+1 ◦ ezsYs · · · ◦ ez1Y1(p)

induces privileged coordinates. Show in fact that any “mix” between first and
second kind canonical coordinates are privileged coordinates.

b. Algebraic algorithm. There exist also effective constructions of privi-
leged coordinates (the construction of exponential coordinates is not effective in
general since it requires to integrate flows). We present here Belläıche’s algorithm
(see also [Ste86] and [AS87]).

1. Choose an adapted frame Y1, . . . , Yn at p.

2. Choose coordinates (y1, . . . , yn) centered at p such that ∂yi
|p = Yi(p).

3. Build privileged coordinates z1, . . . , zn by the iterative formula: for j =
1, . . . , n,

zj = yj +

wj−1∑

k=2

hk(y1, . . . , yj−1),

where, for k = 2, . . . , wj − 1,

hk(y1, . . . , yj−1) = −
∑

|α|=k
w(α)<wj

Y α1

1 . . . Y
αj−1

j−1

(
yj +

k−1∑

q=2

hq(y)
)
(p)

yα1

1

α1!
· · ·

y
αj−1

j−1

αj−1!

where |α| = α1 + · · · + αn.

The coordinates y1, . . . , yn are linearly adapted coordinates. Starting from any
system of coordinates, they can be obtained by an affine change of coordinates.
Privileged coordinates are obtained from linearly adapted coordinates by expres-
sions of the form

z1 = y1

z2 = y2 + pol(y1)
...

zn = yn + pol(y1, . . . , yn−1)

where pol are polynomials without constant or linear terms.
To prove that these coordinates are actually privileged, the key result is the

following lemma.
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Lemma 6. A function f is of order ≥ s at p if and only if

(Y α1

1 · · ·Y αn
n f)(p) = 0

for all α such that w(α) < s.

Remark. This lemma seems to be an easy consequence of Proposition 5 and of its
proof. However, in the latter proposition, existence of privileged coordinates is
assumed, whence here the aim is to prove this existence.

Roughly speaking, the idea to obtain zj from yj is the following. For each α
with w(α) < wj (and so αj = · · · = αn), compute (Y α1

1 · · ·Y
αj−1

j−1 yj)(p). If it is

nonzero, then replace yj by yj − (Y α1

1 · · ·Y
αj−1

j−1 yj)(p)
y

α1
1

α1!
· · ·

y
αj−1
j−1

αj−1!
. With the new

value of yi, (Y α1

1 · · ·Y
αj−1

j−1 yj)(p) = 0.

3.3 Nilpotent approximation

Fix a system of privileged coordinates at p. We already know that each vector field
Xi is of order ≥ −1. Moreover, for at least one coordinate zj among z1, . . . , zm,
the derivative (Xizj)(p) is nonzero (since dzj(D

1
p) 6= 0). This implies that all Xi’s

are of order −1.
In z coordinates, Xi has a Taylor expansion

Xi(z) ∼
∑

α,j

aα,jz
α∂zj

,

where w(α) ≥ wj − 1 if aα,j 6= 0. Grouping together the monomial vector fields of
same weighted degree, we express Xi as a series

Xi = X
(−1)
i + X

(0)
i + X

(1)
i + · · ·

where X
(s)
i is a homogeneous vector field of degree s.

Set X̂i = X
(−1)
i , i = 1, . . . ,m. By construction, X̂1, . . . , X̂m is a first-order

approximation of X1, . . . , Xm.

Proposition 7. The vector fields X̂1, . . . , X̂m generate a nilpotent Lie algebra of
step r = wn.

Proof. Note first that any homogeneous vector field of degree smaller than −wn

is zero (clear in privileged coordinates). Secondly, if X and Y are homogeneous of
degree respectively k and l, then the bracket [X,Y ] is homogeneous of degree k + l
because δ∗t [X,Y ] = [δ∗t X, δ∗t Y ] = tk+l[X,Y ].

Hence, every bracket X̂I of the vector fields X̂1, . . . , X̂m is homogeneous of
degree −|I| and is zero if |I| > wn.
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Definition. The system of vector fields (X̂1, . . . , X̂m) is the (homogeneous) nilpo-
tent approximation of (X1, . . . , Xm) at p associated to the coordinates z.

This homogeneous nilpotent approximation is not intrinsic, it depends on the
chosen system of privileged coordinates. However, if X̂1, . . . , X̂m and X̂ ′

1, . . . , X̂
′
m

are the nilpotent approximations associated to two different systems of coordinates,
then the Lie algebras Lie(X̂1, . . . , X̂m) and Lie(X̂ ′

1, . . . , X̂
′
m) are isomorphic. If

moreover p is a regular point, then Lie(X̂1, . . . , X̂m) is isomorphic to the graded
nilpotent Lie algebra

Gr(D)p = Dp ⊕ (D2/D1)p ⊕ · · · ⊕ (Dr−1/Dr)p.

Notice finally that an intrinsic definition of nilpotent approximations has been
recently proposed by Agrachev and Marigo [?].

Remark. The nilpotent approximation denotes in fact two different objects. Each
X̂i can be seen as a vector field on Rn or as the representation in z coordinates of
the vector field z∗X̂i defined on a neighborhood of p in M . This is not a problem
since the nilpotent approximation is associated to a given system of privileged
coordinates.

The nilpotent approximation has a particular form in privileged coordinates.
Indeed, write X̂i =

∑n
j=1 fij(z)∂zj

. Since X̂i is homogeneous of degree −1 and ∂zj

of degree −wj, fij is homogeneous of degree wj − 1 and can not involve variables
of weight greater than wj − 1. Thus

X̂i(z) =
n∑

j=1

fij(z1, . . . , znwj−1)∂zj
,

where fij is a homogeneous polynomial of weighted degree wj − 1, and

Xi(z) =
n∑

j=1

(
fij(z1, . . . , znwj−1) + O

(
‖z‖wj

))
∂zj

.

The nonholonomic control system ż =
∑m

i=1 uiX̂i(z) associated to the nilpotent
approximation is then polynomial and in a triangular form:

żj =
m∑

i=1

uifij(z1, . . . , znwj−1).

Such a form is “easy” to integrate: given the input function (u1(t), . . . , um(t)), it
is possible to compute the coordinates zj one after the other, only by computing
primitives.

As vector fields on Rn, X̂1, . . . , X̂m generates an homogeneous sub-Riemannian
structure.
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Lemma 8.

(i) D̂ = span{X̂1, . . . , X̂m} is a bracket generating distribution on Rn.

Denote by (D̂, ĝ) the sub-Riemannian structure on Rn having X̂1, . . . , X̂m as global

orthonormal frame, and by d̂ the associated sub-Riemannian distance on Rn.

(ii) The distance d̂ is homogeneous of degree 1, that is

d̂(δtx, δty) = td̂(x, y)

(iii) There exists a constant C > 0 such that, for all z ∈ Rn,

1

C
‖z‖ ≤ d̂(0, z) ≤ C‖z‖.

Proof.

(i) It results clearly from the proof of Proposition 7 that XI = X̂I+ terms of order
> −|I|. It implies

X̂I(0) = XI(p) mod span{∂zj

∣∣
p

: wj < |I|} = XI(p) mod D|I|−1
p .

Then the nilpotent approximation has the same growth vector at 0 than D
at p. In particular,

rk(X̂1, . . . , X̂m)(0) = m and rk(X̂I1 , . . . , X̂In)(0) = n

if (XI1 , . . . , XIn) is an adapted frame at p. By continuity, both properties
holds near 0.

Consider now a nonzero minor det
(
fij(z)

)
, 1 ≤ i ≤ m, j = i1, . . . , im, in the

matrix of the components of X̂1, . . . , X̂m. It is an homogeneous polynomial
of degree wi1 + · · · + wim − m. Since it is nonzero near 0, it is nonzero

everywhere, and then rk(X̂1, . . . , X̂m) = m on Rn. The same reasoning holds

for rk(X̂I1 , . . . , X̂In). This shows (i).

(ii) Observe that, if γ̂ is a horizontal curve of D̂, that is

˙̂γ(t) =
m∑

i=1

uiX̂i

(
γ̂(t)

)
, t ∈ [0, T ],

then δλγ̂ satisfies

d

dt
δλγ̂(t) =

m∑

i=1

λuiX̂i

(
δλγ̂(t)

)
, t ∈ [0, T ].
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Thus δλγ̂ is a horizontal curve of D̂ of length λ × length(γ̂) with extremities
(δλγ̂)(0) = δλ(γ̂(0)) and (δλγ̂)(T ) = δλ(γ̂(T )). This shows the homogeneity

of d̂.

(iii) Choose C > 0 such that, on the compact set {‖z‖ = 1}, 1/C ≤ d̂(0, z) ≤ C.

Both functions d̂(0, z) and ‖z‖ being homogeneous of degree 1, the inequality
follows.

4 Distance estimates

4.1 Ball-Box theorem

Privileged coordinates give estimates of the sub-Riemannian distance.

Theorem 9. The following theorem holds if and only if z1, . . . , zn are privileged
coordinates at p:

there exist constants Cp and εp > 0 such that, if d(p, qz) < εp, then

1

Cp

‖z‖ ≤ d(p, qz) ≤ Cp‖z‖ (7)

(as usual, qz denotes the point near p with coordinates z).

Corollary 10 (Ball-Box Theorem). Expressed in a given system of privileged
coordinates, the sub-Riemannian balls B(p, ε) satisfy, for ε < εp,

Box
( 1

Cp

ε
)
⊂ B(p, ε) ⊂ Box

(
Cpε

)
,

where Box(ε) = [−εw1 , εw1 ] × · · · × [−εwn , εwn ].

Remark. The constants Cp and εp depend on the base point p. Around a regular
point p0, it is possible to construct systems of privileged coordinates depending
continuously on the base point p. In this case, the corresponding constants Cp and
εp depend continuously on p. This is not true at a singular point. In particular, if
p0 is singular, the estimate (7) does not hold uniformly near p0: we can not choose
the constants Cp and εp independently on p near p0 (see § 5.2 for uniform versions
of Ball-Box Theorem).

21



Ball-Box Theorem is stated in different papers, often under the hypothesis that
the point p is regular. As far as I know, two valid proofs exist: in [NSW85] and
in [Bel96]. The result also appears without proof in [Gro96] and in [Ger84][Ger84],
and with erroneous proofs in [Mit85] and in [Mon02].

We present here a proof adapted from the one of Belläıche (our is much simpler
because Belläıche actually proves a more general result, namely (10)). Basically,

the idea is to compare the distances d and d̂. The main step is Lemma 11 below,
which is essential to explain the role of nilpotent approximations in control theory.

Observe first that, by the definition of order, a system of coordinates z is priv-
ileged if and only if d(p, qz) ≥ Cst ‖z‖. The only thing to prove is that, if z are
privileged coordinates, then d(p, qz) ≤ Cst ‖z‖.

From now on, we work locally. We fix then a point p, a local orthonormal
frame X1, . . . , Xm of the sub-Riemannian structure, and a system of privileged
coordinates at p. Through these coordinates we identify a neighborhood of p in M
with a neighborhood of 0 in Rn. Finally, we denote by X̂1, . . . , X̂m the homogeneous
nilpotent approximation of X1, . . . , Xm at p (associated to the given privileged

coordinates) and by d̂ the induced sub-Riemannian distance on Rn. Recall also
that r = wn denotes the degree of nonholonomy.

Lemma 11. There exist constants C and ε > 0 such that, for any x0 ∈ Rn and
any t ∈ R+ with τ = max(‖x0‖, t) < ε, we have

‖x(t) − x̂(t)‖ ≤ Cτt1/r,

where x(·) and x̂(·) are trajectories of the control systems associated respectively

to X1, . . . , Xm and X̂1, . . . , X̂m, starting at the same point x0, defined by the same
control function u(·), and with velocity one (i.e.

∑
i u

2
i ≡ 1).

Proof. The first step is to prove that there exists a constant such that ‖x(t)‖ and
‖x̂(t)‖ ≤ Cst τ for small enough τ . Let us do it for x(t), the proof is exactly the
same for x̂(t).

The equation of a trajectory of the control system associated to X1, . . . , Xm is

ẋj =
m∑

i=1

ui

(
fij(x) + rij(x)

)
, j = 1, . . . , n,

where fij(x) + rij(x) is of order ≤ wj − 1 at 0. There exist then a constant such
that, when ‖x‖ is small enough, |fij(x)+ rij(x)| ≤ Cst ‖x‖wj−1 for any j = 1, . . . , n
and any i = 1, . . . ,m. Note that, along a trajectory starting at x0, ‖x‖ is small
when τ is. If moreover the trajectory has velocity one, we obtain:

|ẋj| ≤ Cst ‖x‖wj−1. (8)
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To integrate this inequality, choose an integer N such that all N/wj are even

integers and set |||x||| =
( ∑n

i=1 x
N/wi

i

)1/N
. The function |||x||| is equivalent to ‖x‖

in the norm sense and is differentiable out of the origin. Inequality (8) implies
d
dt
|||x||| ≤ Cst , and then, by integration,

|||x(t)||| ≤ Cst × t + |||x(0)||| ≤ Cst × τ.

The pseudo-norms |||x||| and ‖x‖ being equivalent, we obtain, for a trajectory
starting at x0, ‖x(t)‖ ≤ Cst × τ when τ is small enough.

The second step is to prove |xj(t) − x̂j(t)| ≤ Cst τwj t. The function xj − x̂j

satisfies the differential equation

ẋj − ˙̂xj =
m∑

i=1

ui

(
fij(x) − fij(x̂) + rij(x)

)
,

=
m∑

i=1

ui

( ∑

{k : wk<wj}

(xk − x̂k)Qijk(x, x̂) + rij(x)
)
,

where Qijk(x, x̂) is a homogeneous polynomial of weighted degree wj −wk − 1. For
‖x‖ and ‖x̂‖ small enough, we have

|rij(x)| ≤ Cst ‖x‖wj and |Qijk(x, x̂)| ≤ Cst (‖x‖ + ‖x̂‖)wj−wk−1.

By using the inequalities of the first step, we obtain finally, for τ small enough,

|ẋj(t) − ˙̂xj(t)| ≤ Cst
∑

{k : wk<wj}

|xk(t) − x̂k(t)|τ
wj−wk−1 + Cst τwj . (9)

This system of inequalities has a triangular form. We can then integrate it by
induction. For wj = 1, the inequality is |ẋj(t) − ˙̂xj(t)| ≤ Cst τ , and so |xj(t) −
x̂j(t)| ≤ Cst τt. By induction, let j > n1 and assume |xk(t)− x̂k(t)| ≤ Cst τwkt for
k < j. Inequality (9) implies

|ẋj(t) − ˙̂xj(t)| ≤ Cst τwj−1t + Cst τwj ≤ Cst τwj ,

and so |xj(t) − x̂j(t)| ≤ Cst τwj t.
Finally,

‖x(t) − x̂(t)‖ ≤ Cst τ(t1/w1 + · · · + t1/wn) ≤ Cst τt1/r,

which completes the proof of the lemma.
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Proof (of Theorem 9). We will show that, for ‖x0‖ small enough,

d(0, x0) ≤ 2d̂(0, x0),

and so d(0, x0) ≤ Cst ‖x0‖ by Lemma 8. As noticed earlier, this proves Theorem 9.

Fix x0 ∈ Rn, ‖x0‖ < ε. Let x̂0(t), t ∈ [0, T0], be a minimizing curve for d̂,
having velocity one, and joining x0 to 0. Let x0(t), t ∈ [0, T0], be the trajectory
of the control system associated to X1, . . . , Xm starting at x0 and defined by the
same control function than x̂0(t). Set x1 = x0(T0).

Thus T0 = d̂(0, x0) = length
(
x0(·)

)
. Moreover, by Lemma 11,

‖x1‖ = ‖x0(T0) − x̂0(T0)‖ ≤ CτT
1/r
0 ,

where τ = max(‖x0‖, T0). By Lemma 8, T0 = d̂(0, x0) satisfies T0 ≥ ‖x0‖/C ′, so
τ ≤ C ′T0, and

d̂(0, x1) ≤ C ′‖x1‖ ≤ C ′′d̂(0, x0)1+1/r,

with C ′′ = C ′2C.
Choose now x̂1(t), t ∈ [0, T1], a minimizing curve for d̂, having velocity one,

and joining x1 to 0. Let x1(t), t ∈ [0, T1], be the trajectory of the control system
associated to X1, . . . , Xm starting at x1 and defined by the same control function
than x̂1(t). Set x2 = x1(T1). As previously, we have length

(
x1(·)

)
= d̂(0, x1) and

d̂(0, x2) ≤ C ′′d̂(0, x1)1+1/r.
Continuing in this way, we construct a sequence x0, x1, x2, . . . of points such

that d̂(0, xk+1) ≤ C ′′d̂(0, xk)1+1/r, and horizontal curves xk(·) joining xk to xk+1 of

length equal to d̂(0, xk).

By taking ‖x0‖ small enough, we can assume C ′′d̂(0, x0)1/r ≤ 1/2. We have then

d̂(0, x1) ≤ d̂(0, x0)/2, . . . , d̂(0, xk) ≤ d̂(0, x0)/2k, . . . As a consequence, xk tends to
0 as k → +∞, and putting end to end the curves xk(·), we obtain a horizontal

curve joining x0 to 0 of length d̂(0, x0) + d̂(0, x1) + · · · ≤ 2d̂(0, x0). This implies

d(0, x0) ≤ 2d̂(0, x0), and so the theorem.

4.2 Approximate motion planning

Given a control system (Σ), the motion planning problem is to steer (Σ) from an
initial point to a final point. For nonholonomic control systems, the exact problem
is in general unsolvable. However methods exist for particular class of system, in
particular for nilpotent (or nilpotentizable) systems. It is then of interest to devise
approximate motion planning techniques based on nilpotent approximations. These
techniques are Newton type methods, the nilpotent approximation playing the role
of the usual linearization.
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Precisely, consider a nonholonomic control system

(Σ) : ẋ =
m∑

i=1

uiXi(x), x ∈ Rn,

and initial and final points a and b in Rn. Denote by X̂1, . . . , X̂m a nilpotent
approximation of X1, . . . , Xm at b. The k-step of an approximate motion planning
algorithm take the following form (xk denotes the state of the system):

1. compute a control law u(t), t ∈ [0, T ], steering the control system associated

to X̂1, . . . , X̂m from xk to b;

2. compute the trajectory x(·) of (Σ) with control law u(·) starting from xk;

3. set xk+1 = x(T ).

The question is the following: is this algorithm convergent? or, at least, locally
convergent? The answer to the latter question will be positive, but we need an
extra hypothesis on the control law given in point 2 of the algorithm, namely,

(H) there exists a constant K such that, if xk and b are close enough, then

∫ T

0

√∑
u2

i (t)dt ≤ Kd̂(b, xk).

Note that a control corresponding to a minimizing curve for d̂ satisfies this condi-
tion. Other standards methods using Lie groups (like the one in [LS91]) or based
on the triangular form of the homogeneous nilpotent approximation satisfy also
this hypothesis.

We can also assume without restriction that the control is normalized:
∑

u2
i (t) ≡

1.
The local convergence is then proved in exactly the same way than Theorem 9:

from Lemmas 11 and 8, we have d̂(b, xk+1) ≤ C ′′T 1+1/r, and using hypothesis (H),
we obtain

d̂(b, xk+1) ≤ C ′′K1+1/rd̂(b, xk)
1+1/r.

If a is close enough to b, we have, at each step of the algorithm, d̂(b, xk+1) ≤

d̂(b, xk)/2, which proves the local convergence of the algorithm, that is:
for each point b ∈ M , there exists a constant εb > 0 such that, if d(a, b) < εb,
then the approximate motion planning algorithm steering the system from a to b
converges.

To obtain a globally convergent algorithm, a natural idea is to iterate the locally
convergent one. This requires the construction of a finite sequence of intermediate
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goals b0 = a, b1, . . . , bN = b such that d(bi−1, bi) < εbi
. However the constant εb

depends on b and, as already noticed for Theorem 9, it is not possible to have a
uniform nonzero constant near singular points. Thus this method gives a globally
convergent algorithm only when every point is regular.

4.3 Hausdorff dimension

***** to be written ******

5 Tangent structure

5.1 Metric tangent space

A notion of tangent space can be defined for a general metric space. Indeed, in
describing the tangent space to a manifold, we usually imagine looking at smaller
and smaller neighborhoods of a given point, the manifold being fixed. Equivalently,
we can imagine looking at a fixed neighborhood, but expanding the manifold. As
noticed by Gromov, this idea can be used for metric spaces.

If X is a metric space with distance d, we define λX, for λ > 0, as the metric
space with same underlying set than X and distance λd. A pointed metric space
(X, x) is a metric space with a distinguished point x.

Definition. The metric tangent space CxX to the metric space X at x is defined as

CxX = lim
λ→+∞

(λX, x)

provided the limit exists. When it exists, the metric tangent space is a pointed
metric space.

Of course, for this definition to make sense, we have to define the limit of pointed
metric spaces.

Let us first define the Gromov-Hausdorff distance between metric spaces. Recall
that, in a metric space X, the Hausdorff distance H- dim(A,B) between two subsets
A and B of X is the infimum of ρ such that any point of A is within a distance ρ of
B and any point of B is within a distance ρ of A. The Gromov-Hausdorff distance
GH- dim(X,Y ) between two metric spaces X and Y is the infimum of Hausdorff
distances H- dim(i(X), j(Y)) over all metric spaces Z and all isometric embeddings
i : X → Z, j : Y → Z.

Thanks to Gromov-Hausdorff distance, one can define the notion of limit of a
sequence of pointed metric spaces: (Xn, xn) converge to (X, x) if

GH- dim
(
BXn(xn, r), BX(x, r)

)
→ 0 as n → +∞
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for any positive r. Note that the limit of a sequence of metric spaces is unique
provided the closed balls around the distinguished point are compact.

Thus the metric tangent space can also be characterized as follows: denoting
by 0 the distinguished point of CxX, we have, for any r > 0 (r = 1 suffices),

GH- dim
(1

ε
BX(x, rε), BCxX(0, r)

)
→ 0 as ε → 0.

For a Riemannian manifold (M, g), the metric tangent space at a point p exists
and is the Euclidean space (TpM, gp), that is, its standard tangent space endowed
with the scalar product defined by gp.

For a sub-Riemannian manifold, the metric tangent space is given by the nilpo-
tent approximation.

Theorem 12. A sub-Riemannian manifold (M,d) admits a metric tangent space
(CpM, 0) at every point p ∈ M . The space CpM is a sub-Riemannian manifold

isometric to (Rn, d̂), where d̂ is the sub-Riemannian distance associated to a homo-
geneous nilpotent approximation at p.

This theorem is a consequence of a strong version of Theorem 9 established by
Belläıche: there exists C > 0 such that, for q and q ′ in a neighborhood of p,

|d(q, q′) − d̂(q, q′)| ≤ Cd̂(p, q)d(q, q′)1/r. (10)

Intrinsic characterization (i.e. up to a unique isometry) of the metric tangent
space can be found in [MM00] and [FJ03].

What is the algebraic structure of CpM? Of course it is not a linear space in

general: for instance, d̂ is homogeneous of degree 1 but with respect to dilations
δt and not to the usual Euclidean dilations. We will see that CpM has a natural
structure of group, or at least of quotient of groups.

Denote by Gp the group generated by the diffeomorphisms exp(tX̂i) acting on

the left on Rn. Since gp = Lie(X̂1, . . . , X̂m) is a nilpotent Lie algebra, Gp = exp(gp)
is a simply connected group, having gp as its Lie algebra.

This Lie algebra gp splits into homogeneous components

gp = g1 ⊕ · · · ⊕ gr,

where gs is the set of homogeneous vector fields of degree −s, and so is a graded
Lie algebra. The first component g1 = span〈X̂1, . . . , X̂m〉 generates gp as a Lie
algebra. All these properties imply that Gp is a Carnot groups.

Definition. A Carnot group is a simply connected Lie group whose Lie algebra is
graded, nilpotent, and generated by its first component.
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The vector fields X̂1, . . . , X̂m induce a right-invariant sub-Riemannian structure
(∆, γ) on Gp. Indeed, by identifying gp to the set of right-invariant vector fields on
G, we identify g1 ⊂ gp to a right-invariant distribution ∆ on G. The inner-product

on g1 which has X̂1, . . . , X̂m as an orthonormal basis is then identified to a right-
invariant Riemannian metric γ on ∆. Equivalently, let ξ̂1, . . . , ξ̂m be the elements
X̂1, . . . , X̂m of gp viewed as right-invariant vector fields on Gp, that is

ξ̂(g) =
d

dt

[
exp(tX̂i)g

]∣∣
t=0

.

Then ξ̂1, . . . , ξ̂m is an orthonormal frame of the sub-Riemannian structure (∆, γ)
on Gp.

The action of Gp on Rn is transitive, since D̂ is bracket-generating: the orbit of
0 under the action of Gp is the whole Rn. The mapping φp : Gp → Rn, φp(g) = g(0),
is then surjective.

Case p regular:

Proposition 13. If p is a regular point, then dim Gp = n.

Proof. Let XI1 , . . . , XIn be an adapted frame at p. Due to the regularity of p, it
is also an adapted frame near p, so any bracket XJ can be written as

XJ(z) =
∑

{i : |Ii|≤|J |}

ai(z)XIi
(z),

where each ai is a function of order ≥ |Ii| − |J |. By taking the homogeneous terms
of degree −|J | in this expression, we obtain

X̂J(z) =
∑

{i : |Ii|=|J |}

ai(0)X̂Ii
(z),

and so X̂J ∈ span〈X̂I1 , . . . , X̂In〉. Thus X̂I1 , . . . , X̂In is a basis of gp, and so
dim Gp = n.

If p is regular, the mapping φp is a diffeomorphism. Moreover φp∗ξ̂i = X̂i, that

is φp maps the sub-Riemannian structure (∆, γ) to (D̂, ĝ).

Lemma 14. When p is a regular point, the metric tangent space CpM and (Rn, D̂, ĝ)
are isometric to the Carnot group Gp endowed with the right-invariant sub-Riemannian
structure (∆, γ).
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Carnot groups are to sub-Riemannian geometry as Euclidean spaces are to Rie-
mannian geometry: the internal operation – addition – is replaced by the law group
and the external operation – product by a real number – by the dilations. Indeed,
recall that the dilations δt act on gp as multiplication ts on gs; it extends to Gp by
the exponential mapping. Notice that, when Gp is Abelian (i.e. commutative) it
has a linear structure and the metric (∆, γ) is a Euclidean metric.

General case:
Without hypothesis on p, Gp can be of dimension greater than n and the map

φp not injective. Denoting by Hp = {g ∈ Gp : g(0) = 0} the isotropy subgroup of
0, φp induces a diffeomorphism

ψp : Gp/Hp → Rn.

Beware: Gp/Hp is in general only a coset space, not a quotient group.
Observe that Hp is invariant under dilations, since δtg(δtx) = δt(g(x)). Hence

Hp is connected and simply connected, and so Hp = exp(hp), where hp is the Lie
sub-algebra of gp containing the vector fields vanishing at 0:

hp = {Z ∈ gp : Z(0) = 0}.

As gp, hp is invariant under dilations and splits into homogeneous components.

Now, the elements X̂1, . . . , X̂m of gp acts on the left on Gp/Hp = {gHp : g ∈
Gp} under the denomination ξ1, . . . , ξm:

ξi(g) =
d

dt

[
exp(tX̂i)gHp

]∣∣
t=0

.

These vector fields form the orthonormal basis of a sub-Riemannian structure (∆, γ)

on Gp/Hp. We clearly have ψp∗ξi = X̂i, so ψp maps (∆, γ) to (D̂, ĝ).

Theorem 15. The metric tangent space CpM and (Rn, D̂, ĝ) are isometric to the
homogeneous space Gp/Hp endowed with the sub-Riemannian structure (∆, γ).

5.2 Desingularization and uniform distance estimate

To get rid of singular points, the usual way is to consider a singularity as the
projection of a regular object. The algebraic structure of the metric tangent space
yields a good way of lifting and projecting sub-Riemannian manifolds. We start
with nilpotent approximations.

We keep the notations and definitions of the preceding section. At a singular
point p of the sub-Riemannian manifold, we have the following diagram between
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sub-Riemannian manifolds:

(Gp, ∆, γ)

π ↓ φp↘

(Gp/Hp, ∆, γ)
ψp

−̃→ (Rn, D̂, ĝ)

Since (∆, γ) is a right-invariant structure on Gp, every point in the sub-Riemannian
manifold (Gp, ∆, γ) is regular. We say that (Gp, ∆, γ) is an equiregular manifold.

Thus (Rn, D̂, ĝ) is the projection of an equiregular manifold.

Recall that ξ̂1, . . . , ξ̂m (resp. ξ1, . . . , ξm) is the orthonormal frame of (∆, γ) (resp.

(∆, γ)) which is mapped to X̂1, . . . , X̂m by φp (resp. ψp). Working in a system of

coordinates, we identify Gp/Hp with Rn and ξi with X̂i. These coordinates x on
Rn ' Gp/Hp induce coordinates (x, z) ∈ RN on Gp and we have:

ξ̂i(x, z) = X̂i(x) +
N∑

j=n+1

bij(x, z)∂zj
. (11)

Consider a horizontal curve (x(t), z(t)) in Gp associated to the control u(t), that
is

(ẋ(t), ż(t)) =
m∑

i=1

ui(t)ξ̂i(x, z).

Then x(t) is a horizontal curve in Rn with the same length: length
(
x(·)

)
=

length
(
(x, z)(·)

)
=

∫ √∑
u2

i (t)dt. It implies that d̂ can be obtained from the
sub-Riemannian distance dGp in Gp by

d̂(q1, q2) = inf
q̃2 ∈ q2Hp

dGp(q̃1, q̃2), for any q̃1 ∈ q1Hp,

or, equivalently, B d̂(q1, ε) = φp

(
BdGp (q̃1, ε)

)
.

We will use this idea to desingularize the original sub-Riemannian manifold.
Choose for x privileged coordinates at p, so that

Xi(x) = X̂i(x) + Ri(x) with ordpRi ≥ 0.

Set M̃ = M × RN−n, and in local coordinates (x, z) on M̃ , define vector fields on
a neighborhood of (p, 0) as

ξ(x, z) = Xi(x) +
N∑

j=n+1

bij(x, z)∂zj
,
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with the same functions bij than in (11).

We define in this way a sub-Riemannian structure on an open set Ũ ⊂ M̃
which nilpotent approximation at (p, 0) is, by construction, given by (ξ̂1, . . . , ξ̂m).
Unfortunately, (p, 0) can be itself a singular point. Indeed, a point can be singular
for a sub-Riemannian structure and regular for the nilpotent approximation taken
at this point.

Example. Take the distribution on R5 generated by X1 = ∂x1
, X2 = ∂x2

+ x1∂x3
+

x2
1∂x4

and X3 = ∂x5
+ x100

1 ∂x4
. The origin 0 is a singular point. However the

nilpotent approximation at 0 is X̂1 = X1, X̂2 = X2, X̂3 = ∂x5
, for which 0 is not

singular.

To avoid this difficulty, we take a group bigger than Gp, namely the free nilpo-
tent group Nr of step r with m generators. It is a Carnot group and its Lie algebra
nr is the free nilpotent Lie algebra of step r with m generators. Given generators
α1, . . . , αm of nr define on Nr a right-invariant sub-Riemannian structure (∆N , γN).

The group Nr can be thought as a group of diffeomorphisms and so define a
left action on Rn. Denoting by J the isotropy subgroup of 0 for this action, we
obtain that (Rn, X̂1, . . . , X̂m) is isometric to Nr/J endowed with the restrictions of
(∆N , γN).

By the same reasoning as above, we are able to lift locally the sub-Riemannian
structure (D, g) on M to a sub-Riemannian structure in M × Rñ−n, ñ = dim Nr,
having for nilpotent approximation at (p, 0) the orthonormal basis of (∆N , γN)
defined by α1, . . . , αm. And, because Nr is free up to step r, this implies that (p, 0)
is a regular point for that structure in M × Rñ−n. We obtain in this way a result
of desingularization.

Lemma 16. Let p be a point in M , r the degree of nonholonomy at p, ñ = ñ(m, r)

the dimension of the free Lie algebra of step r with m generators, and M̃ the
manifold M̃ = M × Rñ−n.

then there exist a neighborhood Ũ ⊂ M̃ of (p, 0); a neighborhood U ⊂ M of p

with U × {0} ⊂ Ũ ; local coordinates (x, z) on Ũ ; and smooth vector fields on Ũ :

ξ(x, z) = Xi(x) +
N∑

j=n+1

bij(x, z)∂zj
,

such that:

• the distribution generated by ξ1, . . . , ξm is bracket-generating and has r for
degree of nonholonomy everywhere (so its Lie algebra is free up to step r);

• every q̃ in Ũ is regular;
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• denoting π : M̃ → M the canonical projection and d̃ the sub-Riemannian
distance defined by ξ1, . . . , ξm on Ũ , we have, for q ∈ U and ε > 0 small
enough,

B(q, ε) = π
(
Bd̃

(
(q, 0), ε

))
,

or, equivalently,
d(q1, q2) = inf

q̃2 ∈π−1(q2)
d̃
(
(q1, 0), q̃2

)
.

Remark. The lemma still holds if we take for r any integer greater than the degree
of nonholonomy at p.

Thus any sub-Riemannian manifold is locally the projection of an equiregular
sub-Riemannian manifold. This projection preserves the horizontal curves, the
minimizing curves, the distance. We will see in Part III that it also preserves the
extremals and the geodesics.

Application: uniform Ball-Box theorem
The key feature of the sub-Riemannian structure at regular points is the uni-

formity:

• uniformity of the flag (4);

• uniformity w.r.t. p of the convergence (λ(M,d), p) → CpM (as explained by
Belläıche [Bel96, §8], this uniformity is responsible for the group structure of
the metric tangent space);

• uniformity of the distance estimates (see Remark page 21).

This last property in particular is essential to compute Hausdorff dimension or to
prove the global convergence of approximate motion planning algorithms. Recall
what we mean by uniformity in this context: in a neighborhood of a regular point
p0, we can construct privileged coordinates depending continuously on the base
point p and such that the distance estimate (7) holds with Cp and εp independent
of p.

As already noticed, all these uniformity properties are lost at singular points.
However, using the desingularization of the sub-Riemannian manifold, it is possible
to give a uniform version of the distance estimates.

Let Ω ⊂ M be a compact set. We denote by rmax the maximum of the degree of
nonholonomy on Ω. We assume that M is an oriented manifold, so the determinant
n-form det is well-defined.
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Given q ∈ Ω and ε > 0, we consider the families X = (XI1 , . . . , XIn) of brackets
of length |Ii| ≤ rmax. On the finite set of these families, we define a function

fq,ε(X ) =
∣∣det

(
XI1(q)ε

|I1|, . . . , XIn(q)ε|In|
)∣∣ .

We say that X is an adapted frame at (q, ε) if it achieves the maximum of fq,ε.
The values at q of an adapted frame at (q, ε) clearly form a basis of TqM .

Moreover, q being fixed, the adapted frames at (q, ε) are adapted frame at q for ε
small enough.

Theorem 17 (Uniform Ball-Box theorem). There exist positive constants K
and ε0 such that, for all q ∈ Ω and ε < ε0, if X is an adapted frame at (q, ε), then

BoxX (q,
1

K
ε) ⊂ B(q, ε) ⊂ BoxX (q,Kε),

where BoxX (q, ε) = {ex1XI1 ◦ · · · ◦ exnXIn (q) : |xi| ≤ ε|Ii|, 1 ≤ i ≤ n}.

Of course, q being fixed, this estimate is equivalent to the one of Ball-Box
theorem for ε smaller than some ε1(q) > 0. However ε1(q) can be infinitely close
to 0 though the estimate here holds for ε smaller than ε0, which is independent of
q.
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Part III. Minimizing curves

6 Optimal control problem

7 Singular curves

8 Extremals and geodesics
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